JP4457653B2 - Humidity control device - Google Patents

Humidity control device Download PDF

Info

Publication number
JP4457653B2
JP4457653B2 JP2003402089A JP2003402089A JP4457653B2 JP 4457653 B2 JP4457653 B2 JP 4457653B2 JP 2003402089 A JP2003402089 A JP 2003402089A JP 2003402089 A JP2003402089 A JP 2003402089A JP 4457653 B2 JP4457653 B2 JP 4457653B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
humidity
humidity control
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003402089A
Other languages
Japanese (ja)
Other versions
JP2005164098A (en
Inventor
知宏 薮
智 石田
英作 大久保
冠南 喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003402089A priority Critical patent/JP4457653B2/en
Publication of JP2005164098A publication Critical patent/JP2005164098A/en
Application granted granted Critical
Publication of JP4457653B2 publication Critical patent/JP4457653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode

Abstract

<P>PROBLEM TO BE SOLVED: To provide a humidity control device for controlling the humidity of air, shortening a length of time from starting until the relative humidity of room air reaches a target value. <P>SOLUTION: In the humidity control device, starting operation is performed at starting, and when a value detected by a humidity sensor 2 reaches a target value during starting operation, the starting operation is changed over into normal operation. During the starting operation when the temperature of second air to be fed from a regenerating heat exchanger 102 to adsorbing elements 81, 82 on the regeneration side is higher than during the normal operation, water desorbing from an adsorbing agent is increased more than during the normal operation. During the starting operation, the humidified amount of the second air in the adsorbing elements 81, 82 on the regeneration side is therefore increased more than during the normal operation. Along therewith, the amount of water remaining in the adsorbing elements 81, 82 on the regeneration side is reduced at the time of finishing regenerating operation, and so the dehumidified amount from first air in the adsorbing elements 81, 82 on the adsorption side is increased during the starting operation. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、空気の湿度調節を行う調湿装置に関するものである。   The present invention relates to a humidity control device that adjusts the humidity of air.

従来より、特許文献1に開示されているように、空気の湿度調節を行う調湿装置が知られている。この調湿装置は、第1空気及び第2空気の流通経路を切り換えることにより、2つの吸着素子を交互に用いて室内へ供給する空気の除湿又は加湿を行うものである。上記調湿装置のケーシングには、冷媒回路と吸着剤が担持された2つの吸着素子とが設けられている。冷媒回路には、蒸発器として機能する冷却熱交換器と、凝縮器として機能する再生熱交換器とが設けられている。   Conventionally, as disclosed in Patent Document 1, a humidity control apparatus that adjusts the humidity of air is known. This humidity control apparatus performs dehumidification or humidification of air supplied to a room by using two adsorbing elements alternately by switching the flow paths of the first air and the second air. The casing of the humidity control apparatus is provided with a refrigerant circuit and two adsorption elements carrying an adsorbent. The refrigerant circuit is provided with a cooling heat exchanger that functions as an evaporator and a regenerative heat exchanger that functions as a condenser.

上記調湿装置において、ケーシング内に取り込まれた第1空気は、それに含まれる水分が一方の吸着素子に吸着される。水分を奪われた第1空気は、冷却熱交換器を通過する間に冷媒と熱交換して該冷媒へ放熱する。一方、ケーシング内に取り込まれた第2空気は、再生熱交換器を通過する間に冷媒と熱交換して加熱され、その後に他方の吸着素子へ供給される。他方の吸着素子では、加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。そして、除湿運転時には、除湿された第1空気が室内へ供給され、第2空気が室外へ排出される。加湿運転時には、加湿された第2空気が室内へ供給され、第1空気が室外へ排出される。
特開2003−139349号公報
In the humidity control apparatus, the moisture contained in the first air taken into the casing is adsorbed by one adsorption element. The first air deprived of moisture exchanges heat with the refrigerant while passing through the cooling heat exchanger and radiates heat to the refrigerant. On the other hand, the second air taken into the casing is heated by exchanging heat with the refrigerant while passing through the regenerative heat exchanger, and then supplied to the other adsorption element. In the other adsorption element, moisture is desorbed from the heated adsorbent, and the desorbed moisture is imparted to the second air. In the dehumidifying operation, the dehumidified first air is supplied to the room and the second air is discharged to the outside. During the humidifying operation, the humidified second air is supplied to the room and the first air is discharged to the outside.
JP 2003-139349 A

例えば、オフィスの湿度調節に上記調湿装置を用いる場合、夜間は運転を停止して朝に起動する使い方が多い。ここで、調湿装置の運転を停止する夜間には、室内の環境が悪化する。具体的に、夏季であれば室内空気の温度及び湿度が上昇し、冬季であれば室内空気の温度及び湿度が低下する。このため、調湿装置を起動した直後は、室内を速やかに快適な状態にすることが望まれる。ところが、従来の調湿装置では、この点を考慮した運転制御が行われていなかった。このため、起動してから室内空気の相対湿度が目標値に達するまでに時間がかかり、起動してからしばらくの間は在室者に不快感を与えるおそれがあった。   For example, when the humidity control apparatus is used for humidity control in an office, there are many usages in which driving is stopped at night and started in the morning. Here, the indoor environment deteriorates at night when the operation of the humidity control apparatus is stopped. Specifically, the temperature and humidity of the room air increase during the summer, and the temperature and humidity of the room air decrease during the winter. For this reason, immediately after starting a humidity control apparatus, it is desirable to make a room | chamber interior comfortable quickly. However, in the conventional humidity control apparatus, operation control considering this point has not been performed. For this reason, it takes time for the relative humidity of the room air to reach the target value after the activation, and there is a risk of discomfort to the occupants for a while after the activation.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、空気の湿度調節を行う調湿装置において、起動してから室内空気の相対湿度が目標値に達するまでの時間を短縮することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a time from when the relative humidity of the indoor air reaches a target value in the humidity control apparatus that adjusts the humidity of the air. Is to shorten.

第1の発明は、第1空気及び第2空気を流通させるためのファン(95,96)と、吸着剤を空気と接触させる吸着素子(81,82)と、該吸着素子(81,82)へ供給される第2空気を加熱する加熱手段(1)とを備え、上記吸着素子(81,82)に第1空気中の水分を吸着させる吸着動作と、上記加熱手段(1)で加熱された第2空気によって吸着素子(81,82)を再生する再生動作と同時に行い、上記吸着素子(81,82)を通過した第1空気及び第2空気の一方を室内へ供給して他方を室外へ排出する調湿装置を対象としている。そして、起動してから所定の基準条件が成立するまでは、上記加熱手段(1)から吸着素子(81,82)へ送られる第2空気の温度を上記基準条件の成立後よりも高くするための起動時動作を行うように構成され、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)を備える一方、上記冷媒回路(100)には、凝縮器となって加熱手段(1)を構成する再生熱交換器(102)と、吸着素子(81,82)を通過して室外へ向かう空気を冷媒と熱交換させる第1熱交換器(103)と、吸着素子(81,82)を通過して室内へ向かう空気を冷媒と熱交換させる第2熱交換器(104)とが設けられており、上記冷媒回路(100)において再生熱交換器(102)が凝縮器となり第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となると同時に、上記ファン(95,96)を運転させることによって第2空気を室内へ供給して第1空気を室外へ排出する動作を起動時動作として行い、基準条件の成立によって該起動時動作を終了した後は、上記冷媒回路(100)において再生熱交換器(102)が凝縮器となり第1熱交換器(103)が蒸発器となり第2熱交換器(104)が休止状態となると同時に、上記ファン(95,96)を運転させることによって第2空気を室内へ供給して第1空気を室外へ排出する通常動作を行うものである。 The first invention includes a fan (95, 96) for circulating the first air and the second air, an adsorbing element (81, 82) for bringing the adsorbent into contact with air, and the adsorbing element (81, 82). And heating means (1) for heating the second air supplied to the adsorption element (81, 82) for adsorbing moisture in the first air, and heating by the heating means (1). playback operation and the performed simultaneously second reproducing the adsorption element by the air (81, 82), and the other is supplied to one indoor first air and second air passing through the adsorption element (81, 82) It is intended for humidity control equipment that discharges outdoors. In order to make the temperature of the second air sent from the heating means (1) to the adsorption element (81, 82) higher than after the satisfaction of the reference condition until the predetermined reference condition is satisfied after the start. The refrigerant circuit (100) is configured to perform the start-up operation and performs the refrigeration cycle by circulating the refrigerant, while the refrigerant circuit (100) serves as a condenser and constitutes the heating means (1) Through the regenerative heat exchanger (102), the first heat exchanger (103) for exchanging heat with the refrigerant through the adsorbing element (81,82) and going to the outside, and the adsorbing element (81,82) And a second heat exchanger (104) for exchanging heat of the air traveling indoors with the refrigerant. In the refrigerant circuit (100), the regenerative heat exchanger (102) serves as a condenser and the first heat exchanger. (103) and the second heat exchanger (104) are both evaporators, and at the same time, the fan (95, 96) is operated. Then, the operation of supplying the second air to the room and discharging the first air to the outside is performed as a start-up operation, and after the start-up operation is terminated due to the establishment of the reference condition, in the refrigerant circuit (100) By operating the fan (95, 96) at the same time as the regenerative heat exchanger (102) becomes a condenser and the first heat exchanger (103) becomes an evaporator and the second heat exchanger (104) becomes inactive. A normal operation of supplying the second air into the room and discharging the first air out of the room is performed.

第2の発明は、第1空気及び第2空気を流通させるためのファン(95,96)と、吸着剤を空気と接触させる吸着素子(81,82)と、該吸着素子(81,82)へ供給される第2空気を加熱する加熱手段(1)とを備え、上記吸着素子(81,82)に第1空気中の水分を吸着させる吸着動作と、上記加熱手段(1)で加熱された第2空気によって吸着素子(81,82)を再生する再生動作とを同時に行い、上記吸着素子(81,82)を通過した第1空気及び第2空気の一方を室内へ供給して他方を室外へ排出する調湿装置を対象としている。そして、起動してから所定の基準条件が成立するまでは、上記加熱手段(1)から吸着素子(81,82)へ送られる第2空気の温度を上記基準条件の成立後よりも高くするための起動時動作を行うように構成され、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)を備える一方、上記冷媒回路(100)には、凝縮器となって加熱手段(1)を構成する再生熱交換器(102)と、吸着素子(81,82)を通過して室外へ向かう空気を冷媒と熱交換させる第1熱交換器(103)と、吸着素子(81,82)を通過して室内へ向かう空気を冷媒と熱交換させる第2熱交換器(104)とが設けられており、上記冷媒回路(100)において再生熱交換器(102)が凝縮器となり第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となると同時に、上記ファン(95,96)を運転させることによって第1空気を室内へ供給して第2空気を室外へ排出する動作を起動時動作として行い、基準条件の成立によって該起動時動作を終了した後は、上記冷媒回路(100)において再生熱交換器(102)が凝縮器となり第2熱交換器(104)が蒸発器となり第1熱交換器(103)が休止状態となると同時に、上記ファン(95,96)を運転させることによって第1空気を室内へ供給して第2空気を室外へ排出する通常動作を行うものである。 The second invention includes a fan (95, 96) for circulating the first air and the second air, an adsorbing element (81, 82) for bringing the adsorbent into contact with air, and the adsorbing element (81, 82). And heating means (1) for heating the second air supplied to the adsorption element (81, 82) for adsorbing moisture in the first air, and heating by the heating means (1). The regeneration operation of regenerating the adsorption element (81, 82) with the second air is performed simultaneously, and one of the first air and the second air that has passed through the adsorption element (81, 82) is supplied into the room and the other is It is intended for humidity control equipment that discharges outdoors. In order to make the temperature of the second air sent from the heating means (1) to the adsorption element (81, 82) higher than after the satisfaction of the reference condition until the predetermined reference condition is satisfied after the start. The refrigerant circuit (100) is configured to perform the start-up operation and performs the refrigeration cycle by circulating the refrigerant, while the refrigerant circuit (100) serves as a condenser and constitutes the heating means (1) Through the regenerative heat exchanger (102), the first heat exchanger (103) for exchanging heat with the refrigerant through the adsorbing element (81,82) and going to the outside, and the adsorbing element (81,82) And a second heat exchanger (104) for exchanging heat of the air traveling indoors with the refrigerant. In the refrigerant circuit (100), the regenerative heat exchanger (102) serves as a condenser, and the first heat exchanger. (103) and the second heat exchanger (104) are both evaporators, and at the same time, the fan (95, 96) is operated. Thus, the operation of supplying the first air to the room and discharging the second air to the outside is performed as a start-up operation, and after the start-up operation is terminated due to the establishment of the reference condition, in the refrigerant circuit (100) When the regenerative heat exchanger (102) becomes a condenser and the second heat exchanger (104) becomes an evaporator and the first heat exchanger (103) becomes inactive, and the fan (95, 96) is operated. A normal operation of supplying the first air to the room and discharging the second air to the outside of the room is performed.

の発明は、第1又は第2の発明において、室内空気の湿度を検出する湿度検出手段(2)が設けられ、上記湿度検出手段(2)の検出値が所定の基準値に達することが基準条件となっているものである。 According to a third invention, in the first or second invention, provided is a humidity detection means (2) for detecting the humidity of the indoor air, and the detected value of the humidity detection means (2) reaches a predetermined reference value. Is the standard condition.

の発明は、第1又は第2の発明において、室内空気の温度を検出する温度検出手段が設けられ、上記温度検出手段の検出値が所定の基準値に達することが基準条件となっているものである。 According to a fourth invention, in the first or second invention, there is provided temperature detection means for detecting the temperature of the indoor air, and the detection condition of the temperature detection means reaches a predetermined reference value as a reference condition. It is what.

の発明は、第1又は第2の発明において、起動時からの経過時間を計測するタイマーが設けられ、上記タイマーの計測値が所定の基準値に達することが基準条件となっているものである。 According to a fifth invention, in the first or second invention, a timer for measuring an elapsed time from the start is provided, and a measurement condition of the timer reaches a predetermined reference value as a reference condition It is.

−作用−
上記第1及び第2の発明では、調湿装置にファン(95,96)と吸着素子(81,82)と加熱手段(1)とが設けられる。ファン(95,96)を運転すると、第1空気と第2空気とが取り込まれる。このうち第1空気は、吸着素子(81,82)へ送られる。この吸着素子(81,82)に、第1空気中の水分が吸着される。つまり、調湿装置では吸着動作が行われる。一方、第2空気は、加熱手段(1)で加熱された後に吸着素子(81,82)へ送られる。吸着素子(81,82)では、第2空気によって吸着剤が加熱され、吸着剤から水分が脱離する。第2空気は、この脱離した水分を付与される。つまり、調湿装置では再生動作が行われる。そして、吸着素子(81,82)を通過後の第1空気及び第2空気の一方が室内へ供給され、他方が室外へ排出される。
-Action-
In the first and second inventions, the humidity control device is provided with the fan (95, 96), the adsorption element (81, 82), and the heating means (1). When the fan (95, 96) is operated, the first air and the second air are taken in. Of these, the first air is sent to the adsorption element (81, 82). Moisture in the first air is adsorbed by the adsorption elements (81, 82). That is, the adsorption operation is performed in the humidity control apparatus. On the other hand, the second air is heated by the heating means (1) and then sent to the adsorption element (81, 82). In the adsorbing element (81 82), the adsorbent is heated by the second air, and moisture is desorbed from the adsorbent. The second air is given this desorbed moisture. That is, the regeneration operation is performed in the humidity control apparatus. Then, one of the first air and the second air after passing through the adsorption element (81, 82) is supplied into the room and the other is discharged out of the room.

この発明において、調湿装置では、起動してから所定の基準条件が成立するまで起動時動作が行われる。この起動時動作は、加熱手段(1)から吸着素子(81,82)へ送られる第2空気の温度を所定の基準条件の成立後よりも高くするために行われる。そして、所定の基準条件の成立後よりも加熱手段(1)から吸着素子(81,82)へ送られる第2空気の温度が高くなる起動時動作中には、所定の基準条件の成立後よりも吸着剤から脱離する水分が増加する。このため、起動時動作中には、再生動作の対象となっている吸着素子(81,82)における第2空気への加湿量が所定の基準条件の成立後よりも増加する。それに伴い、再生動作の終了時点で吸着素子(81,82)に残存する水分量も減少する。このため、起動時動作中には、吸着動作の対象となっている吸着素子(81,82)における第1空気からの除湿量も増加する。   In the present invention, the humidity control apparatus operates at startup until a predetermined reference condition is satisfied after the startup. This start-up operation is performed to make the temperature of the second air sent from the heating means (1) to the adsorption element (81, 82) higher than after the predetermined reference condition is satisfied. Then, during the start-up operation in which the temperature of the second air sent from the heating means (1) to the adsorption element (81, 82) becomes higher than after the predetermined reference condition is satisfied, after the predetermined reference condition is satisfied. Also, moisture desorbed from the adsorbent increases. For this reason, during the startup operation, the amount of humidification to the second air in the adsorption element (81, 82) that is the target of the regeneration operation increases after the predetermined reference condition is satisfied. Along with this, the amount of moisture remaining in the adsorption element (81, 82) at the end of the regeneration operation also decreases. For this reason, during the startup operation, the amount of dehumidification from the first air in the adsorption element (81, 82) that is the subject of the adsorption operation also increases.

上記第1の発明では、調湿装置に再生熱交換器(102)と第1熱交換器(103)と第2熱交換器(104)とを備える冷媒回路(100)が設けられる。第2空気は、再生熱交換器(102)で加熱された後に吸着素子(81,82)へ送られる。吸着素子(81,82)を通過後の第1空気及び第2空気は、室外へ向かう方が第1熱交換器(103)を通過し、室内へ向かう方が第2熱交換器(104)を通過する。   In the first invention, the humidity control device is provided with the refrigerant circuit (100) including the regenerative heat exchanger (102), the first heat exchanger (103), and the second heat exchanger (104). The second air is heated by the regenerative heat exchanger (102) and then sent to the adsorption element (81, 82). The first air and the second air that have passed through the adsorption element (81, 82) pass through the first heat exchanger (103) toward the outside and the second heat exchanger (104) toward the room. Pass through.

上記第1及び第2の発明において、起動時動作中の冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となる冷凍サイクルが行われる。そして、冷媒回路(100)を循環する冷媒は、第1熱交換器(103)で室外へ向かう空気から、第2熱交換器(104)で室内へ向かう空気からそれぞれ吸熱する一方、再生熱交換器(102)で第2空気へ放熱する。 In the first and second aspects of the invention, in the refrigerant circuit (100) operating at the time of startup, the regenerative heat exchanger (102) serves as a condenser, and the first heat exchanger (103) and the second heat exchanger (104 ) Is a refrigeration cycle in which both are evaporators. Then, the refrigerant circulating in the refrigerant circuit (100) absorbs heat from the air that goes to the outside by the first heat exchanger (103) and from the air that goes to the room by the second heat exchanger (104). The heat is dissipated to the second air by the vessel (102).

一方、基準条件の成立後における通常動作中の冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)と第2熱交換器(104)のうち第1空気が通過する方だけが蒸発器となる冷凍サイクルが行われる。そして、冷媒回路(100)を循環する冷媒は、第1熱交換器(103)と第2熱交換器(104)のうち第1空気が通過する方で第1空気から吸熱し、再生熱交換器(102)で第2空気へ放熱する。   On the other hand, in the refrigerant circuit (100) during normal operation after the establishment of the reference condition, the regenerative heat exchanger (102) serves as a condenser, and the first heat exchanger (103) and the second heat exchanger (104) A refrigeration cycle is performed in which only the direction through which the first air passes becomes an evaporator. The refrigerant circulating in the refrigerant circuit (100) absorbs heat from the first air when the first air passes through the first heat exchanger (103) and the second heat exchanger (104), and regenerates heat. The heat is dissipated to the second air by the vessel (102).

上記第の発明では、調湿装置に湿度検出手段(2)が設けられる。この発明における基準条件は、湿度検出手段(2)の検出値が所定の基準値に達することによって満たされる。調湿装置の運転中には、湿度検出手段(2)によって室内空気の相対湿度が検出される。そして、湿度検出手段(2)の検出値が所定の基準値に達すると、起動時動作から通常動作に切り換わる。 In the said 3rd invention, a humidity detection means (2) is provided in a humidity control apparatus. The reference condition in the present invention is satisfied when the detection value of the humidity detecting means (2) reaches a predetermined reference value. During the operation of the humidity control device, the relative humidity of the room air is detected by the humidity detection means (2). Then, when the detected value of the humidity detecting means (2) reaches a predetermined reference value, the operation is switched from the startup operation to the normal operation.

上記第の発明では、調湿装置に温度検出手段が設けられる。この発明における基準条件は、温度検出手段の検出値が所定の基準値に達することによって満たされる。調湿装置の運転中には、温度検出手段によって室内空気の温度が検出され、温度検出手段の検出値が所定の基準値に達すると起動時動作から通常動作に切り換わる。 In the said 4th invention, a temperature detection means is provided in a humidity control apparatus. The reference condition in the present invention is satisfied when the detected value of the temperature detecting means reaches a predetermined reference value. During operation of the humidity control device, the temperature of the room air is detected by the temperature detection means, and when the detected value of the temperature detection means reaches a predetermined reference value, the operation is switched from the startup operation to the normal operation.

ここで、例えば冬季において、室外空気の温度は変動してもその相対湿度は概ね一定となる。従って、室外空気の温度が低いとその絶対湿度も低く、室内へ供給される空気の絶対湿度が低くなる。そして、室外空気の温度が低いことから室内空気の温度は緩やかにしか上昇せず、室内へ供給される空気の絶対湿度が低いことから室内空気の相対湿度も緩やかにしか上昇してゆかない。一方、室外空気の温度が高いとその絶対湿度も高く、室内へ供給される空気の絶対湿度が高くなる。そして、室外空気の温度が高いことから室内空気の温度は速やかに上昇し、室内へ供給される空気の絶対湿度が高いことから室内空気の相対湿度も速やかに上昇してゆく。   Here, for example, in winter, the relative humidity remains substantially constant even if the temperature of the outdoor air varies. Therefore, when the temperature of the outdoor air is low, the absolute humidity is also low, and the absolute humidity of the air supplied to the room is low. And since the temperature of outdoor air is low, the temperature of room air rises only moderately, and since the absolute humidity of the air supplied indoors is low, the relative humidity of room air rises only moderately. On the other hand, when the temperature of the outdoor air is high, the absolute humidity is also high, and the absolute humidity of the air supplied to the room is high. And since the temperature of outdoor air is high, the temperature of room air rises rapidly, and since the absolute humidity of the air supplied indoors is high, the relative humidity of room air also rises rapidly.

このように、室内空気の温度の上昇速度が高ければその相対湿度の上昇速度も高くなり、逆に室内空気の温度の上昇速度が低ければその相対湿度の上昇速度も低くなる。つまり、室内空気の温度と相対湿度には相関関係があり、両者は連動して変化する。よって、温度検出手段の検出値から室内空気の相対湿度を推測できる。そこで、この発明では、温度検出手段の検出値が所定の基準値に達したところで室内空気の相対湿度が目標値に達したと判断し、起動時動作から通常動作への切り換えを行う。   Thus, the higher the temperature rise rate of the room air, the higher the relative humidity rise rate. Conversely, the lower the room air temperature rise rate, the lower the relative humidity rise rate. That is, there is a correlation between the temperature of the room air and the relative humidity, and both change in conjunction with each other. Therefore, the relative humidity of the room air can be estimated from the detection value of the temperature detection means. Therefore, in the present invention, when the detected value of the temperature detecting means reaches a predetermined reference value, it is determined that the relative humidity of the indoor air has reached the target value, and switching from the startup operation to the normal operation is performed.

上記第の発明では、調湿装置にタイマーが設けられる。この発明における基準条件は、タイマーによって計測される起動時からの経過時間が所定の基準値に達することによって満たされる。調湿装置の運転中には、タイマーによって起動時からの経過時間が検出され、タイマーの計測値が所定の基準値に達すると起動時動作から通常動作に切り換わる。 In the fifth aspect, the humidity control device is provided with a timer. The reference condition in the present invention is satisfied when the elapsed time from the start time measured by the timer reaches a predetermined reference value. During the operation of the humidity controller, the elapsed time from the startup is detected by the timer, and when the measured value of the timer reaches a predetermined reference value, the startup operation is switched to the normal operation.

ここで、予め様々な運転条件で試験を行って調湿装置の起動時から室内空気の相対湿度が目標値に達するまでの経過時間を計測しておけば、その試験で得られたデータに基づき、室内空気の相対湿度が目標値に達すると予想される起動時からの経過時間を基準値として設定できる。そこで、この発明では、タイマーの計測値が所定の基準値に達すると、室内空気の相対湿度が目標値に達したと判断し、起動時動作から通常動作への切り換えを行う。   Here, if a test is performed in advance under various operating conditions and the elapsed time from when the humidity control device starts up until the relative humidity of the room air reaches the target value is measured, it is based on the data obtained in that test. The elapsed time from the start time when the relative humidity of the room air is expected to reach the target value can be set as the reference value. Therefore, in the present invention, when the measured value of the timer reaches a predetermined reference value, it is determined that the relative humidity of the room air has reached the target value, and switching from the startup operation to the normal operation is performed.

上記第1及び第2の発明では、起動時してから所定の基準条件が成立するまで起動時動作が行われる。起動時動作中には、所定の基準条件の成立後よりも加熱手段(1)から吸着素子(81,82)へ送られる第2空気の温度が高くなり、吸着剤から脱離する水分量が増加する。そして、起動時動作中には、所定の基準条件の成立後よりも吸着動作の対象となっている吸着素子(81,82)での第1空気からの除湿量や再生動作の対象となっている吸着素子(81,82)での第2空気への加湿量が増加する。従って、この発明によれば、空気の湿度調節を行う調湿装置において、起動してから室内空気の相対湿度が目標値に達するまでの時間を短縮することができる。 In the first and second aspects of the invention, the startup operation is performed after the startup until a predetermined reference condition is satisfied. During the start-up operation, the temperature of the second air sent from the heating means (1) to the adsorption element (81, 82) becomes higher than after the predetermined reference condition is satisfied, and the amount of moisture desorbed from the adsorbent is reduced. To increase. During the start-up operation, the dehumidification amount from the first air or the regeneration operation is performed by the adsorption element (81, 82) that is the target of the adsorption operation after the predetermined reference condition is satisfied. The amount of humidification to the second air in the adsorbing elements (81, 82) increases. Therefore, according to the present invention, in the humidity control apparatus that adjusts the humidity of the air, it is possible to shorten the time from when the relative humidity of the room air reaches the target value after the activation.

上記第1及び第2の発明では、起動時動作中に第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となり、通常動作中に第1熱交換器(103)と第2熱交換器(104)のうち第1空気が通過する方だけが蒸発器となる。つまり、起動時動作中には、通常動作中よりも蒸発器となる熱交換器の表面積が拡大する。このため、起動時動作中には、冷媒が空気から吸熱する熱量を確保したままで冷媒の蒸発温度を通常動作中よりも高くできる。そして、冷凍サイクルの低圧が高くなるため、それに伴って冷凍サイクルの高圧も上昇し、凝縮器における冷媒の凝縮温度が高くなる。 In the first and second inventions, both the first heat exchanger (103) and the second heat exchanger (104) serve as an evaporator during the startup operation, and the first heat exchanger (103 during the normal operation). ) And the second heat exchanger (104), only the one through which the first air passes becomes an evaporator. That is, during the start-up operation, the surface area of the heat exchanger serving as an evaporator is larger than during normal operation. For this reason, during the start-up operation, the refrigerant evaporating temperature can be made higher than during normal operation while ensuring the amount of heat that the refrigerant absorbs from the air. And since the low pressure of a refrigerating cycle becomes high, the high pressure of a refrigerating cycle also rises in connection with it, and the condensation temperature of the refrigerant | coolant in a condenser becomes high.

従って、この発明によれば、起動時動作中には、通常動作中よりも再生熱交換器(102)から吸着素子(81,82)へ送られる第2空気の温度を高くすることができ、通常動作中よりも吸着動作の対象となっている吸着素子(81,82)での第1空気からの除湿量や再生動作の対象となっている吸着素子(81,82)での第2空気への加湿量を増加させることができる。   Therefore, according to the present invention, during start-up operation, the temperature of the second air sent from the regenerative heat exchanger (102) to the adsorption element (81, 82) can be made higher than during normal operation, The amount of dehumidification from the first air at the adsorption element (81, 82) that is the target of the adsorption operation than during normal operation and the second air at the adsorption element (81, 82) that is the target of the regeneration operation The amount of humidification can be increased.

上記第の発明では、室内空気の湿度を検出する湿度検出手段(2)の検出値が所定の基準値に達すると、起動時動作から通常動作に切り換わる。従って、この発明によれば、湿度検出手段(2)によって精度良く室内の湿度調節を行うことができ、室内の快適性を保持することができる。 In the third aspect of the invention, when the detected value of the humidity detecting means (2) for detecting the humidity of the room air reaches a predetermined reference value, the operation is switched from the startup operation to the normal operation. Therefore, according to the present invention, the humidity can be accurately adjusted by the humidity detecting means (2), and the indoor comfort can be maintained.

上記第の発明では、室内空気の温度を検出する温度検出手段の検出値が所定の基準値に達すると、起動時動作から通常動作に切り換わる。上述のように、室内空気の温度と相対湿度には相関関係があるため、温度検出手段の検出値によって室内空気の相対湿度を推測することができる。従って、この発明によれば、温度検出手段を用いて起動時動作から通常動作への切り換えを適切なタイミングで行うことができる。 In the fourth aspect of the invention, when the detected value of the temperature detecting means for detecting the temperature of the indoor air reaches a predetermined reference value, the operation at the time of startup is switched to the normal operation. As described above, since there is a correlation between the temperature of the room air and the relative humidity, the relative humidity of the room air can be estimated from the detection value of the temperature detection means. Therefore, according to the present invention, switching from the startup operation to the normal operation can be performed at an appropriate timing using the temperature detection means.

上記第の発明では、起動時からの経過時間を計測するタイマーの計測値が所定の基準値に達すると、起動時動作から通常動作に切り換わる。上述のように、予め試験を行って室内空気の相対湿度が目標値に達すると予想される起動時からの経過時間を基準値として設定すれば、タイマーの計測値によって室内空気の相対湿度を推測することができる。従って、この発明によれば、タイマーを用いて起動時動作から通常動作への切り換えを適切なタイミングで行うことができる。 In the fifth aspect of the invention, when the measured value of the timer that measures the elapsed time from the startup reaches a predetermined reference value, the startup operation is switched to the normal operation. As described above, if the elapsed time from the start-up when the relative humidity of the indoor air is expected to reach the target value is set as a reference value by performing a test in advance, the relative humidity of the indoor air is estimated from the measured value of the timer. can do. Therefore, according to the present invention, switching from the startup operation to the normal operation can be performed at an appropriate timing using the timer.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の参考形態1》
本発明の前提となる参考形態に係る調湿装置は、減湿された空気を室内へ供給する除湿運転と、加湿された空気を室内へ供給する加湿運転とを切り換えて行うように構成されている。また、この調湿装置は、冷媒回路(100)と2つの吸着素子(81,82)とを備え、いわゆるバッチ式の動作を行うように構成されている。ここでは、本参考形態に係る調湿装置の構成について、図1を参照しながら説明する。尚、本参考形態1の説明において、「上」「下」「左」「右」「前」「後」「手前」「奥」は、特にことわらない限り、図1に示す調湿装置を正面側から見た場合のものを意味している。
<< Reference Form 1 of the Invention >>
A humidity control apparatus according to a reference embodiment as a premise of the present invention is configured to perform switching between a dehumidifying operation for supplying dehumidified air to a room and a humidifying operation for supplying humidified air to a room. Yes. The humidity control apparatus includes a refrigerant circuit (100) and two adsorbing elements (81, 82), and is configured to perform a so-called batch operation. Here, the configuration of the humidity control apparatus according to the present embodiment will be described with reference to FIG. In the description of the first embodiment, “top”, “bottom”, “left”, “right”, “front”, “rear”, “front”, and “back” refer to the humidity control apparatus shown in FIG. It means the one seen from the front side.

図1に示すように、上記調湿装置は、高さの低い扁平な直方体状のケーシング(10)を備えている。ケーシング(10)には、2つの吸着素子(81,82)と冷媒回路(100)とが収納されている。冷媒回路(100)には、圧縮機(101)、加熱手段(1)を構成する再生熱交換器(102)、第1熱交換器(103)、及び第2熱交換器(104)が設けられている。この冷媒回路(100)の詳細については、後述する。尚、図1において、(A)は左側面図、(B)は平面図、(C)は右側面図を示す。この点は、図2〜4においても同様である。   As shown in FIG. 1, the humidity control apparatus includes a flat rectangular parallelepiped casing (10) having a low height. Two adsorbing elements (81, 82) and a refrigerant circuit (100) are accommodated in the casing (10). The refrigerant circuit (100) is provided with a compressor (101), a regenerative heat exchanger (102) constituting the heating means (1), a first heat exchanger (103), and a second heat exchanger (104). It has been. Details of the refrigerant circuit (100) will be described later. 1A is a left side view, FIG. 1B is a plan view, and FIG. 1C is a right side view. This is the same in FIGS.

図5に示すように、上記吸着素子(81,82)は、平板状の平板部材(83)と波形状の波板部材(84)とを交互に積層して構成されている。波板部材(84)は、隣接する波板部材(84)の稜線方向が互いに90度ずれる姿勢で積層されている。そして、吸着素子(81,82)は、全体として直方体状ないし四角柱状に形成されている。   As shown in FIG. 5, the adsorption element (81 82) is configured by alternately laminating flat plate members (83) and corrugated corrugated plate members (84). The corrugated plate members (84) are laminated so that the ridge line directions of the adjacent corrugated plate members (84) are shifted from each other by 90 degrees. And the adsorption | suction element (81,82) is formed in the rectangular parallelepiped shape thru | or square column shape as a whole.

上記吸着素子(81,82)には、平板部材(83)及び波板部材(84)の積層方向において、調湿側通路(85)と冷却側通路(86)とが平板部材(83)を挟んで交互に区画形成されている。この吸着素子(81,82)において、平板部材(83)の長辺側の側面に調湿側通路(85)が開口し、平板部材(83)の短辺側の側面に冷却側通路(86)が開口している。   In the adhering element (81 82), the humidity adjusting side passageway (85) and the cooling side passageway (86) in the stacking direction of the flat plate member (83) and the corrugated plate member (84) are connected to the flat plate member (83). The sections are alternately formed with a sandwich. In this adsorption element (81, 82), the humidity adjusting side passageway (85) opens on the long side surface of the flat plate member (83), and the cooling side passageway (86) on the short side surface of the flat plate member (83). ) Is open.

上記吸着素子(81,82)において、調湿側通路(85)に臨む平板部材(83)の表面や、調湿側通路(85)に設けられた波板部材(84)の表面には、水分を吸着するための吸着剤が塗布されている。この種の吸着剤としては、例えばシリカゲル、ゼオライト、イオン交換樹脂等が挙げられる。   In the adsorption element (81, 82), on the surface of the flat plate member (83) facing the humidity adjustment side passage (85) and on the surface of the corrugated plate member (84) provided in the humidity adjustment side passage (85), An adsorbent for adsorbing moisture is applied. Examples of this type of adsorbent include silica gel, zeolite, ion exchange resin and the like.

図1に示すように、上記ケーシング(10)において、最も手前側には第1パネル(11)が設けられ、最も奥側には第2パネル(12)が設けられている。   As shown in FIG. 1, in the casing (10), the first panel (11) is provided on the foremost side, and the second panel (12) is provided on the innermost side.

上記第1パネル(11)には、その右寄りの中央部に排気口(14)が形成され、その左寄りの中央部に給気口(16)が形成されている。一方、上記第2パネル(12)には、その右端寄りの下部に室外側吸込口(13)が形成され、その左端寄りの下部に室内側吸込口(15)が形成されている。   In the first panel (11), an exhaust port (14) is formed in the center portion on the right side, and an air supply port (16) is formed in the center portion on the left side. On the other hand, the second panel (12) has an outdoor inlet (13) formed in the lower part near the right end, and an indoor inlet (15) formed in the lower part near the left end.

ケーシング(10)の内部は、第1パネル(11)側に形成された下流側空間(91)と第2パネル(12)側に形成された上流側空間(92)とに区画されている。   The interior of the casing (10) is partitioned into a downstream space (91) formed on the first panel (11) side and an upstream space (92) formed on the second panel (12) side.

下流側空間(91)は、左右に2つの空間に区画されている。右側の第1空間(41)は、排気口(14)を介して室外と連通しており、その内部に圧縮機(101)と排気ファン(95)と第1熱交換器(103)とが設置されている。左側の第2空間(42)は、給気口(16)を介して室外と連通しており、その内部に給気ファン(96)と第2熱交換器(104)とが設置されている。   The downstream space (91) is divided into two spaces on the left and right. The first space (41) on the right side communicates with the outside through an exhaust port (14), and a compressor (101), an exhaust fan (95), and a first heat exchanger (103) are contained therein. is set up. The second space (42) on the left side communicates with the outside through the air supply port (16), and the air supply fan (96) and the second heat exchanger (104) are installed in the interior. .

上流側空間(92)は、右側仕切板(20)と左側仕切板(30)とによって、左右に3つの空間に区画されている。   The upstream space (92) is divided into three spaces on the left and right by the right partition plate (20) and the left partition plate (30).

右側仕切板(20)の右側の空間は、上側の右上部流路(65)と下側の右下部流路(66)とに仕切られている。右上部流路(65)は、第1空間(41)と連通する。右下部流路(66)は、室外側吸込口(13)と連通する一方、第1空間(41)から仕切られている。   The space on the right side of the right partition plate (20) is partitioned into an upper right channel (65) on the upper side and a lower right channel (66) on the lower side. The upper right channel (65) communicates with the first space (41). The lower right channel (66) communicates with the outdoor suction port (13) and is partitioned from the first space (41).

左側仕切板(30)の左側の空間は、上側の左上部流路(67)と下側の左下部流路(68)とに仕切られている。左上部流路(67)は、第2空間(42)と連通する。左下部流路(68)は、室内側吸込口(15)と連通する一方、第2空間(42)から仕切られている。   The space on the left side of the left partition plate (30) is partitioned into an upper left upper channel (67) and a lower left lower channel (68). The upper left channel (67) communicates with the second space (42). The lower left channel (68) communicates with the indoor suction port (15) and is partitioned from the second space (42).

右側仕切板(20)と左側仕切板(30)の間の空間には、2つの吸着素子(81,82)が設置されている。これら吸着素子(81,82)は、所定の間隔をおいて前後に並んだ状態で配置されている。具体的には、手前側の第1パネル(11)寄りに第1吸着素子(81)が設けられ、奥側の第2パネル(12)寄りに第2吸着素子(82)が設けられている。   Two adsorbing elements (81, 82) are installed in the space between the right partition plate (20) and the left partition plate (30). These adsorbing elements (81, 82) are arranged in a state where they are lined up and down at a predetermined interval. Specifically, the first adsorption element (81) is provided near the first panel (11) on the near side, and the second adsorption element (82) is provided near the second panel (12) on the back side. .

右側仕切板(20)と左側仕切板(30)の間の空間は、第1流路(51)、第2流路(52)、第1上部流路(53)、第1下部流路(54)、第2上部流路(55)、第2下部流路(56)、及び中央流路(57)に区画されている。   The space between the right partition plate (20) and the left partition plate (30) includes a first channel (51), a second channel (52), a first upper channel (53), and a first lower channel ( 54), a second upper channel (55), a second lower channel (56), and a central channel (57).

第1流路(51)は、第1吸着素子(81)の手前側に形成され、第1吸着素子(81)の冷却側通路(86)に連通している。第2流路(52)は、第2吸着素子(82)の奥側に形成され、第2吸着素子(82)の冷却側通路(86)に連通している。   The first flow path (51) is formed on the front side of the first adsorption element (81) and communicates with the cooling side passage (86) of the first adsorption element (81). The second flow path (52) is formed on the back side of the second adsorption element (82) and communicates with the cooling side passage (86) of the second adsorption element (82).

第1上部流路(53)は、第1吸着素子(81)の上側に形成され、第1吸着素子(81)の調湿側通路(85)に連通している。第1下部流路(54)は、第1吸着素子(81)の下側に形成され、第1吸着素子(81)の調湿側通路(85)に連通している。第2上部流路(55)は、第2吸着素子(82)の上側に形成され、第2吸着素子(82)の調湿側通路(85)に連通している。第2下部流路(56)は、第2吸着素子(82)の下側に形成され、第2吸着素子(82)の調湿側通路(85)に連通している。   The first upper flow path (53) is formed on the upper side of the first adsorption element (81) and communicates with the humidity adjustment side passageway (85) of the first adsorption element (81). The first lower flow path (54) is formed below the first adsorption element (81) and communicates with the humidity adjustment side passageway (85) of the first adsorption element (81). The second upper flow path (55) is formed above the second adsorption element (82) and communicates with the humidity adjustment side passage (85) of the second adsorption element (82). The second lower flow path (56) is formed below the second adsorption element (82) and communicates with the humidity adjustment side passageway (85) of the second adsorption element (82).

中央流路(57)は、第1吸着素子(81)と第2吸着素子(82)の間に形成され、両吸着素子(81,82)の冷却側通路(86)に連通している。この中央流路(57)には、再生熱交換器(102)がほぼ垂直に立った状態で設置されている。この再生熱交換器(102)は、中央流路(57)を流れる空気を冷媒回路(100)の冷媒と熱交換させる。そして、再生熱交換器(102)は、凝縮器として機能し、空気を加熱するための加熱器を構成している。   The central flow path (57) is formed between the first adsorption element (81) and the second adsorption element (82) and communicates with the cooling side passageway (86) of both adsorption elements (81, 82). In the central flow path (57), the regenerative heat exchanger (102) is installed in a substantially vertical state. The regenerative heat exchanger (102) causes the air flowing through the central flow path (57) to exchange heat with the refrigerant in the refrigerant circuit (100). The regenerative heat exchanger (102) functions as a condenser and constitutes a heater for heating air.

中央流路(57)と第1下部流路(54)の間の仕切りには、第1シャッタ(61)が設けられている。一方、中央流路(57)と第2下部流路(56)の間の仕切りには、第2シャッタ(62)が設けられている。第1シャッタ(61)と第2シャッタ(62)とは、何れもが開閉自在に構成されている。   A first shutter (61) is provided in a partition between the central channel (57) and the first lower channel (54). On the other hand, a second shutter (62) is provided in a partition between the central channel (57) and the second lower channel (56). Both the first shutter (61) and the second shutter (62) are configured to be openable and closable.

右側仕切板(20)には、第1右側開口(21)、第2右側開口(22)、第1右上開口(23)、第1右下開口(24)、第2右上開口(25)、及び第2右下開口(26)が形成されている。これらの開口(21,22,…)は、それぞれが開閉シャッタを備えている。   The right partition plate (20) includes a first right opening (21), a second right opening (22), a first upper right opening (23), a first lower right opening (24), a second upper right opening (25), And the 2nd lower right opening (26) is formed. Each of these openings (21, 22,...) Has an open / close shutter.

第1右側開口(21)は、右側仕切板(20)における手前側の下部に設けられ、第1流路(51)と右下部流路(66)を連通させる。第2右側開口(22)は、右側仕切板(20)における奥側の下部に設けられ、第2流路(52)と右下部流路(66)を連通させる。   The first right opening (21) is provided in the lower part on the near side of the right partition plate (20), and connects the first flow path (51) and the right lower flow path (66). The second right opening (22) is provided in the lower part on the back side of the right partition plate (20), and communicates the second flow path (52) and the right lower flow path (66).

第1右上開口(23)は、右側仕切板(20)のうち第1吸着素子(81)に隣接する部分の上部に設けられ、第1上部流路(53)と右上部流路(65)を連通させる。第1右下開口(24)は、右側仕切板(20)のうち第1吸着素子(81)に隣接する部分の下部に設けられ、第1下部流路(54)と右下部流路(66)を連通させる。   The first upper right opening (23) is provided in an upper part of the right partition plate (20) adjacent to the first adsorption element (81), and includes a first upper channel (53) and an upper right channel (65). To communicate. The first lower right opening (24) is provided in the lower part of the right partition plate (20) adjacent to the first adsorption element (81), and the first lower channel (54) and the lower right channel (66). ).

第2右上開口(25)は、右側仕切板(20)のうち第2吸着素子(82)に隣接する部分の上部に設けられ、第2上部流路(55)と右上部流路(65)を連通させる。第2右下開口(26)は、右側仕切板(20)のうち第2吸着素子(82)に隣接する部分の下部に設けられ、第2下部流路(56)と右下部流路(66)を連通させる。   The second upper right opening (25) is provided in an upper part of the right partition plate (20) adjacent to the second adsorption element (82), and includes a second upper channel (55) and an upper right channel (65). To communicate. The second lower right opening (26) is provided in a lower portion of the right partition plate (20) adjacent to the second adsorption element (82), and is provided with a second lower flow path (56) and a right lower flow path (66). ).

左側仕切板(30)には、第1左側開口(31)、第2左側開口(32)、第1左上開口(33)、第1左下開口(34)、第2左上開口(35)、及び第2左下開口(36)が形成されている。これらの開口(31,32,…)は、それぞれが開閉シャッタを備えている。   The left partition plate (30) includes a first left opening (31), a second left opening (32), a first upper left opening (33), a first lower left opening (34), a second upper left opening (35), and A second lower left opening (36) is formed. Each of these openings (31, 32,...) Has an open / close shutter.

第1左側開口(31)は、左側仕切板(30)における手前側の下部に設けられ、第1流路(51)と左下部流路(68)を連通させる。第2左側開口(32)は、左側仕切板(30)における奥側の下部に設けられ、第2流路(52)と左下部流路(68)を連通させる。   The first left opening (31) is provided in the lower part on the near side of the left partition plate (30), and connects the first channel (51) and the left lower channel (68). The second left side opening (32) is provided in the lower part on the back side of the left partition plate (30), and connects the second channel (52) and the lower left channel (68).

第1左上開口(33)は、左側仕切板(30)のうち第1吸着素子(81)に隣接する部分の上部に設けられ、第1上部流路(53)と左上部流路(67)を連通させる。第1左下開口(34)は、左側仕切板(30)のうち第1吸着素子(81)に隣接する部分の下部に設けられ、第1下部流路(54)と左下部流路(68)を連通させる。   The first upper left opening (33) is provided in an upper part of the left partition plate (30) adjacent to the first adsorption element (81), and includes a first upper channel (53) and an upper left channel (67). To communicate. The first lower left opening (34) is provided in a lower portion of the left partition plate (30) adjacent to the first adsorption element (81), and includes a first lower channel (54) and a lower left channel (68). To communicate.

第2左上開口(35)は、左側仕切板(30)のうち第2吸着素子(82)に隣接する部分の上部に設けられ、第2上部流路(55)と左上部流路(67)を連通さする。第2左下開口(36)は、左側仕切板(30)のうち第2吸着素子(82)に隣接する部分の下部に設けられ、第2下部流路(56)と左下部流路(68)を連通させる。   The second upper left opening (35) is provided in the upper part of the left partition plate (30) adjacent to the second adsorption element (82), and the second upper channel (55) and the upper left channel (67). To communicate. The second lower left opening (36) is provided at a lower portion of the left partition plate (30) adjacent to the second adsorption element (82), and includes a second lower channel (56) and a lower left channel (68). To communicate.

図6に示すように、本参考形態の冷媒回路(100)は、冷媒の充填された閉回路である。この冷媒回路(100)には、図1に示される圧縮機(101)、再生熱交換器(102)、第1熱交換器(103)、及び第2熱交換器(104)以外にも、第1電動膨張弁(111)と第2電動膨張弁(112)とが設けられている。   As shown in FIG. 6, the refrigerant circuit (100) of the present embodiment is a closed circuit filled with refrigerant. In addition to the compressor (101), the regenerative heat exchanger (102), the first heat exchanger (103), and the second heat exchanger (104) shown in FIG. A first electric expansion valve (111) and a second electric expansion valve (112) are provided.

冷媒回路(100)において、圧縮機(101)の吐出側は、再生熱交換器(102)の一端に接続されている。再生熱交換器(102)の他端は、第1電動膨張弁(111)の一端と第2電動膨張弁(112)の一端とに接続されている。第1電動膨張弁(111)の他端は、第1熱交換器(103)の一端に接続されている。第2電動膨張弁(112)の他端は、第2熱交換器(104)の一端に接続されている。第1熱交換器(103)と第2熱交換器(104)の他端とは、それぞれが圧縮機(101)の吸入側に接続されている。尚、上記冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)及び第2熱交換器(104)が蒸発器となる冷凍サイクルが行われる。   In the refrigerant circuit (100), the discharge side of the compressor (101) is connected to one end of the regenerative heat exchanger (102). The other end of the regenerative heat exchanger (102) is connected to one end of the first electric expansion valve (111) and one end of the second electric expansion valve (112). The other end of the first electric expansion valve (111) is connected to one end of the first heat exchanger (103). The other end of the second electric expansion valve (112) is connected to one end of the second heat exchanger (104). The other end of the first heat exchanger (103) and the second heat exchanger (104) is connected to the suction side of the compressor (101). In the refrigerant circuit (100), a refrigeration cycle is performed in which the regenerative heat exchanger (102) serves as a condenser and the first heat exchanger (103) and the second heat exchanger (104) serve as an evaporator.

本参考形態の調湿装置には、湿度検出手段としての湿度センサ(2)が設けられている。この湿度センサ(2)は、室内空気(RA)の相対湿度を検出するためのものであって、ケーシング(10)における室内側吸込口(15)の近傍に設けられている。   The humidity control apparatus of the present embodiment is provided with a humidity sensor (2) as humidity detection means. The humidity sensor (2) is for detecting the relative humidity of the room air (RA) and is provided in the casing (10) in the vicinity of the room-side inlet (15).

調湿装置は、起動時に起動時動作を行うように構成されている。加湿運転時における起動時動作では、図7に示すように、第1熱交換器(103)と第2熱交換器(104)のうち第2熱交換器(104)が蒸発器となる。つまり、冷媒回路(100)では、圧縮機(101)と再生熱交換器(102)と第2熱交換器(104)とをこの順に冷媒が流通する。除湿運転時における起動時動作では、図9に示すように、第1熱交換器(103)と第2熱交換器(104)のうち第1熱交換器(103)が蒸発器となる。つまり、冷媒回路(100)では、圧縮機(101)と再生熱交換器(102)と第1熱交換器(103)とをこの順に冷媒が流通する。   The humidity control apparatus is configured to perform a startup operation at startup. In the start-up operation during the humidifying operation, as shown in FIG. 7, the second heat exchanger (104) of the first heat exchanger (103) and the second heat exchanger (104) serves as an evaporator. That is, in the refrigerant circuit (100), the refrigerant flows through the compressor (101), the regenerative heat exchanger (102), and the second heat exchanger (104) in this order. In the start-up operation during the dehumidifying operation, as shown in FIG. 9, the first heat exchanger (103) of the first heat exchanger (103) and the second heat exchanger (104) serves as an evaporator. That is, in the refrigerant circuit (100), the refrigerant flows through the compressor (101), the regenerative heat exchanger (102), and the first heat exchanger (103) in this order.

一方、調湿装置は、起動時動作中に所定の基準条件が成立すると、起動時動作から通常動作に切り換わるように構成されている。具体的に、調湿装置は、起動時動作中に湿度センサ(2)の検出値が所定の基準値に達すると、起動時動作から通常動作に切り換わるように構成されている。   On the other hand, the humidity control apparatus is configured to switch from the startup operation to the normal operation when a predetermined reference condition is satisfied during the startup operation. Specifically, the humidity control apparatus is configured to switch from the startup operation to the normal operation when the detected value of the humidity sensor (2) reaches a predetermined reference value during the startup operation.

加湿運転時における通常動作では、図8に示すように、第1熱交換器(103)と第2熱交換器(104)のうち第1熱交換器(103)が蒸発器となる。つまり、冷媒回路(100)では、圧縮機(101)と再生熱交換器(102)と第1熱交換器(103)とをこの順に冷媒が流通する。除湿運転時における通常動作では、図10に示すように、第1熱交換器(103)と第2熱交換器(104)のうち第2熱交換器(104)が蒸発器となる。つまり、冷媒回路(100)では、圧縮機(101)と再生熱交換器(102)と第2熱交換器(104)とをこの順に冷媒が流通する。   In the normal operation during the humidifying operation, as shown in FIG. 8, the first heat exchanger (103) of the first heat exchanger (103) and the second heat exchanger (104) serves as an evaporator. That is, in the refrigerant circuit (100), the refrigerant flows through the compressor (101), the regenerative heat exchanger (102), and the first heat exchanger (103) in this order. In the normal operation during the dehumidifying operation, as shown in FIG. 10, the second heat exchanger (104) of the first heat exchanger (103) and the second heat exchanger (104) serves as an evaporator. That is, in the refrigerant circuit (100), the refrigerant flows through the compressor (101), the regenerative heat exchanger (102), and the second heat exchanger (104) in this order.

−運転動作−
上記調湿装置の運転動作について説明する。この調湿装置は、室内へ供給される空気を加湿する加湿運転と室内へ供給される空気を除湿する除湿運転とを切り換えて行う。また、この調湿装置は、第1動作と第2動作とを交互に繰り返すことによって加湿運転や除湿運転を行う。
-Driving action-
The operation of the humidity control apparatus will be described. This humidity control apparatus performs switching between a humidifying operation for humidifying air supplied to the room and a dehumidifying operation for dehumidifying air supplied to the room. The humidity control apparatus performs a humidifying operation and a dehumidifying operation by alternately repeating the first operation and the second operation.

〈加湿運転〉
図1,図2に示すように、排気ファン(95)を駆動すると、室外空気(OA)が室外側吸込口(13)を通じてケーシング(10)内の右下部流路(66)へ第1空気として取り込まれる。一方、給気ファン(96)を駆動すると、室内空気(RA)が室内側吸込口(15)を通じてケーシング(10)内の左下部流路(68)へ第2空気として取り込まれる。
<Humidification operation>
As shown in FIG. 1 and FIG. 2, when the exhaust fan (95) is driven, the outdoor air (OA) passes through the outdoor suction port (13) to the right lower flow path (66) in the casing (10). Is taken in as. On the other hand, when the air supply fan (96) is driven, the room air (RA) is taken as the second air into the lower left channel (68) in the casing (10) through the room-side suction port (15).

図7に示すように、起動時動作において、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり第2熱交換器(104)が蒸発器となる一方、第1熱交換器(103)が休止している。この状態では、第2熱交換器(104)を通過する第2空気が冷却され、第1熱交換器(103)を通過する第1空気は加熱も冷却もされない。   As shown in FIG. 7, in the startup operation, in the refrigerant circuit (100), the regenerative heat exchanger (102) serves as a condenser and the second heat exchanger (104) serves as an evaporator, while the first heat exchanger. (103) is paused. In this state, the second air passing through the second heat exchanger (104) is cooled, and the first air passing through the first heat exchanger (103) is neither heated nor cooled.

一方、図8に示すように、通常動作において、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり第1熱交換器(103)が蒸発器となる一方、第2熱交換器(104)が休止している。この状態では、第1熱交換器(103)を通過する第1空気が冷却され、第2熱交換器(104)を通過する第2空気は加熱も冷却もされない。   On the other hand, as shown in FIG. 8, in the normal operation, in the refrigerant circuit (100), the regenerative heat exchanger (102) serves as a condenser and the first heat exchanger (103) serves as an evaporator, while the second heat exchange. The vessel (104) is at rest. In this state, the first air passing through the first heat exchanger (103) is cooled, and the second air passing through the second heat exchanger (104) is neither heated nor cooled.

(第1動作)
加湿運転の第1動作について、図1,図7及び図8を参照しながら説明する。この第1動作では、第1吸着素子(81)についての吸着動作と、第2吸着素子(82)についての再生動作とが行われる。
(First operation)
The first operation of the humidifying operation will be described with reference to FIGS. In the first operation, an adsorption operation for the first adsorption element (81) and a regeneration operation for the second adsorption element (82) are performed.

図1に示すように、右側仕切板(20)では、第1右上開口(23)と第1右下開口(24)とが連通状態となり、残りの開口(21,22,25,26)が遮断状態となっている。左側仕切板(30)では、第1左側開口(31)と第2左上開口(35)とが連通状態となり、残りの開口(32,33,34,36)が遮断状態となっている。第1シャッタ(61)は閉鎖状態となり、第2シャッタ(62)は開口状態となっている。   As shown in FIG. 1, in the right partition plate (20), the first upper right opening (23) and the first lower right opening (24) are in communication, and the remaining openings (21, 22, 25, 26) are in communication. Blocked state. In the left partition plate (30), the first left opening (31) and the second upper left opening (35) are in communication, and the remaining openings (32, 33, 34, 36) are in a blocking state. The first shutter (61) is in a closed state, and the second shutter (62) is in an open state.

第1空気は、右下部流路(66)から第1右下開口(24)を通って第1下部流路(54)へ流入する。一方、第2空気は、左下部流路(68)から第1左側開口(31)を通って第1流路(51)へ流入する。   The first air flows from the lower right channel (66) through the first lower right opening (24) to the first lower channel (54). On the other hand, the second air flows from the lower left channel (68) through the first left opening (31) to the first channel (51).

図7,図8にも示すように、第1下部流路(54)の第1空気は、第1吸着素子(81)の調湿側通路(85)へ流入し、それに含まれる水分が吸着剤に吸着される。第1吸着素子(81)で水分を奪われた第1空気は、第1上部流路(53)へ流入し、第1右上開口(23)から右上部流路(65)を通って第1空間(41)へ流入する。第1空間(41)へ流入した第1空気は、第1熱交換器(103)を通過し、その後に排気口(14)を通って室外へ排出される。   As shown in FIGS. 7 and 8, the first air in the first lower flow path (54) flows into the humidity adjusting side passageway (85) of the first adsorption element (81), and moisture contained therein is adsorbed. Adsorbed to the agent. The first air deprived of moisture by the first adsorbing element (81) flows into the first upper flow path (53), passes through the first upper right opening (23) and passes through the upper right flow path (65) to the first air. It flows into the space (41). The first air that has flowed into the first space (41) passes through the first heat exchanger (103), and then is discharged to the outside through the exhaust port (14).

一方、第1流路(51)の第2空気は、第1吸着素子(81)の冷却側通路(86)へ流入し、調湿側通路(85)で水分が吸着剤に吸着される際に生じた吸着熱を吸熱する。第1吸着素子(81)で加熱された第2空気は、中央流路(57)へ流入して再生熱交換器(102)を通過する間に加熱されてから第2下部流路(56)へ流入する。続いて、第2空気は、第2吸着素子(82)の調湿側通路(85)へ流入し、加熱された吸着剤から脱離した水分を付与される。第2吸着素子(82)で加湿された第2空気は、第2上部流路(55)へ流入し、第2左上開口(35)から左上部流路(67)を通って第2空間(42)へ流入する。第2空間(42)へ流入した第2空気は、第2熱交換器(104)を通過し、その後に給気口(16)を通って室内へ供給される。   On the other hand, the second air in the first flow path (51) flows into the cooling side passage (86) of the first adsorption element (81), and moisture is adsorbed by the adsorbent in the humidity adjustment side passage (85). Absorbs the heat of adsorption generated in The second air heated by the first adsorption element (81) flows into the central flow path (57) and is heated while passing through the regenerative heat exchanger (102), and then the second lower flow path (56). Flow into. Subsequently, the second air flows into the humidity adjusting side passageway (85) of the second adsorption element (82) and is given moisture desorbed from the heated adsorbent. The second air humidified by the second adsorption element (82) flows into the second upper channel (55), passes through the second upper left opening (35), passes through the upper left channel (67), and enters the second space ( 42). The second air that has flowed into the second space (42) passes through the second heat exchanger (104), and then is supplied into the room through the air supply port (16).

(第2動作)
加湿運転の第2動作について、図2を参照しながら説明する。この第2動作では、第1動作時とは逆に、第2吸着素子(82)についての吸着動作と、第1吸着素子(81)についての再生動作とが行われる。
(Second operation)
The second operation of the humidifying operation will be described with reference to FIG. In the second operation, contrary to the first operation, an adsorption operation for the second adsorption element (82) and a regeneration operation for the first adsorption element (81) are performed.

図2に示すように、右側仕切板(20)では、第2右上開口(25)と第2右下開口(26)とが連通状態となり、残りの開口(21,22,23,24)が遮断状態となっている。左側仕切板(30)では、第2左側開口(32)と第1左上開口(33)とが連通状態となり、残りの開口(31,34,35,36)が遮断状態となっている。第1シャッタ(61)は開口状態となり、第2シャッタ(62)は閉鎖状態となっている。   As shown in FIG. 2, in the right partition plate (20), the second upper right opening (25) and the second lower right opening (26) are in communication, and the remaining openings (21, 22, 23, 24) are connected. Blocked state. In the left partition plate (30), the second left opening (32) and the first upper left opening (33) are in communication with each other, and the remaining openings (31, 34, 35, 36) are in a blocking state. The first shutter (61) is in an open state, and the second shutter (62) is in a closed state.

第1空気は、右下部流路(66)から第2右下開口(26)を通って第2下部流路(56)へ流入する。一方、第2空気は、左下部流路(68)から第2左側開口(32)を通って第2流路(52)へ流入する。   The first air flows from the lower right channel (66) through the second lower right opening (26) to the second lower channel (56). On the other hand, the second air flows from the lower left channel (68) through the second left opening (32) into the second channel (52).

第2下部流路(56)の第1空気は、第2吸着素子(82)の調湿側通路(85)へ流入し、それに含まれる水分が吸着剤に吸着される。第2吸着素子(82)で水分を奪われた第1空気は、第2上部流路(55)へ流入し、第2右上開口(25)から右上部流路(65)を通って第1空間(41)へ流入する。第1空間(41)へ流入した第1空気は、第1熱交換器(103)を通過し、その後に排気口(14)を通って室外へ排出される。   The first air in the second lower flow path (56) flows into the humidity adjustment side passage (85) of the second adsorption element (82), and the moisture contained therein is adsorbed by the adsorbent. The first air deprived of moisture by the second adsorption element (82) flows into the second upper flow path (55), passes through the second upper right opening (25) and passes through the upper right flow path (65) to the first air. It flows into the space (41). The first air that has flowed into the first space (41) passes through the first heat exchanger (103), and then is discharged to the outside through the exhaust port (14).

一方、第2流路(52)の第2空気は、第2吸着素子(82)の冷却側通路(86)へ流入し、調湿側通路(85)で水分が吸着剤に吸着される際に生じた吸着熱を吸熱する。第2吸着素子(82)で加熱された第2空気は、中央流路(57)へ流入して再生熱交換器(102)を通過する間に加熱されてから第1下部流路(54)へ流入する。続いて、第2空気は、第1吸着素子(81)の調湿側通路(85)へ流入し、加熱された吸着剤から脱離した水分を付与される。第1吸着素子(81)で加湿された第2空気は、第1上部流路(53)へ流入し、第1左上開口(33)から左上部流路(67)を通って第2空間(42)へ流入する。第2空間(42)へ流入した第2空気は、第2熱交換器(104)を通過し、その後に給気口(16)を通って室内へ供給される。   On the other hand, the second air in the second flow path (52) flows into the cooling side passage (86) of the second adsorption element (82), and moisture is adsorbed by the adsorbent in the humidity adjustment side passage (85). Absorbs the heat of adsorption generated in The second air heated by the second adsorption element (82) flows into the central flow path (57) and is heated while passing through the regenerative heat exchanger (102), and then the first lower flow path (54). Flow into. Subsequently, the second air flows into the humidity adjusting side passageway (85) of the first adsorption element (81) and is given moisture desorbed from the heated adsorbent. The second air humidified by the first adsorption element (81) flows into the first upper flow path (53), passes through the first upper left opening (33), passes through the upper left flow path (67), and enters the second space ( 42). The second air that has flowed into the second space (42) passes through the second heat exchanger (104), and then is supplied into the room through the air supply port (16).

〈除湿運転〉
図3,図4に示すように、排気ファン(95)を駆動すると、室外空気(OA)が室外側吸込口(13)を通じてケーシング(10)内の右下部流路(66)へ第2空気として取り込まれる。一方、給気ファン(96)を駆動すると、室内空気(RA)が室内側吸込口(15)を通じてケーシング(10)内の左下部流路(68)へ第1空気として取り込まれる。
<Dehumidifying operation>
As shown in FIGS. 3 and 4, when the exhaust fan (95) is driven, the outdoor air (OA) passes through the outdoor suction port (13) to the second lower air flow path (66) in the casing (10). Is taken in as. On the other hand, when the air supply fan (96) is driven, the indoor air (RA) is taken as the first air into the lower left channel (68) in the casing (10) through the indoor suction port (15).

また、図9に示すように、起動時動作において、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり第1熱交換器(103)が蒸発器となる一方、第2熱交換器(104)が休止している。この状態では、第1熱交換器(103)を通過する第2空気が冷却され、第2熱交換器(104)を通過する第1空気は加熱も冷却もされない。   Further, as shown in FIG. 9, in the startup operation, in the refrigerant circuit (100), the regenerative heat exchanger (102) serves as a condenser and the first heat exchanger (103) serves as an evaporator, while the second heat The exchanger (104) is at rest. In this state, the second air passing through the first heat exchanger (103) is cooled, and the first air passing through the second heat exchanger (104) is neither heated nor cooled.

一方、図10に示すように、通常動作において、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり第2熱交換器(104)が蒸発器となる一方、第1熱交換器(103)が休止している。この状態では、第2熱交換器(104)を通過する第1空気が冷却され、第1熱交換器(103)を通過する第2空気は加熱も冷却もされない。   On the other hand, as shown in FIG. 10, in the normal operation, in the refrigerant circuit (100), the regenerative heat exchanger (102) serves as a condenser and the second heat exchanger (104) serves as an evaporator, while the first heat exchange. The vessel (103) is at rest. In this state, the first air passing through the second heat exchanger (104) is cooled, and the second air passing through the first heat exchanger (103) is neither heated nor cooled.

(第1動作)
除湿運転の第1動作について、図3,図9及び図10を参照しながら説明する。この第1動作では、第1吸着素子(81)についての吸着動作と、第2吸着素子(82)についての再生動作とが行われる。
(First operation)
The first operation of the dehumidifying operation will be described with reference to FIGS. In the first operation, an adsorption operation for the first adsorption element (81) and a regeneration operation for the second adsorption element (82) are performed.

図3に示すように、右側仕切板(20)では、第1右側開口(21)と第2右上開口(25)とが連通状態となり、残りの開口(22,23,24,26)が遮断状態となっている。左側仕切板(30)では、第1左上開口(33)と第1左下開口(34)とが連通状態となり、残りの開口(31,32,35,36)が遮断状態となっている。第1シャッタ(61)は閉鎖状態となり、第2シャッタ(62)は開口状態となっている。   As shown in FIG. 3, in the right partition plate (20), the first right opening (21) and the second upper right opening (25) are in communication, and the remaining openings (22, 23, 24, 26) are blocked. It is in a state. In the left partition plate (30), the first upper left opening (33) and the first lower left opening (34) are in communication, and the remaining openings (31, 32, 35, 36) are in a blocked state. The first shutter (61) is in a closed state, and the second shutter (62) is in an open state.

第1空気は、左下部流路(68)から第1左下開口(34)を通って第1下部流路(54)へ流入する。一方、第2空気は、右下部流路(66)から第1右側開口(21)を通って第1流路(51)へ流入する。   The first air flows from the lower left channel (68) through the first lower left opening (34) into the first lower channel (54). On the other hand, the second air flows from the lower right channel (66) through the first right opening (21) into the first channel (51).

図9,図10にも示すように、第1下部流路(54)の第1空気は、第1吸着素子(81)の調湿側通路(85)へ流入し、それに含まれる水分が吸着剤に吸着される。第1吸着素子(81)で減湿された第1空気は、第1上部流路(53)へ流入し、第1左上開口(33)から左上部流路(67)を通って第2空間(42)へ流入する。第2空間(42)へ流入した第1空気は、第2熱交換器(104)を通過し、その後に給気口(16)を通って室内へ供給される。   As shown in FIGS. 9 and 10, the first air in the first lower flow path (54) flows into the humidity adjustment side passage (85) of the first adsorption element (81), and moisture contained therein is adsorbed. Adsorbed to the agent. The first air dehumidified by the first adsorption element (81) flows into the first upper flow path (53), passes through the first upper left opening (33), passes through the upper left flow path (67), and enters the second space. Flows into (42). The first air that has flowed into the second space (42) passes through the second heat exchanger (104), and then is supplied into the room through the air supply port (16).

一方、第1流路(51)の第2空気は、第1吸着素子(81)の冷却側通路(86)へ流入し、調湿側通路(85)で水分が吸着剤に吸着される際に生じた吸着熱を吸熱する。第1吸着素子(81)で加熱された第2空気は、中央流路(57)へ流入して再生熱交換器(102)を通過する間に加熱されてから第2下部流路(56)へ流入する。続いて、第2空気は、第2吸着素子(82)の調湿側通路(85)へ流入し、加熱された吸着剤から脱離した水分を付与される。第2吸着素子(82)の再生に利用された第2空気は、第2上部流路(55)へ流入し、第2右上開口(25)から右上部流路(65)を通って第1空間(41)へ流入する。第1空間(41)へ流入した第2空気は、第1熱交換器(103)を通過し、その後に排気口(14)を通って室外へ排出される。   On the other hand, the second air in the first flow path (51) flows into the cooling side passage (86) of the first adsorption element (81), and moisture is adsorbed by the adsorbent in the humidity adjustment side passage (85). Absorbs the heat of adsorption generated in The second air heated by the first adsorption element (81) flows into the central flow path (57) and is heated while passing through the regenerative heat exchanger (102), and then the second lower flow path (56). Flow into. Subsequently, the second air flows into the humidity adjusting side passageway (85) of the second adsorption element (82) and is given moisture desorbed from the heated adsorbent. The second air used for the regeneration of the second adsorption element (82) flows into the second upper channel (55), passes through the upper right channel (65) from the second upper right opening (25), and passes through the first upper channel (55). It flows into the space (41). The second air that has flowed into the first space (41) passes through the first heat exchanger (103), and then is discharged to the outside through the exhaust port (14).

(第2動作)
除湿運転の第2動作について、図4を参照しながら説明する。この第2動作では、第1動作時とは逆に、第2吸着素子(82)についての吸着動作と、第1吸着素子(81)についての再生動作とが行われる。
(Second operation)
The second operation of the dehumidifying operation will be described with reference to FIG. In the second operation, contrary to the first operation, an adsorption operation for the second adsorption element (82) and a regeneration operation for the first adsorption element (81) are performed.

図4に示すように、右側仕切板(20)では、第2右側開口(22)と第1右上開口(23)とが連通状態となり、残りの開口(21,24,25,26)が遮断状態となっている。左側仕切板(30)では、第2左上開口(35)と第2左下開口(36)とが連通状態となり、残りの開口(31,32,33,34)が遮断状態となっている。第1シャッタ(61)は開口状態となり、第2シャッタ(62)は閉鎖状態となっている。   As shown in FIG. 4, in the right partition plate (20), the second right opening (22) and the first upper right opening (23) are in communication with each other and the remaining openings (21, 24, 25, 26) are blocked. It is in a state. In the left partition plate (30), the second upper left opening (35) and the second lower left opening (36) are in communication with each other, and the remaining openings (31, 32, 33, 34) are in a blocked state. The first shutter (61) is in an open state, and the second shutter (62) is in a closed state.

第1空気は、左下部流路(68)から第2左下開口(36)を通って第2下部流路(56)へ流入する。一方、第2空気は、右下部流路(66)から第2右側開口(22)を通って第2流路(52)へ流入する。   The first air flows from the lower left channel (68) through the second lower left opening (36) to the second lower channel (56). On the other hand, the second air flows from the lower right channel (66) through the second right opening (22) into the second channel (52).

第2下部流路(56)の第1空気は、第2吸着素子(82)の調湿側通路(85)へ流入し、それに含まれる水分が吸着剤に吸着される。第2吸着素子(82)で減湿された第1空気は、第2上部流路(55)へ流入し、第2左上開口(35)から左上部流路(67)を通って第2空間(42)へ流入する。第2空間(42)へ流入した第1空気は、第2熱交換器(104)を通過し、その後に給気口(16)を通って室内へ供給される。   The first air in the second lower flow path (56) flows into the humidity adjustment side passage (85) of the second adsorption element (82), and the moisture contained therein is adsorbed by the adsorbent. The first air dehumidified by the second adsorption element (82) flows into the second upper flow path (55), passes through the second upper left opening (35), passes through the upper left flow path (67), and enters the second space. Flows into (42). The first air that has flowed into the second space (42) passes through the second heat exchanger (104), and then is supplied into the room through the air supply port (16).

一方、第2流路(52)の第2空気は、第2吸着素子(82)の冷却側通路(86)へ流入し、調湿側通路(85)で水分が吸着剤に吸着される際に生じた吸着熱を吸熱する。第2吸着素子(82)で加熱された第2空気は、中央流路(57)へ流入して再生熱交換器(102)を通過する間に加熱されてから第1下部流路(54)へ流入する。続いて、第2空気は、第1吸着素子(81)の調湿側通路(85)へ流入し、加熱された吸着剤から脱離した水分を付与される。第1吸着素子(81)の再生に利用された第2空気は、第1上部流路(53)へ流入し、第1右上開口(23)から右上部流路(65)を通って第1空間(41)へ流入する。第1空間(41)へ流入した第2空気は、第1熱交換器(103)を通過し、その後に排気口(14)を通って室外へ排出される。   On the other hand, the second air in the second flow path (52) flows into the cooling side passage (86) of the second adsorption element (82), and moisture is adsorbed by the adsorbent in the humidity adjustment side passage (85). Absorbs the heat of adsorption generated in The second air heated by the second adsorption element (82) flows into the central flow path (57) and is heated while passing through the regenerative heat exchanger (102), and then the first lower flow path (54). Flow into. Subsequently, the second air flows into the humidity adjusting side passageway (85) of the first adsorption element (81) and is given moisture desorbed from the heated adsorbent. The second air used for the regeneration of the first adsorption element (81) flows into the first upper flow path (53), passes through the first upper right opening (23) and passes through the upper right flow path (65) to the first. It flows into the space (41). The second air that has flowed into the first space (41) passes through the first heat exchanger (103), and then is discharged to the outside through the exhaust port (14).

−起動時の運転制御−
上記調湿装置における起動時の運転制御について説明する。
-Operation control at startup-
The operation control at the time of starting in the humidity control apparatus will be described.

〈加湿運転〉
加湿運転を開始する場合、上記調湿装置は起動直後に起動時動作を行い、その後に起動時動作から通常動作への切り換えを行う。
<Humidification operation>
When the humidification operation is started, the humidity control apparatus performs an activation operation immediately after activation, and then switches from the activation operation to the normal operation.

起動時動作において、冷媒回路(100)では、第1電動膨張弁(111)が閉状態とされ、第2電動膨張弁(112)の開度が運転条件に応じて適宜調節される。   In the startup operation, in the refrigerant circuit (100), the first electric expansion valve (111) is closed, and the opening degree of the second electric expansion valve (112) is appropriately adjusted according to the operating conditions.

図6,図7に示すように、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)で第2空気と熱交換し、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、第2電動膨張弁(112)を通過後に第2熱交換器(104)へ流入する。第2熱交換器(104)では、冷媒が第2空気と熱交換し、第2空気から吸熱して蒸発する。第2熱交換器(104)で蒸発した冷媒は、圧縮機(101)へ吸入されて圧縮される。   As shown in FIGS. 6 and 7, the refrigerant discharged from the compressor (101) exchanges heat with the second air in the regenerative heat exchanger (102), dissipates heat to the second air, and condenses. The refrigerant condensed in the regenerative heat exchanger (102) flows into the second heat exchanger (104) after passing through the second electric expansion valve (112). In the second heat exchanger (104), the refrigerant exchanges heat with the second air, absorbs heat from the second air, and evaporates. The refrigerant evaporated in the second heat exchanger (104) is sucked into the compressor (101) and compressed.

一方、調湿装置の起動時動作中に湿度センサ(2)の検出値が所定の基準値(ここでは、相対湿度40%)に達すると、起動時動作から通常動作に切り換わる。通常動作において、冷媒回路(100)では、第2電動膨張弁(112)が閉状態とされ、第1電動膨張弁(111)の開度が運転条件に応じて適宜調節される。   On the other hand, when the detected value of the humidity sensor (2) reaches a predetermined reference value (here, relative humidity 40%) during the startup operation of the humidity control device, the startup operation is switched to the normal operation. In normal operation, in the refrigerant circuit (100), the second electric expansion valve (112) is closed, and the opening degree of the first electric expansion valve (111) is appropriately adjusted according to the operating conditions.

図6,図8に示すように、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)で第2空気と熱交換し、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、第1電動膨張弁(111)を通過後に第1熱交換器(103)へ流入する。第1熱交換器(103)では、冷媒が第1空気と熱交換し、第1空気から吸熱して蒸発する。第1熱交換器(103)で蒸発した冷媒は、圧縮機(101)へ吸入されて圧縮される。   As shown in FIGS. 6 and 8, the refrigerant discharged from the compressor (101) exchanges heat with the second air in the regenerative heat exchanger (102), dissipates heat to the second air, and condenses. The refrigerant condensed in the regenerative heat exchanger (102) flows into the first heat exchanger (103) after passing through the first electric expansion valve (111). In the first heat exchanger (103), the refrigerant exchanges heat with the first air, absorbs heat from the first air, and evaporates. The refrigerant evaporated in the first heat exchanger (103) is sucked into the compressor (101) and compressed.

ここで、冬季において、調湿装置を起動する際の室外空気(OA)の温度を0℃程度とし、室内空気(RA)の温度を10〜15℃程度とした場合を例に説明する。この状態では、ケーシング(10)内に取り込まれる第1空気の温度が0℃程度となり、ケーシング(10)内に取り込まれる第2空気の温度が10〜15℃程度となる。   Here, in the winter, an example will be described in which the temperature of the outdoor air (OA) when starting the humidity control device is about 0 ° C. and the temperature of the indoor air (RA) is about 10 to 15 ° C. In this state, the temperature of the 1st air taken in in a casing (10) will be about 0 degreeC, and the temperature of the 2nd air taken in in a casing (10) will be about 10-15 degreeC.

図7,図8に示すように、第1空気は、第1吸着素子(81)で水分を吸着された後に第1熱交換器(103)へ流入する。第2空気は、再生熱交換器(102)で加熱され、第2吸着素子(82)を再生した後に第2熱交換器(104)へ流入する。また、第2吸着素子(82)を再生するためには、再生熱交換器(102)で第2空気を比較的高い温度まで加熱する必要があり、第2吸着素子(82)を通過後の第2空気の温度も比較的高くなる。そして、第1熱交換器(103)へ流入する第1空気の温度が10℃程度となり、第2熱交換器(104)へ流入する第2空気の温度が35℃程度となる。   As shown in FIGS. 7 and 8, the first air flows into the first heat exchanger (103) after moisture is adsorbed by the first adsorption element (81). The second air is heated by the regenerative heat exchanger (102), regenerates the second adsorption element (82), and then flows into the second heat exchanger (104). In addition, in order to regenerate the second adsorption element (82), it is necessary to heat the second air to a relatively high temperature in the regenerative heat exchanger (102), and after passing through the second adsorption element (82) The temperature of the second air is also relatively high. The temperature of the first air flowing into the first heat exchanger (103) is about 10 ° C., and the temperature of the second air flowing into the second heat exchanger (104) is about 35 ° C.

また、起動時動作中には第2熱交換器(104)を通過する第2空気と冷媒との間で熱交換が行われ、通常動作中には第1熱交換器(103)を通過する第1空気と冷媒との間で熱交換が行われる。上述のように、第2熱交換器(104)へ流入する第2空気の温度は、第1熱交換器(103)へ流入する第1空気の温度よりも高い。このため、第2熱交換器(104)で第2空気が冷媒と熱交換する起動時動作中は、第1熱交換器(103)で第1空気が冷媒と熱交換する通常動作中に比べて、冷媒の蒸発温度が高くなる。そして、冷凍サイクルの低圧が高くなるため、それに伴って冷凍サイクルの高圧も上昇し、再生熱交換器(102)における冷媒の凝縮温度が高くなる。   In addition, heat exchange is performed between the second air passing through the second heat exchanger (104) and the refrigerant during the startup operation, and the first heat exchanger (103) is passed during the normal operation. Heat exchange is performed between the first air and the refrigerant. As described above, the temperature of the second air flowing into the second heat exchanger (104) is higher than the temperature of the first air flowing into the first heat exchanger (103). For this reason, during the start-up operation in which the second air exchanges heat with the refrigerant in the second heat exchanger (104), compared to during the normal operation in which the first air exchanges heat with the refrigerant in the first heat exchanger (103). As a result, the evaporation temperature of the refrigerant increases. And since the low pressure of a refrigerating cycle becomes high, the high pressure of a refrigerating cycle also rises in connection with it, and the condensation temperature of the refrigerant | coolant in a regenerative heat exchanger (102) becomes high.

よって、起動時動作中には、通常動作中よりも再生熱交換器(102)で冷媒と熱交換した後の第2空気の温度が高くなり、再生熱交換器(102)から第2吸着素子(82)へ送られる第2空気の温度が高くなる。また、第2吸着素子(82)へ送られる第2空気の温度が高くなると、第2吸着素子(82)の吸着剤から脱離する水分が増加する。このため、起動時動作中には、通常動作中よりも第2吸着素子(82)における第2空気への加湿量が増加する。   Therefore, during the start-up operation, the temperature of the second air after heat exchange with the refrigerant in the regenerative heat exchanger (102) becomes higher than during normal operation, and the second adsorbing element from the regenerative heat exchanger (102). The temperature of the 2nd air sent to (82) becomes high. Moreover, when the temperature of the 2nd air sent to a 2nd adsorption element (82) becomes high, the water | moisture content isolate | separated from the adsorption agent of a 2nd adsorption element (82) will increase. For this reason, the amount of humidification to the 2nd air in the 2nd adsorption element (82) increases during operation at the time of starting compared with normal operation.

〈除湿運転〉
除湿運転を開始する場合、上記調湿装置は、起動直後に起動時動作を行い、その後に起動時動作から通常動作への切り換えを行う。
<Dehumidifying operation>
When the dehumidifying operation is started, the humidity control apparatus performs a startup operation immediately after startup, and then switches from the startup operation to the normal operation.

起動時動作において、冷媒回路(100)では、第2電動膨張弁(112)が閉状態とされ、第1電動膨張弁(111)の開度が運転条件に応じて適宜調節される。   In the startup operation, in the refrigerant circuit (100), the second electric expansion valve (112) is closed, and the opening degree of the first electric expansion valve (111) is appropriately adjusted according to the operating conditions.

図6,図9に示すように、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)で第2空気と熱交換し、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、第1電動膨張弁(111)を通過後に第1熱交換器(103)へ流入する。第1熱交換器(103)では、冷媒が第2空気と熱交換し、第2空気から吸熱して蒸発する。第1熱交換器(103)で蒸発した冷媒は、圧縮機(101)へ吸入されて圧縮される。   As shown in FIGS. 6 and 9, the refrigerant discharged from the compressor (101) exchanges heat with the second air in the regenerative heat exchanger (102), dissipates heat to the second air, and condenses. The refrigerant condensed in the regenerative heat exchanger (102) flows into the first heat exchanger (103) after passing through the first electric expansion valve (111). In the first heat exchanger (103), the refrigerant exchanges heat with the second air, absorbs heat from the second air, and evaporates. The refrigerant evaporated in the first heat exchanger (103) is sucked into the compressor (101) and compressed.

一方、調湿装置の起動時動作中に湿度センサ(2)の検出値が所定の基準値(ここでは、相対湿度47%)に達すると、起動時動作から通常時動作に切り換わる。通常動作において、冷媒回路(100)では、第1電動膨張弁(111)が閉状態とされ、第2電動膨張弁(112)の開度が運転条件に応じて適宜調節される。   On the other hand, when the detected value of the humidity sensor (2) reaches a predetermined reference value (here, the relative humidity is 47%) during the startup operation of the humidity control device, the startup operation is switched to the normal operation. In normal operation, in the refrigerant circuit (100), the first electric expansion valve (111) is closed, and the opening degree of the second electric expansion valve (112) is appropriately adjusted according to the operating conditions.

図6,図10に示すように、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)で第2空気と熱交換し、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、第2電動膨張弁(112)を通過後に第2熱交換器(104)へ流入する。第2熱交換器(104)では、冷媒が第1空気と熱交換し、第1空気から吸熱して蒸発する。第2熱交換器(104)で蒸発した冷媒は、圧縮機(101)へ吸入されて圧縮される。   As shown in FIGS. 6 and 10, the refrigerant discharged from the compressor (101) exchanges heat with the second air in the regenerative heat exchanger (102), dissipates heat to the second air, and condenses. The refrigerant condensed in the regenerative heat exchanger (102) flows into the second heat exchanger (104) after passing through the second electric expansion valve (112). In the second heat exchanger (104), the refrigerant exchanges heat with the first air, absorbs heat from the first air, and evaporates. The refrigerant evaporated in the second heat exchanger (104) is sucked into the compressor (101) and compressed.

図9,図10に示すように、第1空気は、第1吸着素子(81)で水分を吸着された後に第2熱交換器(104)へ流入する。第2空気は、再生熱交換器(102)で加熱され、第2吸着素子(82)を再生した後に第1熱交換器(103)へ流入する。また、第2吸着素子(82)を再生するために、第2空気が比較的高い温度まで再生熱交換器(102)で加熱され、これに伴って第2吸着素子(82)を通過後の第2空気の温度も比較的高くなる。そして、第1熱交換器(103)へ流入する第2空気の温度は、第2熱交換器(104)へ流入する第1空気の温度よりも高くなる。   As shown in FIGS. 9 and 10, the first air flows into the second heat exchanger (104) after moisture is adsorbed by the first adsorption element (81). The second air is heated by the regenerative heat exchanger (102), regenerates the second adsorption element (82), and then flows into the first heat exchanger (103). Further, in order to regenerate the second adsorption element (82), the second air is heated to a relatively high temperature in the regenerative heat exchanger (102), and accordingly, after passing through the second adsorption element (82). The temperature of the second air is also relatively high. And the temperature of the 2nd air which flows in into a 1st heat exchanger (103) becomes higher than the temperature of the 1st air which flows into a 2nd heat exchanger (104).

また、起動時動作中には第1熱交換器(103)を通過する第2空気と冷媒との間で熱交換が行われ、通常動作中には第2熱交換器(104)を通過する第1空気と冷媒との間で熱交換が行われる。上述のように、第1熱交換器(103)へ流入する第2空気の温度は、第2熱交換器(104)へ流入する第1空気の温度よりも高い。このため、第1熱交換器(103)で第2空気が冷媒と熱交換する起動時動作中は、第2熱交換器(104)で第1空気が冷媒と熱交換する通常動作中と比べて、冷媒の蒸発温度が高くなる。そして、冷凍サイクルの低圧が高くなるため、それに伴って冷凍サイクルの高圧も上昇し、再生熱交換器(102)における冷媒の凝縮温度が高くなる。   In addition, heat is exchanged between the second air passing through the first heat exchanger (103) and the refrigerant during the startup operation, and passes through the second heat exchanger (104) during the normal operation. Heat exchange is performed between the first air and the refrigerant. As described above, the temperature of the second air flowing into the first heat exchanger (103) is higher than the temperature of the first air flowing into the second heat exchanger (104). For this reason, the start-up operation in which the second air exchanges heat with the refrigerant in the first heat exchanger (103) is compared with the normal operation in which the first air exchanges heat with the refrigerant in the second heat exchanger (104). As a result, the evaporation temperature of the refrigerant increases. And since the low pressure of a refrigerating cycle becomes high, the high pressure of a refrigerating cycle also rises in connection with it, and the condensation temperature of the refrigerant | coolant in a regenerative heat exchanger (102) becomes high.

よって、起動時動作中には、通常動作中よりも再生熱交換器(102)で冷媒と熱交換した後の第2空気の温度が高くなり、第2吸着素子(82)へ流入する第2空気の温度が高くなってこの吸着素子(82)の吸着剤から脱離する水分が増加する。つまり、起動時動作中には、第2吸着素子(82)で第2空気へ付与される水分量が通常動作中よりも増加する。また、起動時動作中に第2吸着素子(82)から脱離する水分量が増すため、再生動作の終了時点で第2吸着素子(82)に残存する水分量も減少する。従って、起動時動作中には、第2吸着素子(82)における第1空気からの除湿量も増加する。   Therefore, during the start-up operation, the temperature of the second air after heat exchange with the refrigerant in the regenerative heat exchanger (102) becomes higher than during normal operation, and the second air flowing into the second adsorption element (82) flows. As the temperature of the air increases, the moisture desorbed from the adsorbent of the adsorption element (82) increases. That is, during the start-up operation, the amount of moisture applied to the second air by the second adsorption element (82) increases more than during normal operation. Further, since the amount of moisture desorbed from the second adsorption element (82) during the start-up operation increases, the amount of moisture remaining in the second adsorption element (82) at the end of the regeneration operation also decreases. Therefore, during the startup operation, the amount of dehumidification from the first air in the second adsorption element (82) also increases.

−参考形態1の効果−
本参考形態では、起動時してから湿度センサ(2)の検出値が所定の基準値に達するまで起動時動作が行われる。起動時動作中には第1熱交換器(103)と第2熱交換器(104)のうち第2空気が通過する方だけが蒸発器となり、通常動作中には第1熱交換器(103)と第2熱交換器(104)のうち第1空気が通過する方だけが蒸発器となる。
-Effect of Reference Form 1-
In the present embodiment, the startup operation is performed until the detected value of the humidity sensor (2) reaches a predetermined reference value after startup. Of the first heat exchanger (103) and the second heat exchanger (104), only the one through which the second air passes becomes an evaporator during the start-up operation, and during the normal operation, the first heat exchanger (103 ) And the second heat exchanger (104), only the one through which the first air passes becomes an evaporator.

ここで、第1空気は吸着側の吸着素子(81,82)で水分を吸着された後に蒸発器へ流入し、第2空気は再生熱交換器(102)で加熱された後に再生側の吸着素子(81,82)を再生してから蒸発器へ流入する。また、再生側の吸着素子(81,82)を再生するためには、再生熱交換器(102)で第2空気を比較的高い温度まで加熱する必要があり、この吸着素子(81,82)を通過後の第2空気の温度も比較的高くなる。このため、蒸発器で第2空気が冷媒と熱交換する起動時動作中は、蒸発器で第1空気が冷媒と熱交換する通常動作中に比べて冷媒の蒸発温度が高くなる。そして、冷凍サイクルの低圧が高くなるため、それに伴って冷凍サイクルの高圧も上昇し、凝縮器における冷媒の凝縮温度が高くなる。   Here, the first air is adsorbed by the adsorption element (81, 82) on the adsorption side and then flows into the evaporator, and the second air is heated by the regeneration heat exchanger (102) and then adsorbed on the regeneration side. The element (81, 82) is regenerated and then flows into the evaporator. In addition, in order to regenerate the adsorption element (81, 82) on the regeneration side, it is necessary to heat the second air to a relatively high temperature in the regeneration heat exchanger (102), and this adsorption element (81, 82) The temperature of the second air after passing through becomes relatively high. For this reason, during the start-up operation in which the second air exchanges heat with the refrigerant in the evaporator, the evaporation temperature of the refrigerant becomes higher than in the normal operation in which the first air exchanges heat with the refrigerant in the evaporator. And since the low pressure of a refrigerating cycle becomes high, the high pressure of a refrigerating cycle also rises in connection with it, and the condensation temperature of the refrigerant | coolant in a condenser becomes high.

よって、起動時動作中には、通常動作中よりも再生熱交換器(102)から再生側の吸着素子(81,82)へ送られる第2空気の温度を高くすることができ、この吸着素子(81,82)における第2空気への加湿量を増加させることができる。それに伴い、再生動作の終了時点で再生側の吸着素子(81,82)に残存する水分量も減少する。このため、起動時動作中には、吸着側の吸着素子(81,82)における第1空気からの除湿量も増加させることができる。従って、本参考形態によれば、空気の湿度調節を行う調湿装置において、起動してから室内空気(RA)の相対湿度が目標値に達するまでの時間を短縮することができる。   Therefore, during the start-up operation, the temperature of the second air sent from the regeneration heat exchanger (102) to the regeneration-side adsorption element (81, 82) can be made higher than during normal operation. The humidification amount to the second air at (81, 82) can be increased. Along with this, the amount of moisture remaining in the regeneration-side adsorption element (81, 82) at the end of the regeneration operation also decreases. For this reason, during the startup operation, the amount of dehumidification from the first air in the adsorption element (81, 82) on the adsorption side can be increased. Therefore, according to this embodiment, in the humidity control apparatus that adjusts the humidity of the air, the time from when the relative humidity of the room air (RA) reaches the target value after activation can be shortened.

また、本参考形態では、室内空気(RA)の湿度を検出する湿度センサ(2)の検出値が所定の基準値に達すると、起動時動作から通常動作に切り換わる。従って、本参考形態によれば、湿度センサ(2)によって精度良く室内空気(RA)の湿度調節を行うことができ、室内の快適性を保持することができる。   In the present embodiment, when the detected value of the humidity sensor (2) that detects the humidity of the room air (RA) reaches a predetermined reference value, the operation is switched from the startup operation to the normal operation. Therefore, according to the present embodiment, the humidity of the room air (RA) can be accurately adjusted by the humidity sensor (2), and the comfort in the room can be maintained.

−参考形態1の変形例−
上記参考形態1の調湿装置の構成を変更してもよい。ここでは、本変形例について、上記本参考形態1と異なる点を説明する。
-Modification of Reference Form 1-
You may change the structure of the humidity control apparatus of the said reference form 1. FIG. Here, this modification will be described with respect to differences from the first embodiment.

本変形例の調湿装置には、室内空気(RA)の相対湿度を検出するための湿度センサ(2)に代えて、温度検出手段としての温度センサ(図示せず)が設けられている。この温度センサは、室内空気(RA)の温度を検出するためのものであって、ケーシング(10)における室内側吸込口(15)の近傍に設けられている。   The humidity control apparatus of the present modification is provided with a temperature sensor (not shown) as temperature detection means instead of the humidity sensor (2) for detecting the relative humidity of the room air (RA). This temperature sensor is for detecting the temperature of indoor air (RA), and is provided in the vicinity of the indoor inlet (15) in the casing (10).

調湿装置では、ケーシング(10)内に取り込まれる室内空気(RA)の温度が温度センサにより検出される。また、調湿装置では、起動時に起動時動作が行われる一方、起動時動作中に温度センサの検出値が所定の基準値に達すると、通常動作に切り換わる。   In the humidity controller, the temperature of the room air (RA) taken into the casing (10) is detected by a temperature sensor. In the humidity control apparatus, the startup operation is performed at the time of startup, and when the detected value of the temperature sensor reaches a predetermined reference value during the startup operation, the operation is switched to the normal operation.

ここで、例えば冬季において、室外空気(OA)の温度は変動してもその相対湿度は概ね80%程度となる。また、調湿装置の加湿運転時において、室内へ供給される空気(SA)への加湿量及び加熱量は一定である。従って、ケーシング(10)内に取り込まれる室外空気(OA)の温度が低いとその絶対湿度も低く、吸着側の吸着素子(81,82)に吸着される室外空気(OA)中の水分量が少なくなってこの吸着素子(81,82)の温度があまり上昇しない。このため、吸着側の吸着素子(81,82)では室内へ供給される空気(SA)に対する加熱量が少なくなり、それに伴って再生側の吸着素子(81,82)では室内へ供給される空気(SA)に対する加湿量が少なくなる。そして、室外空気(OA)の温度が低いことから室内空気(RA)の温度は緩やかにしか上昇せず、室内へ供給される空気(SA)の絶対湿度が低いことから室内空気(RA)の相対湿度も緩やかにしか上昇してゆかない。   Here, for example, in winter, even if the temperature of the outdoor air (OA) varies, the relative humidity is about 80%. Further, during the humidifying operation of the humidity control apparatus, the humidification amount and the heating amount to the air (SA) supplied to the room are constant. Therefore, if the temperature of the outdoor air (OA) taken into the casing (10) is low, the absolute humidity is also low, and the amount of moisture in the outdoor air (OA) adsorbed by the adsorption element (81, 82) on the adsorption side is low. The temperature of the adsorption element (81, 82) does not increase so much as it decreases. For this reason, in the adsorption element (81, 82) on the adsorption side, the heating amount to the air (SA) supplied to the room is reduced, and accordingly, the air supplied to the room in the adsorption element (81, 82) on the regeneration side. Less humidification for (SA). And since the temperature of outdoor air (OA) is low, the temperature of room air (RA) rises only moderately, and since the absolute humidity of the air (SA) supplied indoors is low, Relative humidity also rises only slowly.

一方、ケーシング(10)内に取り込まれる室外空気(OA)の温度が高いとその絶対湿度も高く、室内へ供給される空気(SA)の絶対湿度が高くなる。そして、室外空気(OA)の温度が高いことから室内空気(RA)の温度は速やかに上昇し、室内へ供給される空気(SA)の絶対湿度が高いことから室内空気(RA)の相対湿度も速やかに上昇してゆく。   On the other hand, when the temperature of the outdoor air (OA) taken into the casing (10) is high, the absolute humidity is high, and the absolute humidity of the air (SA) supplied into the room is high. And since the temperature of outdoor air (OA) is high, the temperature of indoor air (RA) rises quickly, and the relative humidity of indoor air (RA) is high because the absolute humidity of air (SA) supplied to the room is high. Will rise quickly.

このように、室内空気(RA)の温度の上昇速度が高ければその相対湿度の上昇速度も高くなり、逆に室内空気(RA)の温度の上昇速度が低ければその相対湿度の上昇速度も低くなる。つまり、室内空気(RA)の温度と相対湿度には相関関係があり、両者は連動して変化する。よって、温度センサの検出値から室内空気(RA)の相対湿度を推測することができる。そこで、所定の基準値を室内空気(RA)の相対湿度が目標値(加湿動作時には40%、除湿動作時には47%)となる値に設定することにより、室内空気(RA)の相対湿度が目標値に達したところで起動時動作から通常動作に切り換えることができる。   Thus, if the temperature rise rate of the indoor air (RA) is high, the relative humidity rise rate is also high. Conversely, if the temperature rise rate of the room air (RA) is low, the relative humidity rise rate is low. Become. That is, there is a correlation between the temperature of the indoor air (RA) and the relative humidity, and both change in conjunction with each other. Therefore, the relative humidity of room air (RA) can be estimated from the detected value of the temperature sensor. Therefore, the relative humidity of the indoor air (RA) is set to a target value by setting the predetermined reference value to a target value (40% during the humidifying operation and 47% during the dehumidifying operation). When the value is reached, the startup operation can be switched to the normal operation.

また、調湿装置にデータベースを設け、このデータベースで基準値を変更してもよい。上述のように、室外空気(OA)の温度が低いと室内へ供給される空気(SA)の温度が低く、室内空気(RA)の温度の上昇速度が低い。また、室外空気(OA)の温度が高いと室内へ供給される空気(SA)の温度が高く、室内空気(RA)の温度の上昇速度が高い。このため、室外空気(OA)、室内へ供給される空気(SA)、及び室内空気(RA)の温度データに基づいて基準値を設定するデータベースを調湿装置に設けておき、室外空気(OA)、室内へ供給される空気(SA)、及び室内空気(RA)の温度を温度センサで計測して基準値を設定することで、室内空気(RA)の相対湿度の推測値についてその精度を向上させることができる。   Further, a database may be provided in the humidity control apparatus, and the reference value may be changed using this database. As described above, when the temperature of the outdoor air (OA) is low, the temperature of the air (SA) supplied to the room is low, and the temperature rise rate of the room air (RA) is low. Further, when the temperature of the outdoor air (OA) is high, the temperature of the air (SA) supplied to the room is high, and the temperature rise rate of the room air (RA) is high. For this reason, a database for setting reference values based on temperature data of outdoor air (OA), air supplied to the room (SA), and room air (RA) is provided in the humidity controller, and the outdoor air (OA ) By measuring the temperature of the indoor air (SA) and indoor air (RA) with a temperature sensor and setting a reference value, the accuracy of the estimated relative humidity of the indoor air (RA) can be improved. Can be improved.

本変形例では、室内空気(RA)の温度を検出する温度センサの検出値が所定の基準値に達すると、起動時動作から通常動作に切り換わる。上述のように、室内空気(RA)の温度と相対湿度には相関関係があるため、温度センサの検出値によって室内空気(RA)の相対湿度を推測することができる。従って、本変形例によれば、温度センサを用いて起動時動作から通常動作への切り換えを適切なタイミングで行うことができる。   In the present modification, when the detected value of the temperature sensor that detects the temperature of the indoor air (RA) reaches a predetermined reference value, the operation is switched from the startup operation to the normal operation. As described above, since there is a correlation between the temperature of the room air (RA) and the relative humidity, the relative humidity of the room air (RA) can be estimated from the detection value of the temperature sensor. Therefore, according to this modification, it is possible to switch from the startup operation to the normal operation at an appropriate timing using the temperature sensor.

《発明の実施形態》
本発明の実施形態は、上記参考形態の調湿装置において、起動時動作を変更したものである。ここでは、本実施形態について、上記参考形態1と異なる点を説明する。
<< Embodiment of the Invention >>
The embodiment of the present invention is such that the startup operation is changed in the humidity control apparatus of the above reference embodiment. Here, the difference between the present embodiment and the first embodiment will be described.

本実施形態の調湿装置では、加湿運転時及び除湿運転時の起動時動作において、第1電動膨張弁(111)及び第2電動膨張弁(112)の開度が運転条件に応じて適宜調節される。この状態では、冷媒回路(100)を循環する冷媒が再生熱交換器(102)を通過した後に分流され、第1熱交換器(103)と第2熱交換器(104)のそれぞれに流入する。そして、図11,図12に示すように、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となる。つまり、本実施形態の起動時動作では、上記実施形態1と異なり、第1熱交換器(103)及び第2熱交換器(104)のうち第1空気が通過する方も蒸発器となる。   In the humidity control apparatus of the present embodiment, the opening degree of the first electric expansion valve (111) and the second electric expansion valve (112) is appropriately adjusted according to the operating conditions in the startup operation during the humidifying operation and the dehumidifying operation. Is done. In this state, the refrigerant circulating in the refrigerant circuit (100) is diverted after passing through the regenerative heat exchanger (102) and flows into the first heat exchanger (103) and the second heat exchanger (104). . 11 and 12, the regenerative heat exchanger (102) serves as a condenser, and both the first heat exchanger (103) and the second heat exchanger (104) serve as an evaporator. That is, in the start-up operation of the present embodiment, unlike the first embodiment, the first heat exchanger (103) and the second heat exchanger (104) through which the first air passes is also an evaporator.

一方、起動時動作中に湿度センサ(2)の検出値が所定の基準値に達すると、起動時動作から通常動作に切り換わる。加湿運転時及び除湿運転時の通常動作では、第1熱交換器(103)と第2熱交換器(104)のうち第1空気が通過する方だけが蒸発器となる。尚、加湿運転時及び除湿運転時の通常動作は、上記実施形態1と同じである。   On the other hand, when the detected value of the humidity sensor (2) reaches a predetermined reference value during the startup operation, the startup operation is switched to the normal operation. In the normal operation during the humidifying operation and the dehumidifying operation, only the first heat exchanger (103) and the second heat exchanger (104) through which the first air passes becomes an evaporator. The normal operation during the humidifying operation and the dehumidifying operation is the same as in the first embodiment.

このように、起動時動作中には、通常動作中よりも蒸発器となる熱交換器の表面積が拡大する。このため、起動時動作中には、冷媒が第1空気及び第2空気から吸熱する熱量を確保したままで、冷媒の蒸発温度を通常動作中よりも高くすることができる。そして、冷凍サイクルの低圧が高くなるため、それに伴って冷凍サイクルの高圧も上昇し、再生熱交換器(102)における冷媒の凝縮温度が高くなる。   As described above, the surface area of the heat exchanger, which serves as an evaporator, is larger during startup operation than during normal operation. For this reason, during the start-up operation, the evaporation temperature of the refrigerant can be made higher than that during the normal operation while the amount of heat that the refrigerant absorbs from the first air and the second air is secured. And since the low pressure of a refrigerating cycle becomes high, the high pressure of a refrigerating cycle also rises in connection with it, and the condensation temperature of the refrigerant | coolant in a regenerative heat exchanger (102) becomes high.

よって、起動時動作中には、通常動作中よりも再生熱交換器(102)から再生側の吸着素子(81,82)へ送られる第2空気の温度を高くできる。このため、再生側の吸着素子(81,82)の吸着剤から脱離する水分が増加し、この吸着素子(81,82)における第2空気への加湿量が増加する。それに伴い、再生動作の終了時点で再生側の吸着素子(81,82)に残存する水分量も減少する。このため、起動時動作中には、吸着側の吸着素子(81,82)における第1空気からの除湿量も増加する。   Therefore, during the start-up operation, the temperature of the second air sent from the regeneration heat exchanger (102) to the regeneration-side adsorption element (81, 82) can be made higher than during normal operation. For this reason, the moisture desorbed from the adsorbent of the adsorption element (81, 82) on the regeneration side increases, and the humidification amount to the second air in the adsorption element (81, 82) increases. Along with this, the amount of moisture remaining in the regeneration-side adsorption element (81, 82) at the end of the regeneration operation also decreases. For this reason, during the startup operation, the amount of dehumidification from the first air in the adsorption element (81, 82) on the adsorption side also increases.

−実施形態の変形例−
上記実施形態の調湿装置において、調湿装置の構成を変更してもよい。ここでは、本変形例について、上記実施形態と異なる点を説明する。
-Modification of the embodiment-
In the humidity control apparatus of the said embodiment, you may change the structure of a humidity control apparatus. Here, this modification will be described with respect to differences from the above embodiment.

本変形例の調湿装置では、起動時動作において、冷媒回路(100)に設けられる第1熱交換器(103)と第2熱交換器(104)とが冷媒の循環方向において直列となっている。   In the humidity control apparatus of the present modification, the first heat exchanger (103) and the second heat exchanger (104) provided in the refrigerant circuit (100) are connected in series in the refrigerant circulation direction during the startup operation. Yes.

具体的に、図13に示すように、加湿運転時の起動時動作において、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)を通過後に第1熱交換器(103)へ流入する。第1熱交換器(103)で第1空気から吸熱した冷媒は、第2熱交換器(104)へ流入して第2空気から吸熱する。第2熱交換器(104)を通過後の冷媒は、圧縮機(101)へ戻される。   Specifically, as shown in FIG. 13, in the startup operation during the humidifying operation, the refrigerant discharged from the compressor (101) passes through the regenerative heat exchanger (102) and then passes through the first heat exchanger (103). Flow into. The refrigerant that has absorbed heat from the first air in the first heat exchanger (103) flows into the second heat exchanger (104) and absorbs heat from the second air. The refrigerant after passing through the second heat exchanger (104) is returned to the compressor (101).

一方、図14に示すように、除湿運転時の起動時動作において、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)を通過後に第2熱交換器(104)へ流入する。第2熱交換器(104)で第1空気から吸熱した冷媒は、第1熱交換器(103)へ流入して第2空気から吸熱する。第1熱交換器(103)を通過後の冷媒は、圧縮機(101)へ戻される。   On the other hand, as shown in FIG. 14, in the startup operation during the dehumidifying operation, the refrigerant discharged from the compressor (101) flows into the second heat exchanger (104) after passing through the regenerative heat exchanger (102). To do. The refrigerant that has absorbed heat from the first air in the second heat exchanger (104) flows into the first heat exchanger (103) and absorbs heat from the second air. The refrigerant after passing through the first heat exchanger (103) is returned to the compressor (101).

−実施形態の変形例2−
上記実施形態の調湿装置において、調湿装置の構成を変更してもよい。ここでは、本変形例について、上記実施形態と異なる点を説明する。
-Modification 2 of embodiment-
In the humidity control apparatus of the said embodiment, you may change the structure of a humidity control apparatus. Here, this modification will be described with respect to differences from the above embodiment.

本変形例の調湿装置では、室内空気(RA)の相対湿度を検出するための湿度センサ(2)に代えて、タイマー(図示せず)が設けられる。このタイマーは、調湿装置の起動時からの経過時間を計測するためのものである。   In the humidity control apparatus of this modification, a timer (not shown) is provided instead of the humidity sensor (2) for detecting the relative humidity of the room air (RA). This timer is for measuring the elapsed time from the startup of the humidity control device.

上記調湿装置では、加湿運転及び除湿運転のそれぞれの運転において、起動時に起動時動作が行われる一方、起動時動作中にタイマーの計測値が所定の基準値に達すると、通常動作に切り換わる。   In the humidity control apparatus, in each operation of the humidifying operation and the dehumidifying operation, the startup operation is performed at the time of startup, and when the measured value of the timer reaches a predetermined reference value during the startup operation, the operation is switched to the normal operation. .

ここで、予め様々な運転条件で試験を行い、調湿装置の起動時から室内空気(RA)の相対湿度が目標値(加湿運転時には40%、除湿運転時には47%)に達するまでの経過時間を計測しておけば、その試験で得られたデータに基づき、室内空気(RA)の相対湿度が目標値に達すると予想される起動時からの経過時間を基準値として設定できる。   Here, tests are performed under various operating conditions in advance, and the elapsed time from when the humidity control device starts up until the relative humidity of the room air (RA) reaches the target value (40% during humidification operation and 47% during dehumidification operation). Can be set as a reference value based on the data obtained in the test, the elapsed time from the start-up when the relative humidity of the room air (RA) is expected to reach the target value.

本変形例では、起動時からの経過時間を計測するタイマーの計測値が所定の基準値に達すると、起動時動作から通常動作に切り換わる。上述のように、予め試験を行って室内空気(RA)の相対湿度が目標値に達すると予想される起動時からの経過時間を基準値として設定すれば、タイマーの計測値によって室内空気(RA)の相対湿度を推測することができる。従って、本変形例によれば、タイマーを用いて起動時動作から通常動作への切り換えを適切なタイミングで行うことができる。   In this modification, when the measured value of the timer that measures the elapsed time from the start reaches a predetermined reference value, the operation at the start is switched to the normal operation. As described above, if the test is performed in advance and the elapsed time from the start-up when the relative humidity of the room air (RA) is expected to reach the target value is set as the reference value, the room air (RA) ) Relative humidity can be estimated. Therefore, according to the present modification, switching from the startup operation to the normal operation can be performed at an appropriate timing using the timer.

以上説明したように、本発明は、空気の湿度調節を行う調湿装置について有用である。   As described above, the present invention is useful for a humidity control apparatus that adjusts the humidity of air.

参考形態に係る調湿装置の構成及び加湿運転の第1動作における空気の流れを示す概略図である。It is the schematic which shows the flow of the air in the structure of the humidity control apparatus which concerns on a reference form, and the 1st operation | movement of a humidification driving | operation. 参考形態に係る調湿装置の構成及び加湿運転の第1動作における空気の流れを示す概略図である。It is the schematic which shows the flow of the air in the structure of the humidity control apparatus which concerns on a reference form, and the 1st operation | movement of a humidification driving | operation. 参考形態に係る調湿装置の構成及び除湿運転の第1動作における空気の流れを示す概略図である。It is the schematic which shows the structure of the humidity control apparatus which concerns on a reference form, and the flow of the air in 1st operation | movement of a dehumidification driving | operation. 参考形態に係る調湿装置の構成及び除湿運転の第1動作における空気の流れを示す概略図である。It is the schematic which shows the structure of the humidity control apparatus which concerns on a reference form, and the flow of the air in 1st operation | movement of a dehumidification driving | operation. 参考形態に係る調湿装置の吸着素子の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the adsorption | suction element of the humidity control apparatus which concerns on a reference form. 参考形態に係る冷媒回路の構成を示す配管系統図である。It is a piping system diagram which shows the structure of the refrigerant circuit which concerns on a reference form. 参考形態に係る調湿装置において、加湿運転時の起動時動作における第1動作を概念的に示す説明図である。In the humidity control apparatus which concerns on a reference form, it is explanatory drawing which shows notionally the 1st operation | movement in the starting operation | movement at the time of a humidification driving | operation. 参考形態に係る調湿装置において、加湿運転時の通常動作における第1動作を概念的に示す説明図である。In the humidity control apparatus which concerns on a reference form, it is explanatory drawing which shows notionally the 1st operation | movement in normal operation | movement at the time of humidification driving | operation. 参考形態に係る調湿装置において、除湿運転時の起動時動作における第1動作を概念的に示す説明図である。In the humidity control apparatus which concerns on a reference form, it is explanatory drawing which shows notionally the 1st operation | movement in the starting operation | movement at the time of a dehumidification driving | operation. 参考形態に係る調湿装置において、除湿運転時の通常動作における第1動作を概念的に示す説明図である。In the humidity control apparatus which concerns on a reference form, it is explanatory drawing which shows notionally the 1st operation | movement in normal operation | movement at the time of a dehumidification driving | operation. 実施形態に係る調湿装置において、加湿運転時の起動時動作における第1動作を概念的に示す説明図である。In the humidity control apparatus which concerns on embodiment, it is explanatory drawing which shows notionally the 1st operation | movement in the operation | movement at the time of a humidification driving | operation. 実施形態に係る調湿装置において、除湿運転時の起動時動作における第1動作を概念的に示す説明図である。In the humidity control apparatus which concerns on embodiment, it is explanatory drawing which shows notionally the 1st operation | movement in the starting operation | movement at the time of a dehumidification driving | operation. 実施形態に係る調湿装置において、加湿運転時の起動時動作における第1動作を概念的に示す説明図である。In the humidity control apparatus which concerns on embodiment, it is explanatory drawing which shows notionally the 1st operation | movement in the operation | movement at the time of a humidification driving | operation. 実施形態に係る調湿装置において、除湿運転時の起動時動作における第1動作を概念的に示す説明図である。In the humidity control apparatus which concerns on embodiment, it is explanatory drawing which shows notionally the 1st operation | movement in the starting operation | movement at the time of a dehumidification driving | operation.

(1) 加熱手段
(2) 湿度検出手段
(81,82) 吸着素子
(95,96) ファン
(100) 冷媒回路
(101) 圧縮機
(102) 再生熱交換器
(103) 第1熱交換器
(104) 第2熱交換器
(1) Heating means (2) Humidity detection means (81,82) Adsorption element (95,96) Fan (100) Refrigerant circuit (101) Compressor (102) Regenerative heat exchanger (103) First heat exchanger ( 104) Second heat exchanger

Claims (5)

第1空気及び第2空気を流通させるためのファン(95,96)と、吸着剤を空気と接触させる吸着素子(81,82)と、該吸着素子(81,82)へ供給される第2空気を加熱する加熱手段(1)とを備え、上記吸着素子(81,82)に第1空気中の水分を吸着させる吸着動作と、上記加熱手段(1)で加熱された第2空気によって吸着素子(81,82)を再生する再生動作と同時に行い、上記吸着素子(81,82)を通過した第1空気及び第2空気の一方を室内へ供給して他方を室外へ排出する調湿装置であって、
起動してから所定の基準条件が成立するまでは、上記加熱手段(1)から吸着素子(81,82)へ送られる第2空気の温度を上記基準条件の成立後よりも高くするための起動時動作を行うように構成され、
冷媒を循環させて冷凍サイクルを行う冷媒回路(100)を備える一方、
上記冷媒回路(100)には、凝縮器となって加熱手段(1)を構成する再生熱交換器(102)と、吸着素子(81,82)を通過して室外へ向かう空気を冷媒と熱交換させる第1熱交換器(103)と、吸着素子(81,82)を通過して室内へ向かう空気を冷媒と熱交換させる第2熱交換器(104)とが設けられており、
上記冷媒回路(100)において再生熱交換器(102)が凝縮器となり第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となると同時に、上記ファン(95,96)を運転させることによって第2空気を室内へ供給して第1空気を室外へ排出する動作を起動時動作として行い、
基準条件の成立によって該起動時動作を終了した後は、上記冷媒回路(100)において再生熱交換器(102)が凝縮器となり第1熱交換器(103)が蒸発器となり第2熱交換器(104)が休止状態となると同時に、上記ファン(95,96)を運転させることによって第2空気を室内へ供給して第1空気を室外へ排出する通常動作を行う調湿装置。
A fan (95, 96) for circulating the first air and the second air, an adsorbing element (81, 82) for bringing the adsorbent into contact with air, and a second supplied to the adsorbing element (81, 82) A heating means (1) for heating the air, and an adsorption operation for adsorbing moisture in the first air to the adsorption element (81, 82) and adsorption by the second air heated by the heating means (1) Humidity control that simultaneously performs a regenerating operation of regenerating the element (81, 82), supplying one of the first air and the second air that has passed through the adsorption element (81, 82) to the room and discharging the other to the outside A device,
Start up to make the temperature of the second air sent from the heating means (1) to the adsorption element (81, 82) higher than after the establishment of the reference condition until the predetermined reference condition is established after the start Is configured to do when
While comprising a refrigerant circuit (100) that circulates refrigerant and performs a refrigeration cycle,
In the refrigerant circuit (100), the regenerative heat exchanger (102) which becomes a condenser and constitutes the heating means (1), and the air that passes through the adsorption element (81, 82) and goes outside the room are heated with the refrigerant. A first heat exchanger (103) for exchange, and a second heat exchanger (104) for exchanging heat between the air passing through the adsorption elements (81, 82) and traveling indoors with the refrigerant,
In the refrigerant circuit (100), the regenerative heat exchanger (102) serves as a condenser, and both the first heat exchanger (103) and the second heat exchanger (104) serve as an evaporator, and at the same time, the fan (95, 96) is operated to start the operation of supplying the second air into the room and discharging the first air to the outside by operating
After the start-up operation is completed due to the establishment of the reference condition, in the refrigerant circuit (100), the regenerative heat exchanger (102) becomes a condenser and the first heat exchanger (103) becomes an evaporator and the second heat exchanger. A humidity control apparatus that performs a normal operation of supplying the second air into the room and discharging the first air to the outside by operating the fan (95, 96) at the same time that (104) is in a resting state .
第1空気及び第2空気を流通させるためのファン(95,96)と、吸着剤を空気と接触させる吸着素子(81,82)と、該吸着素子(81,82)へ供給される第2空気を加熱する加熱手段(1)とを備え、上記吸着素子(81,82)に第1空気中の水分を吸着させる吸着動作と、上記加熱手段(1)で加熱された第2空気によって吸着素子(81,82)を再生する再生動作とを同時に行い、上記吸着素子(81,82)を通過した第1空気及び第2空気の一方を室内へ供給して他方を室外へ排出する調湿装置であって、
起動してから所定の基準条件が成立するまでは、上記加熱手段(1)から吸着素子(81,82)へ送られる第2空気の温度を上記基準条件の成立後よりも高くするための起動時動作を行うように構成され、
冷媒を循環させて冷凍サイクルを行う冷媒回路(100)を備える一方、
上記冷媒回路(100)には、凝縮器となって加熱手段(1)を構成する再生熱交換器(102)と、吸着素子(81,82)を通過して室外へ向かう空気を冷媒と熱交換させる第1熱交換器(103)と、吸着素子(81,82)を通過して室内へ向かう空気を冷媒と熱交換させる第2熱交換器(104)とが設けられており、
上記冷媒回路(100)において再生熱交換器(102)が凝縮器となり第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となると同時に、上記ファン(95,96)を運転させることによって第1空気を室内へ供給して第2空気を室外へ排出する動作を起動時動作として行い、
基準条件の成立によって該起動時動作を終了した後は、上記冷媒回路(100)において再生熱交換器(102)が凝縮器となり第2熱交換器(104)が蒸発器となり第1熱交換器(103)が休止状態となると同時に、上記ファン(95,96)を運転させることによって第1空気を室内へ供給して第2空気を室外へ排出する通常動作を行う調湿装置。
A fan (95, 96) for circulating the first air and the second air, an adsorbing element (81, 82) for bringing the adsorbent into contact with air, and a second supplied to the adsorbing element (81, 82) A heating means (1) for heating the air, and an adsorption operation for adsorbing moisture in the first air to the adsorption element (81, 82) and adsorption by the second air heated by the heating means (1) Humidity control that simultaneously performs a regenerating operation of regenerating the element (81, 82), supplying one of the first air and the second air that has passed through the adsorption element (81, 82) to the room and discharging the other to the outside A device,
Start up to make the temperature of the second air sent from the heating means (1) to the adsorption element (81, 82) higher than after the establishment of the reference condition until the predetermined reference condition is established after the start Is configured to do when
While comprising a refrigerant circuit (100) that circulates refrigerant and performs a refrigeration cycle,
In the refrigerant circuit (100), the regenerative heat exchanger (102) that becomes a condenser and constitutes the heating means (1) and the air that passes through the adsorption element (81, 82) and goes to the outside are heated with the refrigerant. A first heat exchanger (103) for exchange, and a second heat exchanger (104) for exchanging heat between the air passing through the adsorption elements (81, 82) and traveling indoors with the refrigerant,
Regenerative heat exchanger in the refrigerant circuit (100) (102) is at the same time both the first heat exchanger becomes the condenser (103) and the second heat exchanger (104) is ing an evaporator, the fan (95 , 96), the first air is supplied to the room and the second air is discharged to the outside as the start-up action.
After the start-up operation is completed due to the establishment of the reference condition, in the refrigerant circuit (100), the regenerative heat exchanger (102) becomes a condenser and the second heat exchanger (104) becomes an evaporator and the first heat exchanger. A humidity control apparatus that performs a normal operation of supplying the first air into the room and discharging the second air out of the room by operating the fan (95, 96) at the same time that (103) is in a resting state .
請求項1又は2に記載の調湿装置において、
室内空気の湿度を検出する湿度検出手段(2)が設けられ、
上記湿度検出手段(2)の検出値が所定の基準値に達することが基準条件となっている調湿装置。
The humidity control apparatus according to claim 1 or 2 ,
Humidity detection means (2) that detects the humidity of the indoor air is provided,
A humidity control apparatus whose reference condition is that the detected value of the humidity detecting means (2) reaches a predetermined reference value.
請求項1又は2に記載の調湿装置において、
室内空気の温度を検出する温度検出手段が設けられ、
上記温度検出手段の検出値が所定の基準値に達することが基準条件となっている調湿装置。
The humidity control apparatus according to claim 1 or 2 ,
Temperature detection means for detecting the temperature of the indoor air is provided,
A humidity control apparatus in which a detection condition of the temperature detection means reaches a predetermined reference value as a reference condition.
請求項1又は2に記載の調湿装置において、
起動時からの経過時間を計測するタイマーが設けられ、
上記タイマーの計測値が所定の基準値に達することが基準条件となっている調湿装置。
The humidity control apparatus according to claim 1 or 2 ,
A timer that measures the elapsed time from startup is provided,
A humidity control apparatus whose reference condition is that the measured value of the timer reaches a predetermined reference value.
JP2003402089A 2003-12-01 2003-12-01 Humidity control device Expired - Fee Related JP4457653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402089A JP4457653B2 (en) 2003-12-01 2003-12-01 Humidity control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402089A JP4457653B2 (en) 2003-12-01 2003-12-01 Humidity control device

Publications (2)

Publication Number Publication Date
JP2005164098A JP2005164098A (en) 2005-06-23
JP4457653B2 true JP4457653B2 (en) 2010-04-28

Family

ID=34725806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402089A Expired - Fee Related JP4457653B2 (en) 2003-12-01 2003-12-01 Humidity control device

Country Status (1)

Country Link
JP (1) JP4457653B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396705B2 (en) 2007-10-31 2014-01-22 ダイキン工業株式会社 Humidity control device
JP5218135B2 (en) * 2009-02-18 2013-06-26 ダイキン工業株式会社 Humidity control device
CN112228997A (en) * 2020-11-17 2021-01-15 珠海格力电器股份有限公司 Fresh air device and control method thereof

Also Published As

Publication number Publication date
JP2005164098A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
KR100959226B1 (en) Air conditioning system
US7841194B2 (en) Air conditioner and method of controlling such
JP5018402B2 (en) Humidity control device
JP2006329593A (en) Air conditioning system
JP2003161465A (en) Humidity conditioning device
WO2005098326A1 (en) Air conditioner and method of controlling air conditioner
JP5229368B2 (en) Humidity control device
JP2009109088A (en) Humidity conditioner
JP2010281476A (en) Humidity controller
JP4341373B2 (en) Humidity control device
WO2007004559A1 (en) Humidity control device
JP3695417B2 (en) Humidity control device
JP5104971B2 (en) Humidity control ventilator
JP2005164148A (en) Humidity conditioning device
JP2010133612A (en) Air conditioning system
JP2009109151A (en) Humidity conditioner
JP4457653B2 (en) Humidity control device
JP3807320B2 (en) Humidity control device
JP4496821B2 (en) Humidity control device
JP2009109089A (en) Humidity conditioner
JP5402213B2 (en) Humidity control device
JP5109595B2 (en) Humidity control device
JP3649196B2 (en) Humidity control device
JP2009109090A (en) Ventilation device
JP3712001B2 (en) Air conditioner and control method of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees