WO2007012256A1 - Dispositif d'affichage par panneau avec fonction de commande sensitive - Google Patents

Dispositif d'affichage par panneau avec fonction de commande sensitive Download PDF

Info

Publication number
WO2007012256A1
WO2007012256A1 PCT/CN2006/001647 CN2006001647W WO2007012256A1 WO 2007012256 A1 WO2007012256 A1 WO 2007012256A1 CN 2006001647 W CN2006001647 W CN 2006001647W WO 2007012256 A1 WO2007012256 A1 WO 2007012256A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
touch
display
circuit
electrode
Prior art date
Application number
PCT/CN2006/001647
Other languages
English (en)
French (fr)
Inventor
Qiliang Chen
Meiying Chen
Haiping Liu
Original Assignee
Qiliang Chen
Meiying Chen
Haiping Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200510086128 external-priority patent/CN1716018A/zh
Application filed by Qiliang Chen, Meiying Chen, Haiping Liu filed Critical Qiliang Chen
Publication of WO2007012256A1 publication Critical patent/WO2007012256A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means

Definitions

  • the invention relates to a touch screen and a flat panel display, in particular to a flat panel display with a touch function.
  • the flat panel display with touch function is composed of a display screen, a display driver, a touch screen, a touch signal detector, a backlight, and the like.
  • the touch screen has a resistive, capacitive, electromagnetic type using different sensing principles. Ultrasonic and photoelectric, etc., the display has TN/STN liquid crystal display, TFT liquid crystal display, 0LED display, PDP display, carbon nanotube display and so on.
  • a flat panel display with a touch screen laminates the split touch screen with the display screen, detects the planar position of the touch point through the display screen, and causes the cursor on the display screen to follow the touch point.
  • the cascading of the touch screen and the display screen makes the touch panel display thicker and heavier and the cost increases; when the touch screen is placed in front of the display screen, the reflection generated by the touch screen sensing electrode causes the display to be uneven and strong. The contrast is reduced in the external light environment, which affects the display effect. Integrating the touchpad and the display to make the flat panel display with touch function lighter and thinner is the direction of people's efforts.
  • the integration of the display screen and the touchpad is mainly cascading and inlaid.
  • the cascading is to place the touchpad before or after the top surface of the display screen, and the display screen and the touch panel respectively bear the display and touch.
  • Control tasks Chinese patent (CN20010141451, MINXIANG INDUSTRY CO LTD, 2001), Finnish patent (FI19960002692, NOKIA MOBILE PHONES LTD, 1996), Japanese patent (JP19850161986, CANON KK, 1985), (JP19900095167, NIPPON TELEGRAPH & TELEPHONE, 1990) , (JP19930306286, PFU LTD, 1993), (JP19980014850, NISSHA PRINTING, 1998), (JP19990142260, MIMAKI DENSHI BUHIN KK, 1999), Korean patent (KR20000084115, YU H, SE0NG; LIM J00-S00, 2000), (KR20020083301) , BANG
  • the mosaic method is to embed the touch sensor in the display screen, and a sensor (mostly an optical sensor) is disposed beside each display pixel, and the display pixel and the sensor are connected by a double electrode, and the display driving signal and the touch detection signal are respectively transmitted.
  • Korean patent JUNG YONG CHAE; YANG DONG KYU, 2003
  • Taiwan patent TW20020116058, LEE YU-TUAN, 2002
  • the change of the capacitance between the boxes is caused by the change of the thickness of the box caused by the touch pressure.
  • the support between the boxes makes it necessary to change the thickness of the liquid crystal display, and changing the thickness of the liquid crystal display must affect the display.
  • the dielectric anisotropy of the liquid crystal causes the capacitance between the boxes to change with the display. Excluding the change in the capacitance between the cells caused by the dielectric anisotropy of the liquid crystal material will affect the display, so this method of detecting the capacitance of the liquid crystal display to detect the touch is not preferable.
  • the capacitive touch screen uses the coupling capacitance formed between the touch object and the sensing electrode of the touch screen to detect the leakage current through the coupling capacitor to locate the touch point.
  • the capacitive touch screen can be divided into digital and analog modes. .
  • the digital capacitive touch screen is composed of two layers of electrodes each having a plurality of parallel electrodes. The two layers of electrodes are orthogonal to each other. When a human finger touches the touch screen, the fingers are coupled with some electrodes on the touch screen.
  • the capacitance, and the leakage current flowing from the coupling capacitor determine the touch position by detecting two electrodes on the two electrodes that are orthogonal to each other and form a coupling capacitance with the finger. This method is only suitable for thicker positioning.
  • the analog capacitive touch screen can be divided into a single layer sensing electrode and a double layer sensing electrode.
  • the analog capacitive touch screen of the single layer sensing electrode is composed of a single layer electrode of the entire surface, from a single layer electrode.
  • the four corners of the electrode input current when the human finger touches the touch screen, the hand refers to the leakage current that forms a coupling capacitance with the electrode and flows out from the coupling capacitor.
  • the touch position of the current flowing from the finger is calculated. This method can be meticulously positioned, but the calculation amount of the control circuit is large.
  • the analog capacitive touch screen of the double-layer sensing electrode It is composed of two layers of electrodes with multiple parallel electrodes on each layer. The two layers of electrodes are orthogonal to each other.
  • the finger forms a coupling capacitance with some electrodes on the touch screen, and the coupling capacitor is coupled.
  • the leakage current flowing out is calculated by detecting the magnitude of the current flowing out of each electrode, and calculating the lateral or vertical touch position on the two mutually orthogonal electrodes. This method can be meticulously positioned, and the drift problem is also improved.
  • the double-layer sensing electrodes need to detect leakage current one by one, and the detection and calculation amount is large, and the time required for detection and calculation also increases as the screen becomes larger and the sensing electrodes increase.
  • the invention aims to provide a touch panel display, which not only has a display function but also has a touch function, and is versatile.
  • the technical idea of the present invention is: a conventional dot matrix flat panel display having vertical intersecting transmission line display electrode lines for driving scanning signals and column electrode lines for transmitting display data signals, such as passives such as TN-LCD and STN-LCD
  • the pixel and the electrode share a conductive film at the position of the display pixel
  • the display pixel is connected to the scan electrode and the data electrode through the input port.
  • the display electrode not only transmits the driving signal, but also senses and transmits the touch signal, so that the display driving signal and the touch signal share the display electrode at the same time: the touch signal circuit is connected to the display driving circuit through the signal loading circuit, and the signal is loaded.
  • the circuit combines the display driving signal and the touch signal with different characteristics into a composite signal to form a driving signal with a touch recognition feature, and outputs the driving signal to the display electrode, so that the display electrode simultaneously transmits the display driving signal and the touch signal.
  • the touch object finger or stylus
  • electromagnetic coupling is generated between the display electrode and the external touch object, by detecting the display electrode and touch
  • the coupling signal between the objects obtains the positioning information.
  • the display electrode can be made to sense the touch without adding additional electrodes and sensing elements to the display screen, so that the display not only has a display function but also has a touch function, and is versatile.
  • a solution for accessing from the display terminal of the present invention is: adding signal loading at the output of the display driver circuit 110
  • the circuit 130 connects the display driving circuit 110 to the display electrode 120 through the signal loading circuit 130, and the signal loading circuit 130 also connects the touch signal circuit 140, as shown in FIG.
  • the touch signal circuit 140 3 ⁇ 4f signal loading circuit 130 adds a touch signal having a touch recognition feature, and the signal loading circuit 130 synthesizes the display driving signal and the touch signal into a composite signal to form a driving signal having a touch recognition feature.
  • the signal leaked by the screen electrode 120 determines the touch positioning electrode by the detected position of the signal, and determines the touch positioning point through the two touch touch positioning electrodes of the display row and the column.
  • the touch signal is detected at a plurality of electrode positions, the electrode with the largest signal is used as the touch positioning point, or the middle position of the electrode detecting the touch signal is the touch positioning point.
  • the display driving circuit 210 of the flat panel display can be divided into three parts: a driving source circuit 211, a selection and output circuit 212, and a control circuit 213, and the driving source circuit 211 generates a driving level.
  • the driving energy (the driving source circuit is sometimes composed only of a power supply and a voltage dividing resistor)
  • the selection and output circuit 212 selects and outputs a driving signal composed of a register and an analog switch
  • the control circuit 213 issues a display information to control the selection and output circuit 212 to drive.
  • a signal loading circuit 230 is added between the driving source circuit 211 and the selection and output circuit 212.
  • the display driving source circuit 211 is connected to the selection and output circuit 212 through the signal loading circuit 230.
  • the signal loading circuit 230 is also connected to the touch signal circuit 240, such as Figure 2 shows.
  • the touch signal circuit 240 adds a touch signal having a touch recognition feature to the signal loading circuit 230.
  • the signal loading circuit 230 combines the display drive signal and the touch control signal into a composite signal to form a drive signal having a touch recognition feature.
  • the signal leaked by the screen electrode 220 determines the touch positioning electrode by the detected position of the signal, and determines the touch positioning point through the two touch touch positioning electrodes of the display row and the column.
  • the touch signal is detected at a plurality of electrode positions, the electrode with the largest signal is used as the touch positioning point, or the middle position of the electrode for detecting the touch signal is the touch positioning point.
  • the loading and synthesizing of the driving signal and the touch signal may be performed by loading a touch signal with a frequency characteristic onto a display driving waveform to synthesize a driving signal having a frequency characteristic of the touch recognition; or The signal is loaded onto a display driving waveform to synthesize a driving signal having a coding feature of touch recognition; His characteristic touch signal is loaded onto a display drive waveform to synthesize a drive signal with other touch recognition features.
  • the loading and synthesizing of the display driving signal and the touch signal may be a superposition relationship between the touch signal and the display driving signal (FIG. 3a), which may be a modulation relationship (FIG. 3b) or may be formed. Other relationships.
  • the display drive waveform segment to which the touch signal is loaded may be the selected waveform of the display (Figs. 3a, 3b) or the non-selected waveform of the display (Fig. 3c).
  • the touch signal may be loaded into the display driving signals of the display electrodes of each group in a scanning manner, or the touch signals of different frequencies or different codes may be simultaneously loaded onto the display driving signals of the display electrodes of each group.
  • the grouping of the display row and column electrodes may be one row electrode or one column electrode, or may be a plurality of row electrodes or a plurality of column electrodes.
  • the display driving signal for loading the touch signal to each group of display electrodes by scanning may be performed in a sub-area, that is, in different regions, the display driving signals of the display electrodes of the touch signal to the area are respectively scanned and scanned. on.
  • a touch signal generating circuit can be disposed in the touch signal circuit to generate a coupling signal with the touch object through the display electrode; a touch signal detecting circuit can also be disposed to detect the emitted touch signal; but at least the touch signal occurs.
  • the signal coupling between the display electrode and the touch object has multiple solutions - one solution is to output a driving signal with a touch recognition feature to the display row and column electrodes, when a human hand or a stylus
  • the touch object is close to a certain set of display electrodes, and a coupling capacitor is generated between the touch object and the display electrode.
  • the touch signal portion of the drive signal having the touch recognition feature leaks out through the coupling capacitor portion, and the touch signal circuit is used.
  • the detection circuit inside detects the leaked touch signal, and the set of electrodes is the touch positioning electrode.
  • Another solution is to output a driving signal with a touch recognition feature to the display row and column electrodes, and when the stylus with the signal receiving function is close to a certain set of display electrodes, the touch signal is close to the stylus Detected, and the set of electrodes is used as a touch positioning electrode.
  • the signal loading circuit synthesizes the display driving signal and the touch signal into a driving signal having a touch recognition feature and outputs the same to the display electrode, and uses the display electrode as the sensing electrode. Allow display and touch to use the display electrode at the same time, so that the flat panel display can be used for both display and touch without adding additional sensing elements. A separate touch screen is no longer needed.
  • Figure 1 shows the connection of the signal loading circuit to the display screen, display driver circuit and touch signal circuit.
  • Figure 2 is a diagram showing the connection of the signal source circuit and the drive circuit of the display drive circuit, the selection and output circuit, the control circuit, the touch control signal circuit, and the display screen.
  • FIG. 3 is a diagram showing that the driving signal and the touch signal are loaded and synthesized.
  • FIG. 4 is a touch-type liquid crystal display that is connected from the display end to detect the touch leakage current of the display screen electrode.
  • FIG. 5 is a touch liquid crystal display with a touch leakage current detected from a driving source terminal.
  • a touch-type liquid crystal display in which a display electrode emits a stylus to receive a touch signal.
  • FIG. 4 A touch-type liquid crystal display 400 that detects a touch leakage current of a display screen electrode from a display end.
  • the liquid crystal display 400 is composed of a liquid crystal display 410 (where the row electrode 411, the column electrode 412), the signal loading circuits 420 and 430, the display driving circuits 440 and 450, the touch signal circuits 460 and 470, and the control circuit 480, and the touch signal circuit
  • the 460 has a touch signal generating circuit 461 and a touch signal detecting circuit 462.
  • the touch signal circuit 470 has a touch signal generating circuit 471 and a touch signal detecting circuit 472.
  • the N row electrodes 411 of the liquid crystal display 410 are connected to the display driving circuit 440 and the touch signal circuit 460 through the signal loading circuit 420; the M column electrodes 412 of the liquid crystal display 410 pass through the signal loading circuit 430 and the display driving circuit 450 and The touch signal circuits 470 are connected.
  • the control circuit 480 causes the touch signals generated by the touch signal generating circuits 461 and 471 to be loaded with the display driving signals of the display driving circuits 440 and 450 one by one by the signal loading circuits 420 and 430, respectively, and then separately transmitted.
  • Each of the N row electrode 411 and the M column electrode 412 is given.
  • the electromagnetic coupling between the finger 490 and the electrode of the liquid crystal display 410 generates a coupling capacitance; the touch signal on one of the N row electrodes 411 passes through the coupling capacitor.
  • the leakage current flows from the finger 490, the touch signal detecting circuit 462 detects the row electrode flowing out of the leakage current, thereby determining the row positioning power; the touch signal on one of the M column electrodes 412 is also passed through the coupling capacitor by the finger 490 flows out of the leakage current, and the touch signal detecting circuit 472 detects the column electrode flowing out of the leakage current to determine the column positioning electrode; and determines the touch position by the intersection of the row electrode and the column electrode.
  • the second embodiment of the present invention is shown in FIG. 5: a touch liquid crystal display 500 that detects leakage current of the display screen electrode from the driving source end.
  • the liquid crystal display 500 has a liquid crystal display 510 (where the row electrode 511, the column electrode 512), a signal selection and output circuit 520 (wherein the row signal selection and output circuit 521, the column signal selection and output circuit 522), the display driving source circuit 530,
  • the signal generation circuit 551 and the touch signal detection circuit 552 are controlled.
  • the port of the signal selection and output circuit 521 is connected to the display driving source circuit 530 and the touch signal circuit 540 through the signal loading circuit 560; the port of the signal selecting and outputting circuit 522 is passed through the signal loading circuit 570 and the display driving source circuit 530 and the touch Signal circuits 550 are connected.
  • the control system 580 causes the touch signals generated by the touch signal generating circuits 541 and 551 to be loaded with the display driving signals of the display driving source circuit 530 one by one by the signal loading circuits 560 and 570, respectively, and then passed through the lines.
  • the signal selection and output circuits are 521 and column signal selection and output circuits 522, which are transmitted to the respective electrodes of the N row electrodes 511 and the M column electrodes 512.
  • the electromagnetic coupling between the finger 590 and the electrode of the liquid crystal display 510 generates a coupling capacitance; the touch signal on one of the N row electrodes 511 passes through the coupling capacitor.
  • the leakage current flows from the finger 590, the touch signal detecting circuit 542 detects the row electrode flowing out of the leakage current, thereby determining the row positioning electrode; the touch signal on one of the M column electrodes 512 is also passed through the coupling capacitor by the finger
  • the 590 flows out of the leakage current, and the touch signal detecting circuit 552 detects the column electrode flowing out of the leakage current to determine the column positioning electrode; and determines the touch position by the intersection of the row electrode and the column electrode.
  • the third embodiment of the present invention is shown in FIG. 6 : a touch-sensitive liquid crystal display 600 in which a display screen emits a stylus to receive a touch signal.
  • the active liquid crystal display 600 has a display screen 610 (where the row electrode 611, the column electrode 612, the display pixel 613), the display driving circuits 620 and 630, the touch signal generating circuits 640 and 650, the signal loading circuits 660 and 670, and the control circuit.
  • the touch signal generating circuit 640 includes an encoding circuit 641
  • the touch signal generating circuit 650 includes an encoding circuit 651.
  • the N row electrodes 611 of the liquid crystal display 610 are connected to the display driving circuit 620 and the touch signal generating circuit 640 through the signal loading circuit 650; the M column electrodes 612 of the liquid crystal display 610 pass the signal loading circuit 660 and the display driving circuit 630.
  • the touch signal generating circuit 650 is connected.
  • the control circuit 680 causes the touch signals generated by the touch signal generating circuits 640 and 650 to pass through the signal loading circuits 660 and 670, respectively.
  • the manner of ring scanning is loaded one by one with the display driving signals of the display driving circuits 620 and 630, and then transmitted to the respective electrodes of the N row electrodes 611 and the M column electrodes 612, respectively.
  • the touch signal outputted by each of the row electrodes 611 by the touch signal generating circuit 640 having the encoding circuit 641 is a coded signal that is changed by the frame scanning movement, and outputs a zero-level signal to the row electrode that does not output the touch signal.
  • the stylus pen 690 having the signal receiving capability contacts the touch screen, the stylus pen 690 receives the touch signal generating circuit 640 having the encoding circuit 641 and outputs the signal to the display row electrode through the loading circuit 660, and then the display row electrode.
  • a coded signal that is transmitted as a function of scanning movement, and determines a row positioning electrode by using the received code
  • a touch signal outputted by each of the column electrodes 621 by the touch signal generating circuit 650 having the encoding circuit 651 is Scanning the coded signal that changes by moving, and outputting a zero-level signal to the row electrode that does not output the touch signal.
  • the stylus pen 690 having the signal receiving capability contacts the touch screen, the stylus pen 690 receives the signal having the encoding circuit 651.
  • the touch signal generating circuit 650 outputs to the display column electrode through the loading circuit 670, and then changes from the display column electrode to change with the scanning movement.
  • the code signal, and the column positioning electrode is determined by the received code; the stylus 690 transmits the related information to the control circuit 680 of the touch liquid crystal display 600 by wire or wirelessly, and is determined by the positioning electrodes of the row electrode and the column electrode. Touch location.
  • the amplitude of the signal of the touch signal circuit should be as small as possible, and the frequency should be much higher than the driving frequency of the liquid crystal display to avoid the interference of the touch signal to the normal display of the liquid crystal display.
  • the impedance of the IT0 electrode should be as small as possible (at least not more than 15 / ⁇ ). If necessary, metal or other non-IT0 conductive layer can be plated on the IT0 electrode or on the electrode side to further reduce the attenuation of the touch signal. If necessary, a plurality of IT0 electrodes may be formed in a parallel relationship through an external circuit, or a series relationship may be formed through an external circuit to increase the ability to obtain a touch signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Description

具有触控功能的平板显示器 技术领域
本发明涉及触控屏和平板显示器, 具体涉及具有触控功能的平板显示器。
背景技术
目前具有触控功能的平板显示器以显示屏、 显示驱动器、 触控屏、 触控信号检测器、 背光源等部件构成, 触控屏有应用不同感测原理的电阻式、 电容式、 电磁式、 超声波式和 光电式等, 显示屏有 TN/STN液晶显示屏、 TFT液晶显示屏、 0LED显示屏、 PDP显示屏、 纳 米碳管显示屏等。 带有触控屏的平板显示器是将分体的触控屏与显示屏层叠在一起, 通过 显示屏探测到触摸点的平面位置, 再使显示屏上的光标跟随触摸点定位。 触控屏与显示屏 的层叠使得触控式平板显示器变厚变重成本增加; 在触控屏置于显示屏前面时, 触控屏感 测电极产生的反射又会使得显示不均勻和在强外界光环境下显示对比度的下降, 影响显示 效果。 将触控板和显示屏集成为一体, 使具有触控功能的平板显示器变得更加轻薄, 是人 们努力的方向。
显示屏和触控板的集成方式主要为层叠式和镶嵌式两种, 层叠式是将触控板置于显示 屏的顶面之前或底面之后, 显示屏和触控板分别独立承担显示和触控任务, 中国专利 (CN20010141451 , MINXIANG INDUSTRY CO LTD, 2001) 、 芬兰专利(FI19960002692, NOKIA MOBILE PHONES LTD, 1996)、日本专利(JP19850161986, CANON KK, 1985)、 (JP19900095167, NIPPON TELEGRAPH & TELEPHONE, 1990)、 (JP19930306286, PFU LTD, 1993), (JP19980014850, NISSHA PRINTING, 1998)、 (JP19990142260, MIMAKI DENSHI BUHIN KK, 1999)、 韩国专 利(KR20000084115, YU H議 SE0NG; LIM J00-S00, 2000)、 (KR20020083301 , BANG Y0NG IK; etc. , 2002)、 台湾专利(TW556141 , AU OPTRONICS CORP, 2002)、美国专利(US6215476, APPLE COMPUTER, 2001)、 (US20030347603 , T0PP0LY OPTOELECTRONICS CORP, 2003) 等 多项专利, 都提出了电阻式、 电容式、 电磁式的触控板和显示屏的各种层叠方案, 但触控 板置于显示屏顶面之前, 会影响显示的亮度、 对比度、 清晰度、 颜色等显示效果; 电磁式 触控板置于显示屏底面之后, 使触控板电极与显示屏电极的对位困难, 也会影响显示的亮 度; 并且层叠的方法还会增加显示器的整体厚度; 结构的复杂, 又会导致可靠性下降, 并
1
确认本 由生产过程的复杂和装配的复杂也至使成本偏高。
镶嵌式是将触控传感器嵌入显示屏内, 在每一显示象素旁安置一个传感器 (多为光学 传感器), 用双重电极连接显示象素和传感器, 分别传输显示驱动信号和触控探测信号, 韩国专利(KR20030019631, JUNG YONG CHAE; YANG DONG KYU, 2003)、 (KR20030077574, CHOI JO0N-HOO; J00 IN- S00, 2003)、 德国专利(GB0304587. 9, SHARP, 2003)、 美国专利 (US19970955388, SONY ELECTRONICS INC , 1997), (US19980135959, IBM , 1998)、 (US20030721129 , EASTMAN KODAK CO, 2003)等多项专利, 也分别提出了镶嵌式的方案, 但将触控传感器镶嵌入显示屏以及双重电极的制造工艺复杂, 电极引出线困难, 因而也至 使成本高, 并且也可能产生显示驱动信号和触控探测信号的相互干扰。
也有人试图靠探测液晶显示屏的盒间电容的方法来探测触控, 如台湾专利 (TW20020116058, LEE YU-TUAN, 2002), 盒间电容的变化是靠触控压力引起盒厚的变化产 生, 盒间的支承物使得要改变液晶显示屏的盒厚需要很大力量, 而且改变液晶显示屏的盒 厚必定会影响显示, 液晶材料的介电各向异性又使得盒间电容随显示变化, 要排除液晶材 料介电各向异性引起的盒间电容的变化又会影响显示, 所以这种探测液晶显示屏的盒间电 容来探测触控的方法是不可取的。
找出一种解决上述的结构复杂、 制造工艺难度大、 生产过程复杂和装配复杂问题的方 案, 提高可靠性、 改善显示效果、 压缩厚度、 降氏成本, 以简洁的方法实现平板显示器触 控功能是必要的。
电容式触控屏是利用触控物与触控屏感测电极间形成的耦合电容, 探测通过耦合电容 的漏电流来定位触摸点, 电容式触控屏又可分为数字和模拟两种方式。 数字式电容触控屏 是由每层有多条平行电极的两层电极组成,两层电极相互正交,当人的手指接触触控屏时, 手指与触控屏上的某些电极形成耦合电容, 并从耦合电容流出的漏电流, 通过检测到两层 电极上相互正交的与手指形成耦合电容的两条电极而确定触控位置。 此种方法只适合用于 较粗的定位, 在要求细致定位时, 要制做双层的细密电极, 成本太高。 模拟电容式触控屏 可分为单层感测电极和双层感测电极两种方式:单层感测电极的模拟电容式触控屏是由整 面的单层电极组成, 从单层电极的四个角向电极输入电流, 当人的手指接触触控屏时, 手 指与电极形成耦合电容, 并从耦合电容流出的漏电流, 通过检测四个角分别流向电极电流 的大小, 计算出从手指流出电流的触控位置。 此种方法可以细致定位, 但控制电路的计算 量大, 在环境温度、 湿度改变时, 环境电场发生改变时, 会引起漂移, 造成定位不准确; 双层感测电极的模拟电容式触控屏是由每层有多条平行电极的两层电极组成, 两层电极相 互正交, 当人的手指接触触控屏时, 手指与触控屏上的某些电极形成耦合电容, 并从耦合 电容流出的漏电流, 通过检测各电极流出电流的大小, 分别在两层相互正交电极上计算出 橫向或纵向的触控位置。 此种方法可以细致定位, 对漂移问题也有改善, 但需对双层感测 电极逐条检测漏电流, 检测和计算量大, 检测和计算所需时间也随屏幕变大感测电极增多 而提高。
发明内容
本发明旨在提供一种触控式平板显示器, 使显示器不仅具有显示功能而且具有触控功 能, 一物多用。
本发明的技术思路是: 通常的点阵型平板显示屏上具有垂直相交的传输显示驱动扫描 信号的行电极线和传输显示数据信号的列电极线, 在如 TN-LCD和 STN- LCD等无源平板显 示屏中, 在显示象素的位置显示象素和电极共用导电膜; 在如 TFT-LCD等有源平板显示屏 中,显示象素通过输入端口与扫描电极和数据电极连接。让显示屏电极不仅传递驱动信号, 同时也感测并传递触控信号, 使显示驱动信号和触控信号同时共用显示屏电极: 让触控信 号电路通过信号加载电路与显示驱动电路连接, 信号加载电路将特征不同的显示驱动信号 和触控信号合成复合信号, 形成具有触控识别特征的驱动信号, 输出到显示屏电极上, 使 显示屏电极同时传输显示驱动信号和触控信号。 当触控物 (手指或触控笔)在只是触碰甚至 只是靠近而不需要触压显示屏的情况下, 显示屏电极与外界触控物之间产生电磁耦合, 通 过探测显示屏电极与触控物之间的耦合信号而获得定位信息, 而不是检测压力所引起的显 示屏盒内物理量的变化。 这样, 在不需在显示屏内增加额外电极和传感元件的情况下, 使 显示屏电极获得感知触控的能力, 让显示器不仅具有显示功能而且具有触控功能, 一物多 用。
本发明一种从显示端接入的解决方案是: 在显示驱动电路 110的输出端增加信号加载 电路 130, 使显示驱动电路 110通过信号加载电路 130连接显示屏电极 120, 信号加载电 路 130也同时连接触控信号电路 140,如图 1所示。触控信号电路 140 ¾f信号加载电路 130 加入具有触控识别特征的触控信号, 信号加载电路 130将显示驱动信号和触控信号合成为 复合信号, 形成具有触控识别特征的驱动信号。 当触控手指或触控笔靠近显示屏电极 120 某一条电极时, 显示屏电极 120与触控物间产生电磁耦合, 电极上传输的复合信号中的触 控信号部分被泄漏出去, 探测由显示屏电极 120泄漏的信号, 以信号被探测到的位置来确 定触控定位电极, 通过显示屏行和列两条交叉的触控定位电极, 确定触控定位点。 当在多 条电极位置检测到触控信号时, 以信号最大的电极为触控定位点, 或以这些检测到触控信 号的电极的中间位置为触控定位点。
另一种从驱动源端接入的解决方案是:平板显示器的显示驱动电路 210可划分为驱动 源电路 211、 选择和输出电路 212、 控制电路 213三部分, 驱动源电路 211产生驱动电平 提供驱动能量 (驱动源电路有时只是由电源和分压电阻组成), 选择和输出电路 212以寄存 器和模拟开关等组成的选择和输出驱动信号, 控制电路 213发出显示信息控制选择和输出 电路 212对驱动信号的选择和输出。 在驱动源电路 211与选择和输出电路 212之间加入信 号加载电路 230, 显示驱动源电路 211通过信号加载电路 230连接选择和输出电路 212, 信号加载电路 230也同时连接触控信号电路 240, 如图 2所示。 触控信号电路 240对信号 加载电路 230加入具有触控识别特征的触控信号, 信号加载电路 230将显示驱动信号和触 控信号合成为复合信号, 形成具有触控识别特征的驱动信号。 当触控手指或触控笔靠近显 示屏电极 220某一条电极时, 显示屏电极 220与触控物间产生电磁耦合, 电极上传输的复 合信号中的触控信号部分被泄漏出去, 探测由显示屏电极 220泄漏的信号,、以信号被探测 到的位置来确定触控定位电极, 通过显示屏行和列两条交叉的触控定位电极, 确定触控定 位点。 当在多条电极位置检测到触控信号时, 以信号最大的电极为触控定位点, 或以这些 检测到触控信号的电极的中间位置为触控定位点。
显示驱动信号和触控信号的加载合成, 可以是将具频率特征的触控信号加载到某个显 示驱动波形上, 合成出具有触控识别的频率特征的驱动信号; 也可以是将具有编码的信号 加载到某个显示驱动波形上, 合成出具有触控识别的编码特征的驱动信号; 还可以是将其 他特征的触控信号加载到某个显示驱动波形上, 合成出具有其他触控识别特征的驱动信 号。
如图 3所示, 显示驱动信号和触控信号的加载合成, 可以是触控信号与显示驱动信号 形成叠加的关系(图 3a), 可以是形成调制的关系(图 3b), 也可以是形成其他的关系。 加 载触控信号的显示驱动波形段可以是显示的选择波形(图 3a、 3b), 也可以是显示的非选择 波形(图 3c)。
触控信号可以是以扫描方式按时序加载到各组显示屏电极的显示驱动信号上, 也可以 将不同频率或不同编码的触控信号同时地加载到各组显示屏电极的显示驱动信号上。 显示 屏行列电极的分组可以是一条行电极或一条列电极, 也可以是若干条行电极或若干条列电 极。 以扫描方式加载触控信号到各组显示屏电极的显示驱动信号上可以是分区域进行的, 即在不同区域内, 分別以扫描方式加载触控信号到此区域的显示屏电极的显示驱动信号 上。
在触控信号电路内可设置触控信号发生电路,通过显示屏电极发出与触控物的耦合信 号; 也可设置触控信号检测电路, 检测发出的触控信号; 但至少具有触控信号发生电路和 触控信号检测电路中的一种。
上述两个解决方案中显示屏电极与触控物的信号耦合, 有多个方案- 一种方案是, 对显示屏行列电极分组输出具有触控识别特征的驱动信号, 当人手或触 控笔等触控物靠近某一组显示屏电极, 触控物与显示屏电极间产生耦合电容, 具有触控识 别特征的驱动信号中的触控信号部分通过耦合电容部分洩漏出去, 用与触控信号电路内的 检测电路探测洩漏的触控信号, 以此组电极即为触控定位电极。
另一种方案是,对显示屏行列电极分组输出具有触控识别特征的驱动信号, 当具有信 -号接收功能的触控笔靠近某一组显示屏电极, 触控信号被靠近的触控笔检测到, 并以此组 电极为触控定位电极。
这样,由信号加载电路将显示驱动信号和触控信号合成为具有触控识别特征的驱动信 号输出到显示屏电极上, 以显示屏电极作为感测电极。让显示和触控同时使用显示屏电极, 使得平板显示屏在不需增加额外的传感元件的情况下, 既可以用于显示又可用于触控, 而 不再需要独立之触控屏。
附图简要说明
图 1是信号加载电路与显示屏、 显示驱动电路和触控信号电路的连接方式。
图 2是信号加载电路与显示驱动电路的驱动源电路、选择和输出电路、 控制电路, 触 控信号电路, 以及显示屏的连接方式。
图 3是显示驱动信号和触控信号加载合成出波形。
图 4是一种从显示端接入检测显示屏电极触控漏电流的触控式液晶显示器。
图 5是一种从驱动源端接入检测显示屏电极触控漏电流的触控式液晶显示器。
图 6是一种显示屏电极发射触控笔接收触控信号的触控式液晶显示器。
具体实施方式
本发明的实施例之一如图 4所示: 一种从显示端接入检测显示屏电极触控漏电流的触 控式液晶显示器 400。 液晶显示器 400由液晶显示屏 410 (其中行电极 411、 列电极 412)、 信号加载电路 420和 430、 显示驱动电路 440和 450、 触控信号电路 460和 470、 控制电路 480组成, 触控信号电路 460内具有触控信号发生电路 461和触控信号检测电路 462, 触 控信号电路 470内具有触控信号发生电路 471和触控信号检测电路 472。 液晶显示屏 410 的 N条行电极 411通过信号加载电路 420与显示驱动电路 440和触控信号电路 460相连接; 液晶显示屏 410的 M条列电极 412通过信号加载电路 430与显示驱动电路 450和触控信号 电路 470相连接。 控制电路 480使触控信号发生电路 461和 471发出的触控信号, 分别通 过信号加载电路 420和 430以循环扫描的方式逐条与显示驱动电路 440和 450的显示驱动 信号加载在一起, 再分别传输给 N条行电极 411和 M条列电极 412的各电极。 当操作者的 触控手指 490触及液晶显示屏 410时, 手指 490与液晶显示屏 410电极间的电磁耦合生成 耦合电容; N条行电极 411中的某一条行电极上的触控信号通过耦合电容由手指 490流出 漏电流, 触控信号检测电路 462检测到流出漏电流的行电极, 从而确定出行定位电 ; M 条列电极 412中的某一条列电极上的触控信号也通过耦合电容由手指 490流出漏电流, 触 控信号检测电路 472检测到流出漏电流的列电极, 从而确定出列定位电极; 由行电极和列 电极各自定位电极的交叉点确定触控位置。 本发明的实施例之二如图 5所示:一种从驱动源端接入检测显示屏电极漏电流的触控 式液晶显示器 500。 液晶显示器 500以液晶显示屏 510 (其中行电极 511、 列电极 512)、 信 号选择和输出电路 520 (其中行信号选择和输出电路 521、列信号选择和输出电路 522)、显 示驱动源电路 530、 触控信号电路 540和 550、 信号加载电路 560和 570、 控制电路 580等 组成, 触控信号电路 540内具有触控信号发生电路 541和触控信号检测电路 542, 触控信 号电路 550内具有触控信号发生电路 551和触控信号检测电路 552。 信号选择和输出电路 521的端口通过信号加载电路 560与显示驱动源电路 530和触控信号电路 540相连接; 信 号选择和输出电路 522的端口通过信号加载电路 570与显示驱动源电路 530和触控信号电 路 550相连接。 控制系统 580使触控信号发生电路 541和 551发出的触控信号, 分别通过 信号加载电路 560和 570以循环扫描的方式逐条与显示驱动源电路 530的显示驱动信号加 载在一起, 再分别通过行信号选择和输出电路为 521和列信号选择和输出电路为 522, 传 输给 N条行电极 511和 M条列电极 512的各电极。 当操作者的触控手指 590触及液晶显示 屏 510时, 手指 590与液晶显示屏 510电极间的电磁耦合生成耦合电容; N条行电极 511 中的某一条行电极上的触控信号通过耦合电容由手指 590流出漏电流, 触控信号检测电路 542检测到流出漏电流的行电极, 从而确定出行定位电极; M条列电极 512中的某一条列 电极上的触控信号也通过耦合电容由手指 590流出漏电流, 触控信号检测电路 552检测到 流出漏电流的列电极, 从而确定出列定位电极; 由行电极和列电极各自定位电极的交叉点 确定触控位置。
本发明的实施例之三如图 6所示:一种显示屏电极发射触控笔接收触控信号的触控式 液晶显示器 600。 有源液晶显示器 600以显示屏 610 (其中行电极 611、 列电极 612、 显示 象素 613)、 显示驱动电路 620和 630、 触控信号发生电路 640和 650、 信号加载电路 660 和 670、 控制电路 680等组成, 触控信号发生电路 640内含编码电路 641, 触控信号发生 电路 650内含编码电路 651。 液晶显示屏 610的 N条行电极 611通过信号加载电路 650与 显示驱动电路 620和触控信号发生电路 640相连接; 液晶显示屏 610的 M条列电极 612通 过信号加载电路 660与显示驱动电路 630和触控信号发生电路 650相连接。 控制电路 680 使触控信号发生电路 640和 650发出的触控信号, 分别通过信号加载电路 660和 670以循 环扫描的方式逐条与显示驱动电路 620和 630的显示驱动信号加载在一起, 再分别传输给 N条行电极 611和 M条列电极 612的各电极。由具有编码电路 641的触控信号发生电路 640 对行电极 611中每一电极输出的触控信号是陣扫描移动而变动的编码信号, 对未输出触控 信号的行电极输出零电平信号, 当具有信号接收能力的触控笔 690接触触控屏时, 触控笔 690接收到具有编码电路 641的触控信号发生电路 640通过加载电路 660输出到显示屏行 电极, 再从显示屏行电极发射出来的随扫描移动而变动的编码信号, 并以接收到的编码确 定行定位电极; 由具有编码电路 651的触控信号发生电路 650对列电极 621中每一电极输 出的触控信号是随扫描移动而变动的编码信号, 对未输出触控信号的行电极输出零电平信 号,当具有信号接收能力的触控笔 690接触触控屏时,触控笔 690接收到具有编码电路 651 的触控信号发生电路 650通过加载电路 670输出到显示屏列电极, 再从显示屏列电极发射 出来的随扫描移动而变动的编码信号, 并以接收到的编码确定列定位电极; 触控笔 690再 将相关信息有线或无线的传送回触控式液晶显示器 600的控制电路 680, 由行电极和列电 极各自的定位电极确定触控位置。
触控信号电路信号的幅值应尽可能小、频率应远高于液晶显示屏的驱动频率, 以避免 触控信号干扰到液晶显示屏的正常显示。 另一方面为了减小触控信号的衰减应使 IT0电极 的阻抗尽可能小 (至少不大于 15 /□)。必要时可在 IT0电极上或电极侧增镀金属或其他非 IT0导电层, 以进一步减小触控信号的衰减。 必要时也可将多条 IT0电极通过外部电路形 成并联关系, 或通过外部电路形成串联关系, 以增加获得触控信号的能力。
上述的实施例并不代表所有可能的实施方案,其它的变形方案也应是本发明的保护范 围。

Claims

权 利 要 求
1. 具有触控功能的平板显示器, 具有显示屏、 显示驱动电路、 触控信号电路, 其特 征在于: 触控信号电路通过信号加载电路与显示驱动电路连接, 信号加载电路将特征不同 的显示驱动信号和触控信号合成具有触控识别特征的驱动信号输出到显示屏电极上, 显示 屏电极同时传输显示驱动信号和传输并感测触控信号, 显示驱动和触控探测同时共用显示 屏电极。
2. 根据权利要求 1所述的具有触控功能的平板显示器, 其特征在于: 信号加载电路 位于显示驱动电路和显示屏电极之间。
3. 根据权利要求 1所述的具有触控功能的平板显示器, 其特征在于: 显示驱动电路 由驱动源电路、 选择和输出电路、 控制电路三部分组成, 信号加载电路位于显示驱动电路 内的驱动源电路和选择和输出电路之间。
4. 根据权利要求 1所述的具有触控识别特征的驱动信号, 其特征在于: 是由与显示 驱动信号频率不同的触控信号加载到显示驱动波形上, 合成出具有触控识别频率特征的驱 动信号。
5. 根据权利要求 1所述的具有触控识别特征的驱动信号, 其特征在于: 是由具有编 码的触控信号加载到显示驱动波形上, 合成出具有触控识别编码特征的驱动信号。
6. 根据权利要求 1所述的显示驱动信号与触控信号的加载合成, 其特征在于: 显示 驱动信号和触控信号的加载合成是叠加的关系。
7. 根据权利要求 1所述的显示驱动信号与触控信号的加载合成, 其特征在于: 显示 驱动信号和触控信号的加载合成是调制的关系。
8. 根据权利要求 1所述的显示驱动信号与触控信号的加载合成, 其特征在于: 触控 信号是以扫描方式加载到各组显示屏电极的显示驱动信号上。
9. 根据权利要求 8所述的显示驱动信号与触控信号的加载合成, 其特征在于: 加载 到不同显示屏电极显示驱动信号上的触控信号的特征是不同的。
10. 根据权利要求 8所述的触控信号对显示驱动信号扫描加载, 其特征在于: 扫描加 载是分区域进行的。
11. 根据权利要求 1所述的显示驱动信号与触控信号的加载合成, 其特征在于: 不同 频率的触控信号同时加载到各组显示屏电极的显示驱动信号上。
12. 根据权利要求 1所述的显示驱动信号与触控信号的加载合成, 其特征在于: 不同 编码的触控信号同时加载到各组显示屏电极的显示驱动信号上。
13. 根据权利要求 1所述的触控信号电路, 其特征在于: 触控信号电路内具有触控信 号发生电路和触控信号检测电路中的至少一种。
14. 根据权利要求 1所述的显示屏电极传输并感测触控信号, 其特征在于: 通过信号 加载电路与显示屏电极相连接的触控信号检测电路, 检测具有触控识别特征的驱动信号通 过触控物与显示屏电极间耦合电容的洩漏部分。
15. 根据权利要求 1所述的显示屏电极传输并感测触控信号, 其特征在于: 具有触控 识别特征的驱动信号通过触控笔与显示屏电极间耦合电容洩漏, 具有信号接收和检测功能 的触控笔检测从显示屏电极洩漏出的信号。 .
16. 根据权利要求 14或 15所述的检测从显示屏电极洩漏出的信号, 其特征在于: 检 测的是具有触控识别特征的驱动信号的时序、幅值、频率、相位和编码特征中的至少一种。
17. 根据权利要求 1 所述的具有触控功能的平板显示器, 其特征在于: 当触控信号 检测电路在多个电极位置检测到超过阈值的触控信号时, 以检测到最大触控信号的电极位 置为触控定位点。
18. 根据权利要求 1 所述的具有触控功能的平板显示器, 其特征在于: 当触控信号 检测电路在检测到超过阈值触控信号的电极位置为奇数时, 以这些电极的中间电极为触控 定位点; 当检测到超过阈值触控信号的电极位置为偶数时, 以这些电极的中间两个电极中 的一个为触控定位点。
PCT/CN2006/001647 2005-07-14 2006-07-11 Dispositif d'affichage par panneau avec fonction de commande sensitive WO2007012256A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200510086128.5 2005-07-14
CN 200510086128 CN1716018A (zh) 2005-07-14 2005-07-14 具有触控功能的平板显示器
CN200520128513 2005-10-02
CN200520128513.7 2005-10-02

Publications (1)

Publication Number Publication Date
WO2007012256A1 true WO2007012256A1 (fr) 2007-02-01

Family

ID=37682986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001647 WO2007012256A1 (fr) 2005-07-14 2006-07-11 Dispositif d'affichage par panneau avec fonction de commande sensitive

Country Status (1)

Country Link
WO (1) WO2007012256A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130141379A1 (en) * 2008-09-16 2013-06-06 Sony Corporation Contact detecting device and display device
US8643624B2 (en) 2009-03-18 2014-02-04 Synaptics Incorporated Capacitive sensing using a segmented common voltage electrode of a display
US8970547B2 (en) 2012-02-01 2015-03-03 Synaptics Incorporated Noise-adapting touch sensing window
US9007336B2 (en) 2011-09-07 2015-04-14 Synaptics Incorporated Capacitive sensing during non-display update times
US9298309B2 (en) 2014-04-29 2016-03-29 Synaptics Incorporated Source driver touch transmitter in parallel with display drive
US9418626B2 (en) 2010-02-26 2016-08-16 Synaptics Incorporated Sensing during non-display update times
US9442615B2 (en) 2013-10-02 2016-09-13 Synaptics Incorporated Frequency shifting for simultaneous active matrix display update and in-cell capacitive touch
US9582099B2 (en) 2014-03-31 2017-02-28 Synaptics Incorporated Serrated input sensing intervals
US9898121B2 (en) 2010-04-30 2018-02-20 Synaptics Incorporated Integrated capacitive sensing and displaying
US10037112B2 (en) 2015-09-30 2018-07-31 Synaptics Incorporated Sensing an active device'S transmission using timing interleaved with display updates
US10073550B2 (en) 2012-09-20 2018-09-11 Synaptics Incorporated Concurrent input sensing and display updating
US10073568B2 (en) 2012-08-15 2018-09-11 Synaptics Incorporated System and method for interference avoidance for a display device comprising an integrated sensing device
US10175827B2 (en) 2014-12-23 2019-01-08 Synaptics Incorporated Detecting an active pen using a capacitive sensing device
US10275070B2 (en) 2015-01-05 2019-04-30 Synaptics Incorporated Time sharing of display and sensing data
US10394391B2 (en) 2015-01-05 2019-08-27 Synaptics Incorporated System and method for reducing display artifacts
US10592022B2 (en) 2015-12-29 2020-03-17 Synaptics Incorporated Display device with an integrated sensing device having multiple gate driver circuits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314602A (ja) * 1995-05-16 1996-11-29 Citizen Watch Co Ltd 液晶キーボード
US6118435A (en) * 1997-04-10 2000-09-12 Idec Izumi Corporation Display unit with touch panel
CN1410875A (zh) * 2001-09-25 2003-04-16 闽祥实业有限公司 具有触摸控制功能的平板显示器
CN1471073A (zh) * 2002-07-23 2004-01-28 李友端 触控式液晶显示器及其触控方法
CN1471072A (zh) * 2002-07-23 2004-01-28 李友端 液晶显示器及其触控方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314602A (ja) * 1995-05-16 1996-11-29 Citizen Watch Co Ltd 液晶キーボード
US6118435A (en) * 1997-04-10 2000-09-12 Idec Izumi Corporation Display unit with touch panel
CN1410875A (zh) * 2001-09-25 2003-04-16 闽祥实业有限公司 具有触摸控制功能的平板显示器
CN1471073A (zh) * 2002-07-23 2004-01-28 李友端 触控式液晶显示器及其触控方法
CN1471072A (zh) * 2002-07-23 2004-01-28 李友端 液晶显示器及其触控方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256354B2 (en) 2008-09-16 2022-02-22 Japan Display Inc. Sensor device and display device
US10845916B2 (en) 2008-09-16 2020-11-24 Japan Display Inc. Display device
US10372262B2 (en) 2008-09-16 2019-08-06 Japan Display Inc. Contact detecting device for multi-touch sensing
US9152259B2 (en) * 2008-09-16 2015-10-06 Japan Display, Inc. Contact detecting device and display device for multi-touch sensing
US9965082B2 (en) 2008-09-16 2018-05-08 Japan Display Inc. Contact detecting device and display device using display scan signal for contact detection
US20130141379A1 (en) * 2008-09-16 2013-06-06 Sony Corporation Contact detecting device and display device
US8643624B2 (en) 2009-03-18 2014-02-04 Synaptics Incorporated Capacitive sensing using a segmented common voltage electrode of a display
US9786254B2 (en) 2010-02-26 2017-10-10 Synaptics Incorporated Sensing during non-display update time to avoid interference
US9922622B2 (en) 2010-02-26 2018-03-20 Synaptics Incorporated Shifting carrier frequency to avoid interference
US9418626B2 (en) 2010-02-26 2016-08-16 Synaptics Incorporated Sensing during non-display update times
US9805692B2 (en) 2010-02-26 2017-10-31 Synaptics Incorporated Varying demodulation to avoid interference
US9898121B2 (en) 2010-04-30 2018-02-20 Synaptics Incorporated Integrated capacitive sensing and displaying
US9324301B2 (en) 2011-09-07 2016-04-26 Synaptics Incorporated Capacitive sensing during non-display update times
US9576558B2 (en) 2011-09-07 2017-02-21 Synaptics Incorporated Capacitive sensing during non-display update times
US9576557B2 (en) 2011-09-07 2017-02-21 Synaptics Incorporated Distributed blanking for touch optimization
US9330632B2 (en) 2011-09-07 2016-05-03 Synaptics Incorporated Capacitive sensing during non-display update times
US9946423B2 (en) 2011-09-07 2018-04-17 Synaptics Incorporated Capacitive sensing during non-display update times
US9007336B2 (en) 2011-09-07 2015-04-14 Synaptics Incorporated Capacitive sensing during non-display update times
US9041685B2 (en) 2011-09-07 2015-05-26 Synaptics Incorpoated Distributed blanking for touch optimization
US8970547B2 (en) 2012-02-01 2015-03-03 Synaptics Incorporated Noise-adapting touch sensing window
US10073568B2 (en) 2012-08-15 2018-09-11 Synaptics Incorporated System and method for interference avoidance for a display device comprising an integrated sensing device
US10209845B2 (en) 2012-08-15 2019-02-19 Synaptics Incorporated System and method for interference avoidance for a display device comprising an integrated sensing device
US10073550B2 (en) 2012-09-20 2018-09-11 Synaptics Incorporated Concurrent input sensing and display updating
US9442615B2 (en) 2013-10-02 2016-09-13 Synaptics Incorporated Frequency shifting for simultaneous active matrix display update and in-cell capacitive touch
US9582099B2 (en) 2014-03-31 2017-02-28 Synaptics Incorporated Serrated input sensing intervals
US9298309B2 (en) 2014-04-29 2016-03-29 Synaptics Incorporated Source driver touch transmitter in parallel with display drive
US10175827B2 (en) 2014-12-23 2019-01-08 Synaptics Incorporated Detecting an active pen using a capacitive sensing device
US10275070B2 (en) 2015-01-05 2019-04-30 Synaptics Incorporated Time sharing of display and sensing data
US10394391B2 (en) 2015-01-05 2019-08-27 Synaptics Incorporated System and method for reducing display artifacts
US10037112B2 (en) 2015-09-30 2018-07-31 Synaptics Incorporated Sensing an active device'S transmission using timing interleaved with display updates
US10592022B2 (en) 2015-12-29 2020-03-17 Synaptics Incorporated Display device with an integrated sensing device having multiple gate driver circuits

Similar Documents

Publication Publication Date Title
WO2007012256A1 (fr) Dispositif d'affichage par panneau avec fonction de commande sensitive
WO2007003108A1 (fr) Dispositif d'affichage plat a commande tactile
US9069421B2 (en) Touch sensor and touch display apparatus and driving method thereof
CN105302368B (zh) 具有集成触摸屏的显示设备及其驱动方法
JP4660639B2 (ja) ディスプレイ装置とその製造方法
US8421772B2 (en) Resistive touch control device and driving method and driving controller thereof
US8736573B2 (en) Method and apparatus compensating noise in touch panel
CN1940842B (zh) 具有触控功能的平板显示器
CN1198204C (zh) 用所连外部显示设备显示信息的带触摸屏装置及其方法
US20040012572A1 (en) Display and touch screen method and apparatus
WO2007054018A1 (fr) Affichage plan a effleurement numerique-analogique
TWI380108B (en) Display panel with multi-touch function
US10234977B2 (en) Pressure sensing touch device
US20110012845A1 (en) Touch sensor structures for displays
US20090073134A1 (en) Dual-mode touch screen of a portable apparatus
JP2013515298A (ja) オーミックシーム(ohmicseam)を含むトランスキャパシタンス型センサデバイス(transcapacitivesensordevice)
CN102446022B (zh) 触控屏幕系统
CN110968208B (zh) 触控笔、触控笔检测方法和触控系统
US11054920B2 (en) Pen for use with a touch screen
US11726626B2 (en) Device for use with a touch screen
JP5153890B2 (ja) タッチパネルおよびタッチパネルを備えた電子機器
CN102782621B (zh) 触摸屏模块结构
US9176631B2 (en) Touch-and-play input device and operating method thereof
WO2020224309A1 (zh) 具有指纹感测功能的电子装置
CN114041105A (zh) 用于触摸屏的笔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06761402

Country of ref document: EP

Kind code of ref document: A1