WO2007004464A1 - Discharge lamp, backlight unit, and liquid crystal display - Google Patents

Discharge lamp, backlight unit, and liquid crystal display Download PDF

Info

Publication number
WO2007004464A1
WO2007004464A1 PCT/JP2006/312769 JP2006312769W WO2007004464A1 WO 2007004464 A1 WO2007004464 A1 WO 2007004464A1 JP 2006312769 W JP2006312769 W JP 2006312769W WO 2007004464 A1 WO2007004464 A1 WO 2007004464A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
glass container
external electrode
discharge lamp
lamp according
Prior art date
Application number
PCT/JP2006/312769
Other languages
French (fr)
Japanese (ja)
Other versions
WO2007004464A8 (en
Inventor
Toshihiro Terada
Shingo Tsutsumi
Hideki Wada
Tomokazu Matsuura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007523945A priority Critical patent/JPWO2007004464A1/en
Publication of WO2007004464A1 publication Critical patent/WO2007004464A1/en
Publication of WO2007004464A8 publication Critical patent/WO2007004464A8/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/54Screens on or from which an image or pattern is formed, picked-up, converted, or stored; Luminescent coatings on vessels
    • H01J1/62Luminescent screens; Selection of materials for luminescent coatings on vessels
    • H01J1/70Luminescent screens; Selection of materials for luminescent coatings on vessels with protective, conductive, or reflective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/34Double-wall vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel

Definitions

  • Discharge lamp, backlight unit, and liquid crystal display device Discharge lamp, backlight unit, and liquid crystal display device
  • the present invention relates to a discharge lamp, a knock light unit, and a liquid crystal display device, and more particularly, to a discharge lamp having an external electrode disposed on the outer surface of a glass container.
  • the external electrode type fluorescent lamp is suitable for small diameter lamps as compared with the hot cathode fluorescent lamp, like the cold cathode fluorescent lamp. For this reason, it is preferably used as a light source of a backlight unit that is required to be thin (downsized).
  • the backlight unit can be roughly divided into an edge light system in which a light guide plate is placed on the back surface of the LCD panel, and a fluorescent lamp is disposed on the end surface of the light guide plate, and a plurality of fluorescent lamps on the back surface of the LCD panel.
  • the edge light method is excellent in thinning and luminance uniformity of the light emitting surface, but it is disadvantageous in terms of high luminance, while the direct method is superior in terms of high luminance, but thin. It can be said that it is disadvantageous in terms of conversion.
  • the LCD system used in a liquid crystal television set with an emphasis on high brightness often employs a direct method.
  • a cold cathode fluorescent lamp is used as the light source for the direct-type backlight unit, one high-frequency lighting circuit (inverter) is required for each cold negative fluorescent lamp, leading to increased costs.
  • an external electrode fluorescent lamp that emits light by dielectric barrier discharge by providing external electrodes on the outer circumferences of both ends of a tubular glass container and using the glass tube wall as a capacitance has been actively developed. Since the external electrode fluorescent lamp itself has a capacitance, it can be used to light a large number of lamps with one inverter.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-17005
  • Patent Document 2 Japanese Patent Laid-Open No. 11-354079
  • the present invention provides a discharge lamp capable of suppressing the occurrence of defects such as perforation as much as possible even when the luminance is improved by increasing the drive current, and the like. And a liquid crystal display device having the backlight unit.
  • a discharge lamp according to the present invention includes a glass container, an external electrode disposed on a part of the outer surface of the glass container, and at least a portion facing the external electrode.
  • a discharge lamp according to the present invention includes a glass container, an external electrode disposed on a part of the outer surface of the glass container, and at least a portion facing the external electrode.
  • the average cross-sectional area per hole is 0.1 ⁇ m 2 or less
  • an alkali metal compound is dispersed in the protective film.
  • the alkali metal compound is a cesium compound, and the surface roughness of the protective film is 0.6 ⁇ m or more.
  • an alkaline earth metal compound is dispersed in the protective film, and the metal oxide particles have yttrium oxide force.
  • the glass container is made of glass containing sodium oxalate in a range of 5% to 20%, and the inner surface of the glass container has a region where the protective film is not formed. A part of the external electrode is formed on the outer surface of the glass container facing the region.
  • the external electrode is characterized in that the thickness in the vicinity of the end portion is gradually reduced gradually toward the end portion.
  • the external electrode is characterized by comprising a solder layer formed in a region subjected to a roughening treatment on the outer surface of the glass container.
  • a backlight unit includes the above-described discharge lamp as a light source.
  • the backlight unit includes an envelope that houses a plurality of the discharge lamps, and a liquid crystal display panel;
  • the above-mentioned backlight unit is provided on the back surface of the liquid crystal display panel.
  • the average film thickness of the protective film made of an aggregate of metal oxide particles is set to 2 m or less, so that the luminance decreases when the protective film thickness is increased. It can be suppressed as much as possible, and the surface roughness of the protective film is 1. or less, and the denseness of the protective film has been improved, so even if the brightness is improved by increasing the drive current, etc. The occurrence of problems such as these can be suppressed as much as possible.
  • the average thickness of the protective film made of an aggregate of metal oxide particles is as follows, and per closed hole that is an internal void in the protective film: Since the average cross-sectional area is set to 0 .: L m 2 or less, the same effect as described above can be obtained.
  • the alkali metal oxide is dispersed in the protective film, good dark startability can be obtained.
  • a cesium compound is used as the alkali metal oxide and the surface roughness of the protective film is 0.6 m or more, good dark startability can be obtained more reliably.
  • the metal oxide particles forming the protective film are made of yttrium oxide, adsorption of mercury by the protective film is reduced, and unnecessary consumption of mercury can be suppressed.
  • the glass container is made of glass containing sodium oxalate in a range of 5% or more and 20% or less, and an outer surface portion of the glass container facing a region where the protective film is not formed on the inner surface of the glass container.
  • a part of the external electrode is formed, so that the dark startability is improved.
  • the thickness of the external electrode is gradually reduced gradually toward the end, the corona discharge generated at the end of the external electrode is prevented, and the generation of ozone is prevented. It can be suppressed.
  • the external electrode is composed of a solder layer formed in the roughened surface of the outer surface of the glass container, a discharge lamp having an external electrode with high adhesion strength to the outer surface of the glass container is used. It is out. [0017] Further, since the external electrode includes a metal sleeve extrapolated to the glass container and solder filled between the metal sleeve and the outer peripheral surface of the glass container, the external electrode is connected to the apparatus. It is possible to reduce damage to the external electrode that tends to occur when the socket is attached to or detached from the socket.
  • the backlight unit and the liquid crystal display device since the discharge lamp is provided, the temperature of the external electrode The rise can be suppressed, and discoloration due to thermal degradation of the other member constituting the knocklight unit, which is in the vicinity of the external electrode, can be suppressed.
  • FIG. 1 is a half sectional view showing a schematic configuration of an external electrode fluorescent lamp according to an embodiment.
  • FIG. 2 is an electron micrograph showing a cross section of a protective film in a comparative fluorescent lamp.
  • FIG. 3 is a graph showing experimental results of examining the relationship between drive current and electrode temperature for a comparative fluorescent lamp and an example fluorescent lamp.
  • FIG. 4 is a diagram schematically showing a cross section of a protective film.
  • FIG. 5 is an electron micrograph showing a cross section of a protective film in an example fluorescent lamp.
  • FIG. 6 is a diagram for explaining a method of forming a protective film in relation to the method of manufacturing the external electrode fluorescent lamp according to the embodiment.
  • FIG. 7 is a diagram showing the results of a test relating to the dark start rate.
  • FIG. 8 is an electron micrograph of a cross section of a protective film in one of the external electrode fluorescent lamps used in an experiment relating to dark startability.
  • FIG. 9 is an electron micrograph of a cross-section of a protective film in one of the external electrode fluorescent lamps used in an experiment relating to dark startability.
  • FIG. 10 is a perspective view showing a schematic configuration of a backlight unit according to the embodiment.
  • FIG. 11 is a block diagram of the backlight unit.
  • FIG. 12 is a diagram showing a schematic configuration of a liquid crystal television using the backlight unit according to the embodiment.
  • FIG. 13 is a view showing a modification of the external electrode.
  • FIG. 14 is a view showing a modification of the external electrode.
  • FIG. 15 is a diagram showing a schematic configuration of an external electrode fluorescent lamp according to a modification.
  • FIG. 16 is a diagram showing a schematic configuration of an external electrode fluorescent lamp according to another modification.
  • FIG. 1 is a half sectional view showing a schematic configuration of an external electrode fluorescent lamp 10 (hereinafter simply referred to as “fluorescent lamp 10”) according to an embodiment.
  • fluorescent lamp 10 an external electrode fluorescent lamp 10
  • FIGS. 1, 6, and 10 to 16 the scales between the constituent members are not unified.
  • the fluorescent lamp 10 has a glass container 12 in which both ends of a glass tube made of borosilicate are hermetically sealed.
  • the total length L1 of the glass container 12 is 740 mm, the outer diameter is 4. Omm, and the inner diameter is 3. Omm.
  • a first external electrode 14 and a second external electrode 16 are formed on the outer periphery of both end portions of the glass container 12.
  • the first external electrode 14 has a two-layer structure. Of the two layers, the one closer to the glass container 12 is a silver (Ag) paste film 14A, and the farther one is a lead (Pb) -free solder film 14B.
  • the second external electrode 16 also has a two-layer structure in which a silver (Ag) paste film 16A and a lead (Pb) free solder film 16B are laminated in this order from the glass container 12 side.
  • the protective film 18 is made of an aggregate of metal oxide particles.
  • YO yttrium oxide
  • metal oxide for example, alumina (Al 2 O 3)
  • the protective film does not necessarily have to be formed over almost the entire length as in the illustrated example, and is formed at least on the inner peripheral surface portion of the glass container 12 facing the first and second external electrodes 14, 16. I don't mind. Details of the protective film 18 will be described later.
  • a phosphor film 20 is formed by being laminated inside the protective film 18.
  • the formation range of the phosphor film 20 in the longitudinal direction of the glass container 12 is between the first external electrode 14 and the second external electrode 16.
  • a part of the phosphor film 20 may be applied to the inner peripheral surface portion of the glass container 12 facing the first external electrode 14 and the second external electrode 16.
  • the phosphor film 20 includes three kinds of rare earth phosphors of red (R), green (G), and blue (B), and emits white light as a whole.
  • green phosphor (LaPO: Ce, Tb) green phosphor
  • blue phosphor BaMg Al
  • a predetermined amount of mercury and a mixed rare gas having a predetermined pressure are enclosed in the glass container 12.
  • a neon argon mixed gas (Ne90% + ArlO%) of about 7 kPa (20 ° C) is enclosed as a rare gas mixture with a mercury power of about 2000 g!
  • the fluorescent lamp 10 having the above-described constituent power
  • a high frequency voltage is applied to the first and second outer electrodes 14 and 16 by the inverter
  • a discharge phenomenon occurs in the hermetic sealed space (discharge space) in the glass 12.
  • ultraviolet rays are emitted, and the ultraviolet rays are converted into visible light by the phosphor film 20 and emitted outside the glass container 12.
  • the inverter for example, an inverter having a maximum applied voltage of 2.5 kV and an operating frequency of 60 kHz can be used.
  • the above discharge is an dielectric barrier discharge.
  • the dielectric barrier discharge is a discharge in which the discharge space is surrounded by the dielectric (glass container 12) and the electrode is not directly exposed to the plasma.
  • the inner peripheral portion of the glass container mainly corresponding to the region where the external electrode is disposed is composed of mercury ions, neon ions, and argon ions (hereinafter referred to as these). When collectively said, it is simply called “ion”). Therefore, the protective film 18 is provided for the purpose of protecting the impact container and the glass container.
  • an external electrode fluorescent lamp used in a knocklight unit is generally lit with a drive current of about 4 to 4.5 mA.
  • a drive current of about 4 to 4.5 mA.
  • the current value of the drive current is increased or the glass container is made thinner, The temperature of the external electrode rose and reached around 140 ° C, causing a thermal runaway, which will be described later, and pinholes were observed to appear sharply in the glass container.
  • Figure 2 shows a photomicrograph of the cross section of the protective film of the external electrode fluorescent lamp (hereinafter referred to as “comparative fluorescent lamp”) where this phenomenon occurs.
  • Both (a) and (b) are cross sections of the portion corresponding to the external electrode, (a) corresponds to one external electrode, and (b) corresponds to the other external electrode. The reason why the thickness of the protective film is different between (a) and (b) will be described later.
  • the protective film is formed by agglomeration of metal oxide particles, the protective film is not completely packed with metal oxide particles, and the protective film communicates with the outer surface. It has an open hole and a closed hole that is an internal space. As shown in Fig. 2, it is considered that the higher the number of open holes and the smaller the number of open holes, the higher the probability of receiving an impact on the inner wall force of the glass container.
  • Increasing the drive current value increases the temperature of the external electrode.
  • the temperature of the external electrode rises, the temperature of the glass container part in contact with it rises, the dielectric loss of the glass increases, and the temperature rises further.
  • the temperature of glass containers rises due to ion bombardment. To do. Due to the electronegativity, ions collide with the glass rather than collide with the protective film, resulting in greater energy loss and greater heat generation.
  • electrode temperature the temperature at the electrode (hereinafter referred to as "electrode temperature”) reached about 140 ° C, thermal runaway occurred and pinholes suddenly appeared in the glass container.
  • Fig. 3 shows the relationship between the drive current value and the electrode temperature in the comparative fluorescent lamp.
  • the electrode temperature was measured with a radiation thermometer.
  • a broken line shows a comparative fluorescent lamp.
  • the electrode temperature is less than 80 ° C, and there is no problem of pinholes due to thermal runaway.
  • it may be lit at a drive current of about 8 mA, and in the future it is planned to illuminate at 10 mA. In this case, the pinhole due to the thermal runaway becomes a problem.
  • the inventors of the present invention solves the problem of pinholes by further improving the denseness of the protective film, thereby suppressing the collision of ions with the inner wall of the glass container and thereby suppressing the amount of heat generated in the part. It was decided.
  • the denseness of the protective film was evaluated using the following indices.
  • FIG. 4 is a diagram schematically showing a cross section of the protective film.
  • the reference numeral 22 indicates metal oxide particles
  • the reference numeral 24 indicates closed pores serving as internal voids.
  • the surface roughness appearing in the cross section of the protective film was measured, and the measured value was used as one of the indicators showing the denseness of the protective film. It can be said that the smaller the surface roughness is, the smaller the pores communicating with the outer surface in the protective film are.
  • the surface roughness is the “maximum height Ry” measured according to JIS B 0601: '94.
  • the area of each cross section of the closed holes 24 serving as internal voids is measured and averaged, and the average value (hereinafter simply referred to as "closed hole area"). ) was taken as another indicator of compactness.
  • the closed hole is in the cross section of the protective film.
  • the voids are enough to contain at least 1.0 metal oxide particles having an average particle diameter.
  • the closed hole is not completely closed by the wall formed by the metal oxide particle group, but the wall is converted to the size of the metal oxide particle having an average particle diameter. There may be 4.0 or less discontinuous portions.
  • the number of closed holes per unit cross-sectional area of the protective film (hereinafter simply referred to as “the number of closed holes”) was also used as an indicator of denseness.
  • the electrode temperature is about 120 ° C (when 10 mA is lit). This is a temperature value in which the 140 ° C force in question is sufficiently suppressed.
  • the electrode temperature can be suppressed to 120 ° C about (at 10mA lit) However, it was divided. Further, in this case, (if four Z mu m 2 or less) number closed pores four Z mu m 2 and unless exceeded, the electrode temperature can be suppressed to about 120 ° C (at 10mA lit) However, it was divided.
  • FIG. 5 shows one of the external electrode fluorescent lamps used in the experiment, and is a cross-sectional microscope of the protective film in the external electrode fluorescent lamp according to the example (hereinafter referred to as “Example fluorescent lamp”). It is a photograph.
  • (A) is a partial cross-section of the protective film corresponding to the first external electrode (hereinafter referred to as “first part”), and
  • (b) is a part of the protective film corresponding to the second external electrode. It is a cross section (hereinafter referred to as “second part”).
  • Example fluorescent lamp the surface roughness of the first portion 0. 05 ⁇ m, closed pore area 0. 008 ⁇ m 2, closed pore number 1.
  • the average particle diameter of the metal oxide particles in the example fluorescent lamp was 0.113111 in the first part and 0.12 / zm in the second part.
  • the example fluorescent lamp can suppress the electrode temperature more than the comparative fluorescent lamp if the magnitude of the drive current is the same.
  • the electrode loss is reduced as the calorific value of the electrode portion decreases, and as a result, the power consumption can be reduced.
  • a suspension 32 containing metal oxide particles is adhered to the inner surface of a glass tube 30 that is a material of the glass container 12 (FIG. 1).
  • a tank 34 containing a suspension 32 is prepared.
  • the suspension 32 is obtained by adding a predetermined amount of metal oxide particles and -trocellulose (NC) as a thickener in butyl acetate as an organic solvent.
  • NC metal oxide particles and -trocellulose
  • the glass tube 30 is held vertically and held at a lower end portion immersed in the suspension 32.
  • the suction force of a vacuum pump (not shown)
  • the upper end force of the glass tube 30 is also evacuated from the glass tube 30, and the suspension 32 is sucked up by making the inside of the glass tube 30 a negative pressure [step A].
  • the suction is stopped and the glass tube 30 is pulled up from the suspension 32.
  • the suspension 32 adheres in a film form to a predetermined region on the inner periphery of the glass tube 30.
  • the thickness of the suspension 32 becomes thicker toward the lower part than the upper part. This is why the thickness of the protective film was different between (a) and (b) in the photographs in Figs.
  • step B Next, while the glass tube 30 held vertically is rotated around the tube axis, the suspension 32 adhering to the film is dried [step B]. At this time, centrifugal force acts on each metal oxide particle in the direction toward the inner wall of the glass tube. As a result, the metal oxide particles clog toward the inner wall of the glass tube, and the final protective film is denser than when no centrifugal force is applied (when the glass tube is not rotated). Will be improved. In this case, the denseness of the protective film finally obtained can be changed (adjusted) depending on the rotation speed and the viscosity of the suspension (fluidity of the metal oxide particles in the suspension). Optimum values for the number of rotations and the viscosity of the suspension can be obtained by trial and error through experiments.
  • the inventor of the present application has developed a fluorescent lamp with improved dark startability which is particularly required when used as a light source of a backlight unit, as will be described later.
  • a cesium (Cs) compound was mixed with the suspension to form a protective film.
  • the dark startability is improved by dispersing a cesium (Cs) compound having a low electronegativity in the protective film.
  • the mixing ratio of the cesium compound in the suspension was 0.60% by weight or less in this example.
  • the mixing ratio of the cesium compound in the suspension for forming the protective film is preferably 0.65% by weight or less, more preferably 0.60% by weight or less.
  • the inventor of the present application creates a lamp (lamp A, B, C, D) in which a cesium compound is dispersed in a protective film based on the fluorescent lamp 10, and confirms the effect of dark startability. I went. For comparison, a lamp X that does not disperse the cesium compound in the protective film was made and a similar experiment was conducted.
  • Lamps A, B, C, D, and X have basically the same configuration except that the cesium compound is present in the protective film and the type and mixing ratio are different.
  • W1 (Fig. 1) is 40mm longer than other lamps.
  • lamps A, B, C, and D the types of cesium compounds mixed in the protective film and the mixing ratio (wt% in the suspension) are as follows.
  • Lamp A cesium sulfate (Cs SO), mixing ratio: 0. 60 weight 0/0
  • Lamp B Shioi ⁇ cesium (CsCl)
  • the mixing ratio 0. 37 wt 0/0
  • Lamp C Shioi ⁇ cesium (CsCl)
  • the mixing ratio 0. 60 weight 0/0 lamp D ... cesium sulfate (Cs SO ), mixing ratio: 0. 37 wt 0/0
  • dark start rate Is the percentage obtained by dividing the number of passing lights by the number of specimens (20 in this example), with those that turned on within 1 second from the start of power supply to both external electrodes passed and those that were not passed passed.
  • the lamps A, B, C, and D have an improved dark start rate compared to the comparative lamp X. Above all, since the dark start rate of lamps A and D is 100% in any standing time, cesium sulfate is considered to be excellent in improving the dark startability among cesium compounds.
  • the present inventor has defined a range of the surface roughness of the protective film suitable for improving the dark startability. As described above, it is better to make the protective film as dense as possible in order to solve the pinhole problem. However, the inventors of the present invention have found through experiments that satisfactory dark startability cannot be obtained if the protective film is made dense beyond a certain limit. This is presumed to be due to the following reason.
  • the cesium compound is considered to be substantially uniformly dispersed on the surface of the protective film and in the inside thereof.
  • the cesium compound that is in direct contact with the discharge space is considered to contribute to the improvement of the dark start. That is, it is considered that the cesium compound mainly present on the surface of the protective film contributes to the improvement of the dark start.
  • the denser the protective film the flatter the surface of the protective film (that is, the smaller the surface roughness) and the smaller the surface area of the protective film. Less cesium compounds are present on the surface (ie, directly in contact with the discharge space). As a result, the dark startability is degraded.
  • the inventors of the present application obtained an experiment to determine the surface roughness (the “maximum height Ry”) that can solve the problem of pinholes while satisfying the dark startability.
  • Cs SO cesium
  • a suspension was made.
  • the mixing ratio of yttrium oxide is 10 wt%
  • the mixing ratio of the cesium sulfate is 0.5 wt 0/0.
  • FIG. 8 is a photomicrograph of the cross section of the protective film in one of the external electrode fluorescent lamps used in the experiment.
  • the lamp shown in Fig. 8 has a dark start rate of 70%, but has failed in terms of the dark start rate, although the pinhole problem has been solved.
  • the surface roughness (maximum height Ry) of the protective film in the lamp shown in FIG. 8 was 0.43 ⁇ m.
  • Figure 9 is a photomicrograph of the cross section of the protective film in another external electrode fluorescent lamp used in the experiment.
  • the lamp shown in Fig. 9 eliminates the pinhole problem and starts dark. The rate was also 100%.
  • the fluorescent lamp 10 according to the above embodiment is used as a light source of a knocklight unit.
  • any one of the lamps A, B, C, and D may be used as the light source.
  • FIG. 10 is a perspective view showing a schematic configuration of a direct-type backlight unit 40.
  • FIG. FIG. 10 is a view in which a translucent plate 46 described later is broken.
  • the knock light unit 40 is arranged and used on the back of an LCD (liquid crystal display) panel (not shown in FIG. 10), and constitutes an LCD device.
  • LCD liquid crystal display
  • the knock light unit 40 includes an envelope 48 including a rectangular reflecting plate 42, a side plate 44 surrounding the reflecting plate 42, and a translucent plate 46 provided in parallel with the reflecting plate 42. Both the reflector 42 and the side plate 44 are reflective films (not shown) in which silver or the like is vapor-deposited on one main surface of the plate made of PET (polyethylene terephthalate) resin (the inner surface when assembled as the envelope 48). ) Is formed.
  • PET polyethylene terephthalate
  • the light transmissive plate 46 is formed by laminating a light diffusing plate 50, a light diffusing sheet 52, and a lens sheet 54 in this order from the reflecting plate 42 side.
  • a plurality of (in this example, 16) fluorescent lamps 10-power reflecting plates 42 are housed at equal intervals in the short side direction in parallel with the long sides. These fluorescent lamps 10 are electrically connected in parallel by a wiring member (not shown).
  • the fluorescent lamp 10 can suppress the amount of heat generated in the electrode portion more than before. As a result, it is possible to suppress discoloration (yellowing) or the like due to thermal deterioration in the vicinity of the electrode portion of the translucent plate 46 and other members constituting the envelope 48.
  • FIG. 11 is a block diagram showing the backlight unit 40 including an inverter 56 that is a power supply circuit unit for lighting the 16 fluorescent lamps 10.
  • the inverter 56 converts AC power of 50 Z 60 Hz from the commercial power source 58 into high frequency power (for example, 60 kHz as described above), and supplies the fluorescent lamp 10 with power.
  • FIG. 12 is a diagram showing the liquid crystal television 60 with a part of the front surface thereof cut away.
  • a liquid crystal television 60 shown in FIG. 12 includes a liquid crystal display panel 62, a backlight unit 40, and the like.
  • the liquid crystal display panel 62 is a color filter substrate, a liquid crystal, a TFT substrate, or the like, and is driven by a drive module (not shown) based on an external image signal to form a color image.
  • the envelope 48 of the backlight unit 40 is provided on the back surface of the liquid crystal display panel 62, and the back surface force also irradiates the liquid crystal display panel 62.
  • the inverter 56 is disposed inside the casing 64 of the liquid crystal television 60 and outside the envelope 56.
  • the present invention has been described using an example in which the present invention is applied to an external electrode type silver fluorescent lamp.
  • the present invention is not limited to a fluorescent lamp and can also be applied to an external electrode type ultraviolet lamp. It is. That is, the phosphor film may be removed from the configuration of the external electrode fluorescent lamp according to the above-described embodiment (the phosphor film is not formed) and configured as an external electrode ultraviolet lamp.
  • the ultraviolet lamp irradiates the irradiated object with ultraviolet rays and is used for sterilization of the irradiated object.
  • the external electrodes provided on the outer periphery of both ends of the glass container are not limited to those in the above-described embodiment, and may be, for example, in the following forms.
  • FIG. 13 shows an example in which the external electrode 114 is formed on the outer surface of the end portion of the glass container 112 by known ultrasonic solder dipping.
  • the area where the external electrode 112 is to be formed on the outer surface of the glass container 112 is roughened to a surface roughness of about 1 to 3 m by sandblasting, which is due to the adhesion of the solder to the glass container surface.
  • the external electrode 112 is formed by immersing the glass container 112 in the ultrasonic solder layer and pulling it up while holding the glass container 112 vertically.
  • solder material any of tin, an alloy of tin and indium, and an alloy of tin and bismuth can be used. Can be used. Further, from the viewpoint of adhesion to the glass container 112, it is preferable to contain at least one of antimony, zinc, and aluminum as an additive. Further, from the viewpoint of wettability with the surface of the glass container 112, it is preferable to contain antimony or zinc as an additive.
  • the external electrode 114 has a thickness in the vicinity of the end thereof that gradually decreases gradually toward the end. If the end of the external electrode is angular, corona discharge occurs between the end of the external electrode and the outer peripheral surface of the glass container, and ozone is generated. By adopting the shape shown in FIG. It is possible to effectively suppress the generation of corona discharge and prevent the generation of ozone.
  • reference numeral 116 indicates a phosphor film
  • reference numeral 118 indicates a protective film.
  • the protective film is formed only on the portion of the inner peripheral surface of the glass container facing the external electrode.
  • FIG. 14 (a) shows that a metal sleeve 124 as shown in FIG. 14 (b) is extrapolated to the outer periphery of the end of the glass container 122, and the metal sleeve 124 and the outer peripheral surface of the glass container 122 are Solder in between 12
  • the external electrode 128 is configured by filling 6.
  • a metal sleeve for the external electrode it is possible to reduce damage to the external electrode that tends to occur when the socket is attached to or detached from the socket of the knocklight unit (device).
  • the metal sleeve 124 is made of a material having substantially the same linear expansion coefficient as the glass container 122, for example,
  • the solder 126 may be, for example, 311- eight 8 - 01 alloy (in weight percent 311 95. 2, Ag is 3. 8, Cu is 1. The ratio of 0) composed of.
  • reference numeral 130 indicates a phosphor film
  • reference numeral 132 indicates a protective film
  • the external electrodes are provided on the outer periphery of both ends of the glass container 12.
  • “Third external electrode” may be provided.
  • the third external electrode is connected to the ground line (ie, grounded).
  • a protective film is formed on the inner surface of the glass container facing the third external electrode.
  • the present invention relates to a fluorescent lamp provided with external electrodes at both ends of a glass container.
  • the electrode on one end side of the glass container 70 is an external electrode 72, and the electrode on the other end side is in the glass container 70.
  • the present invention can also be applied to a fluorescent lamp 76 configured as an internal electrode 74 to be installed.
  • the end of the glass container 70 on the side where the internal electrode 74 is disposed is sealed with a lead wire 78 and hermetically sealed.
  • the internal electrode 74 is bonded to the inner end of the glass container 70 of the lead wire 78.
  • the lead wire 78 is made of tungsten wire.
  • the internal electrode 74 is a so-called hollow-type electrode having a bottomed cylindrical shape and is a cover of a niobium rod.
  • reference numeral 80 indicates a phosphor film
  • reference numeral 82 indicates a protective film.
  • FIG. 16 (a) is an external view showing a schematic configuration of the fluorescent lamp 90
  • FIG. 16 (b) is a cross-sectional view of the fluorescent lamp 90.
  • FIG. 16 (b) is a cross-sectional view, but in order to avoid complications, knitting and pinching are omitted.
  • the fluorescent lamp 90 has a glass container 92 similar to the fluorescent lamp 10 (FIG. 1). On the outer periphery of the glass container 92, a first external electrode 94 having a “C” cross section extends in the longitudinal direction of the glass container 92. A second external electrode 96 having the same shape is formed on the outer periphery of the glass container 92 so as to face the first external electrode 94. A protective film 98 is formed on the inner peripheral surface portion of the glass container 92 facing the first outer electrode 94 and the second outer electrode 96, and the phosphor film 100 is formed on the remaining portion of the inner peripheral surface of the glass container 92. Is formed.
  • a phosphor film is formed on substantially the entire inner peripheral surface of the glass tube, which is the material of the glass container 92.
  • the phosphor film on the inner surface of the glass tube facing the first and second external electrodes 94, 96 is spread. (In this stage, the external electrodes 94 and 96 are not formed yet. However, in order to show the removal range of the phosphor film, the external electrodes are removed for convenience of explanation. )
  • a protective film 98 is formed in the same manner as in the above embodiment described with reference to FIG.
  • the phosphor film 98 also has a suspension 32 ( Fig. 6) is applied.
  • the suspension 32 penetrates into the phosphor film 98 as well. Therefore, strictly speaking, the film indicated by reference numeral 100 in FIG. 16B includes not only phosphor particles but also metal oxide particles.
  • cesium sulfate and sodium chloride cesium are exemplified as the cesium compounds dispersed in the protective film in order to improve the dark startability.
  • Cesium (Cs CO) may be used.
  • the compound dispersed in the protective film is not limited to the cesium compound, and may be a compound of another alkali metal [for example, lithium (Li), sodium (Na), potassium (K)].
  • alkali metal compounds compounds of alkaline earth metals [for example, magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba)] may be used.
  • 1S using borosilicate glass as a material for forming the glass container is not limited to this, and lead glass, lead-free glass, soda lime glass, or the like may be used.
  • the dark startability can be improved by forming the external electrode so as to cover the end face (outer end face) of the glass container. That is, the glass as described above contains a large amount of sodium oxide (Na 2 O), and the sodium (Na) component is the inner surface of the glass container over time.
  • the content of sodium oxalate in the glass material forming the glass container is preferably 5% or more and 20% or less. If it is less than 5%, the probability that the dark start time will exceed 1 second increases (in other words, if it is 5% or more, the probability that the dark start time will be within 1 second increases), and if it exceeds 20%, This is because problems such as whitening of the glass container resulting in a decrease in luminance due to long-term use, and a decrease in strength of the glass container occur.
  • the following may be considered as the external electrodes in this case. For example, a metal cap shape is extrapolated to the end portion of the glass container, or as shown in FIG.
  • the glass container end is placed in a solder tank in which molten solder is stored.
  • the portion is dated, and consists of a solder layer formed on the end portion.
  • it may be an external electrode as shown in FIG. 14 and described above.
  • a protective film is formed on the inner surface of the glass container, and a part of the external electrode is formed on the outer surface of the glass container opposite to the large area!
  • the discharge lamp according to the present invention can be suitably used, for example, as a light source of a backlight unit requiring high brightness.

Abstract

Disclosed is an external electrode fluorescent lamp. Specifically disclosed is an external electrode fluorescent lamp (10) comprising a glass container (12), external electrodes (14, 16) arranged on the outer surface of the glass container, a protective film (18) arranged on the inner surface of the glass container, and a phosphor film (20). The protective film is formed at least in regions corresponding to the external electrodes, and composed of an aggregate of metal oxide (yttrium oxide) particles. The protective film has an average film thickness of not more than 2 μm, and a surface roughness of not more than 1.7 μm. By having such a protective film, the glass container can be prevented from formation of pin holes.

Description

明 細 書  Specification
放電ランプ、バックライトユニット、および液晶ディスプレイ装置  Discharge lamp, backlight unit, and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、放電ランプ、ノ ックライトユニット、および液晶ディスプレイ装置に関し、 特に、ガラス容器の外面に配された外部電極を有する放電ランプ等に関する。  The present invention relates to a discharge lamp, a knock light unit, and a liquid crystal display device, and more particularly, to a discharge lamp having an external electrode disposed on the outer surface of a glass container.
背景技術  Background art
[0002] 外部電極を有する放電ランプの一つに外部電極型蛍光ランプ(EEFL: External El ectrodes Fluorescent Lamp)がある。外部電極型蛍光ランプは、冷陰極蛍光ランプと 同様、熱陰極蛍光ランプと比較して細径ィ匕に適している。このため、薄型化 (小型化) が要求されるバックライトユニットの光源として好適に用いられて 、る。  One of discharge lamps having external electrodes is an external electrode fluorescent lamp (EEFL). The external electrode type fluorescent lamp is suitable for small diameter lamps as compared with the hot cathode fluorescent lamp, like the cold cathode fluorescent lamp. For this reason, it is preferably used as a light source of a backlight unit that is required to be thin (downsized).
このバックライトユニットの方式としては、大別して、 LCDパネルの背面に導光板を 置き、その導光板の端面に蛍光ランプを配置するエッジライト方式と、 LCDパネルの 背面に複数本の蛍光ランプを当該背面に並行に配列する直下方式の 2種類がある。 両者を比較した場合、一般的に、エッジライト方式は薄型化と発光面の輝度均一性 に優れるが高輝度化の面で不利であり、一方、直下方式は高輝度化の点では優れる が薄型化の面で不利であると 、うことができる。  The backlight unit can be roughly divided into an edge light system in which a light guide plate is placed on the back surface of the LCD panel, and a fluorescent lamp is disposed on the end surface of the light guide plate, and a plurality of fluorescent lamps on the back surface of the LCD panel. There are two types, directly below, arranged in parallel on the back. When comparing the two, in general, the edge light method is excellent in thinning and luminance uniformity of the light emitting surface, but it is disadvantageous in terms of high luminance, while the direct method is superior in terms of high luminance, but thin. It can be said that it is disadvantageous in terms of conversion.
[0003] このため、高輝度化に重点が置かれる液晶テレビに用いられる LCD装置では、直 下方式を採用することが多い。  [0003] For this reason, the LCD system used in a liquid crystal television set with an emphasis on high brightness often employs a direct method.
直下方式のバックライトユニットの光源として冷陰極蛍光ランプを採用すると、冷陰 極蛍光ランプ 1本に付き 1台の高周波点灯回路 (インバータ)が必要となり、コストアツ プにつながる。そこで、最近、管状をしたガラス容器の両端部外周に外部電極を設け 、ガラス管壁をキャパシタンスとして利用し、誘電体バリア放電によって発光する外部 電極型蛍光ランプの開発が盛んに行われている。当該外部電極型蛍光ランプは、そ れ自身がキャパシタンスを持つこととなるため、インバータ 1台で多数本を点灯するこ とができるカゝらである。  If a cold cathode fluorescent lamp is used as the light source for the direct-type backlight unit, one high-frequency lighting circuit (inverter) is required for each cold negative fluorescent lamp, leading to increased costs. Recently, an external electrode fluorescent lamp that emits light by dielectric barrier discharge by providing external electrodes on the outer circumferences of both ends of a tubular glass container and using the glass tube wall as a capacitance has been actively developed. Since the external electrode fluorescent lamp itself has a capacitance, it can be used to light a large number of lamps with one inverter.
[0004] ところが、上記外部電極型蛍光ランプでは、点灯の際、外部電極に対応するガラス 容器内壁が、アルゴンイオンや水銀イオンの衝撃にさらされ、これが原因で、当該ガ ラス容器部分が浸食され、場合によっては孔 (ピンホール)が明いてしまう事態が生じ る。そこで、特許文献 1に記載の外部電極型蛍光ランプでは、外部電極に対応する ガラス容器内壁部分に、アルゴンイオンや水銀イオンの衝撃から当該内壁を守るべく 、金属酸ィ匕物粒子が多数個集合してなる保護膜を設けて 、る。 [0004] However, in the external electrode fluorescent lamp, when the lamp is turned on, the inner wall of the glass container corresponding to the external electrode is exposed to the impact of argon ions or mercury ions, which causes the gas The lath container part is eroded, and in some cases, a hole (pinhole) is created. Therefore, in the external electrode type fluorescent lamp described in Patent Document 1, a large number of metal oxide particles are gathered on the inner wall portion of the glass container corresponding to the outer electrode so as to protect the inner wall from the impact of argon ions and mercury ions. Provide a protective film.
特許文献 1 :特開 2003— 17005号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2003-17005
特許文献 2:特開平 11― 354079号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-354079
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、液晶テレビの高輝度化に伴って、当該液晶テレビ用のバックライトユニット に用いる外部電極型蛍光ランプの高輝度化が要求されて 、る。これを実現するため 、例えば、従来 4〜4. 5mA程度である駆動電流を大幅に上げて、輝度を向上させる ことが考えられる。しかしながら、上記保護膜が設けられている外部電極型蛍光ラン プであっても、駆動電流を上げていくと、ガラス容器に急激に孔が明いてしまう事態 が発生することを本願発明者が見出した。  [0005] By the way, with the increase in luminance of liquid crystal televisions, there is a demand for higher luminance of external electrode fluorescent lamps used in backlight units for the liquid crystal televisions. In order to achieve this, for example, it is conceivable to increase the driving current, which is conventionally about 4 to 4.5 mA, to improve the luminance. However, even when the external electrode fluorescent lamp is provided with the protective film, the present inventor has found that when the driving current is increased, the glass container is suddenly perforated. It was.
[0006] これに対処するため、保護膜の厚みを増大させることが考えられるが、保護膜の厚 みに比例して、輝度が低下してしまう。  [0006] To cope with this, it is conceivable to increase the thickness of the protective film, but the luminance decreases in proportion to the thickness of the protective film.
なお、上記の問題は、蛍光体層を有しない外部電極型放電ランプにも共通するも のである。  The above problem is common to external electrode type discharge lamps that do not have a phosphor layer.
本発明は、上記した課題に鑑み、駆動電流を増大する等して輝度を向上させたとし ても、可能な限り孔明き等の不具合の発生を抑制することが可能な放電ランプ、当該 放電ランプを備えたバックライトユニット、および当該バックライトユニットを有する液晶 ディスプレイ装置を提供することを目的とする。  In view of the above-described problems, the present invention provides a discharge lamp capable of suppressing the occurrence of defects such as perforation as much as possible even when the luminance is improved by increasing the drive current, and the like. And a liquid crystal display device having the backlight unit.
課題を解決するための手段  Means for solving the problem
[0007] 上記の目的を達成するため、本発明に係る放電ランプは、ガラス容器と、前記ガラ ス容器の外面の一部に配された外部電極と、少なくとも前記外部電極に対向する部 分の前記ガラス容器内面に形成された、金属酸化物粒子の集合体からなる保護膜と を有し、前記保護膜の平均膜厚は 2 m以下であり、当該保護膜の表面粗さが 1. 7 μ m以下であることを特徴とする。 [0008] 上記の目的を達成するため、本発明に係る放電ランプは、ガラス容器と、前記ガラ ス容器の外面の一部に配された外部電極と、少なくとも前記外部電極に対向する部 分の前記ガラス容器内面に形成された、金属酸化物粒子の集合体からなる保護膜と を有し、前記保護膜の平均膜厚は 2 m以下であり、前記保護膜において内部空隙 になっている閉孔 1個当たりの断面積の平均が 0. 1 μ m2以下であることを特徴とする [0007] In order to achieve the above object, a discharge lamp according to the present invention includes a glass container, an external electrode disposed on a part of the outer surface of the glass container, and at least a portion facing the external electrode. A protective film made of an aggregate of metal oxide particles formed on the inner surface of the glass container, the protective film has an average film thickness of 2 m or less, and the protective film has a surface roughness of 1.7. It is characterized by being less than μm. [0008] In order to achieve the above object, a discharge lamp according to the present invention includes a glass container, an external electrode disposed on a part of the outer surface of the glass container, and at least a portion facing the external electrode. A protective film made of an aggregate of metal oxide particles formed on the inner surface of the glass container, wherein the protective film has an average film thickness of 2 m or less, and is an internal void in the protective film. The average cross-sectional area per hole is 0.1 μm 2 or less
[0009] また、前記保護膜中にアルカリ金属化合物が分散されて 、ることを特徴とする。この 場合において、前記アルカリ金属化合物がセシウム化合物であり、前記保護膜の表 面粗さが 0. 6 μ m以上であることを特徴とする。 [0009] Further, an alkali metal compound is dispersed in the protective film. In this case, the alkali metal compound is a cesium compound, and the surface roughness of the protective film is 0.6 μm or more.
また、前記保護膜中にアルカリ土類金属化合物が分散されていることを特徴とする また、前記金属酸化物粒子は、酸化イットリウム力 なることを特徴とする。  In addition, an alkaline earth metal compound is dispersed in the protective film, and the metal oxide particles have yttrium oxide force.
[0010] また、前記ガラス容器は、酸ィ匕ナトリウムを 5%以上 20%以下の範囲で含有するガ ラスからなり、前記ガラス容器内面には、前記保護膜が形成されていない領域が在り 、当該領域に対向するガラス容器外面部分に前記外部電極の一部が形成されてい ることを特徴とする。 [0010] Further, the glass container is made of glass containing sodium oxalate in a range of 5% to 20%, and the inner surface of the glass container has a region where the protective film is not formed. A part of the external electrode is formed on the outer surface of the glass container facing the region.
また、前記外部電極は、その端部付近の厚みが当該端部に向力つて滑らかに漸減 していることを特徴とする。  The external electrode is characterized in that the thickness in the vicinity of the end portion is gradually reduced gradually toward the end portion.
[0011] また、前記外部電極は、前記ガラス容器外面の粗面化処理を施した領域に形成さ れた半田層からなることを特徴とする。 [0011] Further, the external electrode is characterized by comprising a solder layer formed in a region subjected to a roughening treatment on the outer surface of the glass container.
また、前記外部電極は、前記ガラス容器に外挿された金属スリーブと当該金属スリ ーブと前記ガラス容器外周面との間に充填された半田とからなることを特徴とする。 上記の目的を達成するため、本発明に係るバックライトユニットは、光源として、上 記した放電ランプを備えたことを特徴とする。  The external electrode is made of a metal sleeve extrapolated to the glass container and solder filled between the metal sleeve and the outer peripheral surface of the glass container. In order to achieve the above object, a backlight unit according to the present invention includes the above-described discharge lamp as a light source.
[0012] また、上記の目的を達成するため、本発明に係る液晶ディスプレイ装置は、前記バ ックライトユニットは、複数本の前記放電ランプを収納する外囲器を有し、液晶ディス プレイパネルと、前記外囲器が前記液晶ディスプレイパネルの背面に配されて ヽる上 記バックライトユニットとを備えたことを特徴とする。 発明の効果 [0012] In order to achieve the above object, in the liquid crystal display device according to the present invention, the backlight unit includes an envelope that houses a plurality of the discharge lamps, and a liquid crystal display panel; The above-mentioned backlight unit is provided on the back surface of the liquid crystal display panel. The invention's effect
[0013] 本発明に係る放電ランプによれば、金属酸化物粒子の集合体からなる保護膜の平 均膜厚を 2 m以下としたので、保護膜の厚みを増大させた場合の輝度低下を可能 な限り抑制でき、また、保護膜の表面粗さを 1. 以下とし、当該保護膜の緻密性 を向上させたので、駆動電流を増大する等して輝度を向上させたとしても、孔明き等 の不具合の発生を可能な限り抑制することができる。  [0013] According to the discharge lamp of the present invention, the average film thickness of the protective film made of an aggregate of metal oxide particles is set to 2 m or less, so that the luminance decreases when the protective film thickness is increased. It can be suppressed as much as possible, and the surface roughness of the protective film is 1. or less, and the denseness of the protective film has been improved, so even if the brightness is improved by increasing the drive current, etc. The occurrence of problems such as these can be suppressed as much as possible.
[0014] また、本発明に係る放電ランプによれば、金属酸化物粒子の集合体からなる保護 膜の平均膜厚を 以下とし、保護膜において内部空隙になっている閉孔 1個当 たりの断面積の平均を 0.: L m2以下としたので、上記したのと同様の効果が得られ る。 [0014] Further, according to the discharge lamp of the present invention, the average thickness of the protective film made of an aggregate of metal oxide particles is as follows, and per closed hole that is an internal void in the protective film: Since the average cross-sectional area is set to 0 .: L m 2 or less, the same effect as described above can be obtained.
さらに、前記保護膜中にアルカリ金属酸ィ匕物が分散されているので、良好な暗黒始 動性が得られる。この場合に、前記アルカリ金属酸ィ匕物としてセシウム化合物を用い 、前記保護膜の表面粗さを 0. 6 m以上とすれば、より確実に良好な暗黒始動性が 得られる。  Furthermore, since the alkali metal oxide is dispersed in the protective film, good dark startability can be obtained. In this case, if a cesium compound is used as the alkali metal oxide and the surface roughness of the protective film is 0.6 m or more, good dark startability can be obtained more reliably.
[0015] また、前記保護膜中にアルカリ土類金属化合物が分散されているので、良好な暗 黒始動性が得られる。  [0015] Further, since the alkaline earth metal compound is dispersed in the protective film, good dark startability can be obtained.
また、保護膜を形成する金属酸ィ匕物粒子が酸化イットリウムカゝらなるので、保護膜に よる水銀の吸着が少なくなり、水銀の無用な消耗を抑制することができる。  Further, since the metal oxide particles forming the protective film are made of yttrium oxide, adsorption of mercury by the protective film is reduced, and unnecessary consumption of mercury can be suppressed.
また、前記ガラス容器が、酸ィ匕ナトリウムを 5%以上 20%以下の範囲で含有するガ ラスからなり、前記ガラス容器内面の、前記保護膜が形成されていない領域に対向 するガラス容器外面部分に前記外部電極の一部が形成されて 、るので、暗黒始動 性が向上する。  Further, the glass container is made of glass containing sodium oxalate in a range of 5% or more and 20% or less, and an outer surface portion of the glass container facing a region where the protective film is not formed on the inner surface of the glass container. Thus, a part of the external electrode is formed, so that the dark startability is improved.
[0016] また、前記外部電極は、その端部付近の厚みが当該端部に向力つて滑らかに漸減 しているので、外部電極の端部で発生するコロナ放電を防止し、オゾンの発生を抑 ff¾することができる。  [0016] Further, since the thickness of the external electrode is gradually reduced gradually toward the end, the corona discharge generated at the end of the external electrode is prevented, and the generation of ozone is prevented. It can be suppressed.
また、前記外部電極は、前記ガラス容器外面の粗面化処理を施した領域に形成さ れた半田層からなるので、ガラス容器外面に対する固着強度の高い外部電極を有す る放電ランプとすることがでさる。 [0017] また、前記外部電極は、前記ガラス容器に外挿された金属スリーブと当該金属スリ ーブと前記ガラス容器外周面との間に充填された半田とからなるので、外部電極を、 装置のソケットに着脱する際に発生しがちな外部電極の損傷を低減することができる また、本発明に係るバックライトユニットおよび液晶ディスプレイ装置によれば、上記 の放電ランプを有するので、外部電極の温度上昇を抑制することができ、ノ ックライト ユニットを構成する他の部材であって、外部電極近傍に存在する部材部分の熱劣化 による変色を抑制することが可能となる。 Further, since the external electrode is composed of a solder layer formed in the roughened surface of the outer surface of the glass container, a discharge lamp having an external electrode with high adhesion strength to the outer surface of the glass container is used. It is out. [0017] Further, since the external electrode includes a metal sleeve extrapolated to the glass container and solder filled between the metal sleeve and the outer peripheral surface of the glass container, the external electrode is connected to the apparatus. It is possible to reduce damage to the external electrode that tends to occur when the socket is attached to or detached from the socket. Further, according to the backlight unit and the liquid crystal display device according to the present invention, since the discharge lamp is provided, the temperature of the external electrode The rise can be suppressed, and discoloration due to thermal degradation of the other member constituting the knocklight unit, which is in the vicinity of the external electrode, can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]実施の形態に係る外部電極型蛍光ランプの概略構成を示す半断面図である。  FIG. 1 is a half sectional view showing a schematic configuration of an external electrode fluorescent lamp according to an embodiment.
[図 2]比較蛍光ランプにおける、保護膜の断面を撮影した電子顕微鏡写真である。  FIG. 2 is an electron micrograph showing a cross section of a protective film in a comparative fluorescent lamp.
[図 3]比較蛍光ランプと実施例蛍光ランプに関して、駆動電流と電極温度との関係を 調べた実験結果を示すグラフである。  FIG. 3 is a graph showing experimental results of examining the relationship between drive current and electrode temperature for a comparative fluorescent lamp and an example fluorescent lamp.
[図 4]保護膜の断面を模式的に表した図である。  FIG. 4 is a diagram schematically showing a cross section of a protective film.
[図 5]実施例蛍光ランプにおける、保護膜の断面を撮影した電子顕微鏡写真である。  FIG. 5 is an electron micrograph showing a cross section of a protective film in an example fluorescent lamp.
[図 6]実施の形態に係る外部電極型蛍光ランプの製造方法に関し、保護膜の形成方 法を説明するための図である。  FIG. 6 is a diagram for explaining a method of forming a protective film in relation to the method of manufacturing the external electrode fluorescent lamp according to the embodiment.
[図 7]暗黒始動率に関する試験の結果を示す図である。  FIG. 7 is a diagram showing the results of a test relating to the dark start rate.
[図 8]暗黒始動性に関する実験に供した外部電極型蛍光ランプの一つにおける保護 膜の断面を撮影した電子顕微鏡写真である。  FIG. 8 is an electron micrograph of a cross section of a protective film in one of the external electrode fluorescent lamps used in an experiment relating to dark startability.
[図 9]暗黒始動性に関する実験に供した外部電極型蛍光ランプの一つにおける保護 膜の断面を撮影した電子顕微鏡写真である。  FIG. 9 is an electron micrograph of a cross-section of a protective film in one of the external electrode fluorescent lamps used in an experiment relating to dark startability.
[図 10]実施の形態に係るバックライトユニットの概略構成を示す斜視図である。  FIG. 10 is a perspective view showing a schematic configuration of a backlight unit according to the embodiment.
[図 11]上記バックライトユニットのブロック図である。  FIG. 11 is a block diagram of the backlight unit.
[図 12]上記実施の形態に係るバックライトユニットを使用した液晶テレビの概略構成 を示す図である。  FIG. 12 is a diagram showing a schematic configuration of a liquid crystal television using the backlight unit according to the embodiment.
[図 13]外部電極の一変形例を示す図である。  FIG. 13 is a view showing a modification of the external electrode.
[図 14]外部電極の一変形例を示す図である。 [図 15]変形例に係る外部電極型蛍光ランプの概略構成を示す図である。 FIG. 14 is a view showing a modification of the external electrode. FIG. 15 is a diagram showing a schematic configuration of an external electrode fluorescent lamp according to a modification.
[図 16]他の変形例に係る外部電極型蛍光ランプの概略構成を示す図である。  FIG. 16 is a diagram showing a schematic configuration of an external electrode fluorescent lamp according to another modification.
符号の説明  Explanation of symbols
[0019] 10, 76, 90 外部電極型蛍光ランプ [0019] 10, 76, 90 External electrode fluorescent lamp
12, 92 ガラス容器  12, 92 Glass container
14, 94 第 1外部電極  14, 94 1st external electrode
16, 96 第 2外部電極  16, 96 Second external electrode
18, 98 保護膜  18, 98 Protective film
40 ノ ックライトユニット  40 knock light unit
48 外囲器  48 Envelope
60 液晶テレビ  60 LCD TV
62 液晶ディスプレイパネル  62 LCD panel
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、実施の形態に係る外部電極型蛍光ランプ 10 (以下、単に「蛍光ランプ 10」 と言う。)の概略構成を示す半断面図である。なお、図 1、図 6、図 10〜図 16におい て、各構成部材間の縮尺は統一していない。  FIG. 1 is a half sectional view showing a schematic configuration of an external electrode fluorescent lamp 10 (hereinafter simply referred to as “fluorescent lamp 10”) according to an embodiment. In FIGS. 1, 6, and 10 to 16, the scales between the constituent members are not unified.
蛍光ランプ 10は、ホウ珪酸カもなるガラス管の両端が気密封止されてなるガラス容 器 12を有する。ガラス容器 12の全長 L1は、 740mm、外径は、 4. Omm、内径は、 3 . Ommである。  The fluorescent lamp 10 has a glass container 12 in which both ends of a glass tube made of borosilicate are hermetically sealed. The total length L1 of the glass container 12 is 740 mm, the outer diameter is 4. Omm, and the inner diameter is 3. Omm.
[0021] ガラス容器 12の両端部外周には、第 1外部電極 14と第 2外部電極 16が形成され ている。第 1および第 2外部電極 14, 16は、幅 Wl = 20mmで、ガラス容器 12の全 周に渡って形成された筒状の電極である。第 1外部電極 14は 2層構造をして ヽる。 当該 2層の内、ガラス容器 12に近い方は、銀 (Ag)ペースト膜 14Aであり、遠い方は 、鉛 (Pb)フリー半田膜 14Bである。同様に、第 2外部電極 16も、ガラス容器 12側か ら順に、銀 (Ag)ペースト膜 16A、鉛 (Pb)フリー半田膜 16Bが積層されてなる 2層構 造を有している。  A first external electrode 14 and a second external electrode 16 are formed on the outer periphery of both end portions of the glass container 12. The first and second external electrodes 14 and 16 are cylindrical electrodes having a width Wl = 20 mm and formed over the entire circumference of the glass container 12. The first external electrode 14 has a two-layer structure. Of the two layers, the one closer to the glass container 12 is a silver (Ag) paste film 14A, and the farther one is a lead (Pb) -free solder film 14B. Similarly, the second external electrode 16 also has a two-layer structure in which a silver (Ag) paste film 16A and a lead (Pb) free solder film 16B are laminated in this order from the glass container 12 side.
[0022] ガラス容器 12内周面における、第 1および第 2外部電極 14, 16と対向する部分を 含む略全面 (略全長に渡って)には、保護膜 18が形成されている。保護膜 18は金属 酸化物粒子の集合体からなる。金属酸化物として、本例では、酸化イットリウム (Y O [0022] A portion of the inner peripheral surface of the glass container 12 facing the first and second external electrodes 14, 16 A protective film 18 is formed on substantially the entire surface including the entire length. The protective film 18 is made of an aggregate of metal oxide particles. In this example, yttrium oxide (YO
2 3 twenty three
)を用いている。なお、金属酸ィ匕物としては、これ以外に、例えば、アルミナ (Al O ) ) Is used. In addition, as the metal oxide, for example, alumina (Al 2 O 3)
2 3 を用いることもできる。但し、酸化イットリウムとアルミナとを比較した場合、酸化イツトリ ゥムの方が水銀を吸着しにくいので、発光に寄与する水銀の無用な消耗を抑制する t 、つた観点からは、保護膜に用いるのは酸化イットリウムの方が好まし 、と 、える。 なお、保護膜は、図示例のように必ずしも略全長に渡って形成する必要はなぐ少な くとも第 1および第 2外部電極 14, 16と対向するガラス容器 12内周面部分に形成さ れて 、れば構わな 、。保護膜 18の詳細にっ 、ては後述する。  2 3 can also be used. However, when yttrium oxide and alumina are compared, yttrium oxide is less likely to adsorb mercury, so it suppresses unnecessary consumption of mercury that contributes to light emission. Yttrium oxide is preferred. The protective film does not necessarily have to be formed over almost the entire length as in the illustrated example, and is formed at least on the inner peripheral surface portion of the glass container 12 facing the first and second external electrodes 14, 16. I don't mind. Details of the protective film 18 will be described later.
[0023] 保護膜 18の内側に積層して蛍光体膜 20が形成されている。ガラス容器 12の長手 方向における蛍光体膜 20の形成範囲は、第 1外部電極 14と第 2外部電極 16との間 である。なお、蛍光体膜 20の一部が、第 1外部電極 14、第 2外部電極 16と対向する ガラス容器 12内周面部分に力かっていても構わない。蛍光体膜 20は、赤 (R) ,緑( G) ,青 (B)の 3種希土類蛍光体を含み、全体として白色発光する。本例では、赤色 蛍光体に(Y O: Eu)、緑色蛍光体に(LaPO: Ce, Tb)、青色蛍光体に(BaMg Al A phosphor film 20 is formed by being laminated inside the protective film 18. The formation range of the phosphor film 20 in the longitudinal direction of the glass container 12 is between the first external electrode 14 and the second external electrode 16. A part of the phosphor film 20 may be applied to the inner peripheral surface portion of the glass container 12 facing the first external electrode 14 and the second external electrode 16. The phosphor film 20 includes three kinds of rare earth phosphors of red (R), green (G), and blue (B), and emits white light as a whole. In this example, red phosphor (Y 2 O: Eu), green phosphor (LaPO: Ce, Tb), blue phosphor (BaMg Al
2 3 4 2 2 3 4 2
O : Eu, Mn)を用いている。 O: Eu, Mn) is used.
16 27  16 27
[0024] また、ガラス容器 12内には、所定量の水銀と所定圧の混合希ガスが封入されてい る。本例では、水銀力 S約 2000 g、混合希ガスとして、約 7kPa (20°C)のネオン 'ァ ルゴン混合ガス (Ne90% +ArlO%)が封入されて!、る。  In addition, a predetermined amount of mercury and a mixed rare gas having a predetermined pressure are enclosed in the glass container 12. In this example, a neon argon mixed gas (Ne90% + ArlO%) of about 7 kPa (20 ° C) is enclosed as a rare gas mixture with a mercury power of about 2000 g!
上記の構成力もなる蛍光ランプ 10において、インバータによって第 1および第 2外 部電極 14, 16に高周波電圧が印加されると、ガラス 12内の気密封止空間(放電空 間)に放電現象が生じて紫外線が放出され、当該紫外線が蛍光体膜 20によって可 視光に変換されてガラス容器 12外へ放出される。前記インバータとして、例えば、最 大印加電圧 2. 5kV、動作周波数 60kHzのものを用いることができる。上記放電は誘 電体バリア放電である。すなわち、第 1および第 2外部電極 14, 16に高周波,高電圧 の交流電圧を印加すると、誘電体であるガラス容器 12において、第 1および第 2外部 電極の直下のガラスに誘電分極が生じ、その部分の内壁が電極として作用する。こ れにより、ガラス容器 12内に高電圧が導入されて、ガラス容器 12内に誘電体バリア 放電が生じるのである。このように、誘電体バリア放電とは、放電空間が誘電体 (ガラ ス容器 12)に囲まれていて、プラズマに電極が直接さらされない放電である。 In the fluorescent lamp 10 having the above-described constituent power, when a high frequency voltage is applied to the first and second outer electrodes 14 and 16 by the inverter, a discharge phenomenon occurs in the hermetic sealed space (discharge space) in the glass 12. Then, ultraviolet rays are emitted, and the ultraviolet rays are converted into visible light by the phosphor film 20 and emitted outside the glass container 12. As the inverter, for example, an inverter having a maximum applied voltage of 2.5 kV and an operating frequency of 60 kHz can be used. The above discharge is an dielectric barrier discharge. That is, when a high-frequency, high-voltage AC voltage is applied to the first and second external electrodes 14 and 16, dielectric polarization occurs in the glass immediately below the first and second external electrodes in the dielectric glass container 12, The inner wall of that part acts as an electrode. As a result, a high voltage is introduced into the glass container 12, and a dielectric barrier is introduced into the glass container 12. A discharge occurs. As described above, the dielectric barrier discharge is a discharge in which the discharge space is surrounded by the dielectric (glass container 12) and the electrode is not directly exposed to the plasma.
[0025] 電極 (外部電極)はプラズマに直接さらされな ヽものの、主として外部電極の配置領 域に対応するガラス容器の内周部分は、水銀イオン、ネオンイオン、およびアルゴン イオン(以下、これらをまとめて言う場合には、単に「イオン」と言う。)の衝撃を受ける。 このため、当該衝撃カゝらガラス容器を保護する目的で、上記保護膜 18が設けられて いる。 [0025] Although the electrode (external electrode) is not directly exposed to the plasma, the inner peripheral portion of the glass container mainly corresponding to the region where the external electrode is disposed is composed of mercury ions, neon ions, and argon ions (hereinafter referred to as these). When collectively said, it is simply called “ion”). Therefore, the protective film 18 is provided for the purpose of protecting the impact container and the glass container.
従来、一般的に、ノ ックライトユニットに用いられる外部電極型蛍光ランプは、 4〜4 . 5mA程度の駆動電流で点灯されている。近年におけるノ ックライトユニットの高輝 度化の要請を受けて、外部電極型蛍光ランプの輝度を向上させるため、駆動電流の 電流値を大きくしたり、ガラス容器をより細径ィ匕したりすると、外部電極の温度が上昇 し、約 140°C付近に至り、後述する熱暴走を起こして、ガラス容器にピンホールが急 激に明くことが認められた。  Conventionally, an external electrode fluorescent lamp used in a knocklight unit is generally lit with a drive current of about 4 to 4.5 mA. In response to the demand for higher brightness of the knocklight unit in recent years, in order to improve the brightness of the external electrode fluorescent lamp, if the current value of the drive current is increased or the glass container is made thinner, The temperature of the external electrode rose and reached around 140 ° C, causing a thermal runaway, which will be described later, and pinholes were observed to appear sharply in the glass container.
[0026] 本願発明者は、その原因を究明するため種々の実験を行った。実験の詳細は省略 するが、上記現象の生じる原因は、保護膜が十分にその機能を発揮していないため であることが最終的に判明した。  [0026] The inventor of the present application conducted various experiments to find out the cause. Although the details of the experiment are omitted, it was finally found that the cause of the above phenomenon was that the protective film did not fully function.
当該現象の生じる外部電極型蛍光ランプ (以下、「比較蛍光ランプ」と言う。)の保護 膜の断面を撮影した顕微鏡写真を図 2に示す。(a)、(b)共に、外部電極に対応する 部分の断面であり、(a)は、一方の外部電極に対応し、(b)は、他方の外部電極に対 応する。(a)、(b)で保護膜の厚みが異なる理由については後述する。  Figure 2 shows a photomicrograph of the cross section of the protective film of the external electrode fluorescent lamp (hereinafter referred to as “comparative fluorescent lamp”) where this phenomenon occurs. Both (a) and (b) are cross sections of the portion corresponding to the external electrode, (a) corresponds to one external electrode, and (b) corresponds to the other external electrode. The reason why the thickness of the protective film is different between (a) and (b) will be described later.
[0027] 保護膜は金属酸ィ匕物粒子が集合して形成されて 、るのであるが、金属酸化物粒子 が完全に緻密に詰まっている訳ではなぐ当該保護膜は、外表面に連通する開孔と 内部空隙になっている閉孔を有する。図 2に示すように緻密性が低ぐ上記開孔ゃ閉 孔が大きいほどまた多く存在するほど、ガラス容器内壁力 オンの衝撃を受ける確率 が高くなると考える。  [0027] Although the protective film is formed by agglomeration of metal oxide particles, the protective film is not completely packed with metal oxide particles, and the protective film communicates with the outer surface. It has an open hole and a closed hole that is an internal space. As shown in Fig. 2, it is considered that the higher the number of open holes and the smaller the number of open holes, the higher the probability of receiving an impact on the inner wall force of the glass container.
駆動電流値を高くすると外部電極の温度が上がる。外部電極の温度が上がるとこ れに接しているガラス容器部分の温度が上がって、ガラスの誘電損が大きくなり、さら に温度が上がる。この他に、ガラス容器は、イオンの衝撃によってもその温度が上昇 する。イオンは、電気陰性度の関係で、保護膜に衝突するよりもガラスに衝突する方 力 エネルギ損失が大きぐ発熱量も大きくなる。 Increasing the drive current value increases the temperature of the external electrode. When the temperature of the external electrode rises, the temperature of the glass container part in contact with it rises, the dielectric loss of the glass increases, and the temperature rises further. In addition, the temperature of glass containers rises due to ion bombardment. To do. Due to the electronegativity, ions collide with the glass rather than collide with the protective film, resulting in greater energy loss and greater heat generation.
[0028] そして、電極における温度(以下、「電極温度」と言う。)で約 140°Cになると、熱暴 走を起こしてガラス容器に急激にピンホールが明いてしまうことが分力つた。  [0028] Then, when the temperature at the electrode (hereinafter referred to as "electrode temperature") reached about 140 ° C, thermal runaway occurred and pinholes suddenly appeared in the glass container.
図 3に上記比較蛍光ランプにおける駆動電流値と電極温度との関係を示す。なお、 電極温度は、放射温度計で測定した。破線で示すのが比較蛍光ランプである。従来 、上述したように、 4〜4. 5mA程度の駆動電流値で用いられているので、電極温度 は 80°C未満であって、熱暴走によるピンホールの問題は生じない。し力しながら、現 在では、 8mA程度の駆動電流で点灯されることもあり、将来は、 10mAで点灯するこ とも計画されている。この場合に、上記熱暴走によるピンホールが問題となる。  Fig. 3 shows the relationship between the drive current value and the electrode temperature in the comparative fluorescent lamp. The electrode temperature was measured with a radiation thermometer. A broken line shows a comparative fluorescent lamp. Conventionally, as described above, since it is used at a drive current value of about 4 to 4.5 mA, the electrode temperature is less than 80 ° C, and there is no problem of pinholes due to thermal runaway. However, at present, it may be lit at a drive current of about 8 mA, and in the future it is planned to illuminate at 10 mA. In this case, the pinhole due to the thermal runaway becomes a problem.
[0029] イオンのガラス容器への衝突を抑制するには、保護膜の厚みを一層厚くすることが 考えられる。し力しながら、保護膜を厚くするほど蛍光ランプの輝度は低下してしまう 。保護膜の平均膜厚が 2 mを超えると、保護膜の無い状態と比較して約 20〜25% 輝度が低下し、必要とする輝度が得られなくなることを、本願発明者は確認した。 そこで、本願発明者は、保護膜の緻密性をさらに向上させることで、イオンのガラス 容器内壁への衝突を抑制し、もって当該部分での発熱量を抑えることで、ピンホール の問題を解決することとした。そして、保護膜の緻密性を、下記に記す指標で評価す ることとした。  [0029] To suppress the collision of ions with the glass container, it is conceivable to further increase the thickness of the protective film. However, the thicker the protective film, the lower the brightness of the fluorescent lamp. The inventors of the present invention have confirmed that when the average thickness of the protective film exceeds 2 m, the luminance is reduced by about 20 to 25% compared to the state without the protective film, and the required luminance cannot be obtained. Therefore, the inventor of the present application solves the problem of pinholes by further improving the denseness of the protective film, thereby suppressing the collision of ions with the inner wall of the glass container and thereby suppressing the amount of heat generated in the part. It was decided. The denseness of the protective film was evaluated using the following indices.
[0030] 図 4に、保護膜の断面を模式的に描いた図を示す。図 4中、符号 22で示すのが金 属酸化物粒子で、符号 24で示すのが内部空隙になっている閉孔である。  FIG. 4 is a diagram schematically showing a cross section of the protective film. In FIG. 4, the reference numeral 22 indicates metal oxide particles, and the reference numeral 24 indicates closed pores serving as internal voids.
当該保護膜横断面に現れる表面粗さを測定して、当該測定値を保護膜の緻密性 を示す指標の一つとした。表面粗さが小さい程、保護膜において外表面に連通する 開孔が小さいと言える力もである。なお、表面粗さは、 JIS B 0601 : ' 94に準拠して 測定した「最大高さ Ry」である。  The surface roughness appearing in the cross section of the protective film was measured, and the measured value was used as one of the indicators showing the denseness of the protective film. It can be said that the smaller the surface roughness is, the smaller the pores communicating with the outer surface in the protective film are. The surface roughness is the “maximum height Ry” measured according to JIS B 0601: '94.
[0031] また、当該保護膜断面において、内部空隙になっている閉孔 24各々の当該断面 における面積を測定してその平均をとり、当該平均値 (以下、単に「閉孔面積」と言う 。)を、緻密性を示すもう一つの指標とした。当然のことながら、当該閉孔が小さいほ ど保護膜の緻密性が高いといえるからである。ここで、閉孔は、保護膜横断面におい て、平均粒径を有する金属酸化物粒子が、少なくとも 1. 0個入る程度の空隙を指す ものとする。また、閉孔は金属酸ィ匕物粒子群が形成する壁で完全に閉じられているも のではなぐ当該壁には、平均粒径を有する金属酸ィ匕物粒子の大きさに換算して、 4 . 0個分以下の不連続部分が存在していても構わない。 [0031] In addition, in the cross section of the protective film, the area of each cross section of the closed holes 24 serving as internal voids is measured and averaged, and the average value (hereinafter simply referred to as "closed hole area"). ) Was taken as another indicator of compactness. Naturally, the smaller the closed hole, the higher the density of the protective film. Here, the closed hole is in the cross section of the protective film. Thus, it is assumed that the voids are enough to contain at least 1.0 metal oxide particles having an average particle diameter. In addition, the closed hole is not completely closed by the wall formed by the metal oxide particle group, but the wall is converted to the size of the metal oxide particle having an average particle diameter. There may be 4.0 or less discontinuous portions.
[0032] さらに、閉孔の上記した平均面積に加え、保護膜の単位断面積当たりにおける閉 孔の個数 (以下、単に「閉孔数」と言う。)も緻密性を示す指標とした。  [0032] Further, in addition to the above-mentioned average area of closed holes, the number of closed holes per unit cross-sectional area of the protective film (hereinafter simply referred to as "the number of closed holes") was also used as an indicator of denseness.
詳細な実験結果は省略するが、表面粗さが 1 mを超えなければ(1 μ m以下であ れば)電極温度は、 120°C程度(10mA点灯時)となることが分力つた。これは、問題 となる 140°C力も充分に抑制された温度値である。  Although detailed experimental results are omitted, it was found that if the surface roughness does not exceed 1 m (1 μm or less), the electrode temperature is about 120 ° C (when 10 mA is lit). This is a temperature value in which the 140 ° C force in question is sufficiently suppressed.
[0033] また、閉孔面積が 0. 1 μ m2を超えなければ(0. 1 μ m2以下であれば)、電極温度 は、 120°C程度(10mA点灯時)に抑制されることが分力つた。また、この場合に、閉 孔数が 4個 Z μ m2を超えなければ (4個 Z μ m2以下であれば)、電極温度は 120°C 程度(10mA点灯時)に抑制されることが分力つた。 [0033] Further, if exceeded closed porosity area 0. 1 μ m 2 (if 0. 1 μ m 2 or less), the electrode temperature can be suppressed to 120 ° C about (at 10mA lit) However, it was divided. Further, in this case, (if four Z mu m 2 or less) number closed pores four Z mu m 2 and unless exceeded, the electrode temperature can be suppressed to about 120 ° C (at 10mA lit) However, it was divided.
図 5は、当該実験に供した外部電極型蛍光ランプの一つであって、実施例に係る 外部電極型蛍光ランプ (以下、「実施例蛍光ランプ」と言う。)における保護膜の断面 の顕微鏡写真である。(a)は、第 1外部電極に対応する保護膜の一部断面 (以下、「 第 1部分」と言う。)であり、(b)は、第 2外部電極に対応する保護膜の一部断面 (以下 、「第 2部分」と言う。)である。実施例蛍光ランプの、第 1部分における表面粗さは 0. 05 ^ m,閉孔面積は 0. 008 ^ m2,閉孔数は 1. 2個 Z m2であり、第 2部分におけ る表面粗さは 0. 12 /ζ πι、閉孔面積は 0. 007 μ m2,閉孔数は 3. 4個 Z/ m2であつ た。また、実施例蛍光ランプにおける金属酸化物粒子の平均粒径は、第 1部分では 0 . 13 111、第2部分では0. 12 /z mであった。 FIG. 5 shows one of the external electrode fluorescent lamps used in the experiment, and is a cross-sectional microscope of the protective film in the external electrode fluorescent lamp according to the example (hereinafter referred to as “Example fluorescent lamp”). It is a photograph. (A) is a partial cross-section of the protective film corresponding to the first external electrode (hereinafter referred to as “first part”), and (b) is a part of the protective film corresponding to the second external electrode. It is a cross section (hereinafter referred to as “second part”). Example fluorescent lamp, the surface roughness of the first portion 0. 05 ^ m, closed pore area 0. 008 ^ m 2, closed pore number 1. is two Z m 2, put the second portion The surface roughness was 0.12 / ζ πι, the closed hole area was 0.007 μm 2 , and the number of closed holes was 3.4 Z / m 2 . In addition, the average particle diameter of the metal oxide particles in the example fluorescent lamp was 0.113111 in the first part and 0.12 / zm in the second part.
[0034] また、実施例蛍光ランプにつ!、て、駆動電流値と電極温度との関係を調べたところ 、図 3に実線で示す結果になった。図 3から分かるように、実施例蛍光ランプでは、駆 動電流が 10mAであっても、電極温度は 104°C程度であり、熱暴走によるピンホール の問題を抑制することができる。  In addition, when the relationship between the drive current value and the electrode temperature was examined for the example fluorescent lamp, the result shown by the solid line in FIG. 3 was obtained. As can be seen from FIG. 3, in the fluorescent lamp of the embodiment, even when the driving current is 10 mA, the electrode temperature is about 104 ° C, and the problem of pinholes due to thermal runaway can be suppressed.
さらに、図 3から分力ることは、駆動電流の大きさが同じであれば、実施例蛍光ラン プは比較蛍光ランプよりも電極温度を抑制することができるということである。実施例 蛍光ランプによれば、電極部の発熱量低下に伴い、電極損失が低減され、その結果 、低消費電力化が図れることとなる。 Further, dividing from FIG. 3 is that the example fluorescent lamp can suppress the electrode temperature more than the comparative fluorescent lamp if the magnitude of the drive current is the same. Example According to the fluorescent lamp, the electrode loss is reduced as the calorific value of the electrode portion decreases, and as a result, the power consumption can be reduced.
[0035] 次に、蛍光ランプ 10の製造工程における、保護膜の形成方法について、図 6を参 照しながら説明する。なお、保護膜の形成方法以外は、外部電極型蛍光ランプの一 般的な公知の製造方法と同様なので、それらについての説明は省略する。  Next, a method for forming a protective film in the manufacturing process of the fluorescent lamp 10 will be described with reference to FIG. Except for the method of forming the protective film, the method is the same as a general known manufacturing method of the external electrode type fluorescent lamp, and the description thereof is omitted.
先ず、ガラス容器 12 (図 1)の素材であるガラス管 30の内面に金属酸ィ匕物粒子を含 む懸濁液 32を付着させる。  First, a suspension 32 containing metal oxide particles is adhered to the inner surface of a glass tube 30 that is a material of the glass container 12 (FIG. 1).
[0036] 具体的には、懸濁液 32の入ったタンク 34を準備する。懸濁液 32は、有機溶媒とし ての酢酸ブチルの中に、所定量の金属酸化物粒子、増粘剤として-トロセルロース( NC)をカ卩えたものである。  [0036] Specifically, a tank 34 containing a suspension 32 is prepared. The suspension 32 is obtained by adding a predetermined amount of metal oxide particles and -trocellulose (NC) as a thickener in butyl acetate as an organic solvent.
そして、ガラス管 30を、垂直に立て下端部を懸濁液 32に浸した状態で保持する。 不図示の真空ポンプの吸引力によって、ガラス管 30の上端力もガラス管 30内を排気 し、ガラス管 30内を負圧にして懸濁液 32を吸い上げる [工程 A]。ガラス管 30内の液 面が上端に至る途中(所定の高さ)で吸い上げを止めて、ガラス管 30を懸濁液 32か ら引き上げる。これにより、ガラス管 30内周の所定領域に、懸濁液 32が膜状に付着 する。この場合、懸濁液 32は、重力によってガラス管 30内壁を下方へと流動するた め、上部よりも下部に行くにしたがってその膜厚が厚くなる。図 2、図 5の写真におい て、(a)、(b)間で保護膜の厚みが異なっていたのはこのためである。  Then, the glass tube 30 is held vertically and held at a lower end portion immersed in the suspension 32. By the suction force of a vacuum pump (not shown), the upper end force of the glass tube 30 is also evacuated from the glass tube 30, and the suspension 32 is sucked up by making the inside of the glass tube 30 a negative pressure [step A]. While the liquid level in the glass tube 30 reaches the upper end (predetermined height), the suction is stopped and the glass tube 30 is pulled up from the suspension 32. As a result, the suspension 32 adheres in a film form to a predetermined region on the inner periphery of the glass tube 30. In this case, since the suspension 32 flows downward on the inner wall of the glass tube 30 due to gravity, the thickness of the suspension 32 becomes thicker toward the lower part than the upper part. This is why the thickness of the protective film was different between (a) and (b) in the photographs in Figs.
[0037] 次に、垂直に保持されたガラス管 30を、管軸周りに回転させながら、膜状に付着し た懸濁液 32を乾燥させる [工程 B]。この際、各金属酸ィ匕物粒子はガラス管の内壁に 向かう向きに遠心力が作用する。その結果、金属酸ィ匕物粒子は、ガラス管の内壁に 向かって詰まっていき、遠心力をかけない場合 (ガラス管を回転させない場合)と比較 して、最終的に得られる保護膜の緻密性が向上することとなる。この場合、回転数や 懸濁液の粘度 (懸濁液中における金属酸化物粒子の流動性)によって、最終的に得 られる保護膜の緻密性を変化させる (調整する)ことができる。回転数や懸濁液の粘 度の最適な値は、実験により試行錯誤的に求め得るものである。  [0037] Next, while the glass tube 30 held vertically is rotated around the tube axis, the suspension 32 adhering to the film is dried [step B]. At this time, centrifugal force acts on each metal oxide particle in the direction toward the inner wall of the glass tube. As a result, the metal oxide particles clog toward the inner wall of the glass tube, and the final protective film is denser than when no centrifugal force is applied (when the glass tube is not rotated). Will be improved. In this case, the denseness of the protective film finally obtained can be changed (adjusted) depending on the rotation speed and the viscosity of the suspension (fluidity of the metal oxide particles in the suspension). Optimum values for the number of rotations and the viscosity of the suspension can be obtained by trial and error through experiments.
[0038] また、本願発明者は、後述するようにバックライトユニットの光源として用いる場合に 特に要求される暗黒始動性を改善した蛍光ランプを開発した。そのような蛍光ランプ を実現するため、前記懸濁液に対し、セシウム (Cs)化合物を混合して保護膜を形成 することとした。すなわち、保護膜中に、電気陰性度の低いセシウム (Cs)の化合物を 分散させることによって暗黒始動性を向上させることとしたのである。 [0038] Further, the inventor of the present application has developed a fluorescent lamp with improved dark startability which is particularly required when used as a light source of a backlight unit, as will be described later. Such fluorescent lamp In order to realize the above, a cesium (Cs) compound was mixed with the suspension to form a protective film. In other words, the dark startability is improved by dispersing a cesium (Cs) compound having a low electronegativity in the protective film.
[0039] 懸濁液におけるセシウム化合物の混合割合は、本例では 0. 60重量%以下とした。  [0039] The mixing ratio of the cesium compound in the suspension was 0.60% by weight or less in this example.
0. 60重量%を超えたあたりから懸濁液のゼリー化が始まり、 0. 65重量%を超えると ゼリー化の程度がひどくなつて、その用途をなさなくなることが確認された力もである。 したがって、保護膜を形成するための懸濁液におけるセシウム化合物の混合割合は 、 0. 65重量%以下が好ましぐさらに好ましくは 0. 60重量%以下である。  It is also confirmed that the jelly formation of the suspension started from around 0. 60% by weight, and the degree of jelly formation became severe when it exceeded 0. 65% by weight, making it useless. Therefore, the mixing ratio of the cesium compound in the suspension for forming the protective film is preferably 0.65% by weight or less, more preferably 0.60% by weight or less.
[0040] なお、セシウム化合物を保護膜中に分散させた場合であっても、保護膜の緻密性 を示す前記各指標 (表面粗さ、閉孔面積、閉孔数)と電極温度との間の上述した相関 関係には、ほとんど影響しないことが確認されている。これは、セシウム化合物の混合 割合が 0. 6重量%以下といったように非常に低ぐ保護膜に占めるその体積も極僅 かである為と思われる。  [0040] Note that, even when the cesium compound is dispersed in the protective film, the relationship between the respective indicators (surface roughness, closed area, number of closed holes) indicating the denseness of the protective film and the electrode temperature. It has been confirmed that there is little effect on the above-mentioned correlation. This seems to be because the volume of the protective film, which is very low such that the mixing ratio of the cesium compound is 0.6% by weight or less, is extremely small.
[0041] 本願発明者は、蛍光ランプ 10をベースにして、保護膜にセシウム化合物を分散さ せたランプ (ランプ A, B, C, D)を作成し、暗黒始動性の効果を確認する試験を行つ た。また、比較のため保護膜にセシウム化合物を分散させないランプ Xを作成し、同 様の実験を行った。  [0041] The inventor of the present application creates a lamp (lamp A, B, C, D) in which a cesium compound is dispersed in a protective film based on the fluorescent lamp 10, and confirms the effect of dark startability. I went. For comparison, a lamp X that does not disperse the cesium compound in the protective film was made and a similar experiment was conducted.
ランプ A, B, C, Dおよび Xは、保護膜におけるセシウム化合物の有無、およびその 種類と混合割合とが異なる以外は、基本的に同じ構成を有しているが、ランプ Dは、 電極幅 W1 (図 1)を他のランプよりも長い 40mmにしたものである。  Lamps A, B, C, D, and X have basically the same configuration except that the cesium compound is present in the protective film and the type and mixing ratio are different. W1 (Fig. 1) is 40mm longer than other lamps.
[0042] ランプ A, B, C, Dにおいて、保護膜に混合したセシウム化合物の種類とその混合 割合 (懸濁液における重量%)は以下の通りである。 [0042] In lamps A, B, C, and D, the types of cesium compounds mixed in the protective film and the mixing ratio (wt% in the suspension) are as follows.
ランプ A … 硫酸セシウム (Cs SO )、混合割合: 0. 60重量0 /0 Lamp A ... cesium sulfate (Cs SO), mixing ratio: 0. 60 weight 0/0
2 4  twenty four
ランプ B … 塩ィ匕セシウム (CsCl)、混合割合: 0. 37重量0 /0 ランプ C … 塩ィ匕セシウム (CsCl)、混合割合: 0. 60重量0 /0 ランプ D … 硫酸セシウム (Cs SO )、混合割合: 0. 37重量0 /0 Lamp B ... Shioi匕cesium (CsCl), the mixing ratio: 0. 37 wt 0/0 Lamp C ... Shioi匕cesium (CsCl), the mixing ratio: 0. 60 weight 0/0 lamp D ... cesium sulfate (Cs SO ), mixing ratio: 0. 37 wt 0/0
2 4  twenty four
ランプ A, B, C, Dおよび Xを各 20本作製し、暗黒下に 22時間放置した後の暗黒 始動率と 94時間放置した後の暗黒始動率について調査した。ここで「暗黒始動率」と は、両外部電極への給電開始から 1秒以内に点灯したものを合格、それ以外を不合 格とし、合格本数を供試本数 (本例では 20本)で除した百分率である。 Twenty lamps A, B, C, D, and X were prepared, and the dark start rate after leaving for 22 hours in the dark and the dark start rate after leaving for 94 hours were investigated. Where "dark start rate" Is the percentage obtained by dividing the number of passing lights by the number of specimens (20 in this example), with those that turned on within 1 second from the start of power supply to both external electrodes passed and those that were not passed passed.
[0043] 試験結果を図 7に示す。図 7に示す棒グラフの内、白抜きのものが暗黒下に 22時 間放置した場合の暗黒始動率を、黒塗りのものが暗黒下に 94時間放置した場合の 暗黒始動率をそれぞれ示して 、る。  [0043] The test results are shown in FIG. In the bar graph shown in Fig. 7, the dark start rate when the white one is left in the dark for 22 hours and the dark start rate when the black one is left in the dark for 94 hours are shown. The
図 7から明らかなように、ランプ A, B, C, Dのどのランプも比較ランプ Xに比べて、 暗黒始動率が改善されていることが分かる。中でも、ランプ A, Dの暗黒始動率がい ずれの放置時間の場合にも 100%であることから、セシウム化合物の中でも硫酸セシ ゥムが暗黒始動性の改善に優れていると思われる。  As is clear from FIG. 7, it can be seen that the lamps A, B, C, and D have an improved dark start rate compared to the comparative lamp X. Above all, since the dark start rate of lamps A and D is 100% in any standing time, cesium sulfate is considered to be excellent in improving the dark startability among cesium compounds.
[0044] ランプ Bとランプ Cとの間で、暗黒始動率に差が生じているのは、混合割合の差が 原因であると思われる。すなわち、当然のことながら、同種のセシウム化合物であれ ば、その混合割合が多いほど暗黒始動率は良くなるものと考えられるからである。 また、混合割合が少ない場合であっても、電極幅を長くすることにより、暗黒始動率 を向上させることができることが、ランプ Bとランプ Dの試験結果力も推察される。  [0044] The difference in the dark starting rate between lamp B and lamp C seems to be due to the difference in the mixing ratio. That is, as a matter of course, the dark start-up rate is considered to be improved as the mixing ratio increases for the same kind of cesium compound. In addition, even when the mixing ratio is small, it is possible to improve the dark start rate by increasing the electrode width, and the test result strength of lamp B and lamp D is also inferred.
[0045] さらに、本願発明者は、暗黒始動性の向上にとって好適な保護膜の表面粗さの範 囲を画定した。上述したように、ピンホールの問題解消のためには、保護膜はできる だけ緻密にする方がよい。し力しながら、保護膜をある限度を超えて緻密にすると、 満足のいく暗黒始動性が得られないことを本願発明者が実験により見出した。これは 、以下の理由によるものと推測される。  [0045] Furthermore, the present inventor has defined a range of the surface roughness of the protective film suitable for improving the dark startability. As described above, it is better to make the protective film as dense as possible in order to solve the pinhole problem. However, the inventors of the present invention have found through experiments that satisfactory dark startability cannot be obtained if the protective film is made dense beyond a certain limit. This is presumed to be due to the following reason.
[0046] セシウム化合物は保護膜の表面およびその内部に略一様に分散しているものと思 われる。暗黒始動の向上に寄与するのは、放電空間と直接に接するセシウム化合物 と考えられる。すなわち、保護膜の主として表面に存するセシウム化合物が暗黒始動 の向上に寄与すると考えられる。ところが、上記した製法から明らかなように、保護膜 を緻密にすればするほど保護膜の表面は平坦になり(すなわち、表面粗さは小さくな り)、保護膜の表面積が減少して、当該表面に存する (すなわち、放電空間に直接に 接する)セシウム化合物の量が少なくなる。その結果、暗黒始動性が低下してしまう。  [0046] The cesium compound is considered to be substantially uniformly dispersed on the surface of the protective film and in the inside thereof. The cesium compound that is in direct contact with the discharge space is considered to contribute to the improvement of the dark start. That is, it is considered that the cesium compound mainly present on the surface of the protective film contributes to the improvement of the dark start. However, as is clear from the above-described manufacturing method, the denser the protective film, the flatter the surface of the protective film (that is, the smaller the surface roughness) and the smaller the surface area of the protective film. Less cesium compounds are present on the surface (ie, directly in contact with the discharge space). As a result, the dark startability is degraded.
[0047] したがって、暗黒始動性を向上させるためには、保護膜の緻密性を低下させればよ いことになるが、そうすると、今度は、ピンホールの問題が再浮上してしまう。 そこで、本願発明者は、暗黒始動性を満足しつつピンホールの問題も解消し得る 表面粗さ(前記「最大高さ Ry」)を実験により求めた。 [0047] Therefore, in order to improve the dark startability, it is only necessary to reduce the denseness of the protective film, but in this case, the problem of pinholes will rise again. Therefore, the inventors of the present application obtained an experiment to determine the surface roughness (the “maximum height Ry”) that can solve the problem of pinholes while satisfying the dark startability.
本実験では、金属酸化物として酸化イットリウム (Y O )、セシウム化合物として硫酸  In this experiment, yttrium oxide (Y 2 O 3) as the metal oxide and sulfuric acid as the cesium compound
2 3  twenty three
セシウム(Cs SO )を用い、これらを、 IPA (イソプロピルアルコール)中に分散させて  Using cesium (Cs SO), these are dispersed in IPA (isopropyl alcohol).
2 4  twenty four
懸濁液を作成した。懸濁液における、酸化イットリウムの混合割合は 10重量%であり 、硫酸セシウムの混合割合は 0. 5重量0 /0である。 A suspension was made. In suspension, the mixing ratio of yttrium oxide is 10 wt%, the mixing ratio of the cesium sulfate is 0.5 wt 0/0.
[0048] ガラス管内周面への懸濁液の塗布、乾燥、焼成の方法自体は、図 6を用いて説明 したのと同様なので、詳細な説明は省略する。なお、既述したとおりセシウム化合物 の混合割合が 0. 60重量%を超えたあたりから懸濁液のゼリー化が顕著になるので あるが、 0. 60重量%未満でもその兆候は有り、ガラス管内面に塗布された懸濁液は 凝集して、その塗布膜の表面は、数 m〜数十 mのピッチの波状になることが認 められている。また、このピッチは、セシウム化合物の混合割合の多少に応じて変化 することも認められた。上記乾燥工程におけるガラス管の回転数によって、当該ピッ チはあまり変化しないが、波の高さ、すなわち最大高さ Ry (表面粗さ)が変化すること になる。 [0048] The method of applying the suspension to the inner peripheral surface of the glass tube, drying, and firing are the same as described with reference to FIG. As described above, the jelly formation of the suspension becomes noticeable when the mixing ratio of the cesium compound exceeds 0.60% by weight, but there is a sign even if it is less than 0.60% by weight. It is recognized that the suspension applied to the surface agglomerates and the surface of the coating film has a wave shape with a pitch of several meters to several tens of meters. It was also observed that this pitch varied depending on the mixing ratio of the cesium compound. Depending on the number of rotations of the glass tube in the drying process, the pitch does not change much, but the wave height, that is, the maximum height Ry (surface roughness) changes.
[0049] 表面粗さの異なる種々の外部電極型蛍光ランプを、各々の表面粗さに付き 20本作 製し、暗黒下に 22時間放置した後の暗黒始動率について調査した。  [0049] Twenty different external electrode fluorescent lamps having different surface roughnesses were produced for each surface roughness, and the dark starting rate after being left in the dark for 22 hours was investigated.
詳細な実験結果は省略するが、表面粗さが少なくとも 0. 6 111ぁれば(0. 以 上であれば)、暗黒始動率は 100%となることが分力つた。また、保護膜にセシウム化 合物を分散させても、ピンホールの問題を解消するための「表面粗さ」や「閉孔面積」 等の範囲については、保護膜にセシウム化合物を分散させない既述した場合と同様 であることが確認されて!ヽる。  Although detailed experimental results are omitted, it was found that if the surface roughness was at least 0.6 111 (if it was above 0), the dark start-up rate would be 100%. Moreover, even if cesium compounds are dispersed in the protective film, the range of “surface roughness” and “closed hole area” for solving the pinhole problem does not disperse the cesium compound in the protective film. It is confirmed that it is the same as described above!
[0050] 図 8は、当該実験に供した外部電極型蛍光ランプの一つにおける保護膜の断面の 顕微鏡写真である。図 8に示すランプは、ピンホールの問題は解消されているものの 、暗黒始動率が 70%で、暗黒始動率の面では不合格となったものである。因みに、 図 8に示すランプにおける保護膜の表面粗さ(最大高さ Ry)は、 0. 43 μ mであった。 図 9は、同実験に供した外部電極型蛍光ランプの他の一つにおける保護膜の断面 の顕微鏡写真である。図 9に示すランプは、ピンホールの問題も解消され、暗黒始動 率も 100%であった。因みに、図 9に示すランプにおける保護膜の表面粗さ(最大高 さ Ry)は、 1. であった。 FIG. 8 is a photomicrograph of the cross section of the protective film in one of the external electrode fluorescent lamps used in the experiment. The lamp shown in Fig. 8 has a dark start rate of 70%, but has failed in terms of the dark start rate, although the pinhole problem has been solved. Incidentally, the surface roughness (maximum height Ry) of the protective film in the lamp shown in FIG. 8 was 0.43 μm. Figure 9 is a photomicrograph of the cross section of the protective film in another external electrode fluorescent lamp used in the experiment. The lamp shown in Fig. 9 eliminates the pinhole problem and starts dark. The rate was also 100%. Incidentally, the surface roughness (maximum height Ry) of the protective film in the lamp shown in FIG.
[0051] 次に、上記実施の形態に係る蛍光ランプ 10を、ノ ックライトユニットの光源として用 いた例を示す。なお、当該光源として、上記ランプ A, B, C, Dのいずれかを用いても 良いことは言うまでもない。 [0051] Next, an example in which the fluorescent lamp 10 according to the above embodiment is used as a light source of a knocklight unit will be described. Needless to say, any one of the lamps A, B, C, and D may be used as the light source.
図 10は、直下方式のバックライトユニット 40の概略構成を示す斜視図である。なお 、図 10は、後述する透光板 46を破断した図である。ノ ックライトユニット 40は、 LCD ( 液晶ディスプレイ)パネル(図 10では不図示)の背面に配されて用いられ、 LCD装置 を構成するものである。  FIG. 10 is a perspective view showing a schematic configuration of a direct-type backlight unit 40. FIG. FIG. 10 is a view in which a translucent plate 46 described later is broken. The knock light unit 40 is arranged and used on the back of an LCD (liquid crystal display) panel (not shown in FIG. 10), and constitutes an LCD device.
[0052] ノ ックライトユニット 40は、長方形をした反射板 42とこの反射板 42を囲む側板 44と 反射板 42と平行に設けられた透光板 46とからなる外囲器 48を有する。反射板 42と 側板 44は共に PET (ポリエチレンテレフタレート)榭脂からなる板材の一方の主表面 (外囲器 48として組み立てられた際に内側となる面)に銀などを蒸着した反射膜 (不 図示)が形成されて ヽるものである。  The knock light unit 40 includes an envelope 48 including a rectangular reflecting plate 42, a side plate 44 surrounding the reflecting plate 42, and a translucent plate 46 provided in parallel with the reflecting plate 42. Both the reflector 42 and the side plate 44 are reflective films (not shown) in which silver or the like is vapor-deposited on one main surface of the plate made of PET (polyethylene terephthalate) resin (the inner surface when assembled as the envelope 48). ) Is formed.
[0053] 透光板 46は、反射板 42側から順に、光拡散板 50、光拡散シート 52、およびレンズ シート 54が積層されてなるものである。  The light transmissive plate 46 is formed by laminating a light diffusing plate 50, a light diffusing sheet 52, and a lens sheet 54 in this order from the reflecting plate 42 side.
外囲器 48内には、複数本 (本例では 16本)の蛍光ランプ 10力 反射板 42の長辺と 平行に短辺方向に等間隔で収納されている。また、これらの蛍光ランプ 10は、不図 示の配線部材によって、電気的に並列に接続されている。  Inside the envelope 48, a plurality of (in this example, 16) fluorescent lamps 10-power reflecting plates 42 are housed at equal intervals in the short side direction in parallel with the long sides. These fluorescent lamps 10 are electrically connected in parallel by a wiring member (not shown).
[0054] 蛍光ランプ 10は、上記したように、従来よりも電極部の発熱量を抑制することができ る。その結果、外囲器 48を構成する透光板 46その他の上記部材の、当該電極部近 傍における熱劣化による変色 (黄変)等を抑制することができる。  [0054] As described above, the fluorescent lamp 10 can suppress the amount of heat generated in the electrode portion more than before. As a result, it is possible to suppress discoloration (yellowing) or the like due to thermal deterioration in the vicinity of the electrode portion of the translucent plate 46 and other members constituting the envelope 48.
図 11は、バックライトユニット 40を、 16本の蛍光ランプ 10を点灯させるための電源 回路ユニットであるインバータ 56を含めて示すブロック図である。  FIG. 11 is a block diagram showing the backlight unit 40 including an inverter 56 that is a power supply circuit unit for lighting the 16 fluorescent lamps 10.
[0055] インバータ 56は、商用電源 58からの 50Z60Hzの交流電力を高周波電力(例えば 、前記したように 60kHz)に変換して、蛍光ランプ 10に給電する。  The inverter 56 converts AC power of 50 Z 60 Hz from the commercial power source 58 into high frequency power (for example, 60 kHz as described above), and supplies the fluorescent lamp 10 with power.
次に、ノ ックライトユニット 40を、液晶ディスプレイ装置の一例として示す液晶テレビ に用いた例を示す。 図 12は、この液晶テレビ 60を、その前面の一部を切り欠いた状態で示す図である 。図 12に示す液晶テレビ 60は、液晶ディスプレイパネル 62およびバックライトュ-ッ ト 40等を備える。 Next, an example in which the knocklight unit 40 is used in a liquid crystal television shown as an example of a liquid crystal display device will be described. FIG. 12 is a diagram showing the liquid crystal television 60 with a part of the front surface thereof cut away. A liquid crystal television 60 shown in FIG. 12 includes a liquid crystal display panel 62, a backlight unit 40, and the like.
[0056] 液晶ディスプレイパネル 62は、カラーフィルター基板、液晶、 TFT基板等カゝらなり、 外部からの画像信号に基づき、駆動モジュール (不図示)で駆動されて、カラー画像 を形成する。  The liquid crystal display panel 62 is a color filter substrate, a liquid crystal, a TFT substrate, or the like, and is driven by a drive module (not shown) based on an external image signal to form a color image.
バックライトユニット 40の外囲器 48は、液晶ディスプレイパネル 62の背面に設けら れ、背面力も液晶ディスプレイパネル 62を照射する。  The envelope 48 of the backlight unit 40 is provided on the back surface of the liquid crystal display panel 62, and the back surface force also irradiates the liquid crystal display panel 62.
[0057] インバータ 56は、液晶テレビ 60の筐体 64内であって、外囲器 56の外に配されてい る。 The inverter 56 is disposed inside the casing 64 of the liquid crystal television 60 and outside the envelope 56.
以上、本発明を実施の形態に基づいて説明してきた力 本発明は、上記した形態 に限らないことは勿論であり、例えば、以下のような形態とすることもできる。  As described above, the present invention has been described based on the embodiments. Of course, the present invention is not limited to the above-described embodiments. For example, the following embodiments may be employed.
(1)上記実施の形態では、本発明を外部電極型銀蛍光ランプに適用した例を用いて 説明したが、本発明は、蛍光ランプに限らず、外部電極型紫外線ランプに適用するこ とも可能である。すなわち、上記実施の形態に係る外部電極型蛍光ランプの構成か ら蛍光体膜を除去し (蛍光体膜を形成しないこととし)、外部電極型紫外線ランプとし て構成しても構わない。紫外線ランプは、紫外線を被照射物に照射し、当該被照射 物の殺菌等に用いられる。  (1) In the above embodiment, the present invention has been described using an example in which the present invention is applied to an external electrode type silver fluorescent lamp. However, the present invention is not limited to a fluorescent lamp and can also be applied to an external electrode type ultraviolet lamp. It is. That is, the phosphor film may be removed from the configuration of the external electrode fluorescent lamp according to the above-described embodiment (the phosphor film is not formed) and configured as an external electrode ultraviolet lamp. The ultraviolet lamp irradiates the irradiated object with ultraviolet rays and is used for sterilization of the irradiated object.
(2)ガラス容器の両端部外周に設ける外部電極は、上記実施の形態のものに限らず 、例えば、以下の形態とすることもできる。  (2) The external electrodes provided on the outer periphery of both ends of the glass container are not limited to those in the above-described embodiment, and may be, for example, in the following forms.
[0058] (0 図 13に示すのは、ガラス容器 112の端部外面に、周知の超音波半田ディッピン グによって、外部電極 114を形成した例である。この場合、超音波半田ディッビング に先立って、ガラス容器 112外面の外部電極 112形成予定領域を、サンドブラスト〖こ よって、表面粗さ 1〜3 m程度に粗面化しておく。粗面化するのは、半田のガラス容 器表面に対する固着性を高めるためである。そして、ガラス容器 112を垂直に保持し たまま、その一端力も超音波半田層に浸漬し、引き上げることによって、外部電極 11 2が形成される。  (0 FIG. 13 shows an example in which the external electrode 114 is formed on the outer surface of the end portion of the glass container 112 by known ultrasonic solder dipping. In this case, prior to ultrasonic solder dipping. The area where the external electrode 112 is to be formed on the outer surface of the glass container 112 is roughened to a surface roughness of about 1 to 3 m by sandblasting, which is due to the adhesion of the solder to the glass container surface. The external electrode 112 is formed by immersing the glass container 112 in the ultrasonic solder layer and pulling it up while holding the glass container 112 vertically.
[0059] 半田材料としては、スズ、スズとインジウムの合金、スズとビスマスの合金の 、ずれか を主成分とするものを用いることができる。また、ガラス容器 112との固着性の観点か ら、アンチモン、亜鉛、アルミニウムの内の少なくとも一つを添加剤として含有させるこ とが好ましい。さらに、ガラス容器 112表面との濡れ性の観点から、アンチモン又は亜 鉛を添加剤として含有させることが好まし 、。 [0059] As the solder material, any of tin, an alloy of tin and indium, and an alloy of tin and bismuth can be used. Can be used. Further, from the viewpoint of adhesion to the glass container 112, it is preferable to contain at least one of antimony, zinc, and aluminum as an additive. Further, from the viewpoint of wettability with the surface of the glass container 112, it is preferable to contain antimony or zinc as an additive.
[0060] また、図 13に示すように、外部電極 114は、その端部付近の厚みが当該端部に向 力つて滑らかに漸減している。外部電極の端部が角張っていると、外部電極の端部と ガラス容器外周面との間でコロナ放電が生じて、オゾンが発生するのであるが、図 13 に示す上記した形状とすることにより、コロナ放電の発生を効果的に抑制し、オゾン の発生を防止することが可能となる。 Further, as shown in FIG. 13, the external electrode 114 has a thickness in the vicinity of the end thereof that gradually decreases gradually toward the end. If the end of the external electrode is angular, corona discharge occurs between the end of the external electrode and the outer peripheral surface of the glass container, and ozone is generated. By adopting the shape shown in FIG. It is possible to effectively suppress the generation of corona discharge and prevent the generation of ozone.
[0061] なお、図 13において、符号 116で示すのは蛍光体膜であり、符号 118で示すのは 保護膜である。本例は、保護膜を、ガラス容器内周面の外部電極と対向する部分に のみ形成した例である。 In FIG. 13, reference numeral 116 indicates a phosphor film, and reference numeral 118 indicates a protective film. In this example, the protective film is formed only on the portion of the inner peripheral surface of the glass container facing the external electrode.
(ii) 図 14 (a)に示すのは、ガラス容器 122の端部外周に、図 14 (b)に示すような金 属スリーブ 124を外挿し、金属スリーブ 124とガラス容器 122外周面との間に半田 12 (ii) FIG. 14 (a) shows that a metal sleeve 124 as shown in FIG. 14 (b) is extrapolated to the outer periphery of the end of the glass container 122, and the metal sleeve 124 and the outer peripheral surface of the glass container 122 are Solder in between 12
6を充填して外部電極 128を構成した例である。外部電極に金属スリーブを用いるこ とで、ノ ックライトユニット (装置)のソケットに着脱する際に発生しがちな外部電極の 損傷を低減することができる。 In this example, the external electrode 128 is configured by filling 6. By using a metal sleeve for the external electrode, it is possible to reduce damage to the external electrode that tends to occur when the socket is attached to or detached from the socket of the knocklight unit (device).
[0062] 金属スリーブ 124は、ガラス容器 122とほぼ同じ線膨張係数を有する材料、例えば[0062] The metal sleeve 124 is made of a material having substantially the same linear expansion coefficient as the glass container 122, for example,
Fe-Ni-Co系合金からなる。半田 126は、例えば、 311—八8— 01合金(重量%で311 が 95. 2、 Agが 3. 8、 Cuが 1. 0の比率)からなる。 Made of Fe-Ni-Co alloy. The solder 126 may be, for example, 311- eight 8 - 01 alloy (in weight percent 311 95. 2, Ag is 3. 8, Cu is 1. The ratio of 0) composed of.
なお、図 14 (a)において、符号 130で示すのは蛍光体膜であり、符号 132で示す のは保護膜である。  In FIG. 14A, reference numeral 130 indicates a phosphor film, and reference numeral 132 indicates a protective film.
(3)上記実施の形態の外部電極型蛍光ランプ 10では、ガラス容器 12の両端部外周 に外部電極を設けたが、さらに、ガラス容器 12の長手方向の略中央部外周にも外部 電極 (以下、「第 3外部電極」という。)を設けることとしても構わない。この場合、第 3外 部電極は、グランドラインに接続する (すなわち、接地する)。なお、第 3外部電極と対 向するガラス容器内面部分に保護膜を形成することは言うまでもない。  (3) In the external electrode type fluorescent lamp 10 of the above embodiment, the external electrodes are provided on the outer periphery of both ends of the glass container 12. , "Third external electrode") may be provided. In this case, the third external electrode is connected to the ground line (ie, grounded). Needless to say, a protective film is formed on the inner surface of the glass container facing the third external electrode.
(4)上記実施の形態では、本発明を、ガラス容器の両端部に外部電極を備えた蛍光 ランプに適用した例に基づいて説明した力 本発明は、図 15に示すように、ガラス容 器 70の一端部側の電極を外部電極 72とし、他端部側の電極をガラス容器 70内に設 置する内部電極 74とする構成の蛍光ランプ 76にも適用可能である。内部電極 74が 配される側のガラス容器 70の端部は、リード線 78部分で封着されて気密封止されて いる。内部電極 74は、リード線 78のガラス容器 70内側端に接合されている。リード線 78は、タングステン線カゝらなる。内部電極 74は、有底筒状をしたいわゆるホロー型電 極であり、ニオブ棒をカ卩ェしたものである。図中符号 80で示すのは、蛍光体膜であり 、符号 82で示すのは、保護膜である。 (4) In the above embodiment, the present invention relates to a fluorescent lamp provided with external electrodes at both ends of a glass container. The force described based on the example applied to the lamp In the present invention, as shown in FIG. 15, the electrode on one end side of the glass container 70 is an external electrode 72, and the electrode on the other end side is in the glass container 70. The present invention can also be applied to a fluorescent lamp 76 configured as an internal electrode 74 to be installed. The end of the glass container 70 on the side where the internal electrode 74 is disposed is sealed with a lead wire 78 and hermetically sealed. The internal electrode 74 is bonded to the inner end of the glass container 70 of the lead wire 78. The lead wire 78 is made of tungsten wire. The internal electrode 74 is a so-called hollow-type electrode having a bottomed cylindrical shape and is a cover of a niobium rod. In the figure, reference numeral 80 indicates a phosphor film, and reference numeral 82 indicates a protective film.
(5)また、本発明は、図 16に示すような外部電極型蛍光ランプ 90 (以下、単に「蛍光 ランプ 90」と言う。)に適用することも可能である。図 16 (a)は、蛍光ランプ 90の概略 構成を示す外観図であり、図 16 (b)は、蛍光ランプ 90の横断面図である。なお、図 1 6 (b)は、断面図であるが、煩雑さを避けるため、ノ、ツチングは省略することとする。  (5) The present invention can also be applied to an external electrode type fluorescent lamp 90 (hereinafter simply referred to as “fluorescent lamp 90”) as shown in FIG. 16 (a) is an external view showing a schematic configuration of the fluorescent lamp 90, and FIG. 16 (b) is a cross-sectional view of the fluorescent lamp 90. FIG. Note that FIG. 16 (b) is a cross-sectional view, but in order to avoid complications, knitting and pinching are omitted.
[0063] 蛍光ランプ 90は、蛍光ランプ 10 (図 1)と同様のガラス容器 92を有する。ガラス容器 92の外周には、断面「C」字状をした第 1外部電極 94が、ガラス容器 92の長手方向 に延設されている。また、同様の形状をした第 2外部電極 96が、第 1外部電極 94と対 向させてガラス容器 92外周に形成されている。そして、第 1外部電極 94、第 2外部電 極 96と対向するガラス容器 92内周面部分には保護膜 98が形成され、ガラス容器 92 内周面の残余の部分には、蛍光体膜 100が形成されている。  [0063] The fluorescent lamp 90 has a glass container 92 similar to the fluorescent lamp 10 (FIG. 1). On the outer periphery of the glass container 92, a first external electrode 94 having a “C” cross section extends in the longitudinal direction of the glass container 92. A second external electrode 96 having the same shape is formed on the outer periphery of the glass container 92 so as to face the first external electrode 94. A protective film 98 is formed on the inner peripheral surface portion of the glass container 92 facing the first outer electrode 94 and the second outer electrode 96, and the phosphor film 100 is formed on the remaining portion of the inner peripheral surface of the glass container 92. Is formed.
[0064] 上記構成力もなる蛍光ランプ 90の蛍光体膜 100と保護膜 98の形成方法の概略に ついて以下に説明する。  [0064] An outline of a method for forming the phosphor film 100 and the protective film 98 of the fluorescent lamp 90 having the above-described constitutional power will be described below.
先ず、ガラス容器 92の素材であるガラス管内周面の略全域に蛍光体膜を形成する 次に、第 1および第 2外部電極 94, 96に対向するガラス管内面部分の蛍光体膜を 搔きとって筋状に除去する(なお、この段階では、両外部電極 94, 96は未だ形成さ れていないのであるが、蛍光体膜の除去範囲を示すために、説明の便宜上、両外部 電極を用いた。 ) o  First, a phosphor film is formed on substantially the entire inner peripheral surface of the glass tube, which is the material of the glass container 92. Next, the phosphor film on the inner surface of the glass tube facing the first and second external electrodes 94, 96 is spread. (In this stage, the external electrodes 94 and 96 are not formed yet. However, in order to show the removal range of the phosphor film, the external electrodes are removed for convenience of explanation. ) O
[0065] そして、図 6を用いて説明した上記実施の形態の場合と同様にして、保護膜 98を形 成する。上述した保護膜の形成方法力 分力るように、蛍光体膜 98にも懸濁液 32 ( 図 6)が塗布される。その結果、蛍光体膜 98にも懸濁液 32が浸透する。したがって、 図 16 (b)において符号 100で示す部分の膜は、厳密に言えば、蛍光体粒子のみな らず金属酸ィ匕物粒子も含んで 、る。 Then, a protective film 98 is formed in the same manner as in the above embodiment described with reference to FIG. As mentioned above, the phosphor film 98 also has a suspension 32 ( Fig. 6) is applied. As a result, the suspension 32 penetrates into the phosphor film 98 as well. Therefore, strictly speaking, the film indicated by reference numeral 100 in FIG. 16B includes not only phosphor particles but also metal oxide particles.
(6)上記実施の形態では、暗黒始動性を改善するために保護膜中に分散させるセシ ゥム化合物として、硫酸セシウムと塩ィ匕セシウムを例に挙げた力 これに限らず、例え ば炭酸セシウム (Cs CO )を用いても構わない。  (6) In the above embodiment, cesium sulfate and sodium chloride cesium are exemplified as the cesium compounds dispersed in the protective film in order to improve the dark startability. Cesium (Cs CO) may be used.
2 3  twenty three
[0066] また、保護膜中に分散させる化合物はセシウム化合物に限らず、他のアルカリ金属 [例えば、リチウム (Li)、ナトリウム (Na)、カリウム (K)]の化合物でも構わない。  [0066] The compound dispersed in the protective film is not limited to the cesium compound, and may be a compound of another alkali metal [for example, lithium (Li), sodium (Na), potassium (K)].
さらに、アルカリ金属化合物に限らず、アルカリ土類金属 [例えば、マグネシウム(M g)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba) ]の化合物でも構わない。  Further, not limited to alkali metal compounds, compounds of alkaline earth metals [for example, magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba)] may be used.
[0067] 上記したアルカリ金属やアルカリ土類金属は電気陰性度が低いので、これを保護 膜中に分散させることで暗黒始動性が改善される力 である。  [0067] Since the alkali metal and alkaline earth metal described above have low electronegativity, the ability to improve dark startability is improved by dispersing them in the protective film.
(7)上記実施の形態では、ガラス容器を形成する材料としてホウ珪酸ガラスを用いた 1S これに限らず、鉛ガラス、鉛フリーガラス、ソーダライムガラス等を用いてもよい。こ の場合に、外部電極をガラス容器端面 (外端面)も覆うように形成することによって暗 黒始動性を改善することができる。すなわち、上記したようなガラスは、酸化ナトリウム (Na O)を多く含み、そのナトリウム (Na)成分が時間の経過とともにガラス容器内面 (7) In the above embodiment, 1S using borosilicate glass as a material for forming the glass container is not limited to this, and lead glass, lead-free glass, soda lime glass, or the like may be used. In this case, the dark startability can be improved by forming the external electrode so as to cover the end face (outer end face) of the glass container. That is, the glass as described above contains a large amount of sodium oxide (Na 2 O), and the sodium (Na) component is the inner surface of the glass container over time.
2 2
に溶出する。ナトリウムは電気陰性度が低いため、(保護膜の形成されていない)ガラ ス容器内側端部に溶出したナトリウムが、暗黒始動性の向上に寄与するものと思われ る力らである。なお、自然環境保護を考慮した場合、鉛フリーガラスを用いるのが好ま しい。ただ、鉛を全く含まないガラスは、製造上の理由から困難であり、現実には、不 純物として鉛を含んでしまう場合がある。そこで、 0.1%以下といった不純物レベルで 鉛を含有するガラスも鉛フリーガラスと定義することとする。  To elute. Since sodium has a low electronegativity, it is likely that the sodium eluted at the inner edge of the glass container (without a protective film) will contribute to the improvement of dark startability. In consideration of natural environment protection, it is preferable to use lead-free glass. However, glass that does not contain lead at all is difficult for manufacturing reasons, and may actually contain lead as an impurity. Therefore, glass containing lead at an impurity level of 0.1% or less is also defined as lead-free glass.
[0068] また、ガラス容器を形成するガラス材料における酸ィ匕ナトリウムの含有率は、 5%以 上 20%以下が好ま 、。 5%未満であると暗黒始動時間が 1秒を超える確率が高くな り(換言すると、 5%以上であれば暗黒始動時間が 1秒以内になる確率が高くなる)、 20%を超えると、長時間の使用によりガラス容器が白色化して輝度の低下を招いたり 、ガラス容器の強度が低下したりするなどの問題が生じるからである。 [0069] さらに、この場合の外部電極としては、以下のものが考えられる。例えば、金属キヤ ップ形状をしたものをガラス容器の端部部分に外挿したもの、あるいは、図 13に示し 上述したように、溶融している半田が貯留されている半田槽にガラス容器端部部分を デイツビングし、当該端部部分に形成された半田層からなるものである。また、図 14 に示し、上述したような外部電極としても構わない。要は、ガラス容器内面の保護膜 が形成されて ヽな ヽ領域に対向するガラス容器外面部分に外部電極の一部が形成 されて!/、れば良!、のである。 [0068] Further, the content of sodium oxalate in the glass material forming the glass container is preferably 5% or more and 20% or less. If it is less than 5%, the probability that the dark start time will exceed 1 second increases (in other words, if it is 5% or more, the probability that the dark start time will be within 1 second increases), and if it exceeds 20%, This is because problems such as whitening of the glass container resulting in a decrease in luminance due to long-term use, and a decrease in strength of the glass container occur. [0069] Further, the following may be considered as the external electrodes in this case. For example, a metal cap shape is extrapolated to the end portion of the glass container, or as shown in FIG. 13 and described above, the glass container end is placed in a solder tank in which molten solder is stored. The portion is dated, and consists of a solder layer formed on the end portion. Further, it may be an external electrode as shown in FIG. 14 and described above. In short, a protective film is formed on the inner surface of the glass container, and a part of the external electrode is formed on the outer surface of the glass container opposite to the large area!
産業上の利用可能性  Industrial applicability
[0070] 本発明に係る放電ランプは、例えば、高輝度化を必要とするバックライトユニットの 光源として好適に利用し得る。 [0070] The discharge lamp according to the present invention can be suitably used, for example, as a light source of a backlight unit requiring high brightness.

Claims

請求の範囲 The scope of the claims
[1] ガラス容器と、  [1] a glass container;
前記ガラス容器の外面の一部に配された外部電極と、  An external electrode disposed on a part of the outer surface of the glass container;
少なくとも前記外部電極に対向する部分の前記ガラス容器内面に形成された、金 属酸ィ匕物粒子の集合体力 なる保護膜とを有し、  A protective film formed on the inner surface of the glass container at least in a portion facing the external electrode and having an aggregate strength of metal oxide particles,
前記保護膜の平均膜厚は 2 μ m以下であり、  The protective film has an average film thickness of 2 μm or less,
当該保護膜の表面粗さが 1. 7 m以下であることを特徴とする放電ランプ。  A discharge lamp characterized in that the surface roughness of the protective film is 1.7 m or less.
[2] ガラス容器と、 [2] a glass container;
前記ガラス容器の外面の一部に配された外部電極と、  An external electrode disposed on a part of the outer surface of the glass container;
少なくとも前記外部電極に対向する部分の前記ガラス容器内面に形成された、金 属酸ィ匕物粒子の集合体力 なる保護膜とを有し、  A protective film formed on the inner surface of the glass container at least in a portion facing the external electrode and having an aggregate strength of metal oxide particles,
前記保護膜の平均膜厚は 2 μ m以下であり、  The protective film has an average film thickness of 2 μm or less,
前記保護膜において内部空隙になっている閉孔 1個当たりの断面積の平均が 0. 1 μ m2以下であることを特徴とする放電ランプ。 The discharge lamp according to claim 1, wherein the average cross-sectional area per closed hole which is an internal space in the protective film is 0.1 μm 2 or less.
[3] 前記保護膜中にアルカリ金属化合物が分散されて ヽることを特徴とする請求項 1記 載の放電ランプ。 [3] The discharge lamp according to claim 1, wherein an alkali metal compound is dispersed in the protective film.
[4] 前記アルカリ金属化合物はセシウム化合物であり、前記保護膜の表面粗さが 0. 6 m以上であることを特徴とする請求項 3記載の放電ランプ。  4. The discharge lamp according to claim 3, wherein the alkali metal compound is a cesium compound, and the surface roughness of the protective film is 0.6 m or more.
[5] 前記保護膜中にアルカリ土類金属化合物が分散されていることを特徴とする請求 項 1記載の放電ランプ。 5. The discharge lamp according to claim 1, wherein an alkaline earth metal compound is dispersed in the protective film.
[6] 前記金属酸化物粒子は、酸化イットリウム力 なることを特徴とする請求項 1記載の 放電ランプ。  6. The discharge lamp according to claim 1, wherein the metal oxide particles have yttrium oxide force.
[7] 前記ガラス容器は、酸化ナトリウムを 5%以上 20%以下の範囲で含有するガラスか らなり、  [7] The glass container is made of glass containing sodium oxide in a range of 5% to 20%,
前記ガラス容器内面には、前記保護膜が形成されていない領域が在り、 当該領域に対向するガラス容器外面部分に前記外部電極の一部が形成されてい ることを特徴とする請求項 1記載の放電ランプ。  2. The glass container inner surface includes a region where the protective film is not formed, and a part of the external electrode is formed on a glass container outer surface portion facing the region. Discharge lamp.
[8] 前記外部電極は、その端部付近の厚みが当該端部に向力つて滑らかに漸減して V、ることを特徴とする請求項 1記載の放電ランプ。 [8] The external electrode has a thickness in the vicinity of its end that gradually decreases gradually as it is directed toward the end. The discharge lamp according to claim 1, wherein V is V.
[9] 前記外部電極は、前記ガラス容器外面の粗面化処理を施した領域に形成された半 田層からなることを特徴とする請求項 1記載の放電ランプ。  9. The discharge lamp according to claim 1, wherein the external electrode comprises a solder layer formed in a region subjected to a roughening treatment on the outer surface of the glass container.
[10] 前記外部電極は、前記ガラス容器に外挿された金属スリーブと当該金属スリーブと 前記ガラス容器外周面との間に充填された半田とからなることを特徴とする請求項 1 記載の放電ランプ。 10. The electric discharge according to claim 1, wherein the external electrode comprises a metal sleeve extrapolated to the glass container and solder filled between the metal sleeve and the outer peripheral surface of the glass container. lamp.
[11] 前記保護膜中にアルカリ金属化合物が分散されて ヽることを特徴とする請求項 2記 載の放電ランプ。  11. The discharge lamp according to claim 2, wherein an alkali metal compound is dispersed in the protective film.
[12] 前記アルカリ金属化合物はセシウム化合物であり、前記保護膜の表面粗さが 0. 6 μ m以上であることを特徴とする請求項 11記載の放電ランプ。  12. The discharge lamp according to claim 11, wherein the alkali metal compound is a cesium compound, and the surface roughness of the protective film is 0.6 μm or more.
[13] 前記保護膜中にアルカリ土類金属化合物が分散されていることを特徴とする請求 項 2記載の放電ランプ。  13. The discharge lamp according to claim 2, wherein an alkaline earth metal compound is dispersed in the protective film.
[14] 前記金属酸化物粒子は、酸化イットリウム力 なることを特徴とする請求項 2記載の 放電ランプ。  14. The discharge lamp according to claim 2, wherein the metal oxide particles have yttrium oxide force.
[15] 前記ガラス容器は、酸化ナトリウムを 5%以上 20%以下の範囲で含有するガラスか らなり、  [15] The glass container is made of glass containing sodium oxide in a range of 5% to 20%,
前記ガラス容器内面には、前記保護膜が形成されていない領域が在り、 当該領域に対向するガラス容器外面部分に前記外部電極の一部が形成されてい ることを特徴とする請求項 2記載の放電ランプ。  3. The glass container inner surface includes a region where the protective film is not formed, and a part of the external electrode is formed on the outer surface of the glass container facing the region. Discharge lamp.
[16] 前記外部電極は、その端部付近の厚みが当該端部に向力つて滑らかに漸減して[16] The external electrode has a thickness in the vicinity of the end portion that gradually decreases smoothly as it is directed toward the end portion.
V、ることを特徴とする請求項 2記載の放電ランプ。 3. The discharge lamp according to claim 2, wherein V is V.
[17] 前記外部電極は、前記ガラス容器外面の粗面化処理を施した領域に形成された半 田層からなることを特徴とする請求項 2記載の放電ランプ。  17. The discharge lamp according to claim 2, wherein the external electrode comprises a solder layer formed in a region where the outer surface of the glass container has been roughened.
[18] 前記外部電極は、前記ガラス容器に外挿された金属スリーブと当該金属スリーブと 前記ガラス容器外周面との間に充填された半田とからなることを特徴とする請求項 2 記載の放電ランプ。 18. The electric discharge according to claim 2, wherein the external electrode comprises a metal sleeve extrapolated to the glass container and solder filled between the metal sleeve and the outer peripheral surface of the glass container. lamp.
[19] 光源として、請求項 1〜18のいずれか 1項に記載の放電ランプを備えたことを特徴 とするバックライトユニット。 前記バックライトユニットは、複数本の前記放電ランプを収納する外囲器を有し、 液晶ディスプレイパネルと、 [19] A backlight unit comprising the discharge lamp according to any one of claims 1 to 18 as a light source. The backlight unit includes an envelope that houses a plurality of the discharge lamps, a liquid crystal display panel,
前記外囲器が前記液晶ディスプレイパネルの背面に配されて 、る請求項 19記載 のノ ックライトユニットと、  The knock light unit according to claim 19, wherein the envelope is disposed on a back surface of the liquid crystal display panel.
を備えたことを特徴とする液晶ディスプレイ装置。  A liquid crystal display device comprising:
PCT/JP2006/312769 2005-07-06 2006-06-27 Discharge lamp, backlight unit, and liquid crystal display WO2007004464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007523945A JPWO2007004464A1 (en) 2005-07-06 2006-06-27 Discharge lamp, backlight unit, and liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005197248 2005-07-06
JP2005-197248 2005-07-06
JP2006-017275 2006-01-26
JP2006017275 2006-01-26

Publications (2)

Publication Number Publication Date
WO2007004464A1 true WO2007004464A1 (en) 2007-01-11
WO2007004464A8 WO2007004464A8 (en) 2008-01-03

Family

ID=37604333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312769 WO2007004464A1 (en) 2005-07-06 2006-06-27 Discharge lamp, backlight unit, and liquid crystal display

Country Status (4)

Country Link
JP (1) JPWO2007004464A1 (en)
KR (1) KR20080025683A (en)
TW (1) TW200707502A (en)
WO (1) WO2007004464A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093768A1 (en) * 2007-02-01 2008-08-07 Panasonic Corporation Fluorescent lamp, and light emitting device and display device using fluorescent lamp
JP2009224185A (en) * 2008-03-17 2009-10-01 Harison Toshiba Lighting Corp Discharge lamp and manufacturing method therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167598A (en) * 1995-12-18 1997-06-24 Matsushita Electron Corp Electrodeless type fluorescent lamp
JPH11167901A (en) * 1997-12-05 1999-06-22 Nec Home Electron Ltd Rare gas discharge lamp and manufacture thereof
JP2000113856A (en) * 1998-10-02 2000-04-21 Matsushita Electric Works Ltd Fluorescent lamp and discharge lamp lighting device
JP2003171142A (en) * 2001-12-03 2003-06-17 Toshiba Lighting & Technology Corp Barium silicate glass, lamp and electron tube product, and illuminator equipment
WO2003105184A2 (en) * 2002-06-05 2003-12-18 Koninklijke Philips Electronics N.V. Fluorescent lamp and method of manufacturing
JP2004027332A (en) * 2002-06-28 2004-01-29 Nippon Steel Corp Method for heating slab and heating furnace therefor
JP2004127770A (en) * 2002-10-03 2004-04-22 Harison Toshiba Lighting Corp Discharge lamp and lighting system
JP2004146351A (en) * 2002-06-17 2004-05-20 Harison Toshiba Lighting Corp Low-pressure discharge lamp and method for manufacturing same
JP2005026087A (en) * 2003-07-02 2005-01-27 Matsushita Electric Ind Co Ltd Arc tube and electrodeless fluorescent lamp
JP2005174712A (en) * 2003-12-10 2005-06-30 Toshiba Lighting & Technology Corp Electrodeless fluorescent lamp apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167598A (en) * 1995-12-18 1997-06-24 Matsushita Electron Corp Electrodeless type fluorescent lamp
JPH11167901A (en) * 1997-12-05 1999-06-22 Nec Home Electron Ltd Rare gas discharge lamp and manufacture thereof
JP2000113856A (en) * 1998-10-02 2000-04-21 Matsushita Electric Works Ltd Fluorescent lamp and discharge lamp lighting device
JP2003171142A (en) * 2001-12-03 2003-06-17 Toshiba Lighting & Technology Corp Barium silicate glass, lamp and electron tube product, and illuminator equipment
WO2003105184A2 (en) * 2002-06-05 2003-12-18 Koninklijke Philips Electronics N.V. Fluorescent lamp and method of manufacturing
JP2004146351A (en) * 2002-06-17 2004-05-20 Harison Toshiba Lighting Corp Low-pressure discharge lamp and method for manufacturing same
JP2004027332A (en) * 2002-06-28 2004-01-29 Nippon Steel Corp Method for heating slab and heating furnace therefor
JP2004127770A (en) * 2002-10-03 2004-04-22 Harison Toshiba Lighting Corp Discharge lamp and lighting system
JP2005026087A (en) * 2003-07-02 2005-01-27 Matsushita Electric Ind Co Ltd Arc tube and electrodeless fluorescent lamp
JP2005174712A (en) * 2003-12-10 2005-06-30 Toshiba Lighting & Technology Corp Electrodeless fluorescent lamp apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093768A1 (en) * 2007-02-01 2008-08-07 Panasonic Corporation Fluorescent lamp, and light emitting device and display device using fluorescent lamp
JP2009224185A (en) * 2008-03-17 2009-10-01 Harison Toshiba Lighting Corp Discharge lamp and manufacturing method therefor

Also Published As

Publication number Publication date
KR20080025683A (en) 2008-03-21
TW200707502A (en) 2007-02-16
WO2007004464A8 (en) 2008-01-03
JPWO2007004464A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
KR100977907B1 (en) Fluorescent lamp, backlight unit, and liquid crystal display device
JP4464452B2 (en) Fluorescent lamp, backlight unit and liquid crystal display device
US20090268429A1 (en) Fluorescent lamp, manufacturing method therefor, lighting device using the fluorescent lamp, and display device
TWI326889B (en) Fluorescent lamp and manufacturing method thereof
US20090128742A1 (en) Method of producing fluorescence substance suspension, fluorescent lamp, backlight unit, directly-below type backlight unit and liquid crystal display unit
JP2005166638A (en) Cold-cathode fluorescent lamp, and backlight unit with the same mounted
JP4044946B2 (en) Fluorescent lamp, backlight device, and method of manufacturing fluorescent lamp
WO2007004464A1 (en) Discharge lamp, backlight unit, and liquid crystal display
WO2007037230A1 (en) External electrode lamp, backlight unit, and liquid crystal display
CN1822313A (en) Flat plate type external extrode fluorescence lamp and its producing method
JP2001102004A (en) Inert gas discharge lamp and the lighting apparatus
JP3653552B2 (en) Cold cathode fluorescent lamp and lighting device
JP4539137B2 (en) Fluorescent lamp and backlight unit
KR20080096423A (en) Fluorescent lamp
CN101218660A (en) Discharge lamp, backlight unit, and liquid crystal display
JP2010282770A (en) Electrode structure, method of manufacturing electrode structure, cold-cathode discharge lamp, lighting device, and image display device
JP2010086739A (en) Low pressure discharge lamp, lighting system, and liquid crystal display
WO2010119684A1 (en) Electrode structure, electrode structure producing method, low-pressure discharge lamp, illumination device and image display device
JP2007157401A (en) Fluorescent lamp, backlight unit, and liquid crystal display device
JPH11144688A (en) Rare gas discharge lamp
JP2007207524A (en) Fluorescent lamp, manufacturing method thereof, light emitting device using the fluorescent lamp, and display device
JP2008269830A (en) Fluorescent lamp, back light unit, and liquid crystal display device
JP2010092798A (en) Cold cathode discharge lamp, lighting system, and image display device
JP2010212051A (en) Low-pressure discharge lamp, method of manufacturing low-pressure discharge lamp, lighting system, and image display
JP2010225500A (en) Cold cathode discharge lamp, method of manufacturing cold cathode discharge lamp, lighting device, and image display apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024525.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077029454

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007523945

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767386

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 06767386

Country of ref document: EP

Kind code of ref document: A1