WO2007013515A1 - Gas discharge light emitting panel - Google Patents

Gas discharge light emitting panel Download PDF

Info

Publication number
WO2007013515A1
WO2007013515A1 PCT/JP2006/314780 JP2006314780W WO2007013515A1 WO 2007013515 A1 WO2007013515 A1 WO 2007013515A1 JP 2006314780 W JP2006314780 W JP 2006314780W WO 2007013515 A1 WO2007013515 A1 WO 2007013515A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
gas discharge
chromaticity
panel
emitting panel
Prior art date
Application number
PCT/JP2006/314780
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiro Zukawa
Seigo Shiraishi
Kojiro Okuyama
Junichi Hibino
Keiji Horikawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/997,084 priority Critical patent/US20100156266A1/en
Priority to JP2007526875A priority patent/JPWO2007013515A1/en
Publication of WO2007013515A1 publication Critical patent/WO2007013515A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/54Screens on or from which an image or pattern is formed, picked-up, converted, or stored; Luminescent coatings on vessels
    • H01J1/62Luminescent screens; Selection of materials for luminescent coatings on vessels
    • H01J1/63Luminescent screens; Selection of materials for luminescent coatings on vessels characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • the present invention relates to a gas discharge light-emitting panel that is an image display device that utilizes light emission of a phosphor by ultraviolet rays generated by gas discharge.
  • PDP plasma display panel
  • the PDP includes a phosphor layer that includes phosphors that emit red, green, and blue colors (red phosphor, green phosphor, or blue phosphor) for each discharge cell. .
  • Each phosphor is excited by irradiation with ultraviolet rays (vacuum ultraviolet rays) generated by gas discharge in the discharge space, and emits light of each color.
  • the discharge cells are arranged in a predetermined pattern, and an image is displayed on the panel by controlling the timing of gas discharge for each discharge cell, that is, the timing of ultraviolet irradiation to the phosphor.
  • the specific structure of the PDP is disclosed in, for example, Hiraki Uchiike and Shigeo Miko, published on May 1, 1997, “All about plasma display", Industrial Research Association, pp79_80, etc. .
  • BAM BaMgAl 2 O 3: Eu 2+
  • Japanese Patent Laid-Open No. 2005-116363 discloses that a blue phosphor layer is formed from a mixture of two or more types of blue phosphors that are different from each other in both initial luminance and luminance with time.
  • a specific structure of the blue phosphor layer a combination of BAM and Ca MgSi 2 O: Eu 2+ (CMS) is shown (see Examples).
  • CMS Ca MgSi 2 O: Eu 2+
  • the initial brightness of the CMS is lower than that of the BAM, but the decrease rate of the brightness of the CMS when the panel is driven for 1000 hours is smaller than that of the BAM. It has been shown that the decrease in luminance of the blue phosphor layer due to panel driving can be suppressed compared to the case where the blue phosphor layer is composed only of BAM.
  • JP 2003-313549 A (Document 2) describes, as a blue phosphor having a high luminance after plasma exposure, a phosphor in which part of Ca in CMS is substituted with Sr and BAM. A mixture is shown.
  • the plasma exposure in the example is 15 minutes after the heat treatment for forming the phosphor layer, a technique for increasing the initial luminance of the blue phosphor is considered to be disclosed. It is done.
  • a gas discharge light-emitting panel is desired in which fluctuations in the light emission characteristics of the phosphor (phosphor layer) due to driving of the panel are reduced and deterioration of the display characteristics of the panel over time is suppressed.
  • the present inventors have realized such a gas discharge light-emitting panel with a configuration different from that of the conventional technique.
  • the gas discharge light-emitting panel of the present invention is disposed on a front plate and a back plate arranged to face each other through a discharge space, and on a main surface of the back plate on the discharge space side, A phosphor layer that emits light by ultraviolet rays generated in the discharge space.
  • the phosphor layer includes first and second phosphors in which the direction of variation of at least one characteristic selected from luminance and chromaticity due to driving of the panel is opposite to each other.
  • a gas discharge light-emitting panel according to the present invention as seen from a side different from the above includes a front plate and a back plate arranged so as to face each other through a discharge space, and the discharge space side of the back plate on the discharge space side.
  • a phosphor layer is disposed on the main surface and emits light by ultraviolet rays generated in the discharge space.
  • the phosphor layer is represented by the formula aSr ⁇ ⁇ bEuO ⁇ Mg ⁇ ⁇ cSiO
  • the first phosphor includes BaMgAl 2 O 3: Eu 2+ as the second phosphor.
  • BaMgAl 2 O 3: Eu 2+ as the second phosphor.
  • the present invention it is possible to drive the panel by providing the phosphor layer including phosphors whose directions of variation of at least one characteristic selected from luminance and chromaticity accompanying the driving of the panel are opposite to each other. As a result, fluctuations in the emission characteristics of the phosphor layer can be reduced, and deterioration of the display characteristics of the panel over time can be suppressed.
  • FIG. 1 is a schematic view showing an example of a plasma display panel (PDP) as a gas discharge light-emitting panel of the present invention.
  • PDP plasma display panel
  • FIG. 2 is a schematic view showing an example of luminance variation of a phosphor layer.
  • FIG. 3 is a schematic diagram showing an example of variation in chromaticity of a phosphor layer.
  • FIG. 4A is a diagram showing a change in luminance in each phosphor layer sample measured in Example 1.
  • FIG. 4B is a diagram showing a change in chromaticity in each phosphor layer sample measured in Example 1.
  • FIG. 1 shows an example of a plasma display panel (PDP) as a gas discharge light-emitting panel of the present invention.
  • the PDP 51 shown in FIG. 1 has a pair of substrates (front plate 1 and back plate 2) arranged to face each other with the discharge space 31 therebetween, and a main surface of the back plate 2 on the discharge space 31 side. And a phosphor layer 3 disposed thereon.
  • the phosphor layer 3 includes first and second phosphors as phosphors that emit light by ultraviolet rays generated in the discharge space 31.
  • the first and second phosphors have opposite directions of variation in at least one characteristic selected from luminance and chromaticity when the panel is driven (with light emission).
  • the emission characteristics of the first and second phosphors fluctuate in directions opposite to each other by driving the panel. Therefore, fluctuations in the emission characteristics of the phosphor layer 3 can be reduced, and the display characteristics of the panel can be reduced. Can be prevented.
  • variations in luminance and chromaticity are variations accompanying panel driving (ie, during panel driving).
  • the change in luminance can be indicated by, for example, an increase or decrease in a value (Y / y) described later.
  • the variation in chromaticity can be indicated by, for example, an increase or decrease in the value of chromaticity y described later.
  • the phosphor layer 3 includes first and second phosphors whose luminance fluctuation directions are opposite to each other, in other words, the phosphor layer 3 is a first phosphor whose luminance increases. And the second phosphor whose luminance decreases, the variation in the luminance of the phosphor layer 3 can be suppressed.
  • the direction of the change in the first phosphor is a direction in which the luminance increases.
  • phosphors used in gas discharge light-emitting panels such as PDP usually have a tendency to decrease in luminance when the panel is driven, and BAM and CMS, as well as Reference 1 (Special 2005-116363).
  • a phosphor layer that includes a conventional phosphor that decreases in luminance as the second phosphor and a phosphor that increases in luminance as the first phosphor, the luminance of the phosphor layer can be reduced. Reduction can be reduced, and the effect is greater than in the case of combining phosphors whose luminance decreases as in References 1 and 2.
  • a gas discharge light-emitting panel that performs full-color display includes three types of phosphor layers each including blue, green, and red phosphors as phosphor layers.
  • blue phosphors blue phosphors
  • the blue phosphor layer has a conventional blue phosphor whose luminance decreases as the second phosphor and a luminance which increases as the first phosphor.
  • the first phosphor is preferably also a blue phosphor. That is, in the panel of the present invention, it is preferable that the first and second phosphors are blue phosphors. In this case, the effects of the present invention are particularly remarkable.
  • the blue phosphor means a phosphor having an emission spectrum peak in the wavelength range of 440 to 470 nm, typically in the wavelength range of 450 to 460 nm.
  • Examples of phosphors with increased luminance include silicate phosphors such as Sr 2 Si 2 O: Eu and Ba MgSi 2 O: Eu. Since these phosphors are based on Si oxide, the structure is likely to change in the direction of increasing brightness as soon as they are affected by gas and discharge.
  • SMS a phosphor represented by the formula aSrO ⁇ bEuO ⁇ MgO ⁇ cSiO (hereinafter referred to as SMS) as the phosphor whose luminance increases.
  • a, b and c satisfy the relations 2.97 ⁇ a ⁇ 3.5, 0.001 ⁇ b ⁇ 0.03 and 1.9 ⁇ c ⁇ 2.1.
  • SMS satisfying the stoichiometric composition can be represented by the formula Sr MgSi 2 O: Eu with Eu as an activator element.
  • phosphors containing a base material and an activator composed of the same elements as SMS exist in the past. Since these conventional phosphors do not have sufficient luminance and chromaticity during light emission, This is not used as a phosphor for gas discharge light emitting panels such as PDP.
  • the SMS having the composition represented by the above formula has the luminance and chromaticity satisfying the characteristics required for the phosphor used in the gas discharge light-emitting panel, and the first phosphor of the present invention. It is preferable to use as.
  • SMS In SMS, Eu plays a role as an activator, and the divalent Eu ratio (all Eu atoms with different valences) near the surface of the SMS particle (in the range from the surface of the SMS particle to about 10 nm).
  • the atomic fraction of divalent Eu atoms in the inside) is 50. / Les, preferably less than 0 .
  • SMS is a blue phosphor having an emission spectrum peak at a wavelength of 460 nm. This Therefore, SMS is preferably included in the blue phosphor layer together with the second phosphor that is a blue phosphor. In other words, it is preferable that the blue phosphor layer contains SMS in the PDP 51. In other words, the blue phosphor layer contains SMS as the first phosphor, and the second phosphor. It is preferable to include a blue phosphor having an emission spectrum peak in the wavelength range of 440 to 470 nm, typically in the wavelength range of 450 to 460 nm.
  • SMSf For SMSf, one monore MgO, Sr0 2.97-3.5 monole, Eu0 0.001-0.03 monole, Si0 1.9-1. It can be said that it is a phosphor containing mol.
  • the type of blue phosphor combined with SMS is not particularly limited, but BaMgAl 2 O 3: Eu 2+ (BAM) is preferred because of its high luminous efficiency.
  • BAM driving panel BaMgAl 2 O 3: Eu 2+
  • SMS This is a blue phosphor whose luminance is lowered.
  • Other phosphors combined with SMS include CaMgSi O: Eu Sr MgSi O: Eu (SrBa) MgSi 0: Eu 2+
  • These phosphors are blue phosphors, and tend to decrease in luminance when the panel is driven.
  • the content ratio of the two is not particularly limited.
  • the volume ratio BAM: SMS 25: 75-75: If it is around 25.
  • FIG. 2 shows an example of a variation in luminance in the phosphor layer 3 containing the second phosphor whose luminance is lowered by driving the panel and SMS.
  • the brightness of the SMS tends to increase according to the panel driving time as shown in (a), and the brightness of the second phosphor as shown in (b).
  • the tendency which falls according to the drive time of a panel is shown.
  • the phosphor layer 3 includes both phosphors, as shown in (c), it is possible to reduce fluctuations in luminance as compared with the case where only the second phosphor is included. Note that the luminance in Fig.
  • the first phosphor is not particularly limited as long as it is a phosphor whose luminance is increased by driving the panel. However, in order to more reliably suppress fluctuations in luminance of the phosphor layer, the first phosphor is not limited. It is preferable that the increase rate of the luminance of the body is a predetermined value or more. Specifically, the above value (Y / y) is Further, it is preferable to increase 3% or more per 1000 hours of panel driving, more preferably 8% or more, and more preferably 10% or more. As will be described later in the Examples, SMS satisfies this increase rate depending on its composition, the above-mentioned divalent Eu ratio, or production conditions.
  • the luminance of the first and second phosphors does not always change in opposite directions due to the driving of the panel, that is, the period during which the panel is driven (ie, the first and second phosphors themselves). In at least a part of the period during which light is emitted, it is only necessary to change in directions opposite to each other.
  • the luminance increase rate described above can be achieved by applying a phosphor layer on the main surface of the back plate by techniques such as coating and baking, and driving the panel for aging for 1000 hours or after aging. The rate of increase over a period of 1000 hours from the start of driving the panel for normal image display is sufficient.
  • the phosphor layer 3 increases the chromaticity y by driving the panel.
  • chromaticity y means chromaticity y in chromaticity coordinates (x, y) based on the XYZ color system defined by the International Commission on Illumination (CIE).
  • chromaticity variation is not limited to the exemplified variation of chromaticity y, and at least one chromaticity variation selected from chromaticity x and chromaticity y in the chromaticity coordinates (x, y) above. Narare.
  • blue phosphors used in gas discharge light-emitting panels such as PDP usually show a tendency that the chromaticity y increases by driving the panel, including BAM and CMS, and References 1 and 2 This also applies to the phosphor disclosed in the above. For this reason, for example, by forming a phosphor layer including a conventional phosphor having an increased chromaticity y as the second phosphor and a phosphor having a decreased chromaticity y as the first phosphor, the phosphor The fluctuation of the chromaticity y of the layer can be suppressed.
  • Examples of blue phosphors with decreased chromaticity y include silicate phosphors such as Sr 2 Si 2 O: Eu and Ba MgSi 2 O: Eu. Since these phosphors are made of Si oxide, the structure is easily affected by the effects of gas and discharge, and the structure is likely to change in the direction of increasing chromaticity y.
  • the SMS as a phosphor that reduces the chromaticity y.
  • conventional blue phosphors used in gas discharge light emitting panels such as PDPs usually show a tendency that the chromaticity y increases by driving the panel. Therefore, for example, by using a phosphor layer including a conventional blue phosphor in which chromaticity y increases and SMS in which chromaticity y decreases, variation in chromaticity in the blue phosphor layer can be reduced.
  • the blue phosphor layer contains SMS from the viewpoint of reducing variation in chromaticity.
  • the type of blue phosphor combined with SMS is not particularly limited, but BAM is preferred because of its high luminous efficiency.
  • BAM is a blue phosphor whose chromaticity y increases as the panel is driven.
  • Other examples of the phosphor to be combined with SMS as a blue phosphor, CaMgSi_ ⁇ : Eu 2+, Sr MgSi_ ⁇ : Eu 2+, (SrBa) MgSi O: such as Eu 2+ is like et be. These phosphors show a tendency that the chromaticity y increases as the panel is driven.
  • FIG. 3 shows an example of variation in chromaticity y in the phosphor layer 3 including the second phosphor whose chromaticity y increases by driving the panel and SMS.
  • the chromaticity y of SMS tends to decrease with the panel driving time as shown in (a), and the chromaticity y of the second phosphor is in (b). As shown, it tends to increase according to the driving time of the panel.
  • the phosphor layer 3 contains both phosphors, as shown in (c), the variation in the chromaticity y can be reduced compared to the case where only the second phosphor is contained.
  • the chromaticity y in the first and second phosphors does not always have to fluctuate in opposite directions due to the driving of the panel. If it fluctuates in a direction opposite to each other.
  • the phosphor layer 3 may contain one or more kinds of phosphors (third phosphor) other than the first and second phosphors.
  • the direction of variation of the at least one characteristic in the third phosphor is not particularly limited. For example, it may be the same as the direction of variation of the first phosphor, or the second phosphor. In the same direction as the above May be.
  • the content ratios of the first and second phosphors in the phosphor layer 3 are not particularly limited, and are arbitrarily set according to the type of phosphors contained or the light emission characteristics required for the phosphor layer 3. Just do it.
  • the content rate of the 1st fluorescent substance in the fluorescent substance layer 3 is the range of 25-75 volume%, for example.
  • the first and second phosphors may change so that both the luminance and chromaticity of the first and second phosphors are in conflict with each other.
  • all the phosphor layers 3 may not include the first and second phosphors.
  • the blue phosphor layer may contain the first and second phosphors, and it is located in the image display region of the panel, particularly in the region where the variation in luminance and / or chromaticity is large. Only the phosphor layer 3 may include the first and second phosphors.
  • each member in the PDP 51, and the material used for each member are not particularly limited as long as the phosphor layer 3 includes the first and second phosphors. If it's a configuration,
  • the display electrode 13 including the sustain electrode 11 and the scan electrode 12, the dielectric layer 14, and the dielectric layer 14 are generated in the discharge space 31 on the main surface of the front plate 1.
  • a protective layer 15 is provided to protect against plasma.
  • an address electrode 23, a dielectric layer 22 that protects the address electrode from the plasma, and a partition wall 21 are disposed.
  • the PDP 51 is an AC type PDP having a so-called three-electrode structure. In FIG. 1, the number of electrodes and partition walls in an actual PDP is omitted.
  • the material used for the front plate 1 is not particularly limited as long as it has translucency.
  • a glass substrate may be used.
  • the material used for the back plate 2 is not particularly limited.
  • a substrate containing glass and Z or metal may be used.
  • glass substrates are used for the front plate 1 and the back plate 2.
  • stripe-shaped sustain electrodes 11 and scanning electrodes 12 are arranged in parallel to each other as display electrodes 13.
  • Sustain electrode 11 and staggered electrode 12 are transparent electrode (sustain electrode) 11a and transparent electrode (scan electrode) 12a, bus electrode (sustain electrode) l ib and bus electrode (scan electrode) 12 respectively. b is laminated.
  • ITO Indium Tin Oxide
  • the bus electrodes l ib and 12b may be made of aluminum, copper, silver, a laminate of chromium and copper, or the like.
  • a black film made of glass and black pigment which is called a black stripe, is provided between the sustain electrode 11 and the scanning electrode 12 to improve the black display quality and increase the contrast of the image.
  • Each electrode and the black film included in the display electrode 13 can be formed on the main surface of the front plate 1 by a method such as screen printing, for example.
  • a dielectric layer 14 is disposed on the front plate 1 so as to cover the display electrodes 13. On the dielectric layer 14 (on the discharge space 31 side of the dielectric layer 14), a protective layer is provided. 15 are arranged.
  • the dielectric layer 14 serves as a capacitor for accumulating charges when the PDP 51 displays an image.
  • the dielectric layer 14 may be made of a general material as a PDP, for example, a layer made of low melting point glass mainly composed of lead oxide (PbO), bismuth oxide (BiO), phosphorus oxide (PO), or the like. If it is.
  • the dielectric layer 14 is obtained by applying a dielectric paste obtained by kneading a low-melting glass, a resin, and a solvent by a technique such as printing (for example, screen printing or die coat printing) or transfer (for example, film laminating). It can be formed by coating on the face plate 1, drying and firing.
  • a dielectric paste obtained by kneading a low-melting glass, a resin, and a solvent by a technique such as printing (for example, screen printing or die coat printing) or transfer (for example, film laminating). It can be formed by coating on the face plate 1, drying and firing.
  • a common material for the PDP may be used for the protective layer 15, for example, a layer made of MgO.
  • the protective layer 15 can be formed on the dielectric layer 14 by an electron beam evaporation method, an ion plating method, or a sputtering method.
  • a dielectric layer 22, stripe-shaped partition walls 21 and stripe-shaped address electrodes 23 are arranged on the back plate 2, a dielectric layer 22, stripe-shaped partition walls 21 and stripe-shaped address electrodes 23 are arranged.
  • the dielectric layer 22 is disposed so as to cover the address electrodes 23, and the partition walls 21 are disposed so as to be parallel to each other.
  • the phosphor layer 3 is disposed between the adjacent barrier ribs 21, and the region surrounded by the intersection of the address electrode 23 and the display electrode 13 in the discharge space 31 and divided by the barrier rib 21 is the discharge cell.
  • the configuration of the address electrode 23 may be the same as, for example, the configuration of the bus electrode described above.
  • the dielectric layer 22 may be the same as the dielectric layer 14.
  • the partition wall 21 may be formed using glass, pigment, or the like.
  • the phosphor layer 3 including the first and second phosphors is the same as the conventional phosphor layer in the PDP.
  • the first and second fluorescence can be formed in an organic solvent such as terpineol containing ethyl cellulose and z or nitrocellulose at a concentration of 5% to 10% by weight, for example.
  • the paste obtained by dispersing the body can be formed by applying between the partition walls 21 by screen printing or line jet method and baking it in the range of 450 ° C to 550 ° C.
  • the first and second phosphors are dispersed in the organic solvent, the mixture of the first and second phosphors may be dispersed, or each phosphor is individually injected into the organic solvent. You may make it disperse
  • the front plate 1 and the back plate 2 are arranged so that the protective layer 15 and the partition wall 21 face the discharge space 31, and the striped display electrodes 13 and address electrodes 23 are formed on the front plate 1 and the back plate 2. They are arranged facing each other so as to be orthogonal when viewed from the main surface. Sealing members made of low-melting glass are disposed on the peripheral portions of the front plate 1 and the back plate 2 to keep the discharge space 31 hermetic.
  • the discharge space 31 is filled with a discharge gas containing a rare gas such as neon or xenon.
  • the pressure of the discharge gas in the discharge space 31 is, for example, in the range of 53 kPa to 79 kPa (400 Torr to 600 Torr).
  • a video signal voltage is selectively applied to the display electrode 13 to excite the phosphor contained in the phosphor layer 3, and the excited phosphor emits red, green, or blue light. Can display color images.
  • a general method may be used as a method for manufacturing PDP.
  • the gas discharge light-emitting panel of the present invention is not limited to the PDP as shown in FIG. 1, but irradiates phosphors with ultraviolet rays (particularly, vacuum ultraviolet rays having a wavelength of 200 nm or less) generated by gas discharge.
  • ultraviolet rays particularly, vacuum ultraviolet rays having a wavelength of 200 nm or less
  • there is no particular limitation Among such light-emitting panels, in addition to PDPs, LCD panel backlights, character display displays, lighting panels, etc., the fluctuations in chromaticity and brightness are significant in the display characteristics of the panel.
  • the present invention is applied to an influencing PDP, the effect obtained is great.
  • Example 1 a PDP provided with a phosphor layer A containing SMS and BAM, a phosphor layer B made of BAM, and a phosphor layer C made of SMS was produced, and a lighting test was performed on the produced PDP. Then, the variation of the light emission characteristics of each phosphor layer accompanying the driving of the panel was evaluated.
  • PDP51 as shown in FIG. 1 was produced using each of the produced phosphor layers.
  • PDP51 was produced according to a general PDP production method. When manufacturing PDP51, all phosphor layers A to C were placed in one panel in order to prevent variations in emission characteristics due to differences in the atmosphere in the discharge space.
  • the PDP 51 manufactured in this way is connected to a general PDP drive device and continuously lit, and the luminance (Y / y) and chromaticity y in each phosphor layer are changed over time.
  • the measurement was performed using a CRT color analyzer (manufactured by Konica Minolta: CA_100plus).
  • the PDP area for measuring changes in luminance and chromaticity was continuously lit and displayed in white, and the luminance was evaluated as a relative value of emission intensity with an initial value of 100%.
  • the continuous lighting time was 2500 hours, and the AC voltage applied to the discharge space for lighting the panel was 175 V.
  • FIG. 4 (a) The measurement results are shown in FIG. As shown in Fig. 4 (a), the brightness of phosphor layer B made of BAM was lowered by driving the panel, and the brightness of phosphor layer C made of SMS was increased by driving the panel. On the other hand, the phosphor layer A-1 containing 25% by volume of SMS and 75% by volume of BAM as the phosphor, compared to the phosphor layer B, was able to reduce fluctuations in brightness due to panel driving.
  • the phosphor layer B made of BAM is driven by driving the panel.
  • the chromaticity y increases (in Fig. 4 (b), the fluctuation of the chromaticity y is indicated by the amount of fluctuation (A y) from the initial value).
  • the chromaticity y decreased.
  • the phosphor layer A-2 containing 70% by volume of SMS and 30% by volume of BAM as the phosphor fluctuations in chromaticity y due to panel driving can be reduced compared to phosphor layer B.
  • Example 2 a plurality of SMS phosphor samples in which the content of Eu as an activation element was changed were prepared, and the change in luminance was evaluated as the light emission characteristics.
  • the divalent Eu ratio near the surface of the phosphor particles was set to 50% or less by precisely controlling the oxygen partial pressure in the mixed gas.
  • the divalent Eu ratio was determined from the intensity ratio (peak area ratio) between the peak attributed to divalent Eu and the peak attributed to trivalent Eu by XPS (X-ray photoelectron spectrometer).
  • Example 2 The composition of the SMS sample prepared in Example 2 is shown in Table 1 as values of a, b, and c.
  • Example 2 eight sample samples (samples 1 to 8) in which the value of b corresponding to the Eu content is in the range of 0.001 to 0.03, and the value of b is 0.1.
  • One type of comparative sample (Sample A) was prepared.
  • Table 1 shows the evaluation results.
  • evaluation results for both phosphors of BAM and CMS (CaMgSi ⁇ : Eu 2+ ) are also shown.
  • the brightness of each sample is evaluated by the above-mentioned value (Y / y) and expressed as a relative value where the brightness in the powder state of BAM is 100.
  • Example 3 the change in chromaticity y was evaluated as the light emission characteristics of the SMS phosphor sample prepared in Example 2.
  • Example 2 To 8 and Comparative Sample A, (1) the chromaticity y in the powdered state as prepared, (2) the organic solvent and The phosphor paste formed by mixing is applied between the barrier ribs on the back plate and baked at 500 ° C to form a phosphor layer. (3) Similar to Example 1, PDP panel Assessed were chromaticity y when assembly and panel driving started 10 hours later, and (4) chromaticity y when panel driving continued for 1000 hours from point (3) above. (1) and (2) are evaluated by irradiating the phosphor in the state of the phosphor layer formed on the powder or the back plate with ultraviolet light having a wavelength of 145 nm, and (3) and (4) are performed. Evaluation was performed in the same manner as in Example 1. As described above, the 10 hours in (3) corresponds to the time when the aging process is generally completed in the PDP manufacturing process.
  • Table 2 shows the evaluation results.
  • BAM and CMS CaMgSi
  • the directions of fluctuations in the light emission characteristics accompanying the driving of the panel are opposite to each other.

Abstract

A gas discharge light emitting panel wherein deterioration of display characteristics of a panel due to fluctuation of light emitting characteristics of a fluorescent material is suppressed. The gas discharge light emitting panel is provided with a front plate and a rear plate arranged to face through a discharge space, and a fluorescent layer which is arranged on a main plane on a discharge space side of the rear plate and emits light by ultraviolet generated in the discharge space. The fluorescent layer is a panel which includes first and second fluorescent materials of which directions of fluctuation of one characteristic selected from luminance and chromaticity due to driving of the panel are opposite.

Description

明 細 書  Specification
ガス放電発光パネル  Gas discharge light emitting panel
技術分野  Technical field
[0001] 本発明は、ガス放電により発生させた紫外線による蛍光体の発光を利用した画像 表示デバイスである、ガス放電発光パネルに関する。  The present invention relates to a gas discharge light-emitting panel that is an image display device that utilizes light emission of a phosphor by ultraviolet rays generated by gas discharge.
背景技術  Background art
[0002] 近年、高精細および高輝度を実現できる画像表示デバイスとして、ガス放電発光パ ネル、代表的にはプラズマディスプレイパネル(PDP)、の開発が進められている。 P DPは画面の大型化が容易であり、今後のさらなる普及が期待される。  In recent years, development of a gas discharge light emitting panel, typically a plasma display panel (PDP), has been promoted as an image display device capable of realizing high definition and high brightness. PDPs are easy to increase in screen size and are expected to become more popular in the future.
[0003] PDPでは、三原色である赤、緑および青の加法混色により、フルカラーの画像が表 示される。このような画像表示を行うために、 PDPは、赤、緑または青の各色を発光 する蛍光体 (赤色蛍光体、緑色蛍光体または青色蛍光体)を含む蛍光体層を放電セ ルごとに備える。各蛍光体は、放電空間におけるガス放電により発生した紫外線 (真 空紫外線)の照射により励起されて発光し、上記各色の光を放出する。放電セルは 所定のパターンで配置されており、放電セルごとのガス放電のタイミング、即ち、蛍光 体への紫外線照射のタイミング、を制御することにより、パネルに画像が表示される。 PDPの具体的な構造は、例えば、内池平樹、御子柴茂生共著、 1997年 5月 1日発 行、「プラズマディスプレイのすべて」、株式会社工業調查会、 pp79_ 80、などに開 示されている。  [0003] In the PDP, a full color image is displayed by the additive color mixture of the three primary colors red, green and blue. In order to perform such image display, the PDP includes a phosphor layer that includes phosphors that emit red, green, and blue colors (red phosphor, green phosphor, or blue phosphor) for each discharge cell. . Each phosphor is excited by irradiation with ultraviolet rays (vacuum ultraviolet rays) generated by gas discharge in the discharge space, and emits light of each color. The discharge cells are arranged in a predetermined pattern, and an image is displayed on the panel by controlling the timing of gas discharge for each discharge cell, that is, the timing of ultraviolet irradiation to the phosphor. The specific structure of the PDP is disclosed in, for example, Hiraki Uchiike and Shigeo Miko, published on May 1, 1997, "All about plasma display", Industrial Research Association, pp79_80, etc. .
[0004] PDPでは、各放電セルにおいて、パネルの駆動に伴う経時的な発光特性の変動 が生じることが知られており、この変動の多くが、放電時のイオン衝撃あるいは真空紫 外線の照射などによる蛍光体の変質に起因すると考えられる。蛍光体が変質すると、 紫外線を可視光に変換する変換効率が低下して、典型的には、輝度の低下ならび に色度の変動が生じる。このような変動が発生すると、静止画のように一定の画像を 表示し続けた場合などに特に起こりやすいが、点灯時間が異なる放電セル間におい て蛍光体が放出する光の特性 (発光特性:例えば、輝度および/または色度)が異 なるため、上記一定のパターンとは異なるパターンを表示したときに、従前のパター ンが残像として見える現象 (一般に「焼き付き現象」と呼ばれる)が発生することがある [0004] In the PDP, it is known that the light emission characteristics fluctuate with time as the panel is driven in each discharge cell, and many of these fluctuations are caused by ion bombardment or vacuum ultraviolet irradiation during discharge. This is thought to be due to the alteration of the phosphor due to the above. When the phosphor changes in quality, the conversion efficiency for converting ultraviolet light into visible light decreases, and typically the luminance and chromaticity change. Such fluctuations are especially likely to occur when a constant image is displayed like a still image, but the characteristics of the light emitted by the phosphor between the discharge cells with different lighting times (emission characteristics: (For example, brightness and / or chromaticity) is different, so when a pattern different from the above-mentioned fixed pattern is displayed, May occur as an afterimage (generally called “burn-in phenomenon”).
[0005] PDPに用いる青色蛍光体としては、発光時の輝度および色度が画像表示デバイス に適することから、一般に BAM (BaMgAl O : Eu2+)が用いられる。しかし、 BAM [0005] As the blue phosphor used in the PDP, BAM (BaMgAl 2 O 3: Eu 2+ ) is generally used because the luminance and chromaticity during light emission are suitable for an image display device. But BAM
10 17  10 17
は、パネルの駆動に伴う輝度の低下ならびに色度の変動、特に、輝度の低下を起こ しゃすい。このため青色蛍光体として、 BAMと、 BAMとは発光特性が異なる蛍光体 とを組み合わせる方法が試みられてレ、る。  This causes a decrease in brightness and chromaticity fluctuations caused by driving of the panel, especially a decrease in brightness. For this reason, as a blue phosphor, an attempt has been made to combine BAM and a phosphor having different emission characteristics from BAM.
[0006] 例えば、特開 2005-116363号公報 (文献 1)には、青色蛍光体層を、初期輝度およ び輝度の経時変化の双方が相互に異なる 2種類以上の青色蛍光体の混合物からな る層とする技術が開示されており、具体的な青色蛍光体層の構成として、 BAMと Ca MgSi O: Eu2+ (CMS)との組み合わせが示されている(実施例参照)。当該実施例[0006] For example, Japanese Patent Laid-Open No. 2005-116363 (Reference 1) discloses that a blue phosphor layer is formed from a mixture of two or more types of blue phosphors that are different from each other in both initial luminance and luminance with time. As a specific structure of the blue phosphor layer, a combination of BAM and Ca MgSi 2 O: Eu 2+ (CMS) is shown (see Examples). Example
2 6 2 6
には、 CMSの初期輝度は BAMよりも低いが、パネルを 1000時間駆動させたときの CMSの輝度の減少率は BAMよりも小さく(BAMの輝度が 38%減少したのに対して 、 CMSの輝度は 2%の減少)、パネルの駆動に伴う青色蛍光体層の輝度の低下を、 青色蛍光体層が BAMのみからなる場合よりも抑制できることが示されている。  The initial brightness of the CMS is lower than that of the BAM, but the decrease rate of the brightness of the CMS when the panel is driven for 1000 hours is smaller than that of the BAM. It has been shown that the decrease in luminance of the blue phosphor layer due to panel driving can be suppressed compared to the case where the blue phosphor layer is composed only of BAM.
[0007] また例えば、特開 2003-313549号公報(文献 2)には、プラズマ曝露後の輝度が高 い青色蛍光体として、 CMSにおける Caの一部を Srに置換した蛍光体と BAMとの混 合物が示されている。文献 2に係る発明では、実施例におけるプラズマ曝露が、蛍光 体層を形成するための熱処理後の 15分間であることから、青色蛍光体の初期輝度を 高くする技術が開示されている、と考えられる。  [0007] Further, for example, JP 2003-313549 A (Document 2) describes, as a blue phosphor having a high luminance after plasma exposure, a phosphor in which part of Ca in CMS is substituted with Sr and BAM. A mixture is shown. In the invention according to Document 2, since the plasma exposure in the example is 15 minutes after the heat treatment for forming the phosphor layer, a technique for increasing the initial luminance of the blue phosphor is considered to be disclosed. It is done.
[0008] このような状況から、パネルの駆動に伴う蛍光体 (蛍光体層)の発光特性の変動が 低減され、パネルの表示特性の経時的な劣化が抑制されたガス放電発光パネルが 望まれる。  [0008] Under such circumstances, a gas discharge light-emitting panel is desired in which fluctuations in the light emission characteristics of the phosphor (phosphor layer) due to driving of the panel are reduced and deterioration of the display characteristics of the panel over time is suppressed. .
発明の開示  Disclosure of the invention
[0009] 本発明者らは、上記従来の技術とは異なる構成により、このようなガス放電発光パ ネルを実現した。  [0009] The present inventors have realized such a gas discharge light-emitting panel with a configuration different from that of the conventional technique.
[0010] 本発明のガス放電発光パネルは、放電空間を介して対向するように配置された前 面板および背面板と、前記背面板における前記放電空間側の主面上に配置され、 前記放電空間において発生した紫外線により発光する蛍光体層とを備える。ここで 前記蛍光体層は、前記パネルの駆動に伴う、輝度および色度から選ばれる少なくと も 1つの特性の変動の方向が互いに相反する第 1および第 2の蛍光体を含む。 [0010] The gas discharge light-emitting panel of the present invention is disposed on a front plate and a back plate arranged to face each other through a discharge space, and on a main surface of the back plate on the discharge space side, A phosphor layer that emits light by ultraviolet rays generated in the discharge space. Here, the phosphor layer includes first and second phosphors in which the direction of variation of at least one characteristic selected from luminance and chromaticity due to driving of the panel is opposite to each other.
[0011] 上記とは別の側面から見た本発明のガス放電発光パネルは、放電空間を介して対 向するように配置された前面板および背面板と、前記背面板における前記放電空間 側の主面上に配置され、前記放電空間において発生した紫外線により発光する蛍光 体層を備える。ここで前記蛍光体層は、式aSr〇·bEuO ·Mg〇· cSiOにより示される [0011] A gas discharge light-emitting panel according to the present invention as seen from a side different from the above includes a front plate and a back plate arranged so as to face each other through a discharge space, and the discharge space side of the back plate on the discharge space side. A phosphor layer is disposed on the main surface and emits light by ultraviolet rays generated in the discharge space. Here, the phosphor layer is represented by the formula aSr〇 · bEuO · Mg〇 · cSiO
2  2
第 1の蛍光体と、第 2の蛍光体として BaMgAl O : Eu2+とを含む。ただし上記式に The first phosphor includes BaMgAl 2 O 3: Eu 2+ as the second phosphor. However, in the above formula
10 17  10 17
ぉレヽて、 a、 bおよび dま、以下の関ィ系: 2. 97≤a≤3. 5、 0. 001≤b≤0. 03および 1. 9≤c≤2. 1 :を満たす。  At first, a, b and d, the following relations are satisfied: 2. 97≤a≤3.5, 0.001≤b≤0.03 and 1.9≤c≤2.
[0012] 本発明によれば、パネルの駆動に伴う、輝度および色度から選ばれる少なくとも 1 つの特性の変動の方向が互いに相反する蛍光体を含む蛍光体層を備えることにより 、パネルの駆動に伴う蛍光体層の発光特性の変動を低減でき、パネルの表示特性 の経時的な劣化を抑制できる。 [0012] According to the present invention, it is possible to drive the panel by providing the phosphor layer including phosphors whose directions of variation of at least one characteristic selected from luminance and chromaticity accompanying the driving of the panel are opposite to each other. As a result, fluctuations in the emission characteristics of the phosphor layer can be reduced, and deterioration of the display characteristics of the panel over time can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は、本発明のガス放電発光パネルとしてプラズマディスプレイパネル(PDP )の一例を示す模式図である。  FIG. 1 is a schematic view showing an example of a plasma display panel (PDP) as a gas discharge light-emitting panel of the present invention.
[図 2]図 2は、蛍光体層の輝度の変動の一例を示す模式図である。  [FIG. 2] FIG. 2 is a schematic view showing an example of luminance variation of a phosphor layer.
[図 3]図 3は、蛍光体層の色度の変動の一例を示す模式図である。  FIG. 3 is a schematic diagram showing an example of variation in chromaticity of a phosphor layer.
[図 4A]図 4Aは、実施例 1において測定した、各蛍光体層サンプルにおける輝度の 変化を示す図である。  FIG. 4A is a diagram showing a change in luminance in each phosphor layer sample measured in Example 1.
[図 4B]図 4Bは、実施例 1において測定した、各蛍光体層サンプルにおける色度の変 化を示す図である。  FIG. 4B is a diagram showing a change in chromaticity in each phosphor layer sample measured in Example 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の実施の形態について図面を参照しながら説明する。以下の説明で は、同一の部材に同一の符号を付し、重複する説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are assigned to the same members, and duplicate descriptions may be omitted.
[0015] 本発明のガス放電発光パネルとして、プラズマディスプレイパネル(PDP)の一例を 図 1に示す。 [0016] 図 1に示す PDP51は、放電空間 31を介して対向するように配置された一対の基板 (前面板 1および背面板 2)と、背面板 2における放電空間 31側の主面上に配置され た蛍光体層 3とを備えている。蛍光体層 3は、放電空間 31において発生した紫外線 により発光する蛍光体として第 1および第 2の蛍光体を含む。第 1および第 2の蛍光 体は、パネルの駆動に伴う(自らの発光に伴う)、輝度および色度から選ばれる少なく とも 1つの特性の変動の方向が互いに相反する。このような PDP51では、第 1および 第 2の蛍光体における発光特性が、パネルの駆動により互いに相反する方向へ変動 するため、蛍光体層 3としての発光特性の変動を低減でき、パネルの表示特性の劣 化を抑制できる。なお、特に記載がない限り本明細書では、輝度および色度の変動 は、パネルの駆動に伴う(即ち、パネル駆動時の)変動であるとする。輝度の変動は、 例えば、後述する値 (Y/y)の増加または減少で示すことができる。色度の変動は、 例えば、後述する色度 yの値の増加または減少で示すことができる。 FIG. 1 shows an example of a plasma display panel (PDP) as a gas discharge light-emitting panel of the present invention. [0016] The PDP 51 shown in FIG. 1 has a pair of substrates (front plate 1 and back plate 2) arranged to face each other with the discharge space 31 therebetween, and a main surface of the back plate 2 on the discharge space 31 side. And a phosphor layer 3 disposed thereon. The phosphor layer 3 includes first and second phosphors as phosphors that emit light by ultraviolet rays generated in the discharge space 31. The first and second phosphors have opposite directions of variation in at least one characteristic selected from luminance and chromaticity when the panel is driven (with light emission). In such a PDP51, the emission characteristics of the first and second phosphors fluctuate in directions opposite to each other by driving the panel. Therefore, fluctuations in the emission characteristics of the phosphor layer 3 can be reduced, and the display characteristics of the panel can be reduced. Can be prevented. Note that, unless otherwise specified, in this specification, variations in luminance and chromaticity are variations accompanying panel driving (ie, during panel driving). The change in luminance can be indicated by, for example, an increase or decrease in a value (Y / y) described later. The variation in chromaticity can be indicated by, for example, an increase or decrease in the value of chromaticity y described later.
[0017] 蛍光体層 3が、輝度の変動の方向が互いに相反する第 1および第 2の蛍光体を含 む場合、換言すれば、蛍光体層 3が、輝度が増加する第 1の蛍光体と、輝度が減少 する第 2の蛍光体とを含む場合、蛍光体層 3の輝度の変動を抑制できる。なお、この 場合は、第 1の蛍光体における上記変動の方向が、輝度が増加する方向である場合 、ともいえる。  [0017] When the phosphor layer 3 includes first and second phosphors whose luminance fluctuation directions are opposite to each other, in other words, the phosphor layer 3 is a first phosphor whose luminance increases. And the second phosphor whose luminance decreases, the variation in the luminance of the phosphor layer 3 can be suppressed. In this case, it can be said that the direction of the change in the first phosphor is a direction in which the luminance increases.
[0018] 従来、 PDPなどのガス放電発光パネルに用いられてきた蛍光体は、通常、パネル の駆動によりその輝度が低下する傾向を示し、 BAMおよび CMSを始め、文献 1 (特 開 2005-116363号公報)、文献 2 (特開 2003-313549号公報)に開示されている蛍光 体も同様である。このため、例えば、第 2の蛍光体として輝度が低下する従来の蛍光 体と、第 1の蛍光体として輝度が増加する蛍光体とを含む蛍光体層とすることにより、 蛍光体層の輝度の低下を低減でき、その効果は、文献 1、 2のように、輝度が低下す る蛍光体同士を組み合わせる場合よりも大きくなる。  [0018] Conventionally, phosphors used in gas discharge light-emitting panels such as PDP usually have a tendency to decrease in luminance when the panel is driven, and BAM and CMS, as well as Reference 1 (Special 2005-116363). The same applies to the phosphors disclosed in Japanese Patent Laid-Open No. 2003-313549 and Japanese Patent Laid-Open No. 2003-313549. For this reason, for example, by forming a phosphor layer that includes a conventional phosphor that decreases in luminance as the second phosphor and a phosphor that increases in luminance as the first phosphor, the luminance of the phosphor layer can be reduced. Reduction can be reduced, and the effect is greater than in the case of combining phosphors whose luminance decreases as in References 1 and 2.
[0019] フルカラー表示を行うガス放電発光パネルは、蛍光体層として、青色、緑色および 赤色の各蛍光体を各々含む 3種類の蛍光体層を備えるが、なかでも、青色蛍光体( 青色蛍光体層)の輝度の低下が大きい傾向にある。このため、青色蛍光体層が、第 2 の蛍光体として輝度が低下する従来の青色蛍光体と、第 1の蛍光体として輝度が増 加する蛍光体とを含むことが好ましぐこのとき、良好な表示特性を確保するために、 上記第 1の蛍光体も青色蛍光体であることが好ましい。即ち、本発明のパネルでは、 第 1および第 2の蛍光体が青色蛍光体であることが好まし この場合に、本発明の 効果が特に顕著となる。なお、青色蛍光体とは、波長 440〜470nmの範囲、典型的 には波長 450〜460nmの範囲に発光スペクトルのピークを有する蛍光体を意味す る。 [0019] A gas discharge light-emitting panel that performs full-color display includes three types of phosphor layers each including blue, green, and red phosphors as phosphor layers. Among them, blue phosphors (blue phosphors) Layer) tends to have a large decrease in luminance. For this reason, the blue phosphor layer has a conventional blue phosphor whose luminance decreases as the second phosphor and a luminance which increases as the first phosphor. In this case, in order to ensure good display characteristics, the first phosphor is preferably also a blue phosphor. That is, in the panel of the present invention, it is preferable that the first and second phosphors are blue phosphors. In this case, the effects of the present invention are particularly remarkable. The blue phosphor means a phosphor having an emission spectrum peak in the wavelength range of 440 to 470 nm, typically in the wavelength range of 450 to 460 nm.
[0020] 輝度が増加する蛍光体として、例えば、 Sr Si O: Euや Ba MgSi O: Euなどのケ ィ酸塩蛍光体が挙げられる。これらの蛍光体は、母材が Si酸化物であるため、ガスや 放電の影響を受けやすぐその構造が輝度が増加する方向へ変化しやすいと考えら れる。  [0020] Examples of phosphors with increased luminance include silicate phosphors such as Sr 2 Si 2 O: Eu and Ba MgSi 2 O: Eu. Since these phosphors are based on Si oxide, the structure is likely to change in the direction of increasing brightness as soon as they are affected by gas and discharge.
[0021] 輝度が増加する蛍光体として、式aSr〇· bEu〇· MgO · cSiOにより示される蛍光 体(以下、 SMS)を用いることが好ましい。ただし、上記式において、 a、 bおよび cは、 2. 97≤a≤3. 5、 0. 001≤b≤0. 03、および、 1. 9≤c≤2. 1の関係を満たす。 a、 bおよび cの範囲は、 SMSにおける酸素の欠損あるいは過剰状態を許容する趣旨で あり、 SMSにおける化学量論的組成は、 a + b = 3、 c = 2である。化学量論的組成を 満たす SMSは、 Euを付活元素として、式 Sr MgSi O: Euにより示すことができる。 なお、 SMSと同様の元素からなる母材と付活材とを含む蛍光体は従来から存在する 力 これら従来の蛍光体は、発光時の輝度および色度が十分ではないことから、これ まで、 PDPなどのガス放電発光パネルの蛍光体として用いられていなレ、。し力し、上 記式により示される組成を有する SMSは、その輝度および色度が、ガス放電発光パ ネルに用いる蛍光体に要求される特性を満たしており、本発明の第 1の蛍光体として 用いることが好ましい。  [0021] It is preferable to use a phosphor represented by the formula aSrO · bEuO · MgO · cSiO (hereinafter referred to as SMS) as the phosphor whose luminance increases. However, in the above formula, a, b and c satisfy the relations 2.97≤a≤3.5, 0.001≤b≤0.03 and 1.9≤c≤2.1. The ranges of a, b, and c are intended to allow oxygen deficiency or excess in SMS, and the stoichiometric composition in SMS is a + b = 3, c = 2. SMS satisfying the stoichiometric composition can be represented by the formula Sr MgSi 2 O: Eu with Eu as an activator element. It should be noted that phosphors containing a base material and an activator composed of the same elements as SMS exist in the past. Since these conventional phosphors do not have sufficient luminance and chromaticity during light emission, This is not used as a phosphor for gas discharge light emitting panels such as PDP. However, the SMS having the composition represented by the above formula has the luminance and chromaticity satisfying the characteristics required for the phosphor used in the gas discharge light-emitting panel, and the first phosphor of the present invention. It is preferable to use as.
[0022] SMSでは Euが付活元素としての役割を担っており、 SMS粒子の表面近傍(SMS 粒子の表面から 10nm程度までの範囲)における 2価 Eu率(異なる価数を有する全 E u原子中における 2価の Eu原子の原子分率)が 50。/0以下であることが好ましレ、。この ような SMSとすることにより、発光時の輝度および色度をより PDPに適した状態とす ることができる他、パネルの駆動による輝度の増加をより確実にすることができる。 [0022] In SMS, Eu plays a role as an activator, and the divalent Eu ratio (all Eu atoms with different valences) near the surface of the SMS particle (in the range from the surface of the SMS particle to about 10 nm). The atomic fraction of divalent Eu atoms in the inside) is 50. / Les, preferably less than 0 . By using such an SMS, the luminance and chromaticity at the time of light emission can be made to be more suitable for PDP, and the increase in luminance due to driving of the panel can be further ensured.
[0023] SMSは、波長 460nmに発光スペクトルのピークを有する青色蛍光体である。この ため、 SMSは、青色蛍光体である第 2の蛍光体とともに、青色蛍光体層に含まれるこ とが好ましい。換言すれば、 PDP51におレ、て、青色蛍光体層が SMSを含むことが 好ましぐさらに換言すれば、青色蛍光体層が、第 1の蛍光体として SMSを含み、第 2の蛍光体として波長 440〜470nmの範囲、典型的には波長 450〜460nmの範囲 に発光スペクトルのピークを有する青色蛍光体を含むことが好ましい。 [0023] SMS is a blue phosphor having an emission spectrum peak at a wavelength of 460 nm. this Therefore, SMS is preferably included in the blue phosphor layer together with the second phosphor that is a blue phosphor. In other words, it is preferable that the blue phosphor layer contains SMS in the PDP 51. In other words, the blue phosphor layer contains SMS as the first phosphor, and the second phosphor. It is preferable to include a blue phosphor having an emission spectrum peak in the wavelength range of 440 to 470 nm, typically in the wavelength range of 450 to 460 nm.
[0024] SMSfま、 1モノレの Mg〇に対して、 Sr〇を 2. 97〜3. 5モノレ、 Eu〇を 0. 001〜0. 0 3モノレ、 Si〇を 1. 9〜2. 1モル含む蛍光体であるともいえる。 [0024] For SMSf, one monore MgO, Sr0 2.97-3.5 monole, Eu0 0.001-0.03 monole, Si0 1.9-1. It can be said that it is a phosphor containing mol.
2  2
[0025] SMSと組み合わされる青色蛍光体の種類は特に限定されないが、高い発光効率 を有することから、 BaMgAl O : Eu2+ (BAM)が好ましレ、。 BAMは、パネルの駆動 [0025] The type of blue phosphor combined with SMS is not particularly limited, but BaMgAl 2 O 3: Eu 2+ (BAM) is preferred because of its high luminous efficiency. BAM driving panel
10 17  10 17
により、輝度が低下する青色蛍光体である。その他、 SMSと組み合わされる蛍光体と しては、 CaMgSi O: Eu Sr MgSi O : Eu (SrBa) MgSi〇: Eu2+などが挙げ This is a blue phosphor whose luminance is lowered. Other phosphors combined with SMS include CaMgSi O: Eu Sr MgSi O: Eu (SrBa) MgSi 0: Eu 2+
2 4 3 2 8 3 2 8  2 4 3 2 8 3 2 8
られる。これらの蛍光体は、青色蛍光体であり、パネルの駆動により輝度が低下する 傾向を示す。  It is done. These phosphors are blue phosphors, and tend to decrease in luminance when the panel is driven.
[0026] 蛍光体層 3が第 1の蛍光体として SMSと第 2の蛍光体として BAMとを含む場合、両 者の含有率比は特に限定されないが、例えば、体積分率にしてBAM : SMS = 25 : 75〜75: 25程度であればょレヽ。  [0026] When the phosphor layer 3 contains SMS as the first phosphor and BAM as the second phosphor, the content ratio of the two is not particularly limited. For example, the volume ratio BAM: SMS = 25: 75-75: If it is around 25.
[0027] パネルの駆動により輝度が低下する第 2の蛍光体と、 SMSとを含む蛍光体層 3に おける輝度の変動の一例を図 2に示す。図 2に示す例では、 SMSの輝度は、 (a)に 示すように、パネルの駆動時間に応じて増加する傾向を示し、第 2の蛍光体の輝度 は、(b)に示すように、パネルの駆動時間に応じて低下する傾向を示す。蛍光体層 3 力 双方の蛍光体を含む場合、(c)に示すように、第 2の蛍光体のみを含む場合に比 ベて、輝度の変動を低減できる。なお、図 2における輝度は、パネルの駆動により色 度の変化を相殺するために、国際照明委員会(CIE)規定の XYZ表色系における刺 激値 Yを、当該表色系に基づく色度座標 (x、 y)における色度 yで除した値 (YZy)と する。  [0027] FIG. 2 shows an example of a variation in luminance in the phosphor layer 3 containing the second phosphor whose luminance is lowered by driving the panel and SMS. In the example shown in FIG. 2, the brightness of the SMS tends to increase according to the panel driving time as shown in (a), and the brightness of the second phosphor as shown in (b). The tendency which falls according to the drive time of a panel is shown. When the phosphor layer 3 includes both phosphors, as shown in (c), it is possible to reduce fluctuations in luminance as compared with the case where only the second phosphor is included. Note that the luminance in Fig. 2 indicates the irradiance value Y in the XYZ color system stipulated by the International Commission on Illumination (CIE) and the chromaticity based on the color system in order to offset the change in chromaticity by driving the panel. The value (YZy) divided by the chromaticity y at the coordinates (x, y).
[0028] 第 1の蛍光体は、パネルの駆動により輝度が増加する蛍光体であれば特に限定さ れないが、蛍光体層の輝度の変動の抑制をより確実にするためには、当該蛍光体の 輝度の増加率が所定の値以上であることが好ましい。具体的には、上記値 (Y/y)が 、パネルの駆動 1000時間あたり 3%以上増加することが好ましぐ 8%以上増加する ことがより好ましぐ 10%以上増加することがさらに好ましい。実施例に後述するように 、 SMSは、その組成、上記 2価 Eu率、あるいは、製造条件によっては、この増加率を 満たす。 [0028] The first phosphor is not particularly limited as long as it is a phosphor whose luminance is increased by driving the panel. However, in order to more reliably suppress fluctuations in luminance of the phosphor layer, the first phosphor is not limited. It is preferable that the increase rate of the luminance of the body is a predetermined value or more. Specifically, the above value (Y / y) is Further, it is preferable to increase 3% or more per 1000 hours of panel driving, more preferably 8% or more, and more preferably 10% or more. As will be described later in the Examples, SMS satisfies this increase rate depending on its composition, the above-mentioned divalent Eu ratio, or production conditions.
[0029] 第 1および第 2の蛍光体における輝度は、パネルの駆動により、必ずしも常に相反 する方向へ変動しなくてもよぐパネルが駆動する期間(即ち、第 1および第 2の蛍光 体自らが発光する期間)における少なくとも一部の期間において、互いに相反する方 向へ変動すればよい。  [0029] The luminance of the first and second phosphors does not always change in opposite directions due to the driving of the panel, that is, the period during which the panel is driven (ie, the first and second phosphors themselves). In at least a part of the period during which light is emitted, it is only necessary to change in directions opposite to each other.
[0030] BAM、 CMSを始めとする従来の蛍光体は、パネルが駆動する期間(当該蛍光体 自らが発光する期間)において常に輝度が低下する。このため、これら従来の蛍光体 を第 2の蛍光体とした場合、第 1の蛍光体の輝度は、パネルの駆動により必ずしも常 に増加しなくてもよぐパネルが駆動する期間における少なくとも一部の期間におい て増加すればよい。例えば、上述した輝度の増加率は、塗布および焼成などの手法 により、背面板の主面上に蛍光体層が形成され、エージングのためのパネルの駆動 を始めて力ら 1000時間、あるいは、エージングが完了し、通常の画像表示のための パネルの駆動を始めてから 1000時間の期間における増加率であればよい。  [0030] In conventional phosphors such as BAM and CMS, the luminance always decreases during the panel drive period (the phosphor itself emits light). For this reason, when these conventional phosphors are used as the second phosphor, the luminance of the first phosphor does not necessarily increase due to the driving of the panel. Should be increased during the period. For example, the luminance increase rate described above can be achieved by applying a phosphor layer on the main surface of the back plate by techniques such as coating and baking, and driving the panel for aging for 1000 hours or after aging. The rate of increase over a period of 1000 hours from the start of driving the panel for normal image display is sufficient.
[0031] 蛍光体層 3が、色度の変動の方向が互いに相反する第 1および第 2の蛍光体を含 む場合、例えば、蛍光体層 3が、パネルの駆動により色度 yが増加する蛍光体と、色 度 yが低下する蛍光体とを含む場合、蛍光体層 3の色度の変動を抑制できる。ここで 「色度 y」とは、国際照明委員会 (CIE)規定の XYZ表色系に基づく色度座標 (x、 y) における色度 yを意味する。なお、「色度の変動」とは、例示した色度 yの変動に限ら れず、上記色度座標 (x、 y)における色度 xおよび色度 yから選ばれる少なくとも 1つ の色度の変動であればょレ、。  [0031] When the phosphor layer 3 includes first and second phosphors whose chromaticity fluctuation directions are opposite to each other, for example, the phosphor layer 3 increases the chromaticity y by driving the panel. When the phosphor and the phosphor whose chromaticity y is lowered are included, fluctuations in the chromaticity of the phosphor layer 3 can be suppressed. Here, “chromaticity y” means chromaticity y in chromaticity coordinates (x, y) based on the XYZ color system defined by the International Commission on Illumination (CIE). The “chromaticity variation” is not limited to the exemplified variation of chromaticity y, and at least one chromaticity variation selected from chromaticity x and chromaticity y in the chromaticity coordinates (x, y) above. Narare.
[0032] 従来、 PDPなどのガス放電発光パネルに用いられてきた青色蛍光体は、通常、パ ネルの駆動によりその色度 yが増加する傾向を示し、 BAMおよび CMSを始め、文献 1、 2に開示されている蛍光体も同様である。このため、例えば、第 2の蛍光体として 色度 yが増加する従来の蛍光体と、第 1の蛍光体として色度 yが低下する蛍光体とを 含む蛍光体層とすることにより、蛍光体層の色度 yの変動を抑制できる。 [0033] 色度 yが低下する青色蛍光体として、例えば、 Sr Si O: Euや Ba MgSi O: Euな どのケィ酸塩蛍光体が挙げられる。これらの蛍光体は、母材が Si酸化物であるため、 ガスや放電の影響を受けやすぐその構造が色度 yが増加する方向へ変化しやすい と考免られる。 [0032] Conventionally, blue phosphors used in gas discharge light-emitting panels such as PDP usually show a tendency that the chromaticity y increases by driving the panel, including BAM and CMS, and References 1 and 2 This also applies to the phosphor disclosed in the above. For this reason, for example, by forming a phosphor layer including a conventional phosphor having an increased chromaticity y as the second phosphor and a phosphor having a decreased chromaticity y as the first phosphor, the phosphor The fluctuation of the chromaticity y of the layer can be suppressed. [0033] Examples of blue phosphors with decreased chromaticity y include silicate phosphors such as Sr 2 Si 2 O: Eu and Ba MgSi 2 O: Eu. Since these phosphors are made of Si oxide, the structure is easily affected by the effects of gas and discharge, and the structure is likely to change in the direction of increasing chromaticity y.
[0034] 色度 yが低下する蛍光体として、上記 SMSを用いることが好ましい。上述したように 、 PDPなどのガス放電発光パネルに用いられてきた従来の青色蛍光体は、通常、パ ネルの駆動により色度 yが増加する傾向を示す。このため、例えば、色度 yが増加す る従来の青色蛍光体と、色度 yが低下する SMSとを含む蛍光体層とすることにより、 青色蛍光体層における色度の変動を低減できる。このように、色度の変動を低減でき る観点からも、青色蛍光体層が SMSを含むことが好ましい。  [0034] It is preferable to use the SMS as a phosphor that reduces the chromaticity y. As described above, conventional blue phosphors used in gas discharge light emitting panels such as PDPs usually show a tendency that the chromaticity y increases by driving the panel. Therefore, for example, by using a phosphor layer including a conventional blue phosphor in which chromaticity y increases and SMS in which chromaticity y decreases, variation in chromaticity in the blue phosphor layer can be reduced. As described above, it is preferable that the blue phosphor layer contains SMS from the viewpoint of reducing variation in chromaticity.
[0035] SMSと組み合わされる青色蛍光体の種類は特に限定されないが、高い発光効率 を有することから、 BAMが好ましい。 BAMは、パネルの駆動により、色度 yが増加す る青色蛍光体である。その他、 SMSと組み合わされる蛍光体としては、青色蛍光体と して、 CaMgSi〇: Eu2+、 Sr MgSi〇: Eu2+、 (SrBa) MgSi O: Eu2+などが挙げら れる。これらの蛍光体は、パネルの駆動により、色度 yが増加する傾向を示す。 [0035] The type of blue phosphor combined with SMS is not particularly limited, but BAM is preferred because of its high luminous efficiency. BAM is a blue phosphor whose chromaticity y increases as the panel is driven. Other examples of the phosphor to be combined with SMS, as a blue phosphor, CaMgSi_〇: Eu 2+, Sr MgSi_〇: Eu 2+, (SrBa) MgSi O: such as Eu 2+ is like et be. These phosphors show a tendency that the chromaticity y increases as the panel is driven.
[0036] パネルの駆動により色度 yが増加する第 2の蛍光体と、 SMSとを含む蛍光体層 3に おける色度 yの変動の一例を図 3に示す。図 3に示す例では、 SMSの色度 yは、(a) に示すように、パネルの駆動時間に応じて低下する傾向を示し、第 2の蛍光体の色 度 yは、(b)に示すように、パネルの駆動時間に応じて増加する傾向を示す。蛍光体 層 3が、双方の蛍光体を含む場合、(c)に示すように、第 2の蛍光体のみを含む場合 に比べて、色度 yの変動を低減できる。 FIG. 3 shows an example of variation in chromaticity y in the phosphor layer 3 including the second phosphor whose chromaticity y increases by driving the panel and SMS. In the example shown in FIG. 3, the chromaticity y of SMS tends to decrease with the panel driving time as shown in (a), and the chromaticity y of the second phosphor is in (b). As shown, it tends to increase according to the driving time of the panel. When the phosphor layer 3 contains both phosphors, as shown in (c), the variation in the chromaticity y can be reduced compared to the case where only the second phosphor is contained.
[0037] 第 1および第 2の蛍光体における色度 yは、パネルの駆動により、必ずしも常に相反 する方向へ変動しなくてもよぐパネルが駆動する期間における少なくとも一部の期 間におレ、て、互レ、に相反する方向へ変動すればょレ、。 [0037] The chromaticity y in the first and second phosphors does not always have to fluctuate in opposite directions due to the driving of the panel. If it fluctuates in a direction opposite to each other.
[0038] 蛍光体層 3は、第 1および第 2の蛍光体以外の蛍光体(第 3の蛍光体)を、 1あるい は 2以上の種類含んでいてもよい。、第 3の蛍光体における上記少なくとも 1つの特性 の変動の方向は特に限定されず、例えば、第 1の蛍光体における上記変動の方向と 同様であってもよいし、あるいは、第 2の蛍光体における上記変動の方向と同様であ つてもよい。 The phosphor layer 3 may contain one or more kinds of phosphors (third phosphor) other than the first and second phosphors. The direction of variation of the at least one characteristic in the third phosphor is not particularly limited. For example, it may be the same as the direction of variation of the first phosphor, or the second phosphor. In the same direction as the above May be.
[0039] 蛍光体層 3における第 1および第 2の蛍光体の含有率は特に限定されず、含まれる 蛍光体の種類、あるいは、蛍光体層 3として必要な発光特性に応じて任意に設定す ればよい。蛍光体層 3における第 1の蛍光体の含有率は、例えば、 25〜75体積%の 範囲である。  [0039] The content ratios of the first and second phosphors in the phosphor layer 3 are not particularly limited, and are arbitrarily set according to the type of phosphors contained or the light emission characteristics required for the phosphor layer 3. Just do it. The content rate of the 1st fluorescent substance in the fluorescent substance layer 3 is the range of 25-75 volume%, for example.
[0040] 第 1および第 2の蛍光体は、パネルの駆動により、その輝度および色度の両方が互 いに相反するように変動してもよレ、。  [0040] The first and second phosphors may change so that both the luminance and chromaticity of the first and second phosphors are in conflict with each other.
[0041] PDP51において、すべての蛍光体層 3が第 1および第 2の蛍光体を含んでいなく てもよい。例えば、青色蛍光体層のみが第 1および第 2の蛍光体を含んでいてもよい し、パネルの画像表示領域のなかで、特に、輝度および/または色度の変動が大き い領域に位置する蛍光体層 3のみが、第 1および第 2の蛍光体を含んでいてもよい。  [0041] In the PDP 51, all the phosphor layers 3 may not include the first and second phosphors. For example, only the blue phosphor layer may contain the first and second phosphors, and it is located in the image display region of the panel, particularly in the region where the variation in luminance and / or chromaticity is large. Only the phosphor layer 3 may include the first and second phosphors.
[0042] PDP51における各部材の構造および構成、ならびに、各部材に用いる材料などは 、蛍光体層 3が第 1および第 2の蛍光体を含む限り特に限定されず、 PDPとして一般 的な構造および構成であればょレ、。  [0042] The structure and configuration of each member in the PDP 51, and the material used for each member are not particularly limited as long as the phosphor layer 3 includes the first and second phosphors. If it's a configuration,
[0043] 図 1に示す PDP51では、前面板 1の主面上に、維持電極 11および走査電極 12を 含む表示電極 13と、誘電体層 14と、誘電体層 14を放電空間 31内に発生するプラズ マから保護する保護層 15が配置されている。背面板 2の主面上には、アドレス電極 2 3と、アドレス電極を上記プラズマから保護する誘電体層 22と、隔壁 21とが配置され ている。 PDP51は、いわゆる 3電極構造を有する AC型 PDPである。なお、図 1では 、実際の PDPにおける各電極や隔壁を、その数を省略して示している。  In the PDP 51 shown in FIG. 1, the display electrode 13 including the sustain electrode 11 and the scan electrode 12, the dielectric layer 14, and the dielectric layer 14 are generated in the discharge space 31 on the main surface of the front plate 1. A protective layer 15 is provided to protect against plasma. On the main surface of the back plate 2, an address electrode 23, a dielectric layer 22 that protects the address electrode from the plasma, and a partition wall 21 are disposed. The PDP 51 is an AC type PDP having a so-called three-electrode structure. In FIG. 1, the number of electrodes and partition walls in an actual PDP is omitted.
[0044] 前面板 1に用いる材料は、透光性を有する限り特に限定されず、例えば、ガラス基 板を用いればよい。背面板 2に用いる材料は特に限定されず、例えば、ガラスおよび Zまたは金属を含む基板を用いればよい。通常、前面板 1および背面板 2には、ガラ ス基板が用いられる。  [0044] The material used for the front plate 1 is not particularly limited as long as it has translucency. For example, a glass substrate may be used. The material used for the back plate 2 is not particularly limited. For example, a substrate containing glass and Z or metal may be used. Usually, glass substrates are used for the front plate 1 and the back plate 2.
[0045] 前面板 1には、表示電極 13として、ストライプ状の維持電極 11および走查電極 12 が互いに平行に配置されている。  On the front plate 1, stripe-shaped sustain electrodes 11 and scanning electrodes 12 are arranged in parallel to each other as display electrodes 13.
[0046] 維持電極 11および走查電極 12は、それぞれ、透明電極(維持電極) 11aおよび透 明電極(走査電極) 12aと、バス電極(維持電極) l ibおよびバス電極(走査電極) 12 bとを積層した構造を有している。透明電極 11aおよび 12aには、 ITO (Indium Tin Oxide)、酸化スズなどを用いればよレ、。バス電極 l ibおよび 12bには、アルミユウ ム、銅、銀、クロムと銅との積層体などを用いればよい。維持電極 11と走查電極 12と の間には、図示しないが、黒色の表示品質を向上させ、画像のコントラストを高めるた めのブラックストライプと呼ばれる、ガラスおよび黒色顔料からなる黒色膜が配置され ている。表示電極 13に含まれる各電極および黒色膜は、例えば、スクリーン印刷など の手法により前面板 1の主面上に形成できる。 [0046] Sustain electrode 11 and staggered electrode 12 are transparent electrode (sustain electrode) 11a and transparent electrode (scan electrode) 12a, bus electrode (sustain electrode) l ib and bus electrode (scan electrode) 12 respectively. b is laminated. For the transparent electrodes 11a and 12a, ITO (Indium Tin Oxide), tin oxide or the like may be used. The bus electrodes l ib and 12b may be made of aluminum, copper, silver, a laminate of chromium and copper, or the like. Although not shown, a black film made of glass and black pigment, which is called a black stripe, is provided between the sustain electrode 11 and the scanning electrode 12 to improve the black display quality and increase the contrast of the image. ing. Each electrode and the black film included in the display electrode 13 can be formed on the main surface of the front plate 1 by a method such as screen printing, for example.
[0047] 前面板 1には、表示電極 13を被覆するように誘電体層 14が配置されており、誘電 体層 14上には (誘電体層 14の放電空間 31側には)、保護層 15が配置されている。 誘電体層 14は、 PDP51が画像を表示する際に、電荷を蓄積するコンデンサーの役 割を果たす。誘電体層 14には、 PDPとして一般的な材料を用いればよぐ例えば、 酸化鉛 (PbO)、酸化ビスマス(Bi〇 )あるいは酸化燐 (P O )などを主成分とする低 融点ガラスからなる層であればよい。誘電体層 14は、低融点ガラスと樹脂と溶剤とを 混練して得た誘電体ペーストを、印刷 (例えば、スクリーン印刷、ダイコート印刷)また は転写 (例えば、フィルムラミネート法)などの手法により前面板 1上に塗布し、乾燥お よび焼成することによって形成できる。 [0047] A dielectric layer 14 is disposed on the front plate 1 so as to cover the display electrodes 13. On the dielectric layer 14 (on the discharge space 31 side of the dielectric layer 14), a protective layer is provided. 15 are arranged. The dielectric layer 14 serves as a capacitor for accumulating charges when the PDP 51 displays an image. The dielectric layer 14 may be made of a general material as a PDP, for example, a layer made of low melting point glass mainly composed of lead oxide (PbO), bismuth oxide (BiO), phosphorus oxide (PO), or the like. If it is. The dielectric layer 14 is obtained by applying a dielectric paste obtained by kneading a low-melting glass, a resin, and a solvent by a technique such as printing (for example, screen printing or die coat printing) or transfer (for example, film laminating). It can be formed by coating on the face plate 1, drying and firing.
[0048] 保護層 15にも PDPとして一般的な材料を用いればよぐ例えば、 MgOからなる層 であればよい。保護層 15は、電子ビーム蒸着法、イオンプレーティング法、あるいは 、スパッタ法などにより誘電体層 14上に形成できる。  [0048] A common material for the PDP may be used for the protective layer 15, for example, a layer made of MgO. The protective layer 15 can be formed on the dielectric layer 14 by an electron beam evaporation method, an ion plating method, or a sputtering method.
[0049] 背面板 2には、誘電体層 22、ストライプ状の隔壁 21およびストライプ状のアドレス電 極 23が配置されている。誘電体層 22はアドレス電極 23を被覆するように配置されて おり、隔壁 21は互いに平行となるように配置されている。隣り合う隔壁 21の間には蛍 光体層 3が配置されており、隔壁 21によって分割された、放電空間 31におけるァドレ ス電極 23および表示電極 13の交点で囲まれた領域が、放電セルとなる。アドレス電 極 23の構成は、例えば上述したバス電極の構成と同様であればよ 誘電体層 22 は、誘電体層 14と同様であればよい。隔壁 21は、ガラスおよび顔料などを用いて形 成すればよい。  On the back plate 2, a dielectric layer 22, stripe-shaped partition walls 21 and stripe-shaped address electrodes 23 are arranged. The dielectric layer 22 is disposed so as to cover the address electrodes 23, and the partition walls 21 are disposed so as to be parallel to each other. The phosphor layer 3 is disposed between the adjacent barrier ribs 21, and the region surrounded by the intersection of the address electrode 23 and the display electrode 13 in the discharge space 31 and divided by the barrier rib 21 is the discharge cell. Become. The configuration of the address electrode 23 may be the same as, for example, the configuration of the bus electrode described above. The dielectric layer 22 may be the same as the dielectric layer 14. The partition wall 21 may be formed using glass, pigment, or the like.
[0050] 第 1および第 2の蛍光体を含む蛍光体層 3は、 PDPにおける従来の蛍光体層と同 様の方法により形成することができ、例えば、 5重量%〜: 10重量%の濃度でェチル セルロースおよび zまたはニトロセルロースを含むひ一ターピネオールなどの有機溶 媒中に、第 1および第 2の蛍光体を分散して得られたペーストを、スクリーン印刷また はラインジェット法によって隔壁 21間に塗布し、 450°C〜550°Cの範囲で焼成して、 形成できる。有機溶媒中に第 1および第 2の蛍光体を分散させる際には、第 1および 第 2の蛍光体の混合物を分散させてもよいし、各々の蛍光体を個別に有機溶媒に投 入することにより分散させてもよい。 [0050] The phosphor layer 3 including the first and second phosphors is the same as the conventional phosphor layer in the PDP. The first and second fluorescence can be formed in an organic solvent such as terpineol containing ethyl cellulose and z or nitrocellulose at a concentration of 5% to 10% by weight, for example. The paste obtained by dispersing the body can be formed by applying between the partition walls 21 by screen printing or line jet method and baking it in the range of 450 ° C to 550 ° C. When the first and second phosphors are dispersed in the organic solvent, the mixture of the first and second phosphors may be dispersed, or each phosphor is individually injected into the organic solvent. You may make it disperse | distribute.
[0051] 前面板 1および背面板 2は、保護層 15および隔壁 21が放電空間 31に面するように 、かつ、ストライプ状の表示電極 13およびアドレス電極 23が、前面板 1および背面板 2の主面から見て直交するように、対向して配置されている。前面板 1および背面板 2 の周縁部には、低融点ガラスからなる封着部材が配置されており、放電空間 31の気 密が保持されている。放電空間 31内には、ネオンやキセノンなどの希ガスを含む放 電ガスが充填されている。放電空間 31内における放電ガスの圧力は、例えば、 53k Pa〜79kPa (400Torr〜600Torr)の範囲であればよレ、。  [0051] The front plate 1 and the back plate 2 are arranged so that the protective layer 15 and the partition wall 21 face the discharge space 31, and the striped display electrodes 13 and address electrodes 23 are formed on the front plate 1 and the back plate 2. They are arranged facing each other so as to be orthogonal when viewed from the main surface. Sealing members made of low-melting glass are disposed on the peripheral portions of the front plate 1 and the back plate 2 to keep the discharge space 31 hermetic. The discharge space 31 is filled with a discharge gas containing a rare gas such as neon or xenon. The pressure of the discharge gas in the discharge space 31 is, for example, in the range of 53 kPa to 79 kPa (400 Torr to 600 Torr).
[0052] PDP51では、表示電極 13に映像信号電圧を選択的に印加して蛍光体層 3に含ま れる蛍光体を励起させ、励起した蛍光体が赤色、緑色または青色を発光することによ つて、カラー画像を表示できる。  [0052] In the PDP 51, a video signal voltage is selectively applied to the display electrode 13 to excite the phosphor contained in the phosphor layer 3, and the excited phosphor emits red, green, or blue light. Can display color images.
[0053] PDP51の製造方法には、 PDPの製造方法として一般的な方法を用いればよい。  [0053] As a method for manufacturing PDP 51, a general method may be used as a method for manufacturing PDP.
[0054] 本発明のガス放電発光パネルは、図 1に示すような PDPに限られず、ガス放電によ り発生させた紫外線(特に、波長 200nm以下の真空紫外線)を蛍光体に照射するこ とによって、蛍光体から放出される光を利用する発光パネルである限り、特に限定さ れない。このような発光パネルとしては、 PDPの他に、液晶パネル用バックライト、文 字表示用ディスプレイ、照明用パネルなどが挙げられる力 なかでも、色度および輝 度の変動がパネルの表示特性に大きな影響を及ぼす PDPに本発明を適用する場 合に、得られる効果が大きい。  The gas discharge light-emitting panel of the present invention is not limited to the PDP as shown in FIG. 1, but irradiates phosphors with ultraviolet rays (particularly, vacuum ultraviolet rays having a wavelength of 200 nm or less) generated by gas discharge. As long as it is a light-emitting panel using light emitted from the phosphor, there is no particular limitation. Among such light-emitting panels, in addition to PDPs, LCD panel backlights, character display displays, lighting panels, etc., the fluctuations in chromaticity and brightness are significant in the display characteristics of the panel. When the present invention is applied to an influencing PDP, the effect obtained is great.
実施例  Example
[0055] 以下、実施例を用いて本発明をより詳細に説明する。本発明は、以下の実施例に 限定されない。 [0056] (実施例 1 ) Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples. [0056] (Example 1)
実施例 1では、 SMSと BAMとを含む蛍光体層 Aと、 BAMからなる蛍光体層 Bと、 S MSからなる蛍光体層 Cと備える PDPを作製し、作製した PDPに対して点灯試験を 行って、パネルの駆動に伴う、各蛍光体層の発光特性の変動を評価した。 SMSの組 成は、 a = 3、 b = 0. 005、および、 c = 2とした。  In Example 1, a PDP provided with a phosphor layer A containing SMS and BAM, a phosphor layer B made of BAM, and a phosphor layer C made of SMS was produced, and a lighting test was performed on the produced PDP. Then, the variation of the light emission characteristics of each phosphor layer accompanying the driving of the panel was evaluated. The SMS composition was a = 3, b = 0.005, and c = 2.
[0057] 最初に、ェチルセルロース含有(50重量0 /0) a一タービネオール分散溶媒中に、 S MSおよび/または BAMを分散することによりペーストを形成し、形成したペーストを 、スクリーン印刷またはラインジェット法によってガラスからなる基板に塗布し、全体を 450°C〜550°Cの範囲で焼成して、蛍光体層 A〜Cを作製した。蛍光体層 Aは、蛍 光体層中の全蛍光体における SMSの体積分率が 25%である蛍光体層 A— 1と、 S MSの体積分率が 70体積%である蛍光体層 A— 2との 2種類を作製した。 [0057] First, E chill cellulose-containing (50 weight 0/0) a one Tabineoru dispersion solvent, the paste was formed by dispersing S MS and / or BAM, the formed paste, screen printing or line It apply | coated to the board | substrate which consists of glass with the jet method, and the whole was baked in the range of 450 to 550 degreeC, and produced fluorescent substance layer AC. Phosphor layer A consists of phosphor layer A-1 with an SMS volume fraction of 25% for all phosphors in the phosphor layer, and phosphor layer A with an SMS volume fraction of 70% by volume. — Two types, 2 and 2, were made.
[0058] 次に、作製した各蛍光体層を用い、図 1に示すような PDP51を作製した。 PDP51 の作製は、一般的な PDPの作製方法に従った。 PDP51の作製にあたっては、放電 空間の雰囲気の違いによる発光特性の変動のバラツキを防ぐため、 1つのパネル中 に、蛍光体層 A〜Cの全てを配置した。  Next, a PDP 51 as shown in FIG. 1 was produced using each of the produced phosphor layers. PDP51 was produced according to a general PDP production method. When manufacturing PDP51, all phosphor layers A to C were placed in one panel in order to prevent variations in emission characteristics due to differences in the atmosphere in the discharge space.
[0059] 次に、このように作製した PDP51を、一般的な PDP駆動装置に接続して連続点灯 させ、各蛍光体層における輝度 (Y/y)および色度 yの経時的な変動を、 CRTカラ 一アナライザー(コニ力ミノルタ製: CA_ 100plus)を用いて測定した。輝度および色 度の変動を測定する PDPの領域は白色を連続的に点灯、表示させることとし、輝度 は、初期値を 100%とする発光強度の相対値として評価した。なお、連続点灯させる 時間は 2500時間とし、パネルの点灯のために放電空間に印加する交流電圧は 175 Vとした。  [0059] Next, the PDP 51 manufactured in this way is connected to a general PDP drive device and continuously lit, and the luminance (Y / y) and chromaticity y in each phosphor layer are changed over time. The measurement was performed using a CRT color analyzer (manufactured by Konica Minolta: CA_100plus). The PDP area for measuring changes in luminance and chromaticity was continuously lit and displayed in white, and the luminance was evaluated as a relative value of emission intensity with an initial value of 100%. The continuous lighting time was 2500 hours, and the AC voltage applied to the discharge space for lighting the panel was 175 V.
[0060] 測定結果を図 4に示す。図 4 (a)に示すように、 BAMからなる蛍光体層 Bは、パネ ルの駆動によりその輝度が低下し、 SMSからなる蛍光体層 Cは、パネルの駆動により その輝度が増加した。一方、蛍光体として SMSを 25体積%、 BAMを 75体積%含 む蛍光体層 A— 1では、蛍光体層 Bに比べて、パネルの駆動による輝度の変動を低 減できた。  [0060] The measurement results are shown in FIG. As shown in Fig. 4 (a), the brightness of phosphor layer B made of BAM was lowered by driving the panel, and the brightness of phosphor layer C made of SMS was increased by driving the panel. On the other hand, the phosphor layer A-1 containing 25% by volume of SMS and 75% by volume of BAM as the phosphor, compared to the phosphor layer B, was able to reduce fluctuations in brightness due to panel driving.
[0061] 一方、図 4 (b)に示すように、 BAMからなる蛍光体層 Bは、パネルの駆動によりその 色度 yが増加し(図 4 (b)では、色度 yの変動を、その初期値からの変動量(A y)によ り示す)、 SMSからなる蛍光体 Cは、パネルの駆動によりその色度 yが低下した。一方 、蛍光体として SMSを 70体積%、 BAMを 30体積%含む蛍光体層 A— 2では、蛍光 体層 Bに比べて、パネルの駆動による色度 yの変動を低減できた。 [0061] On the other hand, as shown in FIG. 4 (b), the phosphor layer B made of BAM is driven by driving the panel. The chromaticity y increases (in Fig. 4 (b), the fluctuation of the chromaticity y is indicated by the amount of fluctuation (A y) from the initial value). The chromaticity y decreased. On the other hand, in the phosphor layer A-2 containing 70% by volume of SMS and 30% by volume of BAM as the phosphor, fluctuations in chromaticity y due to panel driving can be reduced compared to phosphor layer B.
[0062] (実施例 2)  [Example 2]
実施例 2では、付活元素である Euの含有率を変化させた SMS蛍光体サンプルを 複数作製し、発光特性としてその輝度の変化を評価した。  In Example 2, a plurality of SMS phosphor samples in which the content of Eu as an activation element was changed were prepared, and the change in luminance was evaluated as the light emission characteristics.
[0063] 出発原料として、 SrCO、 Eu〇、 MgOおよび Si〇を用い、これらを所定の組成に なるように秤量し、ボールミルにより純水中で湿式混合した。次に、形成した混合物を [0063] SrCO, EuO, MgO and SiO were used as starting materials, and these were weighed so as to have a predetermined composition and wet-mixed in pure water using a ball mill. Next, the formed mixture
、 150°Cで 10時間乾燥した後に、大気中 1100°Cで 4時間焼成し、さらに、窒素、水 素および酸素の混合ガス中 1100〜: 1300°Cで 4時間焼成して蛍光体(SMS)を得た 。ここで、混合ガス中の酸素分圧を精密に制御することにより、蛍光体粒子の表面近 傍の 2価 Eu率を 50%以下とした。 2価 Eu率は、 XPS (X線光電子分光分析装置)に より、 2価 Euに起因するピークと、 3価 Euに起因するピークとの強度比(ピーク面積比 )から求めた。 After drying at 150 ° C for 10 hours, firing in air at 1100 ° C for 4 hours, and further in a mixed gas of nitrogen, hydrogen and oxygen from 1100 ~: firing at 1300 ° C for 4 hours to phosphor (SMS ) Here, the divalent Eu ratio near the surface of the phosphor particles was set to 50% or less by precisely controlling the oxygen partial pressure in the mixed gas. The divalent Eu ratio was determined from the intensity ratio (peak area ratio) between the peak attributed to divalent Eu and the peak attributed to trivalent Eu by XPS (X-ray photoelectron spectrometer).
[0064] 実施例 2において作製した SMSサンプルの組成を、 a、 bおよび cの値として、表 1 に示す。実施例 2では、 Euの含有率に相当する bの値が 0· 001〜0. 03の範囲にあ る実施例サンプルを 8種類(サンプル 1〜8)、 bの値が 0. 1である比較例サンプルを 1 種類 (サンプル A)作製した。  [0064] The composition of the SMS sample prepared in Example 2 is shown in Table 1 as values of a, b, and c. In Example 2, eight sample samples (samples 1 to 8) in which the value of b corresponding to the Eu content is in the range of 0.001 to 0.03, and the value of b is 0.1. One type of comparative sample (Sample A) was prepared.
[0065] このように作製した各サンプルについて、 (1)作製した状態である粉末状態におけ る輝度、(2)有機溶媒と混合して形成した蛍光体ペーストを、背面板における隔壁間 に塗布し、 500°Cで焼成して蛍光体層とした際の輝度、(3)実施例 1と同様に PDPパ ネルを組み立て、パネルの駆動を開始して 10時間経過した際の輝度、および、 (4) 上記(3)の時点力 パネルの駆動を 1000時間継続した際の輝度、を評価した。 (1) および(2)は、粉末あるいは背面板上に形成された蛍光体層の状態にある蛍光体に 波長 145nmの紫外線を照射して評価し、(3)および (4)は実施例 1と同様に評価し た。なお、(3)の 10時間とは、 PDPの製造工程において、一般にエージング処理が 完了するとされる時間に相当する。 [0066] 以下の表 1に評価結果を示す。なお、従来例として、 BAMおよび CMS (CaMgSi 〇: Eu2+)の両蛍光体に対する評価結果も併せて示す。また、各サンプルの輝度は、 全て上述した値 (Y/y)により評価し、 BAMの粉末状態における輝度を 100とする 相対値で示す。 [0065] For each sample produced in this way, (1) the brightness in the powder state as produced, (2) a phosphor paste formed by mixing with an organic solvent was applied between the barrier ribs on the back plate. And brightness when fired at 500 ° C to form a phosphor layer, (3) the PDP panel was assembled in the same manner as in Example 1, and the brightness when 10 hours passed after the panel was started, and (4) Time point force in (3) above The brightness when the panel was driven for 1000 hours was evaluated. (1) and (2) were evaluated by irradiating the phosphor in the state of the phosphor layer formed on the powder or the back plate with ultraviolet light having a wavelength of 145 nm, and (3) and (4) were evaluated in Example 1. It was evaluated in the same way. Note that 10 hours in (3) corresponds to the time when the aging process is generally completed in the PDP manufacturing process. [0066] Table 1 below shows the evaluation results. As a conventional example, evaluation results for both phosphors of BAM and CMS (CaMgSi ○: Eu 2+ ) are also shown. In addition, the brightness of each sample is evaluated by the above-mentioned value (Y / y) and expressed as a relative value where the brightness in the powder state of BAM is 100.
[0067] [表 1] [0067] [Table 1]
Figure imgf000016_0002
Figure imgf000016_0002
Figure imgf000016_0001
BAMの(1 )の時点における値を 100とする相対値
Figure imgf000016_0001
Relative value with the value at the time of BAM (1) as 100
[0068] 表 1に示すように、従来の青色蛍光体である BAMおよび CMSでは、(1)粉末状態 の輝度が最も高ぐ(2)蛍光体層の形成時、(3)パネル駆動開始力も 10時間後、お よび、 (4)さらなる 1000時間のパネル駆動後、の順に、その輝度は低下し続けた。 ( 3)の時点および(4)の時点の結果を比較すると、 1000時間のパネル駆動により、 B AMでは約 10%の、 CMSでは約 9. 4%の輝度の低下が生じることがわかった。 [0068] As shown in Table 1, in BAM and CMS, which are conventional blue phosphors, (1) the brightness in the powder state is the highest (2) during the formation of the phosphor layer, (3) the panel drive starting force is also After 10 hours, and (4) after a further 1000 hours of panel operation, the brightness continued to decrease. Comparing the results of time points (3) and (4), it was found that 1000 hours of panel driving resulted in a brightness reduction of about 10% for BAM and about 9.4% for CMS.
[0069] これに対してサンプル:!〜 8では、蛍光体層の形成により、その輝度は一度大きく低 下したものの、パネルの駆動によりその輝度が増加することがわ力つた。 (3)の時点 および (4)の時点の結果を比較すると、表 1に示すように、 1000時間のパネル駆動 により、サンプル 1では約 1. 5%、サンプル 2では約 3. 8%、サンプル 3では約 4. 2% 、サンプノレ 4で ίま 13. 60/0、サンプノレ 5で ίま約 8. Ί。にサンプノレ 6で ίま糸勺 11. 10/0、サ ンプノレ 7では約 8. 4%、サンプル 8では約 3. 3%の輝度の増加が生じた。 [0069] On the other hand, in Samples:! To 8, although the luminance was once greatly reduced by the formation of the phosphor layer, the luminance was increased by driving the panel. Comparing the results of time points (3) and (4), as shown in Table 1, approximately 1.5% for sample 1 and approximately 3.8% for sample 2 after 1000 hours of panel operation. 3 is about 4.2% , Ί or 13.6 0/0 in Sanpunore 4, ί or about 8. Ί in Sanpunore 5. Ί Maitoshaku 11.1 0/0 Sanpunore 6, about 8.4% in the service Npunore 7, in Sample 8 of about 3. increase of 3% luminance occurs in.
[0070] サンプル:!〜 8のように、蛍光体層の形成により一度輝度が低下した後、パネルの 駆動により輝度が増加する傾向を示す蛍光体は、従来、知られていない。サンプル 1 〜8において、このような輝度の変動を示す理由は明確ではなレ、が、蛍光体層形成 時の熱処理によって生じた SMSの熱劣化力 S、パネルの駆動雰囲気により回復される ことが原因ではないかと考えられる。  [0070] As in Samples:! To 8, a phosphor that shows a tendency for luminance to increase by driving the panel after the luminance has once decreased due to the formation of the phosphor layer has not been known. In Samples 1-8, the reason for such luminance fluctuation is not clear, but it can be recovered by the thermal degradation power S of the SMS generated by the heat treatment during the formation of the phosphor layer and the driving atmosphere of the panel. It may be the cause.
[0071] (実施例 3)  [Example 3]
実施例 3では、実施例 2で作製した SMS蛍光体サンプルの発光特性としてその色 度 yの変化を評価した。  In Example 3, the change in chromaticity y was evaluated as the light emission characteristics of the SMS phosphor sample prepared in Example 2.
[0072] 具体的には、実施例 2で作製した実施例サンプル:!〜 8および比較例サンプル Aに ついて、(1)作製した状態である粉末状態における色度 y、(2)有機溶媒と混合して 形成した蛍光体ペーストを、背面板における隔壁間に塗布し、 500°Cで焼成して蛍 光体層としたときの色度 y、(3)実施例 1と同様に PDPパネルを組み立て、パネルの 駆動を開始して 10時間経過した際の色度 y、および、(4)上記(3)の時点からパネル の駆動を 1000時間継続した際の色度 y、を評価した。 (1)および(2)は、粉末あるい は背面板上に形成された蛍光体層の状態にある蛍光体に波長 145nmの紫外線を 照射して評価し、(3)および (4)は実施例 1と同様に評価した。なお、上述したように 、(3)の 10時間とは、 PDPの製造工程において、一般にエージング処理が完了する とされる時間に相当する。  [0072] Specifically, with respect to the example samples prepared in Example 2:! To 8 and Comparative Sample A, (1) the chromaticity y in the powdered state as prepared, (2) the organic solvent and The phosphor paste formed by mixing is applied between the barrier ribs on the back plate and baked at 500 ° C to form a phosphor layer. (3) Similar to Example 1, PDP panel Assessed were chromaticity y when assembly and panel driving started 10 hours later, and (4) chromaticity y when panel driving continued for 1000 hours from point (3) above. (1) and (2) are evaluated by irradiating the phosphor in the state of the phosphor layer formed on the powder or the back plate with ultraviolet light having a wavelength of 145 nm, and (3) and (4) are performed. Evaluation was performed in the same manner as in Example 1. As described above, the 10 hours in (3) corresponds to the time when the aging process is generally completed in the PDP manufacturing process.
[0073] 以下の表 2に評価結果を示す。なお、従来例として、 BAMおよび CMS (CaMgSi [0073] Table 2 below shows the evaluation results. As a conventional example, BAM and CMS (CaMgSi
〇: Eu2+)の両蛍光体に対する評価結果も併せて示す。 (Circle): The evaluation result with respect to both fluorescent substance of Eu <2+> ) is also shown collectively.
[0074] [表 2] SMS雌 2価 1000時間の サンプル [0074] [Table 2] SMS Female Bivalent 1000 hours sample
E u率 Λ': Ε¾による E u rate Λ ': According to Ε¾
No. a b c (1) (2) (3) (4) No. a b c (1) (2) (3) (4)
(%) 色度 yの変化量 (%) Change in chromaticity y
1 2.97 0.03 2 50 0.0652 0.0680 0.0752 0.0751 -0.00011 2.97 0.03 2 50 0.0652 0.0680 0.0752 0.0751 -0.0001
2 3.5 0.001 2 30 0.0503 0.0527 0.0590 0.0570 -0.00202 3.5 0.001 2 30 0.0503 0.0527 0.0590 0.0570 -0.0020
3 3.1 0.003 2 10 0.0559 0.0582 0.0644 0.0640 -0.00043 3.1 0.003 2 10 0.0559 0.0582 0.0644 0.0640 -0.0004
4 3 0.006 2 5 0.0551 0.0573 0.0628 0.0623 -0.00054 3 0.006 2 5 0.0551 0.0573 0.0628 0.0623 -0.0005
5 3 0.005 2 5 0.0549 0.0574 0.0617 0.0613 -0.00045 3 0.005 2 5 0.0549 0.0574 0.0617 0.0613 -0.0004
6 3 0.004 2 5 0.0550 0.0576 0.0632 0.0627 -0.00056 3 0.004 2 5 0.0550 0.0576 0.0632 0.0627 -0.0005
7 3 0.003 2 5 0.0534 0.0558 0.0602 0.0598 -0.00047 3 0.003 2 5 0.0534 0.0558 0.0602 0.0598 -0.0004
8 3 0.002 2 5 0.0531 0.0557 0.0600 0.0580 -Ό.00208 3 0.002 2 5 0.0531 0.0557 0.0600 0.0580 -Ό.0020
A A
2.9 0.1 2 80 0.1200 0.1227 0.1352 0.1355 0.0003 itmi  2.9 0.1 2 80 0.1200 0.1227 0.1352 0.1355 0.0003 itmi
BAM ― 一 ― ― 0.0554 0.0604 0.0643 0.0657 0.0014 BAM ― One ― ― 0.0554 0.0604 0.0643 0.0657 0.0014
CMS ― ― ― ― 0.0502 0.0530 0.0575 0.0578 0.0003 CMS ― ― ― ― 0.0502 0.0530 0.0575 0.0578 0.0003
[0075] 表 2に示すように、従来の青色蛍光体である BAMおよび CMSでは、(1)粉末状態 の色度 yが最も小さぐ(2)蛍光体層の形成時、(3)パネル駆動開始力 10時間後、 および、 (4)さらなる 1000時間のパネル駆動後、の順に、その値は増加し続けた。 ( 3)の時点および(4)の時点の結果を比較すると、 1000時間のパネル駆動により、 B AMでは 0.0014の、 CMSでは 0.0003の色度 yの増加が生じることがわかった。 [0075] As shown in Table 2, with BAM and CMS, which are conventional blue phosphors, (1) the chromaticity y in the powder state is the smallest (2) when forming the phosphor layer, (3) panel drive The value continued to increase in the order of 10 hours after the starting force and (4) after another 1000 hours of panel operation. Comparing the results of (3) and (4), it was found that 1000 hours of panel drive resulted in an increase in chromaticity y of 0.0014 for BAM and 0.0003 for CMS.
[0076] これに対してサンプル 1〜8における色度 yは、蛍光体層の形成およびエージング 処理により一度は増加するものの、その後のパネルの駆動により逆に低下することが わかった。  [0076] On the other hand, it was found that the chromaticity y in Samples 1 to 8 increased once due to the formation of the phosphor layer and the aging treatment, but conversely decreased due to subsequent panel driving.
[0077] サンプル:!〜 8のように、蛍光体層の形成により色度 yが増加した後、パネルの駆動 により色度 yが低下する傾向を示す蛍光体は、従来、知られていない。サンプル:!〜 8 において、このような色度 yの変動を示す理由は明確ではないが、上述した輝度の変 化と同じぐ蛍光体層形成時の熱処理によって生じた SMSの熱劣化が、パネルの駆 動雰囲気により回復されることが原因ではないかと考えられる。  [0077] As in Samples:! To 8, a phosphor that shows a tendency that the chromaticity y tends to decrease by driving the panel after the chromaticity y increases due to the formation of the phosphor layer has not been known. In Samples:! ~ 8, the reason for this variation in chromaticity y is not clear, but the thermal degradation of SMS caused by the heat treatment during phosphor layer formation is the same as the change in luminance described above. It may be caused by recovery by the driving atmosphere.
産業上の利用可能性  Industrial applicability
[0078] 本発明によれば、パネルの駆動に伴う発光特性の変動の方向が互いに相反する 蛍光体を含む蛍光体層を備えることにより、表示特性の劣化が抑制されたガス放電 発光パネルを提供できる。 [0078] According to the present invention, the directions of fluctuations in the light emission characteristics accompanying the driving of the panel are opposite to each other. By providing the phosphor layer containing the phosphor, it is possible to provide a gas discharge light-emitting panel in which the deterioration of display characteristics is suppressed.

Claims

請求の範囲 The scope of the claims
[1] 放電空間を介して対向するように配置された前面板および背面板と、  [1] a front plate and a back plate arranged to face each other through a discharge space;
前記背面板における前記放電空間側の主面上に配置され、前記放電空間におい て発生した紫外線により発光する蛍光体層とを備えるガス放電発光パネルであって、 前記蛍光体層は、前記パネルの駆動に伴う、輝度および色度から選ばれる少なくと も 1つの特性の変動の方向が互いに相反する第 1および第 2の蛍光体を含むガス放 電発光パネル。  A gas discharge light-emitting panel that is disposed on a main surface of the back plate on the discharge space side and emits light by ultraviolet rays generated in the discharge space; A gas discharge light emitting panel comprising first and second phosphors in which the direction of variation of at least one characteristic selected from luminance and chromaticity accompanying driving is opposite to each other.
[2] 前記第 1の蛍光体における前記変動の方向が、輝度が増加する方向である請求項  [2] The direction of the variation in the first phosphor is a direction in which luminance increases.
1に記載のガス放電発光パネル。  The gas discharge light emitting panel according to 1.
[3] 前記第 1の蛍光体が、式aSr〇·bEuO ·Mg〇· cSiOにより示される蛍光体である [3] The first phosphor is a phosphor represented by the formula aSr〇 · bEuO · Mg〇 · cSiO
2  2
請求項 2に記載のガス放電発光パネル。  The gas discharge light-emitting panel according to claim 2.
ただし上記式において、 a、 bおよび cは、以下の関係を満たす。  However, in the above formula, a, b and c satisfy the following relationship.
2. 97≤a≤3. 5  2. 97≤a≤3.5
0. 001≤b≤0. 03  0. 001≤b≤0. 03
1. 9≤c≤2. 1  1. 9≤c≤2. 1
[4] 国際照明委員会(CIE)規定の XYZ表色系における刺激値 Yを、前記表色系に基 づく色度座標 (x、 y)における色度 yで除した値 (YZy)で表される前記第 1の蛍光体 の輝度力 パネルの駆動 1000時間あたり 3%以上増加する請求項 2に記載のガス 放電発光パネル。  [4] Expressed by the value (YZy) obtained by dividing the stimulus value Y in the XYZ color system defined by the International Commission on Illumination (CIE) by the chromaticity y in the chromaticity coordinates (x, y) based on the color system. The gas discharge light-emitting panel according to claim 2, wherein the luminance power of the first phosphor is increased by 3% or more per 1000 hours.
[5] 前記第 2の蛍光体が、 BaMgAl O : Eu +である請求項 2に記載のガス放電発光 [5] The gas discharge luminescence according to claim 2, wherein the second phosphor is BaMgAl 2 O 3: Eu +
10 17  10 17
パネル。  panel.
[6] 前記第 1の蛍光体における前記変動の方向が、国際照明委員会 (CIE)規定の XY Z表色系に基づく色度座標 (x、 y)における色度 yが減少する方向である請求項 1に 記載のガス放電発光パネル。  [6] The direction of the variation in the first phosphor is a direction in which the chromaticity y in the chromaticity coordinates (x, y) based on the XYZ color system defined by the International Commission on Illumination (CIE) decreases. The gas discharge light-emitting panel according to claim 1.
[7] 前記第 1の蛍光体が、式aSr〇·bEuO ·Mg〇· cSiOにより示される蛍光体である  [7] The first phosphor is a phosphor represented by the formula aSr〇 · bEuO · Mg〇 · cSiO
2  2
請求項 6に記載のガス放電発光パネル。  The gas discharge light-emitting panel according to claim 6.
ただし上記式において、 a、 bおよび cは、以下の関係を満たす。  However, in the above formula, a, b and c satisfy the following relationship.
2. 97≤a≤3. 5 2. 97≤a≤3.5
0. 001≤b≤0. 03 0. 001≤b≤0. 03
1. 9≤c≤2. 1  1. 9≤c≤2. 1
[8] 前記第 2の蛍光体が、 BaMgAl O : Eu +である請求項 6に記載のガス放電発光 [8] The gas discharge luminescence according to claim 6, wherein the second phosphor is BaMgAl 2 O 3: Eu +
10 17  10 17
パネル。  panel.
[9] 前記第 1および第 2の蛍光体が、波長 440〜470nmの範囲に発光スペクトルのピ ークを有する青色蛍光体である請求項 1に記載のガス放電発光パネル。  9. The gas discharge light-emitting panel according to claim 1, wherein the first and second phosphors are blue phosphors having emission spectrum peaks in a wavelength range of 440 to 470 nm.
[10] プラズマディスプレイパネルである請求項 1に記載のガス放電発光パネル。 10. The gas discharge light-emitting panel according to claim 1, which is a plasma display panel.
[11] 放電空間を介して対向するように配置された前面板および背面板と、 [11] a front plate and a back plate arranged to face each other through the discharge space;
前記背面板における前記放電空間側の主面上に配置され、前記放電空間におい て発生した紫外線により発光する蛍光体層とを備えるガス放電発光パネルであって、 前記蛍光体層は、式aSrO ·bEu〇·MgO · cSiOにより示される第 1の蛍光体と、第  A gas discharge light-emitting panel disposed on a main surface of the back plate on the discharge space side and emitting light by ultraviolet rays generated in the discharge space, wherein the phosphor layer has the formula aSrO a first phosphor represented by bEuO · MgO · cSiO;
2  2
2の蛍光体として BaMgAl O : Eu2+と、を含むガス放電発光パネル。 A gas discharge light-emitting panel comprising BaMgAl 2 O 3: Eu 2+ as the second phosphor.
10 17  10 17
ただし上記式において、 a、 bおよび cは、以下の関係を満たす。  However, in the above formula, a, b and c satisfy the following relationship.
2. 97≤a≤3. 5  2. 97≤a≤3.5
0. 001≤b≤0. 03  0. 001≤b≤0. 03
1. 9≤c≤2. 1  1. 9≤c≤2. 1
[12] 国際照明委員会(CIE)規定の XYZ表色系における刺激値 Yを、前記表色系に基 づく色度座標 (x、 y)における色度 yで除した値 (YZy)で表される前記第 1の蛍光体 の輝度が、パネルの駆動 1000時間あたり 3%以上増加する請求項 11に記載のガス 放電発光パネル。  [12] Expressed by the value (YZy) obtained by dividing the stimulus value Y in the XYZ color system defined by the International Commission on Illumination (CIE) by the chromaticity y in the chromaticity coordinates (x, y) based on the color system. 12. The gas discharge light-emitting panel according to claim 11, wherein the brightness of the first phosphor is increased by 3% or more per 1000 hours of panel driving.
[13] プラズマディスプレイパネルである請求項 11に記載のガス放電発光パネル。  13. The gas discharge light-emitting panel according to claim 11, which is a plasma display panel.
PCT/JP2006/314780 2005-07-27 2006-07-26 Gas discharge light emitting panel WO2007013515A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/997,084 US20100156266A1 (en) 2005-07-27 2006-07-26 Gas discharge light emitting panel
JP2007526875A JPWO2007013515A1 (en) 2005-07-27 2006-07-26 Gas discharge light emitting panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-217087 2005-07-27
JP2005217087 2005-07-27

Publications (1)

Publication Number Publication Date
WO2007013515A1 true WO2007013515A1 (en) 2007-02-01

Family

ID=37683406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314780 WO2007013515A1 (en) 2005-07-27 2006-07-26 Gas discharge light emitting panel

Country Status (5)

Country Link
US (1) US20100156266A1 (en)
JP (1) JPWO2007013515A1 (en)
KR (1) KR20080030045A (en)
CN (1) CN101233596A (en)
WO (1) WO2007013515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902756B2 (en) * 2006-02-07 2011-03-08 Panasonic Corporation Phosphor, light-emitting device, and plasma display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132803A (en) * 2001-10-30 2003-05-09 Hitachi Ltd Light emission device and display device using the same
JP2003303553A (en) * 2002-04-10 2003-10-24 Fujitsu Hitachi Plasma Display Ltd Plasma display panel
JP2005116363A (en) * 2003-10-08 2005-04-28 Pioneer Plasma Display Corp Plasma display panel
JP2005194340A (en) * 2003-12-26 2005-07-21 Kasei Optonix Co Ltd Phosphor and light-emitting element using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290329B (en) * 2001-10-30 2007-11-21 Hitachi Ltd Plasma display device, luminescent device and image and information display system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132803A (en) * 2001-10-30 2003-05-09 Hitachi Ltd Light emission device and display device using the same
JP2003303553A (en) * 2002-04-10 2003-10-24 Fujitsu Hitachi Plasma Display Ltd Plasma display panel
JP2005116363A (en) * 2003-10-08 2005-04-28 Pioneer Plasma Display Corp Plasma display panel
JP2005194340A (en) * 2003-12-26 2005-07-21 Kasei Optonix Co Ltd Phosphor and light-emitting element using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHOSPHOR RESEARCH SOCIETY: "Keikotai Handbook", 20 June 1991, OHMSHA LTD., pages: 222 - 223, XP003008254 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902756B2 (en) * 2006-02-07 2011-03-08 Panasonic Corporation Phosphor, light-emitting device, and plasma display panel

Also Published As

Publication number Publication date
KR20080030045A (en) 2008-04-03
US20100156266A1 (en) 2010-06-24
JPWO2007013515A1 (en) 2009-02-12
CN101233596A (en) 2008-07-30

Similar Documents

Publication Publication Date Title
KR20060082527A (en) Phosphor and plasma display panel using the same
US6583561B2 (en) Material for converting ultraviolet ray and display device using the same
US20080048547A1 (en) Plasma display device and light emitting device
KR20010074772A (en) Production method for plasma display panel excellent in luminous characteristics
JP2004176010A (en) Light-emitting device and display using the same
KR100560510B1 (en) Plasma display device
US8129905B2 (en) Phosphor and light emitting device using the phosphor
US20090058254A1 (en) Phosphor and light-emitting device
US8410677B2 (en) Blue phosphor, light-emitting device, and plasma display panel
EP1876213B9 (en) Fluorescent substance and light emitting device
JP2006299098A (en) Light emitting apparatus and image display unit
EP1513182B1 (en) Phosphor, method of manufacturing it and plasma display panel containing this phosphor
WO2007013515A1 (en) Gas discharge light emitting panel
JP5011082B2 (en) Image display device
JP2001135239A (en) Plasma display unit and picture image display system using the same
US8836206B2 (en) Plasma display panel and phosphor
JP3202964B2 (en) Phosphor material, phosphor film and plasma display panel
JP2004091622A (en) Plasma display panel and fluorophor
JP2008303230A (en) Phosphor and manufacturing method therefor
JP3412570B2 (en) Plasma display panel and method of manufacturing the same
KR101105061B1 (en) Plasma display panel
US20050067962A1 (en) Plasma display panel
JP2006310016A (en) Gas discharge light emitting panel
JP2006310015A (en) Gas discharge light-emitting panel
JP2009087800A (en) Plasma display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027306.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526875

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087001913

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11997084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781692

Country of ref document: EP

Kind code of ref document: A1