WO2007013272A1 - Display device and backlight device - Google Patents

Display device and backlight device Download PDF

Info

Publication number
WO2007013272A1
WO2007013272A1 PCT/JP2006/313422 JP2006313422W WO2007013272A1 WO 2007013272 A1 WO2007013272 A1 WO 2007013272A1 JP 2006313422 W JP2006313422 W JP 2006313422W WO 2007013272 A1 WO2007013272 A1 WO 2007013272A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
display
display device
imaging unit
imaging
Prior art date
Application number
PCT/JP2006/313422
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Teranuma
Hiromi Katoh
Toshio Shimosako
Yasukuni Yamane
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007013272A1 publication Critical patent/WO2007013272A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback

Definitions

  • the present invention relates to a display device typified by a liquid crystal display device or an EL display device, and more particularly to a display device having an image input function.
  • Patent Document 1 An example of such a display device is a display device with a touch panel (see, for example, Patent Document 1).
  • the display device disclosed in Patent Document 1 guides light irradiated with projector power to the display area.
  • the touch position is detected by receiving, with a CCD camera, the light reflected from the user's finger placed on the display area.
  • a liquid crystal display device configured to be able to capture an image itself is also disclosed (for example, see Patent Document 2).
  • the display device disclosed in Patent Document 2 includes a plurality of photodiodes arranged in a matrix on an active matrix substrate, thereby capturing an image of an object on a display screen.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-350586 (Fig. 1)
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-159273 (Figs. 2 to 3)
  • Patent Document 1 since the display device disclosed in Patent Document 1 requires the use of a projector, there is a problem that the noise caused by the power supply fan is large, a problem that the amount of heat generation is large, and the entire device is downsized. There is a problem that you can not.
  • the display device disclosed in Patent Document 2 has a configuration that enables capturing of an image
  • the display device disclosed in Patent Document 2 does not include an imaging optical system. It is impossible to obtain a correct captured image.
  • the display device of Patent Document 2 has a high resolution. There is a problem that it is impossible to perform image capturing at an image level.
  • An object of the present invention is to solve the above-described problems, and can be reduced in size and size with a small amount of heat generation, and a liquid crystal display device and a display device capable of capturing an image with high resolution. And a backlight device used in a liquid crystal display device.
  • a display device includes a display panel having light transmittance and an imaging unit having an imaging optical system, and the imaging unit is configured to display the display panel from an observer side. And receiving the light passing through the display panel and the imaging optical system, and imaging the state of the display panel on the viewer side.
  • a backlight device is a backlight device for illuminating a liquid crystal display panel, and includes a light source and an imaging unit having an imaging optical system.
  • the imaging unit is disposed inside the backlight device, and receives light that enters the liquid crystal display panel from the observer side and passes through the liquid crystal display panel and the imaging optical system. Then, the state on the viewer side of the liquid crystal display panel is photographed.
  • the display device of the present invention since an image can be displayed using the display panel, it is possible to achieve a reduction in heat generation, noise reduction, and size reduction. Furthermore, in the display device according to the present invention, since the imaging unit includes the imaging optical system, it is possible to capture an image with higher resolution than a display device having a conventional input function. Further, when the backlight device according to the present invention is attached to a liquid crystal display device, a liquid crystal display device capable of capturing an image with high resolution can be obtained.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of an image pickup unit provided in the display device shown in FIGS. 1 and 2.
  • FIG. 4 is a diagram showing a schematic configuration of a detection light source provided in the display device shown in FIG. 1 and FIG. 2, and FIG. 4 (a) is cut along the emission direction of the detection light.
  • a cross-sectional view and Fig. 4 (b) are front views.
  • FIG. 5 is a view showing another example of the detection light source
  • FIG. 5 (a) is a cross-sectional view cut along the emission direction of the detection light
  • FIG. 5 (b) is a front view.
  • FIG. 6 is a diagram showing transmittance spectral characteristics of a color filter.
  • FIG. 7 is a diagram showing transmittance spectral characteristics of polarizing plates constituting a liquid crystal display panel.
  • FIG. 8 is a block diagram showing a configuration of a control device provided in the display device shown in FIGS. 1 and 2.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of the display device in the second embodiment of the present invention.
  • FIG. 10 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of an imaging unit provided in the display device shown in FIGS. 9 and 10.
  • FIG. 12 is a diagram showing the outer shape of the image captured by the imaging unit shown in FIGS. 9 to 11 and the outer shape of the image after correction.
  • FIG. 13 is a block diagram showing a configuration of a control device provided in the display device shown in FIGS. 9 and 10.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 3 of the present invention.
  • FIG. 15 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • FIG. 16 is a cross-sectional view showing a schematic configuration of the display device in the fourth embodiment of the present invention.
  • FIG. 17 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • FIG. 18 is a cross-sectional view showing a schematic configuration of the display device in the fifth embodiment of the present invention.
  • FIG. 19 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • FIG. 20 is a cross-sectional view showing a schematic configuration of the display apparatus in the sixth embodiment of the present invention.
  • FIG. 21 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • FIG. 22 is a cross-sectional view showing a schematic configuration of the display device in the seventh embodiment of the present invention.
  • FIG. 23 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • FIG. 24 is a cross-sectional view showing a schematic configuration of the display apparatus according to Embodiment 8 of the present invention.
  • FIG. 25 is a cross-sectional view showing a schematic configuration of another example of the display device according to Embodiment 8 of the present invention.
  • FIG. 26 is a diagram showing a positional relationship between the detection light source and the imaging unit when the display device shown in FIG. 25 is viewed from the observer side.
  • FIG. 27 is a cross-sectional view showing a schematic configuration of the display apparatus according to Embodiment 9 of the present invention.
  • a display device includes a light-transmissive display panel and an imaging unit having an imaging optical system, and the imaging unit is incident on the display panel from the observer side. And the light which passes the said display panel and the said imaging optical system is received, and the state in the observer side of the said display panel is imaged, It is characterized by the above-mentioned.
  • the “display panel having light transmittance” means a display panel having a property of transmitting light from at least the viewer side to the back surface side.
  • Such a display panel is also included in the display panel having light transmittance.
  • the display device includes a detection light source that emits detection light to the viewer side of the display panel, and the imaging unit is incident on the display panel from the viewer side.
  • the detection light passing through the display panel and the imaging optical system is received to capture the state of the display panel on the viewer side (first aspect).
  • the resolution of the captured image can be improved.
  • a light emitting diode can be used as the detection light source.
  • the imaging unit receives only light having a wavelength of 700 nm or more, particularly 800 nm or more.
  • the imaging unit preferably has an optical filter that transmits only light having a wavelength of 700 nm or more, particularly 800 nm or more.
  • the detection light source emits light having a wavelength of 700 nm or more, particularly 800 nm or more and lOOOnm or less as the detection light.
  • the imaging unit has a region overlapping with the display region of the display panel in the thickness direction of the display panel on the back side of the display panel. It is preferable to adopt an aspect (second aspect) arranged around the periphery. If it is set as the said 2nd aspect, since the imaging part does not overlap with a display area in the thickness direction of a display panel, it can be arrange
  • the imaging unit includes a solid-state imaging device that receives an image formed by the imaging optical system, and the optical axis of the imaging optical system is the display
  • the solid-state imaging device has a light receiving surface parallel to the display region, and a normal passing through the center of the light receiving surface of the solid-state imaging device. You may arrange
  • the imaging unit includes a solid-state imaging device that receives an image formed by the imaging optical system, and a light-receiving surface of the solid-state imaging device.
  • the normal line passing through the center of the imaging optical system and the optical axis of the imaging optical system are arranged so as to be inclined toward the display area. It may be.
  • the imaging optical system can be simplified and the lens elements constituting the imaging optical system can be reduced in diameter, and the imaging unit can be made compact.
  • the design cost can be reduced.
  • the display device further includes a backlight device that illuminates the display panel from the back side when the display panel is a liquid crystal display panel.
  • a backlight device that illuminates the display panel from the back side when the display panel is a liquid crystal display panel.
  • the imaging region can be positioned in front of the imaging unit, the captured image can be prevented from being distorted in a trapezoidal shape.
  • the configuration of the display device can be simplified.
  • an opening is formed in a region overlapping with an optical path of light received by the imaging unit in the optical layer of the backlight device. That's right.
  • an optical layer having a higher light transmittance than the optical layer may be disposed inside the opening.
  • an area overlapping the optical path of light received by the imaging unit in the optical layer of the backlight device is formed such that the light transmittance is higher than other areas in the optical layer. It is also preferable. In these cases, the light incident on the imaging unit can be prevented from being scattered, reflected, or further attenuated by the optical layer.
  • each of the plurality of imaging units is capable of imaging the state on the observer side in different regions within the display region of the display panel. It is preferable to adopt the embodiment (fourth embodiment). According to the fourth aspect, the imaging area of each imaging unit can be narrowed compared to the case where a single imaging unit is not provided with force, and the optical imaging distance (focal length) required by the imaging unit The display device can be shortened and the display device can be thinned.
  • adjacent regions partially overlap each other among regions captured by the plurality of imaging units. In this case, the position of the subject can be accurately recognized.
  • the focusing range of the imaging optical system is: It should be set within the lcm range from the display area of the display panel to the viewer. As a result, the subject on the display area can be imaged more clearly.
  • the detection light source may be arranged in a region around the display region of the display panel. In this case, the light loss can be reduced.
  • the detection light source may be the display panel.
  • the display panel In the thickness direction of the display panel, the display panel may be arranged around a region overlapping with the display region. In this case, the degree of freedom in design of the front side of the display device can be increased.
  • the display device further includes a backlight device that illuminates the display panel also with a back side force
  • the light device includes a light source and an optical layer disposed on the display panel side of the light source, the detection light source is emitted into the backlight device, and the detection light is emitted toward the display panel.
  • the embodiment (fifth embodiment) can also be adopted.
  • the light amount distribution of the detection light on the display area can be made uniform, and imaging that is not affected by the position of the subject can be performed.
  • the display device includes a backlight device as in the third and fifth embodiments
  • a light emitting diode can be used as a light source of the backlight device.
  • the area of the light emitting region of the backlight device is preferably larger than the area of the display region of the display panel. Accordingly, even when the distance between the display panel and the backlight device is long, the display panel can be sufficiently illuminated.
  • the imaging unit is provided on the back side of the display panel in the thickness direction of the display panel. It is preferable to be arranged in an area overlapping with the display area of the display panel! In this case, since the imaging region can be positioned in front of the imaging unit, the captured image can be prevented from being distorted in a trapezoidal shape.
  • the detection light source is arranged on the back side of the display panel.
  • the detection light source is arranged around a region overlapping the display region in the thickness direction of the display panel. This is to prevent the detection light source from interfering with the imaging by the imaging unit.
  • the image processing device and detection for irradiating detection light toward the main surface on the viewer side of the display panel if the display panel is a liquid crystal display panel.
  • Receiving the detection light, imaging the state of the display panel on the viewer side, and further outputting imaging data, and the backlight device is disposed on the display panel side of the light source and the light source
  • the image processing device also subtracts an offset component from the imaging data force output from the imaging unit, and the offset component is incident on the display area of the display panel from the outside.
  • an antireflection treatment is performed on the surface of the display panel opposite to the viewer side.
  • the observer side of the display panel further includes a transparent plate that covers the display area of the display panel, and the transparent plate is connected to the display area.
  • the detection light source is arranged in a region around the display region of the display panel so that the detection light is incident on the transparent plate from the space. It is preferable. In this case, the detection light emitted from the detection light source can be prevented from entering the display panel without reaching the subject, and the utilization efficiency of the detection light can be improved.
  • the imaging unit includes the display panel. On the back side of the display panel in the thickness direction of the display panel, and is arranged around the area overlapping the display area of the display panel, and the imaging direction of the imaging unit and the emission direction of the detection light source are the observer. It is preferable that they cross each other when viewed from the side. Specifically, if the display area has a rectangular shape, the detection light source is arranged along one side of the display area or the one side and a side opposite to the one side. The imaging unit force is configured to be arranged along a side adjacent to the one side when viewed from the observer side.
  • the backlight device is a backlight device for illuminating a liquid crystal display panel, and includes a light source and an imaging unit having an imaging optical system, and the imaging unit includes the backlight unit.
  • the light device is arranged inside the light device, receives light that is incident on the liquid crystal display panel and passes through the liquid crystal display panel and the imaging optical system, and is received by the observer of the liquid crystal display panel. The state on the side is imaged.
  • the backlight device includes a detection light source that emits detection light toward the main surface of the liquid crystal display panel on the observer side, and the detection light source includes the backlight device.
  • the imaging unit Arranged inside the light device, the imaging unit receives the detection light incident on the liquid crystal display panel from the observer side and passing through the liquid crystal display panel and the imaging optical system; It is preferable to take an image of the state of the liquid crystal display panel on the viewer side. In this case, the input function added to the liquid crystal display device can be further enhanced.
  • the optical device further includes an optical layer disposed on the liquid crystal display panel side of the light source, and optical light received by the imaging unit in the optical layer of the backlight device. It is preferable that an opening is formed in a region overlapping the target path. At this time, an optical layer having a higher light transmittance than the optical layer may be disposed inside the opening.
  • the optical layer further includes an optical layer disposed on the liquid crystal display panel side of the light source, and an area overlapping with an optical path of light received by the imaging unit in the optical layer of the backlight device is in the optical layer. Light transmission compared to other areas It is also preferable that it is formed so as to increase the rate. In these cases, it is possible to suppress light incident on the imaging unit from being scattered, reflected, or further attenuated by the optical layer.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • the display device includes a liquid crystal display panel 2 and an imaging unit 4 having an imaging optical system (not shown).
  • the imaging unit 4 receives the light incident on the liquid crystal display panel 2 and passing through the liquid crystal display panel 2 and the imaging optical system, and images the state of the liquid crystal display panel 2 on the viewer side. To do.
  • the imaging unit 4 causes the reflected light from the subject 1 (human fingertip) on the display area 3 of the liquid crystal display panel 2 to pass through the liquid crystal display panel 2. It is arranged to enter the imaging optical system. The imaging unit 4 receives the light that has entered the imaging optical system and passed through it, and images the subject 1 using this light. The configuration of the imaging unit 4 will be further described later.
  • the display device is a detection light source that emits detection light toward the space on the viewer side of the liquid crystal display panel 2, that is, toward the subject 1. 7 is further provided. Therefore, in the first embodiment, the imaging unit 4 is detected light that enters the liquid crystal display panel from the observer side and passes through the liquid crystal display panel 2 and the imaging optical system, that is, the subject 1. Imaging is performed by receiving the reflected detection light. This point will be described later.
  • the display device is a transmissive liquid crystal display device, and includes a backlight device 5 that illuminates the liquid crystal display panel 2 with the back side force of the display region 3.
  • the liquid crystal display panel 2 includes an active matrix substrate 2c, a liquid crystal layer 2b, and a filter substrate (counter substrate) 2a.
  • the liquid crystal layer 2b includes an active matrix substrate 2c and a filter substrate 2a. Is sandwiched between. Illustration of a seal for sealing the liquid crystal layer 2b is omitted.
  • a polarizing plate (not shown) is provided on the surface opposite to the liquid crystal layer 2b side in each of the filter substrate 2a and the active matrix substrate 2c.
  • a plurality of active elements (not shown) arranged in a matrix are formed on the active matrix substrate 2c.
  • the active element constitutes a pixel, and is a region force display region 3 that overlaps with the region in which the pixel is provided in the thickness direction (indicated by a thick line arrow in FIG. 1).
  • the active matrix substrate 2c is provided with a drive circuit such as a gate drive circuit and a source drive circuit.
  • a plurality of color filters (not shown) corresponding to each pixel and a counter electrode are formed on the filter substrate 2a.
  • the backlight device 5 is a direct type backlight device, and includes a plurality of fluorescent lamps 6 and an optical layer 13.
  • the plurality of fluorescent lamps 6 are arranged in a bathtub-type casing 8 in a state of being parallel to each other (see FIG. 2).
  • a reflective sheet is attached to the inner surface of the housing 8.
  • the optical layer 13 is formed by laminating a diffusion plate 9, a diffusion sheet 10, a prism sheet 11, and a reflective Z-polarizing sheet 12 in this order.
  • the imaging unit 4 is between the liquid crystal display panel 2 and the backlight device 5 on the back side of the liquid crystal display panel 2 and in the thickness direction of the liquid crystal display panel 2. It is arranged around the area (or space) that overlaps display area 3. In this case, since the imaging unit 4 does not overlap the display region 3 in the thickness direction of the liquid crystal display panel 2, it can be arranged without being restricted by the liquid crystal display panel 2 or the backlight device 5.
  • the liquid crystal display panel 2 and the backlight device 5 are separated from each other compared to the conventional case. Is placed. Specifically, the liquid crystal display panel 2 and the backlight device 5 are held at a certain distance L by the frame 20, and a cavity exists between them. The imaging unit 4 is also held in the frame 20.
  • the distance L between the liquid crystal display panel 2 and the backlight device 5 is set to about 15 cm.
  • a transparent resin material is filled between the liquid crystal display panel 2 and the backlight device 5 to increase the strength of the display device. You may do it.
  • the backlight device 5 since the distance between the liquid crystal display panel 2 and the backlight device 5 is large, as shown in FIGS. 1 and 2, the backlight device 5 has a light emitting region area larger than the display region 3 area. It is preferable to make it large. This is because the irradiation area of the liquid crystal display panel 2 tends to decrease as the distance between the liquid crystal display panel 2 and the backlight device 5 increases.
  • each of the plurality of imaging units 4 is arranged so as to be able to image the state on the observer side in different areas in the display area 3.
  • the imaging area of each imaging unit 4 can be narrowed and the optical imaging distance required by the imaging unit 4 can be shortened compared to the case where a single imaging unit is not provided. Can do. Therefore, compared with the case where a single imaging unit is not provided, the distance between the liquid crystal display panel 2 and the backlight device 5 can be shortened, and the display device can be made thinner.
  • the imaging areas of each of the plurality of imaging units 4 are set so that adjacent imaging areas partially overlap each other in order to accurately recognize the position of the subject 1. preferable.
  • the imaging unit 4 captures an object existing on the display area 3 as the subject 1, the focusing range of the imaging optical system of the imaging unit 4 is near the surface of the liquid crystal display panel, for example, the display area. It is preferable to set within the range of lcm from 3 to the viewer side.
  • the detection light source 7 is arranged in an area around the display area 3 in order to reduce a light amount loss. Specifically, four detection light sources 7 are provided, and each detection light source 7 is arranged so as to surround the display region 3 along one side of the display region 3. Each detection light source 7 emits detection light toward the detection light source 7 at the facing position.
  • the number of detection light sources 7 is not particularly limited. For example, the number of the detection light sources 7 may be two, and the detection light sources 7 may be arranged only on two opposite sides. In FIG. 1, the illustration of the detection light source 7 that does not appear in the cross section is omitted.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of an imaging unit provided in the display device illustrated in FIGS.
  • the imaging unit 4 A lens element 30 constituting the academic system, a solid-state imaging element 32 that receives an image formed by the lens element 30, and an optical filter that transmits only light having a wavelength equal to or greater than a set wavelength (a noise filter) 31 And.
  • the solid-state imaging device 32 is a solid-state imaging device such as a CCD solid-state imaging device or a MOS solid-state imaging device. The function of the optical filter 31 will be described later.
  • the lens element 30 and the solid-state image sensor 32 constitute a so-called shift optical system.
  • the normal line 32a passing through the center of the light receiving surface of the solid-state image sensor 32 and the optical axis 30a of the lens element 30 are parallel, and the optical axis 30a is the normal line. It is held in the frame 33 in a state shifted from 32 a.
  • the imaging unit 4 has the light receiving surface of the solid-state imaging device 32 parallel to the display region 3, and the normal line 32 a of the solid-state imaging device 32 is It is arranged so as to be located outside the display area 3 relative to the optical axis 30a.
  • the shift optical system since the shift optical system is employed, an image with little trapezoidal distortion is formed on the light receiving surface of the solid-state imaging element 32. Therefore, according to the first embodiment, an image with excellent image quality can be obtained without performing correction for improving the trapezoidal distortion on the imaging data output by the imaging unit 4.
  • the “imaging optical system” has a focal point in the vicinity of the surface of the liquid crystal display panel and the light receiving surface of the imaging unit, and an image in the vicinity of the surface of the liquid crystal display panel This is the lens system that forms an image. Therefore, in the example of FIG. 3, the imaging optical system may be configured by a lens group including a plurality of lens elements that are configured by only the lens element 30. However, in the case of constituting a shift optical system, the imaging optical system needs to be designed so that the oblique light is not kicked and transmitted through the lens system. In this case, the imaging optical system needs to be configured by a lens system having a large aperture as compared with the case where the shift optical system is not configured.
  • FIG. 4 is a diagram showing a schematic configuration of the detection light source provided in the display device shown in FIGS. 1 and 2, and FIG. 4 (a) is a cross-sectional view taken along the emission direction of the detection light.
  • Figure 4 (b) is a front view.
  • FIG. 5 is a view showing another example of the detection light source, FIG. 5 (a) is a cross-sectional view cut along the direction of emission of the detection light, and FIG. 5 (b) is a front view.
  • the detection light source 7 is shown in a simplified manner. As shown in FIGS. 4A and 4B, the detection light source 7 includes a plurality of light emitting diodes 21.
  • each light emitting diode 21 The wavelength of light emitted from each light emitting diode 21 is set in advance as will be described later.
  • the plurality of light emitting diodes 21 are arranged in a row inside the frame 23 so that the emission surfaces are aligned.
  • the light emitting diodes 21 are individually molded with grease.
  • Reference numeral 22 denotes a resin mold.
  • the frame 23 is formed in a box shape having an opening on the emission direction side.
  • An optical sheet 24 including a diffusion sheet is attached to the opening on the emission direction side of the frame 23 to enable surface emission.
  • a reflection sheet is attached to the inner surface of the frame 23. In FIG. 4B, the optical sheet 24 is not shown.
  • the detection light source 7 is arranged around the display area 3, the detection light is applied to the object 1 regardless of the position of the object 1 (see Fig. 1) on the display area 3, The reflected light is received by the imaging unit 4. Further, the number of light emitting diodes 21 to be arranged is not particularly limited, and may be set so as to obtain a necessary light amount according to the size of the display area 3 (see FIGS. 1 and 2).
  • the detection light source 25 shown in FIG. 5 can be used instead of the detection light source 7.
  • the detection light source 25 includes a plurality of light emitting diodes 21 molded by grease.
  • the detection light source 25 includes a light guide plate 26.
  • the light guide plate 26 is formed in a rectangular parallelepiped shape, and each light emitting diode 21 is disposed so as to face the end surface of the light guide plate 26 positioned in the long axis direction. The light emitted from each light emitting diode 21 is repeatedly reflected on the inside of the light guide plate 26 and then emitted from the side surface on the emission direction side.
  • the frame 27 is formed in a box shape having an opening on the emission direction side. Further, similarly to the example of FIG. 4, an optical sheet 28 including a diffusion sheet is attached to the opening of the frame 27 on the emission direction side. A reflective sheet is also attached to the inner surface of the frame 27. Also in FIG. 5B, the optical sheet 28 is not shown.
  • surface emission can be performed by a smaller number of the light emitting diodes 21 than in the example of FIG. 4, so that power consumption can be reduced. so wear.
  • two light emitting diodes 21 are arranged for each end face, but the number of light emitting diodes 21 is not particularly limited.
  • FIG. 6 is a diagram showing the transmittance spectral characteristics of the color filter.
  • the horizontal axis indicates the light wavelength [nm]
  • the vertical axis indicates the transmittance [%].
  • Fig. 6 shows the transmittance for each of the blue, green and red color filters.
  • FIG. 7 is a diagram showing the transmittance spectral characteristics of the polarizing plate constituting the liquid crystal display panel.
  • the horizontal axis indicates the wavelength [nm] of transmitted light
  • the vertical axis indicates the transmittance [%].
  • FIG. 7 shows a case where two polarizing plates are arranged in a parallel-col arrangement and a case where they are arranged in an orthogonal-col arrangement.
  • the detection light reflected by the subject 1 passes through the liquid crystal display panel 2 and then enters the imaging unit 4. At this time, the detection light is transmitted to the liquid crystal display panel. It must pass through the 2 color filter and polarizing plate. Therefore, in order to allow the detection light to easily pass through the color filter and the polarizing plate, the wavelength of the detection light should be set in the infrared region as shown in FIG. 6 and FIG.
  • the lower limit of the wavelength of the detection light is set to 700 nm or more, preferably 800 nm or more, and particularly preferably 850 nm or more.
  • the upper limit of the wavelength of detection light is preferably less than lOOOnm! /.
  • the imaging unit 4 may be configured to receive only light having a wavelength of 700 ⁇ m or more, preferably 800 nm or more, and particularly preferably 850 nm or more.
  • a high-pass filter that transmits only light having a wavelength of 700 nm or more, preferably 800 nm or more, particularly preferably 850 nm or more may be used.
  • the optical image of the subject 1 on the display area 3 is formed on the light receiving surface by the imaging optical system. Therefore, by using the display device according to the first embodiment, it is possible to obtain a clearer optical image as compared with the conventional case, and to capture an image with high resolution.
  • a liquid crystal display panel is used, heat generation can be suppressed, noise reduction, and size reduction can be achieved.
  • Embodiment 1 it is possible to remove noise caused by visible light by using light having a wavelength in the infrared region to image a subject. Therefore, according to the first embodiment, for example, complicated figures such as QR codes, characters, and the like can be captured clearly.
  • the imaging unit 4 outputs the captured optical image as imaging data.
  • the display device performs control such as image processing based on the imaging data. Don't worry about equipment.
  • FIG. 8 is a block diagram showing a configuration of a control device provided in the display device shown in FIGS.
  • the display device 110 includes a control device 109 that performs image processing and the like based on the imaging data output from the imaging unit 4.
  • the control device 109 mainly includes an image processing device 100, an image input control device 105, and a display control device 107.
  • the control device 109 is connected to the external device 108.
  • Examples of the external device 108 include various devices that output video signals to a display device such as a personal computer, a game device, a TV tuner, a DVD player, and a home appliance.
  • the image input control device 105 requests the imaging unit 4 to output imaging data in response to an instruction by a control signal from the external device 108.
  • Each of the plurality of imaging units 4 outputs imaging data to the image input control device 105 when an output request is notified by the control signal from the image input control device 105.
  • the image input control device 105 stores the imaging data in the memory 106 for each imaging unit 4 and then outputs each imaging data to the image processing device 100.
  • the image input control device 105 performs an imaging instruction, sensitivity setting, resolution setting, and the like for the solid-state imaging device 32 (see FIG. 3) of the imaging unit 4 in response to an instruction by the control signal of the external device 108.
  • Each piece of image data input to the image processing apparatus 100 is first combined by the image composition unit 101 into one piece of image data and sent to the noise removal unit 102.
  • the noise removal unit 102 subtracts the offset component from the imaging data output by the image synthesis unit 101. Further, the noise removing unit 102 removes the display component from the imaging data after the offset component is removed. Thereafter, the noise removal unit 102 outputs the obtained imaging data to the image recognition unit 103.
  • the offset component is irradiated from the backlight device 5 (see FIG. 1) and then reflected on the surface of the constituent member of the display device 110, the interface between the constituent members, etc.
  • the display component is a light amount component incident on the imaging unit 4 from the outside via the liquid crystal display panel 2. The display component varies depending on the image displayed in the display area.
  • the set reference data force is calculated, and the above processing is performed using the calculated value.
  • the offset component is preset and stored in a memory (not shown) provided in the image processing apparatus 100.
  • the reference data for calculating the display component is set in advance and stored in a memory (not shown) provided in the image processing apparatus 100.
  • the offset component can be set, for example, by the following procedure. First, it is assumed that light from the outside to the display area 3 is blocked. For example, the display device is placed in a dark room, or the display region 3 is covered with a sheet or dark curtain that transmits infrared light (detection light) but does not transmit visible light. Further, it is assumed that there is no object as a subject on the display area 3.
  • the light source of the backlight device 5 is turned on and the detection light source 7 is irradiated with detection light, and imaging data output by the imaging unit 4 at this time is acquired.
  • the imaging data acquired at this time that is, the light amount component incident on the solid-state imaging device 32 of the imaging unit 4 in the above state becomes the offset component.
  • the setting of the offset component can be performed at the factory shipment stage of the display device, or can be performed by the user at any time after the use is started.
  • the setting of reference data for calculating display components can be performed, for example, by the following procedure. First, under the installation environment of the display device 110, it is assumed that there is no object to be a subject on the display area 3. Next, the external light component passes through the liquid crystal display panel 2. Acquisition of the maximum and minimum values of the imaging data output by the imaging unit 4, that is, the imaging data when the liquid crystal display panel 2 is in the white display state and the black display state. . Next, the output width of the display component due to the incidence of the external light component in the installation environment of the display device 110 is calculated from the acquired imaging data. The output width data calculated at this time becomes data (reference data) for calculating the display component. If the use environment of the display device 110 is the same, the setting operation described above may be performed once at the time of installation.
  • the display component is calculated from the gradation level of the display image obtained from the video signal and the output width (reference data) calculated in advance under the situation where the display device 110 is used.
  • the above-described removal of the display component is performed by the following procedure.
  • the noise removing unit 102 extracts the gradation level of the display image from the video signal output from the external device 108, and calculates a display component from the extracted gradation level and reference data.
  • the noise removing unit 102 subtracts the display component from the imaging data output by the imaging unit 4 at this time. Further, as described above, since the display component varies depending on the image displayed in the display area, it is necessary to calculate the display component as needed according to the change in the display state.
  • the image recognition unit 103 specifies the image and position of the subject based on the captured image data from which noise has been removed, and outputs these to the external device 108 as image data.
  • the external device 108 performs various types of processing using the input image data, and outputs a video signal reflecting the processing to the display control unit 107. Examples of processing performed by the external device 108 include cursor movement processing and click operation processing if the external device 108 is a personal computer.
  • the display control device 107 generates a control signal based on the video signal and outputs it to a drive circuit (not shown) of the liquid crystal display panel 2.
  • the control device 109 can be provided by, for example, an IC chip with a built-in CPU.
  • the IC chip can be mounted on a substrate connected to the liquid crystal display panel 2 via, for example, an FPC.
  • the CPU incorporated in the IC chip can function as the display control device 107, the image input control device 105, and the image processing device 100.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 2 of the present invention.
  • FIG. 10 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • FIG. 11 is a cross-sectional view illustrating a schematic configuration of an imaging unit provided in the display device illustrated in FIGS.
  • the same reference numerals as those shown in FIGS. 1 to 3 indicate the same members as those shown in FIGS. ing.
  • the display device according to the second embodiment is different from the display device according to the first embodiment in terms of the position of the detection light source 7 and the configuration of the imaging unit 34.
  • the display device in the second embodiment is configured in the same manner as the display device in the first embodiment. Hereinafter, the difference will be specifically described.
  • the imaging unit 34 includes a lens element 35, a solid-state imaging device 32, and an optical filter 31, as in the first embodiment.
  • the lens element 35 and the solid-state imaging device 32 do not constitute a shift optical system.
  • the lens element 35 and the solid-state imaging element 32 are held by the frame 36 so that the optical axis 35a of the lens element 35 and the normal line 32a passing through the center of the light-receiving surface of the solid-state imaging element 32 coincide.
  • the imaging unit 34 includes a normal 32a (see FIG. 11) passing through the center of the light receiving surface of the solid-state imaging device 32, and An optical axis 35a (see FIG. 11) of the lens element 35 (imaging optical system) is disposed in a state inclined toward the display area 3.
  • a plurality of imaging units 34 are arranged on the back side of the display area 3.
  • the detection light source 7 is the same as that shown in FIGS. 4 and 5 in the first embodiment, but unlike the first embodiment, the liquid crystal display panel 2
  • the liquid crystal display panel 2 is disposed on the back side of the liquid crystal display panel 2 in the thickness direction and around the area (or space) overlapping the display area 3. Further, the detection light source 7 is disposed with the optical axis inclined so that the detection light is emitted toward the display region 3. In FIG. 9, illustration of the detection light source 7 that does not appear on the cross section is omitted.
  • the liquid crystal display panel 2 and the backlight device 5 are separated by a frame 37 in order to increase the optical imaging distance of the imaging unit 34 (focal length of the imaging optical system). It is held at a fixed distance.
  • the shape of the frame 37 is different from the shape of the frame 20 shown in FIG. 1 in Embodiment 1, and is formed so that the imaging unit 34 and the detection light source 7 can be held obliquely. .
  • the design on the front side of the display device is more flexible than in the first embodiment.
  • the degree can be increased.
  • the shift optical system is not employed in the imaging unit 34, the diameter of the lens system constituting the imaging optical system can be reduced and the imaging optical system can be simplified as compared with the first embodiment. For this reason, the design cost can be reduced.
  • FIG. 12 is a diagram illustrating the outer shape of the image captured by the imaging unit illustrated in FIGS. 9 to 11 and the outer shape of the corrected image. Further, the horizontal direction in FIG. 12 corresponds to the scanning line direction.
  • FIG. 13 is a block diagram showing a configuration of a control device provided in the display device shown in FIGS.
  • the control device 109 includes an image processing device 100 force image correction unit 104, and is different from the control device according to the first embodiment in this respect. ing.
  • the image data output from the image input control device 105 is first corrected for trapezoidal distortion by the image correction unit 104, and then image synthesis, offset component and display component removal ( (Noise removal), image recognition is performed
  • the image correction unit 104 calculates the upper base A, the lower base B, and the height h of the trapezoidal captured image shown in the upper part of FIG.
  • the calculation of the upper base A, the lower base B, and the height h can also calculate the position of the imaging unit 34, the size and positional force of the imaging region.
  • upper base A, lower base B, height h The calculation can also be performed by arranging a plurality of landmarks in the display area 3 in advance and based on the landmarks included in the captured image.
  • the image correction unit 104 adjusts the scanning line so that the shorter one of the upper base A and the lower base B of the captured image (the lower base B in the second embodiment) is the same as the larger one.
  • the captured image is enlarged while changing the magnification according to the position.
  • the image correction unit 104 enlarges or reduces the captured image so that the height h becomes the original height H. Note that the height H is set in advance from the size of the imaging region.
  • the problem caused by not using the shift optical system in the imaging unit 34 can be solved by image processing after imaging.
  • the optical image of the subject 1 on the display area 3 is imaged on the light receiving surface by the imaging optical system. Therefore, even when the display device according to the second embodiment is used, as in the first embodiment, a clear optical image can be obtained as compared with the conventional one, and an image can be captured at a high resolution.
  • the liquid crystal display panel since the liquid crystal display panel is used, generation of heat can be suppressed, and noise reduction and size reduction can be achieved. Further, in the second embodiment, as in the first embodiment, light having a wavelength in the infrared region can be used to image a subject, and noise caused by visible light can be removed. For this reason, for example, complicated figures such as QR codes and characters can be clearly captured.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 3 of the present invention.
  • 15 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • the same reference numerals as those shown in FIGS. 1 and 2 denote the same members as those indicated by the reference numerals in FIGS. Show.
  • the display device according to the third embodiment is that the backlight device 40 includes a detection light source 7 (see FIGS. 4 and 5) inside. This is different from the display device in the first embodiment. Otherwise, the table in the third embodiment is used.
  • the display device is configured in the same manner as the display device in the first embodiment. The differences will be specifically described below.
  • the detection light source 7 is arranged inside the backlight device 40 so that the detection light is emitted toward the liquid crystal display panel 2. Specifically, the detection light source 7 is arranged in an area where the fluorescent lamp 6 is not installed with the emission surface facing upward. Further, since the detection light is light having a wavelength in the infrared region, noise due to visible light is also removed in the third embodiment.
  • the light amount distribution of the detection light on the display region 3 can be made uniform as compared with the first and second embodiments. As a result, imaging that is not affected by the position of the subject 1 can be performed. Further, according to the third embodiment, since the detection light source 7 and the knock light device 40 can be integrated, the configuration of the display device can be simplified and the device size can be reduced compared to the first and second embodiments. ⁇ ⁇ can be planned.
  • Embodiment 3 as in Embodiment 1, a clear optical image can be obtained as compared with the prior art, and image capture at high resolution can be achieved. For example, complicated figures such as QR codes, characters, etc. can be captured clearly.
  • a liquid crystal display panel is used, heat generation can be suppressed, noise reduction, and size reduction can be achieved.
  • FIG. 16 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 4 of the present invention.
  • FIG. 17 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • the same reference numerals as those shown in FIGS. 1 and 2 denote the same members as those shown in FIGS. Show.
  • the detection light source 7 that does not appear in the cross section is omitted!
  • the backlight device 42 includes the imaging unit 34 used in the second embodiment, and the optical layer 13 further includes It differs from the display device in Embodiment 1 in that the opening 41 is formed.
  • the display device in the fourth embodiment is the same as the display device in the first embodiment. It is configured in the same way. Hereinafter, the difference will be specifically described.
  • knock light device 42 includes imaging unit 34 shown in FIG.
  • the imaging unit 34 is disposed between the adjacent fluorescent lamps 6.
  • the imaging unit 34 has a normal line passing through the center of the light-receiving surface of the solid-state image sensor 32 (see FIG. 11) and an optical axis of the lens element 35 (imaging optical system) parallel to the normal line of the display area 3. It is arranged to become.
  • An opening 41 is formed in the opening.
  • the subject 1 is positioned in front of the imaging unit 34, so that the captured image is prevented from being distorted in a trapezoidal shape, and the captured image is corrected. There is no need to do. Further, there is no need to arrange an imaging unit that employs a shift optical system. Therefore, according to the fourth embodiment, as in the second embodiment, the small diameter of the lens system constituting the imaging optical system, the simplification of the imaging optical system, and the reduction of the design cost are achieved. be able to. Furthermore, according to the fourth embodiment, the image processing of the captured image in the control device can be simplified.
  • the imaging unit 34 can be arranged simply by placing the imaging unit 34 on the housing 8. Therefore, the number of installed imaging units 34 can be easily increased or decreased. It can also be done. Furthermore, since the opening 41 is formed, the detection light reflected by the subject 1 is not scattered, reflected or further attenuated by the optical layer 13 (see FIG. 11). Can be incident. Furthermore, if the backlight device 42 according to the fourth embodiment is used, an imaging function can be easily given to a display device having a conventional power.
  • the fourth embodiment may be an aspect in which an optical layer having a higher light transmittance than the optical layer 13 is disposed inside the opening 41.
  • an optical film having a lower diffusivity than the diffusing plate 9 or the diffusing sheet 10 or a transparent film isotropic force may be fitted into the opening 41.
  • the region overlapping the optical path of the light received by the imaging unit 34 in the optical layer 13 is the other region in the optical layer 13. It may be an embodiment formed so that the light transmittance is higher than that. concrete Alternatively, the diffusion plate 9 or the diffusion sheet 10 in which only the diffusion degree of the region is set low may be used. Furthermore, the aspect which made only the said area
  • the detection light reflected by the subject 1 is not scattered, reflected, or further attenuated by the optical layer 13 as in the example of FIG. 16 described above. Can enter the lens element 35.
  • a clear optical image can be obtained as compared with the conventional one, and an image can be captured at a high resolution. For example, complicated figures such as QR codes, characters, etc. can be captured clearly.
  • heat generation can be suppressed, noise reduction, and size reduction can be achieved.
  • FIG. 18 is a cross-sectional view showing a schematic configuration of the display device in the fifth embodiment of the present invention.
  • FIG. 19 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • the same reference numerals as those shown in FIGS. 1 and 2 denote the same members as those indicated by the reference numerals in FIGS. Show.
  • the detection light source 7 that does not appear in the cross section is omitted!
  • the display device in the fifth embodiment is configured in the same manner as the display device in the fourth embodiment except that the position of the detection light source 7 is different.
  • the detection light source 7 is arranged on the back side of the liquid crystal display panel 2 in the thickness direction of the liquid crystal display panel 2 and around the area overlapping the display area 3. Has been. Further, the detection light source 7 is arranged with the optical axis inclined so that the detection light is emitted toward the display region 3.
  • the knocklight device 42 includes the imaging unit 34 shown in FIG. 11, and the imaging unit 34 is located between the adjacent fluorescent lamps 6. It is arranged in.
  • an opening 41 is formed in the optical layer 13 in a region overlapping with the optical path until the detection light emitted from the detection light source 7 enters the lens element 35 (see FIG. 11). It is.
  • the fifth embodiment it is possible to obtain the effects obtained by the fourth embodiment. Further, according to the fifth embodiment, as in the second embodiment, since the detection light source 7 is not arranged on the display region 3 side, the degree of freedom in design on the front side of the display device can be increased.
  • FIG. 20 is a cross-sectional view showing a schematic configuration of the display device in the sixth embodiment of the present invention.
  • FIG. 21 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • the same reference numerals as those shown in FIGS. 1 and 2 denote the same members as those indicated by the reference numerals in FIGS. Show.
  • the knock light device 43 includes the detection light source 7 in addition to the imaging unit 34 in this respect.
  • the display device in the sixth embodiment is different from the display devices in the fourth and fifth embodiments. In other respects, the display device in the sixth embodiment is configured in the same manner as the display devices in the fourth and fifth embodiments. Hereinafter, the difference will be specifically described.
  • the knock light device 43 includes the imaging unit 34 as in the fourth and fifth embodiments.
  • the imaging unit 34 is disposed between the adjacent fluorescent lamps 6.
  • an opening 41 is formed in the optical layer 13 of the knocklight device 43 in a region overlapping with the optical path until the detection light enters the lens element 35 (see FIG. 11). As in the fourth embodiment, the opening 41 may not be provided.
  • the detection light source 7 (see FIGS. 4 and 5) is arranged in an area where the fluorescent lamp 6 and the imaging unit 34 are not arranged.
  • the detection light source 7 is provided in the same manner as in the third embodiment shown in FIGS. Is arranged.
  • a detection light source 7 having a short overall length is arranged so that the imaging unit 34 is sandwiched between the fluorescent lamps 6 adjacent to each other where the imaging unit 34 is arranged. Yes.
  • both the detection light source 7 and the imaging unit 34 can be accommodated in the backlight device 43, and therefore, compared to the first to fifth embodiments, The compactness of the display device can be promoted. Further, if the conventional backlight of the transmissive liquid crystal display device is replaced with the backlight device in the sixth embodiment, the display device in the sixth embodiment can be easily obtained.
  • the light amount distribution of the detection light on the display region 3 can be made uniform, and imaging that is not affected by the position of the subject 1 can be performed. it can.
  • the captured image is prevented from being distorted in a trapezoidal shape, it is necessary to correct the captured image and a shift optical system is adopted. There is no need to arrange an imaging unit.
  • a clearer optical image can be obtained as compared with the conventional case, and the image can be captured at a high resolution. For example, complicated figures such as QR codes and characters can be captured clearly.
  • heat generation can be suppressed, and noise reduction and miniaturization can be achieved.
  • FIG. 22 is a cross-sectional view showing a schematic configuration of the display device in the seventh embodiment of the present invention.
  • FIG. 23 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
  • the same reference numerals as those shown in FIGS. 1 and 2 indicate the same members as those indicated by the reference numerals in FIGS. Show.
  • the knock light device 44 is replaced with the fluorescent lamp 6 and the detection light source 7 shown in FIGS. 20 and 21 in the sixth embodiment.
  • a light emitter 45 is provided.
  • the display device according to the seventh embodiment is configured in the same manner as the display device according to the sixth embodiment. The differences will be explained in detail below.
  • the light emitter 45 is disposed inside the housing 8 of the backlight device 44.
  • the light emitter 45 includes four types of light emitting diodes 46 to 49.
  • Light emission The diodes 46 to 49 are integrated by a resin mold.
  • the light emitting diode 46 is a green diode that emits green light
  • the light emitting diode 47 is a red light emitting diode that emits red light
  • the light emitting diode 48 is a blue light emitting diode that emits blue light.
  • the light-emitting diode 49 is a light-emitting diode that emits light in the infrared region in the same manner as the light-emitting diode 21 shown in FIGS.
  • two light emitting diodes 47 and 48 and four light emitting diodes 46 are arranged around one light emitting diode 49.
  • the light emitting diodes 46 to 49 are installed over the entire region immediately below the display region 3 in which 45 light emitters can be stored.
  • the liquid crystal display panel 2 can be illuminated by turning on the light emitting diodes 46 to 48. If the light emitting diode 49 is turned on, the detection light is emitted toward the display area 3 as in the sixth embodiment.
  • a light emitting diode capable of emitting white light can be used instead of the light emitting diodes 46 to 48.
  • the light emitter 45 is provided with a plurality of openings 45a, and each of the plurality of imaging units 34 is disposed in each opening 45a.
  • the optical layer 13 is provided with an opening 41 as in the fourth to sixth embodiments. Therefore, the imaging unit 34 can receive the detection light emitted from the light emitting diode 49 and reflected by the subject 1 to perform imaging. As in the fourth embodiment, the opening 41 may not be provided.
  • the detection light source and the light source of the backlight device 44 can be driven by a common circuit. For this reason, the knocklight device can be made compact, and the entire display device can be made compact.
  • the backlight device 44 includes a detection light source (light emitting diode 49) and an imaging unit 34. Therefore, according to the seventh embodiment, all the effects described in the sixth embodiment can be obtained.
  • FIG. 24 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 8 of the present invention.
  • the symbols shown in FIG. 24 the symbols shown in FIG. 24 denote the same members as those assigned with the reference numerals in FIG.
  • the display device according to the eighth embodiment is different from the display device according to the first embodiment in that it includes a transparent plate 14 and in the direction of the optical axis of the detection light source 7. It is different. In other respects, the display device in the eighth embodiment is configured in the same manner as the display device in the first embodiment. Below, the differences are explained in detail.
  • a transparent plate 14 is arranged on the viewer side of the liquid crystal display panel 2. Further, the display area 3 of the liquid crystal display panel is covered with a transparent plate 14. The transparent plate 14 is arranged so that a space 15 is formed between the transparent plate 14 and the display area 3.
  • the transparent plate 14 may be a plate material made of a transparent material such as an acrylic plate or a glass plate. Note that the transmittance of the transparent plate 14 need not be 100%, but need not be less than 100%. Further, since it is necessary to attach the transparent plate 14, the frame 38 is used in the eighth embodiment.
  • the detection light source 7 is arranged in a region around the display region 3 of the liquid crystal display panel 2 as in the first embodiment. Specifically, four detection light sources 7 are arranged along the four sides of the display area 3. However, in the eighth embodiment, unlike the first embodiment, the detection light source 7 is arranged so that the detection light enters the transparent plate 14 from the space 15. In other words, the detection light source 7 is disposed at a position surrounding the space 15 so that the optical axis of the light emitting diode 21 is inclined in a direction away from the main surface force of the liquid crystal display panel 2. This is because in Embodiment 8, the subject 1 is located on the outer surface of the transparent plate 14. In the eighth embodiment, the role of the detection light source 7 is the same as the role of the detection light source 7 described in the first embodiment, and the description thereof is omitted. In FIG. 24, the detection light source 7 not shown in the cross section is omitted.
  • detection light is emitted from substantially the side of the subject 1.
  • the contact surface between the subject 1 and the display device is approximately the same as the installation position of the detection light source 7 when the observer side of the liquid crystal display panel 2 is up. It is located below. Therefore, light utilization efficiency From this point, the detection light emitted from the detection light source 7 is required to be parallel light substantially parallel to the main surface of the liquid crystal display panel 2.
  • the light emitted from the light-emitting diodes 21 constituting the detection light source 7 is a diffused light having a certain spread. For this reason, of the light emitted from the light emitting diode 21, the light diffusing toward the liquid crystal display panel 2 side enters the liquid crystal display panel 2 without reaching the subject 1.
  • the subject 1 comes into contact with the transparent plate 14 disposed above the liquid crystal display panel 2. That is, when the display device is viewed from the side, the contact surface between the subject 1 and the display device is located above the installation position of the detection light source 7 when the observer side of the liquid crystal display panel 2 is upward. It will be. Further, the detection light is emitted from the space 15 toward the main surface of the transparent plate 14 on the liquid crystal display panel 2 side, that is, obliquely below the subject 1. For this reason, according to the eighth embodiment, light that has not reached the subject 1 in the first embodiment can also reach the subject 1. Therefore, according to the eighth embodiment, the use efficiency of the detection light emitted from the light emitting diode 21 can be improved as compared with the first embodiment. As a result, according to the eighth embodiment, the imaging unit 4 can further improve the sensitivity.
  • the detection light is emitted toward the contact surface between the subject 1 and the transparent plate 14, so that information on the contact surface can be obtained as compared with the first embodiment. It becomes easy. Further, in the eighth embodiment, the liquid crystal display panel 2 can be protected by the transparent plate 14.
  • the detection light source 7 is arranged on the viewer side of the liquid crystal display panel. Therefore, the detection light can reach subject 1 without going through the liquid crystal display panel. Therefore, according to the eighth embodiment, the first embodiment, and the fourth embodiment, the following effects can be obtained.
  • the active matrix substrate 2c used in the first to eighth embodiments includes a plurality of active elements (TFTs) arranged in a matrix on a glass substrate. It is configured. Various metal wirings are also formed on the glass substrate.
  • TFTs active elements
  • Various metal wirings are also formed on the glass substrate.
  • the detection light is emitted from the back side of the liquid crystal display panel 2 as in Embodiments 2, 3, and 5-7, a part of the detection light is reflected by the electrodes and wirings of the active matrix substrate 2c. May be incident on the imaging unit 4. In this case, the SZN of the imaging unit 4 may decrease.
  • the detection light source 7 is arranged on the viewer side of the liquid crystal display panel, and the viewer 1 moves to the subject 1.
  • the detection light is irradiated. Therefore, since the detection light is not reflected on the back side of the liquid crystal display panel 2 as in the second, third, and fifth to seventh embodiments, the decrease in SZN of the imaging unit 4 due to this reflection is suppressed.
  • the detection light does not pass through the force liquid crystal display panel 2 until it is emitted and incident on the force imaging unit 4, and the liquid crystal
  • the loss power of light due to the passage of the display panel 2 is suppressed as compared with the second, third, and fifth to seventh embodiments. Therefore, according to the eighth embodiment and the first and fourth embodiments, the utilization rate of the detection light can be increased as compared with the second, third, and fifth to seventh embodiments. The amount of received light can be increased.
  • the transparent plate 14 is attached to the display device shown in Figs. 1 and 2 in the first embodiment, and the emission direction of the detection light source 7 is inclined upward.
  • the power explaining the mode This Embodiment 8 is not limited to this.
  • the transparent plate 14 is attached to the display device shown in FIGS. 16 and 17 in the fourth embodiment, and the emission direction of the detection light source 7 is inclined upward. Also good.
  • FIG. 25 is a cross-sectional view showing a schematic configuration of another example of the display device according to Embodiment 8 of the present invention.
  • FIG. 26 is a diagram showing the positional relationship between the detection light source and the imaging unit when the display device shown in FIG. 25 is viewed from the observer side. In FIG. 26, only the detection light source 7, the liquid crystal display panel 2, and the imaging unit 4 are illustrated, and the other members are not illustrated.
  • the imaging unit 34 shown in FIG. 11 in the second embodiment is used.
  • the source 7 is arranged so that the imaging direction of the imaging unit 34 and the emission direction of the detection light source 7 intersect each other when viewed from the observer side (above the transparent plate 14).
  • the imaging direction of the imaging unit 34 refers to the direction of the directional force toward the center of the imaging region on the main surface of the transparent surface 14 of the imaging device 32 (see Fig. 11).
  • the imaging direction when the observer side force is also seen is the direction indicated by arrow X in FIG.
  • the emission direction of the detection light source 7 refers to the normal direction of the emission surface of the detection light source 7, that is, the normal direction of the optical sheet 24 shown in FIG.
  • the emission direction when viewed from the observer side is the direction indicated by the arrow Y in FIG.
  • the detection light source 7 is arranged along two opposing long sides of the rectangular display region 3, and the imaging unit 34 is arranged in the rectangular display region. It is arranged along two opposing two short sides.
  • the imaging direction X of the imaging unit 34 and the emission direction Y of the detection light source 7 intersect at right angles when viewed from the observer side (above the transparent plate 14).
  • FIG. 25 when the transparent plate 14 is arranged above the display area 3, a part of the detection light emitted from the detection light source 7 is reflected by the transparent plate 14 without passing through the transparent plate 14. There is.
  • reference numeral 16 denotes detection light (reflection detection light) reflected by the transparent plate 14. At this time, if the reflected detection light 16 enters the imaging unit 4, the image of the detection light source 7 is included in the captured image, and the image quality may deteriorate.
  • the imaging direction X of the imaging unit 34 and the emission direction Y of the detection light source 7 intersect when the observer side force is also seen.
  • the direction of the reflected detection light 16 when viewed from above also intersects the imaging direction X of the imaging unit 34. Therefore, according to this example, the incidence of the reflection detection light 16 on the imaging unit 4 can be suppressed, and as a result, the image quality of the captured image can be improved.
  • the imaging unit 4 (see FIG. 3) including a shift optical system can be used instead of the imaging unit 34.
  • the imaging unit 4 when the display area 3 has a rectangular shape as in this example, the imaging unit 4 only needs to be arranged along a side adjacent to the side where the detection light source 7 is arranged. Therefore, in this example, the imaging unit 34 may be arranged along the long side of the display region 3 and the detection light source 7 may be arranged along the short side.
  • the imaging unit 34 is arranged along the short side, and the detection light source 7 is arranged on the long side.
  • the installation space of the detection light source 7 can be increased, so that the amount of detection light can be easily secured.
  • the force that allows the arrangement position of the imaging unit 34 to be a plane including the display area 3 The thickness of the device can be reduced as much as possible / J.
  • the captured image has a trapezoidal shape (see FIG. 12) that is tapered along the long side direction.
  • the bottom corresponds to the short side of the display area 3 and the height corresponds to the long side of the display area 3.
  • the ratio of the height of the trapezoidal captured image to the bottom is smaller than the ratio of the long side to the short side of the display region 3. That is, the captured image is an image compressed in the long side direction.
  • the ratio of the long side to the short side (aspect ratio) of the display area 3 is 16: 9
  • the display area 3 is inclined by 65 degrees with respect to the normal of the display area 3.
  • X 16: 9 (4: 3) the ratio of the height to the bottom of the captured image is about 0.42 times the ratio of the long side to the short side of display area 3, and the captured image has a height of about three-quarters of the bottom. It becomes a shape.
  • the long side of the light receiving area is set to the short side of the display area 3 when viewed from the observer side. If the imaging unit 34 is arranged so that it is parallel and the short side of the light receiving region is parallel to the long side of the display region 3, imaging can be performed efficiently.
  • the display device and the backlight device according to the present invention are not limited to Embodiments 1 to 8 described above.
  • the display device according to the present invention may be a reflective liquid crystal display device without a knock light device! /.
  • the display device may be configured such that the detection light source emits light having a wavelength in the visible region, or may not include the detection light source.
  • the detection light source emits light having a wavelength in the visible region, or may not include the detection light source.
  • a display mode window that transmits visible light is intentionally created in the display image, and the subject is placed in this window. It should be placed.
  • the imaging unit has light of an infrared wavelength, for example, 700 nm or more, preferably 800 nm or more, particularly preferably. It is preferable to configure to receive only light with a wavelength of 850 nm or more. In this case, only light in the infrared region wavelength included in the external light is incident on the light receiving surface of the imaging unit, so that noise due to visible light is removed and high-resolution capture is possible.
  • an infrared wavelength for example, 700 nm or more, preferably 800 nm or more, particularly preferably. It is preferable to configure to receive only light with a wavelength of 850 nm or more. In this case, only light in the infrared region wavelength included in the external light is incident on the light receiving surface of the imaging unit, so that noise due to visible light is removed and high-resolution capture is possible.
  • the detection light source may be provided in an external device (see FIGS. 8 and 13).
  • the detection light source can be incorporated in the controller of the game device.
  • the detection light source can be built in an input device such as a mouse.
  • the imaging unit may take an image of the detection light itself that has entered the liquid crystal display panel, and thereby the incident position of the detection light may be detected.
  • the liquid crystal display is further processed. It is preferable that the opposite side (back side) of the display panel to the viewer side is also anti-reflective treated. In this case, the surface reflection component on the back surface of the liquid crystal display panel can be prevented from entering the imaging unit, and the contrast of the captured image can be improved.
  • FIG. 27 is a cross-sectional view showing a schematic configuration of the display apparatus according to Embodiment 9 of the present invention.
  • the same reference numerals as those shown in FIGS. 1 and 24 indicate the same members as those given the reference numerals in FIGS.
  • the display device in the ninth embodiment is the same as the display device in the eighth embodiment shown in FIG. 24, and is a transparent plate arranged on the viewer side of the display panel 50. 14 and a detection light source 7 arranged in a region around the display region 3.
  • the detection light source 7 is arranged so that the detection light is incident on the transparent plate 14 from the space 15 between the transparent plate 14 and the display region 3. Therefore, in the ninth embodiment, as in the eighth embodiment, the use efficiency of the detection light emitted from the light emitting diode 21 is improved as compared with the first embodiment. It is possible to improve the sensitivity of the imaging unit 34.
  • the display device includes the imaging unit 34 shown in FIG. 11 in the second embodiment.
  • the imaging unit 34 the optical axis 35a of the lens element 35 and the normal line 32a passing through the center of the light receiving surface of the solid-state imaging element 32 coincide with each other (see FIG. 11).
  • the imaging unit 34 is arranged in a region that overlaps the thickness direction of the display panel 50 as in the display devices in the fourth to seventh embodiments.
  • Embodiment 9 as in Embodiments 4 to 7, the object 1 is positioned in front of the imaging unit 34, and thus the captured image has a trapezoidal shape. Distortion is avoided and there is no need to correct the captured image. In addition, there is no need to provide an imaging unit that employs a shift optical system. Therefore, according to the ninth embodiment, similarly to the second embodiment, it is possible to reduce the diameter of the lens system constituting the imaging optical system, simplify the imaging optical system, and reduce the design cost. . Furthermore, the image processing of the captured image in the control device can be simplified.
  • the display panel is used to increase the optical imaging distance (focal length of the imaging optical system) of the imaging unit 34.
  • a fixed distance is placed between the image capturing unit 34 and the imaging unit 34, and a cavity exists on the back side of the display panel 50.
  • the display panel 50 is an EL (Electro Luminescence) display panel (hereinafter referred to as “EL display panel 50”), and the display device in the ninth embodiment. Is an EL display.
  • the display device according to the ninth embodiment is different from the display devices according to the first to eighth embodiments in this respect.
  • the EL display panel 50 displays an image using an electroluminescence phenomenon (EL phenomenon) generated when an electric field is applied to a substance such as a fluorescent compound.
  • the EL display panel 50 is an organic EL display panel.
  • the EL display panel 50 includes, for example, an ITO (Indium Tin Oxide) film, a hole transport layer, an electron transport layer, a back electrode (force sword), etc., which become a transparent electrode (anode) on a transparent substrate such as a glass substrate. It is constructed by stacking in order.
  • ITO Indium Tin Oxide
  • the EL display panel 50 when a voltage is applied between the ITO film and the back electrode, electrons are injected into the electron transport layer and holes are injected into the hole transport layer. And hole transport The injected electrons and holes combine at the interface between the sending layer and the electron transport layer, and the energy of the electrons is emitted in the form of light. Further, the emitted light forms an image on the display area 3.
  • the EL display panel 50 may be an inorganic EL display panel!
  • the EL display panel 50 is light transmissive as in the case of the liquid crystal display panel. Therefore, the detection light reflected by the subject 1 enters the EL display panel 50 and can further pass therethrough. For this reason, also in the ninth embodiment, the imaging unit 34 is connected from the back side of the EL display panel 50 via the EL display panel 50 to the state on the viewer side of the display area 3 (on the display area 3 and the display area 3). 3 states).
  • the EL display panel 50 is a self-luminous element that emits light. Therefore, the display device in the ninth embodiment is different from the display devices in the first to eighth embodiments in that it does not include a knocklight device. In the ninth embodiment, unlike the fourth to seventh embodiments, the imaging unit 34 is disposed on the bottom surface of the frame 51.
  • the EL display panel 50 that is a self-luminous element is used, whereby the display device does not require a knocklight device. . Therefore, according to the ninth embodiment, the following effects can be obtained.
  • the backlight device is provided on the back side of the liquid crystal display panel to illuminate the liquid crystal display panel. Is placed. For this reason, the imaging unit 4 or 34 arranged on the back side of the liquid crystal display panel is bright, and external force may be visually recognized through the liquid crystal display panel.
  • Embodiment 9 the back side of the EL display panel 50 is not bright, so that the imaging unit 34 is not visually recognized by an external force. Therefore, according to the ninth embodiment, the quality of the display image can be improved. Further, according to the ninth embodiment, since a knocklight device is not necessary, the display device can be thinned and the configuration can be simplified.
  • the EL display panel 50 light having a wavelength in the infrared region is also emitted from the display region 3 due to its structure. Therefore, in the ninth embodiment, light having a wavelength in the infrared region emitted from the display region 3 can be used as detection light. According to the ninth embodiment Then, imaging can be performed using light having a wavelength in the infrared region without using the detection light source 7.
  • the ninth embodiment similarly to the first to eighth embodiments, light having a wavelength in the visible region can be used as detection light. However, in the ninth embodiment, light having a wavelength in the visible region emitted from the display region 3 can be used as detection light. Furthermore, as described above, in the ninth embodiment, the back side of the EL display panel 50 is not bright as compared with the first to eighth embodiments, and thus imaging is performed using light with a wavelength in the visible region. Even in this case, it is possible to capture at high resolution.
  • the display device shown in FIG. 27 is merely an example.
  • the EL display panel 50 is attached instead of the liquid crystal display panel 2 in the display device described in Embodiments 1 to 8, and the backlight device is removed. It may be what was done.
  • the display device of the present invention has an input function, is useful as a display device for personal computers, televisions, game machines, etc., and has industrial applicability. Yes.
  • the backlight device of the present invention is useful as an illumination light source for a liquid crystal display device, and has industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A display device includes a liquid crystal display panel (2) and an imaging unit (4) having an image forming optical system. The imaging unit (4) us arranged in such a manner that a reflected light from an object (1) on a display region (3) of the liquid crystal panel (2) comes into the image forming optical system via the liquid crystal panel (2). The imaging unit (4) receives the incident reflected light and images the object (1). It is preferable that the display device further include a detection light source (7) for applying a detection light to the object (1). In this display device, an image can be displayed by using the display panel. Accordingly, it is possible to reduce heat generation, noise, and size. Furthermore, according to the display device in which the imaging unit includes the image forming optical system, it is possible to acquire an image with a high resolution as compared to a display device having the conventional input function. The display device includes an input function and can be used as a display device of a personal computer, a television, and a game device.

Description

明 細 書  Specification
表示装置及びバックライト装置  Display device and backlight device
技術分野  Technical field
[0001] 本発明は、液晶表示装置や EL表示装置に代表される表示装置、特には画像入力 機能を備えた表示装置に関する。  The present invention relates to a display device typified by a liquid crystal display device or an EL display device, and more particularly to a display device having an image input function.
背景技術  Background art
[0002] 近年、表示装置の分野においては、表示機能に加え、入力機能をも兼ね備えた表 示装置が普及してきている。このような表示装置の一例としては、タツチパネル付の 表示装置が挙げられる (例えば、特許文献 1参照。 ) o特許文献 1に開示の表示装置 は、プロジェクタ力も照射された光を表示領域へと導き、導かれた光のうち表示領域 上に置かれたユーザの指で反射された光を CCDカメラで受光することによってタツチ 位置の検出を行なっている。  In recent years, in the field of display devices, display devices having an input function in addition to a display function have become widespread. An example of such a display device is a display device with a touch panel (see, for example, Patent Document 1). The display device disclosed in Patent Document 1 guides light irradiated with projector power to the display area. The touch position is detected by receiving, with a CCD camera, the light reflected from the user's finger placed on the display area.
[0003] また、タツチパネル付の表示装置の他に、画像そのものを取り込むことができるよう に構成された液晶表示装置も開示されている (例えば、特許文献 2参照)。特許文献 2に開示された表示装置は、アクティブマトリクス基板上にマトリクス状に配置された複 数個のフォトダイオードを備えており、これにより、表示画面上の物体の画像を取り込 んでいる。  [0003] In addition to a display device with a touch panel, a liquid crystal display device configured to be able to capture an image itself is also disclosed (for example, see Patent Document 2). The display device disclosed in Patent Document 2 includes a plurality of photodiodes arranged in a matrix on an active matrix substrate, thereby capturing an image of an object on a display screen.
特許文献 1:特開 2001— 350586号公報 (第 1図)  Patent Document 1: Japanese Patent Laid-Open No. 2001-350586 (Fig. 1)
特許文献 2:特開 2004— 159273号公報 (第 2図-第 3図)  Patent Document 2: Japanese Patent Laid-Open No. 2004-159273 (Figs. 2 to 3)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、特許文献 1に開示の表示装置においては、プロジェクタを使用する 必要があるため、電源ファンによる騒音が大きいという問題、発熱量が大きいという問 題、装置全体を小型化できないという問題がある。 [0004] However, since the display device disclosed in Patent Document 1 requires the use of a projector, there is a problem that the noise caused by the power supply fan is large, a problem that the amount of heat generation is large, and the entire device is downsized. There is a problem that you can not.
[0005] また、特許文献 2に開示の表示装置は、画像の取り込みを可能とする構成を備えて いるが、結像光学系を備えていないため、特許文献 2に開示の表示装置において、 鮮明な取り込み画像を得ることは不可能である。特許文献 2の表示装置には、高解 像度での取り込みを行なうことが不可能であるという問題がある。 [0005] Although the display device disclosed in Patent Document 2 has a configuration that enables capturing of an image, the display device disclosed in Patent Document 2 does not include an imaging optical system. It is impossible to obtain a correct captured image. The display device of Patent Document 2 has a high resolution. There is a problem that it is impossible to perform image capturing at an image level.
[0006] 本発明の目的は、上記問題を解消し、発熱量が少なぐ静音化及び小型化が可能 であって、且つ高解像度での画像の取り込みを可能とし得る液晶表示装置、表示装 置、及び液晶表示装置に用いられるバックライト装置を提供することにある。  [0006] An object of the present invention is to solve the above-described problems, and can be reduced in size and size with a small amount of heat generation, and a liquid crystal display device and a display device capable of capturing an image with high resolution. And a backlight device used in a liquid crystal display device.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するために本発明における表示装置は、光透過性を有する表示 パネルと、結像光学系を有する撮像部とを備え、前記撮像部は、観察者側から前記 表示パネルに入射し、且つ、前記表示パネル及び前記結像光学系を通過する光を 受光して、前記表示パネルの観察者側における状態を撮像することを特徴とする。 In order to achieve the above object, a display device according to the present invention includes a display panel having light transmittance and an imaging unit having an imaging optical system, and the imaging unit is configured to display the display panel from an observer side. And receiving the light passing through the display panel and the imaging optical system, and imaging the state of the display panel on the viewer side.
[0008] また、上記目的を達成するために本発明におけるバックライト装置は、液晶表示パ ネルを照明するためのバックライト装置であって、光源と、結像光学系を有する撮像 部とを備え、前記撮像部は、当該バックライト装置の内部に配置されており、観察者 側から前記液晶表示パネルに入射し、且つ、前記液晶表示パネル及び前記結像光 学系を通過する光を受光して、前記液晶表示パネルの観察者側における状態を撮 像することを特徴とする。 In order to achieve the above object, a backlight device according to the present invention is a backlight device for illuminating a liquid crystal display panel, and includes a light source and an imaging unit having an imaging optical system. The imaging unit is disposed inside the backlight device, and receives light that enters the liquid crystal display panel from the observer side and passes through the liquid crystal display panel and the imaging optical system. Then, the state on the viewer side of the liquid crystal display panel is photographed.
発明の効果  The invention's effect
[0009] 以上のように、本発明における表示装置によれば、表示パネルを用いて画像を表 示できるため、発熱量の減少化、静音化及び小型化を達成できる。更に、本発明に おける表示装置においては、撮像部が結像光学系を備えるため、従来の入力機能 を備えた表示装置に比べて、高解像度での画像の取り込みを達成できる。また、本 発明におけるバックライト装置を液晶表示装置に取り付ければ、高解像度での画像 の取り込みが可能となる液晶表示装置を得ることができる。  As described above, according to the display device of the present invention, since an image can be displayed using the display panel, it is possible to achieve a reduction in heat generation, noise reduction, and size reduction. Furthermore, in the display device according to the present invention, since the imaging unit includes the imaging optical system, it is possible to capture an image with higher resolution than a display device having a conventional input function. Further, when the backlight device according to the present invention is attached to a liquid crystal display device, a liquid crystal display device capable of capturing an image with high resolution can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は、本発明の実施の形態 1における表示装置の概略構成を示す断面図で ある。  FIG. 1 is a cross-sectional view showing a schematic configuration of a display device according to Embodiment 1 of the present invention.
[図 2]図 2は、図 1に示す表示装置の概略構成を示す分解斜視図である。  FIG. 2 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
[図 3]図 3は、図 1及び図 2に示した表示装置に備えられた撮像部の概略構成を示す 断面図である。 [図 4]図 4は、図 1及び図 2に示した表示装置に備えられた検出光源の概略構成を示 す図であり、図 4 (a)は検出光の出射方向に沿って切断した断面図、図 4 (b)は正面 図である。 FIG. 3 is a cross-sectional view showing a schematic configuration of an image pickup unit provided in the display device shown in FIGS. 1 and 2. [FIG. 4] FIG. 4 is a diagram showing a schematic configuration of a detection light source provided in the display device shown in FIG. 1 and FIG. 2, and FIG. 4 (a) is cut along the emission direction of the detection light. A cross-sectional view and Fig. 4 (b) are front views.
[図 5]図 5は、検出光源の他の例を示す図であり、図 5 (a)は検出光の出射方向に沿 つて切断した断面図、図 5 (b)は正面図である。  FIG. 5 is a view showing another example of the detection light source, FIG. 5 (a) is a cross-sectional view cut along the emission direction of the detection light, and FIG. 5 (b) is a front view.
[図 6]図 6は、カラーフィルタの透過率分光特性を示す図である。  FIG. 6 is a diagram showing transmittance spectral characteristics of a color filter.
[図 7]図 7は、液晶表示パネルを構成する偏光板の透過率分光特性を示す図である  FIG. 7 is a diagram showing transmittance spectral characteristics of polarizing plates constituting a liquid crystal display panel.
[図 8]図 8は、図 1及び図 2に示す表示装置に備えられた制御装置の構成を示すプロ ック図である。 FIG. 8 is a block diagram showing a configuration of a control device provided in the display device shown in FIGS. 1 and 2.
[図 9]図 9は、本発明の実施の形態 2における表示装置の概略構成を示す断面図で ある。  FIG. 9 is a cross-sectional view showing a schematic configuration of the display device in the second embodiment of the present invention.
[図 10]図 10は、図 9に示す表示装置の概略構成を示す分解斜視図である。  FIG. 10 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
[図 11]図 11は、図 9及び図 10に示した表示装置に備えられた撮像部の概略構成を 示す断面図である。  FIG. 11 is a cross-sectional view showing a schematic configuration of an imaging unit provided in the display device shown in FIGS. 9 and 10.
[図 12]図 12は、図 9〜図 11に示した撮像部によって撮像された画像の外形と補正後 の画像の外形とを示す図である。  FIG. 12 is a diagram showing the outer shape of the image captured by the imaging unit shown in FIGS. 9 to 11 and the outer shape of the image after correction.
[図 13]図 13は、図 9及び図 10に示す表示装置に備えられた制御装置の構成を示す ブロック図である。  FIG. 13 is a block diagram showing a configuration of a control device provided in the display device shown in FIGS. 9 and 10.
[図 14]図 14は、本発明の実施の形態 3における表示装置の概略構成を示す断面図 である。  FIG. 14 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 3 of the present invention.
[図 15]図 15は、図 14に示す表示装置の概略構成を示す分解斜視図である。  FIG. 15 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
[図 16]図 16は、本発明の実施の形態 4における表示装置の概略構成を示す断面図 である。  FIG. 16 is a cross-sectional view showing a schematic configuration of the display device in the fourth embodiment of the present invention.
[図 17]図 17は、図 16に示す表示装置の概略構成を示す分解斜視図である。  FIG. 17 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
[図 18]図 18は、本発明の実施の形態 5における表示装置の概略構成を示す断面図 である。  FIG. 18 is a cross-sectional view showing a schematic configuration of the display device in the fifth embodiment of the present invention.
[図 19]図 19は、図 18に示す表示装置の概略構成を示す分解斜視図である。 [図 20]図 20は、本発明の実施の形態 6における表示装置の概略構成を示す断面図 である。 FIG. 19 is an exploded perspective view showing a schematic configuration of the display device shown in FIG. FIG. 20 is a cross-sectional view showing a schematic configuration of the display apparatus in the sixth embodiment of the present invention.
[図 21]図 21は、図 20に示す表示装置の概略構成を示す分解斜視図である。  FIG. 21 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
[図 22]図 22は、本発明の実施の形態 7における表示装置の概略構成を示す断面図 である。  FIG. 22 is a cross-sectional view showing a schematic configuration of the display device in the seventh embodiment of the present invention.
[図 23]図 23は、図 22に示す表示装置の概略構成を示す分解斜視図である。  FIG. 23 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
[図 24]図 24は、本発明の実施の形態 8における表示装置の概略構成を示す断面図 である。  FIG. 24 is a cross-sectional view showing a schematic configuration of the display apparatus according to Embodiment 8 of the present invention.
[図 25]図 25は、本発明の実施の形態 8における表示装置の他の例の概略構成を示 す断面図である。  FIG. 25 is a cross-sectional view showing a schematic configuration of another example of the display device according to Embodiment 8 of the present invention.
[図 26]図 26は、図 25に示す表示装置を観察者側から見たときの検出光源と撮像部 との位置関係を示す図である。  FIG. 26 is a diagram showing a positional relationship between the detection light source and the imaging unit when the display device shown in FIG. 25 is viewed from the observer side.
[図 27]図 27は、本発明の実施の形態 9に係る表示装置の概略構成を示す断面図で ある。  FIG. 27 is a cross-sectional view showing a schematic configuration of the display apparatus according to Embodiment 9 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明における表示装置は、光透過性を有する表示パネルと、結像光学系を有す る撮像部とを備え、前記撮像部は、観察者側カゝら前記表示パネルに入射し、且つ、 前記表示パネル及び前記結像光学系を通過する光を受光して、前記表示パネルの 観察者側における状態を撮像することを特徴とする。 [0011] A display device according to the present invention includes a light-transmissive display panel and an imaging unit having an imaging optical system, and the imaging unit is incident on the display panel from the observer side. And the light which passes the said display panel and the said imaging optical system is received, and the state in the observer side of the said display panel is imaged, It is characterized by the above-mentioned.
[0012] 本発明にお ヽて「光透過性を有する表示パネル」とは、少なくとも観察者側から背 面側へと光が透過する性質を有する表示パネルを意味する。この場合、液晶表示パ ネルのように必然的に光透過性を要求される表示パネルのみならず、性質上、光透 過性を必須とはしな 、が結果的に光透過性を有して 、るような表示パネルも、当該光 透過性を有する表示パネルに含まれる。  In the present invention, the “display panel having light transmittance” means a display panel having a property of transmitting light from at least the viewer side to the back surface side. In this case, not only a display panel that necessarily requires light transmission like a liquid crystal display panel, but also light transmission is not essential in nature. Such a display panel is also included in the display panel having light transmittance.
[0013] このような表示パネルとしては、上述の液晶表示パネルや EL (Electro luminescenc e)表示パネルが挙げられる。特に、後者の場合は、表示パネル自体が発光すること によって画像が表示されるため、表示パネルの裏側にバックライト装置を配置する必 要がなぐ表示装置の薄型化や構成の簡略ィ匕を図ることができる。 [0014] 上記本発明における表示装置にお!、ては、前記表示パネルの観察者側へ検出光 を出射する検出光源が備えられ、前記撮像部が、観察者側から前記表示パネルに 入射し、且つ、前記表示パネル及び前記結像光学系を通過する前記検出光を受光 して、前記表示パネルの観察者側における状態を撮像する態様 (第 1の態様)とする のが好ましい。上記第 1の態様とした場合は、撮像画像の解像度の向上を図ることが できる。上記第 1の態様においては、前記検出光源として、発光ダイオードを用いるこ とがでさる。 Examples of such a display panel include the above-described liquid crystal display panel and EL (Electro Luminescence) display panel. In particular, in the latter case, since the display panel itself emits light to display an image, the display device need not be disposed on the back side of the display panel, and the display device can be thinned and the configuration can be simplified. be able to. [0014] The display device according to the present invention includes a detection light source that emits detection light to the viewer side of the display panel, and the imaging unit is incident on the display panel from the viewer side. In addition, it is preferable that the detection light passing through the display panel and the imaging optical system is received to capture the state of the display panel on the viewer side (first aspect). In the case of the first aspect, the resolution of the captured image can be improved. In the first aspect, a light emitting diode can be used as the detection light source.
[0015] また、上記本発明における表示装置においては、前記撮像部が、 700nm以上、特 には 800nm以上の波長の光のみを受光するのが好ましい。具体的には、前記撮像 部が、 700nm以上、特には 800nm以上の波長の光のみを透過させる光学フィルタ を有しているのが好ましい。この場合、可視光によるノイズを除去でき、更なる撮像画 像の高解像度化を図ることができる。更に、この場合において、上記第 1の態様とす るのであれば、前記検出光源が、前記検出光として 700nm以上、特には 800nm以 上 lOOOnm以下の波長の光を照射するのが好ましい。  [0015] In the display device according to the present invention, it is preferable that the imaging unit receives only light having a wavelength of 700 nm or more, particularly 800 nm or more. Specifically, the imaging unit preferably has an optical filter that transmits only light having a wavelength of 700 nm or more, particularly 800 nm or more. In this case, noise due to visible light can be removed, and the resolution of the captured image can be further increased. Further, in this case, if the first aspect is adopted, it is preferable that the detection light source emits light having a wavelength of 700 nm or more, particularly 800 nm or more and lOOOnm or less as the detection light.
[0016] また、上記本発明における表示装置にぉ 、ては、前記撮像部が、前記表示パネル の裏側における、前記表示パネルの厚み方向にお!、て前記表示パネルの表示領域 と重なる領域の周辺に配置されている態様 (第 2の態様)とするのが好ましい。上記第 2の態様とすれば、撮像部は、表示パネルの厚み方向において表示領域と重ならな いため、表示パネルやバックライト装置による制限を受けることなく配置できる。  [0016] In addition, in the display device according to the present invention described above, the imaging unit has a region overlapping with the display region of the display panel in the thickness direction of the display panel on the back side of the display panel. It is preferable to adopt an aspect (second aspect) arranged around the periphery. If it is set as the said 2nd aspect, since the imaging part does not overlap with a display area in the thickness direction of a display panel, it can be arrange | positioned, without receiving the restriction | limiting by a display panel or a backlight apparatus.
[0017] 上記第 2の態様においては、前記撮像部が、前記結像光学系によって結像された 像を受光する固体撮像素子を有し、前記結像光学系は、その光軸が前記表示領域 の法線と平行となるように配置され、前記固体撮像素子は、その受光面が前記表示 領域に対して平行となり、且つ、その受光面の中心を通る法線が前記結像光学系の 光軸よりも前記表示領域の外側に位置するように、配置されていてもよい。このような 撮像部を用いれば、台形歪みの小さ!ヽ撮像画像を得ることができる。  [0017] In the second aspect, the imaging unit includes a solid-state imaging device that receives an image formed by the imaging optical system, and the optical axis of the imaging optical system is the display The solid-state imaging device has a light receiving surface parallel to the display region, and a normal passing through the center of the light receiving surface of the solid-state imaging device. You may arrange | position so that it may be located in the outer side of the said display area rather than an optical axis. If such an image pickup unit is used, a picked-up image with small trapezoidal distortion can be obtained.
[0018] また、上記第 2の態様にぉ 、ては、前記撮像部が、前記結像光学系によって結像さ れた像を受光する固体撮像素子を有し、前記固体撮像素子の受光面の中心を通る 法線と、前記結像光学系の光軸とが、前記表示領域に向けて傾斜した状態で配置さ れていても良い。この場合は、撮像部において、結像光学系の簡略化や、結像光学 系を構成するレンズ素子の小径ィ匕を図ることができ、撮像部をコンパクトィ匕できる。ま た、設計コストの低減を図ることができる。 [0018] In addition, according to the second aspect, the imaging unit includes a solid-state imaging device that receives an image formed by the imaging optical system, and a light-receiving surface of the solid-state imaging device. The normal line passing through the center of the imaging optical system and the optical axis of the imaging optical system are arranged so as to be inclined toward the display area. It may be. In this case, in the imaging unit, the imaging optical system can be simplified and the lens elements constituting the imaging optical system can be reduced in diameter, and the imaging unit can be made compact. In addition, the design cost can be reduced.
[0019] また、上記本発明における表示装置にぉ 、ては、前記表示パネルが液晶表示パネ ルであるならば、前記表示パネルを裏面側から照明するバックライト装置を更に備え 、前記バックライト装置は、光源と、前記光源の前記表示パネル側に配置された光学 層とを有し、前記撮像部が、前記バックライト装置の内部に配置されている態様 (第 3 の態様)とすることもできる。上記第 3の態様とした場合は、撮像領域を撮像部の正面 に位置させることができるため、撮像画像が台形状に歪むのを回避できる。また、表 示装置の構成を簡略ィ匕することもできる。  [0019] In addition, the display device according to the present invention further includes a backlight device that illuminates the display panel from the back side when the display panel is a liquid crystal display panel. Has a light source and an optical layer disposed on the display panel side of the light source, and the imaging unit may be disposed in the backlight device (third aspect). it can. In the case of the third aspect, since the imaging region can be positioned in front of the imaging unit, the captured image can be prevented from being distorted in a trapezoidal shape. In addition, the configuration of the display device can be simplified.
[0020] 上記第 3の態様にお 、ては、前記バックライト装置の前記光学層における前記撮像 部に受光される光の光学的経路と重なる領域に、開口部が形成されているのが好ま しい。このとき、前記開口部の内部には、前記光学層に比べて光の透過率が高い光 学層が配置されていても良い。更に、前記バックライト装置の前記光学層における前 記撮像部に受光される光の光学的経路と重なる領域が、前記光学層における他の 領域に比べて、光の透過率が高くなるように形成されているのも好ましい。これらの場 合においては、撮像部に入射する光が、光学層によって、散乱したり、反射したり、更 には、減衰したりするのを抑制できる。  [0020] In the third aspect, it is preferable that an opening is formed in a region overlapping with an optical path of light received by the imaging unit in the optical layer of the backlight device. That's right. At this time, an optical layer having a higher light transmittance than the optical layer may be disposed inside the opening. Further, an area overlapping the optical path of light received by the imaging unit in the optical layer of the backlight device is formed such that the light transmittance is higher than other areas in the optical layer. It is also preferable. In these cases, the light incident on the imaging unit can be prevented from being scattered, reflected, or further attenuated by the optical layer.
[0021] 上記本発明における表示装置においては、前記撮像部が複数個設けられ、前記 複数個の撮像部それぞれは、前記表示パネルの表示領域内の異なる領域における 観察者側の状態を撮像できるように配置されて 、る態様 (第 4の態様)とするのが好ま しい。上記第 4の態様によれば、単一の撮像部し力設けられない場合に比べて、撮 像部それぞれの撮像領域を狭くすることができ、撮像部が求める光学的撮像距離 ( 焦点距離)を短くすることができ、表示装置の薄型化を図ることができる。  [0021] In the display device according to the present invention, a plurality of the imaging units are provided, and each of the plurality of imaging units is capable of imaging the state on the observer side in different regions within the display region of the display panel. It is preferable to adopt the embodiment (fourth embodiment). According to the fourth aspect, the imaging area of each imaging unit can be narrowed compared to the case where a single imaging unit is not provided with force, and the optical imaging distance (focal length) required by the imaging unit The display device can be shortened and the display device can be thinned.
[0022] また、上記第 4の態様にぉ 、ては、前記複数個の撮像部それぞれが撮像する領域 のうち、隣接する領域同士が部分的に重なり合つているのが好ましい。この場合、被 写体の位置の認識を正確に行うことができる。  [0022] In addition, in the fourth aspect, it is preferable that adjacent regions partially overlap each other among regions captured by the plurality of imaging units. In this case, the position of the subject can be accurately recognized.
[0023] また、上記本発明における表示装置においては、前記結像光学系の合焦範囲が、 前記表示パネルの表示領域から観察者側に lcmの範囲内に設定されて!、るのが良 い。これにより、表示領域上にある被写体をより鮮明に撮像することができる。 [0023] Further, in the display device according to the present invention, the focusing range of the imaging optical system is: It should be set within the lcm range from the display area of the display panel to the viewer. As a result, the subject on the display area can be imaged more clearly.
[0024] また、上述した第 1の態様においては、前記検出光源が、前記表示パネルの表示 領域の周辺の領域に配置されていても良い。この場合は、光量ロスを少なくすること ができる。 [0024] In the first aspect described above, the detection light source may be arranged in a region around the display region of the display panel. In this case, the light loss can be reduced.
[0025] 更に、上述した上記第 1の態様においては、前記検出光源が、前記表示パネルの
Figure imgf000009_0001
、て、前記表示パネルの厚み方向にお 、て前記表示領域と重なる領域の 周辺に配置されていても良い。この場合は、表示装置の正面側のデザインの自由度 を高めることができる。
[0025] Further, in the first aspect described above, the detection light source may be the display panel.
Figure imgf000009_0001
In the thickness direction of the display panel, the display panel may be arranged around a region overlapping with the display region. In this case, the degree of freedom in design of the front side of the display device can be increased.
[0026] また、上記第 2の態様において、前記表示パネルが液晶表示パネルであるならば、 本発明における表示装置は、前記表示パネルを裏面側力も照明するバックライト装 置を更に備え、前記バックライト装置は、光源と、前記光源の前記表示パネル側に配 置された光学層とを有し、前記検出光源が、前記バックライト装置の内部に、前記検 出光が前記表示パネルに向けて出射されるように配置されて 、る態様 (第 5の態様) とすることもできる。上記第 5の態様によれば、表示領域上の検出光の光量分布を均 一なものとでき、被写体の位置に影響されない撮像を行うことができる。  [0026] In addition, in the second aspect, if the display panel is a liquid crystal display panel, the display device according to the present invention further includes a backlight device that illuminates the display panel also with a back side force, The light device includes a light source and an optical layer disposed on the display panel side of the light source, the detection light source is emitted into the backlight device, and the detection light is emitted toward the display panel. Arranged as described above, the embodiment (fifth embodiment) can also be adopted. According to the fifth aspect, the light amount distribution of the detection light on the display area can be made uniform, and imaging that is not affected by the position of the subject can be performed.
[0027] また、上記第 3の態様や第 5の態様のように表示装置がバックライト装置を備えて!/、 る場合、前記バックライト装置の光源としては、発光ダイオードを用いることができる。 更に、この場合、前記バックライト装置の発光領域の面積が、前記表示パネルの表示 領域の面積よりも大きくなつているのが好ましい。これにより、表示パネルとバックライ ト装置との間の距離が長い場合であっても、表示パネルを十分に照明することができ る。  [0027] When the display device includes a backlight device as in the third and fifth embodiments, a light emitting diode can be used as a light source of the backlight device. Furthermore, in this case, the area of the light emitting region of the backlight device is preferably larger than the area of the display region of the display panel. Accordingly, even when the distance between the display panel and the backlight device is long, the display panel can be sufficiently illuminated.
[0028] また、上記本発明における表示装置にぉ 、て、表示パネル力 ¾L表示パネルである ならば、前記撮像部が、前記表示パネルの裏側における、前記表示パネルの厚み方 向にお 、て前記表示パネルの表示領域と重なる領域に配置されて!、るのが好まし!/ヽ 。この場合は、撮像領域を撮像部の正面に位置させることができるため、撮像画像が 台形状に歪むのを回避できる。  [0028] In addition, if the display device according to the present invention is a display panel having a display panel power of L, the imaging unit is provided on the back side of the display panel in the thickness direction of the display panel. It is preferable to be arranged in an area overlapping with the display area of the display panel! In this case, since the imaging region can be positioned in front of the imaging unit, the captured image can be prevented from being distorted in a trapezoidal shape.
[0029] 更に、上記の場合において、前記表示パネルの裏側に前記検出光源を配置する のであれば、前記検出光源は、前記表示パネルの厚み方向において前記表示領域 と重なる領域の周辺に配置されているのが好ましい。検出光源が、撮像部による撮像 の妨げとなるのを抑制するためである。 [0029] Further, in the above case, the detection light source is arranged on the back side of the display panel. In this case, it is preferable that the detection light source is arranged around a region overlapping the display region in the thickness direction of the display panel. This is to prevent the detection light source from interfering with the imaging by the imaging unit.
[0030] 更に、上記本発明における表示装置は、前記表示パネルが液晶表示パネルである ならば、画像処理装置と、前記表示パネルの観察者側の主面に向けて検出光を照 射する検出光源と、前記表示パネルを裏面側力も照明するバックライト装置とを更に 備え、前記撮像部は、観察者側から前記表示パネルに入射し、且つ、前記表示パネ ル及び前記結像光学系を通過する前記検出光を受光して、前記表示パネルの観察 者側における状態を撮像し、更に撮像データを出力し、前記バックライト装置は、光 源と、前記光源の前記表示パネル側に配置された光学層とを有し、前記画像処理装 置は、前記撮像部が出力する撮像データ力もオフセット成分を減算し、前記オフセッ ト成分は、前記表示パネルの表示領域への外部からの光の入射が遮断され、且つ、 前記表示領域上に物体が存在しない状態で、前記バックライト装置の光源の点灯と 前記検出光源による前記検出光の照射とを行ったときに前記撮像部が出力する撮 像データに基づいて設定されている態様 (第 6の態様)とするのが好ましい。上記第 6 の態様によれば、オフセット成分による撮像画像の劣化を抑制することができる。  [0030] Further, in the display device according to the present invention, if the display panel is a liquid crystal display panel, the image processing device and detection for irradiating detection light toward the main surface on the viewer side of the display panel. A light source and a backlight device that illuminates the display panel with a back side force, and the imaging unit is incident on the display panel from the observer side and passes through the display panel and the imaging optical system. Receiving the detection light, imaging the state of the display panel on the viewer side, and further outputting imaging data, and the backlight device is disposed on the display panel side of the light source and the light source The image processing device also subtracts an offset component from the imaging data force output from the imaging unit, and the offset component is incident on the display area of the display panel from the outside. Blocked And based on image data output by the imaging unit when the light source of the backlight device is turned on and the detection light source is irradiated with the detection light in a state where no object is present on the display area. It is preferable to adopt the mode (sixth mode) set as described above. According to the sixth aspect, it is possible to suppress deterioration of a captured image due to an offset component.
[0031] また、上記本発明における表示装置においては、前記表示パネルにおける観察者 側の反対側の表面に、防反射処理が施されているのが好ましい。この場合は、表示 パネルの裏面 (観察者側の反対側の表面)で反射された反射光が撮像部に入射す るのを抑制でき、撮像画像のコントラストの向上を図ることができる。  [0031] In the display device according to the present invention, it is preferable that an antireflection treatment is performed on the surface of the display panel opposite to the viewer side. In this case, it is possible to suppress the reflected light reflected by the back surface of the display panel (the surface opposite to the viewer side) from entering the imaging unit, and to improve the contrast of the captured image.
[0032] また、上述した上記第 1の態様にぉ 、ては、前記表示パネルの観察者側に、前記 表示パネルの表示領域を覆う透明板を備え、前記透明板は、前記表示領域との間に 空間が形成されるように配置され、前記検出光源は、前記表示パネルの前記表示領 域の周辺の領域に、前記検出光が前記空間から前記透明板に入射するように、配置 されているのが好ましい。この場合においては、検出光源から出射された検出光が、 被写体に到達することなぐ表示パネルに入射するのを抑制でき、検出光の利用効 率の向上を図ることができる。  [0032] In addition, according to the first aspect described above, the observer side of the display panel further includes a transparent plate that covers the display area of the display panel, and the transparent plate is connected to the display area. The detection light source is arranged in a region around the display region of the display panel so that the detection light is incident on the transparent plate from the space. It is preferable. In this case, the detection light emitted from the detection light source can be prevented from entering the display panel without reaching the subject, and the utilization efficiency of the detection light can be improved.
[0033] 更に、上記の透明板が備えられる場合においては、前記撮像部が、前記表示パネ ルの裏側における、前記表示パネルの厚み方向にぉ 、て前記表示パネルの表示領 域と重なる領域の周辺に配置され、前記撮像部の撮像方向と前記検出光源の出射 方向とが、前記観察者側から見たときに、互いに交差しているのが好ましい。具体的 には、前記表示領域が、矩形状を呈するのであれば、前記検出光源が、前記表示領 域の一の辺、又は前記一の辺とこれに対向する辺とに沿って配置され、前記撮像部 力 前記観察者側から見たときに、前記一の辺に隣接する辺に沿って配置されてい る態様とする。このようにすることにより、透明板を通過せず、それによつて反射された 一部の検出光が、撮像部に入射するのを抑制できる。この結果、反射された検出光 による撮像画像の画質の低下を抑制できる。 [0033] Further, in the case where the above-described transparent plate is provided, the imaging unit includes the display panel. On the back side of the display panel in the thickness direction of the display panel, and is arranged around the area overlapping the display area of the display panel, and the imaging direction of the imaging unit and the emission direction of the detection light source are the observer. It is preferable that they cross each other when viewed from the side. Specifically, if the display area has a rectangular shape, the detection light source is arranged along one side of the display area or the one side and a side opposite to the one side. The imaging unit force is configured to be arranged along a side adjacent to the one side when viewed from the observer side. By doing in this way, it can control that a part of detection light reflected by it without passing through a transparent board enters into an image pick-up part. As a result, it is possible to suppress deterioration in the image quality of the captured image due to the reflected detection light.
[0034] また、本発明におけるバックライト装置は、液晶表示パネルを照明するためのバック ライト装置であって、光源と、結像光学系を有する撮像部とを備え、前記撮像部は、 当該バックライト装置の内部に配置されており、観察者側力 前記液晶表示パネル に入射し、且つ、前記液晶表示パネル及び前記結像光学系を通過する光を受光し て、前記液晶表示パネルの観察者側における状態を撮像することを特徴とする。  [0034] The backlight device according to the present invention is a backlight device for illuminating a liquid crystal display panel, and includes a light source and an imaging unit having an imaging optical system, and the imaging unit includes the backlight unit. The light device is arranged inside the light device, receives light that is incident on the liquid crystal display panel and passes through the liquid crystal display panel and the imaging optical system, and is received by the observer of the liquid crystal display panel. The state on the side is imaged.
[0035] 上記本発明におけるバックライト装置にぉ 、ては、前記液晶表示パネルの観察者 側の主面に向けて検出光を照射する検出光源が備えられており、前記検出光源は、 当該バックライト装置の内部に配置され、前記撮像部が、観察者側から前記液晶表 示パネルに入射し、且つ、前記液晶表示パネル及び前記結像光学系を通過する前 記検出光を受光して、前記液晶表示パネルの観察者側における状態を撮像する態 様とするのが好ましい。この態様とした場合は、液晶表示装置に付加される入力機能 を更に高めることができる。  The backlight device according to the present invention includes a detection light source that emits detection light toward the main surface of the liquid crystal display panel on the observer side, and the detection light source includes the backlight device. Arranged inside the light device, the imaging unit receives the detection light incident on the liquid crystal display panel from the observer side and passing through the liquid crystal display panel and the imaging optical system; It is preferable to take an image of the state of the liquid crystal display panel on the viewer side. In this case, the input function added to the liquid crystal display device can be further enhanced.
[0036] また、この態様にお 、ては、前記光源の前記液晶表示パネル側に配置された光学 層を更に備え、前記バックライト装置の前記光学層における前記撮像部に受光され る光の光学的経路と重なる領域に、開口部が形成されているのが好ましい。このとき 、前記開口部の内部には、前記光学層に比べて光の透過率が高い光学層が配置さ れていても良い。更に、前記光源の前記液晶表示パネル側に配置された光学層を 更に備え、前記バックライト装置の前記光学層における前記撮像部に受光される光 の光学的経路と重なる領域が、前記光学層における他の領域に比べて、光の透過 率が高くなるように形成されているのも好ましい。これらの場合においては、撮像部に 入射する光が、光学層によって、散乱したり、反射したり、更には、減衰したりするの を抑制できる。 [0036] In this aspect, the optical device further includes an optical layer disposed on the liquid crystal display panel side of the light source, and optical light received by the imaging unit in the optical layer of the backlight device. It is preferable that an opening is formed in a region overlapping the target path. At this time, an optical layer having a higher light transmittance than the optical layer may be disposed inside the opening. The optical layer further includes an optical layer disposed on the liquid crystal display panel side of the light source, and an area overlapping with an optical path of light received by the imaging unit in the optical layer of the backlight device is in the optical layer. Light transmission compared to other areas It is also preferable that it is formed so as to increase the rate. In these cases, it is possible to suppress light incident on the imaging unit from being scattered, reflected, or further attenuated by the optical layer.
[0037] (実施の形態 1)  [0037] (Embodiment 1)
以下、本発明の実施の形態 1における表示装置及びバックライト装置について、図 1〜図 8を参照しながら説明する。最初に、本実施の形態 1における表示装置の全体 構成について図 1及び図 2を用いて説明する。図 1は、本発明の実施の形態 1におけ る表示装置の概略構成を示す断面図である。図 2は、図 1に示す表示装置の概略構 成を示す分解斜視図である。  Hereinafter, a display device and a backlight device according to Embodiment 1 of the present invention will be described with reference to FIGS. First, the overall configuration of the display device according to Embodiment 1 will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 1 of the present invention. FIG. 2 is an exploded perspective view showing a schematic configuration of the display device shown in FIG.
[0038] 図 1及び図 2に示すように、表示装置は、液晶表示パネル 2と、結像光学系(図示せ ず)を有する撮像部 4とを備えている。撮像部 4は、観察者側力 液晶表示パネル 2に 入射し、且つ、液晶表示パネル 2及び結像光学系を通過する光を受光して、液晶表 示パネル 2の観察者側における状態を撮像する。  As shown in FIGS. 1 and 2, the display device includes a liquid crystal display panel 2 and an imaging unit 4 having an imaging optical system (not shown). The imaging unit 4 receives the light incident on the liquid crystal display panel 2 and passing through the liquid crystal display panel 2 and the imaging optical system, and images the state of the liquid crystal display panel 2 on the viewer side. To do.
[0039] 具体的には、本実施の形態では、撮像部 4は、液晶表示パネル 2の表示領域 3上 の被写体 1 (ヒトの指先)からの反射光が、液晶表示パネル 2を介して、結像光学系に 入射するように配置されている。撮像部 4は、結像光学系に入射し、これを通過した 光を受光し、これによつて被写体 1を撮像する。なお、撮像部 4の構成については、 更に後述する。  Specifically, in the present embodiment, the imaging unit 4 causes the reflected light from the subject 1 (human fingertip) on the display area 3 of the liquid crystal display panel 2 to pass through the liquid crystal display panel 2. It is arranged to enter the imaging optical system. The imaging unit 4 receives the light that has entered the imaging optical system and passed through it, and images the subject 1 using this light. The configuration of the imaging unit 4 will be further described later.
[0040] また、本実施の形態 1にお!/、ては、表示装置は、液晶表示パネル 2の観察者側の 空間に向けて、即ち、被写体 1に向けて検出光を出射する検出光源 7を更に備えて いる。このため、本実施の形態 1では、撮像部 4は、観察者側カゝら液晶表示パネルに 入射し、且つ、液晶表示パネル 2及び結像光学系を通過する検出光、即ち、被写体 1で反射された検出光を受光することによって、撮像を行っている。この点については 、後述する。  [0040] Further, in the first embodiment, the display device is a detection light source that emits detection light toward the space on the viewer side of the liquid crystal display panel 2, that is, toward the subject 1. 7 is further provided. Therefore, in the first embodiment, the imaging unit 4 is detected light that enters the liquid crystal display panel from the observer side and passes through the liquid crystal display panel 2 and the imaging optical system, that is, the subject 1. Imaging is performed by receiving the reflected detection light. This point will be described later.
[0041] また、本実施の形態 1において、表示装置は、透過型の液晶表示装置であり、液晶 表示パネル 2を表示領域 3の裏面側力も照明するバックライト装置 5も備えて 、る。液 晶表示パネル 2は、アクティブマトリクス基板 2cと、液晶層 2bと、フィルタ基板 (対向基 板) 2aとを備えている。液晶層 2bは、アクティブマトリクス基板 2cとフィルタ基板 2aと によって挟み込まれている。液晶層 2bを封止するためのシールについては、図示を 省略している。また、フィルタ基板 2a及びアクティブマトリクス基板 2cそれぞれにおけ る液晶層 2b側の反対側の面には、図示していないが、偏光板が設けられている。 [0041] In the first embodiment, the display device is a transmissive liquid crystal display device, and includes a backlight device 5 that illuminates the liquid crystal display panel 2 with the back side force of the display region 3. The liquid crystal display panel 2 includes an active matrix substrate 2c, a liquid crystal layer 2b, and a filter substrate (counter substrate) 2a. The liquid crystal layer 2b includes an active matrix substrate 2c and a filter substrate 2a. Is sandwiched between. Illustration of a seal for sealing the liquid crystal layer 2b is omitted. In addition, a polarizing plate (not shown) is provided on the surface opposite to the liquid crystal layer 2b side in each of the filter substrate 2a and the active matrix substrate 2c.
[0042] アクティブマトリクス基板 2cには、マトリクス状に配置された複数のアクティブ素子( 図示せず)が形成されている。アクティブ素子は画素を構成しており、画素が設けら れた領域と厚み方向(図 1中の太線の矢印で示す)において重なる領域力 表示領 域 3となっている。また、アクティブマトリクス基板 2cには、図示していないが、ゲート 駆動回路やソース駆動回路といった駆動回路が設けられている。フィルタ基板 2aに は、各画素に対応する複数のカラーフィルタ(図示せず)や、対向電極が形成されて いる。 A plurality of active elements (not shown) arranged in a matrix are formed on the active matrix substrate 2c. The active element constitutes a pixel, and is a region force display region 3 that overlaps with the region in which the pixel is provided in the thickness direction (indicated by a thick line arrow in FIG. 1). Further, although not shown, the active matrix substrate 2c is provided with a drive circuit such as a gate drive circuit and a source drive circuit. On the filter substrate 2a, a plurality of color filters (not shown) corresponding to each pixel and a counter electrode are formed.
[0043] バックライト装置 5は、直下型のバックライト装置であり、複数の蛍光ランプ 6と、光学 層 13とを備えている。複数の蛍光ランプ 6は、バスタブ型の筐体 8に、互いに平行な 状態で配置されている(図 2参照)。また、筐体 8の内面には反射シートが貼付されて いる。光学層 13は、拡散板 9、拡散シート 10、プリズムシート 11、反射 Z偏光シート 1 2を順に積層して形成されて 、る。  The backlight device 5 is a direct type backlight device, and includes a plurality of fluorescent lamps 6 and an optical layer 13. The plurality of fluorescent lamps 6 are arranged in a bathtub-type casing 8 in a state of being parallel to each other (see FIG. 2). In addition, a reflective sheet is attached to the inner surface of the housing 8. The optical layer 13 is formed by laminating a diffusion plate 9, a diffusion sheet 10, a prism sheet 11, and a reflective Z-polarizing sheet 12 in this order.
[0044] また、本実施の形態 1では、撮像部 4は、液晶表示パネル 2の裏側における液晶表 示パネル 2とバックライト装置 5との間であって、液晶表示パネル 2の厚み方向におい て表示領域 3と重なる領域 (又は空間)の周辺に配置されている。この場合、撮像部 4 は、液晶表示パネル 2の厚み方向において表示領域 3と重ならないため、液晶表示 パネル 2やバックライト装置 5による制限を受けることなく配置できる。  In Embodiment 1, the imaging unit 4 is between the liquid crystal display panel 2 and the backlight device 5 on the back side of the liquid crystal display panel 2 and in the thickness direction of the liquid crystal display panel 2. It is arranged around the area (or space) that overlaps display area 3. In this case, since the imaging unit 4 does not overlap the display region 3 in the thickness direction of the liquid crystal display panel 2, it can be arranged without being restricted by the liquid crystal display panel 2 or the backlight device 5.
[0045] 更に、本実施の形態 1では、撮像部 4の光学的撮像距離 (結像光学系の焦点距離) を稼ぐため、液晶表示パネル 2とバックライト装置 5とは、従来に比べて距離を置いて 配置される。具体的には、液晶表示パネル 2とバックライト装置 5とは、フレーム 20に よって、一定の距離 Lを置いて保持されており、これらの間には空洞が存在している。 また、撮像部 4もフレーム 20に保持されている。  Furthermore, in Embodiment 1, in order to increase the optical imaging distance of the imaging unit 4 (focal length of the imaging optical system), the liquid crystal display panel 2 and the backlight device 5 are separated from each other compared to the conventional case. Is placed. Specifically, the liquid crystal display panel 2 and the backlight device 5 are held at a certain distance L by the frame 20, and a cavity exists between them. The imaging unit 4 is also held in the frame 20.
[0046] 例えば、液晶表示パネル 2の大きさ力 30インチ程度であるならば、液晶表示パネ ル 2とバックライト装置 5との距離 Lは 15cm程度に設定される。液晶表示パネル 2とバ ックライト装置 5との間には、表示装置の強度を高めるため、透明の榭脂材料を充填 する等しても良い。 For example, if the size of the liquid crystal display panel 2 is about 30 inches, the distance L between the liquid crystal display panel 2 and the backlight device 5 is set to about 15 cm. A transparent resin material is filled between the liquid crystal display panel 2 and the backlight device 5 to increase the strength of the display device. You may do it.
[0047] 更に、液晶表示パネル 2とバックライト装置 5との距離が大きいため、図 1及び図 2に 示すように、バックライト装置 5は、その発光領域の面積が表示領域 3の面積よりも大 きくなるように構成するのが好ましい。これは、液晶表示パネル 2とバックライト装置 5と の距離が大き 、と、液晶表示パネル 2の照射領域が減少する傾向にあるからである。  Furthermore, since the distance between the liquid crystal display panel 2 and the backlight device 5 is large, as shown in FIGS. 1 and 2, the backlight device 5 has a light emitting region area larger than the display region 3 area. It is preferable to make it large. This is because the irradiation area of the liquid crystal display panel 2 tends to decrease as the distance between the liquid crystal display panel 2 and the backlight device 5 increases.
[0048] また、本実施の形態 1では、図 1及び図 2に示すように、撮像部 4は複数個設けてお くのが好ましい。この場合、複数個の撮像部 4それぞれは、表示領域 3内の異なる領 域における観察者側の状態を撮像できるように配置される。このような構成とすると、 単一の撮像部し力設けられな 、場合に比べて、撮像部 4それぞれの撮像領域を狭く することができ、撮像部 4が求める光学的撮像距離を短くすることができる。よって、 単一の撮像部し力設けられな 、場合に比べて、液晶表示パネル 2とバックライト装置 5との間の距離を短くでき、表示装置の薄型化を図ることができる。  In the first embodiment, it is preferable to provide a plurality of imaging units 4 as shown in FIGS. In this case, each of the plurality of imaging units 4 is arranged so as to be able to image the state on the observer side in different areas in the display area 3. With such a configuration, the imaging area of each imaging unit 4 can be narrowed and the optical imaging distance required by the imaging unit 4 can be shortened compared to the case where a single imaging unit is not provided. Can do. Therefore, compared with the case where a single imaging unit is not provided, the distance between the liquid crystal display panel 2 and the backlight device 5 can be shortened, and the display device can be made thinner.
[0049] 更に、複数個の撮像部 4それぞれの撮像領域は、被写体 1の位置の認識が正確に 行われるようにするため、隣接する撮像領域同士が部分的に重なり合うように設定す るのが好ましい。また、撮像部 4は、表示領域 3上に存在するものを被写体 1として撮 像するため、撮像部 4の結像光学系の合焦範囲は、液晶表示パネルの表面近傍、例 えば、表示領域 3から観察者側に lcmの範囲内に設定するのが好ましい。  [0049] Further, the imaging areas of each of the plurality of imaging units 4 are set so that adjacent imaging areas partially overlap each other in order to accurately recognize the position of the subject 1. preferable. In addition, since the imaging unit 4 captures an object existing on the display area 3 as the subject 1, the focusing range of the imaging optical system of the imaging unit 4 is near the surface of the liquid crystal display panel, for example, the display area. It is preferable to set within the range of lcm from 3 to the viewer side.
[0050] また、本実施の形態 1では、検出光源 7は光量ロスを少なくするため、表示領域 3の 周辺の領域に配置されている。具体的には、検出光源 7は 4つ備えられており、各検 出光源 7は、表示領域 3のいずれかの辺に沿って、表示領域 3を囲むように配置され ている。各検出光源 7は、対向位置にある検出光源 7へ向けて検出光を出射する。な お、本実施の形態 1において、検出光源 7の数は特に限定されるものではない。例え ば、検出光源 7の数が二つであって、対向する 2辺にのみ検出光源 7が配置された態 様であっても良い。また、図 1において、断面に現れない検出光源 7については図示 を省略している。  [0050] In the first embodiment, the detection light source 7 is arranged in an area around the display area 3 in order to reduce a light amount loss. Specifically, four detection light sources 7 are provided, and each detection light source 7 is arranged so as to surround the display region 3 along one side of the display region 3. Each detection light source 7 emits detection light toward the detection light source 7 at the facing position. In the first embodiment, the number of detection light sources 7 is not particularly limited. For example, the number of the detection light sources 7 may be two, and the detection light sources 7 may be arranged only on two opposite sides. In FIG. 1, the illustration of the detection light source 7 that does not appear in the cross section is omitted.
[0051] 次に、撮像部 4及び検出光源 7の構成について図 3〜図 5を用いて具体的に説明 する。図 3は、図 1及び図 2に示した表示装置に備えられた撮像部の概略構成を示す 断面図である。図 3に示すように、本実施の形態 1においては、撮像部 4は、結像光 学系を構成するレンズ素子 30と、レンズ素子 30によって結像された像を受光する固 体撮像素子 32と、設定波長以上の波長の光のみを透過させる光学フィルタ (ノヽィパ スフィルタ) 31とを備えている。固体撮像素子 32は、 CCD固体撮像素子や、 MOS 型固体撮像素子といった固体撮像素子である。光学フィルタ 31の機能については後 述する。 [0051] Next, the configuration of the imaging unit 4 and the detection light source 7 will be specifically described with reference to FIGS. FIG. 3 is a cross-sectional view illustrating a schematic configuration of an imaging unit provided in the display device illustrated in FIGS. As shown in FIG. 3, in the first embodiment, the imaging unit 4 A lens element 30 constituting the academic system, a solid-state imaging element 32 that receives an image formed by the lens element 30, and an optical filter that transmits only light having a wavelength equal to or greater than a set wavelength (a noise filter) 31 And. The solid-state imaging device 32 is a solid-state imaging device such as a CCD solid-state imaging device or a MOS solid-state imaging device. The function of the optical filter 31 will be described later.
[0052] レンズ素子 30と固体撮像素子 32とは、いわゆるシフト光学系を構成している。具体 的には、固体撮像素子 32及びレンズ素子 30は、固体撮像素子 32の受光面の中心 を通る法線 32aとレンズ素子 30の光軸 30aとが平行となり、且つ、光軸 30aが法線 32 aからシフトした状態でフレーム 33に保持されている。更に、図 1及び図 2に示したよう に、撮像部 4は、固体撮像素子 32の受光面が表示領域 3に対して平行となり、且つ、 固体撮像素子 32の法線 32aがレンズ素子 30の光軸 30aよりも表示領域 3の外側に 位置するように配置される。  The lens element 30 and the solid-state image sensor 32 constitute a so-called shift optical system. Specifically, in the solid-state image sensor 32 and the lens element 30, the normal line 32a passing through the center of the light receiving surface of the solid-state image sensor 32 and the optical axis 30a of the lens element 30 are parallel, and the optical axis 30a is the normal line. It is held in the frame 33 in a state shifted from 32 a. Further, as shown in FIGS. 1 and 2, the imaging unit 4 has the light receiving surface of the solid-state imaging device 32 parallel to the display region 3, and the normal line 32 a of the solid-state imaging device 32 is It is arranged so as to be located outside the display area 3 relative to the optical axis 30a.
[0053] このように、本実施の形態 1では、シフト光学系が採用されているため、固体撮像素 子 32の受光面には、台形歪みの少ない像が結像される。よって、本実施の形態 1に よれば、撮像部 4が出力した撮像データに対して、台形歪みを改善するための補正 を行うことなぐ画質の優れた画像を得ることができる。  Thus, in the first embodiment, since the shift optical system is employed, an image with little trapezoidal distortion is formed on the light receiving surface of the solid-state imaging element 32. Therefore, according to the first embodiment, an image with excellent image quality can be obtained without performing correction for improving the trapezoidal distortion on the imaging data output by the imaging unit 4.
[0054] なお、本発明にお 、て「結像光学系」とは、液晶表示パネルの表面近傍と撮像部の 受光面とに焦点を有し、液晶表示パネルの表面近傍の像を受光面に結像させるレン ズ系をいう。よって、図 3の例では、結像光学系は、レンズ素子 30のみによって構成 されている力 複数のレンズ素子を備えたレンズ群で構成されていても良い。但し、シ フト光学系を構成する場合は、結像光学系は、斜め光が蹴られずにレンズ系を透過 するように設計されている必要がある。この場合、結像光学系は、シフト光学系が構 成されな 、場合に比べて、大口径のレンズ系によって構成する必要がある。  In the present invention, the “imaging optical system” has a focal point in the vicinity of the surface of the liquid crystal display panel and the light receiving surface of the imaging unit, and an image in the vicinity of the surface of the liquid crystal display panel This is the lens system that forms an image. Therefore, in the example of FIG. 3, the imaging optical system may be configured by a lens group including a plurality of lens elements that are configured by only the lens element 30. However, in the case of constituting a shift optical system, the imaging optical system needs to be designed so that the oblique light is not kicked and transmitted through the lens system. In this case, the imaging optical system needs to be configured by a lens system having a large aperture as compared with the case where the shift optical system is not configured.
[0055] 図 4は、図 1及び図 2に示した表示装置に備えられた検出光源の概略構成を示す 図であり、図 4 (a)は検出光の出射方向に沿って切断した断面図、図 4 (b)は正面図 である。図 5は、検出光源の他の例を示す図であり、図 5 (a)は検出光の出射方向に 沿って切断した断面図、図 5 (b)は正面図である。なお、図 4及び図 5以外の図にお いては、検出光源 7は簡略ィ匕して示している。 [0056] 図 4 (a)及び (b)に示すように、検出光源 7は、複数個の発光ダイオード 21を備えて いる。各発光ダイオード 21が出射する光の波長は、後述するように予め設定されて いる。複数個の発光ダイオード 21は、出射面が揃うようにして、フレーム 23の内部に 一列に配置されている。また、発光ダイオード 21は、それぞれ個別に榭脂によってモ 一ルドされている。 22は、榭脂モールドを示している。 FIG. 4 is a diagram showing a schematic configuration of the detection light source provided in the display device shown in FIGS. 1 and 2, and FIG. 4 (a) is a cross-sectional view taken along the emission direction of the detection light. Figure 4 (b) is a front view. FIG. 5 is a view showing another example of the detection light source, FIG. 5 (a) is a cross-sectional view cut along the direction of emission of the detection light, and FIG. 5 (b) is a front view. In the drawings other than FIGS. 4 and 5, the detection light source 7 is shown in a simplified manner. As shown in FIGS. 4A and 4B, the detection light source 7 includes a plurality of light emitting diodes 21. The wavelength of light emitted from each light emitting diode 21 is set in advance as will be described later. The plurality of light emitting diodes 21 are arranged in a row inside the frame 23 so that the emission surfaces are aligned. The light emitting diodes 21 are individually molded with grease. Reference numeral 22 denotes a resin mold.
[0057] フレーム 23は、出射方向側が開口したボックス状に形成されている。フレーム 23の 出射方向側の開口には、面発光を可能とするため、拡散シートを含む光学シート 24 が取り付けられている。また、フレーム 23の内面には、反射シートが貼付されている。 図 4 (b)においては、光学シート 24の図示は省略している。  [0057] The frame 23 is formed in a box shape having an opening on the emission direction side. An optical sheet 24 including a diffusion sheet is attached to the opening on the emission direction side of the frame 23 to enable surface emission. In addition, a reflection sheet is attached to the inner surface of the frame 23. In FIG. 4B, the optical sheet 24 is not shown.
[0058] このような検出光源 7を表示領域 3の周囲に配置すれば、被写体 1 (図 1参照)が表 示領域 3上のどの位置にあっても、検出光が被写体 1に照射され、その反射光が撮 像部 4によって受光される。また、配置する発光ダイオード 21の数は特に限定される ものではなぐ表示領域 3 (図 1及び図 2参照)の大きさに応じて必要な光量が得られ るように設定すれば良い。  [0058] If such a detection light source 7 is arranged around the display area 3, the detection light is applied to the object 1 regardless of the position of the object 1 (see Fig. 1) on the display area 3, The reflected light is received by the imaging unit 4. Further, the number of light emitting diodes 21 to be arranged is not particularly limited, and may be set so as to obtain a necessary light amount according to the size of the display area 3 (see FIGS. 1 and 2).
[0059] また、本実施の形態 1においては、検出光源 7の代わりに、図 5に示す検出光源 25 を用いることもできる。図 5の例においても、検出光源 25は、榭脂によってモールドさ れた複数個の発光ダイオード 21を備えている。但し、検出光源 25は、図 4に示した 検出光源 7と異なり、導光板 26を備えている。また、導光板 26は、直方体形状に形 成されており、各発光ダイオード 21は、導光板 26の長軸方向に位置する端面と対向 するように配置されている。各発光ダイオード 21から出射された光は、導光板 26の内 部で反射を繰り返した後、出射方向側にある側面から出射される。  In the first embodiment, the detection light source 25 shown in FIG. 5 can be used instead of the detection light source 7. In the example of FIG. 5 as well, the detection light source 25 includes a plurality of light emitting diodes 21 molded by grease. However, unlike the detection light source 7 shown in FIG. 4, the detection light source 25 includes a light guide plate 26. The light guide plate 26 is formed in a rectangular parallelepiped shape, and each light emitting diode 21 is disposed so as to face the end surface of the light guide plate 26 positioned in the long axis direction. The light emitted from each light emitting diode 21 is repeatedly reflected on the inside of the light guide plate 26 and then emitted from the side surface on the emission direction side.
[0060] また、図 5の例においても、フレーム 27は、出射方向側が開口したボックス状に形 成されている。更に、図 4の例と同様に、フレーム 27の出射方向側の開口には、拡散 シートを含む光学シート 28が取り付けられている。また、フレーム 27の内面にも、反 射シートが貼付されている。また、図 5 (b)においても、光学シート 28の図示は省略し ている。  [0060] Also in the example of FIG. 5, the frame 27 is formed in a box shape having an opening on the emission direction side. Further, similarly to the example of FIG. 4, an optical sheet 28 including a diffusion sheet is attached to the opening of the frame 27 on the emission direction side. A reflective sheet is also attached to the inner surface of the frame 27. Also in FIG. 5B, the optical sheet 28 is not shown.
[0061] このように、図 5に示す検出光源 25を用いた場合は、図 4の例に比べて少ない数の 発光ダイオード 21によって面発光が可能となるため、消費電力の削減を図ることがで きる。また、図 5の例では、発光ダイオード 21は、端面毎に 2個ずつ配置されているが 、発光ダイオード 21の数は特に限定されるものではない。 As described above, when the detection light source 25 shown in FIG. 5 is used, surface emission can be performed by a smaller number of the light emitting diodes 21 than in the example of FIG. 4, so that power consumption can be reduced. so wear. In the example of FIG. 5, two light emitting diodes 21 are arranged for each end face, but the number of light emitting diodes 21 is not particularly limited.
[0062] ここで、検出光源 7から出射される検出光の波長と、撮像部 4が受光する光の波長 とについて図 6及び図 7を用いて説明する。図 6は、カラーフィルタの透過率分光特 性を示す図である。図 6において、横軸は光の波長 [nm]を示し、縦軸は透過率 [%] を示している。また、図 6は、ブルー、グリーン、レッドそれぞれのカラーフィルタにつ いて透過率を示している。  Here, the wavelength of the detection light emitted from the detection light source 7 and the wavelength of the light received by the imaging unit 4 will be described with reference to FIG. 6 and FIG. FIG. 6 is a diagram showing the transmittance spectral characteristics of the color filter. In FIG. 6, the horizontal axis indicates the light wavelength [nm], and the vertical axis indicates the transmittance [%]. Fig. 6 shows the transmittance for each of the blue, green and red color filters.
[0063] 図 7は、液晶表示パネルを構成する偏光板の透過率分光特性を示す図である。図 7において、横軸は透過光の波長 [nm]を示し、縦軸は透過率 [%]を示している。ま た、図 7は、二枚の偏光板を平行-コル配置にした場合と、直交-コル配置にした場 合とを示している。  FIG. 7 is a diagram showing the transmittance spectral characteristics of the polarizing plate constituting the liquid crystal display panel. In FIG. 7, the horizontal axis indicates the wavelength [nm] of transmitted light, and the vertical axis indicates the transmittance [%]. FIG. 7 shows a case where two polarizing plates are arranged in a parallel-col arrangement and a case where they are arranged in an orthogonal-col arrangement.
[0064] 図 1を用いて上述したように、被写体 1で反射した検出光は、液晶表示パネル 2を透 過した後、撮像部 4に入射するが、このとき、検出光は、液晶表示パネル 2のカラーフ ィルタや偏光板を透過する必要がある。よって、検出光がカラーフィルタや偏光板を 容易に透過できるようにするため、図 6及び図 7から分力るように、検出光の波長は赤 外領域に設定するのが良い。  [0064] As described above with reference to FIG. 1, the detection light reflected by the subject 1 passes through the liquid crystal display panel 2 and then enters the imaging unit 4. At this time, the detection light is transmitted to the liquid crystal display panel. It must pass through the 2 color filter and polarizing plate. Therefore, in order to allow the detection light to easily pass through the color filter and the polarizing plate, the wavelength of the detection light should be set in the infrared region as shown in FIG. 6 and FIG.
[0065] 具体的には、検出光の波長の下限は、 700nm以上、好ましくは 800nm以上、特 に好ましくは 850nm以上に設定するのが良い。また、一般に、波長が lOOOnmを超 える光を受光できる固体撮像素子は、高価であることから、検出光の波長の上限は、 lOOOnm以下とするのが好まし!/、。  [0065] Specifically, the lower limit of the wavelength of the detection light is set to 700 nm or more, preferably 800 nm or more, and particularly preferably 850 nm or more. In general, solid-state image sensors that can receive light whose wavelength exceeds lOOOnm are expensive, so the upper limit of the wavelength of detection light is preferably less than lOOOnm! /.
[0066] また、検出光の波長が赤外領域に設定されて 、る場合に、被写体 1によって反射さ れた可視光線が撮像部 4に入射すると、この可視光線はノイズ成分となる。また、ここ でいう可視光線としては、ノ ックライトから出射され、液晶表示パネル 2を通過した照 明光や、表示装置の外部からの光が挙げられる。よって、撮像部 4は、波長が 700η m以上、好ましくは 800nm以上、特に好ましくは 850nm以上の光のみを受光できる ように構成されているのが良い。具体的には、図 3で示した光学フィルタ 31として、波 長が 700nm以上、好ましくは 800nm以上、特に好ましくは 850nm以上の光のみを 透過させるハイパスフィルタを用いるのが良 、。 [0067] 以上のように、本実施の形態 1においては、表示領域 3上にある被写体 1の光学像 は結像光学系によって受光面に結像される。よって、本実施の形態 1における表示 装置を用いることで、従来に比べて鮮明な光学像を得ることができ、高解像度での画 像の取り込みを達成できる。また、液晶表示パネルを用いるため、熱の発生の抑制や 、静音化及び小型化を図ることもできる。 [0066] In addition, when the wavelength of the detection light is set in the infrared region, when visible light reflected by the subject 1 enters the imaging unit 4, the visible light becomes a noise component. In addition, examples of visible light referred to here include illumination light emitted from a knock light and passing through the liquid crystal display panel 2 and light from the outside of the display device. Therefore, the imaging unit 4 may be configured to receive only light having a wavelength of 700 ηm or more, preferably 800 nm or more, and particularly preferably 850 nm or more. Specifically, as the optical filter 31 shown in FIG. 3, a high-pass filter that transmits only light having a wavelength of 700 nm or more, preferably 800 nm or more, particularly preferably 850 nm or more may be used. As described above, in the first embodiment, the optical image of the subject 1 on the display area 3 is formed on the light receiving surface by the imaging optical system. Therefore, by using the display device according to the first embodiment, it is possible to obtain a clearer optical image as compared with the conventional case, and to capture an image with high resolution. In addition, since a liquid crystal display panel is used, heat generation can be suppressed, noise reduction, and size reduction can be achieved.
[0068] 特に、本実施の形態 1にお!/、ては、被写体を撮像するために赤外領域の波長の光 を使用し、可視光によるノイズを除去できる。このため、本実施の形態 1によれば、例 えば、 QRコード等の複雑な図形や、文字等も鮮明に取り込むことができる。  [0068] In particular, in Embodiment 1, it is possible to remove noise caused by visible light by using light having a wavelength in the infrared region to image a subject. Therefore, according to the first embodiment, for example, complicated figures such as QR codes, characters, and the like can be captured clearly.
[0069] また、本実施の形態 1にお!/ヽて、撮像部 4は撮像した光学像を撮像データとして出 力するが、表示装置は、この撮像データに基づいて画像処理等を行う制御装置を備 免ることちでさる。  [0069] Further, according to the first embodiment, the imaging unit 4 outputs the captured optical image as imaging data. The display device performs control such as image processing based on the imaging data. Don't worry about equipment.
[0070] ここで、本実施の形態 1における表示装置で行われる画像処理について図 8を用い て説明する。図 8は、図 1及び図 2に示す表示装置に備えられた制御装置の構成を 示すブロック図である。図 8に示すように、本実施の形態 1における表示装置 110は、 撮像部 4が出力した撮像データに基づいて画像処理等を行う制御装置 109を備えて いる。制御装置 109は、主に、画像処理装置 100と、画像入力制御装置 105と、表 示制御装置 107とを備えている。また、制御装置 109は、外部装置 108に接続され ている。外部装置 108としては、例えば、パーソナルコンピュータ、ゲーム機器、テレ ビチューナ、 DVDプレイヤー、更には家庭電ィ匕製品等の表示装置に映像信号を出 力する各種機器が挙げられる。  Here, image processing performed by the display device in the first embodiment will be described with reference to FIG. FIG. 8 is a block diagram showing a configuration of a control device provided in the display device shown in FIGS. As shown in FIG. 8, the display device 110 according to the first embodiment includes a control device 109 that performs image processing and the like based on the imaging data output from the imaging unit 4. The control device 109 mainly includes an image processing device 100, an image input control device 105, and a display control device 107. The control device 109 is connected to the external device 108. Examples of the external device 108 include various devices that output video signals to a display device such as a personal computer, a game device, a TV tuner, a DVD player, and a home appliance.
[0071] また、図 8に示すように、画像入力制御装置 105は、外部装置 108の制御信号によ る指示に応じて、撮像部 4に撮像データの出力を求める。複数個の撮像部 4それぞ れは、画像入力制御装置 105から制御信号によって出力要請が通知されると、撮像 データを画像入力制御装置 105へと出力する。画像入力制御装置 105は、撮像部 4 毎にメモリ 106に撮像データをー且記憶させた後、各撮像データを画像処理装置 10 0へと出力する。また、画像入力制御装置 105は、外部装置 108の制御信号による 指示に応じて、撮像部 4の固体撮像素子 32 (図 3参照)に対して、撮像の指示、感度 設定、解像度設定等を行うこともできる。 [0072] 画像処理装置 100に入力された各撮像データは、先ず、画像合成部 101によって 合成されて、一つの撮像データとされ、ノイズ除去部 102へと送られる。ノイズ除去部 102は、先ず、画像合成部 101が出力した撮像データから、オフセット成分を減算す る。更に、ノイズ除去部 102は、オフセット成分の除去後の撮像データから、表示成 分の除去を行う。その後、ノイズ除去部 102は、得られた撮像データを画像認識部 1 03へと出力する。 Further, as shown in FIG. 8, the image input control device 105 requests the imaging unit 4 to output imaging data in response to an instruction by a control signal from the external device 108. Each of the plurality of imaging units 4 outputs imaging data to the image input control device 105 when an output request is notified by the control signal from the image input control device 105. The image input control device 105 stores the imaging data in the memory 106 for each imaging unit 4 and then outputs each imaging data to the image processing device 100. In addition, the image input control device 105 performs an imaging instruction, sensitivity setting, resolution setting, and the like for the solid-state imaging device 32 (see FIG. 3) of the imaging unit 4 in response to an instruction by the control signal of the external device 108. You can also Each piece of image data input to the image processing apparatus 100 is first combined by the image composition unit 101 into one piece of image data and sent to the noise removal unit 102. First, the noise removal unit 102 subtracts the offset component from the imaging data output by the image synthesis unit 101. Further, the noise removing unit 102 removes the display component from the imaging data after the offset component is removed. Thereafter, the noise removal unit 102 outputs the obtained imaging data to the image recognition unit 103.
[0073] ここで、オフセット成分とは、バックライト装置 5 (図 1参照)から照射された後、表示 装置 110の構成部材の表面や構成部材間の界面等で反射され、撮像部 4の固体撮 像素子 32 (図 3参照)に入射した光量成分をいう。また、表示成分とは、液晶表示パ ネル 2を介して外部から撮像部 4に入射した光量成分をいう。表示成分は、表示領域 に表示される画像によって変動する。  Here, the offset component is irradiated from the backlight device 5 (see FIG. 1) and then reflected on the surface of the constituent member of the display device 110, the interface between the constituent members, etc. This refers to the light intensity component incident on the image sensor 32 (see Fig. 3). The display component is a light amount component incident on the imaging unit 4 from the outside via the liquid crystal display panel 2. The display component varies depending on the image displayed in the display area.
[0074] 表示成分は、設定された基準データ力 算出され、算出された値を用いて上記の 処理が行われる。オフセット成分は予め設定され、画像処理装置 100が備えるメモリ( 図示せず)に格納されている。表示成分を算出するための基準データも同様に予め 設定され、画像処理装置 100が備えるメモリ(図示せず)に格納されている。  [0074] For the display component, the set reference data force is calculated, and the above processing is performed using the calculated value. The offset component is preset and stored in a memory (not shown) provided in the image processing apparatus 100. Similarly, the reference data for calculating the display component is set in advance and stored in a memory (not shown) provided in the image processing apparatus 100.
[0075] オフセット成分の設定は、例えば、次の手順によって行うことができる。先ず、表示 領域 3への外部からの光の入射が遮断された状態とする。例えば、表示装置を暗室 に配置することによって、または、赤外光 (検出光)を透過させるが可視光を透過させ ないシートや暗幕によって表示領域 3を覆うことによって行う。更に、表示領域 3上に 被写体となる物体が存在しな!ヽ状態とする。  The offset component can be set, for example, by the following procedure. First, it is assumed that light from the outside to the display area 3 is blocked. For example, the display device is placed in a dark room, or the display region 3 is covered with a sheet or dark curtain that transmits infrared light (detection light) but does not transmit visible light. Further, it is assumed that there is no object as a subject on the display area 3.
[0076] 次に、バックライト装置 5の光源の点灯と検出光源 7による検出光の照射とを行い、 このときに撮像部 4が出力する撮像データを取得する。このとき取得された撮像デー タ、即ち上記状態で撮像部 4の固体撮像素子 32に入射した光量成分が、オフセット 成分となる。オフセット成分の設定は、表示装置の工場出荷段階で行うこともできるし 、使用を開始した後にユーザが随時行うこともできる。  Next, the light source of the backlight device 5 is turned on and the detection light source 7 is irradiated with detection light, and imaging data output by the imaging unit 4 at this time is acquired. The imaging data acquired at this time, that is, the light amount component incident on the solid-state imaging device 32 of the imaging unit 4 in the above state becomes the offset component. The setting of the offset component can be performed at the factory shipment stage of the display device, or can be performed by the user at any time after the use is started.
[0077] また、表示成分を算出するための基準データの設定は、例えば次の手順によって 行なうことができる。先ず、表示装置 110の設置環境下において、表示領域 3上に被 写体となる物体が存在しない状態とする。次に、外光成分が液晶表示パネル 2を介し て撮像部 4に入射したときに、撮像部 4が出力する撮像データの最大値および最小 値、即ち、液晶表示パネル 2が白表示状態時及び黒表示状態にある時の撮像デー タを取得する。次に、取得された撮像データから、表示装置 110の設置環境下にお ける、外光成分の入射による表示成分の出力幅を算出する。このとき算出された出力 幅のデータが、表示成分を算出するためのデータ (基準データ)となる。上述した設 定作業は、表示装置 110の使用環境が同じであれば、設置時に一度行えばそれで 良い。 [0077] The setting of reference data for calculating display components can be performed, for example, by the following procedure. First, under the installation environment of the display device 110, it is assumed that there is no object to be a subject on the display area 3. Next, the external light component passes through the liquid crystal display panel 2. Acquisition of the maximum and minimum values of the imaging data output by the imaging unit 4, that is, the imaging data when the liquid crystal display panel 2 is in the white display state and the black display state. . Next, the output width of the display component due to the incidence of the external light component in the installation environment of the display device 110 is calculated from the acquired imaging data. The output width data calculated at this time becomes data (reference data) for calculating the display component. If the use environment of the display device 110 is the same, the setting operation described above may be performed once at the time of installation.
[0078] また、表示成分は、表示装置 110を使用している状況下で、映像信号から得られる 表示画像の階調レベルと、予め算出された出力幅 (基準データ)とから算出される。 上述した表示成分の除去は、具体的には、次の手順によって行われる。先ず、ノイズ 除去部 102は、外部装置 108から出力された映像信号から、表示画像の階調レベル を抽出し、抽出した階調レベルと基準データとから表示成分を算出する。次に、ノィ ズ除去部 102は、このとき撮像部 4が出力した撮像データから表示成分を減算する。 また、上述のように、表示成分は、表示領域に表示される画像によって変動すること から、表示状態の変化に応じて随時表示成分を算出する必要がある。  In addition, the display component is calculated from the gradation level of the display image obtained from the video signal and the output width (reference data) calculated in advance under the situation where the display device 110 is used. Specifically, the above-described removal of the display component is performed by the following procedure. First, the noise removing unit 102 extracts the gradation level of the display image from the video signal output from the external device 108, and calculates a display component from the extracted gradation level and reference data. Next, the noise removing unit 102 subtracts the display component from the imaging data output by the imaging unit 4 at this time. Further, as described above, since the display component varies depending on the image displayed in the display area, it is necessary to calculate the display component as needed according to the change in the display state.
[0079] また、画像認識部 103は、ノイズ除去が行われた撮像データに基づ!/ヽて、被写体の 画像及び位置を特定し、これらを画像データとして外部装置 108へと出力する。外部 装置 108は、入力された画像データを用いて各種の処理を行い、処理が反映された 映像信号を表示制御装置 107へと出力する。外部装置 108が行う処理としては、例 えば、外部装置 108がパーソナルコンピュータであるならば、カーソルの移動処理や クリック動作処理等が挙げられる。更に、表示制御装置 107は、映像信号に基づいて 制御信号を生成し、これを液晶表示パネル 2の駆動回路(図示せず)に出力する。  Further, the image recognition unit 103 specifies the image and position of the subject based on the captured image data from which noise has been removed, and outputs these to the external device 108 as image data. The external device 108 performs various types of processing using the input image data, and outputs a video signal reflecting the processing to the display control unit 107. Examples of processing performed by the external device 108 include cursor movement processing and click operation processing if the external device 108 is a personal computer. Further, the display control device 107 generates a control signal based on the video signal and outputs it to a drive circuit (not shown) of the liquid crystal display panel 2.
[0080] また、本実施の形態 1において、制御装置 109は、例えば、 CPUを内蔵した ICチッ プによって提供できる。 ICチップは、例えば、 FPCを介して液晶表示パネル 2に接続 された基板上に搭載できる。また、この場合、 ICチップに内蔵された CPUは、表示制 御装置 107、画像入力制御装置 105、及び画像処理装置 100として機能することが できる。  In Embodiment 1, the control device 109 can be provided by, for example, an IC chip with a built-in CPU. The IC chip can be mounted on a substrate connected to the liquid crystal display panel 2 via, for example, an FPC. In this case, the CPU incorporated in the IC chip can function as the display control device 107, the image input control device 105, and the image processing device 100.
[0081] (実施の形態 2) 次に、本発明の実施の形態 2における表示装置及びバックライト装置について、図 9〜図 13を参照しながら説明する。図 9は、本発明の実施の形態 2における表示装 置の概略構成を示す断面図である。図 10は、図 9に示す表示装置の概略構成を示 す分解斜視図である。図 11は、図 9及び図 10に示した表示装置に備えられた撮像 部の概略構成を示す断面図である。なお、図 9〜図 11に示された符号のうち、図 1〜 図 3に示された符号と同一の符号は、図 1〜図 3において当該符号が付された部材と 同一の部材を示している。 [0081] (Embodiment 2) Next, a display device and a backlight device according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 9 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 2 of the present invention. FIG. 10 is an exploded perspective view showing a schematic configuration of the display device shown in FIG. FIG. 11 is a cross-sectional view illustrating a schematic configuration of an imaging unit provided in the display device illustrated in FIGS. Of the reference numerals shown in FIGS. 9 to 11, the same reference numerals as those shown in FIGS. 1 to 3 indicate the same members as those shown in FIGS. ing.
[0082] 図 9〜図 11に示すように、本実施の形態 2における表示装置は、検出光源 7の位置 及び撮像部 34の構成の点で、実施の形態 1における表示装置と異なっている。それ 以外の点では、本実施の形態 2における表示装置は、実施の形態 1における表示装 置と同様に構成されている。以下、相違点について具体的に説明する。  As shown in FIGS. 9 to 11, the display device according to the second embodiment is different from the display device according to the first embodiment in terms of the position of the detection light source 7 and the configuration of the imaging unit 34. In other respects, the display device in the second embodiment is configured in the same manner as the display device in the first embodiment. Hereinafter, the difference will be specifically described.
[0083] 図 11に示すように、本実施の形態 2においても、撮像部 34は、実施の形態 1と同様 に、レンズ素子 35と、固体撮像素子 32と、光学フィルタ 31とを備えている。但し、本 実施の形態 2においては、実施の形態 1と異なり、レンズ素子 35と、固体撮像素子 32 とによってシフト光学系は構成されていない。レンズ素子 35及び固体撮像素子 32は 、レンズ素子 35の光軸 35aと固体撮像素子 32の受光面の中心を通る法線 32aとが 一致するように、フレーム 36に保持されている。  As shown in FIG. 11, also in the second embodiment, the imaging unit 34 includes a lens element 35, a solid-state imaging device 32, and an optical filter 31, as in the first embodiment. . However, in the second embodiment, unlike the first embodiment, the lens element 35 and the solid-state imaging device 32 do not constitute a shift optical system. The lens element 35 and the solid-state imaging element 32 are held by the frame 36 so that the optical axis 35a of the lens element 35 and the normal line 32a passing through the center of the light-receiving surface of the solid-state imaging element 32 coincide.
[0084] このため、本実施の形態 2においては、図 9及び図 10に示すように、撮像部 34は、 固体撮像素子 32の受光面の中心を通る法線 32a (図 11参照)と、レンズ素子 35 (結 像光学系)の光軸 35a (図 11参照)とが、表示領域 3に向けて傾斜した状態で配置さ れている。なお、本実施の形態 2においても、複数個の撮像部 34が表示領域 3の裏 側に配置されている。  Therefore, in the second embodiment, as shown in FIGS. 9 and 10, the imaging unit 34 includes a normal 32a (see FIG. 11) passing through the center of the light receiving surface of the solid-state imaging device 32, and An optical axis 35a (see FIG. 11) of the lens element 35 (imaging optical system) is disposed in a state inclined toward the display area 3. In the second embodiment, a plurality of imaging units 34 are arranged on the back side of the display area 3.
[0085] また、本実施の形態 2において、検出光源 7は、実施の形態 1において図 4及び図 5に示したものと同様のものであるが、実施の形態 1と異なり、液晶表示パネル 2の裏 側における、液晶表示パネル 2の厚み方向にぉ 、て表示領域 3と重なる領域 (又は 空間)の周辺に配置されている。更に、検出光源 7は、検出光が表示領域 3に向かつ て出射されるように、光軸が傾斜した状態で配置されている。なお、図 9において、断 面に現れな 、検出光源 7につ 、ては図示を省略して 、る。 [0086] 本実施の形態 2においても、撮像部 34の光学的撮像距離 (結像光学系の焦点距 離)を稼ぐため、液晶表示パネル 2とバックライト装置 5とは、フレーム 37によって、一 定の距離を置いて保持されている。但し、フレーム 37の形状は、実施の形態 1にお いて図 1に示したフレーム 20の形状と異なっており、撮像部 34と検出光源 7とを斜め の状態で保持できるように形成されている。 In the second embodiment, the detection light source 7 is the same as that shown in FIGS. 4 and 5 in the first embodiment, but unlike the first embodiment, the liquid crystal display panel 2 The liquid crystal display panel 2 is disposed on the back side of the liquid crystal display panel 2 in the thickness direction and around the area (or space) overlapping the display area 3. Further, the detection light source 7 is disposed with the optical axis inclined so that the detection light is emitted toward the display region 3. In FIG. 9, illustration of the detection light source 7 that does not appear on the cross section is omitted. Also in the second embodiment, the liquid crystal display panel 2 and the backlight device 5 are separated by a frame 37 in order to increase the optical imaging distance of the imaging unit 34 (focal length of the imaging optical system). It is held at a fixed distance. However, the shape of the frame 37 is different from the shape of the frame 20 shown in FIG. 1 in Embodiment 1, and is formed so that the imaging unit 34 and the detection light source 7 can be held obliquely. .
[0087] このように、本実施の形態 2によれば、液晶表示パネル 2の観察者側に検出光源 7 が配置されないため、実施の形態 1に比べて、表示装置の正面側のデザインの自由 度を高めることができる。また、撮像部 34においてシフト光学系を採用しないため、 実施の形態 1に比べて、結像光学系を構成するレンズ系の小径化や、結像光学系の 簡略ィ匕を図ることができる。また、このため、設計コストの低減を図ることができる。  As described above, according to the second embodiment, since the detection light source 7 is not disposed on the viewer side of the liquid crystal display panel 2, the design on the front side of the display device is more flexible than in the first embodiment. The degree can be increased. In addition, since the shift optical system is not employed in the imaging unit 34, the diameter of the lens system constituting the imaging optical system can be reduced and the imaging optical system can be simplified as compared with the first embodiment. For this reason, the design cost can be reduced.
[0088] 但し、本実施の形態 2では、撮像部 34がシフト光学系を採用していないため、各撮 像部 34が撮像した画像は、図 12の上段に示すように、台形状に歪んでしまう。この ため、本実施の形態 2においては、図 12の下段に示すように、制御装置が、台形状 に歪んだ撮像画像を矩形状に補正している。なお、図 12は、図 9〜図 11に示した撮 像部によって撮像された画像の外形と補正後の画像の外形とを示す図である。また、 図 12中の横方向が走査線方向に相当する。  However, in the second embodiment, since the imaging unit 34 does not employ a shift optical system, the images captured by the imaging units 34 are distorted in a trapezoidal shape as shown in the upper part of FIG. End up. For this reason, in the second embodiment, as shown in the lower part of FIG. 12, the control device corrects the captured image distorted in a trapezoidal shape into a rectangular shape. FIG. 12 is a diagram illustrating the outer shape of the image captured by the imaging unit illustrated in FIGS. 9 to 11 and the outer shape of the corrected image. Further, the horizontal direction in FIG. 12 corresponds to the scanning line direction.
[0089] ここで、本実施の形態 2における表示装置で行われる画像処理について図 13を用 いて説明する。図 13は、図 9及び図 10に示す表示装置に備えられた制御装置の構 成を示すブロック図である。  Here, the image processing performed in the display device in the second embodiment will be described with reference to FIG. FIG. 13 is a block diagram showing a configuration of a control device provided in the display device shown in FIGS.
[0090] 図 13に示すように、本実施の形態 2における制御装置 109は、画像処理装置 100 力 画像補正部 104を備えており、この点で、本実施の形態 1における制御装置と異 なっている。本実施の形態 2においては、画像入力制御装置 105が出力した撮像デ ータについて、先ず、画像補正部 104によって台形歪みの補正が行われ、その後、 画像合成、オフセット成分及び表示成分の除去 (ノイズ除去)、画像認識が行われる  As shown in FIG. 13, the control device 109 according to the second embodiment includes an image processing device 100 force image correction unit 104, and is different from the control device according to the first embodiment in this respect. ing. In the second embodiment, the image data output from the image input control device 105 is first corrected for trapezoidal distortion by the image correction unit 104, and then image synthesis, offset component and display component removal ( (Noise removal), image recognition is performed
[0091] 具体的には、最初に、画像補正部 104は、図 12の上段に示した台形状の撮像画 像の上底 A、下底 B、高さ hを算出する。上底 A、下底 B、高さ hの算出は、撮像部 34 の位置、撮像領域の大きさ及び位置力も算出できる。また、上底 A、下底 B、高さ hの 算出は、予め表示領域 3に複数個の目印を配置しておき、撮像画像に含まれる目印 に基づ!/ヽて行うこともできる。 [0091] Specifically, first, the image correction unit 104 calculates the upper base A, the lower base B, and the height h of the trapezoidal captured image shown in the upper part of FIG. The calculation of the upper base A, the lower base B, and the height h can also calculate the position of the imaging unit 34, the size and positional force of the imaging region. Also, upper base A, lower base B, height h The calculation can also be performed by arranging a plurality of landmarks in the display area 3 in advance and based on the landmarks included in the captured image.
[0092] 次に、画像補正部 104は、撮像画像の上底 A及び下底 Bのうち短い方 (本実施の 形態 2では下底 B)が大きい方と同じになるように、走査線の位置に応じて倍率を変え ながら、撮像画像を拡大する。また、走査線方向に垂直な方向(高さ方向)について は、画像補正部 104は、高さ hが本来の高さ Hとなるように、撮像画像を拡大又は縮 小する。なお、高さ Hは、撮像領域の大きさから予め設定される。  [0092] Next, the image correction unit 104 adjusts the scanning line so that the shorter one of the upper base A and the lower base B of the captured image (the lower base B in the second embodiment) is the same as the larger one. The captured image is enlarged while changing the magnification according to the position. In the direction (height direction) perpendicular to the scanning line direction, the image correction unit 104 enlarges or reduces the captured image so that the height h becomes the original height H. Note that the height H is set in advance from the size of the imaging region.
[0093] このように、本実施の形態 2においては、撮像部 34においてシフト光学系を採用し ないことによる問題は、撮像後の画像処理によって解消することができる。また、本実 施の形態 2においても、表示領域 3上にある被写体 1の光学像は結像光学系によつ て受光面に結像される。よって、本実施の形態 2における表示装置を用いた場合も、 実施の形態 1と同様に、従来に比べて鮮明な光学像を得ることができ、高解像度で の画像の取り込みを達成できる。  As described above, in the second embodiment, the problem caused by not using the shift optical system in the imaging unit 34 can be solved by image processing after imaging. Also in the second embodiment, the optical image of the subject 1 on the display area 3 is imaged on the light receiving surface by the imaging optical system. Therefore, even when the display device according to the second embodiment is used, as in the first embodiment, a clear optical image can be obtained as compared with the conventional one, and an image can be captured at a high resolution.
[0094] また、本実施の形態 2にお 、ても、液晶表示パネルを用いるため、熱の発生の抑制 や、静音化及び小型化を図ることもできる。更に、本実施の形態 2においても、実施 の形態 1と同様に、被写体を撮像するために赤外領域の波長の光を使用し、可視光 によるノイズを除去できる。このため、例えば、 QRコード等の複雑な図形や、文字等 も鮮明に取り込むことができる。  [0094] Also, in the second embodiment, since the liquid crystal display panel is used, generation of heat can be suppressed, and noise reduction and size reduction can be achieved. Further, in the second embodiment, as in the first embodiment, light having a wavelength in the infrared region can be used to image a subject, and noise caused by visible light can be removed. For this reason, for example, complicated figures such as QR codes and characters can be clearly captured.
[0095] (実施の形態 3)  [0095] (Embodiment 3)
次に、本発明の実施の形態 3における表示装置及びバックライト装置について、図 14及び図 15を参照しながら説明する。図 14は、本発明の実施の形態 3における表 示装置の概略構成を示す断面図である。図 15は、図 14に示す表示装置の概略構 成を示す分解斜視図である。なお、図 14及び図 15に示された符号のうち、図 1及び 図 2に示された符号と同一の符号は、図 1及び図 2において当該符号が付された部 材と同一の部材を示している。  Next, a display device and a backlight device according to Embodiment 3 of the present invention will be described with reference to FIGS. FIG. 14 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 3 of the present invention. 15 is an exploded perspective view showing a schematic configuration of the display device shown in FIG. Of the reference numerals shown in FIGS. 14 and 15, the same reference numerals as those shown in FIGS. 1 and 2 denote the same members as those indicated by the reference numerals in FIGS. Show.
[0096] 図 14及び図 15に示すように、本実施の形態 3における表示装置は、バックライト装 置 40が、その内部に検出光源 7 (図 4及び図 5参照)を備えている点で、実施の形態 1における表示装置と異なっている。それ以外の点では、本実施の形態 3における表 示装置は、実施の形態 1における表示装置と同様に構成されている。以下、相違点 について具体的に説明する。 As shown in FIG. 14 and FIG. 15, the display device according to the third embodiment is that the backlight device 40 includes a detection light source 7 (see FIGS. 4 and 5) inside. This is different from the display device in the first embodiment. Otherwise, the table in the third embodiment is used. The display device is configured in the same manner as the display device in the first embodiment. The differences will be specifically described below.
[0097] 本実施の形態 3においては、検出光源 7は、バックライト装置 40の内部に、検出光 が液晶表示パネル 2に向けて出射されるように配置されている。具体的には、検出光 源 7は、蛍光ランプ 6が設置されていない領域に、出射面を上方に向けて配置されて いる。また、検出光は赤外領域の波長の光であるため、実施の形態 3においても、可 視光によるノイズは除去される。  In Embodiment 3, the detection light source 7 is arranged inside the backlight device 40 so that the detection light is emitted toward the liquid crystal display panel 2. Specifically, the detection light source 7 is arranged in an area where the fluorescent lamp 6 is not installed with the emission surface facing upward. Further, since the detection light is light having a wavelength in the infrared region, noise due to visible light is also removed in the third embodiment.
[0098] このような構成により、本実施の形態 3によれば、実施の形態 1及び 2に比べて、表 示領域 3上の検出光の光量分布を均一なものとできる。この結果、被写体 1の位置に 影響されない撮像を行うことができる。また、本実施の形態 3によれば、検出光源 7と ノ ックライト装置 40とを一体ィ匕できるため、実施の形態 1及び 2に比べて、表示装置 の構成の簡易化や、装置サイズのコンパクトィ匕を図ることができる。  With such a configuration, according to the third embodiment, the light amount distribution of the detection light on the display region 3 can be made uniform as compared with the first and second embodiments. As a result, imaging that is not affected by the position of the subject 1 can be performed. Further, according to the third embodiment, since the detection light source 7 and the knock light device 40 can be integrated, the configuration of the display device can be simplified and the device size can be reduced compared to the first and second embodiments.匕 匕 can be planned.
[0099] 更に、本実施の形態 3においても、実施の形態 1と同様に、従来に比べて鮮明な光 学像を得ることができ、高解像度での画像の取り込みを達成できる。例えば、 QRコー ド等の複雑な図形や、文字等も鮮明に取り込むことができる。また、液晶表示パネル を用いるため、熱の発生の抑制や、静音化及び小型化を図ることもできる。  [0099] Furthermore, in Embodiment 3, as in Embodiment 1, a clear optical image can be obtained as compared with the prior art, and image capture at high resolution can be achieved. For example, complicated figures such as QR codes, characters, etc. can be captured clearly. In addition, since a liquid crystal display panel is used, heat generation can be suppressed, noise reduction, and size reduction can be achieved.
[0100] (実施の形態 4)  [0100] (Embodiment 4)
次に、本発明の実施の形態 4における表示装置及びバックライト装置について、図 16及び図 17を参照しながら説明する。図 16は、本発明の実施の形態 4における表 示装置の概略構成を示す断面図である。図 17は、図 16に示す表示装置の概略構 成を示す分解斜視図である。なお、図 16及び図 17に示された符号のうち、図 1及び 図 2に示された符号と同一の符号は、図 1及び図 2において当該符号が付された部 材と同一の部材を示している。また、図 16において、断面に現れない検出光源 7に つ!、ては図示を省略して!/、る。  Next, a display device and a backlight device according to Embodiment 4 of the present invention will be described with reference to FIGS. FIG. 16 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 4 of the present invention. FIG. 17 is an exploded perspective view showing a schematic configuration of the display device shown in FIG. Of the reference numerals shown in FIGS. 16 and 17, the same reference numerals as those shown in FIGS. 1 and 2 denote the same members as those shown in FIGS. Show. In FIG. 16, the detection light source 7 that does not appear in the cross section is omitted!
[0101] 図 16及び図 17に示すように、本実施の形態 4における表示装置は、バックライト装 置 42が実施の形態 2で用いた撮像部 34を内部に備え、更に、光学層 13に開口部 4 1が形成されている点で、実施の形態 1における表示装置と異なっている。これら以 外の点では、本実施の形態 4における表示装置は、実施の形態 1における表示装置 と同様に構成されている。以下、相違点について具体的に説明する。 As shown in FIGS. 16 and 17, in the display device according to the fourth embodiment, the backlight device 42 includes the imaging unit 34 used in the second embodiment, and the optical layer 13 further includes It differs from the display device in Embodiment 1 in that the opening 41 is formed. In other respects, the display device in the fourth embodiment is the same as the display device in the first embodiment. It is configured in the same way. Hereinafter, the difference will be specifically described.
[0102] 本実施の形態 4においては、ノ ックライト装置 42は、図 11に示した撮像部 34を備 えている。撮像部 34は、隣り合う蛍光ランプ 6の間に配置されている。また、撮像部 3 4は、固体撮像素子 32 (図 11参照)の受光面の中心を通る法線とレンズ素子 35 (結 像光学系)の光軸とが、表示領域 3の法線と平行となるように配置されている。また、 ノ ックライト装置 42の光学層 13における、検出光源 7から出射された検出光がレンズ 素子 35に入射するまでの光学的経路 (撮像部 34に受光される光の光学的経路)と 重なる領域には、開口部 41が形成されている。  In the fourth embodiment, knock light device 42 includes imaging unit 34 shown in FIG. The imaging unit 34 is disposed between the adjacent fluorescent lamps 6. In addition, the imaging unit 34 has a normal line passing through the center of the light-receiving surface of the solid-state image sensor 32 (see FIG. 11) and an optical axis of the lens element 35 (imaging optical system) parallel to the normal line of the display area 3. It is arranged to become. Further, in the optical layer 13 of the knocklight device 42, an area overlapping with the optical path (the optical path of the light received by the imaging unit 34) until the detection light emitted from the detection light source 7 enters the lens element 35. An opening 41 is formed in the opening.
[0103] このように、本実施の形態 4においては、被写体 1が撮像部 34の正面に位置するこ ととなるため、撮像画像が台形状に歪むのが回避され、撮像画像に対して補正を行う 必要がない。また、シフト光学系を採用する撮像部を配置する必要性もない。このた め、本実施の形態 4によれば、実施の形態 2と同様に、結像光学系を構成するレンズ 系の小径ィ匕や、結像光学系の簡略化、設計コストの低減を図ることができる。更には 、本実施の形態 4によれば、制御装置における撮像画像の画像処理も簡略ィヒするこ とがでさる。  As described above, in Embodiment 4, the subject 1 is positioned in front of the imaging unit 34, so that the captured image is prevented from being distorted in a trapezoidal shape, and the captured image is corrected. There is no need to do. Further, there is no need to arrange an imaging unit that employs a shift optical system. Therefore, according to the fourth embodiment, as in the second embodiment, the small diameter of the lens system constituting the imaging optical system, the simplification of the imaging optical system, and the reduction of the design cost are achieved. be able to. Furthermore, according to the fourth embodiment, the image processing of the captured image in the control device can be simplified.
[0104] また、本実施の形態 4においては、撮像部 34の配置は、撮像部 34を筐体 8に載置 するだけで行うことができるため、撮像部 34の設置数の増減を容易に行うこともでき る。更に、開口部 41が形成されているため、被写体 1によって反射された検出光は、 光学層 13によって散乱したり、反射したり、更に減衰したりすることなぐレンズ素子 3 5 (図 11参照)に入射することができる。更に、本実施の形態 4におけるバックライト装 置 42を用いれば、従来力もの表示装置に簡単に撮像機能を付与することができる。  [0104] Further, in the fourth embodiment, the imaging unit 34 can be arranged simply by placing the imaging unit 34 on the housing 8. Therefore, the number of installed imaging units 34 can be easily increased or decreased. It can also be done. Furthermore, since the opening 41 is formed, the detection light reflected by the subject 1 is not scattered, reflected or further attenuated by the optical layer 13 (see FIG. 11). Can be incident. Furthermore, if the backlight device 42 according to the fourth embodiment is used, an imaging function can be easily given to a display device having a conventional power.
[0105] 更に、本実施の形態 4は、開口部の 41内部に、光学層 13に比べて光の透過率が 高い光学層が配置された態様であっても良い。具体的には、拡散板 9や拡散シート 1 0よりも拡散度が低い光学フィルムや、透明のフィルム等力 開口部 41の開口に嵌め 込まれた態様であっても良 、。  Furthermore, the fourth embodiment may be an aspect in which an optical layer having a higher light transmittance than the optical layer 13 is disposed inside the opening 41. Specifically, an optical film having a lower diffusivity than the diffusing plate 9 or the diffusing sheet 10 or a transparent film isotropic force may be fitted into the opening 41.
[0106] また、本実施の形態 4は、開口部 41が設けられる代わりに、光学層 13における撮 像部 34に受光される光の光学的経路と重なる領域が、光学層 13における他の領域 に比べて、光の透過率が高くなるように形成されている態様であっても良い。具体的 には、当該領域の拡散度のみが低く設定された拡散板 9や拡散シート 10を用いた態 様であっても良い。更に、プリズムシート 11や反射 Z偏光シート 12の当該領域のみ を、開口部にしたり、透明化したりした態様であっても良い。 Further, in Embodiment 4, instead of providing the opening 41, the region overlapping the optical path of the light received by the imaging unit 34 in the optical layer 13 is the other region in the optical layer 13. It may be an embodiment formed so that the light transmittance is higher than that. concrete Alternatively, the diffusion plate 9 or the diffusion sheet 10 in which only the diffusion degree of the region is set low may be used. Furthermore, the aspect which made only the said area | region of the prism sheet 11 or the reflective Z polarizing sheet 12 the opening part, or was transparent may be sufficient.
[0107] これらの態様であっても、上述した図 16の例と同様に、被写体 1によって反射され た検出光は、光学層 13によって散乱したり、反射したり、更に減衰したりすることなく 、レンズ素子 35に入射することができる。  Even in these embodiments, the detection light reflected by the subject 1 is not scattered, reflected, or further attenuated by the optical layer 13 as in the example of FIG. 16 described above. Can enter the lens element 35.
[0108] また、本実施の形態 4においても、実施の形態 1と同様に、従来に比べて鮮明な光 学像を得ることができ、高解像度での画像の取り込みを達成できる。例えば、 QRコー ド等の複雑な図形や、文字等も鮮明に取り込むことができる。また、液晶表示パネル を用いるため、熱の発生の抑制や、静音化及び小型化を図ることもできる。  [0108] Also, in the fourth embodiment, as in the first embodiment, a clear optical image can be obtained as compared with the conventional one, and an image can be captured at a high resolution. For example, complicated figures such as QR codes, characters, etc. can be captured clearly. In addition, since a liquid crystal display panel is used, heat generation can be suppressed, noise reduction, and size reduction can be achieved.
[0109] (実施の形態 5)  [Embodiment 5]
次に、本発明の実施の形態 5における表示装置及びバックライト装置について、図 18及び図 19を参照しながら説明する。図 18は、本発明の実施の形態 5における表 示装置の概略構成を示す断面図である。図 19は、図 18に示す表示装置の概略構 成を示す分解斜視図である。なお、図 18及び図 19に示された符号のうち、図 1及び 図 2に示された符号と同一の符号は、図 1及び図 2において当該符号が付された部 材と同一の部材を示している。また、図 18において、断面に現れない検出光源 7に つ!、ては図示を省略して!/、る。  Next, a display device and a backlight device according to Embodiment 5 of the present invention will be described with reference to FIGS. FIG. 18 is a cross-sectional view showing a schematic configuration of the display device in the fifth embodiment of the present invention. FIG. 19 is an exploded perspective view showing a schematic configuration of the display device shown in FIG. Of the reference numerals shown in FIGS. 18 and 19, the same reference numerals as those shown in FIGS. 1 and 2 denote the same members as those indicated by the reference numerals in FIGS. Show. In FIG. 18, the detection light source 7 that does not appear in the cross section is omitted!
[0110] 図 18及び図 19に示すように、本実施の形態 5における表示装置は、検出光源 7の 位置が異なる点を除き、実施の形態 4における表示装置と同様に構成されている。本 実施の形態 5においては、実施の形態 2と同様に、検出光源 7は、液晶表示パネル 2 の裏側における、液晶表示パネル 2の厚み方向にぉ 、て表示領域 3と重なる領域の 周辺に配置されている。更に、検出光源 7は、検出光が表示領域 3に向けて出射され るように、光軸が傾斜した状態で配置されて 、る。  As shown in FIGS. 18 and 19, the display device in the fifth embodiment is configured in the same manner as the display device in the fourth embodiment except that the position of the detection light source 7 is different. In the fifth embodiment, as in the second embodiment, the detection light source 7 is arranged on the back side of the liquid crystal display panel 2 in the thickness direction of the liquid crystal display panel 2 and around the area overlapping the display area 3. Has been. Further, the detection light source 7 is arranged with the optical axis inclined so that the detection light is emitted toward the display region 3.
[0111] なお、本実施の形態 5においても、実施の形態 4と同様に、ノ ックライト装置 42は、 図 11に示した撮像部 34を備え、撮像部 34は、隣り合う蛍光ランプ 6の間に配置され ている。また、光学層 13における、検出光源 7から出射された検出光がレンズ素子 3 5 (図 11参照)に入射するまでの光学的経路と重なる領域には、開口部 41が形成さ れている。 [0111] Note that, also in the fifth embodiment, as in the fourth embodiment, the knocklight device 42 includes the imaging unit 34 shown in FIG. 11, and the imaging unit 34 is located between the adjacent fluorescent lamps 6. It is arranged in. In addition, an opening 41 is formed in the optical layer 13 in a region overlapping with the optical path until the detection light emitted from the detection light source 7 enters the lens element 35 (see FIG. 11). It is.
[0112] このように、本実施の形態 5によれば、実施の形態 4によって得られる効果を得るこ とができる。また、本実施の形態 5によれば、実施の形態 2と同様に、表示領域 3側に 検出光源 7が配置されないため、表示装置の正面側のデザインの自由度を高めるこ とがでさる。  As described above, according to the fifth embodiment, it is possible to obtain the effects obtained by the fourth embodiment. Further, according to the fifth embodiment, as in the second embodiment, since the detection light source 7 is not arranged on the display region 3 side, the degree of freedom in design on the front side of the display device can be increased.
[0113] (実施の形態 6)  [0113] (Embodiment 6)
次に、本発明の実施の形態 6における表示装置及びバックライト装置について、図 20及び図 21を参照しながら説明する。図 20は、本発明の実施の形態 6における表 示装置の概略構成を示す断面図である。図 21は、図 20に示す表示装置の概略構 成を示す分解斜視図である。なお、図 20及び図 21に示された符号のうち、図 1及び 図 2に示された符号と同一の符号は、図 1及び図 2において当該符号が付された部 材と同一の部材を示している。  Next, a display device and a backlight device according to Embodiment 6 of the present invention will be described with reference to FIGS. FIG. 20 is a cross-sectional view showing a schematic configuration of the display device in the sixth embodiment of the present invention. FIG. 21 is an exploded perspective view showing a schematic configuration of the display device shown in FIG. Of the reference numerals shown in FIGS. 20 and 21, the same reference numerals as those shown in FIGS. 1 and 2 denote the same members as those indicated by the reference numerals in FIGS. Show.
[0114] 図 20及び図 21に示すように、本実施の形態 6においては、ノ ックライト装置 43が、 その内部に、撮像部 34に加え、検出光源 7も備えており、この点で、本実施の形態 6 における表示装置は、実施の形態 4及び 5における表示装置と異なっている。なお、 それ以外の点では、本実施の形態 6における表示装置は、実施の形態 4及び 5にお ける表示装置と同様に構成されている。以下、相違点について具体的に説明する。  As shown in FIG. 20 and FIG. 21, in the sixth embodiment, the knock light device 43 includes the detection light source 7 in addition to the imaging unit 34 in this respect. The display device in the sixth embodiment is different from the display devices in the fourth and fifth embodiments. In other respects, the display device in the sixth embodiment is configured in the same manner as the display devices in the fourth and fifth embodiments. Hereinafter, the difference will be specifically described.
[0115] 本実施の形態 6においても、ノ ックライト装置 43は、実施の形態 4及び 5と同様に、 撮像部 34を備えている。撮像部 34は、隣り合う蛍光ランプ 6の間に配置されている。 また、ノ ックライト装置 43の光学層 13における、検出光がレンズ素子 35 (図 11参照) に入射するまでの光学的経路と重なる領域には、開口部 41が形成されている。なお 、実施の形態 4と同様に、開口部 41を設けない態様としても良い。  [0115] Also in the sixth embodiment, the knock light device 43 includes the imaging unit 34 as in the fourth and fifth embodiments. The imaging unit 34 is disposed between the adjacent fluorescent lamps 6. In addition, an opening 41 is formed in the optical layer 13 of the knocklight device 43 in a region overlapping with the optical path until the detection light enters the lens element 35 (see FIG. 11). As in the fourth embodiment, the opening 41 may not be provided.
[0116] 但し、本実施の形態 6においては、蛍光ランプ 6及び撮像部 34が配置されていない 領域には、検出光源 7 (図 4及び図 5参照)が配置されている。図 21に示すように、例 えば、隣り合う蛍光ランプ 6間のうち撮像部 34が配置されていない箇所には、図 14及 び図 15に示した実施の形態 3と同様に、検出光源 7が配置されている。また、図 21 に示すように、隣り合う蛍光ランプ 6間のうち撮像部 34が配置されている箇所には、 撮像部 34を挟み込むように、全長が短く設定された検出光源 7が配置されている。 [0117] このように、本実施の形態 6によれば、検出光源 7と撮像部 34との両方をバックライ ト装置 43の内部に収めることができるため、実施の形態 1〜5に比べて、表示装置の コンパクトィ匕を促進することができる。また、従来からの透過型液晶表示装置のバック ライトを、本実施の形態 6におけるバックライト装置に取り替えれば、簡単に本実施の 形態 6における表示装置を得ることができる。 However, in the sixth embodiment, the detection light source 7 (see FIGS. 4 and 5) is arranged in an area where the fluorescent lamp 6 and the imaging unit 34 are not arranged. As shown in FIG. 21, for example, in the portion between the adjacent fluorescent lamps 6 where the imaging unit 34 is not arranged, the detection light source 7 is provided in the same manner as in the third embodiment shown in FIGS. Is arranged. In addition, as shown in FIG. 21, a detection light source 7 having a short overall length is arranged so that the imaging unit 34 is sandwiched between the fluorescent lamps 6 adjacent to each other where the imaging unit 34 is arranged. Yes. [0117] Thus, according to the sixth embodiment, both the detection light source 7 and the imaging unit 34 can be accommodated in the backlight device 43, and therefore, compared to the first to fifth embodiments, The compactness of the display device can be promoted. Further, if the conventional backlight of the transmissive liquid crystal display device is replaced with the backlight device in the sixth embodiment, the display device in the sixth embodiment can be easily obtained.
[0118] また、本実施の形態 6においても、実施の形態 3と同様に、表示領域 3上の検出光 の光量分布を均一なものとでき、被写体 1の位置に影響されない撮像を行うことがで きる。更に、本実施の形態 6においても、実施の形態 4と同様に、撮像画像が台形状 に歪むのが回避されるので、撮像画像に対して補正を行う必要性や、シフト光学系を 採用する撮像部を配置する必要性がない。また、実施の形態 1と同様に、従来に比 ベて鮮明な光学像を得ることができ、高解像度での画像の取り込みを達成できる。例 えば、 QRコード等の複雑な図形や、文字等も鮮明に取り込むことができる。また、液 晶表示パネルを用いるため、熱の発生の抑制や、静音化及び小型化を図ることもで きる。  Also in the sixth embodiment, similarly to the third embodiment, the light amount distribution of the detection light on the display region 3 can be made uniform, and imaging that is not affected by the position of the subject 1 can be performed. it can. Further, in the sixth embodiment, as in the fourth embodiment, since the captured image is prevented from being distorted in a trapezoidal shape, it is necessary to correct the captured image and a shift optical system is adopted. There is no need to arrange an imaging unit. Further, as in the first embodiment, a clearer optical image can be obtained as compared with the conventional case, and the image can be captured at a high resolution. For example, complicated figures such as QR codes and characters can be captured clearly. In addition, since a liquid crystal display panel is used, heat generation can be suppressed, and noise reduction and miniaturization can be achieved.
[0119] (実施の形態 7)  [Embodiment 7]
次に、本発明の実施の形態 7における表示装置及びバックライト装置について、図 22及び図 23を参照しながら説明する。図 22は、本発明の実施の形態 7における表 示装置の概略構成を示す断面図である。図 23は、図 22に示す表示装置の概略構 成を示す分解斜視図である。なお、図 22及び図 23に示された符号のうち、図 1及び 図 2に示された符号と同一の符号は、図 1及び図 2において当該符号が付された部 材と同一の部材を示している。  Next, a display device and a backlight device according to Embodiment 7 of the present invention will be described with reference to FIGS. FIG. 22 is a cross-sectional view showing a schematic configuration of the display device in the seventh embodiment of the present invention. FIG. 23 is an exploded perspective view showing a schematic configuration of the display device shown in FIG. Of the reference numerals shown in FIGS. 22 and 23, the same reference numerals as those shown in FIGS. 1 and 2 indicate the same members as those indicated by the reference numerals in FIGS. Show.
[0120] 図 22及び図 23に示すように、本実施の形態 7においては、ノ ックライト装置 44は、 実施の形態 6において図 20及び図 21に示した蛍光ランプ 6と検出光源 7との代わり に、発光体 45を備えている。なお、これ以外の点においては、本実施の形態 7にお ける表示装置は、実施の形態 6における表示装置と同様に構成されている。以下、相 違点について具体的に説明する。  As shown in FIGS. 22 and 23, in the seventh embodiment, the knock light device 44 is replaced with the fluorescent lamp 6 and the detection light source 7 shown in FIGS. 20 and 21 in the sixth embodiment. In addition, a light emitter 45 is provided. In other respects, the display device according to the seventh embodiment is configured in the same manner as the display device according to the sixth embodiment. The differences will be explained in detail below.
[0121] 図 22及び図 23に示すように、発光体 45は、バックライト装置 44の筐体 8の内部に 配置されている。発光体 45は、 4種類の発光ダイオード 46〜49を備えている。発光 ダイオード 46〜49は、榭脂のモールドによって一体化されている。また、発光ダイォ ード 46は緑色光を出射する緑色ダイオード、発光ダイオード 47は赤色光を出射する 赤色発光ダイオード、発光ダイオード 48は青色光を出射する青色発光ダイオードで ある。更に、発光ダイオード 49は、図 4及び図 5に示した発光ダイオード 21と同様に 赤外領域の光を出射する発光ダイオードである。 As shown in FIGS. 22 and 23, the light emitter 45 is disposed inside the housing 8 of the backlight device 44. The light emitter 45 includes four types of light emitting diodes 46 to 49. Light emission The diodes 46 to 49 are integrated by a resin mold. The light emitting diode 46 is a green diode that emits green light, the light emitting diode 47 is a red light emitting diode that emits red light, and the light emitting diode 48 is a blue light emitting diode that emits blue light. Further, the light-emitting diode 49 is a light-emitting diode that emits light in the infrared region in the same manner as the light-emitting diode 21 shown in FIGS.
[0122] 更に、図 23に示すように、一つの発光ダイオード 49の周囲には、発光ダイオード 4 7及び 48それぞれ二つずつと、四つの発光ダイオード 46とが配置される。また、発光 ダイオード 46〜49は、発光体 45〖こおける、表示領域 3の直下の領域全体に渡って 設置されている。 Furthermore, as shown in FIG. 23, two light emitting diodes 47 and 48 and four light emitting diodes 46 are arranged around one light emitting diode 49. In addition, the light emitting diodes 46 to 49 are installed over the entire region immediately below the display region 3 in which 45 light emitters can be stored.
[0123] このように構成された発光体 45において、発光ダイオード 46〜48を点灯させれば 、液晶表示パネル 2を照明することができる。また、発光ダイオード 49を点灯させれ ば、実施の形態 6と同様に、表示領域 3に向けて検出光が出射される。なお、本実施 の形態 7においては、発光ダイオード 46〜48の代わりに、白色光を出射する発光ダ ィ才ードを用 、ることもできる。  [0123] In the light emitter 45 configured as described above, the liquid crystal display panel 2 can be illuminated by turning on the light emitting diodes 46 to 48. If the light emitting diode 49 is turned on, the detection light is emitted toward the display area 3 as in the sixth embodiment. In the seventh embodiment, instead of the light emitting diodes 46 to 48, a light emitting diode capable of emitting white light can be used.
[0124] 更に、発光体 45には、複数の開口部 45aが設けられており、複数の撮像部 34それ ぞれは、各開口部 45a内に配置されている。また、光学層 13には、実施の形態 4〜6 と同様に、開口部 41が設けられている。よって、撮像部 34は、発光ダイオード 49から 出射され、被写体 1で反射された検出光を受光して、撮像を行うことができる。なお、 実施の形態 4と同様に、開口部 41を設けない態様としても良い。  [0124] Furthermore, the light emitter 45 is provided with a plurality of openings 45a, and each of the plurality of imaging units 34 is disposed in each opening 45a. The optical layer 13 is provided with an opening 41 as in the fourth to sixth embodiments. Therefore, the imaging unit 34 can receive the detection light emitted from the light emitting diode 49 and reflected by the subject 1 to perform imaging. As in the fourth embodiment, the opening 41 may not be provided.
[0125] このように、本実施の形態 7によれば、検出光源とバックライト装置 44の光源とを共 通の回路によって駆動できる。このため、ノ ックライト装置のコンパクト化、ひいては表 示装置全体のコンパクトィ匕を図ることができる。また、バックライト装置 44は、実施の形 態 6と同様に、検出光源 (発光ダイオード 49)と撮像部 34とを備えている。よって、本 実施の形態 7によれば、実施の形態 6で述べた効果を全て得ることもできる。  Thus, according to the seventh embodiment, the detection light source and the light source of the backlight device 44 can be driven by a common circuit. For this reason, the knocklight device can be made compact, and the entire display device can be made compact. Similarly to the sixth embodiment, the backlight device 44 includes a detection light source (light emitting diode 49) and an imaging unit 34. Therefore, according to the seventh embodiment, all the effects described in the sixth embodiment can be obtained.
[0126] (実施の形態 8)  [Embodiment 8]
次に、本発明の実施の形態 8における表示装置及びバックライト装置について、図 24を参照しながら説明する。図 24は、本発明の実施の形態 8における表示装置の概 略構成を示す断面図である。なお、図 24に示された符号のうち、図 1に示された符号 と同一の符号は、図 1において当該符号が付された部材と同一の部材を示している。 Next, a display device and a backlight device according to Embodiment 8 of the present invention will be described with reference to FIG. FIG. 24 is a cross-sectional view showing a schematic configuration of the display device according to Embodiment 8 of the present invention. Of the symbols shown in FIG. 24, the symbols shown in FIG. The same reference numerals as those shown in FIG. 1 denote the same members as those assigned with the reference numerals in FIG.
[0127] 図 24に示すように、本実施の形態 8における表示装置は、透明板 14を備えている 点、及び検出光源 7の光軸の方向の点で、実施の形態 1における表示装置と異なつ ている。それ以外の点では、本実施の形態 8における表示装置は、実施の形態 1に おける表示装置と同様に構成されている。以下、相違点について具体的に説明する As shown in FIG. 24, the display device according to the eighth embodiment is different from the display device according to the first embodiment in that it includes a transparent plate 14 and in the direction of the optical axis of the detection light source 7. It is different. In other respects, the display device in the eighth embodiment is configured in the same manner as the display device in the first embodiment. Below, the differences are explained in detail.
[0128] 図 24に示すように、本実施の形態 8においては、実施の形態 1と異なり、液晶表示 パネル 2の観察者側に透明板 14が配置されている。また、液晶表示パネルの表示領 域 3は透明板 14によって覆われている。透明板 14の配置は、透明板 14と表示領域 3 との間に空間 15が形成されるように行なわれている。透明板 14は、例えば、アクリル 板やガラス板といった透明の材料によって形成された板材であれば良い。なお、透 明板 14の透過率は 100%である必要はなぐ 100%に満たなくても良い。また、透明 板 14を取り付ける必要があるため、本実施の形態 8では、フレーム 38が用いられて いる。 As shown in FIG. 24, in the eighth embodiment, unlike in the first embodiment, a transparent plate 14 is arranged on the viewer side of the liquid crystal display panel 2. Further, the display area 3 of the liquid crystal display panel is covered with a transparent plate 14. The transparent plate 14 is arranged so that a space 15 is formed between the transparent plate 14 and the display area 3. The transparent plate 14 may be a plate material made of a transparent material such as an acrylic plate or a glass plate. Note that the transmittance of the transparent plate 14 need not be 100%, but need not be less than 100%. Further, since it is necessary to attach the transparent plate 14, the frame 38 is used in the eighth embodiment.
[0129] 検出光源 7は、実施の形態 1と同様に、液晶表示パネル 2の表示領域 3の周辺の領 域に配置されている。具体的には、検出光源 7は、表示領域 3の四辺に沿って 4つ配 置されている。但し、本実施の形態 8においては、実施の形態 1と異なり、検出光源 7 は、検出光が空間 15から透明板 14に入射するように配置されている。言い換えると、 検出光源 7は、空間 15を取り囲む位置において、発光ダイオード 21の光軸を液晶表 示パネル 2の主面力 離れる方向に傾斜させて配置されている。これは、本実施の形 態 8では、被写体 1は透明板 14の外側の面上に位置することとなるためである。なお 、本実施の形態 8において、検出光源 7の役割は、実施の形態 1で述べた検出光源 7 の役割と同様であるので、その説明は省略する。また、図 24において、断面に現れ な 、検出光源 7につ 、ては図示を省略して 、る。  The detection light source 7 is arranged in a region around the display region 3 of the liquid crystal display panel 2 as in the first embodiment. Specifically, four detection light sources 7 are arranged along the four sides of the display area 3. However, in the eighth embodiment, unlike the first embodiment, the detection light source 7 is arranged so that the detection light enters the transparent plate 14 from the space 15. In other words, the detection light source 7 is disposed at a position surrounding the space 15 so that the optical axis of the light emitting diode 21 is inclined in a direction away from the main surface force of the liquid crystal display panel 2. This is because in Embodiment 8, the subject 1 is located on the outer surface of the transparent plate 14. In the eighth embodiment, the role of the detection light source 7 is the same as the role of the detection light source 7 described in the first embodiment, and the description thereof is omitted. In FIG. 24, the detection light source 7 not shown in the cross section is omitted.
[0130] ところで、図 1で示した実施の形態 1における表示装置においては、被写体 1の略 真横から検出光が出射される。つまり、表示装置を横力 見たときに、被写体 1と表示 装置との接触面は、液晶表示パネル 2の観察者側を上方とすると、検出光源 7の設 置位置と略同じところか、それよりも下方のところに位置する。よって、光の利用効率 の点からは、検出光源 7から出射される検出光は、液晶表示パネル 2の主面と略並行 な平行光であることが求められる。 By the way, in the display device according to the first embodiment shown in FIG. 1, detection light is emitted from substantially the side of the subject 1. In other words, when the display device is viewed laterally, the contact surface between the subject 1 and the display device is approximately the same as the installation position of the detection light source 7 when the observer side of the liquid crystal display panel 2 is up. It is located below. Therefore, light utilization efficiency From this point, the detection light emitted from the detection light source 7 is required to be parallel light substantially parallel to the main surface of the liquid crystal display panel 2.
[0131] し力しながら、検出光源 7を構成する発光ダイオード 21から出射される光は、一定 の広がりを有する拡散光である。このため、発光ダイオード 21から出射された光のう ち、液晶表示パネル 2側へと拡散する光は、被写体 1に到達することなぐ液晶表示 パネル 2に入射してしまう。  [0131] The light emitted from the light-emitting diodes 21 constituting the detection light source 7 is a diffused light having a certain spread. For this reason, of the light emitted from the light emitting diode 21, the light diffusing toward the liquid crystal display panel 2 side enters the liquid crystal display panel 2 without reaching the subject 1.
[0132] これに対して、本実施の形態 8においては、図 24に示すように、被写体 1は液晶表 示パネル 2の上方に配置された透明板 14と接触する。つまり、表示装置を横から見 たときに、被写体 1と表示装置との接触面は、液晶表示パネル 2の観察者側を上方と すると、検出光源 7の設置位置よりも上方のところに位置することになる。更に、検出 光は、空間 15から透明板 14の液晶表示パネル 2側の主面に向けて、即ち、被写体 1 の斜め下方から出射される。このため、本実施の形態 8によれば、実施の形態 1では 被写体 1に到達しな力つた光も被写体 1へと到達させることができる。よって、本実施 の形態 8によれば、実施の形態 1に比べて、発光ダイオード 21から出射された検出 光の利用効率の向上を図ることができる。この結果、本実施の形態 8によれば、撮像 部 4において、更なる感度の向上を図ることができる。  On the other hand, in Embodiment 8, as shown in FIG. 24, the subject 1 comes into contact with the transparent plate 14 disposed above the liquid crystal display panel 2. That is, when the display device is viewed from the side, the contact surface between the subject 1 and the display device is located above the installation position of the detection light source 7 when the observer side of the liquid crystal display panel 2 is upward. It will be. Further, the detection light is emitted from the space 15 toward the main surface of the transparent plate 14 on the liquid crystal display panel 2 side, that is, obliquely below the subject 1. For this reason, according to the eighth embodiment, light that has not reached the subject 1 in the first embodiment can also reach the subject 1. Therefore, according to the eighth embodiment, the use efficiency of the detection light emitted from the light emitting diode 21 can be improved as compared with the first embodiment. As a result, according to the eighth embodiment, the imaging unit 4 can further improve the sensitivity.
[0133] 更に、本実施の形態 8によれば、被写体 1と透明板 14との接触面に向けて検出光 が照射されるため、実施の形態 1に比べて接触面の情報を得ることが容易となる。更 に、本実施の形態 8においては、透明板 14により、液晶表示パネル 2の保護も図られ る。  [0133] Furthermore, according to the eighth embodiment, the detection light is emitted toward the contact surface between the subject 1 and the transparent plate 14, so that information on the contact surface can be obtained as compared with the first embodiment. It becomes easy. Further, in the eighth embodiment, the liquid crystal display panel 2 can be protected by the transparent plate 14.
[0134] ところで、本実施の形態 8、更に実施の形態 1及び 4においては、実施の形態 2、 3、 及び 5〜7と異なり、検出光源 7は液晶表示パネルの観察者側に配置されており、検 出光は液晶表示パネルを介することなく被写体 1に到達できる。このため、本実施の 形態 8、実施の形態 1及び実施の形態 4によれば、以下の効果を得ることができる。  By the way, in the eighth embodiment, and further in the first and fourth embodiments, unlike the second, third, and fifth to seventh embodiments, the detection light source 7 is arranged on the viewer side of the liquid crystal display panel. Therefore, the detection light can reach subject 1 without going through the liquid crystal display panel. Therefore, according to the eighth embodiment, the first embodiment, and the fourth embodiment, the following effects can be obtained.
[0135] 実施の形態 1で述べたように、実施の形態 1〜実施の形態 8で用いられるアクティブ マトリクス基板 2cは、ガラス基板上に、アクティブ素子 (TFT)をマトリクス状に複数個 配置して構成されている。また、ガラス基板上には各種の金属配線も形成される。こ のアクティブマトリクス基板 2cを備える液晶表示パネル 2を裏面側カゝら観察すると、ガ ラス基板越しに金属製の電極や配線が確認される。このため、実施の形態 2、 3、及 び 5〜7のように、液晶表示パネル 2の裏面側から検出光を出射すると、検出光の一 部は、アクティブマトリクス基板 2cの電極や配線によって反射され、撮像部 4に入射し てしまうことがある。この場合、撮像部 4の SZNが低下する可能性がある。 [0135] As described in the first embodiment, the active matrix substrate 2c used in the first to eighth embodiments includes a plurality of active elements (TFTs) arranged in a matrix on a glass substrate. It is configured. Various metal wirings are also formed on the glass substrate. When the liquid crystal display panel 2 having this active matrix substrate 2c is observed from the back side, Metal electrodes and wiring are confirmed over the glass substrate. Therefore, when the detection light is emitted from the back side of the liquid crystal display panel 2 as in Embodiments 2, 3, and 5-7, a part of the detection light is reflected by the electrodes and wirings of the active matrix substrate 2c. May be incident on the imaging unit 4. In this case, the SZN of the imaging unit 4 may decrease.
[0136] 一方、上述したように、本実施の形態 8、更に実施の形態 1及び 4においては、検出 光源 7は液晶表示パネルの観察者側に配置されており、観察者側で被写体 1への検 出光の照射が行なわれている。よって、実施の形態 2、 3、及び 5〜7のように、液晶 表示パネル 2の裏面側で検出光は反射されないため、この反射による撮像部 4の SZ Nの低下は抑制される。また、本実施の形態 8、更に実施の形態 1及び 4においては 、検出光は、出射されて力 撮像部 4に入射するまでの間に一度し力液晶表示パネ ル 2を通過せず、液晶表示パネル 2の通過による光の損失力 実施の形態 2、 3、及 び 5〜7に比べて抑制される。よって、本実施の形態 8、更に実施の形態 1及び 4によ れば、実施の形態 2、 3、及び 5〜7に比べて検出光の利用率を高めることができ、撮 像部 4の受光量を増加できる。  On the other hand, as described above, in the eighth embodiment, and further in the first and fourth embodiments, the detection light source 7 is arranged on the viewer side of the liquid crystal display panel, and the viewer 1 moves to the subject 1. The detection light is irradiated. Therefore, since the detection light is not reflected on the back side of the liquid crystal display panel 2 as in the second, third, and fifth to seventh embodiments, the decrease in SZN of the imaging unit 4 due to this reflection is suppressed. Further, in the eighth embodiment, and further in the first and fourth embodiments, the detection light does not pass through the force liquid crystal display panel 2 until it is emitted and incident on the force imaging unit 4, and the liquid crystal The loss power of light due to the passage of the display panel 2 is suppressed as compared with the second, third, and fifth to seventh embodiments. Therefore, according to the eighth embodiment and the first and fourth embodiments, the utilization rate of the detection light can be increased as compared with the second, third, and fifth to seventh embodiments. The amount of received light can be increased.
[0137] なお、本実施の形態 8においては、実施の形態 1において図 1及び図 2に示した表 示装置に透明板 14を取り付け、更に、検出光源 7の出射方向を上方に傾斜させた態 様について説明している力 本実施の形態 8はこれに限定されるものではない。本実 施の形態 8は、例えば、実施の形態 4において図 16及び図 17に示した表示装置に 透明板 14を取り付け、更に、検出光源 7の出射方向を上方に傾斜させた態様であつ ても良い。  [0137] In the eighth embodiment, the transparent plate 14 is attached to the display device shown in Figs. 1 and 2 in the first embodiment, and the emission direction of the detection light source 7 is inclined upward. The power explaining the mode This Embodiment 8 is not limited to this. In the eighth embodiment, for example, the transparent plate 14 is attached to the display device shown in FIGS. 16 and 17 in the fourth embodiment, and the emission direction of the detection light source 7 is inclined upward. Also good.
[0138] また、本実施の形態 8における表示装置は、図 25及び図 26に示す態様とすること もできる。図 25は、本発明の実施の形態 8における表示装置の他の例の概略構成を 示す断面図である。図 26は、図 25に示す表示装置を観察者側から見たときの検出 光源と撮像部との位置関係を示す図である。なお、図 26においては、検出光源 7、 液晶表示パネル 2、撮像部 4のみを図示しており、他の部材については図示を省略し ている。  [0138] Further, the display device according to the eighth embodiment may be configured as shown in Figs. FIG. 25 is a cross-sectional view showing a schematic configuration of another example of the display device according to Embodiment 8 of the present invention. FIG. 26 is a diagram showing the positional relationship between the detection light source and the imaging unit when the display device shown in FIG. 25 is viewed from the observer side. In FIG. 26, only the detection light source 7, the liquid crystal display panel 2, and the imaging unit 4 are illustrated, and the other members are not illustrated.
[0139] 図 25及び図 26に示すように、本例では、実施の形態 2において図 11に示した撮像 部 34が用いられている。また、本例では、図 26に示すように、撮像部 34及び検出光 源 7は、観察者側 (透明板 14の上方)からこれらを見たときに、撮像部 34の撮像方向 と検出光源 7の出射方向とが互いに交差するように配置されて 、る。 [0139] As shown in FIGS. 25 and 26, in this example, the imaging unit 34 shown in FIG. 11 in the second embodiment is used. In this example, as shown in FIG. 26, the imaging unit 34 and the detection light The source 7 is arranged so that the imaging direction of the imaging unit 34 and the emission direction of the detection light source 7 intersect each other when viewed from the observer side (above the transparent plate 14).
[0140] 本例において、撮像部 34の撮像方向とは、撮像素子 32 (図 11参照)の中心力 透 明板 14の主面上の撮像領域の中心へと向力 方向をいう。観察者側力も見たときの 撮像方向は、図 26の矢印 Xに示す方向となる。検出光源 7の出射方向とは、検出光 源 7の出射面の法線方向、即ち、図 4に示した光学シート 24の法線方向をいう。観察 者側から見たときの出射方向は、図 26の矢印 Yに示す方向となる。  [0140] In this example, the imaging direction of the imaging unit 34 refers to the direction of the directional force toward the center of the imaging region on the main surface of the transparent surface 14 of the imaging device 32 (see Fig. 11). The imaging direction when the observer side force is also seen is the direction indicated by arrow X in FIG. The emission direction of the detection light source 7 refers to the normal direction of the emission surface of the detection light source 7, that is, the normal direction of the optical sheet 24 shown in FIG. The emission direction when viewed from the observer side is the direction indicated by the arrow Y in FIG.
[0141] 具体的には、図 26に示すように、検出光源 7は、長方形状の表示領域 3の対向す る二つの長辺に沿って配置され、撮像部 34は、長方形状の表示領域 3の対向する 二つの短辺に沿って配置されている。撮像部 34の撮像方向 Xと検出光源 7の出射方 向 Yとは、観察者側 (透明板 14の上方)から見たときに、直角に交差している。  Specifically, as shown in FIG. 26, the detection light source 7 is arranged along two opposing long sides of the rectangular display region 3, and the imaging unit 34 is arranged in the rectangular display region. It is arranged along two opposing two short sides. The imaging direction X of the imaging unit 34 and the emission direction Y of the detection light source 7 intersect at right angles when viewed from the observer side (above the transparent plate 14).
[0142] このような構成により、本例によれば次の効果を得ることができる。図 25に示すよう に、表示領域 3の上方に透明板 14を配置すると、検出光源 7から出射された検出光 の一部が、透明板 14を通過せずに透明板 14で反射されることがある。図 25におい て 16は、透明板 14で反射された検出光 (反射検出光)を示している。このとき、反射 検出光 16が撮像部 4に入射すると、撮像画像に検出光源 7の像が含まれてしまい、 画質が低下する可能性がある。  [0142] With this configuration, the following effects can be obtained according to this example. As shown in FIG. 25, when the transparent plate 14 is arranged above the display area 3, a part of the detection light emitted from the detection light source 7 is reflected by the transparent plate 14 without passing through the transparent plate 14. There is. In FIG. 25, reference numeral 16 denotes detection light (reflection detection light) reflected by the transparent plate 14. At this time, if the reflected detection light 16 enters the imaging unit 4, the image of the detection light source 7 is included in the captured image, and the image quality may deteriorate.
[0143] これに対して、本例では、上述したように、撮像部 34の撮像方向 Xと検出光源 7の 出射方向 Yとが、観察者側力も見たときに交差するため、観察者側から見たときの反 射検出光 16の方向も撮像部 34の撮像方向 Xと交差する。よって、本例によれば、反 射検出光 16の撮像部 4への入射を抑制でき、この結果、撮像画像の画質の向上を 図ることができる。  [0143] On the other hand, in this example, as described above, the imaging direction X of the imaging unit 34 and the emission direction Y of the detection light source 7 intersect when the observer side force is also seen. The direction of the reflected detection light 16 when viewed from above also intersects the imaging direction X of the imaging unit 34. Therefore, according to this example, the incidence of the reflection detection light 16 on the imaging unit 4 can be suppressed, and as a result, the image quality of the captured image can be improved.
[0144] また、本例においては、撮像部 34の代わりに、シフト光学系を備えた撮像部 4 (図 3 参照)を用いることもできる。更に、本例のように、表示領域 3が矩形状を呈している場 合は、撮像部 4は、検出光源 7が配置された辺に隣接する辺に沿って配置されてい れば良い。よって、本例では、表示領域 3の長辺に沿って撮像部 34が配置され、短 辺に沿って検出光源 7が配置されていても良い。  In this example, instead of the imaging unit 34, the imaging unit 4 (see FIG. 3) including a shift optical system can be used. Further, when the display area 3 has a rectangular shape as in this example, the imaging unit 4 only needs to be arranged along a side adjacent to the side where the detection light source 7 is arranged. Therefore, in this example, the imaging unit 34 may be arranged along the long side of the display region 3 and the detection light source 7 may be arranged along the short side.
[0145] 但し、図 26に示すように、撮像部 34を短辺に沿って配置し、検出光源 7を長辺に 沿って配置する場合は、検出光源 7の設置スペースを大きくできるため、検出光の光 量を容易に確保することができる。また、この場合は、撮像部 34を長辺に沿って配置 した場合に比べて光学的撮像距離の確保が容易になるため、撮像部 34の配置位置 を、表示領域 3を含む平面にできる力ぎり近づけることができ、可能な限り装置の厚み を/ J、さくすることができる。 However, as shown in FIG. 26, the imaging unit 34 is arranged along the short side, and the detection light source 7 is arranged on the long side. When arranged along, the installation space of the detection light source 7 can be increased, so that the amount of detection light can be easily secured. Further, in this case, since it is easier to secure the optical imaging distance than when the imaging unit 34 is arranged along the long side, the force that allows the arrangement position of the imaging unit 34 to be a plane including the display area 3 The thickness of the device can be reduced as much as possible / J.
[0146] また、撮像部 34を短辺に沿って配置した場合、撮像画像は、長辺方向に沿って先 細りした台形状(図 12参照)となる。この台形状の撮像画像において、底辺は表示領 域 3の短辺に対応し、高さは表示領域 3の長辺に対応する。また、この場合、撮像部 34による撮像は斜め方向から行われるため、台形状の撮像画像の底辺に対する高 さの比は、表示領域 3の短辺に対する長辺の比よりも小さくなる。即ち、撮像画像は、 長辺方向にぉ 、て圧縮された画像となる。  [0146] When the imaging unit 34 is disposed along the short side, the captured image has a trapezoidal shape (see FIG. 12) that is tapered along the long side direction. In this trapezoidal captured image, the bottom corresponds to the short side of the display area 3 and the height corresponds to the long side of the display area 3. In this case, since the imaging by the imaging unit 34 is performed from an oblique direction, the ratio of the height of the trapezoidal captured image to the bottom is smaller than the ratio of the long side to the short side of the display region 3. That is, the captured image is an image compressed in the long side direction.
[0147] 例えば、表示領域 3の長辺と短辺との比(アスペクト比)が一般的な 16: 9である場 合に、表示領域 3の法線に対して 65度傾斜させた方向から表示領域 3を短辺側から 観察する。このとき、見かけ上の表示領域 3の長辺と短辺との比は、 cos65° ( =約 0 . 42) X 16 : 9 ( 4 : 3)となる。従って、撮像画像の底辺に対する高さの比は、表示 領域 3の短辺に対する長辺の比の約 0. 42倍となり、撮像画像は、底辺に対して高さ が約 4分の 3の台形状となる。  [0147] For example, when the ratio of the long side to the short side (aspect ratio) of the display area 3 is 16: 9, the display area 3 is inclined by 65 degrees with respect to the normal of the display area 3. Observe display area 3 from the short side. At this time, the ratio of the long side to the short side of the apparent display area 3 is cos65 ° (= about 0.42) X 16: 9 (4: 3). Therefore, the ratio of the height to the bottom of the captured image is about 0.42 times the ratio of the long side to the short side of display area 3, and the captured image has a height of about three-quarters of the bottom. It becomes a shape.
[0148] よって、多くの場合、撮像素子 32の受光領域はアスペクト比 4 : 3の長方形であるこ とから、観察者側から見たときに、受光領域の長辺が表示領域 3の短辺に平行となり 、受光領域の短辺が表示領域 3の長辺に平行となるように撮像部 34を配置すれば、 効率的に撮像が行える。  Therefore, in many cases, since the light receiving area of the image sensor 32 is a rectangle having an aspect ratio of 4: 3, the long side of the light receiving area is set to the short side of the display area 3 when viewed from the observer side. If the imaging unit 34 is arranged so that it is parallel and the short side of the light receiving region is parallel to the long side of the display region 3, imaging can be performed efficiently.
[0149] 本発明における表示装置及びバックライト装置は、上記実施の形態 1〜実施の形 態 8に限定されるものではない。例えば、本発明における表示装置は、ノ ックライト装 置を備えな!/、反射型の液晶表示装置であっても良 、。  [0149] The display device and the backlight device according to the present invention are not limited to Embodiments 1 to 8 described above. For example, the display device according to the present invention may be a reflective liquid crystal display device without a knock light device! /.
[0150] また、本発明における表示装置は、検出光源が可視領域の波長の光を出射する態 様であっても良いし、検出光源を備えていない態様であっても良い。例えば、検出光 源に可視領域の波長の光を出射する光源を使用する場合は、表示画像中に可視光 を透過する表示モードのウィンドウを意図的に作成し、このウィンドウ中に被写体を配 置するようにすればよい。 [0150] In addition, the display device according to the present invention may be configured such that the detection light source emits light having a wavelength in the visible region, or may not include the detection light source. For example, when using a light source that emits light with a wavelength in the visible region as the detection light source, a display mode window that transmits visible light is intentionally created in the display image, and the subject is placed in this window. It should be placed.
[0151] 更に、検出光源を備えていない態様においても、実施の形態 1に示したように、撮 像部は、赤外領域の波長の光、例えば 700nm以上、好ましくは 800nm以上、特に 好ましくは 850nm以上の波長の光のみを受光するように構成するのが好まし 、。こ の場合、外光に含まれる赤外領域の波長の光のみが撮像部の受光面に入射するた め、可視光によるノイズが除去され、高解像度での取り込みが可能となる。  [0151] Further, even in an embodiment in which no detection light source is provided, as shown in Embodiment 1, the imaging unit has light of an infrared wavelength, for example, 700 nm or more, preferably 800 nm or more, particularly preferably. It is preferable to configure to receive only light with a wavelength of 850 nm or more. In this case, only light in the infrared region wavelength included in the external light is incident on the light receiving surface of the imaging unit, so that noise due to visible light is removed and high-resolution capture is possible.
[0152] また、検出光源は、外部装置(図 8及び図 13参照)に備えることもできる。例えば、 外部装置がゲーム機器である場合は、検出光源は、ゲーム機器のコントローラに内 蔵することができる。外部装置がコンピュータである場合は、検出光源は、マウス等の 入力装置に内蔵することができる。更に、これらの場合においては、撮像部が液晶表 示パネルに入射した検出光そのものを撮像し、これによつて検出光の入射位置が検 出される態様としても良い。  [0152] The detection light source may be provided in an external device (see FIGS. 8 and 13). For example, when the external device is a game device, the detection light source can be incorporated in the controller of the game device. When the external device is a computer, the detection light source can be built in an input device such as a mouse. Further, in these cases, the imaging unit may take an image of the detection light itself that has entered the liquid crystal display panel, and thereby the incident position of the detection light may be detected.
[0153] また、一般的な表示装置では、液晶表示パネルの観察者側の面 (表示面)にのみ、 防反射処理が施されているが、本発明における表示装置においては、更に、液晶表 示パネルの観察者側の反対側の面 (裏面)にも防反射処理が施されて 1、るのが好ま しい。この場合、液晶表示パネルの裏面での表面反射成分が撮像部に入射するの を抑制でき、撮像画像のコントラストの向上を図ることができる。  [0153] In general display devices, only the viewer side surface (display surface) of the liquid crystal display panel is subjected to antireflection treatment. However, in the display device of the present invention, the liquid crystal display is further processed. It is preferable that the opposite side (back side) of the display panel to the viewer side is also anti-reflective treated. In this case, the surface reflection component on the back surface of the liquid crystal display panel can be prevented from entering the imaging unit, and the contrast of the captured image can be improved.
[0154] (実施の形態 9)  [Embodiment 9]
次に、本発明の実施の形態 9における表示装置について、図 27を参照しながら説 明する。図 27は、本発明の実施の形態 9に係る表示装置の概略構成を示す断面図 である。図 27に示された符号のうち、図 1及び図 24に示された符号と同一の符号は 、図 1及び図 24において当該符号が付された部材と同一の部材を示している。  Next, a display device according to Embodiment 9 of the present invention will be described with reference to FIG. FIG. 27 is a cross-sectional view showing a schematic configuration of the display apparatus according to Embodiment 9 of the present invention. Of the reference numerals shown in FIG. 27, the same reference numerals as those shown in FIGS. 1 and 24 indicate the same members as those given the reference numerals in FIGS.
[0155] 図 27に示すように、本実施の形態 9における表示装置は、図 24に示した実施の形 態 8における表示装置と同様に、表示パネル 50の観察者側に配置された透明板 14 と、表示領域 3の周辺の領域に配置された検出光源 7とを備えている。また、検出光 源 7は、検出光が、透明板 14と表示領域 3との間の空間 15から透明板 14に入射す るように配置されている。このため、本実施の形態 9においても、実施の形態 8と同様 に、実施の形態 1に比べて、発光ダイオード 21から出射された検出光の利用効率の 向上を図ることができ、撮像部 34の感度の向上を図ることができる。 As shown in FIG. 27, the display device in the ninth embodiment is the same as the display device in the eighth embodiment shown in FIG. 24, and is a transparent plate arranged on the viewer side of the display panel 50. 14 and a detection light source 7 arranged in a region around the display region 3. The detection light source 7 is arranged so that the detection light is incident on the transparent plate 14 from the space 15 between the transparent plate 14 and the display region 3. Therefore, in the ninth embodiment, as in the eighth embodiment, the use efficiency of the detection light emitted from the light emitting diode 21 is improved as compared with the first embodiment. It is possible to improve the sensitivity of the imaging unit 34.
[0156] 更に、図 27に示すように、本実施の形態 9における表示装置は、実施の形態 2にお いて図 11に示した撮像部 34を備えている。撮像部 34においては、レンズ素子 35の 光軸 35aと、固体撮像素子 32の受光面の中心を通る法線 32aとは一致している(図 1 1参照)。また、撮像部 34は、実施の形態 4〜実施の形態 7における表示装置と同様 に、表示パネル 50の厚み方向にぉ 、て重なる領域に配置されて 、る。 Further, as shown in FIG. 27, the display device according to the ninth embodiment includes the imaging unit 34 shown in FIG. 11 in the second embodiment. In the imaging unit 34, the optical axis 35a of the lens element 35 and the normal line 32a passing through the center of the light receiving surface of the solid-state imaging element 32 coincide with each other (see FIG. 11). In addition, the imaging unit 34 is arranged in a region that overlaps the thickness direction of the display panel 50 as in the display devices in the fourth to seventh embodiments.
[0157] よって、本実施の形態 9においても、実施の形態 4〜実施の形態 7と同様に、被写 体 1が撮像部 34の正面に位置することとなるため、撮像画像が台形状に歪むのが回 避され、撮像画像に対して補正を行う必要がない。また、シフト光学系を採用する撮 像部を配置する必要性もない。従って、本実施の形態 9によっても、実施の形態 2と 同様に、結像光学系を構成するレンズ系の小径化や、結像光学系の簡略化、設計コ ストの低減を図ることができる。更には、制御装置における撮像画像の画像処理も簡 略ィ匕することができる。 [0157] Therefore, in Embodiment 9, as in Embodiments 4 to 7, the object 1 is positioned in front of the imaging unit 34, and thus the captured image has a trapezoidal shape. Distortion is avoided and there is no need to correct the captured image. In addition, there is no need to provide an imaging unit that employs a shift optical system. Therefore, according to the ninth embodiment, similarly to the second embodiment, it is possible to reduce the diameter of the lens system constituting the imaging optical system, simplify the imaging optical system, and reduce the design cost. . Furthermore, the image processing of the captured image in the control device can be simplified.
[0158] また、本実施の形態 9においても、実施の形態 1〜実施の形態 8と同様に、撮像部 3 4の光学的撮像距離 (結像光学系の焦点距離)を稼ぐため、表示パネル 50と撮像部 34との間には、一定の距離が置かれており、表示パネル 50の裏面側には、空洞が 存在している。  [0158] Also in the ninth embodiment, as in the first to eighth embodiments, the display panel is used to increase the optical imaging distance (focal length of the imaging optical system) of the imaging unit 34. A fixed distance is placed between the image capturing unit 34 and the imaging unit 34, and a cavity exists on the back side of the display panel 50.
[0159] 但し、本実施の形態 9においては、表示パネル 50は、 EL (Electro Luminescence) 表示パネル (以下、「EL表示パネル 50」とする。)であり、本実施の形態 9における表 示装置は EL表示装置である。本実施の形態 9における表示装置は、この点で、実施 の形態 1〜実施の形態 8における表示装置と異なっている。  However, in the ninth embodiment, the display panel 50 is an EL (Electro Luminescence) display panel (hereinafter referred to as “EL display panel 50”), and the display device in the ninth embodiment. Is an EL display. The display device according to the ninth embodiment is different from the display devices according to the first to eighth embodiments in this respect.
[0160] EL表示パネル 50は、蛍光性ィ匕合物等の物質に電界を印加したときに生じる電界 発光現象 (EL現象)を利用して映像を表示する。具体的には、本実施の形態 9では 、 EL表示パネル 50は、有機 EL表示パネルである。 EL表示パネル 50は、例えば、 ガラス基板等の透明の基板上に、透明電極 (アノード)となる ITO (Indium Tin Oxide) 膜、正孔輸送層、電子輸送層、背面電極 (力ソード)等を順に積層して構成される。  [0160] The EL display panel 50 displays an image using an electroluminescence phenomenon (EL phenomenon) generated when an electric field is applied to a substance such as a fluorescent compound. Specifically, in the ninth embodiment, the EL display panel 50 is an organic EL display panel. The EL display panel 50 includes, for example, an ITO (Indium Tin Oxide) film, a hole transport layer, an electron transport layer, a back electrode (force sword), etc., which become a transparent electrode (anode) on a transparent substrate such as a glass substrate. It is constructed by stacking in order.
[0161] この EL表示パネル 50において、 ITO膜と背面電極との間に電圧を印加すると、電 子輸送層には電子が注入され、正孔輸送層には正孔が注入される。そして、正孔輸 送層と電子輸送層との界面で、注入された電子と正孔とが結合し、電子のエネルギ 一が光の形で放出される。更に、放出された光が表示領域 3に映像を形成する。な お、 EL表示パネル 50は無機 EL表示パネルであっても良!、。 In this EL display panel 50, when a voltage is applied between the ITO film and the back electrode, electrons are injected into the electron transport layer and holes are injected into the hole transport layer. And hole transport The injected electrons and holes combine at the interface between the sending layer and the electron transport layer, and the energy of the electrons is emitted in the form of light. Further, the emitted light forms an image on the display area 3. The EL display panel 50 may be an inorganic EL display panel!
[0162] また、 EL表示パネル 50は、液晶表示パネルと同様に光透過性を有している。よつ て、被写体 1で反射された検出光は、 EL表示パネル 50に入射し、更にこれを通過で きる。このため、本実施の形態 9においても、撮像部 34は、 EL表示パネル 50の裏側 から、この EL表示パネル 50を介して、表示領域 3の観察者側の状態 (表示領域 3上 及び表示領域 3近傍の状態)を撮像することができる。  [0162] Further, the EL display panel 50 is light transmissive as in the case of the liquid crystal display panel. Therefore, the detection light reflected by the subject 1 enters the EL display panel 50 and can further pass therethrough. For this reason, also in the ninth embodiment, the imaging unit 34 is connected from the back side of the EL display panel 50 via the EL display panel 50 to the state on the viewer side of the display area 3 (on the display area 3 and the display area 3). 3 states).
[0163] 更に、上述したように、 EL表示パネル 50は、それ自体が発光する自発光素子であ る。よって、本実施の形態 9における表示装置は、ノ ックライト装置を備えていない点 でも、実施の形態 1〜実施の形態 8における表示装置と異なっている。本実施の形態 9においては、実施の形態 4〜実施の形態 7と異なり、撮像部 34はフレーム 51の底 面に配置されている。  [0163] Furthermore, as described above, the EL display panel 50 is a self-luminous element that emits light. Therefore, the display device in the ninth embodiment is different from the display devices in the first to eighth embodiments in that it does not include a knocklight device. In the ninth embodiment, unlike the fourth to seventh embodiments, the imaging unit 34 is disposed on the bottom surface of the frame 51.
[0164] このように、本実施の形態 9においては、自発光素子である EL表示パネル 50が用 いられ、これによつて、表示装置は、ノ ックライト装置を必要としない構成となっている 。このため、本実施の形態 9によれば、以下の効果を有することができる。  As described above, in the ninth embodiment, the EL display panel 50 that is a self-luminous element is used, whereby the display device does not require a knocklight device. . Therefore, according to the ninth embodiment, the following effects can be obtained.
[0165] 透過型の液晶表示パネルが用いられる場合は、通常、実施の形態 1〜実施の形態 8に示したように、液晶表示パネルを照明するため、液晶表示パネルの裏側にはバッ クライト装置が配置される。このため、液晶表示パネルの裏側は明るぐそこに配置さ れた撮像部 4又は 34が、液晶表示パネルを介して外部力も視認されてしまうことがあ る。  [0165] When a transmissive liquid crystal display panel is used, normally, as shown in the first to eighth embodiments, the backlight device is provided on the back side of the liquid crystal display panel to illuminate the liquid crystal display panel. Is placed. For this reason, the imaging unit 4 or 34 arranged on the back side of the liquid crystal display panel is bright, and external force may be visually recognized through the liquid crystal display panel.
[0166] これに対して、本実施の形態 9では、 EL表示パネル 50の裏側は明るくないため、 撮像部 34が外部力 視認されることはない。よって、本実施の形態 9によれば、表示 画像の品位の向上を図ることができる。また、本実施の形態 9によれば、ノ ックライト 装置が必要ないため、表示装置の薄型化や構成の簡略ィ匕を図ることもできる。  [0166] On the other hand, in Embodiment 9, the back side of the EL display panel 50 is not bright, so that the imaging unit 34 is not visually recognized by an external force. Therefore, according to the ninth embodiment, the quality of the display image can be improved. Further, according to the ninth embodiment, since a knocklight device is not necessary, the display device can be thinned and the configuration can be simplified.
[0167] 更に、 EL表示パネル 50においては、その構造上、表示領域 3から、赤外領域の波 長の光も出射される。そのため、本実施の形態 9においては、表示領域 3から出射さ れた赤外領域の波長の光を検出光として利用することもできる。本実施の形態 9によ れば、検出光源 7を用いることなぐ赤外領域の波長の光を利用して撮像を行うことが できる。 [0167] Furthermore, in the EL display panel 50, light having a wavelength in the infrared region is also emitted from the display region 3 due to its structure. Therefore, in the ninth embodiment, light having a wavelength in the infrared region emitted from the display region 3 can be used as detection light. According to the ninth embodiment Then, imaging can be performed using light having a wavelength in the infrared region without using the detection light source 7.
[0168] また、本実施の形態 9においても、実施の形態 1〜実施の形態 8と同様に、可視領 域の波長の光を検出光として利用することができる。但し、本実施の形態 9において は、表示領域 3から出射される可視領域の波長の光を検出光として利用できる。更に 、上述したように、本実施の形態 9では、 EL表示パネル 50の裏側は、実施の形態 1 〜実施の形態 8に比べて明るくないため、可視領域の波長の光を用いて撮像を行つ た場合であっても、高解像度での取り込みが可能となる。  [0168] Also in the ninth embodiment, similarly to the first to eighth embodiments, light having a wavelength in the visible region can be used as detection light. However, in the ninth embodiment, light having a wavelength in the visible region emitted from the display region 3 can be used as detection light. Furthermore, as described above, in the ninth embodiment, the back side of the EL display panel 50 is not bright as compared with the first to eighth embodiments, and thus imaging is performed using light with a wavelength in the visible region. Even in this case, it is possible to capture at high resolution.
[0169] また、本発明において、図 27に示す表示装置は、あくまで一例である。本発明にお ける表示装置は、実施の形態 1〜実施の形態 8に示した表示装置において、液晶表 示パネル 2の代わりに EL表示パネル 50が取り付けられ、更に、バックライト装置が取 り外されたものであっても良い。  In the present invention, the display device shown in FIG. 27 is merely an example. In the display device according to the present invention, the EL display panel 50 is attached instead of the liquid crystal display panel 2 in the display device described in Embodiments 1 to 8, and the backlight device is removed. It may be what was done.
産業上の利用可能性  Industrial applicability
[0170] 以上のように、本発明の表示装置は、入力機能を備えており、パーソナルコンビュ ータ、テレビ、ゲーム機器等の表示装置として有用であり、産業上の利用可能性を有 している。また、本発明のバックライト装置は、液晶表示装置の照明光源として有用で あり、産業上の利用可能性を有している。 [0170] As described above, the display device of the present invention has an input function, is useful as a display device for personal computers, televisions, game machines, etc., and has industrial applicability. Yes. The backlight device of the present invention is useful as an illumination light source for a liquid crystal display device, and has industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] 光透過性を有する表示パネルと、結像光学系を有する撮像部とを備え、  [1] A display panel having optical transparency and an imaging unit having an imaging optical system,
前記撮像部は、観察者側から前記表示パネルに入射し、且つ、前記表示パネル及 び前記結像光学系を通過する光を受光して、前記表示パネルの観察者側における 状態を撮像することを特徴とする表示装置。  The imaging unit receives light incident on the display panel from the observer side and passing through the display panel and the imaging optical system, and images the state of the display panel on the observer side. A display device.
[2] 前記表示パネルの観察者側へ検出光を出射する検出光源を備え、  [2] a detection light source that emits detection light to the viewer side of the display panel,
前記撮像部が、観察者側から前記表示パネルに入射し、且つ、前記表示パネル及 び前記結像光学系を通過する前記検出光を受光して、前記表示パネルの観察者側 における状態を撮像する請求項 1に記載の表示装置。  The imaging unit receives the detection light that is incident on the display panel from the viewer side and passes through the display panel and the imaging optical system, and captures the state of the display panel on the viewer side. The display device according to claim 1.
[3] 前記撮像部が、 700nm以上の波長の光のみを受光する請求項 1に記載の表示装 置。 [3] The display device according to [1], wherein the imaging unit receives only light having a wavelength of 700 nm or more.
[4] 前記撮像部が、 700nm以上の波長の光のみを透過させる光学フィルタを有してい る請求項 3に記載の表示装置。  4. The display device according to claim 3, wherein the imaging unit has an optical filter that transmits only light having a wavelength of 700 nm or more.
[5] 前記撮像部が、 800nm以上の波長の光のみを受光する請求項 3に記載の表示装 置。 5. The display device according to claim 3, wherein the imaging unit receives only light having a wavelength of 800 nm or more.
[6] 前記撮像部が、 800nm以上の波長の光のみを透過させる光学フィルタを有してい る請求項 5に記載の表示装置。  6. The display device according to claim 5, wherein the imaging unit includes an optical filter that transmits only light having a wavelength of 800 nm or more.
[7] 前記撮像部が、前記表示パネルの裏側における、前記表示パネルの厚み方向に ぉ ヽて前記表示パネルの表示領域と重なる領域の周辺に配置されて 、る請求項 1に 記載の表示装置。 [7] The display device according to [1], wherein the imaging unit is arranged on a back side of the display panel around a region overlapping with a display region of the display panel in a thickness direction of the display panel. .
[8] 前記撮像部が、前記結像光学系によって結像された像を受光する固体撮像素子を 有し、  [8] The imaging unit includes a solid-state imaging device that receives an image formed by the imaging optical system,
前記結像光学系は、その光軸が前記表示領域の法線と平行となるように配置され、 前記固体撮像素子は、その受光面が前記表示領域に対して平行となり、且つ、そ の受光面の中心を通る法線が前記結像光学系の光軸よりも前記表示領域の外側に 位置するように、配置されて!ゝる請求項 7に記載の表示装置。  The imaging optical system is arranged such that its optical axis is parallel to the normal line of the display area, and the solid-state imaging device has a light receiving surface parallel to the display area, and the light receiving surface. Arranged so that the normal passing through the center of the surface is located outside the display area with respect to the optical axis of the imaging optical system! The display device according to claim 7.
[9] 前記撮像部が、前記結像光学系によって結像された像を受光する固体撮像素子を 有し、前記固体撮像素子の受光面の中心を通る法線と、前記結像光学系の光軸とが 、前記表示領域に向けて傾斜した状態で配置されて 、る請求項 7に記載の表示装置 [9] The imaging unit includes a solid-state imaging device that receives an image formed by the imaging optical system, a normal passing through the center of the light-receiving surface of the solid-state imaging device, and the imaging optical system The optical axis The display device according to claim 7, wherein the display device is arranged in an inclined state toward the display area.
[10] 前記表示パネルが液晶表示パネルであり、 [10] The display panel is a liquid crystal display panel,
前記表示パネルを裏面側から照明するバックライト装置を更に備え、  A backlight device for illuminating the display panel from the back side;
前記バックライト装置は、光源と、前記光源の前記表示パネル側に配置された光学 層とを有し、  The backlight device includes a light source and an optical layer disposed on the display panel side of the light source,
前記撮像部が、前記バックライト装置の内部に配置されている請求項 1に記載の表 示装置。  2. The display device according to claim 1, wherein the imaging unit is disposed inside the backlight device.
[11] 前記バックライト装置の前記光学層における前記撮像部に受光される光の光学的 経路と重なる領域に、開口部が形成されている請求項 10に記載の表示装置。  11. The display device according to claim 10, wherein an opening is formed in a region overlapping the optical path of light received by the imaging unit in the optical layer of the backlight device.
[12] 前記開口部の内部に、前記光学層に比べて光の透過率が高い光学層が配置され て 、る請求項 11に記載の表示装置。 12. The display device according to claim 11, wherein an optical layer having a higher light transmittance than the optical layer is disposed inside the opening.
[13] 前記バックライト装置の前記光学層における前記撮像部に受光される光の光学的 経路と重なる領域が、前記光学層における他の領域に比べて、光の透過率が高くな るように形成されて 、る請求項 10に記載の表示装置。 [13] An area of the optical layer of the backlight device that overlaps an optical path of light received by the imaging unit is higher in light transmittance than other areas of the optical layer. The display device according to claim 10, wherein the display device is formed.
[14] 前記バックライト装置の光源が、発光ダイオードである請求項 10に記載の表示装置 14. The display device according to claim 10, wherein a light source of the backlight device is a light emitting diode.
[15] 前記バックライト装置の発光領域の面積が、前記表示パネルの表示領域の面積よ りも大きくなつている請求項 10に記載の表示装置。 15. The display device according to claim 10, wherein an area of a light emitting region of the backlight device is larger than an area of a display region of the display panel.
[16] 前記撮像部が複数個設けられ、前記複数個の撮像部それぞれは、前記表示パネ ルの表示領域内の異なる領域における観察者側の状態を撮像できるように配置され て 、る請求項 1に記載の表示装置。 [16] The plurality of image pickup units are provided, and each of the plurality of image pickup units is arranged so as to be able to take an image of a state on the observer side in a different area in the display area of the display panel. The display device according to 1.
[17] 前記複数個の撮像部それぞれが撮像する領域のうち、隣接する領域同士が部分 的に重なり合つている請求項 16に記載の表示装置。 [17] The display device according to [16], wherein adjacent regions of the plurality of image pickup units each pick up an image partially overlap each other.
[18] 前記結像光学系の合焦範囲が、前記表示パネルの表示領域から観察者側に lcm の範囲内に設定されて 、る請求項 1に記載の表示装置。 18. The display device according to claim 1, wherein a focusing range of the imaging optical system is set within a range of lcm from the display area of the display panel to the viewer side.
[19] 前記検出光源が、前記検出光として 700nm以上の波長の光を照射する請求項 2 に記載の表示装置。 19. The display device according to claim 2, wherein the detection light source irradiates light having a wavelength of 700 nm or more as the detection light.
[20] 前記検出光源が、前記検出光として 800nm以上 lOOOnm以下の波長の光を照射 する 19に記載の表示装置。 [20] The display device according to 19, wherein the detection light source emits light having a wavelength of 800 nm or more and lOOOnm or less as the detection light.
[21] 前記検出光源が、前記表示パネルの表示領域の周辺の領域に配置されている請 求項 2に記載の表示装置。 [21] The display device according to claim 2, wherein the detection light source is arranged in a region around a display region of the display panel.
[22] 前記検出光源が、前記表示パネルの裏側における、前記表示パネルの厚み方向 において前記表示領域と重なる領域の周辺に、配置されている請求項 2に記載の表 示装置。 [22] The display device according to [2], wherein the detection light source is arranged around a region overlapping the display region in a thickness direction of the display panel on a back side of the display panel.
[23] 前記検出光源が、発光ダイオードを備えている請求項 2に記載の表示装置。  23. The display device according to claim 2, wherein the detection light source includes a light emitting diode.
[24] 前記表示パネルが液晶表示パネルであり、  [24] The display panel is a liquid crystal display panel,
前記表示パネルを裏面側から照明するバックライト装置を更に備え、  A backlight device for illuminating the display panel from the back side;
前記バックライト装置は、光源と、前記光源の前記表示パネル側に配置された光学 層とを有し、  The backlight device includes a light source and an optical layer disposed on the display panel side of the light source,
前記検出光源が、前記バックライト装置の内部に、前記検出光が前記表示パネル に向けて出射されるように配置されて!、る請求項 2に記載の表示装置。  The display device according to claim 2, wherein the detection light source is disposed inside the backlight device so that the detection light is emitted toward the display panel.
[25] 前記バックライト装置の光源が、発光ダイオードである請求項 24に記載の表示装置 25. The display device according to claim 24, wherein a light source of the backlight device is a light emitting diode.
[26] 前記バックライト装置の発光領域の面積が、前記表示パネルの表示領域の面積よ りも大きくなつている請求項 24に記載の表示装置。 26. The display device according to claim 24, wherein an area of a light emitting region of the backlight device is larger than an area of a display region of the display panel.
[27] 前記表示パネル力 ¾L表示パネルであり、 [27] The display panel power ¾L display panel,
前記撮像部が、前記表示パネルの裏側における、前記表示パネルの厚み方向に ぉ 、て前記表示パネルの表示領域と重なる領域に配置されて!、る請求項 1に記載の 表示装置。  The display device according to claim 1, wherein the imaging unit is disposed in a region overlapping with a display region of the display panel in a thickness direction of the display panel on a back side of the display panel.
[28] 前記表示パネルが液晶表示パネルであり、  [28] The display panel is a liquid crystal display panel,
画像処理装置と、前記表示パネルの観察者側の主面に向けて検出光を照射する 検出光源と、前記表示パネルを裏面側力も照明するバックライト装置とを更に備え、 前記撮像部は、観察者側から前記表示パネルに入射し、且つ、前記表示パネル及 び前記結像光学系を通過する前記検出光を受光して、前記表示パネルの観察者側 における状態を撮像し、更に撮像データを出力し、 前記バックライト装置は、光源と、前記光源の前記表示パネル側に配置された光学 層とを有し、 An image processing device; a detection light source that irradiates detection light toward a main surface of the display panel on the viewer side; and a backlight device that illuminates the display panel with a back side force; Receiving the detection light incident on the display panel from the viewer side and passing through the display panel and the imaging optical system, images the state of the display panel on the viewer side, and further captures image data. Output, The backlight device includes a light source and an optical layer disposed on the display panel side of the light source,
前記画像処理装置は、前記撮像部が出力する撮像データ力 オフセット成分を減 昇し、  The image processing device reduces an imaging data force offset component output by the imaging unit,
前記オフセット成分は、前記表示パネルの表示領域への外部からの光の入射が遮 断され、且つ、前記表示領域上に物体が存在しない状態で、前記バックライト装置の 光源の点灯と前記検出光源による前記検出光の照射とを行ったときに前記撮像部が 出力する撮像データに基づ 、て設定されて 、る請求項 1に記載の表示装置。  The offset component blocks the incidence of light from the outside to the display area of the display panel, and the light source of the backlight device is turned on and the detection light source in a state where no object is present on the display area. The display device according to claim 1, wherein the display device is set based on imaging data output by the imaging unit when the detection light is emitted by the imaging device.
[29] 前記表示パネルにおける観察者側の反対側の表面に、防反射処理が施されてい る請求項 1に記載の表示装置。 [29] The display device according to [1], wherein a surface of the display panel opposite to an observer side is subjected to an antireflection treatment.
[30] 前記表示パネルの観察者側に、前記表示パネルの表示領域を覆う透明板を備え、 前記透明板は、前記表示領域との間に空間が形成されるように配置され、 前記検出光源は、前記表示パネルの前記表示領域の周辺の領域に、前記検出光 が前記空間から前記透明板に入射するように、配置されている請求項 2に記載の表 示装置。 [30] A transparent plate that covers a display area of the display panel is provided on an observer side of the display panel, and the transparent plate is disposed so that a space is formed between the display area and the detection light source. The display device according to claim 2, wherein the display light is arranged in a region around the display region of the display panel so that the detection light is incident on the transparent plate from the space.
[31] 前記撮像部が、前記表示パネルの裏側における、前記表示パネルの厚み方向に おいて前記表示パネルの表示領域と重なる領域の周辺に配置され、  [31] The imaging unit is disposed on the back side of the display panel in the vicinity of a region overlapping the display region of the display panel in the thickness direction of the display panel,
前記撮像部の撮像方向と前記検出光源の出射方向とが、前記観察者側から見たと きに、互いに交差して 、る請求項 30に記載の表示装置。  31. The display device according to claim 30, wherein an imaging direction of the imaging unit and an emission direction of the detection light source intersect each other when viewed from the observer side.
[32] 前記表示領域が、矩形状を呈し、 [32] The display area has a rectangular shape,
前記検出光源力 前記表示領域の一の辺、又は前記一の辺とこれに対向する辺と に沿って配置され、  The detection light source power is arranged along one side of the display area, or the one side and a side opposite to the one side,
前記撮像部が、前記観察者側から見たときに、前記一の辺に隣接する辺に沿って 配置されて!ヽる請求項 31に記載の表示装置。  The imaging unit is arranged along a side adjacent to the one side when viewed from the observer side! 32. A display device according to claim 31.
[33] 前記表示パネル力 液晶表示パネルまたは EL表示パネルである請求項 1に記載 の表示装置。 [33] The display device according to [1], which is a liquid crystal display panel or an EL display panel.
[34] 液晶表示パネルを照明するためのバックライト装置であって、  [34] A backlight device for illuminating a liquid crystal display panel,
光源と、結像光学系を有する撮像部とを備え、 前記撮像部は、当該バックライト装置の内部に配置されており、観察者側から前記 液晶表示パネルに入射し、且つ、前記液晶表示パネル及び前記結像光学系を通過 する光を受光して、前記液晶表示パネルの観察者側における状態を撮像することを 特徴とするバックライト装置。 A light source and an imaging unit having an imaging optical system; The imaging unit is disposed inside the backlight device, receives light that enters the liquid crystal display panel from the observer side and passes through the liquid crystal display panel and the imaging optical system, A backlight device that images the state of the liquid crystal display panel on the viewer side.
[35] 前記液晶表示パネルの観察者側の主面に向けて検出光を照射する検出光源を備 え、 [35] A detection light source for irradiating detection light toward the main surface on the observer side of the liquid crystal display panel is provided,
前記検出光源は、当該バックライト装置の内部に配置され、  The detection light source is disposed inside the backlight device,
前記撮像部が、観察者側から前記液晶表示パネルに入射し、且つ、前記液晶表示 パネル及び前記結像光学系を通過する前記検出光を受光して、前記液晶表示パネ ルの観察者側における状態を撮像する請求項 34に記載のバックライト装置。  The imaging unit receives the detection light that is incident on the liquid crystal display panel from the viewer side and passes through the liquid crystal display panel and the imaging optical system, and is on the viewer side of the liquid crystal display panel. The backlight device according to claim 34, wherein the state is imaged.
[36] 前記光源の前記液晶表示パネル側に配置された光学層を更に備え、 [36] It further comprises an optical layer disposed on the liquid crystal display panel side of the light source,
前記バックライト装置の前記光学層における前記撮像部に受光される光の光学的 経路と重なる領域に、開口部が形成されている請求項 34に記載のバックライト装置。  35. The backlight device according to claim 34, wherein an opening is formed in a region overlapping the optical path of light received by the imaging unit in the optical layer of the backlight device.
[37] 前記開口部の内部に、前記光学層に比べて光の透過率が高い光学層が配置され て ヽる請求項 36に記載のノ ックライト装置。 [37] The knocklight device according to [36], wherein an optical layer having a higher light transmittance than the optical layer is disposed inside the opening.
[38] 前記光源の前記液晶表示パネル側に配置された光学層を更に備え、 [38] Further comprising an optical layer disposed on the liquid crystal display panel side of the light source,
前記バックライト装置の前記光学層における前記撮像部に受光される光の光学的 経路と重なる領域が、前記光学層における他の領域に比べて、光の透過率が高くな るように形成されて 、る請求項 34に記載のバックライト装置。  An area overlapping with an optical path of light received by the imaging unit in the optical layer of the backlight device is formed so as to have a higher light transmittance than other areas in the optical layer. The backlight device according to claim 34.
PCT/JP2006/313422 2005-07-28 2006-07-05 Display device and backlight device WO2007013272A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005219321 2005-07-28
JP2005-219321 2005-07-28
JP2005-278583 2005-09-26
JP2005278583 2005-09-26
JP2005-355314 2005-12-08
JP2005355314 2005-12-08
JP2006-048803 2006-02-24
JP2006048803 2006-02-24

Publications (1)

Publication Number Publication Date
WO2007013272A1 true WO2007013272A1 (en) 2007-02-01

Family

ID=37683174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313422 WO2007013272A1 (en) 2005-07-28 2006-07-05 Display device and backlight device

Country Status (1)

Country Link
WO (1) WO2007013272A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108236A (en) * 2009-11-13 2011-06-02 Samsung Electronics Co Ltd Multi-touch and proximate object sensing apparatus using sensing array
JP2011198340A (en) * 2010-03-17 2011-10-06 Samsung Mobile Display Co Ltd Touch display device
JP2012022674A (en) * 2010-06-16 2012-02-02 Semiconductor Energy Lab Co Ltd Input/output device and driving method of input/output device
JP2012022673A (en) * 2010-06-16 2012-02-02 Semiconductor Energy Lab Co Ltd Input output device and driving method of input output device
EP2037352A3 (en) * 2007-09-12 2012-04-25 Multitouch OY Interactive display
US8319749B2 (en) 2007-02-23 2012-11-27 Sony Corporation Image pickup apparatus, display-and-image-pickup apparatus and image pickup processing apparatus
JP2015536501A (en) * 2012-10-26 2015-12-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method for providing infrared gesture instructions on a display
WO2021095581A1 (en) * 2019-11-12 2021-05-20 ソニーセミコンダクタソリューションズ株式会社 Electronic device
JP2021117379A (en) * 2020-01-27 2021-08-10 株式会社ジャパンディスプレイ Electronic apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411484A (en) * 1990-04-27 1992-01-16 Nippon Philips Kk Picture display/image pickup device
JPH04145788A (en) * 1990-10-08 1992-05-19 Nippon Telegr & Teleph Corp <Ntt> Eyes matching image pickup display device
JPH0678301A (en) * 1992-08-27 1994-03-18 Toshiba Corp Two-way panel display device
JPH06153190A (en) * 1992-11-04 1994-05-31 Nippon Philips Kk Picture display/image pickup device
JPH06291937A (en) * 1993-04-01 1994-10-18 Mitsubishi Electric Corp Color picture input device
JPH07311377A (en) * 1994-05-16 1995-11-28 Sharp Corp Liquid crystal image reading device of display integration type
JP2000298253A (en) * 1999-04-14 2000-10-24 Seiko Epson Corp Liquid crystal display device with image pickup function, computer, television telephone, and digital camera
JP2001350198A (en) * 2000-06-07 2001-12-21 Canon Inc Projection device with scanner function
JP2002094955A (en) * 2000-02-22 2002-03-29 Philips Japan Ltd Image display and pickup device
JP2002311435A (en) * 2001-04-18 2002-10-23 Matsushita Electric Ind Co Ltd Liquid crystal display and imaging system
JP2004303172A (en) * 2003-04-01 2004-10-28 Seiko Epson Corp Optical touch panel and electronic device
JP2005033784A (en) * 2003-06-17 2005-02-03 Semiconductor Energy Lab Co Ltd Display device with imaging function and two-way communication system
JP2005039578A (en) * 2003-07-16 2005-02-10 Semiconductor Energy Lab Co Ltd Display device with imaging function and bi-lateral communication system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411484A (en) * 1990-04-27 1992-01-16 Nippon Philips Kk Picture display/image pickup device
JPH04145788A (en) * 1990-10-08 1992-05-19 Nippon Telegr & Teleph Corp <Ntt> Eyes matching image pickup display device
JPH0678301A (en) * 1992-08-27 1994-03-18 Toshiba Corp Two-way panel display device
JPH06153190A (en) * 1992-11-04 1994-05-31 Nippon Philips Kk Picture display/image pickup device
JPH06291937A (en) * 1993-04-01 1994-10-18 Mitsubishi Electric Corp Color picture input device
JPH07311377A (en) * 1994-05-16 1995-11-28 Sharp Corp Liquid crystal image reading device of display integration type
JP2000298253A (en) * 1999-04-14 2000-10-24 Seiko Epson Corp Liquid crystal display device with image pickup function, computer, television telephone, and digital camera
JP2002094955A (en) * 2000-02-22 2002-03-29 Philips Japan Ltd Image display and pickup device
JP2001350198A (en) * 2000-06-07 2001-12-21 Canon Inc Projection device with scanner function
JP2002311435A (en) * 2001-04-18 2002-10-23 Matsushita Electric Ind Co Ltd Liquid crystal display and imaging system
JP2004303172A (en) * 2003-04-01 2004-10-28 Seiko Epson Corp Optical touch panel and electronic device
JP2005033784A (en) * 2003-06-17 2005-02-03 Semiconductor Energy Lab Co Ltd Display device with imaging function and two-way communication system
JP2005039578A (en) * 2003-07-16 2005-02-10 Semiconductor Energy Lab Co Ltd Display device with imaging function and bi-lateral communication system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319749B2 (en) 2007-02-23 2012-11-27 Sony Corporation Image pickup apparatus, display-and-image-pickup apparatus and image pickup processing apparatus
JP5093523B2 (en) * 2007-02-23 2012-12-12 ソニー株式会社 IMAGING DEVICE, DISPLAY IMAGING DEVICE, AND IMAGING PROCESSING DEVICE
EP2037352A3 (en) * 2007-09-12 2012-04-25 Multitouch OY Interactive display
JP2011108236A (en) * 2009-11-13 2011-06-02 Samsung Electronics Co Ltd Multi-touch and proximate object sensing apparatus using sensing array
US9141233B2 (en) 2010-03-17 2015-09-22 Samsung Display Co., Ltd. Touch controlled display device
JP2011198340A (en) * 2010-03-17 2011-10-06 Samsung Mobile Display Co Ltd Touch display device
TWI503720B (en) * 2010-03-17 2015-10-11 Samsung Display Co Ltd Touch controlled display device
JP2012022673A (en) * 2010-06-16 2012-02-02 Semiconductor Energy Lab Co Ltd Input output device and driving method of input output device
JP2012022674A (en) * 2010-06-16 2012-02-02 Semiconductor Energy Lab Co Ltd Input/output device and driving method of input/output device
US9459719B2 (en) 2010-06-16 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Input-output device and method for driving the same
US9489088B2 (en) 2010-06-16 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Input-output device and method for driving input-output device
JP2015536501A (en) * 2012-10-26 2015-12-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method for providing infrared gesture instructions on a display
WO2021095581A1 (en) * 2019-11-12 2021-05-20 ソニーセミコンダクタソリューションズ株式会社 Electronic device
JP2021117379A (en) * 2020-01-27 2021-08-10 株式会社ジャパンディスプレイ Electronic apparatus

Similar Documents

Publication Publication Date Title
WO2007013272A1 (en) Display device and backlight device
US11515377B2 (en) Display panel with a light-blocking layer
WO2020045262A1 (en) Under-display-type fingerprint authentication sensor module and under-display-type fingerprint authentication device
KR101174015B1 (en) Plat display device and method for manufacturing the same
JP2007156648A (en) Display unit
EP2330819A2 (en) Image display device with imaging unit
US9870100B2 (en) Multi-touch sensing apparatus using rear view camera of array type
CN112313567B (en) Display device, electronic apparatus embedded with display device, and storage medium
JP2009093497A (en) Display system and method for detecting pointed position
JP2010020237A (en) Image detection display apparatus and electronic equipment
JP2009116701A (en) Display system, and method for detecting pointed position
WO2021013253A1 (en) Electronic device and imaging method thereof
JP2009116700A (en) Display system and method for detecting pointed position
US8681123B2 (en) Input/output device
JP2007226439A (en) Display device and electronic apparatus
JP2008191261A (en) Liquid crystal display device
JP2007156757A (en) Display device
CN111526226B (en) Electronic device and display device
JP2007074666A (en) Display imaging apparatus
JP2007187753A (en) Liquid crystal display device
KR20230061348A (en) Image display devices and electronic devices
WO2007026463A1 (en) Liquid crystal display device
WO2007026462A1 (en) Liquid crystal display device
JP2007156647A (en) Display device
JP2008191262A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP