WO2007004557A1 - Ventilation device - Google Patents

Ventilation device Download PDF

Info

Publication number
WO2007004557A1
WO2007004557A1 PCT/JP2006/313091 JP2006313091W WO2007004557A1 WO 2007004557 A1 WO2007004557 A1 WO 2007004557A1 JP 2006313091 W JP2006313091 W JP 2006313091W WO 2007004557 A1 WO2007004557 A1 WO 2007004557A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
state
filter
room
air volume
Prior art date
Application number
PCT/JP2006/313091
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuki Matsui
Yoshinori Narikawa
Tomohiro Yabu
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007004557A1 publication Critical patent/WO2007004557A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/001Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode

Definitions

  • the present invention relates to a ventilator that adjusts indoor humidity together with indoor ventilation.
  • Patent Document 1 discloses a ventilator that discharges indoor air to the outside at the same time as the outdoor air taken in is adjusted to humidity and supplied to the room.
  • This ventilation device is provided with a refrigerant circuit to which a compressor, an expansion valve, and an adsorption heat exchanger carrying an adsorbent are connected.
  • This ventilation device is configured to adjust the humidity of the air in contact with the adsorbent by heating or cooling the adsorption heat exchanger with the refrigerant in the refrigerant circuit.
  • a target humidity is set by a user, and the operation state (for example, the operation frequency of the compressor) is controlled so that the room approaches the target humidity.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-294048
  • a ventilation device is often provided with a filter member in order to clean the taken-in air.
  • Filter members need to be cleaned and replaced as clogging progresses. Therefore, since it is convenient to be able to inform the timing of cleaning and replacement, it may be possible to judge the timing of cleaning and replacement from the state of air supplied from outside the room.
  • the operating state of the ventilation device changes, it becomes difficult to accurately detect the clogged state of the filter member.
  • the present invention has been made in view of such points, and an object of the present invention is to detect a clogging state of a filter member in a ventilation device that adjusts indoor humidity as well as indoor ventilation. It is to improve accuracy.
  • the first invention includes an adsorbing member (51, 52) carrying an adsorbent, and a heat source means (50) for at least heating the adsorbent of the adsorbing member (51, 52).
  • a ventilator (10) that adjusts the humidity by bringing the outdoor air taken into contact with the adsorbent of the adsorbing member (51, 52) and supplies it to the room, and at the same time exhausts the air taken in outside the room.
  • a state detection means (63), and the normal operation for ventilating the room while controlling the operation state of the ventilator (10) and the operation state of the ventilator (10) are maintained constant.
  • a filter state detecting operation in which the filter state detecting means (63) detects the clogged state of the filter member (27, 28) can be executed.
  • a second invention includes a refrigerant circuit (50) connected to an adsorption heat exchanger (51, 52) carrying an adsorbent to perform a refrigeration cycle, and the taken outdoor air is transferred to the refrigerant circuit (50).
  • Targets ventilation equipment (10) that adjusts humidity by bringing it into contact with the adsorbent of the adsorption heat exchanger (51, 52) heated or cooled with the refrigerant of And Then, the clogged state of the filter member (27, 28) is detected based on the filter member (27, 28) that cleans the taken outdoor air and the state of the air supplied from the outside to the room.
  • a filter state detecting operation for causing the filter state detecting means (63) to detect a clogged state of the filter member (27, 28) is executable.
  • a third invention is the first or second invention, wherein the filter state detection means (63) includes a state of air supplied from the outside to the room during the filter state detection operation, and the filter In the initial state of the filter member (27, 28), the clogged state of the filter member (27, 28) is detected based on the state of air supplied from the outside to the room.
  • the filter state detecting means (63) passes through the filter member (27, 28) based on the state of air supplied from the outside to the inside of the room.
  • An air volume estimation unit (64) for estimating the air volume of air is provided, and the air volume estimated by the air volume estimation unit (64) during the filter state detection operation and the initial state of the filter member (27, 28) Then, the clogging state of the filter member (27, 28) is detected based on the air volume estimated by the air volume estimating unit (64).
  • a fifth invention is the first or second invention, further comprising an air supply fan (26) for taking in outdoor air, and in the filter state detection operation, the air supply fan (26) is rotated. While the first detection operation and the second detection operation are performed to fix the speeds to different values, the filter state detection means (63) is controlled based on the state of air supplied from the outside to the room.
  • An air volume estimation unit (64) for estimating the air volume of the air passing through the filter member (27, 28) is provided, and the air volume estimated by the air volume estimation unit (64) during the first detection operation and the second detection operation are in progress. Then, the clogging state of the filter member (27, 28) is detected based on the difference from the air volume estimated by the air volume estimating unit (64).
  • a sixth aspect of the invention is any one of the first to fifth aspects of the invention, wherein the filter state detection operation is executed at a predetermined time.
  • the normal operation and the filter state detection operation can be performed.
  • the filter state detection means (63) detects the clogged state of the filter member (27, 28)
  • the filter operation is detected.
  • Perform state detection operation In normal operation, the heat source means, etc. are controlled as the operating state of the ventilator (10) to adjust the state of the air supplied from the outside to the room.
  • the operation state of the ventilation device (10) is kept constant. Therefore, the influence of the operation state of the ventilator (10) is removed from the change in the state of the air supplied from the outdoor to the indoor in the filter state detection operation.
  • the normal operation and the filter state detection operation can be performed, and the filter member (27, 28) is connected to the filter state detection means (63). Clogged When detecting the current state, the filter state detection operation is performed.
  • the state of the refrigeration cycle of the refrigerant circuit is controlled as the operating state of the ventilator (10), and the state of air supplied from the outside to the room is adjusted.
  • the filter state detection operation the operation state of the ventilation device (10) is kept constant. Therefore, the influence of the operating state of the ventilator (10) is removed from the change in the state of the air supplied from the outdoor to the indoor in the filter state detection operation.
  • the filter state detecting means (63) stores the state of the air supplied from the outdoor to the indoor in the initial state of the filter member (27, 28).
  • the initial state of the filter member (27, 28) is a state in which dirt is not attached immediately after the ventilation device (10) is installed or immediately after the filter member (27, 28) is cleaned or replaced.
  • This filter state detection means (63) detects the state of air supplied from the outside to the room during the filter state detection operation, and changes the state of the air to the initial state of the filter member (27, 28) from the outside to the room. Compared with the state of air supplied to the filter, the clogged state of the filter members (27, 28) is detected based on the change in the state of the air.
  • the air volume estimating unit (64) of the filter state detecting means (63) force The air volume of the air passing through the filter member (27, 28) based on the state of the air supplied from the outside to the inside of the room Guess.
  • the filter state detecting means (63) stores the air volume estimated by the air volume estimating unit (64) in the initial state of the filter member (27, 28).
  • the filter state detection means (63) detects the air volume estimated by the air volume estimation unit (64) during the filter state detection operation and the air volume estimated by the air volume estimation unit (64) in the initial state of the filter members (27, 28). Compared to the above, the clogged state of the filter member (27, 28) is detected based on the change in the air volume.
  • the operation state of the ventilator (10) is kept constant, and the operation state of the ventilator (10) is determined from the change in the state of the air supplied from the outside to the room in the filter state detection operation. Since the influence of the state is removed, the air volume of the air passing through the filter member (27, 28) can be estimated easily and accurately.
  • the air volume estimation unit (64) passes through the filter member (27, 28) in each of the first detection operation and the second detection operation during the filter state detection operation. Estimate the amount of air flow.
  • the filter member (27, 28) increases, and the fan characteristics indicated by the relationship between the rotation speed of the supply fan (26) and the air volume change. Specifically, when the air resistance of the filter members (27, 28) increases, the air volume does not increase so much even if the rotational speed of the supply fan (26) is increased.
  • the differential force between the air volume estimated by the air volume estimation unit (64) during the first detection operation and the air volume estimated by the air volume estimation unit (64) during the second detection operation is the filter member (27, 28) The state of clogging is estimated.
  • indoor ventilation is performed in a normal operation, and when a predetermined time is reached, the normal operation is switched to the filter state detection operation to detect the clogged state of the filter members (27, 28). Except during the filter state detection operation, the indoor humidity is adjusted along with the indoor ventilation in normal operation.
  • the operating state of the ventilator (10) is kept constant so that the clogged state of the filter member (27, 28) can be detected without considering the operating state of the ventilator (10).
  • the filter state detection operation that is held at is performed. That is, by performing the filter state detection operation, it is possible to detect the clogged state of the filter members (27, 28) in consideration of only the change in the state of the air supplied from the outdoor to the indoor. Yes. Therefore, the detection of the clogged state of the filter members (27, 28) is simplified and errors are less likely to occur, so that the detection accuracy of the clogged state of the filter members (27, 28) can be improved.
  • indoor humidity adjustment is performed together with indoor ventilation in normal operation except during the execution of the filter state detection operation. Therefore, for example, if the filter state detection operation is performed during the time when there is no occupant, such as at night, it is not necessary to adjust the humidity in the room during that time, so the filter member (27, 28) is not clogged. The state can be detected without impairing the comfort of the occupants.
  • FIG. 1 is a perspective view showing a configuration of a ventilator according to an embodiment.
  • FIG. 2 is a configuration diagram showing a schematic configuration of the ventilator according to the embodiment in a plan view, a right side view, and a left side view.
  • FIG. 3 is a piping system diagram showing the configuration of the refrigerant circuit of the embodiment, where (A) shows the operation during the first operation, and (B) shows the operation during the second operation. The operation is shown.
  • FIG. 4 is a schematic perspective view of an adsorption heat exchanger.
  • FIG. 5 is a schematic configuration diagram of a ventilator showing an air flow during the first operation in the dehumidifying operation.
  • FIG. 6 is a schematic configuration diagram of a ventilator showing an air flow during the second operation in the dehumidifying operation.
  • FIG. 7 is a schematic configuration diagram of a ventilator showing an air flow during the first operation in the humidifying operation.
  • FIG. 8 is a schematic configuration diagram of a ventilator showing an air flow during the second operation in the humidifying operation.
  • FIG. 9 is a flowchart showing a flow of a filter state detection operation in the embodiment.
  • FIG. 10 is a graph showing the relationship between the air volume Q of the air passing through the outside air filter and the external static pressure P in Modification 3 of the embodiment.
  • FIG. 11 is a schematic configuration diagram of a ventilator according to a fifth modification of the other embodiment, in which (A) shows the operation during the first operation, and (B) shows the second operation. It shows the operation during operation.
  • FIG. 12 is a schematic perspective view of a humidity control unit in a sixth modification of the other embodiment.
  • the ventilator (10) of the present embodiment adjusts the humidity of the room together with the ventilation of the room. At the same time, it adjusts the humidity of the taken outdoor air (OA) and supplies it to the room. RA) is discharged outside the room.
  • the ventilation device (10) performs normal operation for controlling the operation state of the ventilation device (10) so as to achieve indoor humidity desired by the user while performing indoor ventilation, and while performing indoor ventilation.
  • a filter state detection operation for detecting a clogged state of the outside air filter (27), which will be described later, can be executed while the operation state of the ventilation device (10) is kept constant.
  • the room is ventilated throughout the day, and the filter state detection operation is performed at a predetermined night time (for example, midnight).
  • the ventilation device (10) will be described with reference to FIGS. Unless otherwise specified, “upper”, “lower”, “left”, “right”, “front”, “rear”, “front”, and “back” used in the description here refer to the ventilation device (10) on the front side. It means the direction when seen from.
  • the ventilation device (10) includes a casing (11).
  • a refrigerant circuit (50) is accommodated in the casing (11).
  • the refrigerant circuit (50) includes a first adsorption heat exchanger (51), a second adsorption heat exchanger (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve (55). It is connected. Details of the refrigerant circuit (50) will be described later.
  • the casing (11) is formed in a rectangular parallelepiped shape that is slightly flat and relatively low in height.
  • the front panel (12) force is placed on the left front side in Fig. 1 and the rear panel (13) is erected on the right rear side in Fig. 1, from the left front side to the right back side in the same figure.
  • Directional force, length in the opposite direction and right frontal force The depth in the direction of the leftward force is almost equal.
  • the exhaust port (21) is opened to the left and the air supply port (22) is opened to the right.
  • an outside air inlet (24) is opened at a position lower than the outside air inlet (23) force.
  • the internal space of the casing (11) is divided into a space having a relatively small volume on the front panel (12) side and a space having a relatively large volume on the back panel (13) side.
  • the space on the front panel (12) side in the casing (11) is cut into two left and right spaces.
  • the left space constitutes an exhaust fan chamber (35)
  • the right space constitutes an air supply fan chamber (36).
  • the exhaust fan chamber (35) communicates with the outdoor space via the exhaust port (21).
  • the exhaust fan chamber (35) accommodates an exhaust fan (25), and the outlet of the exhaust fan (25) is connected to the exhaust port (21).
  • the air supply fan chamber (36) communicates with the indoor space via the air supply port (22).
  • the supply fan chamber (36) accommodates the supply fan (26), and the outlet of the supply fan (26) is connected to the supply port (22).
  • the air supply fan chamber (36) also houses a compressor (53).
  • the space on the back panel (13) side in the casing (11) is separated by the first partition plate (16) and the second partition plate (17) standing up and down in the casing (11). It is divided into two spaces.
  • These partition plates (16, 17) extend in the left-right direction of the casing (11).
  • the first cutting plate (16) is arranged near the back of the casing (11), and the second partition plate (17) is arranged near the front of the casing (11).
  • the space behind the first partition plate (16) is partitioned into two upper and lower spaces, and the upper space defines the outside air flow path (32) and the lower space. Constitutes the inside air flow path (34), respectively.
  • the outside air flow path (32) communicates with the outdoor space via the outside air inlet (23).
  • the outside air channel (32) is provided with an outside air filter (27) which is a filter member extending left and right and dividing the channel (32) into the front and rear.
  • the room air side channel (34) communicates with the room via the room air inlet (24).
  • the room air side flow path (34) is provided with a room air side filter (28) which is a filter member extending left and right and dividing the flow path (34) into the front and back.
  • the space in front of the second partition plate (17) is partitioned into two upper and lower spaces, the upper space is the exhaust side flow path (31), and the lower space is the air supply side flow path. (33) is configured.
  • the exhaust side flow path (31) communicates with the exhaust fan chamber (35).
  • the supply side flow path (33) communicates with the supply fan chamber (36).
  • the space between the first partition plate (16) and the second partition plate (17) is further separated by the central partition plate (18). It is divided into two spaces.
  • the space on the right side of the central partition plate (18) constitutes the first heat exchanger chamber (37), and the space on the left side constitutes the second heat exchanger chamber (38).
  • the first heat exchanger chamber (37) accommodates the first adsorption heat exchanger (51), and the second heat exchanger chamber (38) accommodates the second adsorption heat exchanger (52).
  • These two adsorption heat exchangers (51, 52) are arranged so as to cross the heat exchanger chamber (37, 38) in which they are accommodated in the left-right direction.
  • the first partition plate (16) is provided with four openable dampers (41 to 44). Specifically, in the first partition plate (16), the first damper (41) is on the upper right side, the second damper (42) is on the upper left side, and the third damper (43) is on the lower right side. A fourth damper (44) is attached to the lower left side.
  • the first damper (41) is opened, the outside air flow path (32) and the first heat exchanger chamber (37) communicate with each other.
  • the second damper (42) is opened, the outside air flow path (32) and the second heat exchanger chamber (38) communicate with each other.
  • the third damper (43) is opened, the inside air flow path (34) and the first heat exchanger chamber (37) communicate with each other.
  • the fourth damper (44) is opened, the inside air flow path (34) and the second heat exchanger chamber (38) communicate with each other.
  • the second partition plate (17) is provided with four open / close dampers (45 to 48). Specifically, the second partition plate (17) has a fifth damper (45) on the upper right side, a sixth damper (46) on the upper left side, a seventh damper (47) on the lower right side, and a left damper on the left side.
  • the eighth dampers (48) are attached to the bottom.
  • the fifth damper (45) is opened, the exhaust side flow path (31) and the first heat exchanger chamber (37) communicate with each other.
  • the sixth damper (46) is opened, the exhaust side flow path (31) and the second heat exchanger chamber (38) communicate with each other.
  • the ventilator (10) includes an outdoor air temperature sensor (65a) and an outdoor air humidity sensor (65b) that measure the temperature and humidity of the outdoor air (OA) taken in from the outdoor by the ventilator (10). ) Is provided on the rear side of the outdoor air filter (27) of the outdoor air flow path (32).
  • the supply air temperature sensor (66a) and supply air humidity sensor (66b) which measure the temperature and humidity of the supply air (SA) supplied from the ventilation device (10) to the room, respectively, ).
  • the temperature and humidity of the indoor air (RA) taken in from the room by the ventilator (10) are adjusted.
  • An inside air temperature sensor (67a) and an inside air humidity sensor (67b) for measuring each are provided on the rear side of the inside air side filter (28) of the inside air side channel (34).
  • the detection values of these sensors (65, 66, 67) are transmitted to the control unit (60).
  • the refrigerant circuit (50) will be described with reference to FIG.
  • the refrigerant circuit (50) includes a first adsorption heat exchanger (51), a second adsorption heat exchanger (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve ( 55) is a closed circuit.
  • the refrigerant circuit (50) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
  • the compressor (53) has a discharge side connected to the first port of the four-way switching valve (54) and a suction side connected to the second port of the four-way switching valve (54). It is connected.
  • One end of the first adsorption heat exchanger (51) is connected to the third port of the four-way switching valve (54).
  • the other end of the first adsorption heat exchanger (51) is connected to one end of the second adsorption heat exchanger (52) via the electric expansion valve (55).
  • the other end of the second adsorption heat exchanger (52) is connected to the fourth port of the four-way switching valve (54).
  • the four-way switching valve (54) has a first state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (the state shown in FIG. 3A). Can be switched to the second state (the state shown in Fig. 3 (B)) in which the first port communicates with the fourth port and the second port communicates with the third port. .
  • each of the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52) is constituted by a cross-fin type fin 'and' tube heat exchanger. .
  • These adsorption heat exchangers (51, 52) are provided with copper heat transfer tubes (58) and aluminum fins (57).
  • the plurality of fins (57) provided in the adsorption heat exchanger (51, 52) are each formed in a rectangular plate shape and arranged at regular intervals.
  • the heat transfer tube (58) is provided so as to penetrate each fin (57).
  • each of the adsorption heat exchangers (51, 52) an adsorbent is supported on the surface of each fin (57), and air passing between the fins (57) is supported on the fin (57). In contact with the adsorbent formed.
  • this adsorbent those capable of adsorbing water vapor in the air, such as zeolite, silica gel, activated carbon, and organic high molecular weight material having a hydrophilic functional group, can be used.
  • the control unit (60) of the ventilation device (10) includes a fan control unit (61) for controlling the air volume of the exhaust fan (25) and the air supply fan (26), and a refrigerant as an operating state of the ventilation device (10).
  • a humidity control unit (62) for controlling the state of the refrigeration cycle of the circuit (50), a filter state detecting unit (63) which is a filter state detecting means for detecting a clogged state of the outside air filter (27), Force S is provided.
  • the filter status detection unit (63) includes an outdoor air side filter based on the absolute humidity of the outdoor air (OA) and the absolute humidity of the supply air (SA), which is the state of the air supplied from the outdoor to the indoor.
  • An air volume estimating unit (64) for estimating the air volume Q of air passing through (27) is provided.
  • the fan control unit (61) has a setting fan tap that can adjust the air volume of the supply fan (26) and the exhaust fan (25) in three levels (eg, “large”, “medium”, and “small”). Is provided.
  • the fan motor output of the supply fan (26) and the exhaust fan (25) is determined by the setting state of the setting fan tap. That is, when the setting fan tap of the fan (26, 27) is in a setting state (for example, “large”), the output of the fan motor is fixed to a predetermined value corresponding to the setting state.
  • the rotational speed of the fan motor may be determined according to the setting state of the setting fan tap.
  • the humidity control unit (62) is provided with a humidity input unit for a user to input a desired room humidity and a temperature input unit for a user to input a desired room temperature.
  • the humidity input unit is configured so that the desired indoor humidity can be selected from three levels of “low”, “medium” and “high”.
  • the humidity control unit (62) ranges of relative humidity corresponding to “low”, “medium”, and “high” are preset.
  • the humidity control section (62) targets the range of relative humidity corresponding to the input during normal operation. Set to humidity (eg 50% -60%).
  • the humidity control unit (62) sets the desired room temperature to the target temperature (for example, 25 ° C) during normal operation. To do.
  • the humidity control unit (62) includes a calculation unit.
  • the computing unit calculates the absolute humidity at the temperature and humidity from the target humidity and target temperature.
  • the humidity control unit (62) sets the absolute humidity calculated by the calculation unit to the target absolute humidity and adjusts the humidity control capacity of the ventilator (10) so that the indoor absolute humidity approaches the target absolute humidity. .
  • the filter state detection unit (63) estimates the air volume Q of the air passing through the outside air filter (27) by the air volume estimation unit (64), and the outside air side based on the estimated air volume Q. Detects clogged filter (27).
  • the air volume estimation unit (64) stores a database function shown in Equation 1 in order to estimate the air volume Q of the air passing through the outside air filter (27).
  • Equation 1 3 & ] 0 &, (3) +1:
  • Xsa is the absolute humidity of the supply air (SA)
  • Xoa is the absolute humidity of the outdoor air ( ⁇ A)
  • Q is the air volume of the air passing through the outside air filter (27)
  • K is It represents the correction value considering the pressure loss due to the duct and the characteristics of the indoor space where the ventilator (10) is installed.
  • the air volume Q of the air passing through the outside air filter (27) can be considered to be substantially the same as the air volume supplied to the room by the air supply fan (26).
  • the database function of Equation 1 above is a function of the absolute humidity Xsa of the supply air (SA), the absolute humidity Xoa of the outdoor air ( ⁇ A), and the air volume Q of the air passing through the outdoor air filter (27). It is expressed as The database function of Equation 1 was created by creating the database function of Equation 2 when designing the ventilator ( 10 ), and determining the value of K when installing the ventilator ( 10 ).
  • the database function of Equation 2 shows the operating frequency of the compressor (53) and the opening of the electric expansion valve (55) in the initial state of the outside air filter (27) (the state where there is no dirt attached).
  • Supply air blown out from the inside air inlet (24) while changing the air volume of the air supply fan (26) and the state of the outdoor air (OA) taken in from the outside air inlet (23) while being held constant It is created by measuring the state of (SA).
  • the absolute humidity Xoa of the outdoor air (OA) is calculated by the air volume estimation unit (64) from the detected values of the outdoor temperature sensor (65a) and the outdoor air humidity sensor (65b).
  • the absolute humidity Xsa of the supply air (SA) is calculated by the air volume estimation unit (64) from the detection values of the supply air temperature sensor (66a) and supply air humidity sensor (66b).
  • the air volume Q passing through the outside air filter (27) that is, the air volume passing through the adsorption heat exchanger (51, 52)
  • the adsorption heat exchanger (51, 52) changes, the adsorption heat exchanger (51, 52).
  • the amount of humidity change in the air passing through changes. Specifically, in the case of dehumidification, if the air volume Q decreases, the heat of adsorption The amount of heat absorbed by the refrigerant in the exchanger (51, 52) decreases. Compared with a state where the air volume Q does not decrease, the temperature of the air to be dehumidified increases and the relative humidity decreases, so the amount of moisture adsorbed by the adsorbent decreases.
  • Equation 2 represents the relationship between the air volume Q of the air passing through the outside air filter (27) and the humidity change amount of the air passing through the adsorption heat exchanger (51, 52).
  • the length and shape of the outside of the duct when the ventilation device (10) is installed are different for each installation place, and the pressure loss outside the duct is also different for each installation place. For this reason, even if the setting fan tap of the air supply fan (26) is the same, the air volume of the air supply fan (26) varies depending on the installation location.
  • the temperature or humidity of the supply air (SA) to the room changes depending on the temperature and humidity of the room air (RA) taken from the room.
  • the database function of Equation 1 is the air volume Q of the air passing through the outside air filter (27) in the installed state of the ventilation device (10) and the humidity change amount of the air passing through the adsorption heat exchanger (51, 52). Represents the relationship between and.
  • the air volume Q of the air passing through the outside air filter (27) can be estimated from the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA). .
  • the air flow estimation unit (64) sets the setting fan tap of the air supply fan (26) to, for example, "medium”, and uses Equation 1 to determine the amount of air passing through the outside air filter (27) in the initial state. Estimate air volume Q (0).
  • the air volume Q (0) is stored in the filter state detection unit (63).
  • the filter state detection unit (63) performs a filter state detection operation at a predetermined time every day.
  • the air volume estimation unit (64) is empty through the outside air filter (27).
  • the filter state detection unit (63) compares the air volume Q estimated by the air volume estimation unit (64) during the filter state detection operation with the above air volume Q (0) to check the clogged state of the outside air filter (27). To detect.
  • a “filter replacement sign” is displayed. Details of the operation of the filter state detector (63) will be described later.
  • indoor humidity adjustment is performed together with indoor ventilation.
  • the ventilator (10) performs a dehumidifying operation or a humidifying operation during indoor ventilation.
  • the ventilation device (10) adjusts the humidity of the taken outdoor air (OA) and supplies it to the room as supply air (SA).
  • SA supply air
  • the ventilated air (RA) is discharged into the room. Discharge outside as (EA).
  • a first operation and a second operation described later are alternately repeated at a predetermined time interval (for example, every 3 minutes).
  • the four-way switching valve (54) is set to the first state.
  • the refrigerant circulates to perform a refrigeration cycle.
  • the refrigerant discharged from the compressor (53) flows in the order of the first adsorption heat exchanger (51), the electric expansion valve (55), and the second adsorption heat exchanger (52).
  • the first adsorption heat exchanger (51) becomes a condenser and the second adsorption heat exchanger (52) becomes an evaporator.
  • the first adsorption heat exchanger (51) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air, which has been given moisture by the first adsorption heat exchanger (51) flows into the exhaust side flow path (31) through the fifth damper (45), passes through the exhaust fan chamber (35), and is then exhausted. It is discharged out of the room through the mouth (21).
  • the four-way switching valve (54) is set to the second state.
  • the refrigerant circulates to perform a refrigeration cycle.
  • the refrigerant discharged from the compressor (53) flows in the order of the second adsorption heat exchanger (52), the electric expansion valve (55), and the first adsorption heat exchanger (51).
  • the first adsorption heat exchanger (51) becomes an evaporator and the second adsorption heat exchanger (52) becomes a condenser.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the first adsorption heat exchanger (51) flows through the seventh damper (47) into the supply air flow path (33) and passes through the supply air fan chamber (36) before being supplied. It is supplied into the room through the mouth (22).
  • the second adsorption heat exchanger (52) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air flows into the exhaust side flow path (31) through the sixth damper (46), passes through the exhaust fan chamber (35), and is discharged to the outside through the exhaust port (21).
  • a first operation and a second operation described later are alternately repeated at a predetermined time interval (for example, every 3 minutes).
  • the four-way selector valve (54) is set to the first state.
  • the first adsorption heat exchanger (51) becomes a condenser and the second adsorption heat exchanger (52) becomes an evaporator.
  • the moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture by the second adsorption heat exchanger (52) flows into the exhaust side flow path (31) through the sixth damper (46), and is exhausted after passing through the exhaust fan chamber (35). It is discharged out of the room through the mouth (21).
  • the first adsorption heat exchanger (51) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air humidified by the first adsorption heat exchanger (51) flows into the supply side flow path (33) through the seventh damper (47) and passes through the supply fan chamber (36). It is supplied into the room through the air supply port (22).
  • the second operation of the humidifying operation will be described. As shown in FIG. 8, during the second operation, only the second damper (42), the third damper (43), the fifth damper (45), and the eighth damper (48) are in the open state. The remaining dampers (41, 44, 46, 47) are closed.
  • the four-way switching valve (54) is set to the second state.
  • the first adsorption heat exchanger (51) serves as an evaporator and the second adsorption heat exchanger (52) serves as a condenser.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture in the first adsorption heat exchanger (51) flows into the exhaust side flow path (31) through the fifth damper (45), and is exhausted after passing through the exhaust fan chamber (35). It is discharged out of the room through the mouth (21).
  • the second adsorption heat exchanger (52) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air humidified by the second adsorption heat exchanger (52) passes through the eighth damper (48), flows into the supply air flow path (33), and passes through the supply air fan chamber (36). It is supplied into the room through the air supply port (22).
  • control unit (60) The operation of the control unit (60) will be described.
  • the control unit (60) is configured to cause the ventilation device (10) to ventilate the room all day.
  • the control unit (60) causes the ventilator (10) to ventilate the room in normal operation, and when the predetermined time of night (for example, midnight) is reached, the ventilator (10) is moved from normal operation to the filter state detection operation. Switch to, and detect the clogged condition of the outside air filter (27) while ventilating the room. And a control part (60) will return a ventilation apparatus (10) to normal operation again from filter state detection operation, after filter state detection driving
  • the humidity control unit (62) of the control unit (60) calculates the absolute humidity at the temperature and humidity from the target temperature and target humidity in the calculation unit, and the calculated absolute humidity is set as the target. Set to absolute humidity.
  • the computing unit also calculates the absolute humidity of the outdoor air (OA) from the detection values of the outdoor temperature sensor (65a) and the outdoor air humidity sensor (65b). Further, the calculation unit calculates the absolute humidity of the room air (RA) from the detected values of the room temperature sensor (67a) and the room temperature humidity sensor (67b). Further, the calculation unit calculates the detected humidity of the supply air temperature sensor (66a) and the supply air humidity sensor (66b), and the absolute humidity of the supply air (SA).
  • the humidity control unit (62) determines the absolute humidity of the room based on the absolute humidity of the outdoor air (OA), the indoor air (RA) and the supply air (SA) and the target absolute humidity.
  • the refrigeration cycle state of the refrigerant circuit (50) is controlled so that is close to the target absolute humidity. Control of the state of the refrigeration cycle of the refrigerant circuit (50) is performed by changing the refrigerant circulation amount by changing the operating frequency of the compressor (53) and the opening of the electric expansion valve (55), for example.
  • the humidity control section (62) maintains the refrigeration cycle state of the refrigerant circuit (50) at a constant state, and the set fan tap of the air supply fan (26) Set to the same state as when guessed.
  • the operating frequency of the compressor (53) and the opening of the electric expansion valve (55) are set to the same state as in the test for creating Equation 1 and Equation 2.
  • the state of the refrigeration cycle of the refrigerant circuit (50) is substantially the same as when Formula 1 and Formula 2 were created.
  • step ST1 the air volume estimation unit (64) of the filter state detection unit (63) performs detection values of the outside air temperature sensor (65a) and the outside air humidity sensor (65b), the supply air temperature sensor (66a), and Supply air humidity
  • the sensor (66b) detection value is received, and the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA) are calculated.
  • step ST1 ends, the process proceeds to step ST2.
  • step ST2 the air flow estimation unit (64) uses the above-described equation 1 to calculate the outdoor air filter (27) from the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA). Estimate the air volume Q of the air passing through.
  • step ST3 the filter state detector (63) compares the estimated air volume Q with the initial air volume Q (0) of the outside air filter (27). Then, when the condition of Equation 3 is satisfied, the filter state detection unit (63) proceeds to step ST4 and displays “filter replacement sign”. L represents a preset constant.
  • the filter state detection unit (63) ends the filter state detection operation and switches to the normal operation.
  • Equation 3 Q ⁇ Q (0) X L
  • the filter state detection unit (63) performs a filter state detection operation at a predetermined time every day.
  • a “filter replacement sign” is displayed.
  • L 0.9
  • the air volume Q of the air passing through the outside air filter (27) detected in the filter state detection operation is 90% of the air volume Q (0) in the initial state of the outside air filter (27).
  • “Filter replacement sign” is displayed.
  • the filter state detection operation is performed so that the clogged state of the outside air filter (27) is detected without considering the state of the refrigeration cycle of the refrigerant circuit (50).
  • the operating frequency of the compressor (53) and the electric expansion valve The air volume Q of the air passing through the outside air filter (27) can be estimated by the database function that does not include the opening of 55), and the clogged state of the outside air filter (27) is detected from the air volume Q can do.
  • the outdoor air filter (27) is clogged considering only the changes in the absolute humidity of the outdoor air (OA) and the absolute humidity of the supply air (SA) as the state of the air supplied from outside to the room. Can be detected. Accordingly, since the detection of the clogging state of the outside air filter (27) is simplified and errors are less likely to occur, the detection accuracy of the clogging state of the outside air filter (27) can be improved.
  • the indoor humidity is adjusted together with the indoor ventilation in the normal operation except during the execution of the filter state detection operation. Therefore, if the filter state detection operation is performed during the night when there is no occupant, the humidity inside the room is adjusted during that time. Since it is not necessary, it is possible to detect the clogged state of the outside air filter (27) without impairing the comfort of the occupants.
  • the air volume estimation unit (64) estimates the air volume Q of the air passing through the outside air filter (27) from the temperature of the outdoor air (OA) and the temperature of the supply air (SA).
  • Tsa is the temperature of the supply air (SA)
  • Toa is the temperature of the outdoor air ( ⁇ A)
  • Q is the air volume passing through the outside air filter (27)
  • K is the pressure by the duct It shows the correction values considering the loss and the characteristics of the indoor space where the ventilation device (10) is installed.
  • the adsorption heat exchanger (51, 52) changes, the adsorption heat exchanger (51, 52) The amount of change in the temperature of the air passing through changes. Specifically, in the case of dehumidification, when the air volume Q decreases, the heat absorption amount of the refrigerant in the adsorption heat exchanger (51, 52) decreases. And compared with the state where the air volume Q does not decrease, the temperature drop of the dehumidified air decreases.
  • Equation 4 shows the air volume Q of the air passing through the outdoor-side finolator (27) and the temperature of the air passing through the adsorption heat exchanger (51, 52) when the ventilation device (10) is installed. It represents the relationship with the amount of change.
  • the air volume Q of the air passing through the outside air filter (27) is estimated from the temperature Toa of the outdoor air (OA) and the temperature Tsa of the supply air (SA).
  • the filter state detector (63) includes the amount of change in humidity of the air passing through the adsorption heat exchanger (51, 52) in the initial state of the outside air filter (27) (Xsa—Xoa Is stored as a database.
  • This database keeps the refrigeration cycle state of the refrigerant circuit (50) constant and the setting fan tap of the air supply fan (26) is fixed to a predetermined setting state (for example, “medium”). It is created by measuring the state of supply air (SA) while changing the state of air (OA). At that time, the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA) are calculated by the air volume estimation unit (64) as in the above embodiment.
  • the state of the refrigeration cycle of the refrigerant circuit (50) and the set fan tap of the supply fan (26) are set to the same state as when the database was created.
  • the air volume of the air supply fan (26) ie adsorption heat exchanger
  • Air volume of air passing through (51,52) decreases, so the amount of change in humidity of air passing through the adsorption heat exchanger (51,52) is smaller than when creating the database.
  • the filter state detector (63) detects the initial state of the outside air filter (27) when the humidity change amount of the air passing through the adsorption heat exchanger (51, 52) is reduced during the filter state detection operation. When the difference between the humidity change amount exceeds the set value, a “filter replacement sign” is displayed.
  • control unit (60) performs the first detection operation and the second detection operation in which the rotation speed of the air supply fan (26) is fixed to different values during the filter state detection operation. Let 10) do it.
  • the filter state detector (63) maintains the refrigeration cycle state of the refrigerant circuit (50) constant in the initial state of the outside air filter (27), and performs the first detection operation and the second detection operation. Perform detection operation.
  • the rotation speed of the air supply fan (26) is set to the predetermined value R1
  • the air volume estimation unit (64) uses the equation 1 to calculate the air volume Q 1 (0) Guess.
  • the rotational speed of the air supply fan (26) is set to the predetermined value R2
  • the air volume estimation unit (64) uses Equation 1 to calculate the air volume Q2 (0) of the air passing through the outside air filter (27). Infer.
  • the first The rotational speed Rl of the air supply fan (26) during the first detection operation is set to a value larger than the rotational speed R2 of the air supply fan (26) during the second detection operation.
  • the filter state detection unit (63) performs the first detection operation, the rotation speed of the air supply fan (26) is set to a predetermined value R1, and the air volume estimation unit (64) Estimate the air volume Q1 of the air passing through the outside-side finolator (27).
  • the filter state detection unit (63) continues to perform the second detection operation, setting the rotational speed of the air supply fan (26) to a predetermined value R2, and the air volume estimation unit (64) is configured to detect the air passing through the outside air filter (27). Estimate air volume Q2.
  • the state force air volume Q1 (0) and air volume Q2 (0) of the refrigeration cycle of the refrigerant circuit (50) are maintained in the same state as estimated.
  • the filter state detection unit (63) calculates the air volume Q 1 estimated by the air volume estimation unit (64) during the first detection operation and the air volume Q2 estimated by the air volume estimation unit (64) during the second detection operation. Based on the difference, the clogged state of the outside air filter (27) is detected.
  • FIG. 10 shows the relationship between the air volume Q of the air passing through the outside air filter (27) and the air resistance P inside and outside the ventilator (10).
  • FIG. 10 shows that as the clogging of the outside air filter (27) progresses, the air resistance P increases and the air volume Q of the air passing through the outside air filter (27) decreases. Yes. If the outside air filter (27) becomes clogged, the air volume Q will not increase that much even if the rotational speed of the air supply fan (26) is increased, and the air volume estimation unit (64) will not be able to operate during the first detection operation. The difference between the estimated air volume Q1 and the air volume Q2 estimated by the air volume estimation unit (64) during the second detection operation is reduced.
  • the filter state detection unit (63) displays a "filter replacement sign" when the difference in air volume between the first detection operation and the second detection operation is small and the condition of Expression 4 is satisfied.
  • Equation 4 Q1 _Q2 ⁇ ⁇ Q1 (0) _Q2 (0) ⁇ X G
  • Modification 4 of the embodiment will be described.
  • a wind speed sensor is provided in the ventilation device (10), and the clogged state of the outside air filter (27) is detected based on the change in the detected value.
  • the wind speed sensor is provided on the front side of the outside air filter (27) in the outside air channel (32). [0106] Specifically, when the outside air filter (27) becomes clogged, the detection value of the wind speed sensor becomes small.
  • the filter state detection unit (63) displays a “filter replacement sign” when the detection value of the wind speed sensor falls below a preset threshold value.
  • a dust sensor may be provided instead of the wind speed sensor.
  • the filter state detection unit (63) displays a “filter replacement sign” when the detection value of the dust sensor exceeds a preset threshold value.
  • an odor sensor may be provided instead of the wind speed sensor.
  • the filter state detection unit (63) displays a “filter exchange sign” when the detection value of the odor sensor exceeds a preset threshold value.
  • Modification 5 of the embodiment will be described.
  • the rotational speed of the air supply fan (26) using a DC motor as the fan motor is controlled to be constant, and the outside air filter (27) is clogged based on the change in the input power. Detect state.
  • the output of the fan motor of the air supply fan (26) is controlled to be constant so that the air supply fan (26)
  • a clogged state of the outside air filter (27) may be detected based on a change in the rotational speed. Specifically, when the outside air filter (27) becomes clogged, the air resistance of the outside air filter (27) increases, the rotational torque of the DC motor increases, and the rotational speed decreases.
  • the filter state detector (63) displays a “filter replacement sign” when the rotational speed of the air supply fan (26) falls below a preset threshold value.
  • the detection value of the temperature sensor, humidity sensor, wind speed sensor, dust sensor, or odor sensor that measures the state of the air supplied from the outside to the room, the input power of the air supply fan (26) or The clogging of the outside air filter (27) may be detected by combining changes in the rotational speed.
  • a timer for measuring the accumulated operation time of the ventilation device (10) after filter replacement is provided, and when the measured time of the timer reaches a predetermined time, the outside air filter detected by the filter state detection operation Even if the clogging state in (27) does not reach the point where “filter replacement sign” is displayed, “filter replacement sign” may be used. This timer is used to cut off the replacement judgment of the outside air filter (27).
  • the filter (27) is clogged with the damper (41, 42, 43, 44, 45, 4 6, 47, 48) (air passage) fixed in the filter state detection operation. May be detected. For example, when there is no occupant, such as at night, there is no need to adjust the humidity in the room, so the air passage can be fixed. As a result, the air flow in the casing (11) becomes constant, and errors in the detection values of the various sensors are reduced, so that the clogged state of the outside air filter (27) can be detected more accurately. it can.
  • the ventilator (10) that performs ventilation for 24 hours is targeted.
  • the filter state detection operation may be performed immediately after turning on or off.
  • the ventilation apparatus (10) may be comprised as follows.
  • the ventilation device (10) of the first modified example includes a refrigerant circuit (100) and two adsorbing elements (111, 112).
  • the refrigerant circuit (100) is a closed circuit in which a compressor (101), a condenser (102), an expansion valve (103), and an evaporator (104) are connected in order.
  • a vapor compression refrigeration cycle is performed.
  • This refrigerant circuit (100) constitutes a heat source means.
  • the first adsorbing element (111) and the second adsorbing element (112) each include an adsorbent such as zeolite and constitute an adsorbing member.
  • Each adsorbing element (111, 112) is formed with a large number of air passages, and the air contacts the adsorbent when passing through the air passages.
  • This ventilation device (10) repeats the first operation and the second operation.
  • the ventilation device (10) in the first operation supplies air heated by the condenser (102) to the first adsorption element (111) to regenerate the adsorbent.
  • the air deprived of moisture by the second adsorption element (112) is cooled by the evaporator (104).
  • the ventilation device (10) in the second operation regenerates the adsorbent by supplying the air heated by the condenser (102) to the second adsorption element (112).
  • the air deprived of moisture by the first adsorption element (111) is cooled by the evaporator (104).
  • the ventilator (10) has a dehumidifying operation for supplying the air taken in from the room dehumidified when passing through the adsorption element (111, 112) into the room, and when passing through the adsorption element (111, 112).
  • the operation is switched between the humidification operation where the air taken in from the humidified room is supplied to the room.
  • the ventilation apparatus (10) may be comprised as follows.
  • the ventilation device (10) of the second modified example includes a humidity control unit (150).
  • the humidity control unit (150) includes a Peltier element (153) and a pair of suction fins (151 and 152).
  • the adsorption fins (151, 152) are obtained by carrying an adsorbent such as zeolite on the surface of a so-called heat sink.
  • the suction fins (151 and 152) constitute a suction member.
  • the first saddle fin element (153) is joined to one surface of the belt cage element (153), and the second suction fin (152) is joined to the other surface.
  • one of the two adsorption fins (151, 152) becomes the heat absorption side and the other becomes the heat dissipation side.
  • This Peltier element (1 53) constitutes a heat source means.
  • This ventilation device (10) repeats the first operation and the second operation.
  • the humidity control unit (150) in the first operation regenerates the adsorbent of the first adsorption fin (151) on the heat dissipation side to humidify the air, while the second adsorption fin ( Adsorb moisture to the adsorbent of 152) to dehumidify the air.
  • the humidity control unit (150) during the first operation regenerates the adsorbent of the second adsorption fin (152) on the heat dissipation side to humidify the air, while the first adsorption fin ( Adsorb moisture to the adsorbent of 151) to dehumidify the air.
  • the ventilator (10) has a dehumidifying operation for supplying the air taken from outside the room, which has been dehumidified when passing through the humidity control unit (150), into the room, and is humidified when passing through the humidity control unit (150). Switch between humidifying operation to supply air taken from outside into the room.
  • the present invention is useful for a ventilation device that adjusts indoor humidity as well as indoor ventilation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A ventilation device (10) is configured so that it can perform a normal operation for performing ventilation in a room while controlling the operation state and a filter state detection operation for detecting a clogged state of filter members (27, 28) by filter state detection means (63) while maintaining a constant operation state. In the filter state detection operation, the clogged state of the filter members (27, 28) can be detected without considering the operation state of the ventilation device (10).

Description

換気装置  Ventilation equipment
技術分野  Technical field
[0001] 本発明は、室内の換気と共に室内の湿度調節を行う換気装置に関するものである 背景技術  TECHNICAL FIELD [0001] The present invention relates to a ventilator that adjusts indoor humidity together with indoor ventilation.
[0002] 従来より、室内空気と室外空気との入れ換えを行う換気装置が知られている。  Conventionally, ventilators that exchange room air and outdoor air are known.
[0003] 例えば特許文献 1には、取り込んだ室外空気を湿度調節して室内へ供給すると同 時に室内空気を室外へ排出する換気装置が開示されている。この換気装置には、圧 縮機と膨張弁と吸着剤を担持する吸着熱交換器とが接続された冷媒回路が設けられ ている。この換気装置は、冷媒回路の冷媒によって吸着熱交換器を加熱又は冷却す ることで、吸着剤に接触する空気を湿度調節するように構成されている。この換気装 置は、例えばユーザーによって目標湿度が設定され、室内がその目標湿度に近づく ようにその運転状態 (例えば圧縮機の運転周波数)が制御される。 [0003] For example, Patent Document 1 discloses a ventilator that discharges indoor air to the outside at the same time as the outdoor air taken in is adjusted to humidity and supplied to the room. This ventilation device is provided with a refrigerant circuit to which a compressor, an expansion valve, and an adsorption heat exchanger carrying an adsorbent are connected. This ventilation device is configured to adjust the humidity of the air in contact with the adsorbent by heating or cooling the adsorption heat exchanger with the refrigerant in the refrigerant circuit. In this ventilation device, for example, a target humidity is set by a user, and the operation state (for example, the operation frequency of the compressor) is controlled so that the room approaches the target humidity.
特許文献 1 :特開 2004— 294048号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-294048
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、換気装置には、取り込んだ空気を清浄化するためにフィルタ部材を設け る場合が多い。フィルタ部材は、 目詰まりが進行すると洗浄や交換が必要になる。従 つて、その洗浄や交換の時期を知らせることが出来れば便利であるため、室外から室 内へ供給される空気の状態からその洗浄や交換の時期を判断することも考えられる 。しかし、換気装置の運転状態が変化すると、フィルタ部材の目詰まりの状態を正確 に検出することが困難となる。  [0004] By the way, a ventilation device is often provided with a filter member in order to clean the taken-in air. Filter members need to be cleaned and replaced as clogging progresses. Therefore, since it is convenient to be able to inform the timing of cleaning and replacement, it may be possible to judge the timing of cleaning and replacement from the state of air supplied from outside the room. However, when the operating state of the ventilation device changes, it becomes difficult to accurately detect the clogged state of the filter member.
[0005] つまり、この種の換気装置において、その運転状態(例えば圧縮機の運転周波数 など)が変更されると、それに伴い室外から室内へ供給される空気の状態(温度や湿 度など)が変化する。そして、この空気の状態の変化に基づいてフィルタ部材の目詰 まりの状態を検出する場合は、空気の状態の変化の中から換気装置の運転状態の 変化に起因する分を考慮した上で検出しなければならず、フィルタ部材の目詰まりの 状態を正確に検出することが難しいという問題があった。 [0005] In other words, in this type of ventilator, when the operating state (for example, the operating frequency of the compressor) is changed, the state of air supplied from the outside to the room (temperature, humidity, etc.) is changed accordingly. Change. When detecting the clogged state of the filter member based on the change in the air condition, the operating condition of the ventilator is selected from the change in the air condition. There is a problem that it is difficult to accurately detect the clogged state of the filter member because it must be detected in consideration of the amount caused by the change.
[0006] 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、室内の 換気と共に室内の湿度調節を行う換気装置において、フィルタ部材の目詰まりの状 態の検出精度を向上させることにある。  [0006] The present invention has been made in view of such points, and an object of the present invention is to detect a clogging state of a filter member in a ventilation device that adjusts indoor humidity as well as indoor ventilation. It is to improve accuracy.
課題を解決するための手段  Means for solving the problem
[0007] 第 1の発明は、吸着剤が担持された吸着部材(51,52)と、該吸着部材 (51,52)の吸 着剤を少なくとも加熱するための熱源手段(50)とを備え、取り込んだ室外空気を上 記吸着部材 (51,52)の吸着剤に接触させることにより湿度調節して室内へ供給すると 同時に、取り込んだ室内空気を室外へ排出する換気装置(10)を対象とする。そして 、取り込んだ室外空気を清浄化するフィルタ部材 (27,28)と、室外から室内へ供給さ れる空気の状態に基づいて上記フィルタ部材 (27,28)の目詰まりの状態を検出するフ ィルタ状態検出手段 (63)とを備え、該換気装置(10)の運転状態を制御しながら室内 の換気を行う通常運転と、該換気装置(10)の運転状態を一定に保持した状態で上 記フィルタ状態検出手段(63)に上記フィルタ部材 (27,28)の目詰まりの状態を検出さ せるフィルタ状態検出運転とが実行可能になっている。  [0007] The first invention includes an adsorbing member (51, 52) carrying an adsorbent, and a heat source means (50) for at least heating the adsorbent of the adsorbing member (51, 52). Targeting a ventilator (10) that adjusts the humidity by bringing the outdoor air taken into contact with the adsorbent of the adsorbing member (51, 52) and supplies it to the room, and at the same time exhausts the air taken in outside the room. To do. Then, the filter member (27, 28) for cleaning the taken outdoor air, and the filter for detecting the clogging state of the filter member (27, 28) based on the state of the air supplied from the outside to the room. A state detection means (63), and the normal operation for ventilating the room while controlling the operation state of the ventilator (10) and the operation state of the ventilator (10) are maintained constant. A filter state detecting operation in which the filter state detecting means (63) detects the clogged state of the filter member (27, 28) can be executed.
[0008] 第 2の発明は、吸着剤を担持する吸着熱交換器(51,52)が接続されて冷凍サイクル を行う冷媒回路 (50)を備え、取り込んだ室外空気を上記冷媒回路 (50)の冷媒により 加熱又は冷却した吸着熱交換器(51,52)の吸着剤に接触させることにより湿度調節 して室内へ供給すると同時に、取り込んだ室内空気を室外へ排出する換気装置(10 )を対象とする。そして、取り込んだ室外空気を清浄化するフィルタ部材 (27,28)と、室 外から室内へ供給される空気の状態に基づいて上記フィルタ部材 (27,28)の目詰ま りの状態を検出するフィルタ状態検出手段 (63)とを備え、該換気装置(10)の運転状 態を制御しながら室内の換気を行う通常運転と、該換気装置(10)の運転状態を一定 に保持した状態で上記フィルタ状態検出手段(63)に上記フィルタ部材 (27,28)の目 詰まりの状態を検出させるフィルタ状態検出運転とが実行可能になっている。  [0008] A second invention includes a refrigerant circuit (50) connected to an adsorption heat exchanger (51, 52) carrying an adsorbent to perform a refrigeration cycle, and the taken outdoor air is transferred to the refrigerant circuit (50). Targets ventilation equipment (10) that adjusts humidity by bringing it into contact with the adsorbent of the adsorption heat exchanger (51, 52) heated or cooled with the refrigerant of And Then, the clogged state of the filter member (27, 28) is detected based on the filter member (27, 28) that cleans the taken outdoor air and the state of the air supplied from the outside to the room. A filter state detecting means (63), and controlling the operation state of the ventilator (10) while controlling the operation state of the room, and maintaining the operation state of the ventilator (10) constant. A filter state detecting operation for causing the filter state detecting means (63) to detect a clogged state of the filter member (27, 28) is executable.
[0009] 第 3の発明は、第 1又は第 2の発明において、上記フィルタ状態検出手段(63)は、 上記フィルタ状態検出運転中に室外から室内へ供給される空気の状態と、上記フィ ルタ部材 (27,28)の初期状態において室外から室内へ供給される空気の状態とに基 づいて上記フィルタ部材 (27,28)の目詰まりの状態を検出する。 [0009] A third invention is the first or second invention, wherein the filter state detection means (63) includes a state of air supplied from the outside to the room during the filter state detection operation, and the filter In the initial state of the filter member (27, 28), the clogged state of the filter member (27, 28) is detected based on the state of air supplied from the outside to the room.
[0010] 第 4の発明は、第 3の発明において、上記フィルタ状態検出手段(63)は、上記室外 から室内へ供給される空気の状態に基づいて上記フィルタ部材 (27,28)を通過する 空気の風量を推測する風量推測部(64)を備え、上記フィルタ状態検出運転中に上 記風量推測部(64)が推測した風量と上記フィルタ部材 (27,28)の初期状態にぉレ、て 上記風量推測部(64)が推測した風量とに基づいて上記フィルタ部材 (27,28)の目詰 まりの状態を検出する。 [0010] In a fourth aspect based on the third aspect, the filter state detecting means (63) passes through the filter member (27, 28) based on the state of air supplied from the outside to the inside of the room. An air volume estimation unit (64) for estimating the air volume of air is provided, and the air volume estimated by the air volume estimation unit (64) during the filter state detection operation and the initial state of the filter member (27, 28) Then, the clogging state of the filter member (27, 28) is detected based on the air volume estimated by the air volume estimating unit (64).
[0011] 第 5の発明は、第 1又は第 2の発明において、室外空気を取り込むための給気ファ ン (26)を備え、上記フィルタ状態検出運転では、上記給気ファン (26)の回転速度を それぞれ異なる値に固定する第 1検出動作と第 2検出動作とが行われる一方、上記 フィルタ状態検出手段(63)は、上記室外から室内へ供給される空気の状態に基づ レ、て上記フィルタ部材 (27,28)を通過する空気の風量を推測する風量推測部(64)を 備え、上記第 1検出動作中に風量推測部 (64)が推測した風量と上記第 2検出動作 中に風量推測部(64)が推測した風量との差に基づいて上記フィルタ部材 (27,28)の 目詰まりの状態を検出する。  [0011] A fifth invention is the first or second invention, further comprising an air supply fan (26) for taking in outdoor air, and in the filter state detection operation, the air supply fan (26) is rotated. While the first detection operation and the second detection operation are performed to fix the speeds to different values, the filter state detection means (63) is controlled based on the state of air supplied from the outside to the room. An air volume estimation unit (64) for estimating the air volume of the air passing through the filter member (27, 28) is provided, and the air volume estimated by the air volume estimation unit (64) during the first detection operation and the second detection operation are in progress. Then, the clogging state of the filter member (27, 28) is detected based on the difference from the air volume estimated by the air volume estimating unit (64).
[0012] 第 6の発明は、第 1乃至第 5の何れ力 1つの発明において、所定の時刻になると上 記フィルタ状態検出運転を実行するように構成されている。  [0012] A sixth aspect of the invention is any one of the first to fifth aspects of the invention, wherein the filter state detection operation is executed at a predetermined time.
[0013] 一作用  [0013] One action
第 1の発明では、通常運転とフィルタ状態検出運転とが実行可能になっており、フィ ルタ状態検出手段(63)にフィルタ部材 (27,28)の目詰まりの状態を検出させる際はフ ィルタ状態検出運転を行う。通常運転では、換気装置(10)の運転状態として熱源手 段などを制御し、室外から室内へ供給される空気の状態を調節する。フィルタ状態検 出運転では、換気装置(10)の運転状態が一定に保持される。従って、フィルタ状態 検出運転における室外から室内へ供給される空気の状態の変化からは、換気装置( 10)の運転状態の影響が取り除かれる。  In the first aspect of the invention, the normal operation and the filter state detection operation can be performed. When the filter state detection means (63) detects the clogged state of the filter member (27, 28), the filter operation is detected. Perform state detection operation. In normal operation, the heat source means, etc. are controlled as the operating state of the ventilator (10) to adjust the state of the air supplied from the outside to the room. In the filter state detection operation, the operation state of the ventilation device (10) is kept constant. Therefore, the influence of the operation state of the ventilator (10) is removed from the change in the state of the air supplied from the outdoor to the indoor in the filter state detection operation.
[0014] 第 2の発明では、上記第 1の発明と同様に、通常運転とフィルタ状態検出運転とが 実行可能になっており、フィルタ状態検出手段(63)にフィルタ部材 (27,28)の目詰ま りの状態を検出させる際はフィルタ状態検出運転を行う。通常運転では、換気装置(1 0)の運転状態として冷媒回路の冷凍サイクルの状態などを制御し、室外から室内へ 供給される空気の状態を調節する。フィルタ状態検出運転では、換気装置(10)の運 転状態が一定に保持される。従って、フィルタ状態検出運転における室外から室内 へ供給される空気の状態の変化からは、換気装置(10)の運転状態の影響が取り除 力、れる。 [0014] In the second invention, as in the first invention, the normal operation and the filter state detection operation can be performed, and the filter member (27, 28) is connected to the filter state detection means (63). Clogged When detecting the current state, the filter state detection operation is performed. In normal operation, the state of the refrigeration cycle of the refrigerant circuit is controlled as the operating state of the ventilator (10), and the state of air supplied from the outside to the room is adjusted. In the filter state detection operation, the operation state of the ventilation device (10) is kept constant. Therefore, the influence of the operating state of the ventilator (10) is removed from the change in the state of the air supplied from the outdoor to the indoor in the filter state detection operation.
[0015] 第 3の発明において、フィルタ状態検出手段(63)は、フィルタ部材 (27,28)の初期 状態に室外から室内へ供給される空気の状態を記憶している。なお、フィルタ部材 (2 7,28)の初期状態とは、換気装置(10)を設置した直後、あるいはフィルタ部材 (27,28 )を洗浄又は交換した直後の汚れが付着していない状態である。このフィルタ状態検 出手段(63)は、フィルタ状態検出運転中において室外から室内へ供給される空気の 状態を検出し、その空気の状態をフィルタ部材 (27,28)の初期状態に室外から室内 へ供給される空気の状態と比較し、その空気の状態の変化に基づいてフィルタ部材 (27,28)の目詰まりの状態を検出している。  [0015] In the third invention, the filter state detecting means (63) stores the state of the air supplied from the outdoor to the indoor in the initial state of the filter member (27, 28). In addition, the initial state of the filter member (27, 28) is a state in which dirt is not attached immediately after the ventilation device (10) is installed or immediately after the filter member (27, 28) is cleaned or replaced. . This filter state detection means (63) detects the state of air supplied from the outside to the room during the filter state detection operation, and changes the state of the air to the initial state of the filter member (27, 28) from the outside to the room. Compared with the state of air supplied to the filter, the clogged state of the filter members (27, 28) is detected based on the change in the state of the air.
[0016] 第 4の発明では、フィルタ状態検出手段(63)の風量推測部(64)力 室外から室内 へ供給される空気の状態に基づいてフィルタ部材 (27,28)を通過する空気の風量を 推測する。フィルタ状態検出手段 (63)は、フィルタ部材 (27,28)の初期状態に風量推 測部(64)が推測した風量を記憶している。そして、フィルタ状態検出手段(63)は、フ ィルタ状態検出運転中に風量推測部(64)が推測した風量とフィルタ部材 (27,28)の 初期状態に風量推測部(64)が推測した風量と比較し、その風量の変化に基づいて フィルタ部材 (27,28)の目詰まりの状態を検出している。フィルタ状態検出運転では、 換気装置(10)の運転状態が一定の状態に保持されており、フィルタ状態検出運転 における室外から室内へ供給される空気の状態の変化から換気装置(10)の運転状 態の影響が取り除かれるので、フィルタ部材(27,28)を通過する空気の風量が簡単に 精度良く推測される。  [0016] In the fourth invention, the air volume estimating unit (64) of the filter state detecting means (63) force The air volume of the air passing through the filter member (27, 28) based on the state of the air supplied from the outside to the inside of the room Guess. The filter state detecting means (63) stores the air volume estimated by the air volume estimating unit (64) in the initial state of the filter member (27, 28). The filter state detection means (63) then detects the air volume estimated by the air volume estimation unit (64) during the filter state detection operation and the air volume estimated by the air volume estimation unit (64) in the initial state of the filter members (27, 28). Compared to the above, the clogged state of the filter member (27, 28) is detected based on the change in the air volume. In the filter state detection operation, the operation state of the ventilator (10) is kept constant, and the operation state of the ventilator (10) is determined from the change in the state of the air supplied from the outside to the room in the filter state detection operation. Since the influence of the state is removed, the air volume of the air passing through the filter member (27, 28) can be estimated easily and accurately.
[0017] 第 5の発明では、フィルタ状態検出運転中の第 1検出動作と第 2検出動作のそれぞ れにおレ、て、風量推測部(64)がフィルタ部材(27,28)を通過する空気の風量を推測 する。ここで、フィルタ部材 (27,28)の目詰まりの状態が進行すると、フィルタ部材 (27, 28)の空気抵抗が増加し、給気ファン (26)の回転速度と風量との関係で示されるファ ン特性が変化する。具体的には、フィルタ部材 (27,28)の空気抵抗が増加すると、給 気ファン (26)の回転速度を上げても風量はそれ程増えなくなってくる。このため、第 1 検出動作中に風量推測部 (64)が推測した風量と第 2検出動作中に風量推測部 (64) が推測した風量との差が減少する。従って、第 1検出動作中に風量推測部(64)が推 測した風量と第 2検出動作中に風量推測部(64)が推測した風量との差力 は、フィ ルタ部材 (27,28)の目詰まりの状態が推測される。 [0017] In the fifth invention, the air volume estimation unit (64) passes through the filter member (27, 28) in each of the first detection operation and the second detection operation during the filter state detection operation. Estimate the amount of air flow. Here, when the clogging of the filter member (27, 28) proceeds, the filter member (27, 28) The air resistance of 28) increases, and the fan characteristics indicated by the relationship between the rotation speed of the supply fan (26) and the air volume change. Specifically, when the air resistance of the filter members (27, 28) increases, the air volume does not increase so much even if the rotational speed of the supply fan (26) is increased. For this reason, the difference between the air volume estimated by the air volume estimation unit (64) during the first detection operation and the air volume estimated by the air volume estimation unit (64) during the second detection operation is reduced. Therefore, the differential force between the air volume estimated by the air volume estimation unit (64) during the first detection operation and the air volume estimated by the air volume estimation unit (64) during the second detection operation is the filter member (27, 28) The state of clogging is estimated.
[0018] 第 6の発明では、室内の換気を通常運転で行い、所定の時刻になると通常運転か らフィルタ状態検出運転に切り換えてフィルタ部材 (27,28)の目詰まりの状態を検出 する。フィルタ状態検出運転の実行中以外は、通常運転で室内の換気と共に室内の 湿度調節が行われる。 [0018] In the sixth invention, indoor ventilation is performed in a normal operation, and when a predetermined time is reached, the normal operation is switched to the filter state detection operation to detect the clogged state of the filter members (27, 28). Except during the filter state detection operation, the indoor humidity is adjusted along with the indoor ventilation in normal operation.
発明の効果  The invention's effect
[0019] 本発明では、換気装置(10)の運転状態を考慮することなくフィルタ部材 (27,28)の 目詰まりの状態が検出されるように、その換気装置(10)の運転状態を一定に保持す るフィルタ状態検出運転を行うようにしている。つまり、フィルタ状態検出運転を行うこ とで、室外から室内へ供給される空気の状態の変化のみを考慮してフィルタ部材 (27 ,28)の目詰まりの状態を検出することができるようにしている。従って、フィルタ部材 (2 7,28)の目詰まりの状態の検出が簡単になり誤差が生じにくくなるので、フィルタ部材 (27,28)の目詰まりの状態の検出精度を向上させることができる。  [0019] In the present invention, the operating state of the ventilator (10) is kept constant so that the clogged state of the filter member (27, 28) can be detected without considering the operating state of the ventilator (10). The filter state detection operation that is held at is performed. That is, by performing the filter state detection operation, it is possible to detect the clogged state of the filter members (27, 28) in consideration of only the change in the state of the air supplied from the outdoor to the indoor. Yes. Therefore, the detection of the clogged state of the filter members (27, 28) is simplified and errors are less likely to occur, so that the detection accuracy of the clogged state of the filter members (27, 28) can be improved.
[0020] また、上記第 6の発明では、フィルタ状態検出運転の実行中以外は、通常運転で 室内の換気と共に室内の湿度調節が行われる。従って、例えば夜中など在室者がい ない時間帯にフィルタ状態検出運転を行うようにすれば、その時間帯は室内の湿度 調節を行う必要がないので、フィルタ部材 (27,28)の目詰まりの状態の検出を在室者 の快適性を損なうことなく行うことができる。 [0020] Further, in the sixth aspect of the invention, indoor humidity adjustment is performed together with indoor ventilation in normal operation except during the execution of the filter state detection operation. Therefore, for example, if the filter state detection operation is performed during the time when there is no occupant, such as at night, it is not necessary to adjust the humidity in the room during that time, so the filter member (27, 28) is not clogged. The state can be detected without impairing the comfort of the occupants.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]図 1は、実施形態の換気装置の構成を示す斜視図である。  FIG. 1 is a perspective view showing a configuration of a ventilator according to an embodiment.
[図 2]図 2は、実施形態の換気装置の概略構成を示す平面視、右側面視、及び左側 面視の構成図である。 [図 3]図 3は、実施形態の冷媒回路の構成を示す配管系統図であって、(A)は第 1動 作中の動作を示すものであり、(B)は第 2動作中の動作を示すものである。 FIG. 2 is a configuration diagram showing a schematic configuration of the ventilator according to the embodiment in a plan view, a right side view, and a left side view. FIG. 3 is a piping system diagram showing the configuration of the refrigerant circuit of the embodiment, where (A) shows the operation during the first operation, and (B) shows the operation during the second operation. The operation is shown.
[図 4]図 4は、吸着熱交換器の概略斜視図である。 FIG. 4 is a schematic perspective view of an adsorption heat exchanger.
[図 5]図 5は、除湿運転における第 1動作中の空気の流れを示す換気装置の概略構 成図である。  [FIG. 5] FIG. 5 is a schematic configuration diagram of a ventilator showing an air flow during the first operation in the dehumidifying operation.
[図 6]図 6は、除湿運転における第 2動作中の空気の流れを示す換気装置の概略構 成図である。  [FIG. 6] FIG. 6 is a schematic configuration diagram of a ventilator showing an air flow during the second operation in the dehumidifying operation.
[図 7]図 7は、加湿運転における第 1動作中の空気の流れを示す換気装置の概略構 成図である。  [FIG. 7] FIG. 7 is a schematic configuration diagram of a ventilator showing an air flow during the first operation in the humidifying operation.
[図 8]図 8は、加湿運転における第 2動作中の空気の流れを示す換気装置の概略構 成図である。  [FIG. 8] FIG. 8 is a schematic configuration diagram of a ventilator showing an air flow during the second operation in the humidifying operation.
[図 9]図 9は、実施形態におけるフィルタ状態検出運転の流れを示すフロー図である  FIG. 9 is a flowchart showing a flow of a filter state detection operation in the embodiment.
[図 10]図 10は、実施形態の変形例 3における外気側フィルタを通過する空気の風量 Qと機外静圧 Pとの関係を表すグラフである。 FIG. 10 is a graph showing the relationship between the air volume Q of the air passing through the outside air filter and the external static pressure P in Modification 3 of the embodiment.
[図 11]図 11は、その他の実施形態の第 5変形例における換気装置の概略構成図で あって、(A)は第 1動作中の動作を示すものであり、(B)は第 2動作中の動作を示すも のである。  [FIG. 11] FIG. 11 is a schematic configuration diagram of a ventilator according to a fifth modification of the other embodiment, in which (A) shows the operation during the first operation, and (B) shows the second operation. It shows the operation during operation.
[図 12]図 12は、その他の実施形態の第 6変形例における調湿ユニットの概略斜視図 である。  FIG. 12 is a schematic perspective view of a humidity control unit in a sixth modification of the other embodiment.
符号の説明 Explanation of symbols
10 換気装置  10 Ventilator
27 外気側フィルタ(フィルタ部材)  27 Outside air filter (filter member)
28 内気側フィルタ(フィルタ部材)  28 Inside air filter (filter member)
50 冷媒回路 (熱源手段)  50 Refrigerant circuit (heat source means)
51 第 1吸着熱交換器 (吸着部材)  51 First adsorption heat exchanger (Adsorption member)
52 第 2吸着熱交換器 (吸着部材)  52 Second adsorption heat exchanger (Adsorption member)
63 フィルタ状態検出部 (フィルタ状態検出手段) 64 風量推測部 63 Filter status detector (Filter status detector) 64 Airflow estimation unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明の実施形態について説明する。本実施形態の換気装置(10)は、室内の換 気と共に室内の湿度調節を行うものであり、取り込んだ室外空気(〇A)を湿度調節し て室内へ供給すると同時に、取り込んだ室内空気(RA)を室外に排出する。  [0023] An embodiment of the present invention will be described. The ventilator (10) of the present embodiment adjusts the humidity of the room together with the ventilation of the room. At the same time, it adjusts the humidity of the taken outdoor air (OA) and supplies it to the room. RA) is discharged outside the room.
[0024] この換気装置(10)は、室内の換気を行いつつユーザーが希望する室内湿度にな るように該換気装置(10)の運転状態を制御する通常運転と、室内の換気を行いつつ 該換気装置(10)の運転状態を一定に保持した状態で後述する外気側フィルタ (27) の目詰まりの状態を検出するフィルタ状態検出運転とが実行可能になっている。この 換気装置(10)では、室内の換気が 1日中行われ、夜間の所定の時刻(例えば、午前 0時)になるとフィルタ状態検出運転が実行される。  [0024] The ventilation device (10) performs normal operation for controlling the operation state of the ventilation device (10) so as to achieve indoor humidity desired by the user while performing indoor ventilation, and while performing indoor ventilation. A filter state detection operation for detecting a clogged state of the outside air filter (27), which will be described later, can be executed while the operation state of the ventilation device (10) is kept constant. In this ventilator (10), the room is ventilated throughout the day, and the filter state detection operation is performed at a predetermined night time (for example, midnight).
[0025] 〈換気装置の全体構成〉  <Overall configuration of ventilation device>
上記換気装置(10)について、図 1及び図 2を参照しながら説明する。尚、ここでの 説明で用いる「上」「下」「左」「右」「前」「後」「手前」「奥」は、特にことわらない限り、上 記換気装置(10)を前面側から見た場合の方向を意味している。  The ventilation device (10) will be described with reference to FIGS. Unless otherwise specified, “upper”, “lower”, “left”, “right”, “front”, “rear”, “front”, and “back” used in the description here refer to the ventilation device (10) on the front side. It means the direction when seen from.
[0026] 上記換気装置(10)は、ケーシング(11)を備えている。また、ケーシング(11)内には 、冷媒回路 (50)が収容されている。この冷媒回路 (50)には、第 1吸着熱交換器 (51) 、第 2吸着熱交換器 (52)、圧縮機 (53)、四方切換弁 (54)、及び電動膨張弁 (55)が 接続されている。冷媒回路 (50)の詳細は後述する。  [0026] The ventilation device (10) includes a casing (11). A refrigerant circuit (50) is accommodated in the casing (11). The refrigerant circuit (50) includes a first adsorption heat exchanger (51), a second adsorption heat exchanger (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve (55). It is connected. Details of the refrigerant circuit (50) will be described later.
[0027] 上記ケーシング(11)は、やや扁平で高さが比較的低い直方体状に形成されている 。このケーシング(11)では、図 1における左手前側に前面パネル(12)力 同図にお ける右奥側に背面パネル(13)がそれぞれ立設されており、同図における左手前から 右奥へ向力、う方向の長さと右手前力 左奥へ向力 方向の長さがほぼ等しくなつてい る。  [0027] The casing (11) is formed in a rectangular parallelepiped shape that is slightly flat and relatively low in height. In this casing (11), the front panel (12) force is placed on the left front side in Fig. 1 and the rear panel (13) is erected on the right rear side in Fig. 1, from the left front side to the right back side in the same figure. Directional force, length in the opposite direction and right frontal force The depth in the direction of the leftward force is almost equal.
[0028] ケーシング(11)の前面パネル(12)では、左寄りの位置に排気口(21)力 右寄りの 位置に給気口(22)がそれぞれ開口している。ケーシング(11)の背面パネル(13)の 中央部には上寄りの位置に外気吸込口(23)力 下寄りのの位置に内気吸込口(24) がそれぞれ開口している。 [0029] 上記ケーシング(11)の内部空間は、前面パネル(12)側の比較的容積が小さい空 間と、背面パネル(13)側の比較的容積が大きレ、空間とに区画されてレ、る。 [0028] In the front panel (12) of the casing (11), the exhaust port (21) is opened to the left and the air supply port (22) is opened to the right. At the center of the rear panel (13) of the casing (11), an outside air inlet (24) is opened at a position lower than the outside air inlet (23) force. [0029] The internal space of the casing (11) is divided into a space having a relatively small volume on the front panel (12) side and a space having a relatively large volume on the back panel (13) side. RU
[0030] 上記ケーシング(11)内における前面パネル(12)側の空間は、左右 2つの空間に仕 切られている。この左右に仕切られた空間は、左側の空間が排気ファン室(35)を、右 側の空間が給気ファン室(36)をそれぞれ構成している。排気ファン室(35)は、排気 口(21)を介して室外空間と連通している。この排気ファン室(35)には排気ファン (25) が収容されており、排気ファン (25)の吹出口が排気口(21)に接続されている。一方、 給気ファン室(36)は、給気口(22)を介して室内空間と連通している。この給気ファン 室(36)には、給気ファン (26)が収容されており、給気ファン(26)の吹出口が給気口( 22)に接続されている。また、給気ファン室(36)には、圧縮機(53)も収容されている。  [0030] The space on the front panel (12) side in the casing (11) is cut into two left and right spaces. In the left and right spaces, the left space constitutes an exhaust fan chamber (35), and the right space constitutes an air supply fan chamber (36). The exhaust fan chamber (35) communicates with the outdoor space via the exhaust port (21). The exhaust fan chamber (35) accommodates an exhaust fan (25), and the outlet of the exhaust fan (25) is connected to the exhaust port (21). On the other hand, the air supply fan chamber (36) communicates with the indoor space via the air supply port (22). The supply fan chamber (36) accommodates the supply fan (26), and the outlet of the supply fan (26) is connected to the supply port (22). The air supply fan chamber (36) also houses a compressor (53).
[0031] 一方、上記ケーシング(11)内の背面パネル(13)側の空間は、ケーシング(11)内に 立設された第 1仕切板(16)及び第 2仕切板(17)によって前後 3つの空間に仕切られ ている。これら仕切板(16, 17)は、ケーシング(11)の左右方向に延びている。第 1仕 切板(16)はケーシング(11)の背面寄りに、第 2仕切板(17)はケーシング(11)の前面 寄りにそれぞれ配置されてレ、る。  [0031] On the other hand, the space on the back panel (13) side in the casing (11) is separated by the first partition plate (16) and the second partition plate (17) standing up and down in the casing (11). It is divided into two spaces. These partition plates (16, 17) extend in the left-right direction of the casing (11). The first cutting plate (16) is arranged near the back of the casing (11), and the second partition plate (17) is arranged near the front of the casing (11).
[0032] 上記ケーシング(11)内において、第 1仕切板(16)の奥の空間は上下 2つの空間に 仕切られており、上側の空間が外気側流路(32)を、下側の空間が内気側流路(34) をそれぞれ構成している。外気側流路 (32)は、外気吸込口(23)を介して室外空間と 連通している。外気側流路(32)には、左右に延びてその流路(32)を前後に区画す るフィルタ部材である外気側フィルタ(27)が設けられてレ、る。内気側流路(34)は内気 吸込口(24)を介して室内と連通している。内気側流路(34)には、左右に延びてその 流路(34)を前後に区画するフィルタ部材である内気側フィルタ(28)が設けられてレ、 る。  [0032] In the casing (11), the space behind the first partition plate (16) is partitioned into two upper and lower spaces, and the upper space defines the outside air flow path (32) and the lower space. Constitutes the inside air flow path (34), respectively. The outside air flow path (32) communicates with the outdoor space via the outside air inlet (23). The outside air channel (32) is provided with an outside air filter (27) which is a filter member extending left and right and dividing the channel (32) into the front and rear. The room air side channel (34) communicates with the room via the room air inlet (24). The room air side flow path (34) is provided with a room air side filter (28) which is a filter member extending left and right and dividing the flow path (34) into the front and back.
[0033] 一方、第 2仕切板(17)の手前の空間は上下 2つの空間に仕切られており、上側の 空間が排気側流路 (31)を、下側の空間が給気側流路 (33)を構成している。排気側 流路(31)は、排気ファン室(35)と連通している。給気側流路(33)は、給気ファン室( 36)と連通している。  [0033] On the other hand, the space in front of the second partition plate (17) is partitioned into two upper and lower spaces, the upper space is the exhaust side flow path (31), and the lower space is the air supply side flow path. (33) is configured. The exhaust side flow path (31) communicates with the exhaust fan chamber (35). The supply side flow path (33) communicates with the supply fan chamber (36).
[0034] 第 1仕切板(16)と第 2仕切板(17)との間の空間は、更に中央仕切板(18)によって 左右 2つの空間に仕切られている。そして、中央仕切板(18)の右側の空間が第 1熱 交換器室 (37)を構成し、その左側の空間が第 2熱交換器室 (38)を構成している。第 1熱交換器室 (37)には第 1吸着熱交換器 (51)が、第 2熱交換器室 (38)には第 2吸着 熱交換器 (52)がそれぞれ収容されている。これら 2つの吸着熱交換器(51,52)は、そ れぞれが収容される熱交換器室(37,38)を左右方向へ横断するように配置されてい る。 [0034] The space between the first partition plate (16) and the second partition plate (17) is further separated by the central partition plate (18). It is divided into two spaces. The space on the right side of the central partition plate (18) constitutes the first heat exchanger chamber (37), and the space on the left side constitutes the second heat exchanger chamber (38). The first heat exchanger chamber (37) accommodates the first adsorption heat exchanger (51), and the second heat exchanger chamber (38) accommodates the second adsorption heat exchanger (52). These two adsorption heat exchangers (51, 52) are arranged so as to cross the heat exchanger chamber (37, 38) in which they are accommodated in the left-right direction.
[0035] 上記第 1仕切板(16)には、開閉式のダンバ(41〜44)が 4つ設けられている。具体 的に、第 1仕切板(16)では、右側の上部に第 1ダンバ (41)が、左側の上部に第 2ダ ンパ(42)が、右側の下部に第 3ダンバ(43)が、左側の下部に第 4ダンバ(44)がそれ ぞれ取り付けられている。第 1ダンパ (41)を開くと、外気側流路 (32)と第 1熱交換器 室 (37)が連通する。第 2ダンバ (42)を開くと、外気側流路 (32)と第 2熱交換器室 (38 )が連通する。第 3ダンバ (43)を開くと、内気側流路 (34)と第 1熱交換器室 (37)が連 通する。第 4ダンパ (44)を開くと、内気側流路 (34)と第 2熱交換器室 (38)が連通する  The first partition plate (16) is provided with four openable dampers (41 to 44). Specifically, in the first partition plate (16), the first damper (41) is on the upper right side, the second damper (42) is on the upper left side, and the third damper (43) is on the lower right side. A fourth damper (44) is attached to the lower left side. When the first damper (41) is opened, the outside air flow path (32) and the first heat exchanger chamber (37) communicate with each other. When the second damper (42) is opened, the outside air flow path (32) and the second heat exchanger chamber (38) communicate with each other. When the third damper (43) is opened, the inside air flow path (34) and the first heat exchanger chamber (37) communicate with each other. When the fourth damper (44) is opened, the inside air flow path (34) and the second heat exchanger chamber (38) communicate with each other.
[0036] 上記第 2仕切板(17)には、開閉式のダンパ(45〜48)が 4つ設けられている。具体 的に、第 2仕切板(17)では、右側の上部に第 5ダンパ (45)が、左側の上部に第 6ダ ンパ(46) 、右側の下部に第 7ダンパ(47) 、左側の下部に第 8ダンパ(48)がそれ ぞれ取り付けられている。第 5ダンパ (45)を開くと、排気側流路 (31)と第 1熱交換器 室 (37)が連通する。第 6ダンパ (46)を開くと、排気側流路 (31)と第 2熱交換器室 (38 )が連通する。第 7ダンパ (47)を開くと、給気側流路 (33)と第 1熱交換器室 (37)が連 通する。第 8ダンパ (48)を開くと、給気側流路 (33)と第 2熱交換器室 (38)が連通する [0036] The second partition plate (17) is provided with four open / close dampers (45 to 48). Specifically, the second partition plate (17) has a fifth damper (45) on the upper right side, a sixth damper (46) on the upper left side, a seventh damper (47) on the lower right side, and a left damper on the left side. The eighth dampers (48) are attached to the bottom. When the fifth damper (45) is opened, the exhaust side flow path (31) and the first heat exchanger chamber (37) communicate with each other. When the sixth damper (46) is opened, the exhaust side flow path (31) and the second heat exchanger chamber (38) communicate with each other. When the seventh damper (47) is opened, the air supply side flow path (33) and the first heat exchanger chamber (37) communicate with each other. When the 8th damper (48) is opened, the air supply side flow path (33) and the second heat exchanger chamber (38) communicate with each other.
[0037] また、この換気装置(10)には、換気装置(10)が室外から取り込む室外空気(〇A) の温度及び湿度をそれぞれ計測する外気温度センサ(65a)及び外気湿度センサ(65 b)が、外気側流路 (32)の外気側フィルタ (27)の後側に設けられている。また、換気 装置(10)から室内へ供給される供給空気 (SA)の温度及び湿度をそれぞれ計測する 給気温度センサ(66a)及び給気湿度センサ(66b)が、給気側流路(33)に設けられて いる。また、換気装置(10)が室内から取り込む室内空気(RA)の温度及び湿度をそ れぞれ計測する内気温度センサ(67a)及び内気湿度センサ(67b)が内気側流路(34 )の内気側フィルタ(28)の後側に設けられている。これらのセンサ(65,66,67)の検出 値は、制御部(60)に送信される。 [0037] The ventilator (10) includes an outdoor air temperature sensor (65a) and an outdoor air humidity sensor (65b) that measure the temperature and humidity of the outdoor air (OA) taken in from the outdoor by the ventilator (10). ) Is provided on the rear side of the outdoor air filter (27) of the outdoor air flow path (32). In addition, the supply air temperature sensor (66a) and supply air humidity sensor (66b), which measure the temperature and humidity of the supply air (SA) supplied from the ventilation device (10) to the room, respectively, ). Also, the temperature and humidity of the indoor air (RA) taken in from the room by the ventilator (10) are adjusted. An inside air temperature sensor (67a) and an inside air humidity sensor (67b) for measuring each are provided on the rear side of the inside air side filter (28) of the inside air side channel (34). The detection values of these sensors (65, 66, 67) are transmitted to the control unit (60).
[0038] 〈冷媒回路の構成〉  <Configuration of refrigerant circuit>
上記冷媒回路(50)について、図 3を参照しながら説明する。  The refrigerant circuit (50) will be described with reference to FIG.
[0039] 上記冷媒回路 (50)は、第 1吸着熱交換器 (51)、第 2吸着熱交換器 (52)、圧縮機 (5 3)、四方切換弁(54)、及び電動膨張弁 (55)が設けられた閉回路である。この冷媒回 路(50)は、充填された冷媒を循環させることによって、蒸気圧縮冷凍サイクルを行う。  [0039] The refrigerant circuit (50) includes a first adsorption heat exchanger (51), a second adsorption heat exchanger (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve ( 55) is a closed circuit. The refrigerant circuit (50) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
[0040] 上記冷媒回路(50)において、圧縮機(53)は、その吐出側が四方切換弁(54)の第 1のポートに、その吸入側が四方切換弁(54)の第 2のポートにそれぞれ接続されてい る。第 1吸着熱交換器 (51)の一端は、四方切換弁(54)の第 3のポートに接続されて いる。第 1吸着熱交換器 (51)の他端は、電動膨張弁 (55)を介して第 2吸着熱交換器 (52)の一端に接続されている。第 2吸着熱交換器 (52)の他端は、四方切換弁(54) の第 4のポートに接続されている。  In the refrigerant circuit (50), the compressor (53) has a discharge side connected to the first port of the four-way switching valve (54) and a suction side connected to the second port of the four-way switching valve (54). It is connected. One end of the first adsorption heat exchanger (51) is connected to the third port of the four-way switching valve (54). The other end of the first adsorption heat exchanger (51) is connected to one end of the second adsorption heat exchanger (52) via the electric expansion valve (55). The other end of the second adsorption heat exchanger (52) is connected to the fourth port of the four-way switching valve (54).
[0041] 上記四方切換弁(54)は、第 1のポートと第 3のポートが連通して第 2のポートと第 4 のポートが連通する第 1状態(図 3(A)に示す状態)と、第 1のポートと第 4のポートが 連通して第 2のポートと第 3のポートが連通する第 2状態(図 3(B)に示す状態)とに切 り換え可能となっている。  [0041] The four-way switching valve (54) has a first state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (the state shown in FIG. 3A). Can be switched to the second state (the state shown in Fig. 3 (B)) in which the first port communicates with the fourth port and the second port communicates with the third port. .
[0042] 図 4に示すように、第 1吸着熱交換器(51)及び第 2吸着熱交換器(52)は、何れもク ロスフィン型のフィン 'アンド'チューブ熱交換器によって構成されている。これら吸着 熱交換器 (51,52)は、銅製の伝熱管(58)とアルミニウム製のフィン (57)とを備えてレヽ る。吸着熱交換器 (51,52)に設けられた複数のフィン (57)は、それぞれが長方形板 状に形成され、一定の間隔で並べられている。また、伝熱管(58)は、各フィン (57)を 貫通するように設けられてレ、る。  [0042] As shown in FIG. 4, each of the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52) is constituted by a cross-fin type fin 'and' tube heat exchanger. . These adsorption heat exchangers (51, 52) are provided with copper heat transfer tubes (58) and aluminum fins (57). The plurality of fins (57) provided in the adsorption heat exchanger (51, 52) are each formed in a rectangular plate shape and arranged at regular intervals. The heat transfer tube (58) is provided so as to penetrate each fin (57).
[0043] 上記各吸着熱交換器 (51,52)では、各フィン (57)の表面に吸着剤が担持されてお り、フィン (57)の間を通過する空気がフィン (57)に担持された吸着剤と接触する。こ の吸着剤としては、ゼォライト、シリカゲル、活性炭、親水性の官能基を有する有機高 分子材料など、空気中の水蒸気を吸着できるものが用レ、られる。 [0044] く制御部の構成〉 [0043] In each of the adsorption heat exchangers (51, 52), an adsorbent is supported on the surface of each fin (57), and air passing between the fins (57) is supported on the fin (57). In contact with the adsorbent formed. As this adsorbent, those capable of adsorbing water vapor in the air, such as zeolite, silica gel, activated carbon, and organic high molecular weight material having a hydrophilic functional group, can be used. [0044] Configuration of control unit>
この換気装置(10)の制御部(60)には、排気ファン (25)及び給気ファン (26)の風量 を制御するファン制御部(61)と、換気装置(10)の運転状態として冷媒回路 (50)の冷 凍サイクルの状態を制御する調湿制御部(62)と、外気側フィルタ(27)の目詰まりの 状態を検出するフィルタ状態検出手段であるフィルタ状態検出部(63)と力 S設けられ ている。フィルタ状態検出部(63)には、室外から室内へ供給される空気の状態であ る室外空気(OA)の絶対湿度及び供給空気(SA)の絶対湿度に基づレ、て外気側フィ ルタ(27)を通過する空気の風量 Qを推測する風量推測部(64)が設けられてレ、る。  The control unit (60) of the ventilation device (10) includes a fan control unit (61) for controlling the air volume of the exhaust fan (25) and the air supply fan (26), and a refrigerant as an operating state of the ventilation device (10). A humidity control unit (62) for controlling the state of the refrigeration cycle of the circuit (50), a filter state detecting unit (63) which is a filter state detecting means for detecting a clogged state of the outside air filter (27), Force S is provided. The filter status detection unit (63) includes an outdoor air side filter based on the absolute humidity of the outdoor air (OA) and the absolute humidity of the supply air (SA), which is the state of the air supplied from the outdoor to the indoor. An air volume estimating unit (64) for estimating the air volume Q of air passing through (27) is provided.
[0045] ファン制御部(61)には、給気ファン (26)及び排気ファン (25)の風量を 3段階 (例え ば「大」「中」「小」)に調節可能な設定ファンタップが設けられている。給気ファン (26) 及び排気ファン (25)は、設定ファンタップの設定状態によってファンモータ出力が決 められている。つまり、ファン (26,27)の設定ファンタップがある設定状態(例えば「大」 )にあるときは、ファンモータの出力がその設定状態に対応する所定値に固定される 。なお、設定ファンタップの設定状態によって、ファンモータの回転速度を決定するよ うにしてもよい。  [0045] The fan control unit (61) has a setting fan tap that can adjust the air volume of the supply fan (26) and the exhaust fan (25) in three levels (eg, “large”, “medium”, and “small”). Is provided. The fan motor output of the supply fan (26) and the exhaust fan (25) is determined by the setting state of the setting fan tap. That is, when the setting fan tap of the fan (26, 27) is in a setting state (for example, “large”), the output of the fan motor is fixed to a predetermined value corresponding to the setting state. The rotational speed of the fan motor may be determined according to the setting state of the setting fan tap.
[0046] 調湿制御部(62)には、図示しないが、ユーザーが希望の室内湿度を入力する湿度 入力部と、ユーザーが希望の室内温度を入力する温度入力部とが設けられてレ、る。  [0046] Although not shown, the humidity control unit (62) is provided with a humidity input unit for a user to input a desired room humidity and a temperature input unit for a user to input a desired room temperature. The
[0047] 湿度入力部は、希望の室内湿度を「低」「中」「高」の 3段階の中から選択可能に構 成されている。調湿制御部(62)には、「低」「中」「高」のそれぞれに対応する相対湿 度の範囲が予め設定されている。湿度入力部に「低」「中」「高」の何れかが入力され ていると、調湿制御部(62)は、通常運転の際に、その入力に対応する相対湿度の範 囲を目標湿度(例えば 50%〜60%)に設定する。また、調湿制御部(62)は、温度入 力部に希望の室内温度が入力されていると、通常運転の際に、その希望の室内温 度を目標温度 (例えば 25°C)に設定する。  [0047] The humidity input unit is configured so that the desired indoor humidity can be selected from three levels of "low", "medium" and "high". In the humidity control unit (62), ranges of relative humidity corresponding to “low”, “medium”, and “high” are preset. When either “low”, “medium”, or “high” is input to the humidity input section, the humidity control section (62) targets the range of relative humidity corresponding to the input during normal operation. Set to humidity (eg 50% -60%). In addition, when the desired room temperature is input to the temperature input unit, the humidity control unit (62) sets the desired room temperature to the target temperature (for example, 25 ° C) during normal operation. To do.
[0048] 調湿制御部(62)は、図示しないが演算部を備えてレ、る。演算部は、 目標湿度及び 目標温度からその温度と湿度における絶対湿度を算出する。調湿制御部(62)は、演 算部で算出した絶対湿度を目標絶対湿度に設定し、室内の絶対湿度が目標絶対湿 度に近づくように換気装置(10)の調湿能力を調節する。 [0049] フィルタ状態検出部(63)は、風量推測部(64)で外気側フィルタ(27)を通過する空 気の風量 Qを推測し、その推測した風量 Qに基づレ、て外気側フィルタ(27)の目詰まり の状態を検出する。 [0048] Although not shown, the humidity control unit (62) includes a calculation unit. The computing unit calculates the absolute humidity at the temperature and humidity from the target humidity and target temperature. The humidity control unit (62) sets the absolute humidity calculated by the calculation unit to the target absolute humidity and adjusts the humidity control capacity of the ventilator (10) so that the indoor absolute humidity approaches the target absolute humidity. . [0049] The filter state detection unit (63) estimates the air volume Q of the air passing through the outside air filter (27) by the air volume estimation unit (64), and the outside air side based on the estimated air volume Q. Detects clogged filter (27).
[0050] 風量推測部(64)には、外気側フィルタ(27)を通過する空気の風量 Qを推測するた めに、式 1に示すデータベース関数が記憶されてレ、る。  [0050] The air volume estimation unit (64) stores a database function shown in Equation 1 in order to estimate the air volume Q of the air passing through the outside air filter (27).
[0051] 式1 3&=】 0&,(3) +1:  [0051] Equation 1 3 & =] 0 &, (3) +1:
上記式 1におレ、て、 Xsaは供給空気(SA)の絶対湿度、 Xoaは室外空気(〇A)の絶 対湿度、 Qは外気側フィルタ(27)を通過する空気の風量、 Kはダクトによる圧力損失 や換気装置(10)を設置する室内空間の特性を考慮した補正値をそれぞれ表してい る。なお、外気側フィルタ(27)を通過する空気の風量 Qは、給気ファン (26)によって 室内へ供給される風量とほぼ一致すると考えて差し支えない。  Xsa is the absolute humidity of the supply air (SA), Xoa is the absolute humidity of the outdoor air (〇A), Q is the air volume of the air passing through the outside air filter (27), and K is It represents the correction value considering the pressure loss due to the duct and the characteristics of the indoor space where the ventilator (10) is installed. Note that the air volume Q of the air passing through the outside air filter (27) can be considered to be substantially the same as the air volume supplied to the room by the air supply fan (26).
[0052] 上記式 1のデータベース関数は、供給空気(SA)の絶対湿度 Xsaを、室外空気(〇A )の絶対湿度 Xoaと、外気側フィルタ(27)を通過する空気の風量 Qとの関数として表 現したものである。この式 1のデータベース関数は、換気装置(10)の設計時に式 2の データベース関数を作成し、換気装置(10)を設置する際に Kの値を決定したもので ある。 [0052] The database function of Equation 1 above is a function of the absolute humidity Xsa of the supply air (SA), the absolute humidity Xoa of the outdoor air (〇A), and the air volume Q of the air passing through the outdoor air filter (27). It is expressed as The database function of Equation 1 was created by creating the database function of Equation 2 when designing the ventilator ( 10 ), and determining the value of K when installing the ventilator ( 10 ).
[0053] 式2 : 3&=】 0&,(3)  [0053] Equation 2: 3 & =] 0 &, (3)
式 2のデータベース関数は、外気側フィルタ(27)の初期状態 (汚れが付着してレ、な い状態)において、圧縮機 (53)の運転周波数と電動膨張弁 (55)の開度とを一定に 保持した状態で、給気ファン (26)の風量や外気吸込口(23)から取り込まれる室外空 気(OA)の状態を変化させながら、内気吸込口(24)から吹き出される供給空気(SA) の状態を計測することにより作成している。その際、室外空気(〇A)の絶対湿度 Xoa は、風量推測部(64)が外気温度センサ(65a)及び外気湿度センサ(65b)の検出値か ら計算している。供給空気(SA)の絶対湿度 Xsaは、風量推測部(64)が給気温度セン サ(66a)及び給気湿度センサ(66b)の検出値から計算してレ、る。  The database function of Equation 2 shows the operating frequency of the compressor (53) and the opening of the electric expansion valve (55) in the initial state of the outside air filter (27) (the state where there is no dirt attached). Supply air blown out from the inside air inlet (24) while changing the air volume of the air supply fan (26) and the state of the outdoor air (OA) taken in from the outside air inlet (23) while being held constant It is created by measuring the state of (SA). At that time, the absolute humidity Xoa of the outdoor air (OA) is calculated by the air volume estimation unit (64) from the detected values of the outdoor temperature sensor (65a) and the outdoor air humidity sensor (65b). The absolute humidity Xsa of the supply air (SA) is calculated by the air volume estimation unit (64) from the detection values of the supply air temperature sensor (66a) and supply air humidity sensor (66b).
[0054] ところで、外気側フィルタ(27)を通過する空気の風量 Q (すなわち吸着熱交換器 (5 1,52)を通過する空気の風量)が変化すると、吸着熱交換器 (51,52)を通過する空気 の湿度変化量が変化する。具体的に、除湿の場合は、風量 Qが減少すると、吸着熱 交換器 (51,52)における冷媒の吸熱量が減少する。そして、風量 Qが減少しない状 態に比べると、除湿される空気の温度が高くなつて相対湿度が低下するので、吸着 剤に吸着される水分の量が減少する。加湿の場合は、風量 Qが減少すると、吸着熱 交換器 (51,52)における冷媒の放熱量が減少する。そして、風量 Qが減少しない状 態に比べると、加湿される空気の温度が低くなつて相対湿度が上昇するので、吸着 剤が奪われる水分の量が減少する。この式 2のデータベース関数は、外気側フィルタ (27)を通過する空気の風量 Qと吸着熱交換器(51,52)を通過する空気の湿度変化 量との関係を表している。 [0054] When the air volume Q passing through the outside air filter (27) (that is, the air volume passing through the adsorption heat exchanger (51, 52)) changes, the adsorption heat exchanger (51, 52). The amount of humidity change in the air passing through changes. Specifically, in the case of dehumidification, if the air volume Q decreases, the heat of adsorption The amount of heat absorbed by the refrigerant in the exchanger (51, 52) decreases. Compared with a state where the air volume Q does not decrease, the temperature of the air to be dehumidified increases and the relative humidity decreases, so the amount of moisture adsorbed by the adsorbent decreases. In the case of humidification, if the air volume Q decreases, the amount of heat released from the refrigerant in the adsorption heat exchanger (51, 52) decreases. Compared with the state where the air volume Q does not decrease, the relative humidity increases as the temperature of the humidified air decreases, so the amount of moisture taken away by the adsorbent decreases. The database function of Equation 2 represents the relationship between the air volume Q of the air passing through the outside air filter (27) and the humidity change amount of the air passing through the adsorption heat exchanger (51, 52).
[0055] また、換気装置(10)を設置する際のダ外の長さや形状は、設置場所ごとに異なり、 ダ外の圧力損失も設置場所ごとに異なる。このため、給気ファン (26)の設定ファンタ ップが同じ設定状態でも、給気ファン (26)の風量は、設置場所ごとに異なる。また、こ の換気装置(10)では、室内から取り込む室内空気(RA)の温度及び湿度によって室 内への供給空気(SA)の温度又は湿度が変化する。具体的に、換気装置(10)が室 内から取り込む室内空気(RA)の温度又は湿度が変化すると、吸着熱交換器 (51,52) での冷媒の吸熱量や吸着剤の水分の吸着量が変化し、それに応じて換気装置(10) の運転状態も変化するので、室内への供給空気(SA)の温度又は湿度が変化する。 このため、ダ外による圧力損失と換気装置(10)を設置する室内空間の特性とを考慮 した Kを定め、これらの影響を排除している。  [0055] Further, the length and shape of the outside of the duct when the ventilation device (10) is installed are different for each installation place, and the pressure loss outside the duct is also different for each installation place. For this reason, even if the setting fan tap of the air supply fan (26) is the same, the air volume of the air supply fan (26) varies depending on the installation location. In this ventilation device (10), the temperature or humidity of the supply air (SA) to the room changes depending on the temperature and humidity of the room air (RA) taken from the room. Specifically, when the temperature or humidity of the indoor air (RA) taken in from the room by the ventilator (10) changes, the heat absorption amount of the refrigerant and the amount of moisture adsorbed by the adsorbent in the adsorption heat exchanger (51, 52). Changes, and the operating state of the ventilator (10) changes accordingly, so that the temperature or humidity of the supply air (SA) to the room changes. For this reason, K has been determined in consideration of the pressure loss due to outside and the characteristics of the indoor space where the ventilator (10) is installed to eliminate these effects.
[0056] 式 1のデータベース関数は、換気装置(10)の設置状態における外気側フィルタ(27 )を通過する空気の風量 Qと吸着熱交換器 (51,52)を通過する空気の湿度変化量と の関係を表している。この式 1のデータベース関数によれば、室外空気(OA)の絶対 湿度 Xoa及び供給空気(SA)の絶対湿度 Xsaから外気側フィルタ(27)を通過する空 気の風量 Qを推測することができる。  [0056] The database function of Equation 1 is the air volume Q of the air passing through the outside air filter (27) in the installed state of the ventilation device (10) and the humidity change amount of the air passing through the adsorption heat exchanger (51, 52). Represents the relationship between and. According to the database function of Equation 1, the air volume Q of the air passing through the outside air filter (27) can be estimated from the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA). .
[0057] 風量推測部(64)は、給気ファン (26)の設定ファンタップを例えば「中」に設定して、 式 1を用いて初期状態の外気側フィルタ(27)を通過する空気の風量 Q(0)を推測する 。風量 Q(0)は、フィルタ状態検出部(63)に記憶される。  [0057] The air flow estimation unit (64) sets the setting fan tap of the air supply fan (26) to, for example, "medium", and uses Equation 1 to determine the amount of air passing through the outside air filter (27) in the initial state. Estimate air volume Q (0). The air volume Q (0) is stored in the filter state detection unit (63).
[0058] フィルタ状態検出部(63)は、毎日所定の時刻になるとフィルタ状態検出運転を行う 。フィルタ状態検出運転では、風量推測部(64)が外気側フィルタ(27)を通過する空 気の風量 Qを推測する。フィルタ状態検出部(63)は、フィルタ状態検出運転中に風 量推測部(64)が推測した風量 Qを上記風量 Q(0)と比較して外気側フィルタ (27)の目 詰まりの状態を検出する。そして、外気側フィルタ(27)を交換する必要がある場合に は、「フィルタ交換サイン」を表示する。フィルタ状態検出部(63)の動作についての詳 細は後述する。 The filter state detection unit (63) performs a filter state detection operation at a predetermined time every day. In the filter state detection operation, the air volume estimation unit (64) is empty through the outside air filter (27). Estimate the air volume Q. The filter state detection unit (63) compares the air volume Q estimated by the air volume estimation unit (64) during the filter state detection operation with the above air volume Q (0) to check the clogged state of the outside air filter (27). To detect. When the outside air filter (27) needs to be replaced, a “filter replacement sign” is displayed. Details of the operation of the filter state detector (63) will be described later.
[0059] 一運転動作一  [0059] One driving action
本実施形態の換気装置(10)では、室内の換気と共に室内の湿度調節も行う。つま り、この換気装置(10)は、室内の換気の際に除湿運転又は加湿運転を行うものであ る。除湿運転中や加湿運転中の換気装置(10)は、取り込んだ室外空気(OA)を湿度 調節してから供給空気(SA)として室内へ供給すると同時に、取り込んだ室内空気(R A)を排出空気 (EA)として室外へ排出する。  In the ventilation device (10) of the present embodiment, indoor humidity adjustment is performed together with indoor ventilation. In other words, the ventilator (10) performs a dehumidifying operation or a humidifying operation during indoor ventilation. During the dehumidifying or humidifying operation, the ventilation device (10) adjusts the humidity of the taken outdoor air (OA) and supplies it to the room as supply air (SA). At the same time, the ventilated air (RA) is discharged into the room. Discharge outside as (EA).
[0060] 〈除湿運転〉  [0060] <Dehumidifying operation>
除湿運転中の換気装置(10)では、後述する第 1動作と第 2動作が所定の時間間隔 (例えば 3分間隔)で交互に繰り返される。  In the ventilator (10) during the dehumidifying operation, a first operation and a second operation described later are alternately repeated at a predetermined time interval (for example, every 3 minutes).
[0061] まず、除湿運転の第 1動作について説明する。図 5に示すように、この第 1動作中に は、第 2ダンパ(42)、第 3ダンパ (43)、第 5ダンパ (45)、及び第 8ダンパ(48)だけが開 状態となり、残りのダンパ(41,44,46,47)が閉状態となる。そして、この状態で換気装 置(10)の給気ファン (26)及び排気ファン (25)が運転される。給気ファン (26)を運転 すると、室外空気が外気吸込口(23)からケーシング(11)内へ第 1空気として取り込ま れる。排気ファン (25)を運転すると、室内空気が内気吸込口(24)からケーシング(11 )内へ第 2空気として取り込まれる。  [0061] First, the first operation of the dehumidifying operation will be described. As shown in FIG. 5, during the first operation, only the second damper (42), the third damper (43), the fifth damper (45), and the eighth damper (48) are opened, and the rest. The dampers (41, 44, 46, 47) are closed. In this state, the air supply fan (26) and the exhaust fan (25) of the ventilation device (10) are operated. When the air supply fan (26) is operated, outdoor air is taken as first air from the outside air inlet (23) into the casing (11). When the exhaust fan (25) is operated, room air is taken as second air from the inside air inlet (24) into the casing (11).
[0062] この第 1動作中の冷媒回路(50)では、図 3(A)に示すように、四方切換弁(54)が第 1状態に設定される。この状態の冷媒回路 (50)では、冷媒が循環して冷凍サイクル が行われる。その際、冷媒回路 (50)では、圧縮機 (53)から吐出された冷媒が第 1吸 着熱交換器 (51)、電動膨張弁 (55)、第 2吸着熱交換器 (52)の順に通過し、第 1吸着 熱交換器 (51)が凝縮器となって第 2吸着熱交換器 (52)が蒸発器となる。  In the refrigerant circuit (50) during the first operation, as shown in FIG. 3 (A), the four-way switching valve (54) is set to the first state. In the refrigerant circuit (50) in this state, the refrigerant circulates to perform a refrigeration cycle. At that time, in the refrigerant circuit (50), the refrigerant discharged from the compressor (53) flows in the order of the first adsorption heat exchanger (51), the electric expansion valve (55), and the second adsorption heat exchanger (52). The first adsorption heat exchanger (51) becomes a condenser and the second adsorption heat exchanger (52) becomes an evaporator.
[0063] 外気吸込口(23)から外気側流路(32)へ流入した第 1空気は、第 2ダンバ(42)を通 つて第 2熱交換器室 (38)へ流入し、その後に第 2吸着熱交換器 (52)を通過する。第 2吸着熱交換器 (52)では、第 1空気中の水分が吸着剤に吸着され、その際に生じた 吸着熱が冷媒に吸熱される。第 2吸着熱交換器 (52)で除湿された第 1空気は、第 8 ダンパ (48)を通って給気側流路(33)へ流入し、給気ファン室(36)を通過後に給気 口(22)を通って室内へ供給される。 [0063] The first air that has flowed into the outside air flow path (32) from the outside air inlet (23) flows into the second heat exchanger chamber (38) through the second damper (42), and then the second air exchanger (38). 2 Pass through the adsorption heat exchanger (52). First In the two adsorption heat exchanger (52), the moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant. The first air dehumidified by the second adsorption heat exchanger (52) flows into the supply side flow path (33) through the eighth damper (48) and passes through the supply fan chamber (36) before being supplied. It is supplied into the room through the mouth (22).
[0064] 一方、内気吸込口(24)から内気側流路(34)へ流入した第 2空気は、第 3ダンバ(43 )を通って第 1熱交換器室 (37)へ流入し、その後に第 1吸着熱交換器 (51)を通過す る。第 1吸着熱交換器 (51)では、冷媒で加熱された吸着剤から水分が脱離し、この 脱離した水分が第 2空気に付与される。第 1吸着熱交換器 (51)で水分を付与された 第 2空気は、第 5ダンバ (45)を通って排気側流路 (31)へ流入し、排気ファン室 (35) を通過後に排気口(21)を通って室外へ排出される。  [0064] On the other hand, the second air that has flowed into the room air side channel (34) from the room air inlet (24) flows into the first heat exchanger chamber (37) through the third damper (43), and then Pass through the first adsorption heat exchanger (51). In the first adsorption heat exchanger (51), moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air. The second air, which has been given moisture by the first adsorption heat exchanger (51), flows into the exhaust side flow path (31) through the fifth damper (45), passes through the exhaust fan chamber (35), and is then exhausted. It is discharged out of the room through the mouth (21).
[0065] 除湿運転の第 2動作について説明する。図 6に示すように、この第 2動作中には、 第 1ダンパ (41)、第 4ダンパ(44)、第 6ダンバ (46)、及び第 7ダンパ (47)だけが開状 態となり、残りのダンパ (42,43,45,48)が閉状態となる。  [0065] The second operation of the dehumidifying operation will be described. As shown in FIG. 6, during the second operation, only the first damper (41), the fourth damper (44), the sixth damper (46), and the seventh damper (47) are in an open state. The remaining dampers (42, 43, 45, 48) are closed.
[0066] この第 2動作中の冷媒回路 (50)では、図 3(B)に示すように、四方切換弁(54)が第 2状態に設定される。この状態の冷媒回路 (50)では、冷媒が循環して冷凍サイクル が行われる。その際、冷媒回路 (50)では、圧縮機 (53)から吐出された冷媒が第 2吸 着熱交換器 (52)、電動膨張弁 (55)、第 1吸着熱交換器 (51)の順に通過し、第 1吸着 熱交換器 (51)が蒸発器となって第 2吸着熱交換器 (52)が凝縮器となる。  In the refrigerant circuit (50) in the second operation, as shown in FIG. 3 (B), the four-way switching valve (54) is set to the second state. In the refrigerant circuit (50) in this state, the refrigerant circulates to perform a refrigeration cycle. At that time, in the refrigerant circuit (50), the refrigerant discharged from the compressor (53) flows in the order of the second adsorption heat exchanger (52), the electric expansion valve (55), and the first adsorption heat exchanger (51). The first adsorption heat exchanger (51) becomes an evaporator and the second adsorption heat exchanger (52) becomes a condenser.
[0067] 外気吸込口(23)から外気側流路(32)へ流入した第 1空気は、第 1ダンパ(41)を通 つて第 1熱交換器室 (37)へ流入し、その後に第 1吸着熱交換器 (51)を通過する。第 1吸着熱交換器 (51)では、第 1空気中の水分が吸着剤に吸着され、その際に生じた 吸着熱が冷媒に吸熱される。第 1吸着熱交換器 (51)で除湿された第 1空気は、第 7 ダンパ (47)を通って給気側流路(33)へ流入し、給気ファン室(36)を通過後に給気 口(22)を通って室内へ供給される。  [0067] The first air that has flowed into the outside air flow path (32) from the outside air inlet (23) flows into the first heat exchanger chamber (37) through the first damper (41), and then the first air 1 Pass through the adsorption heat exchanger (51). In the first adsorption heat exchanger (51), moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant. The first air dehumidified by the first adsorption heat exchanger (51) flows through the seventh damper (47) into the supply air flow path (33) and passes through the supply air fan chamber (36) before being supplied. It is supplied into the room through the mouth (22).
[0068] 一方、内気吸込口(24)から内気側流路(34)へ流入した第 2空気は、第 4ダンバ(44 )を通って第 2熱交換器室 (38)へ流入し、その後に第 2吸着熱交換器 (52)を通過す る。第 2吸着熱交換器 (52)では、冷媒で加熱された吸着剤から水分が脱離し、この 脱離した水分が第 2空気に付与される。第 2吸着熱交換器 (52)で水分を付与された 第 2空気は、第 6ダンパ(46)を通って排気側流路(31)へ流入し、排気ファン室(35) を通過後に排気口(21)を通って室外へ排出される。 [0068] On the other hand, the second air that has flowed into the room air side channel (34) from the room air inlet (24) flows into the second heat exchanger chamber (38) through the fourth damper (44), and then Pass through the second adsorption heat exchanger (52). In the second adsorption heat exchanger (52), moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air. Moisture was given by the second adsorption heat exchanger (52) The second air flows into the exhaust side flow path (31) through the sixth damper (46), passes through the exhaust fan chamber (35), and is discharged to the outside through the exhaust port (21).
[0069] 〈加湿運転〉  [0069] <Humidification operation>
加湿運転中の換気装置(10)では、後述する第 1動作と第 2動作が所定の時間間隔 (例えば 3分間隔)で交互に繰り返される。  In the ventilation device (10) during the humidification operation, a first operation and a second operation described later are alternately repeated at a predetermined time interval (for example, every 3 minutes).
[0070] まず、加湿運転の第 1動作について説明する。図 7に示すように、この第 1動作中に は、第 1ダンバ(41)、第 4ダンバ (44)、第 6ダンパ (46)、及び第 7ダンバ(47)だけが開 状態となり、残りのダンパ(42,43,45,48)が閉状態となる。そして、この状態で換気装 置(10)の給気ファン (26)及び排気ファン (25)が運転される。給気ファン (26)を運転 すると、室外空気が外気吸込口(23)からケーシング(11)内へ第 1空気として取り込ま れる。排気ファン (25)を運転すると、室内空気が内気吸込口(24)からケーシング(11 )内へ第 2空気として取り込まれる。  [0070] First, the first operation of the humidifying operation will be described. As shown in FIG. 7, during the first operation, only the first damper (41), the fourth damper (44), the sixth damper (46), and the seventh damper (47) are in the open state, and the rest. The dampers (42, 43, 45, 48) are closed. In this state, the air supply fan (26) and the exhaust fan (25) of the ventilation device (10) are operated. When the air supply fan (26) is operated, outdoor air is taken as first air from the outside air inlet (23) into the casing (11). When the exhaust fan (25) is operated, room air is taken as second air from the inside air inlet (24) into the casing (11).
[0071] この第 1動作中の冷媒回路 (50)では、図 3(A)に示すように、四方切換弁(54)が第 1状態に設定される。そして、この冷媒回路 (50)では、除湿運転の第 1動作中と同様 に、第 1吸着熱交換器 (51)が凝縮器となって第 2吸着熱交換器 (52)が蒸発器となる  In the refrigerant circuit (50) during the first operation, as shown in FIG. 3 (A), the four-way selector valve (54) is set to the first state. In the refrigerant circuit (50), as in the first operation of the dehumidifying operation, the first adsorption heat exchanger (51) becomes a condenser and the second adsorption heat exchanger (52) becomes an evaporator.
[0072] 内気吸込口(24)から内気側流路(34)へ流入した第 1空気は、第 4ダンパ(44)を通 つて第 2熱交換器室 (38)へ流入し、その後に第 2吸着熱交換器 (52)を通過する。第 2吸着熱交換器 (52)では、第 1空気中の水分が吸着剤に吸着され、その際に生じた 吸着熱が冷媒に吸熱される。第 2吸着熱交換器 (52)で水分を奪われた第 1空気は、 第 6ダンパ (46)を通って排気側流路(31)へ流入し、排気ファン室(35)を通過後に排 気口(21)を通って室外へ排出される。 [0072] The first air that has flowed into the room air side flow path (34) from the room air inlet (24) flows into the second heat exchanger chamber (38) through the fourth damper (44), and thereafter 2 Pass through the adsorption heat exchanger (52). In the second adsorption heat exchanger (52), the moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant. The first air deprived of moisture by the second adsorption heat exchanger (52) flows into the exhaust side flow path (31) through the sixth damper (46), and is exhausted after passing through the exhaust fan chamber (35). It is discharged out of the room through the mouth (21).
[0073] 一方、外気吸込口(23)から外気側流路(32)へ流入した第 2空気は、第 1ダンバ(41 )を通って第 1熱交換器室 (37)へ流入し、その後に第 1吸着熱交換器 (51)を通過す る。第 1吸着熱交換器 (51)では、冷媒で加熱された吸着剤から水分が脱離し、この 脱離した水分が第 2空気に付与される。第 1吸着熱交換器 (51)で加湿された第 2空 気は、第 7ダンバ(47)を通って給気側流路(33)へ流入し、給気ファン室(36)を通過 後に給気口(22)を通って室内へ供給される。 [0074] 加湿運転の第 2動作について説明する。図 8に示すように、この第 2動作中には、 第 2ダンパ (42)、第 3ダンパ(43)、第 5ダンパ (45)、及び第 8ダンパ (48)だけが開状 態となり、残りのダンパ (41,44,46,47)が閉状態となる。 [0073] On the other hand, the second air that has flowed into the outside air flow path (32) from the outside air inlet (23) flows into the first heat exchanger chamber (37) through the first damper (41), and then Pass through the first adsorption heat exchanger (51). In the first adsorption heat exchanger (51), moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air. The second air humidified by the first adsorption heat exchanger (51) flows into the supply side flow path (33) through the seventh damper (47) and passes through the supply fan chamber (36). It is supplied into the room through the air supply port (22). [0074] The second operation of the humidifying operation will be described. As shown in FIG. 8, during the second operation, only the second damper (42), the third damper (43), the fifth damper (45), and the eighth damper (48) are in the open state. The remaining dampers (41, 44, 46, 47) are closed.
[0075] この第 2動作中の冷媒回路(50)では、図 3(B)に示すように、四方切換弁(54)が第 2状態に設定される。そして、この冷媒回路 (50)では、除湿運転の第 2動作中と同様 に、第 1吸着熱交換器 (51)が蒸発器となって第 2吸着熱交換器 (52)が凝縮器となる  In the refrigerant circuit (50) during the second operation, as shown in FIG. 3 (B), the four-way switching valve (54) is set to the second state. In this refrigerant circuit (50), as in the second operation of the dehumidifying operation, the first adsorption heat exchanger (51) serves as an evaporator and the second adsorption heat exchanger (52) serves as a condenser.
[0076] 内気吸込口(24)から内気側流路(34)へ流入した第 1空気は、第 3ダンバ(43)を通 つて第 1熱交換器室 (37)へ流入し、その後に第 1吸着熱交換器 (51)を通過する。第 1吸着熱交換器 (51)では、第 1空気中の水分が吸着剤に吸着され、その際に生じた 吸着熱が冷媒に吸熱される。第 1吸着熱交換器 (51)で水分を奪われた第 1空気は、 第 5ダンパ (45)を通って排気側流路 (31)へ流入し、排気ファン室 (35)を通過後に排 気口(21)を通って室外へ排出される。 [0076] The first air that has flowed into the room air side channel (34) from the room air inlet (24) flows into the first heat exchanger chamber (37) through the third damper (43), and then 1 Pass through the adsorption heat exchanger (51). In the first adsorption heat exchanger (51), moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant. The first air deprived of moisture in the first adsorption heat exchanger (51) flows into the exhaust side flow path (31) through the fifth damper (45), and is exhausted after passing through the exhaust fan chamber (35). It is discharged out of the room through the mouth (21).
[0077] 一方、外気吸込口(23)から外気側流路(32)へ流入した第 2空気は、第 2ダンパ(42 )を通って第 2熱交換器室 (38)へ流入し、その後に第 2吸着熱交換器 (52)を通過す る。第 2吸着熱交換器 (52)では、冷媒で加熱された吸着剤から水分が脱離し、この 脱離した水分が第 2空気に付与される。第 2吸着熱交換器 (52)で加湿された第 2空 気は、第 8ダンパ(48)を通って給気側流路(33)へ流入し、給気ファン室(36)を通過 後に給気口(22)を通って室内へ供給される。  On the other hand, the second air that has flowed into the outside air flow path (32) from the outside air inlet (23) flows into the second heat exchanger chamber (38) through the second damper (42), and then Pass through the second adsorption heat exchanger (52). In the second adsorption heat exchanger (52), moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air. The second air humidified by the second adsorption heat exchanger (52) passes through the eighth damper (48), flows into the supply air flow path (33), and passes through the supply air fan chamber (36). It is supplied into the room through the air supply port (22).
[0078] く制御部の動作〉  <Operation of control unit>
制御部(60)の動作について説明する。  The operation of the control unit (60) will be described.
[0079] 制御部(60)は、換気装置(10)に室内の換気を 1日中行わせるように構成されてい る。制御部(60)は、通常運転で換気装置(10)に室内の換気を行わせ、夜間の所定 の時刻(例えば午前 0時)になると換気装置(10)を通常運転からフィルタ状態検出運 転に切り換えて室内の換気を行レ、つつ外気側フィルタ(27)の目詰まりの状態を検出 する。そして、制御部(60)は、フィルタ状態検出運転が終了すると、換気装置(10)を フィルタ状態検出運転から通常運転に再び戻す。  [0079] The control unit (60) is configured to cause the ventilation device (10) to ventilate the room all day. The control unit (60) causes the ventilator (10) to ventilate the room in normal operation, and when the predetermined time of night (for example, midnight) is reached, the ventilator (10) is moved from normal operation to the filter state detection operation. Switch to, and detect the clogged condition of the outside air filter (27) while ventilating the room. And a control part (60) will return a ventilation apparatus (10) to normal operation again from filter state detection operation, after filter state detection driving | operation is complete | finished.
[0080] 換気装置(10)の通常運転について説明する。通常運転では、室内の換気を行い つつユーザーが希望する室内湿度になるように制御部(60)が換気装置(10)の運転 状態を制御する。 [0080] Normal operation of the ventilator (10) will be described. In normal operation, ventilate the room. On the other hand, the control unit (60) controls the operation state of the ventilation device (10) so that the indoor humidity desired by the user is obtained.
[0081] 具体的に、制御部(60)の調湿制御部(62)は、演算部で目標温度及び目標湿度か らその温度と湿度における絶対湿度を算出し、その算出した絶対湿度を目標絶対湿 度に設定する。また、演算部は、外気温度センサ(65a)及び外気湿度センサ(65b)の 検出値から室外空気(OA)の絶対湿度を算出する。さらに、演算部は、内気温度セン サ(67a)及び内気湿度センサ(67b)の検出値から室内空気(RA)の絶対湿度を算出 する。さらに、演算部は、給気温度センサ(66a)及び給気湿度センサ(66b)の検出値 力 供給空気(SA)の絶対湿度を算出する。  [0081] Specifically, the humidity control unit (62) of the control unit (60) calculates the absolute humidity at the temperature and humidity from the target temperature and target humidity in the calculation unit, and the calculated absolute humidity is set as the target. Set to absolute humidity. The computing unit also calculates the absolute humidity of the outdoor air (OA) from the detection values of the outdoor temperature sensor (65a) and the outdoor air humidity sensor (65b). Further, the calculation unit calculates the absolute humidity of the room air (RA) from the detected values of the room temperature sensor (67a) and the room temperature humidity sensor (67b). Further, the calculation unit calculates the detected humidity of the supply air temperature sensor (66a) and the supply air humidity sensor (66b), and the absolute humidity of the supply air (SA).
[0082] 調湿制御部(62)は、室外空気(OA)、室内空気(RA)及び供給空気(SA)の絶対湿 度と上記目標絶対湿度とに基づレ、て、室内の絶対湿度が目標絶対湿度に近づくよう に冷媒回路(50)の冷凍サイクルの状態を制御する。この冷媒回路(50)の冷凍サイク ルの状態の制御は、例えば圧縮機 (53)の運転周波数や電動膨張弁(55)の開度を 変更して冷媒循環量を変化させることによって行われる。  [0082] The humidity control unit (62) determines the absolute humidity of the room based on the absolute humidity of the outdoor air (OA), the indoor air (RA) and the supply air (SA) and the target absolute humidity. The refrigeration cycle state of the refrigerant circuit (50) is controlled so that is close to the target absolute humidity. Control of the state of the refrigeration cycle of the refrigerant circuit (50) is performed by changing the refrigerant circulation amount by changing the operating frequency of the compressor (53) and the opening of the electric expansion valve (55), for example.
[0083] 換気装置(10)のフィルタ状態検出運転について、図 9のフロー図を参照しながら説 明する。フィルタ状態検出運転では、調湿制御部(62)が冷媒回路 (50)の冷凍サイク ルの状態を一定の状態に保持し、給気ファン (26)の設定ファンタップを風量 Q(0)を 推測した時と同じ状態に設定する。圧縮機 (53)の運転周波数と電動膨張弁 (55)の 開度とは、式 1及び式 2を作成するための試験時と同じ状態に設定される。これにより 、冷媒回路 (50)の冷凍サイクルの状態は、式 1及び式 2を作成した時と概ね同じ状態 になる。  [0083] The filter state detection operation of the ventilation device (10) will be described with reference to the flowchart of FIG. In the filter state detection operation, the humidity control section (62) maintains the refrigeration cycle state of the refrigerant circuit (50) at a constant state, and the set fan tap of the air supply fan (26) Set to the same state as when guessed. The operating frequency of the compressor (53) and the opening of the electric expansion valve (55) are set to the same state as in the test for creating Equation 1 and Equation 2. As a result, the state of the refrigeration cycle of the refrigerant circuit (50) is substantially the same as when Formula 1 and Formula 2 were created.
[0084] まずステップ ST1で、フィルタ状態検出部(63)の風量推測部(64)は、外気温度セン サ(65a)及び外気湿度センサ(65b)の検出値と給気温度センサ(66a)及び給気湿度 センサ(66b)の検出値とを受信し、室外空気(OA)の絶対湿度 Xoa及び給気空気(SA )の絶対湿度 Xsaを計算する。ステップ ST1が終了するとステップ ST2に移行する。  [0084] First, in step ST1, the air volume estimation unit (64) of the filter state detection unit (63) performs detection values of the outside air temperature sensor (65a) and the outside air humidity sensor (65b), the supply air temperature sensor (66a), and Supply air humidity The sensor (66b) detection value is received, and the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA) are calculated. When step ST1 ends, the process proceeds to step ST2.
[0085] ステップ ST2では、風量推測部(64)が、室外空気(〇A)の絶対湿度 Xoa及び給気空 気(SA)の絶対湿度 Xsaから上記式 1を用いて外気側フィルタ(27)を通過する空気の 風量 Qを推測する。ステップ ST2が終了するとステップ ST3に移行する。 [0086] ステップ ST3では、フィルタ状態検出部(63)は、推測した風量 Qを外気側フィルタ(2 7)の初期状態の風量 Q(0)と比較する。そして、フィルタ状態検出部(63)は、式 3の条 件が成立するとステップ ST4に移行して「フィルタ交換サイン」を表示する。 Lは予め設 定された定数を表してレ、る。ステップ ST3で式 3の条件が成立しなレ、場合とステップ ST 4が終了した場合は、フィルタ状態検出部(63)は、フィルタ状態検出運転を終了させ て通常運転への切換を行う。 [0085] In step ST2, the air flow estimation unit (64) uses the above-described equation 1 to calculate the outdoor air filter (27) from the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA). Estimate the air volume Q of the air passing through. When step ST2 ends, the process proceeds to step ST3. [0086] In step ST3, the filter state detector (63) compares the estimated air volume Q with the initial air volume Q (0) of the outside air filter (27). Then, when the condition of Equation 3 is satisfied, the filter state detection unit (63) proceeds to step ST4 and displays “filter replacement sign”. L represents a preset constant. When the condition of Equation 3 is not satisfied at step ST3 and when step ST4 is completed, the filter state detection unit (63) ends the filter state detection operation and switches to the normal operation.
[0087] 式 3 : Q≤Q(0) X L  [0087] Equation 3: Q≤Q (0) X L
フィルタ状態検出部(63)は、毎日所定の時刻になるとフィルタ状態検出運転を行う 。そして、式 3の条件が成立する場合に「フィルタ交換サイン」を表示する。例えば L = 0.9の場合は、フィルタ状態検出運転で検出される外気側フィルタ(27)を通過する空 気の風量 Qが、外気側フィルタ(27)の初期状態における風量 Q(0)の 90%以下まで低 下すると「フィルタ交換サイン」が表示される。  The filter state detection unit (63) performs a filter state detection operation at a predetermined time every day. When the condition of Equation 3 is satisfied, a “filter replacement sign” is displayed. For example, when L = 0.9, the air volume Q of the air passing through the outside air filter (27) detected in the filter state detection operation is 90% of the air volume Q (0) in the initial state of the outside air filter (27). When it drops to below, “Filter replacement sign” is displayed.
[0088] 一実施形態の効果  [0088] Effects of one embodiment
上記実施形態では、冷媒回路 (50)の冷凍サイクルの状態を考慮することなく外気 側フィルタ(27)の目詰まりの状態が検出されるように、フィルタ状態検出運転を行うよ うにしている。フィルタ状態検出運転において冷媒回路(50)の冷凍サイクルの状態を 一定に保持することで、冷媒回路 (50)の冷凍サイクルの状態に影響を与える圧縮機 (53)の運転周波数や電動膨張弁 (55)の開度を含まないデータベース関数によって 、外気側フィルタ(27)を通過する空気の風量 Qを推測することができ、その風量 Qか ら外気側フィルタ(27)の目詰まりの状態を検出することができる。つまり、室外から室 内へ供給される空気の状態として室外空気(OA)の絶対湿度及び給気空気(SA)の 絶対湿度の変化のみを考慮して外気側フィルタ(27)の目詰まりの状態を検出するこ とができる。従って、外気側フィルタ(27)の目詰まりの状態の検出が簡単になり誤差 が生じにくくなるので、外気側フィルタ(27)の目詰まりの状態の検出精度を向上させ ること力 Sできる。  In the above embodiment, the filter state detection operation is performed so that the clogged state of the outside air filter (27) is detected without considering the state of the refrigeration cycle of the refrigerant circuit (50). By maintaining the refrigeration cycle state of the refrigerant circuit (50) constant in the filter state detection operation, the operating frequency of the compressor (53) and the electric expansion valve ( The air volume Q of the air passing through the outside air filter (27) can be estimated by the database function that does not include the opening of 55), and the clogged state of the outside air filter (27) is detected from the air volume Q can do. In other words, the outdoor air filter (27) is clogged considering only the changes in the absolute humidity of the outdoor air (OA) and the absolute humidity of the supply air (SA) as the state of the air supplied from outside to the room. Can be detected. Accordingly, since the detection of the clogging state of the outside air filter (27) is simplified and errors are less likely to occur, the detection accuracy of the clogging state of the outside air filter (27) can be improved.
[0089] また、上記実施形態では、フィルタ状態検出運転の実行中以外は、通常運転で室 内の換気と共に室内の湿度調節が行われる。従って、夜中など在室者がいない時間 帯にフィルタ状態検出運転を行うようにすれば、その時間帯は室内の湿度調節を行う 必要がないので、外気側フィルタ(27)の目詰まりの状態の検出を在室者の快適性を 損なうことなく行うことができる。 In the above-described embodiment, the indoor humidity is adjusted together with the indoor ventilation in the normal operation except during the execution of the filter state detection operation. Therefore, if the filter state detection operation is performed during the night when there is no occupant, the humidity inside the room is adjusted during that time. Since it is not necessary, it is possible to detect the clogged state of the outside air filter (27) without impairing the comfort of the occupants.
[0090] 一実施形態の変形例 1 [0090] Modification 1 of Embodiment
実施形態の変形例 1について説明する。この変形例 1では、風量推測部(64)が室 外空気(〇A)の温度及び供給空気(SA)の温度から外気側フィルタ(27)を通過する 空気の風量 Qを推測してレ、る。  A first modification of the embodiment will be described. In this modified example 1, the air volume estimation unit (64) estimates the air volume Q of the air passing through the outside air filter (27) from the temperature of the outdoor air (OA) and the temperature of the supply air (SA). The
[0091] 具体的に、風量推測部(64)には、式 4に示すデータベース関数が記憶されている[0091] Specifically, the database function shown in Expression 4 is stored in the air volume estimation unit (64).
。この式 4のデータベース関数は、上記実施形態と同様に、換気装置(10)の設計時 にデータベース関数「Tsa =J (Toa,Q)」を作成し、換気装置(10)を設置する際に Kの 値を決定したものである。 . As in the above embodiment, the database function of Equation 4 is created when the ventilator (10) is created by creating the database function “ Tsa = J ( Toa , Q )” when designing the ventilator (10). The value of K is determined.
[0092] 式 4 : Tsa=J (Toa,Q) +K  [0092] Equation 4: Tsa = J (Toa, Q) + K
上記式 4におレ、て、 Tsaは供給空気(SA)の温度、 Toaは室外空気(〇A)の温度、 Q は外気側フィルタ(27)を通過する空気の風量、 Kはダクトによる圧力損失や換気装 置(10)を設置する室内空間の特性を考慮した補正値をそれぞれ表している。  In the above equation 4, Tsa is the temperature of the supply air (SA), Toa is the temperature of the outdoor air (〇A), Q is the air volume passing through the outside air filter (27), K is the pressure by the duct It shows the correction values considering the loss and the characteristics of the indoor space where the ventilation device (10) is installed.
[0093] ところで、外気側フィルタ(27)を通過する空気の風量 Q (すなわち吸着熱交換器 (5 1,52)を通過する空気の風量)が変化すると、吸着熱交換器 (51,52)を通過する空気 の温度変化量が変化する。具体的に、除湿の場合は、風量 Qが減少すると、吸着熱 交換器 (51,52)における冷媒の吸熱量が減少する。そして、風量 Qが減少しない状 態に比べると、除湿される空気の温度低下量が減少する。加湿の場合は、風量 Qが 減少すると、吸着熱交換器 (51,52)における冷媒の放熱量が減少する。そして、風量 Qが減少しない状態に比べると、加湿される空気の温度上昇量が減少する。  [0093] By the way, when the air volume Q of the air passing through the outside air filter (27) (that is, the air volume passing through the adsorption heat exchanger (5 1, 52)) changes, the adsorption heat exchanger (51, 52) The amount of change in the temperature of the air passing through changes. Specifically, in the case of dehumidification, when the air volume Q decreases, the heat absorption amount of the refrigerant in the adsorption heat exchanger (51, 52) decreases. And compared with the state where the air volume Q does not decrease, the temperature drop of the dehumidified air decreases. In the case of humidification, if the air volume Q decreases, the amount of heat released from the refrigerant in the adsorption heat exchanger (51, 52) decreases. And compared with the state where the air volume Q does not decrease, the temperature rise of the humidified air decreases.
[0094] この式 4のデータベース関数は、換気装置(10)の設置状態における外気側フィノレ タ(27)を通過する空気の風量 Qと吸着熱交換器 (51,52)を通過する空気の温度変化 量との関係を表している。この式 4によれば、室外空気(〇A)の温度 Toa及び供給空 気(SA)の温度 Tsaから外気側フィルタ(27)を通過する空気の風量 Qが推測される。  [0094] The database function of Equation 4 shows the air volume Q of the air passing through the outdoor-side finolator (27) and the temperature of the air passing through the adsorption heat exchanger (51, 52) when the ventilation device (10) is installed. It represents the relationship with the amount of change. According to Equation 4, the air volume Q of the air passing through the outside air filter (27) is estimated from the temperature Toa of the outdoor air (OA) and the temperature Tsa of the supply air (SA).
[0095] 一実施形態の変形例 2—  [0095] Modification 2 of Embodiment 2
実施形態の変形例 2について説明する。この変形例 2では、風量推測部(64)は設 けられておらず、「室外空気(OA)の絶対湿度 Xoaと供給空気(SA)の絶対湿度 Xsaと の差」に基づいて外気側フィルタ(27)の目詰まりの状態を検出する。 A second modification of the embodiment will be described. In this modified example 2, the air volume estimation unit (64) is not provided, and “the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA) The clogging state of the outside air filter (27) is detected on the basis of “the difference”.
[0096] 具体的に、フィルタ状態検出部(63)には、外気側フィルタ(27)の初期状態におけ る吸着熱交換器(51,52)を通過する空気の湿度変化量 (Xsa— Xoaの絶対値)がデー タベースとして記憶されている。このデータベースは、冷媒回路(50)の冷凍サイクル の状態を一定に保持して、給気ファン (26)の設定ファンタップを所定の設定状態 (例 えば「中」)に固定した状態で、室外空気(OA)の状態を変化させながら供給空気(SA )の状態を計測することにより作成している。その際、室外空気(〇A)の絶対湿度 Xoa と供給空気 (SA)の絶対湿度 Xsaとは、上記実施形態と同様に風量推測部(64)が計 算している。 [0096] Specifically, the filter state detector (63) includes the amount of change in humidity of the air passing through the adsorption heat exchanger (51, 52) in the initial state of the outside air filter (27) (Xsa—Xoa Is stored as a database. This database keeps the refrigeration cycle state of the refrigerant circuit (50) constant and the setting fan tap of the air supply fan (26) is fixed to a predetermined setting state (for example, “medium”). It is created by measuring the state of supply air (SA) while changing the state of air (OA). At that time, the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA) are calculated by the air volume estimation unit (64) as in the above embodiment.
[0097] 日々行うフィルタ状態検出運転の際は、冷媒回路 (50)の冷凍サイクルの状態と給 気ファン (26)の設定ファンタップとを上記データベース作成時と同じ状態に設定する 。外気側フィルタ(27)の目詰まりが進行すると、給気ファン (26)の設定ファンタップを 上記データベース作成時と同じ設定状態にしても、給気ファン (26)の風量 (すなわち 吸着熱交換器 (51,52)を通過する空気の風量)が低下するので、データベース作成 時に比べて吸着熱交換器 (51,52)を通過する空気の湿度変化量が小さくなる。  In the filter state detection operation performed every day, the state of the refrigeration cycle of the refrigerant circuit (50) and the set fan tap of the supply fan (26) are set to the same state as when the database was created. When the clogging of the outside air filter (27) progresses, even if the setting fan tap of the air supply fan (26) is set to the same setting as when creating the above database, the air volume of the air supply fan (26) (ie adsorption heat exchanger) (Air volume of air passing through (51,52)) decreases, so the amount of change in humidity of air passing through the adsorption heat exchanger (51,52) is smaller than when creating the database.
[0098] フィルタ状態検出部(63)は、フィルタ状態検出運転中に吸着熱交換器(51,52)を通 過する空気の湿度変化量が小さくなつて、外気側フィルタ(27)の初期状態の湿度変 化量との差が設定値を上回ると「フィルタ交換サイン」を表示する。  [0098] The filter state detector (63) detects the initial state of the outside air filter (27) when the humidity change amount of the air passing through the adsorption heat exchanger (51, 52) is reduced during the filter state detection operation. When the difference between the humidity change amount exceeds the set value, a “filter replacement sign” is displayed.
[0099] 一実施形態の変形例 3—  [0099] Modification 3 of Embodiment 1
実施形態の変形例 3について説明する。この変形例 3では、制御部(60)が、フィル タ状態検出運転中に給気ファン (26)の回転速度をそれぞれ異なる値に固定する第 1 検出動作と第 2検出動作とを換気装置(10)に行わせる。  A third modification of the embodiment will be described. In the third modification, the control unit (60) performs the first detection operation and the second detection operation in which the rotation speed of the air supply fan (26) is fixed to different values during the filter state detection operation. Let 10) do it.
[0100] 具体的に、フィルタ状態検出部(63)は、外気側フィルタ(27)の初期状態において、 冷媒回路 (50)の冷凍サイクルの状態を一定に保持して第 1検出動作と第 2検出動作 とを行う。第 1検出動作中は給気ファン (26)の回転速度を所定値 R1とし、風量推測 部(64)が式 1を用いて外気側フィルタ(27)を通過する空気の風量 Q 1(0)を推測する 。第 2検出動作中は給気ファン (26)の回転速度を所定値 R2とし、風量推測部(64)が 式 1を用いて外気側フィルタ(27)を通過する空気の風量 Q2(0)を推測する。なお、第 1検出動作中の給気ファン (26)の回転速度 Rlは、第 2検出動作中の給気ファン (26 )の回転速度 R2よりも大きな値に設定する。 [0100] Specifically, the filter state detector (63) maintains the refrigeration cycle state of the refrigerant circuit (50) constant in the initial state of the outside air filter (27), and performs the first detection operation and the second detection operation. Perform detection operation. During the first detection operation, the rotation speed of the air supply fan (26) is set to the predetermined value R1, and the air volume estimation unit (64) uses the equation 1 to calculate the air volume Q 1 (0) Guess. During the second detection operation, the rotational speed of the air supply fan (26) is set to the predetermined value R2, and the air volume estimation unit (64) uses Equation 1 to calculate the air volume Q2 (0) of the air passing through the outside air filter (27). Infer. The first The rotational speed Rl of the air supply fan (26) during the first detection operation is set to a value larger than the rotational speed R2 of the air supply fan (26) during the second detection operation.
[0101] 日々行うフィルタ状態検出運転では、フィルタ状態検出部(63)が第 1検出動作を行 レ、、給気ファン (26)の回転速度を所定値 R1として、風量推測部(64)が外気側フィノレ タ(27)を通過する空気の風量 Q1を推測する。フィルタ状態検出部(63)は引き続き 第 2検出動作を行い、給気ファン (26)の回転速度を所定値 R2として、風量推測部(6 4)が外気側フィルタ(27)を通過する空気の風量 Q2を推測する。フィルタ状態検出運 転では、冷媒回路(50)の冷凍サイクルの状態力 風量 Q1(0)と風量 Q2(0)とを推測し た時と同じ状態に保持される。  [0101] In the filter state detection operation performed every day, the filter state detection unit (63) performs the first detection operation, the rotation speed of the air supply fan (26) is set to a predetermined value R1, and the air volume estimation unit (64) Estimate the air volume Q1 of the air passing through the outside-side finolator (27). The filter state detection unit (63) continues to perform the second detection operation, setting the rotational speed of the air supply fan (26) to a predetermined value R2, and the air volume estimation unit (64) is configured to detect the air passing through the outside air filter (27). Estimate air volume Q2. In the filter state detection operation, the state force air volume Q1 (0) and air volume Q2 (0) of the refrigeration cycle of the refrigerant circuit (50) are maintained in the same state as estimated.
[0102] フィルタ状態検出部 (63)は、第 1検出動作中に風量推測部 (64)が推測した風量 Q 1と第 2検出動作中に風量推測部(64)が推測した風量 Q2との差に基づいて外気側 フィルタ(27)の目詰まりの状態を検出する。  [0102] The filter state detection unit (63) calculates the air volume Q 1 estimated by the air volume estimation unit (64) during the first detection operation and the air volume Q2 estimated by the air volume estimation unit (64) during the second detection operation. Based on the difference, the clogged state of the outside air filter (27) is detected.
[0103] 図 10は、外気側フィルタ(27)を通過する空気の風量 Qと、換気装置(10)内外の空 気抵抗 Pとの関係を表している。この図 10は、外気側フィルタ(27)の目詰まりの状態 が進行すると、上記空気抵抗 Pが増加して、外気側フィルタ(27)を通過する空気の風 量 Qが減少することを表している。そして、外気側フィルタ(27)の目詰まりが進行する と、給気ファン (26)の回転速度を上げても風量 Qはそれ程増えなくなり、第 1検出動 作中に風量推測部(64)が推測した風量 Q1と第 2検出動作中に風量推測部(64)が 推測した風量 Q2との差が小さくなる。  FIG. 10 shows the relationship between the air volume Q of the air passing through the outside air filter (27) and the air resistance P inside and outside the ventilator (10). FIG. 10 shows that as the clogging of the outside air filter (27) progresses, the air resistance P increases and the air volume Q of the air passing through the outside air filter (27) decreases. Yes. If the outside air filter (27) becomes clogged, the air volume Q will not increase that much even if the rotational speed of the air supply fan (26) is increased, and the air volume estimation unit (64) will not be able to operate during the first detection operation. The difference between the estimated air volume Q1 and the air volume Q2 estimated by the air volume estimation unit (64) during the second detection operation is reduced.
[0104] フィルタ状態検出部 (63)は、第 1検出動作と第 2検出動作との風量差が小さくなつ て、式 4の条件が成立すると「フィルタ交換サイン」を表示する。 Gは予め設定した定 数 (例えば G = 0.5)を表してレ、る。  [0104] The filter state detection unit (63) displays a "filter replacement sign" when the difference in air volume between the first detection operation and the second detection operation is small and the condition of Expression 4 is satisfied. G represents a preset constant (eg G = 0.5).
[0105] 式 4 : Q1 _Q2≤{Q1(0)_Q2(0)} X G  [0105] Equation 4: Q1 _Q2≤ {Q1 (0) _Q2 (0)} X G
一実施形態の変形例 4一  Modification of one embodiment 4
実施形態の変形例 4について説明する。この変形例 4では、換気装置(10)に風速 センサを設け、その検出値の変化に基づいて外気側フィルタ(27)の目詰まりの状態 を検出する。風速センサは、外気側流路(32)の外気側フィルタ(27)の前側に設ける [0106] 具体的に、外気側フィルタ(27)の目詰まりが進行すると、風速センサの検出値が小 さくなる。フィルタ状態検出運転では換気装置の運転状態を一定に保持しているの で、風速センサの検出値の変化は外気側フィルタ(27)の目詰まりの状態の変化に起 因する。フィルタ状態検出部(63)は、風速センサの検出値が予め設定した閾値を下 回ると「フィルタ交換サイン」を表示する。 Modification 4 of the embodiment will be described. In this modified example 4, a wind speed sensor is provided in the ventilation device (10), and the clogged state of the outside air filter (27) is detected based on the change in the detected value. The wind speed sensor is provided on the front side of the outside air filter (27) in the outside air channel (32). [0106] Specifically, when the outside air filter (27) becomes clogged, the detection value of the wind speed sensor becomes small. In the filter state detection operation, since the operation state of the ventilation device is kept constant, the change in the detection value of the wind speed sensor is caused by the change in the clogging state of the outside air filter (27). The filter state detection unit (63) displays a “filter replacement sign” when the detection value of the wind speed sensor falls below a preset threshold value.
[0107] なお、風速センサの代わりに粉塵センサを設けてもよい。外気側フィルタ(27)の目 詰まりが進行すると、外気側フィルタ(27)に吸着する粉塵量が多くなるので、外気側 フィルタ(27)を通過する粉塵量も多くなり、粉塵センサの検出値が大きくなる。フィル タ状態検出部(63)は、粉塵センサの検出値が予め設定した閾値を上回ると「フィルタ 交換サイン」を表示する。  It should be noted that a dust sensor may be provided instead of the wind speed sensor. As the clogging of the outside air filter (27) progresses, the amount of dust adsorbed on the outside air filter (27) increases, so the amount of dust passing through the outside air filter (27) also increases, and the detection value of the dust sensor growing. The filter state detection unit (63) displays a “filter replacement sign” when the detection value of the dust sensor exceeds a preset threshold value.
[0108] また、風速センサの代わりに臭いセンサを設けてもよレ、。外気側フィルタ(27)の目 詰まりが進行すると、外気側フィルタ(27)に吸着する臭いの量が多くなるので、外気 側フィルタ(27)を通過する臭いの量も多くなり、臭いセンサの検出値が大きくなる。フ ィルタ状態検出部(63)は、臭いセンサの検出値が予め設定した閾値を上回ると「フィ ルタ交換サイン」を表示する。  [0108] In addition, an odor sensor may be provided instead of the wind speed sensor. As the clogging of the outside air filter (27) progresses, the amount of odor adsorbed on the outside air filter (27) increases, so the amount of odor passing through the outside air filter (27) also increases, and the detection of the odor sensor The value increases. The filter state detection unit (63) displays a “filter exchange sign” when the detection value of the odor sensor exceeds a preset threshold value.
[0109] 一実施形態の変形例 5—  [0109] Modification 5 of Embodiment 5—
実施形態の変形例 5について説明する。この変形例 5では、ファンモータに DCモ ータを用いた給気ファン (26)の回転速度を一定に制御し、その入力電力の変化に基 づいて外気側フィルタ(27)の目詰まりの状態を検出する。  Modification 5 of the embodiment will be described. In this modified example 5, the rotational speed of the air supply fan (26) using a DC motor as the fan motor is controlled to be constant, and the outside air filter (27) is clogged based on the change in the input power. Detect state.
[0110] 具体的に、外気側フィルタ(27)の目詰まりが進行すると、外気側フィルタ(27)の空 気抵抗が増加し、 DCモータの回転トルクが増加する。フィルタ状態検出運転では換 気装置の運転状態を一定に保持しているので、 DCモータの回転トルクの変化は外 気側フィルタ(27)の目詰まりの状態の変化に起因する。ファン制御部(61)は、 DCモ ータの回転トルクが増加すると、給気ファン (26)の回転速度を一定に制御するため に入力電力を大きくして DCモータの入力エネルギーを大きくする。フィルタ状態検出 部(63)は、入力電力の値が予め設定した閾値を上回ると「フィルタ交換サイン」を表 示する。  [0110] Specifically, when the clogging of the outside air filter (27) proceeds, the air resistance of the outside air filter (27) increases, and the rotational torque of the DC motor increases. In the filter state detection operation, since the operation state of the aeration device is kept constant, the change in the rotational torque of the DC motor is caused by the change in the clogging state of the outside air filter (27). When the rotational torque of the DC motor increases, the fan control unit (61) increases the input power to increase the input energy of the DC motor in order to control the rotational speed of the air supply fan (26) to be constant. The filter state detection unit (63) displays a “filter exchange sign” when the value of the input power exceeds a preset threshold value.
[0111] なお、給気ファン(26)のファンモータの出力を一定に制御して、給気ファン(26)の 回転速度の変化に基づいて外気側フィルタ(27)の目詰まりの状態を検出してもよい 。具体的に、外気側フィルタ(27)の目詰まりが進行すると、外気側フィルタ(27)の空 気抵抗が増加し、 DCモータの回転トルクが増加してその回転速度が減少する。フィ ルタ状態検出部(63)は、給気ファン (26)の回転速度が予め設定した閾値を下回ると 「フィルタ交換サイン」を表示する。 [0111] The output of the fan motor of the air supply fan (26) is controlled to be constant so that the air supply fan (26) A clogged state of the outside air filter (27) may be detected based on a change in the rotational speed. Specifically, when the outside air filter (27) becomes clogged, the air resistance of the outside air filter (27) increases, the rotational torque of the DC motor increases, and the rotational speed decreases. The filter state detector (63) displays a “filter replacement sign” when the rotational speed of the air supply fan (26) falls below a preset threshold value.
[0112] 《その他の実施形態》  [0112] << Other Embodiments >>
上記実施形態は、以下の変形例のように構成してもよい。  You may comprise the said embodiment like the following modifications.
[0113] 一第 1変形例一  [0113] First Modification 1
上記実施形態について、室外から室内へ供給される空気の状態を計測する温度セ ンサ、湿度センサ、風速センサ、粉塵センサ、又は臭いセンサの検出値や、給気ファ ン (26)の入力電力又は回転速度の変化を組み合わせて外気側フィルタ(27)の目詰 まりを検出するようにしてもよい。  For the above embodiment, the detection value of the temperature sensor, humidity sensor, wind speed sensor, dust sensor, or odor sensor that measures the state of the air supplied from the outside to the room, the input power of the air supply fan (26) or The clogging of the outside air filter (27) may be detected by combining changes in the rotational speed.
[0114] 第 2変形例  [0114] Second modification
上記実施形態について、フィルタ交換後の換気装置(10)の運転積算時間を計測 するタイマを設け、そのタイマの計測時間が所定の時間に達すると、フィルタ状態検 出運転で検出される外気側フィルタ(27)の目詰まりの状態が「フィルタ交換サイン」を 表示するまでに至っていなくても「フィルタ交換サイン」をようにしてもよい。このタイマ は、外気側フィルタ(27)の交換判定の足切りに用いられる。  In the above embodiment, a timer for measuring the accumulated operation time of the ventilation device (10) after filter replacement is provided, and when the measured time of the timer reaches a predetermined time, the outside air filter detected by the filter state detection operation Even if the clogging state in (27) does not reach the point where “filter replacement sign” is displayed, “filter replacement sign” may be used. This timer is used to cut off the replacement judgment of the outside air filter (27).
[0115] 第 3変形例  [0115] Third modification
上記実施形態について、フィルタ状態検出運転においてダンパ(41,42,43,44,45,4 6,47,48) (空気通路)を固定した状態で、外気側フィルタ(27)の目詰まりの状態を検 出してもよい。例えば夜中など在室者がいない状態では、室内の湿度調節を行う必 要がないので、空気通路を固定することができる。これにより、ケーシング(11)内の空 気の流れは一定になり、各種センサの検出値の誤差が小さくなるので、より正確に外 気側フィルタ(27)の目詰まりの状態を検出することができる。  In the above embodiment, the filter (27) is clogged with the damper (41, 42, 43, 44, 45, 4 6, 47, 48) (air passage) fixed in the filter state detection operation. May be detected. For example, when there is no occupant, such as at night, there is no need to adjust the humidity in the room, so the air passage can be fixed. As a result, the air flow in the casing (11) becomes constant, and errors in the detection values of the various sensors are reduced, so that the clogged state of the outside air filter (27) can be detected more accurately. it can.
[0116] 一第 4変形例一  [0116] 1st Modification 1
上記実施形態では、 24時間換気を行う換気装置(10)を対象としているが、ユーザ 一の入力による電源のオン'オフによって起動する換気装置(10)において、電源の オン又はオフの直後にフィルタ状態検出運転を行うようにしてもよい。 In the above embodiment, the ventilator (10) that performs ventilation for 24 hours is targeted. However, in the ventilator (10) that is activated by turning the power on and off by a user input, The filter state detection operation may be performed immediately after turning on or off.
[0117] 第 5変形例  [0117] Fifth modification
上記実施形態では、換気装置(10)が次のように構成されていてもよい。図 11に示 すように、第 1変形例の換気装置(10)は、冷媒回路(100)と 2つの吸着素子(111, 112 )とを備えている。冷媒回路(100)は、圧縮機(101)と凝縮器(102)と膨張弁(103)と 蒸発器(104)が順に接続された閉回路である。冷媒回路(100)で冷媒を循環させると 、蒸気圧縮冷凍サイクルが行われる。この冷媒回路(100)は、熱源手段を構成してい る。第 1吸着素子(111)及び第 2吸着素子(112)は、ゼォライト等の吸着剤を備えてお り、それぞれ吸着部材を構成している。また、各吸着素子(111,112)には多数の空気 通路が形成されており、この空気通路を通過する際に空気が吸着剤と接触する。  In the said embodiment, the ventilation apparatus (10) may be comprised as follows. As shown in FIG. 11, the ventilation device (10) of the first modified example includes a refrigerant circuit (100) and two adsorbing elements (111, 112). The refrigerant circuit (100) is a closed circuit in which a compressor (101), a condenser (102), an expansion valve (103), and an evaporator (104) are connected in order. When the refrigerant is circulated in the refrigerant circuit (100), a vapor compression refrigeration cycle is performed. This refrigerant circuit (100) constitutes a heat source means. The first adsorbing element (111) and the second adsorbing element (112) each include an adsorbent such as zeolite and constitute an adsorbing member. Each adsorbing element (111, 112) is formed with a large number of air passages, and the air contacts the adsorbent when passing through the air passages.
[0118] この換気装置(10)は、第 1動作と第 2動作を繰り返す。図 11(A)に示すように、第 1 動作中の換気装置(10)は、凝縮器(102)で加熱された空気を第 1吸着素子(111)へ 供給して吸着剤を再生する一方、第 2吸着素子(112)に水分を奪われた空気を蒸発 器(104)で冷却する。また、図 11(B)に示すように、第 2動作中の換気装置(10)は、 凝縮器(102)で加熱された空気を第 2吸着素子(112)へ供給して吸着剤を再生する 一方、第 1吸着素子(111)に水分を奪われた空気を蒸発器(104)で冷却する。そして 、この換気装置(10)は、吸着素子(111, 112)を通過する際に除湿した室外から取り込 んだ空気を室内へ供給する除湿運転と、吸着素子(111,112)を通過する際に加湿し た室外から取り込んだ空気を室内へ供給する加湿運転とを切り換えて行う。  [0118] This ventilation device (10) repeats the first operation and the second operation. As shown in FIG. 11 (A), the ventilation device (10) in the first operation supplies air heated by the condenser (102) to the first adsorption element (111) to regenerate the adsorbent. Then, the air deprived of moisture by the second adsorption element (112) is cooled by the evaporator (104). In addition, as shown in FIG. 11 (B), the ventilation device (10) in the second operation regenerates the adsorbent by supplying the air heated by the condenser (102) to the second adsorption element (112). On the other hand, the air deprived of moisture by the first adsorption element (111) is cooled by the evaporator (104). The ventilator (10) has a dehumidifying operation for supplying the air taken in from the room dehumidified when passing through the adsorption element (111, 112) into the room, and when passing through the adsorption element (111, 112). The operation is switched between the humidification operation where the air taken in from the humidified room is supplied to the room.
[0119] 第 6変形例  [0119] Sixth Modification
上記実施形態では、換気装置(10)が次のように構成されていてもよい。図 12に 示すように、第 2変形例の換気装置(10)は、調湿ユニット(150)を備えている。この調 湿ユニット(150)は、ペルチヱ素子(153)と一対の吸着フィン(151,152)とを備えてい る。吸着フィン(151, 152)は、いわゆるヒートシンクの表面にゼォライト等の吸着剤を担 持させたものである。この吸着フィン(151,152)は、吸着部材を構成している。ベルチ ヱ素子(153)は、その一方の面に第 1吸着フィン(151)が、他方の面に第 2吸着フィン (152)がそれぞれ接合されている。ペルチヱ素子(153)に直流を流すと、 2つの吸着 フィン(151, 152)の一方が吸熱側になって他方が放熱側になる。このペルチェ素子(1 53)は、熱源手段を構成している。 In the said embodiment, the ventilation apparatus (10) may be comprised as follows. As shown in FIG. 12, the ventilation device (10) of the second modified example includes a humidity control unit (150). The humidity control unit (150) includes a Peltier element (153) and a pair of suction fins (151 and 152). The adsorption fins (151, 152) are obtained by carrying an adsorbent such as zeolite on the surface of a so-called heat sink. The suction fins (151 and 152) constitute a suction member. The first saddle fin element (153) is joined to one surface of the belt cage element (153), and the second suction fin (152) is joined to the other surface. When direct current is passed through the Peltier element (153), one of the two adsorption fins (151, 152) becomes the heat absorption side and the other becomes the heat dissipation side. This Peltier element (1 53) constitutes a heat source means.
[0120] この換気装置(10)は、第 1動作と第 2動作を繰り返す。第 1動作中の調湿ユニット(1 50)は、放熱側となった第 1吸着フィン(151)の吸着剤を再生して空気を加湿する一 方、吸熱側となった第 2吸着フィン(152)の吸着剤に水分を吸着させて空気を除湿す る。また、第 1動作中の調湿ユニット(150)は、放熱側となった第 2吸着フィン(152)の 吸着剤を再生して空気を加湿する一方、吸熱側となった第 1吸着フィン(151)の吸着 剤に水分を吸着させて空気を除湿する。そして、この換気装置(10)は、調湿ユニット (150)を通過する際に除湿した室外から取り込んだ空気を室内へ供給する除湿運転 と、調湿ユニット (150)を通過する際に加湿した室外から取り込んだ空気を室内へ供 給する加湿運転とを切り換えて行う。  [0120] This ventilation device (10) repeats the first operation and the second operation. The humidity control unit (150) in the first operation regenerates the adsorbent of the first adsorption fin (151) on the heat dissipation side to humidify the air, while the second adsorption fin ( Adsorb moisture to the adsorbent of 152) to dehumidify the air. In addition, the humidity control unit (150) during the first operation regenerates the adsorbent of the second adsorption fin (152) on the heat dissipation side to humidify the air, while the first adsorption fin ( Adsorb moisture to the adsorbent of 151) to dehumidify the air. The ventilator (10) has a dehumidifying operation for supplying the air taken from outside the room, which has been dehumidified when passing through the humidity control unit (150), into the room, and is humidified when passing through the humidity control unit (150). Switch between humidifying operation to supply air taken from outside into the room.
[0121] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  [0121] The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0122] 以上説明したように、本発明は、室内の換気と共に室内の湿度調節を行う換気装 置について有用である。 [0122] As described above, the present invention is useful for a ventilation device that adjusts indoor humidity as well as indoor ventilation.

Claims

請求の範囲 The scope of the claims
[1] 吸着剤が担持された吸着部材 (51,52)と、該吸着部材 (51,52)の吸着剤を少なくと も加熱するための熱源手段(50)とを備え、  [1] An adsorbing member (51, 52) carrying an adsorbent and heat source means (50) for heating at least the adsorbent of the adsorbing member (51, 52),
取り込んだ室外空気を上記吸着部材(51,52)の吸着剤に接触させることにより湿度 調節して室内へ供給すると同時に、取り込んだ室内空気を室外へ排出する換気装 置であって、  A ventilation device that adjusts the humidity by bringing the taken outdoor air into contact with the adsorbent of the adsorbing member (51, 52) and supplies it to the room, and at the same time exhausts the taken room air to the outside.
取り込んだ室外空気を清浄化するフィルタ部材 (27,28)と、  A filter member (27, 28) for cleaning the outdoor air taken in;
室外から室内へ供給される空気の状態に基づいて上記フィルタ部材 (27,28)の目 詰まりの状態を検出するフィルタ状態検出手段 (63)とを備え、  Filter state detecting means (63) for detecting a clogged state of the filter member (27, 28) based on the state of air supplied from the outside to the room,
該換気装置(10)の運転状態を制御しながら室内の換気を行う通常運転と、 該換気装置(10)の運転状態を一定に保持した状態で上記フィルタ状態検出手段( In the normal operation of ventilating the room while controlling the operating state of the ventilator (10), the filter state detecting means (in the state where the operating state of the ventilator (10) is kept constant)
63)に上記フィルタ部材 (27,28)の目詰まりの状態を検出させるフィルタ状態検出運 転とが実行可能になっていることを特徴とする換気装置。 63) A ventilator characterized in that a filter state detection operation for detecting a clogged state of the filter member (27, 28) in 63) can be executed.
[2] 吸着剤を担持する吸着熱交換器 (51,52)が接続されて冷凍サイクルを行う冷媒回 路 (50)を備え、 [2] A refrigerant circuit (50) for performing a refrigeration cycle connected to an adsorption heat exchanger (51, 52) carrying an adsorbent is provided,
取り込んだ室外空気を上記冷媒回路(50)の冷媒により加熱又は冷却した吸着熱 交換器 (51,52)の吸着剤に接触させることにより湿度調節して室内へ供給すると同時 に、取り込んだ室内空気を室外へ排出する換気装置であって、  Humidity is adjusted by bringing the outdoor air taken into contact with the adsorbent of the adsorption heat exchanger (51, 52) heated or cooled by the refrigerant in the refrigerant circuit (50) and supplied to the room at the same time. A ventilation device for discharging
取り込んだ室外空気を清浄化するフィルタ部材 (27,28)と、  A filter member (27, 28) for cleaning the outdoor air taken in;
室外から室内へ供給される空気の状態に基づいて上記フィルタ部材 (27,28)の目 詰まりの状態を検出するフィルタ状態検出手段 (63)とを備え、  Filter state detecting means (63) for detecting a clogged state of the filter member (27, 28) based on the state of air supplied from the outside to the room,
該換気装置(10)の運転状態を制御しながら室内の換気を行う通常運転と、 該換気装置(10)の運転状態を一定に保持した状態で上記フィルタ状態検出手段( 63)に上記フィルタ部材 (27,28)の目詰まりの状態を検出させるフィルタ状態検出運 転とが実行可能になっていることを特徴とする換気装置。  A normal operation for ventilating the room while controlling the operating state of the ventilator (10); and the filter member in the filter state detecting means (63) in a state where the operating state of the ventilator (10) is kept constant. (27, 28) A ventilator characterized by being capable of performing a filter state detection operation for detecting a clogged state.
[3] 請求項 1又は 2において、 [3] In claim 1 or 2,
上記フィルタ状態検出手段(63)は、上記フィルタ状態検出運転中に室外から室内 へ供給される空気の状態と、上記フィルタ部材 (27,28)の初期状態において室外から 室内へ供給される空気の状態とに基づレ、て上記フィルタ部材 (27,28)の目詰まりの状 態を検出することを特徴とする換気装置。 The filter state detection means (63) includes a state of air supplied from the outside to the room during the filter state detection operation, and an outside state in the initial state of the filter member (27, 28). A ventilator characterized by detecting the clogging state of the filter member (27, 28) based on the state of air supplied to the room.
[4] 請求項 3において、  [4] In claim 3,
上記フィルタ状態検出手段(63)は、上記室外から室内へ供給される空気の状態に 基づレ、て上記フィルタ部材(27,28)を通過する空気の風量を推測する風量推測部(6 4)を備え、上記フィルタ状態検出運転中に上記風量推測部(64)が推測した風量と 上記フィルタ部材 (27,28)の初期状態にぉレ、て上記風量推測部(64)が推測した風 量とに基づいて上記フィルタ部材 (27,28)の目詰まりの状態を検出することを特徴と する換気装置。  The filter state detection means (63) includes an air volume estimation unit (64 4) that estimates the air volume of the air passing through the filter member (27, 28) based on the state of air supplied from the outside to the room. The air volume estimated by the air volume estimating unit (64) during the filter state detecting operation and the initial state of the filter member (27, 28) are estimated by the air volume estimating unit (64). A ventilator characterized by detecting a clogging state of the filter member (27, 28) based on the amount.
[5] 請求項 1又は 2において、  [5] In claim 1 or 2,
室外空気を取り込むための給気ファン (26)を備え、  It has an air supply fan (26) for taking in outdoor air,
上記フィルタ状態検出運転では、上記給気ファン (26)の回転速度をそれぞれ異な る値に固定する第 1検出動作と第 2検出動作とが行われる一方、  In the filter state detection operation, a first detection operation and a second detection operation for fixing the rotation speed of the air supply fan (26) to different values are performed,
上記フィルタ状態検出手段 (63)は、上記室外から室内へ供給される空気の状態に 基づレ、て上記フィルタ部材 (27,28)を通過する空気の風量を推測する風量推測部(6 4)を備え、上記第 1検出動作中に風量推測部 (64)が推測した風量と上記第 2検出動 作中に風量推測部(64)が推測した風量との差に基づいて上記フィルタ部材 (27,28) の目詰まりの状態を検出することを特徴とする換気装置。  The filter state detecting means (63) is configured to estimate an air volume of air passing through the filter member (27, 28) based on a state of air supplied from the outside to the room (64 4). ) And the filter member (64) based on the difference between the air volume estimated by the air volume estimation unit (64) during the first detection operation and the air volume estimated by the air volume estimation unit (64) during the second detection operation. 27,28) A ventilator characterized by detecting a clogging state.
[6] 請求項 1乃至 5の何れか 1つにおいて、 [6] In any one of claims 1 to 5,
所定の時刻になると上記フィルタ状態検出運転を実行するように構成されているこ とを特徴とする換気装置。  A ventilator configured to perform the filter state detection operation at a predetermined time.
PCT/JP2006/313091 2005-06-30 2006-06-30 Ventilation device WO2007004557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005191854A JP2007010229A (en) 2005-06-30 2005-06-30 Ventilation device
JP2005-191854 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004557A1 true WO2007004557A1 (en) 2007-01-11

Family

ID=37604422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313091 WO2007004557A1 (en) 2005-06-30 2006-06-30 Ventilation device

Country Status (2)

Country Link
JP (1) JP2007010229A (en)
WO (1) WO2007004557A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518945B2 (en) 2010-03-22 2013-08-27 Hoffmann-La Roche Inc. Pyrrolopyrazine kinase inhibitors
WO2019138534A1 (en) * 2018-01-12 2019-07-18 三菱電機株式会社 Air-conditioning device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305555B2 (en) * 2007-08-28 2009-07-29 ダイキン工業株式会社 Humidity control device
JP4301330B2 (en) * 2007-08-28 2009-07-22 ダイキン工業株式会社 Humidity control device
EP2206977B1 (en) * 2007-10-05 2018-06-20 Daikin Industries, Ltd. Humidity control device and ventilation device
JP2009109146A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Humidity conditioner
JP5292768B2 (en) * 2007-10-31 2013-09-18 ダイキン工業株式会社 Humidity control device
JP2010272310A (en) * 2009-05-20 2010-12-02 Aisin Seiki Co Ltd Fuel cell device
JP2012064718A (en) * 2010-09-15 2012-03-29 Nec Computertechno Ltd Filter clogging inspection device, air supply system, apparatus with air supply function, and filter clogging inspection method
TWI651496B (en) * 2016-08-31 2019-02-21 創昇科技股份有限公司 Temperature-based adaptive dehumidification sysyem
JP7460926B1 (en) 2022-09-30 2024-04-03 ダイキン工業株式会社 fluid conveyance device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259043A (en) * 1985-05-13 1986-11-17 Mitsubishi Electric Corp Means for controlling air conditioner
JP2000074451A (en) * 1998-09-01 2000-03-14 Funai Electric Co Ltd Choking detector for filter of air conditioner
JP2003161465A (en) * 2001-11-26 2003-06-06 Daikin Ind Ltd Humidity conditioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259043A (en) * 1985-05-13 1986-11-17 Mitsubishi Electric Corp Means for controlling air conditioner
JP2000074451A (en) * 1998-09-01 2000-03-14 Funai Electric Co Ltd Choking detector for filter of air conditioner
JP2003161465A (en) * 2001-11-26 2003-06-06 Daikin Ind Ltd Humidity conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518945B2 (en) 2010-03-22 2013-08-27 Hoffmann-La Roche Inc. Pyrrolopyrazine kinase inhibitors
WO2019138534A1 (en) * 2018-01-12 2019-07-18 三菱電機株式会社 Air-conditioning device

Also Published As

Publication number Publication date
JP2007010229A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
WO2007004557A1 (en) Ventilation device
JP2007010216A (en) Ventilation device
JP5018402B2 (en) Humidity control device
WO2007004559A1 (en) Humidity control device
JP5862266B2 (en) Ventilation system
JP2010151337A (en) Air conditioning system
WO2013046609A1 (en) Humidity control device
JP5533973B2 (en) Humidity control ventilator
JP4502054B2 (en) Air conditioner
JP6252703B1 (en) Humidity control device
JP5104971B2 (en) Humidity control ventilator
JP5983235B2 (en) Humidity control device
JP2008145092A (en) Humidity conditioner
JP6222165B2 (en) Humidity control device
JP2005134060A (en) Humidity control unit
JP2010078245A (en) Humidity control system
JP5109595B2 (en) Humidity control device
JP5402213B2 (en) Humidity control device
JP5082775B2 (en) Ventilation equipment
JP2010286197A (en) Humidity controller
JP2009109090A (en) Ventilation device
JP5309849B2 (en) Humidity control device
JP4457653B2 (en) Humidity control device
JP6443402B2 (en) Humidity control device
JP2005140420A (en) Humidity controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767699

Country of ref document: EP

Kind code of ref document: A1