WO2006137551A2 - Diagnostic method for cancer and diagnostic method for lung cancer - Google Patents

Diagnostic method for cancer and diagnostic method for lung cancer Download PDF

Info

Publication number
WO2006137551A2
WO2006137551A2 PCT/JP2006/312672 JP2006312672W WO2006137551A2 WO 2006137551 A2 WO2006137551 A2 WO 2006137551A2 JP 2006312672 W JP2006312672 W JP 2006312672W WO 2006137551 A2 WO2006137551 A2 WO 2006137551A2
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
egfr
mrna
lung cancer
htert
Prior art date
Application number
PCT/JP2006/312672
Other languages
French (fr)
Japanese (ja)
Other versions
WO2006137551A1 (en
Inventor
Norimasa Miura
Goshi Shiota
Original Assignee
Univ Tottori
Norimasa Miura
Goshi Shiota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tottori, Norimasa Miura, Goshi Shiota filed Critical Univ Tottori
Priority to JP2007522395A priority Critical patent/JPWO2006137551A1/en
Publication of WO2006137551A1 publication Critical patent/WO2006137551A1/en
Publication of WO2006137551A2 publication Critical patent/WO2006137551A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a method for diagnosing cancer and a method for diagnosing lung cancer, and in particular, it can diagnose whether or not it is lung cancer at an early stage, and can determine whether or not an anticancer agent is effective for a patient.
  • the present invention relates to a method for diagnosing lung cancer using such a method and a method for diagnosing cancer. Background art
  • Lung cancer remains the leading cause of malignancy-related deaths, although there have been minor changes in survival rates over the past 20 years.
  • NSCLC Non-small cell lung cancer
  • tumor marker as a diagnostic tool using a scalpel or the like.
  • This tumor marker is generally used as a diagnostic or therapeutic indicator for cancer.
  • NSE Neuron-specific enolase
  • proGRP gastorin— releasing peptide
  • Non-small cell lung cancer NSCLC, hereinafter simply referred to as “NSCLC”
  • CEA carcinoembryonic antigen
  • SCC Squamous cell carcinoma
  • SCC Squamous cell carcinoma
  • CYFRA cytokeratin 21 1 fragment
  • SLX cytokeratin 19 fragment
  • CA19-9 carbohydrate antigen 19-9, hereinafter simply referred to as “CA19-9”;
  • the rate of positive for both CEA and CYFRA was higher in patients with adenocarcinoma, and the rate of positive for both CYFRA and SCC was higher for squamous cell carcinoma It is considered high in patients with mous cell carcinoma.
  • EGFR epidermal growth factor receptor
  • Tyrosine kinase activity (Tyr osine kinase activity), which is involved in tumor cell growth, cell survival, angiogenesis, exudation, and metastasis a synthetic anilinoquinazoline), Gefitinib (trade name: “Iressa” (registered trademark), sales company: Aslorazene Riki Co., Ltd.).
  • the EGFR tyrosine kinase inhibitory action of Gefitinib (trade name: "Iressa” (registered trademark), sales company: Aslorazene force Co., Ltd.) is an extremely effective drug in some patients, but there is a problem of side effects. There is.
  • EGFR is expressed in 80% of NSCLC tissue specimens. Its expression is observed in the progressive type of small cell lung carcinoma (SCLC). , An excellent biomaker for lung cancer, and EGFR targeted therapy (EGFR-targeted therapies) ⁇ , (tumor response) molecular determinant (determined by molecular deta ermmants) .
  • EGFR 1 If it can be used like a tumor marker, it will be easier for doctors to decide whether or not to prescribe Gefitini b to patients, and to patients Even after prescribing (Gefitinib), follow-up studies such as determining the effect of Geifinib on the tumor can be easily performed.
  • Non-Patent Document 1 Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics. CA cancer J Clin 2005; 51: 15-36.
  • Non-Patent Document 3 Johnson BE, Grayson J, Makuch RW, et al. Ten -year surviva
  • Non-Patent Document 4 Morina R, Filella X, Auge JM. ProGRP: a new biomarker for small cell lung cancer. Clinical Biochemistry
  • Non-Patent Document 5 Sugio K, Sugaya M, Hanagiri T, Yasumoto K. Tumor marker in primary lung cancer. JUOEH 2004; 1: 473-9.
  • Non-Patent Document 6 Schneider J, Philipp M, Velcovsky HG, Morr H, Katz N. Proo- gastrin— releasing peptide (ProGRP), neuron specific enolase (NSE), carci no embryonic antigen (CEA), and cyto keratin 19— fragments (CYFRA 21— 1) in patients with lung cancer in comparison to other lung diseases.Anticancer Res 2003; 23: 885- 93.
  • Non-Patent Document 7 Tagliaferri P, Tassone P, Blotta S, et al. Antitumor therapeutic strategies based on the targeting of epidermal growth factor— induced surv ival pathways. Curr Drug Targets 2005; 6: 289-300.
  • Non-Patent Document 8 Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-smal 1 cell lung cancer to gefitinib.N En gl J Med 2004; 350: 2129-39.
  • Non-Patent Document 10 Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to Gefitinib therapy. Science 200 4; 304: 1497- 500. Disclosure of the Invention
  • the present invention has been made to solve the above-mentioned problems and the demands of doctors and the like, and more specifically, cancer, more specifically, the presence of cancer cells can be detected in the blood in the early stage of lung cancer. It is an object of the present invention to provide a cancer diagnostic method and a lung cancer diagnostic method using such a cancer diagnostic method.
  • the method for diagnosing cancer according to claim 1 comprises a step of obtaining a sample containing only RNA as a somatic cell component of a cancer cell from a body fluid, and a sample force containing only RNA.
  • Reverse transcription that generates cDNA with reverse transcriptase PCR using an enzyme reaction and fluorescent dye is performed using a primer set that detects the presence of EGFR 'mRNA, and the PCR product amplified by PCR is quantitatively analyzed using a fluorescent dye combined with the PCR product. And a process for measuring.
  • body fluid used in the present specification means blood, lymph fluid and other body fluids.
  • the method for diagnosing cancer according to claim 2 wherein the primer set used in the method for diagnosing cancer according to claim 1,
  • the upstream primer is AACTGTGAGGTGGTCCTTGG
  • the downstream primer is GTTGAGGGCAATGAGGACAT.
  • the method for diagnosing cancer according to claim 3 is body fluid blood or lymph used in the method for diagnosing cancer according to claim 1 or claim 2.
  • the method for diagnosing lung cancer according to claim 4 uses the method for diagnosing cancer according to any one of claims 1 to 3.
  • the cancer diagnostic method according to the present invention can detect the presence of cancer cells in the blood at an early stage of cancer, so that cancer cells can be eradicated by early medical treatment.
  • FIG. 1 is an explanatory diagram for schematically explaining the cancer diagnostic method and its object according to the present invention.
  • FIG. 2 is a diagram for explaining a primer set used in the method for diagnosing cancer according to the present invention.
  • FIG. 3 shows the full-length base sequence of EGFR.
  • FIG. 4 shows the full-length base sequence of EGFR.
  • FIG. 5 shows the full-length base sequence of EGFR.
  • Fig. 6 shows the correlation between serum and each tissue of hTERT mRNA and EGFR mRNA
  • Fig. 6 (a) is a graph showing the correlation between hTERT mRNA tissue and serum
  • Fig. 6 (b) is the correlation between EGFR mRNA tissue and serum. It is a graph showing a relationship.
  • FIG. 7 is a diagram showing the results of multivariate analysis regarding clinical factors of one tumor marker.
  • Fig. 8 is a graph showing the results of ROC curve analyses.
  • FIG. 9 is a diagram illustrating the sensitivity and specificity of various tumor markers for lung cancer.
  • FIG. 1 is an explanatory diagram schematically illustrating the cancer diagnosis method according to the present invention and its target.
  • the average patient age was 63 years (22 to 90 years).
  • Clinicopathological findings (sex, age, diagnosis, tumor size, number of tumors, tumor marker tests such as CEA, SCC, CYFRA, proGRP ⁇ NSE (neuron specific enolase), TPA (tissue polypeptide antigen) and SLX, hepatitis Presence of active hepatitis virus, smoking calendar (smoke history) (estimated by pack—ye ar index) ⁇ Presence of metastasis or recurrence and clinical stage (IA to IV)] were evaluated.
  • As a control group comparativative example, 27 healthy persons (12 to 78 years old: average age 53) including 12 women were used.
  • hTERT transcriptase
  • EGFR epidermal growth factor receptor
  • the body fluid collected in this case (blood in this example) (about 1 to 2 ml) is centrifuged at 10 steps for 10 minutes for 10 minutes (800xg, lOOOxg, 1500xg). Serum samples were obtained in which the presence of lymphocytes was reduced to a negligible amount.
  • 23 patients with lung cancer Surgically excised lung tissue and serum (sera) were collected.
  • DNase deoxyribonuclease
  • Serum samples 200 1 Medium strength Extracted RNA was dissolved in nuclease-free water (H 2 O).
  • RT-PGR quantitative real-time polymerase chain reaction
  • RNA with HCC tissue strength was performed using TRIzol (registered trademark) reagent (Reagent) according to the instructions of the manufacturer and distributor of this reagent (Invrogen Corp., Carlsbad, CA, USA).
  • the upstream primer (EGFR-F) is AACTGTGAGGTGGTCCTTGG
  • the downstream primer (EGFR-R) is GTTGAGGGCAATGAGGACAT.
  • the upstream primer is set in the forward direction of the target base sequence (5 ' ⁇ 3'), and the downstream primer is complementary to the strand corresponding to the forward direction of the upstream primer in the target base sequence. It is an array and set in the reverse direction.
  • 3 to 5 show the full-length base sequence of EGFR.
  • This amplification target was the tyrosine kinase phosphorylation site of EGFR, and this primer contained a mutation in its base sequence.
  • the upstream primer (hTERT-F) was designated as CGGAAGAGTGTCTGGAGCAA
  • the downstream primer (hTERT—R) was designated as GGATGAAGCGGAGTCTGGA.
  • the upstream primer (2—m i c r o g l o b i n) is TGAGTGCTGTCTCCATGTTTGA
  • the downstream primer (2-microglobin-R) is TGAGTGCTGTCTCCATGTTTGA
  • the RT-PCR conditions were as follows: the first reverse transcription reaction was performed at 50 ° C for 30 minutes, and then the reaction activation stage was maintained at 95 ° C for 12 minutes, followed by 50 cycles of the PCR reaction. (95 ° C (0 seconds)), 55 ° C (10 seconds), then 72 ° C (15 seconds), and melting at 40 ° C for 20 seconds (also called “denaturation”) .” did.
  • the range of real-time PCR analysis for hTERT mRNA and EGFR mRNA is about 5 copies in this analysis, and we can falsely make negative in serum samples from patients and comparative examples Sex was able to be excluded.
  • This PCR produced a 131 bp product for hTERT, a 114 bp product for EGFR, and an 88 bp product for ⁇ 2-microglobin RNA.
  • the excised tissue was processed for embedding in paraffin.
  • 3 patients (12 patients in all) with strong protein expression of tumor markers in serum were selected, hTERT (Santa Cruz), EGFR (Santa Cruz), SCC (Sigma) And a lung cancer cross-sectional study using antibodies that discriminate CYFRA (Sigma).
  • liver tissues fixed in 4% paraformaldehyde were umbedded in paraffin.
  • the following antibodies were cultured in successive sections, and a mouse monoclonal antibody 5-micron- thick se ctions from Tsukiichi's excised specimens was deparaffinized in a series of xylene baths. A series of xylene baths and these trials were rehydrated in graded alcohols. All stained sections were heat treated in a lOmmol / litter sodium citrate buffer at 600W for 15 minutes using a microwave oven.
  • PCNA proliferating cell nuclear antigen
  • Sections were then cultured in 2.5% blocking serum to reduce non-specific binding. Following this, samples were obtained at 37 ° C at the primary monoclonal mouse hTERT (H—231) sc—7212 antibody (primary monoclonal mouse hTERT (H—231) sc-7212antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA). , human EGFR (1005), sc—03 antibody (Santa Cruz Biotechnology, Santa Cruz, Calif., USA) for 90 minutes on a paraffin section at a 1:50 dilution. Sections were treated with standard avidin-biotin immunochemistry according to company recommendations (Vector Laboratories, Burlingame, CA, USA).
  • hTERT staining was classified as negative (> 50% of tumor cells positive at the nucleolar level) and positive (> 50% of them).
  • SPSS II SPSS Corp., Tokyo, Japan was used to make important clinicopathological findings affecting hTERT, EGFR and other markers.
  • SPSS II SPSS Corp., Tokyo, Japan
  • CEA CEA
  • SCC SCC
  • CYFRA CYFRA
  • EGFR mRNA EGFR mRNA
  • hTERT hTERT mRNA
  • Figure 6 shows the correlation between the serum and each tissue of hTERT mRNA and EGFR mRNA.
  • Fig. 6 (a) is a graph showing the correlation between hTERT mRNA tissue and serum
  • Fig. 6 (b) is the correlation between EGFR mRNA tissue and serum. It is a graph showing a relationship.
  • Multivariate analysis revealed that there is a strong relationship between the expression of hTERT and EGFR in serum as a clinicopathological finding (see Figure 7).
  • Fig. 8 is a graph showing the results of ROC curve analyses.
  • the optimal cut-off values for hTERT mRNA and EGFR mRNA expression are statistically at 103.76copies / 0.2 ml and 101.21 copies / 0.2 ml, respectively. It was calculated as there was.
  • the positive predictive value (PPV) and the negative negative predictive value (NPV) at the time of cancer formation are 0.775 / 0.667 for hTERT mRNA, and 0 for EGFR mRNAi. 667/0.
  • the positive predictive value (PPV) / negative predictive value (NPV) for carcinogenesis of CYFRA, SCC, and CEA are 0. 650/0. 500, 0. 207/0. 875, and 0. 650/0, respectively. It was 391.
  • the postoperative quantitative values of hTERT mRNA and EGFR mRNA were lower than the preoperative quantitative values.
  • EGFR mRNA showed high sensitivity and specificity for lung cancer patients.
  • the cancer diagnostic method according to the present invention can detect evidence of the presence of cancer cells from the blood in the early stage of cancer, and thus can eradicate cancer cells by early medical practice.
  • samples containing mRNA were obtained from body fluids, the presence or absence of cancer cells can be detected more accurately than in the case where cancer tissue tumor formation, metastasized tissue after metastasis is detected. it can.
  • the cancer diagnosis method according to the present invention makes it easy for a doctor to determine whether or not to prescribe an EGFR tyrosine kinase inhibitor such as gefitinib to a patient. Whether an EGFR tyrosine kinase inhibitor such as Gefitinib is effective against tumors even after the prescription of an EGFR tyrosine kinase inhibitor such as Gefitinib Can be easily traced.
  • the method for diagnosing cancer according to the present invention includes blood.
  • an example in which fluid force RNA is extracted is not limited to extraction of blood force RNA, and fluid fluid RNA other than blood may be extracted.
  • the cancer diagnostic method and lung cancer diagnostic method according to the present invention can detect evidence of the presence of cancer cells from the blood in the early stage of cancer, and thus can eradicate cancer cells by early medical practice. If the cancer diagnosis method and lung cancer diagnosis method according to the present invention are performed before prescribing to the patient, based on the results, it is determined whether the anticancer agent is effective, and after the patient is prescribed the anticancer agent, the patient When the cancer diagnosis method and lung cancer diagnosis method according to the present invention are performed, it is possible to determine whether or not the anticancer drug prescribed by the patient is effective. Therefore, industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

明細書 癌診断方法及び S市癌診断方法 技術分野  Description Cancer diagnosis method and S city cancer diagnosis method Technical Field
本発明は、癌診断方法及び肺癌診断方法に関し、特に、早期に肺癌か否かの診断ができ、また、 抗癌剤が患者に有効か否かの判断をできる、髙感受性且つ特異性のある癌診断方法及びそのよ うな癌診断方法を用いた肺癌診断方法に関する。 背景技術  The present invention relates to a method for diagnosing cancer and a method for diagnosing lung cancer, and in particular, it can diagnose whether or not it is lung cancer at an early stage, and can determine whether or not an anticancer agent is effective for a patient. The present invention relates to a method for diagnosing lung cancer using such a method and a method for diagnosing cancer. Background art
肺癌は、過去 20年間において、生存率において少しの変化があったものの、依然として、悪性 腫瘍関連死の主要な原因となっている。  Lung cancer remains the leading cause of malignancy-related deaths, although there have been minor changes in survival rates over the past 20 years.
そして、非小細胞肺癌(NSCLC (non— small cell lung cancer) )は、現在、総肺癌患者の Non-small cell lung cancer (NSCLC) is currently being used by all lung cancer patients.
3 4を占めており、多くの患者が:新規な治療方法や外科的腫瘍学の進歩にも力かわらず、進行 性かつ転移性の病気によって死に続けている。 Many patients continue to die from progressive and metastatic disease, despite new treatments and advances in surgical oncology.
また、メスなどを用いなレ、、診断ツールとして、腫療マーカーがある。  In addition, there is a tumor marker as a diagnostic tool using a scalpel or the like.
この腫瘍マーカーは、一般に、癌の診断や、治療指標として用レ、られている。  This tumor marker is generally used as a diagnostic or therapeutic indicator for cancer.
腫瘍マ一カーとしては、小細胞癌の診断には、例えば、 NSE (Neuron- specific enolase、 以下、単に、「NSE」という。 ^l proGRP iPro— gastorin— releasing peptide,以下、単に、 「proGRP」という。)が有効なマーカーとされている。 As a tumor marker, for example, NSE (Neuron-specific enolase, Hereinafter, it is simply referred to as “NSE”. ^ l proGRP iPro— gastorin— releasing peptide, simply called “proGRP”. ) Is a valid marker.
非小細胞癌 (NSCLC (non— small cell lung cancer)、以下、単に、「NSCLC」という。)や、 癌胎児性抗原(CEA (carcinoembryonic antigen)、以下、単に、「CEA」という。)や、扁平上 皮癌(SCC (squamous cell carcinoma)、以下、単に、「SCC」とレヽう。)や、サイトケラチン 21 一 1フラグメント(シフラ 2ト1) (CYFRA (cytokeratin 19 fragment)、以下、単に、「CYFRA」 とレ、つ。 )や、 シァリノレ LeX—几原 (SLX(sial i Le antigen such as sialyl stage— specii ic antigen— 1)、以下、単に、「SLX」という。)や、 CA19— 9 (carbohydrate antigen 19— 9、 以下、単に、「CA19— 9」という。 ;)は、一般に、診断に用いられており、少なくとも、 CEA、 SCC 及び CYFRAの群力 選択される 1つのマーカー力 陽性の場合、 70%の患者が、非小細胞癌 (NSCLC)の患者である、とされている。  Non-small cell lung cancer (NSCLC, hereinafter simply referred to as “NSCLC”), carcinoembryonic antigen (CEA, hereinafter simply referred to as “CEA”), Squamous cell carcinoma (SCC), hereinafter simply referred to as “SCC”) and cytokeratin 21 1 fragment (CYFRA (cytokeratin 19 fragment), hereinafter simply, CYFRA and Lex-Hagiwara (SLX (sial i Le antigen such as sialyl stage—speciic antigen—1), hereinafter simply referred to as “SLX”), CA19-9 (carbohydrate antigen 19-9, hereinafter simply referred to as “CA19-9”;) is generally used for diagnosis, and at least one group of CEA, SCC and CYFRA is selected. 70% of patients are non-small cell carcinoma (NSCLC) patients.
また、組織学的カテゴリーに基づけば、 CEAと CYFRAとの双方が陽性の割合は、腺癌 (adeno carcinoma)の患者において高ぐ CYFRAと SCCとの双方が陽性の割合は、扁平上皮癌(squa mous cell carcinoma) の患者において高レヽ、とされている。  Also, based on histological categories, the rate of positive for both CEA and CYFRA was higher in patients with adenocarcinoma, and the rate of positive for both CYFRA and SCC was higher for squamous cell carcinoma It is considered high in patients with mous cell carcinoma.
また、 X線診断 (X— ray examinations)や、従来の腫瘍マーカーを用いた診断や、気管支洗 浄(bronchial lavage) (BL)のような標準的な手法は、肺癌の発見に重要である力 これらの手 法は、臨床の初期段階における肺癌の発見には十分では無い、という問題がある。 また、上皮成長因子受容体(EGFR) (epidermal growth factor receptor)、以下、単に、 「EGFR」という。)のチロシンキナーゼ活性(Tyr osine kinase activity)は、腫瘍細胞の増殖 や、細胞生存や、血管形成や、滲出や、転移の関与し、 EGFRチロシンキナーゼ阻害作用を有す る合成ァニリノキナゾリン (a synthetic anilinoquinazoline),ゲフイチ-ブ(Gefitinib) (商品名 :「ィレッサ」(登録商標)、販売会社:ァスロラゼネ力株式会社)により、 P且害される。 In addition, standard techniques such as X-ray examinations, diagnostics using conventional tumor markers, and bronchial lavage (BL) are important in detecting lung cancer. There is a problem that these methods are not sufficient for detecting lung cancer in the early clinical stage. In addition, epidermal growth factor receptor (EGFR), hereinafter simply It is called “EGFR”. ) Tyrosine kinase activity (Tyr osine kinase activity), which is involved in tumor cell growth, cell survival, angiogenesis, exudation, and metastasis a synthetic anilinoquinazoline), Gefitinib (trade name: “Iressa” (registered trademark), sales company: Aslorazene Riki Co., Ltd.).
ゲフイチニプ (Gefitinib) (商品名:「ィレッサ」(登録商標)、販売会社:ァスロラゼネ力株式会社) の EGFRチロシンキナーゼ阻害作用は、患者によっては、極めて有効な薬剤であるが、他方、副 作用の問題がある。  The EGFR tyrosine kinase inhibitory action of Gefitinib (trade name: "Iressa" (registered trademark), sales company: Aslorazene force Co., Ltd.) is an extremely effective drug in some patients, but there is a problem of side effects. There is.
EGFRは、 NSCLCの組織標本の 80%に発現する力 その発現は、小細胞癌 (small cell lun g carcinoma (SCLC)の進行性タイプ(progress type)に観察される。この意味において、 EG FRは、優れた肺癌の生体用マーカー(biomaker)であり、そして、 EGFRターゲット療法(EGFR — targeted therapies)に里¾?反)^、 (tumor response)する分子決疋因子 (molecular deta ermmantsノでめる。  EGFR is expressed in 80% of NSCLC tissue specimens. Its expression is observed in the progressive type of small cell lung carcinoma (SCLC). , An excellent biomaker for lung cancer, and EGFR targeted therapy (EGFR-targeted therapies) ^, (tumor response) molecular determinant (determined by molecular deta ermmants) .
EGFR 1) 腫瘍マーカ一のように利用できれば、医師が、患者に対し、ゲフイチ-ブ(Gefitini b)を処方するか否かの判断をすることが容易となり、また、患者に対し、ゲフイチ-プ (Gefitinib) を処方後においても、ゲフイチニブ(Geiitinib)が腫瘍に有効であるか否かの効果判定など追跡 調査が容易に行える。  EGFR 1) If it can be used like a tumor marker, it will be easier for doctors to decide whether or not to prescribe Gefitini b to patients, and to patients Even after prescribing (Gefitinib), follow-up studies such as determining the effect of Geifinib on the tumor can be easily performed.
【非特許文献 1】 Greenlee RT, Hill -Harmon MB, Murray T, Thun M. Cancer statistics. CA cancer J Clin 2005 ; 51 : 15— 36.  [Non-Patent Document 1] Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics. CA cancer J Clin 2005; 51: 15-36.
'【非特許文献 2】 Giaccone G. Clinical impact of novel treatment strategies. On cogene 2002 ; 21 : 6970— 81. '[Non-Patent Document 2] Giaccone G. Clinical impact of novel treatment strategies. On cogene 2002; 21: 6970— 81.
【非特許文献 3】Johnson BE, Grayson J, Makuch RW, et al. Ten -year surviva [Non-Patent Document 3] Johnson BE, Grayson J, Makuch RW, et al. Ten -year surviva
1 of patients with small— cell lung cancer treated with combination chemother apy with or without irradiation. J Clin Oncol 1990 ; 8 : 396-401. 1 of patients with small— cell lung cancer treated with combination chemother apy with or without irradiation. J Clin Oncol 1990; 8: 396-401.
【非特許文献 4】 Morina R, Filella X, Auge JM. ProGRP : a new biomarker for small cell lung cancer. Clinical Biochemistry  [Non-Patent Document 4] Morina R, Filella X, Auge JM. ProGRP: a new biomarker for small cell lung cancer. Clinical Biochemistry
2004; 37 : 505- 11.  2004; 37: 505-11.
【非特許文献 5】 Sugio K, Sugaya M, Hanagiri T, Yasumoto K. Tumor marke r in primary lung cancer. JUOEH 2004 ; 1 :473— 9.  [Non-Patent Document 5] Sugio K, Sugaya M, Hanagiri T, Yasumoto K. Tumor marker in primary lung cancer. JUOEH 2004; 1: 473-9.
【非特許文献 6】 Schneider J, Philipp M, Velcovsky HG, Morr H, Katz N. Pr o— gastrin— releasing peptide (ProGRP) , neuron specific enolase (NSE) , carci no embryonic antigen (CEA), and cyto keratin 19— fragments ( CYFRA 21— 1) i n patients with lung cancer in comparison to other lung diseases. Anticancer Res 2003 ; 23 : 885- 93. .  [Non-Patent Document 6] Schneider J, Philipp M, Velcovsky HG, Morr H, Katz N. Proo- gastrin— releasing peptide (ProGRP), neuron specific enolase (NSE), carci no embryonic antigen (CEA), and cyto keratin 19— fragments (CYFRA 21— 1) in patients with lung cancer in comparison to other lung diseases.Anticancer Res 2003; 23: 885- 93.
【非特許文献 7】 Tagliaferri P, Tassone P, Blotta S, et al. Antitumor therapeu tic strategies based on the targeting of epidermal growth factor— induced surv ival pathways. Curr Drug Targets 2005 ; 6 : 289-300.  [Non-Patent Document 7] Tagliaferri P, Tassone P, Blotta S, et al. Antitumor therapeutic strategies based on the targeting of epidermal growth factor— induced surv ival pathways. Curr Drug Targets 2005; 6: 289-300.
【非特許文献 8】 Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non— smal 1一 cell lung cancer to gefitinib. N En gl J Med 2004 ; 350 : 2129 - 39. [Non-Patent Document 8] Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-smal 1 cell lung cancer to gefitinib.N En gl J Med 2004; 350: 2129-39.
【非特許文献 9】 Gamou S, Hunts J, Harigai H, et al. Molecular evidence for the lack of epidermal growth factor receptor gene expression in small cell lung carcinoma cell. Cancer Res 1987 ; 4 2り 68— 73. [Non-patent document 9] Gamou S, Hunts J, Harigai H, et al. Molecular evidence for the lack of epidermal growth factor receptor gene expression in small cell lung carcinoma cell. Cancer Res 1987; 4 2 68-73.
【非特許文献 10】 Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lun g cancer: correlation with clinical response to Gefitinib therapy. Science 200 4 ; 304 : 1497- 500. 発明の開示  [Non-Patent Document 10] Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to Gefitinib therapy. Science 200 4; 304: 1497- 500. Disclosure of the Invention
本発明は、上記した問題や医師等の要望を解決するためになされたものであって、癌、より具体 的に説明すると、肺癌の初期において、癌細胞の存在証拠を血液中力 検出できる、癌診断方法 及びそのような癌診断方法を用いた肺癌診断方法を提供することを目的としてレ、る。  The present invention has been made to solve the above-mentioned problems and the demands of doctors and the like, and more specifically, cancer, more specifically, the presence of cancer cells can be detected in the blood in the early stage of lung cancer. It is an object of the present invention to provide a cancer diagnostic method and a lung cancer diagnostic method using such a cancer diagnostic method.
請求項 1に記載の癌診断方法は、体液中から、体細胞'癌細胞成分として、 RNAのみを含む試 料を得る工程と、 RNAのみを含む試料力 逆転写酵素で cDNAを生成する逆転写酵素反応と蛍 光色素を用いた PCRを、 EGFR' mRNAの存在を検出する、プライマーセットを用いて行い、 PC Rにより増幅された PCR産物を前記 PCR産物と結合した蛍光色素を用い、定量的に計測するェ 程とを備える。  The method for diagnosing cancer according to claim 1 comprises a step of obtaining a sample containing only RNA as a somatic cell component of a cancer cell from a body fluid, and a sample force containing only RNA. Reverse transcription that generates cDNA with reverse transcriptase PCR using an enzyme reaction and fluorescent dye is performed using a primer set that detects the presence of EGFR 'mRNA, and the PCR product amplified by PCR is quantitatively analyzed using a fluorescent dye combined with the PCR product. And a process for measuring.
ここで、本明細書で用いる用語、「体液」は、血液、リンパ液その他の体液を意味する。  Here, the term “body fluid” used in the present specification means blood, lymph fluid and other body fluids.
請求項 2に記載の癌診断方法は、請求項 1に記載の癌診断方法で用いる、プライマーセットが、 上 流 側 プ ラ イ マ ー が 、 AACTGTGAGGTGGTCCTTGGであり、下流側 プライマーが、 GTTGAGGGCAATGAGGACATである。 The method for diagnosing cancer according to claim 2, wherein the primer set used in the method for diagnosing cancer according to claim 1, The upstream primer is AACTGTGAGGTGGTCCTTGG, and the downstream primer is GTTGAGGGCAATGAGGACAT.
請求項 3に記載の癌診断方法は、請求項 1又は請求項 2に記載の癌診断方法で用いる、体液 力 血液またはリンパ液である。  The method for diagnosing cancer according to claim 3 is body fluid blood or lymph used in the method for diagnosing cancer according to claim 1 or claim 2.
請求項 4に記載の肺癌診断方法は、請求項 1〜3のいずれかに記載の癌診断方法を用いた。 本発明に係る癌診断方法は、癌の初期において癌細胞の存在証拠を血液中力 検出できるの で、早期医療行為によって癌細胞を根絶することが可能になる。  The method for diagnosing lung cancer according to claim 4 uses the method for diagnosing cancer according to any one of claims 1 to 3. The cancer diagnostic method according to the present invention can detect the presence of cancer cells in the blood at an early stage of cancer, so that cancer cells can be eradicated by early medical treatment.
また、体液中カゝら mRNAを含む試料を得るようにしたので、癌組織腫瘍形成、転移後の切除組 織中力も EGFRを検出するような場合に比べ、癌細胞の有無を正確に検出することができる。 また、 PCRを行う際に使用するプライマーを工夫することにより、癌の初期において癌細胞の存 在証拠を血液中から検出できるようになった。 図面の簡単な説明  In addition, since a sample containing mRNA was obtained from body fluid, the presence of cancer cells can be detected more accurately than when EGFR is detected in tumor tissue tumor formation and post-metastasis tissue force. be able to. In addition, by devising the primers used for PCR, it has become possible to detect the presence of cancer cells in the blood in the early stages of cancer. Brief Description of Drawings
第 1図は、本発明に係る癌診断方法と、その対象とを概略的に説明する説明図である。  FIG. 1 is an explanatory diagram for schematically explaining the cancer diagnostic method and its object according to the present invention.
第 2図は、本発明に係る癌診断方法で使用するプライマーセットを説明する図である。  FIG. 2 is a diagram for explaining a primer set used in the method for diagnosing cancer according to the present invention.
第 3図は、 EGFRの全長塩基配列を示す図である。  FIG. 3 shows the full-length base sequence of EGFR.
第 4図は、 EGFRの全長塩基配列を示す図である。  FIG. 4 shows the full-length base sequence of EGFR.
第 5図は、 EGFRの全長塩基配列を示す図である。  FIG. 5 shows the full-length base sequence of EGFR.
第 6図は、 hTERT mRNA及び EGFR mRNAの各々の組織と血清との間の相関関係を表す グラフであり、図 6 (a)は、 hTERT mRNAの組 織と血清との間の相関関係を表すグラフであり、 また、図 6 (b)は、 EGFR mRNAの組織と血清との間の相関関係を表すグラフである。 Fig. 6 shows the correlation between serum and each tissue of hTERT mRNA and EGFR mRNA Fig. 6 (a) is a graph showing the correlation between hTERT mRNA tissue and serum, and Fig. 6 (b) is the correlation between EGFR mRNA tissue and serum. It is a graph showing a relationship.
第 7図は、腫瘍マーカ一の臨床因子に関する多変量解析結果を示す図である。  FIG. 7 is a diagram showing the results of multivariate analysis regarding clinical factors of one tumor marker.
第 8図は、ロックカープ解析 (ROC curve analyses)の結果を示すグラフである。  Fig. 8 is a graph showing the results of ROC curve analyses.
第 9図は、各種の腫瘍マ一カーの肺癌に対する感受性と特異性とを説明する図である。 発明を実施するための最良の形態  FIG. 9 is a diagram illustrating the sensitivity and specificity of various tumor markers for lung cancer. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明に係る癌診断方法の一例を更に詳しく説明する。  Hereinafter, an example of the cancer diagnosis method according to the present invention will be described in more detail.
1.患者と標本の収集  1. Patient and specimen collection
図 1は、本発明に係る癌診断方法と、その対象とを概略的に説明する説明図である。  FIG. 1 is an explanatory diagram schematically illustrating the cancer diagnosis method according to the present invention and its target.
図 1に示す試験を行うために、 2003年 7月〜 2004年 12月の期間、国立米子病院に許可され た、 89人の肺癌患者を登録した。  To conduct the study shown in Figure 1, 89 patients with lung cancer were enrolled during the period from July 2003 to December 2004, which was approved by the National Yonago Hospital.
患者の平均年齢は 63歳(22歳〜 90歳)であった。  The average patient age was 63 years (22 to 90 years).
これらの患者について、血清試験、胸部 X.線、(ヘリカル)コンピュータ断層撮影法 (CT)、胸部 又は脳の磁気共鳴映像法、細胞学的試験、経気管支、経皮、又は胸腔鏡下肺生体組織検査の後 に外科的切除標本の病理的評価を診断した。  For these patients, serum tests, chest X-rays, (helical) computed tomography (CT), chest or brain magnetic resonance imaging, cytological examination, transbronchial, percutaneous, or thoracoscopic lung biopsy After histological examination, pathological evaluation of surgically resected specimens was diagnosed.
臨床病理学的所見 [性別、年齢、診断、腫瘍の大きさ、腫瘍の数、 CEA、 SCC、 CYFRA、 proGRP^ NSE (neuron specific enolase)、 TPA (tissue polypeptide antigen)及び SLX といった腫瘍マーカー検査、肝炎ウィルスの有無(presence of active hepatitis virus) , 喫煙暦 (smoke history) (estimated by pack— ye ar index) ^ 転移や再発の有無 (presence of metastasis or recurrence)及び臨床病期(IA〜IV) (clinical stage (IA〜IV)) ]を評価した。 また、対照群(比較例)として、 12人の女性を含む 27人の健常人(22歳〜 78歳:平均年齢 53 )を用レ、た。 Clinicopathological findings (sex, age, diagnosis, tumor size, number of tumors, tumor marker tests such as CEA, SCC, CYFRA, proGRP ^ NSE (neuron specific enolase), TPA (tissue polypeptide antigen) and SLX, hepatitis Presence of active hepatitis virus, smoking calendar (smoke history) (estimated by pack—ye ar index) ^ Presence of metastasis or recurrence and clinical stage (IA to IV)] were evaluated. As a control group (comparative example), 27 healthy persons (12 to 78 years old: average age 53) including 12 women were used.
更に、同じ患者に関して、外科的処置の前と後 (手術後 3週間後)の血清中の興味のある遺伝子 を調べるため、また、腫瘍マーカーとしての能力を決定するため、肺癌患者のヒトテロメラーゼ逆転 写酵素(hTERT と略) mRNAと、 EGFR (epidermal growth factor receptor) mRNAとの 発現を計量的に分析した。  In addition, to examine the same patient for genes of interest in the serum before and after surgery (3 weeks after surgery) and to determine the ability as a tumor marker, to reverse human telomerase in lung cancer patients Expression of transcriptase (abbreviated as hTERT) mRNA and EGFR (epidermal growth factor receptor) mRNA was quantitatively analyzed.
この試験を行うに際し、患者力 インフォームドコンセントを得て、且つ、研究プロトコール(計画 案)は、 1975年のヘルシンキ宣言の倫理的ガイドラインに従ったものとした。  In conducting this study, patient informed consent was obtained, and the study protocol (draft) was in accordance with the 1975 Helsinki Declaration Ethical Guidelines.
且つ、鳥取大学の倫理委員会 (the human research committee of Tottori Universi ty)の承認を得た(承認番号第 138、 No. 138— 1 , 2001年(approval No. 138, No. 138-1, 2001) )。  In addition, it was approved by the human research committee of Tottori University (approval No. 138, No. 138— 1, 2001 (approval No. 138, No. 138-1, 2001). )).
本発明に係る癌診断方法では、まず、被験者 (患者)の血液を採取した。  In the cancer diagnosis method according to the present invention, first, blood of a subject (patient) was collected.
次に、血液中から RNAを含む'試料を得た。  Next, a sample containing RNA was obtained from blood.
より具体的に説明すると、患者力 採取した体液 (この例では、血液)(約 l〜2ml)について、 10 で 10分間、 3段階 (800xg、 lOOOxg, 1500xg)の遠心分離操作を行うことにより、リンパ球 (ly mphocyte)の存在を無視できる量になるまで減少させた血清(上澄み) (serum samples)を得 た。 この血清(上澄み) (serum samples)中の h TERT mRNAと EGFR mRNA力 肺の悪性腫 瘍 (pulmonary malignancies)に起源を発しそこ力 放出されたものであるかを調べるため、 23 名の肺癌患者の外科的切除肺組織と漿液 (sera)とを採取した。 More specifically, the body fluid collected in this case (blood in this example) (about 1 to 2 ml) is centrifuged at 10 steps for 10 minutes for 10 minutes (800xg, lOOOxg, 1500xg). Serum samples were obtained in which the presence of lymphocytes was reduced to a negligible amount. In order to examine whether the h TERT mRNA and EGFR mRNA in these serum samples originated from and released from pulmonary malignancies, 23 patients with lung cancer Surgically excised lung tissue and serum (sera) were collected.
2. RNAの抽出と Real— time quantitative RT—PCR. 2. RNA extraction and Real-time quantitative RT-PCR.
次に、 RNAを、従来公知の方法で、血清(上澄み) (serum samples)から、デォキシリボヌクレ ァ一ゼ(DNase; deoxyribonuclease)処理(treatment)を用レ、て抽出した。  Next, RNA was extracted from serum samples by a known method using a DNase (deoxyribonuclease) treatment.
血清(上澄み) (serum samples) 200 1中力 抽出した RNAをヌクレアーゼフリーの水(H2 O)に溶解した。  Serum samples 200 1 Medium strength Extracted RNA was dissolved in nuclease-free water (H 2 O).
次に、定量的リアルタイムポリメラーゼ連鎖反応(quantitative RT- PGR (real time poly merase chain reaction)を、ワンステップ RT— PCRキット(One Step RT-PCR kit) (Qiagen社 製)の中に、 1 i lの RNA抽出物と 2 1の SYBR Green I (Roche, Basel, Switzerland)とを 使用して、行った。  Next, a quantitative real-time polymerase chain reaction (quantitative RT-PGR) is added to 1 il of one-step RT-PCR kit (manufactured by Qiagen). This was done using RNA extracts and 21 SYBR Green I (Roche, Basel, Switzerland).
RNAは、同じ容量の血清を使用し HCC組織を用いて抽出し、ぞの後、 20倍の濃度になるまで 乾燥させた。  RNA was extracted with HCC tissue using the same volume of serum and then dried to a 20-fold concentration.
HCC組織力 の RNAの抽出 、 TRIzol (登録商標)試薬 (Reagent)を使用し、この試薬の製造 販売会社(Inv rogen Corp. , Carlsbad, CA, USA)の使用説明書に従って行った。  Extraction of RNA with HCC tissue strength was performed using TRIzol (registered trademark) reagent (Reagent) according to the instructions of the manufacturer and distributor of this reagent (Invrogen Corp., Carlsbad, CA, USA).
この実験に使用したプライマー及び標的塩基配列を、図 2に示す。  The primers and target base sequences used in this experiment are shown in FIG.
即ち、 EGFRを検出するためのプライマーセットとして、上流側プライマー(EGFR- F)を、 AACTGTGAGGTGGTCCTTGG と し 、 下 流 側 プ ラ イ マ ー ( EGFR- R ) を 、 GTTGAGGGCAATGAGGACATとした。 That is, as a primer set for detecting EGFR, the upstream primer (EGFR-F) is AACTGTGAGGTGGTCCTTGG, and the downstream primer (EGFR-R) is GTTGAGGGCAATGAGGACAT.
尚、上流側プライマーは、標的塩基配列の順方向(5'→3' )に設定し、下流側プライマーは、標 的塩基配列の上流側プライマーの順方向に相当する鎖に対し、相捕的配列で且つ逆方向に設定 したものである。  The upstream primer is set in the forward direction of the target base sequence (5 '→ 3'), and the downstream primer is complementary to the strand corresponding to the forward direction of the upstream primer in the target base sequence. It is an array and set in the reverse direction.
図 3〜図 5に、 EGFRの全長塩基配列を示す。  3 to 5 show the full-length base sequence of EGFR.
この増幅ターゲットは、 a tyrosine kinase phosphorylation site of EGFRであり、また、 このプライマーは、その塩基配列中に変異を含んでレヽなレ、ものとした。  This amplification target was the tyrosine kinase phosphorylation site of EGFR, and this primer contained a mutation in its base sequence.
また、比較のため、 hTERTを検出するプライマーセットとして、上流側プライマー(hTERT-F) を、 CGGAAGAGTGTCTGGAGCAA とし、 下流側プライマー ( h T E R T— R ) を、 GGATGAAGCGGAGTCTGGAとした。  For comparison, as a primer set for detecting hTERT, the upstream primer (hTERT-F) was designated as CGGAAGAGTGTCTGGAGCAA, and the downstream primer (hTERT—R) was designated as GGATGAAGCGGAGTCTGGA.
また、 2— m i c r o g l o b i nでは、 上流側プライマー( 2— m i c r o g 1 o b i n— F )を、 TGAGTGCTGTCTCCATGTTTGAとし、下流側プライマ一(2-microglobin - R)を、  In 2-m i c r o g l o b i n, the upstream primer (2—m i c r o g 1 o b i n— F) is TGAGTGCTGTCTCCATGTTTGA, and the downstream primer (2-microglobin-R) is
TCTGCTCCCCACCTCTAAGTTGとした。  It was set as TCTGCTCCCCACCTCTAAGTTG.
RT-PCRの条件は、最初の逆転写反応を、. 50°Cで 30分間行レ、、その後、反応活性化段階とし て、 95°Cに、 12分間保ち、その後、 PCR反応を 50サイクル(95°C (0秒))、 55°C (10秒)次いで 72°C (15秒》行レヽ、そして、 40°Cで 20秒間、融解 (melting) (「変性」(denaturation)ともいう。」 した。  The RT-PCR conditions were as follows: the first reverse transcription reaction was performed at 50 ° C for 30 minutes, and then the reaction activation stage was maintained at 95 ° C for 12 minutes, followed by 50 cycles of the PCR reaction. (95 ° C (0 seconds)), 55 ° C (10 seconds), then 72 ° C (15 seconds), and melting at 40 ° C for 20 seconds (also called “denaturation”) ." did.
hTERT mRNAと EGFR mRNAに対する real— time PCR分析の射程範囲は、この分析 では、約 5コピーであり、そして、我々は、患者と比較例からの血清試料中、誤って陰性とする可能 性を排除することができた。 The range of real-time PCR analysis for hTERT mRNA and EGFR mRNA is about 5 copies in this analysis, and we can falsely make negative in serum samples from patients and comparative examples Sex was able to be excluded.
この PCRは、 hTERTに対し、 131 bpの産出物を、 EGFRに対し、 114 bpの産出物を、また、 β 2-microglobin RNA に対し、 88bpの産出物を、各々、産生した。 This PCR produced a 131 bp product for hTERT, a 114 bp product for EGFR, and an 88 bp product for β 2-microglobin RNA.
この RT- PCR分析は、 2回、繰り返し、この定量化については、 LightCycler (Roche, Basel, Switzerland)を用レ、ることで、繰り返し再現性があることを確かめた。 This RT-PCR analysis was repeated twice, and this quantification was confirmed to be reproducible by using a LightCycler (Roche, Basel, Switzerland).
3.免疫組織学的検討 (Immunohistochemistry) 3.Immunohistochemistry
切除組織をパラフィン中に包埋する (paraffin embedding)ための処理をした。免疫組織研究 のため、血清中に腫瘍マーカーの強い蛋白質発現を有する、患者を 3人ずつ(全員で 12名の患 者)選び出し、 hTERT (Santa Cruz)、 EGFR (Santa Cruz) , SCC (Sigma)及び CYFRA (Sigma)を識別する抗体を用レ、て、肺癌横断研究を行った。  The excised tissue was processed for embedding in paraffin. For immunohistochemical studies, 3 patients (12 patients in all) with strong protein expression of tumor markers in serum were selected, hTERT (Santa Cruz), EGFR (Santa Cruz), SCC (Sigma) And a lung cancer cross-sectional study using antibodies that discriminate CYFRA (Sigma).
免疫組織研究にぉレ、て、 4%パラホルムアルデヒド中に固定した肝臓組織 (liver tissues)をパ ラフィンに包埋 (umbedded)した。免疫組織分析のため、次に示す抗体を連続したセクション (sec tions)に培 ¾し,こ;月市の切除標本の a mouse monoclonal antibody 5— micron— thick se ctionsが、一連のキシレン浴脱パラフィン化(a series of xylene baths)され、また、これらの 試科は、等級に分けられたアルコール(graded alcohols)中で再水和化 (rehydrated)された。 染色された全てのセクション(sections)は、電子レンジを用レ、、 600Wで、 15分間、 lOmmol/ litterのクェン酸ナトリウム緩衝液中で加熱処理された。  For immune tissue studies, liver tissues fixed in 4% paraformaldehyde were umbedded in paraffin. For immunohistochemical analysis, the following antibodies were cultured in successive sections, and a mouse monoclonal antibody 5-micron- thick se ctions from Tsukiichi's excised specimens was deparaffinized in a series of xylene baths. A series of xylene baths and these trials were rehydrated in graded alcohols. All stained sections were heat treated in a lOmmol / litter sodium citrate buffer at 600W for 15 minutes using a microwave oven.
PBS (phosphate buffered saline リン酸〔塩〕)緩衝生理的食塩水の略)中で洗浄後、これ らの切断面は、 avidin— biotin - peroxidase complex (Vector Laboratories, Burlmgam e, CA)によって染色された。 After washing in PBS (abbreviated phosphate buffered saline), these cut surfaces are avidin-biotin-peroxidase complex (Vector Laboratories, Burlmgam e, CA).
この数値は、 portal field (0. 25X0. 25 mm2)当たりの数として表されていた。 The prolife rating cell nuclear antigen (PCNA)— positive oval cellsについても同様の方法でその数 を数えた。  This number was expressed as a number per portal field (0.25 x 0.25 mm2). The proliferating cell nuclear antigen (PCNA) —positive oval cells were counted in the same way.
ェピトープ(epitope、抗原決定基) ェクスポージャ(exposure)を高める(enhance)するため に、スライドを、 98°Cで、 10— mmolZlitterのクェン酸緩衝液(CITRATE BUFFER)を用レヽ、 pH6で、 90分間、前処理した。  Epitope (antigenic determinant) To enhance exposure, slides at 98 ° C with 10-mmolZlitter citrate buffer (CITRATE BUFFER) at pH 6 for 90 minutes , Preprocessed.
セクション(sections)は、その際に、非特異性の結合を減じるために 2. 5%の blocking serum 中で培養された。これに引き続き、試料を、 37°Cで、プライマリーモノクロールマウス hTERT (H— 231) sc— 7212抗体(primary monoclonal mousehTERT (H— 231) sc- 7212antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA), human EGFR(1005), sc— 03 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA)を使用して、 90分 間、パラフィンセクションの上で、 1 : 50の希釈で、培養した。これらのセクションは、企業 (Vector Laboratories, Burlingame, CA, USA)の推奨に従って、標準アビジン—ビォチン免疫化 学 (standard avidin— biotin immunochemistry)で処理された。  Sections were then cultured in 2.5% blocking serum to reduce non-specific binding. Following this, samples were obtained at 37 ° C at the primary monoclonal mouse hTERT (H—231) sc—7212 antibody (primary monoclonal mouse hTERT (H—231) sc-7212antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA). , human EGFR (1005), sc—03 antibody (Santa Cruz Biotechnology, Santa Cruz, Calif., USA) for 90 minutes on a paraffin section at a 1:50 dilution. Sections were treated with standard avidin-biotin immunochemistry according to company recommendations (Vector Laboratories, Burlingame, CA, USA).
最後に、色素原として、ジァミノベンゼンを用い、そして、核対比染色として、へマトキシリンを用 いた。陰性対象として、一時抗体を省略して染色処理を行った。結果をパーセンテージで表した。 核小体 (nucleolar) hTERTは、テロメァ機能と関係している。核小体染色された細胞だけが 分子計算器 (numerator)に含められた。免疫反応性は、蛍光色素接合 2次抗体を用いて視覚化 した。 Finally, diaminobenzene was used as the chromogen and hematoxylin was used as the nuclear counterstain. As a negative target, the temporary antibody was omitted and staining was performed. Results were expressed as a percentage. Nucleolus hTERT is associated with telomere function. Only nucleolar stained cells were included in the numerator. Immunoreactivity is visualized using a fluorescent dye-conjugated secondary antibody did.
hTERT染色は、陰性(く 50% of tumor cells positive at the nucleolar level) と陽性 (>50% of them)とに分類した。  hTERT staining was classified as negative (> 50% of tumor cells positive at the nucleolar level) and positive (> 50% of them).
4.統計解析 4. Statistical analysis
SPSS II (SPSS Corp., Tokyo, Japan)を使用して、 hTERT、 EGFR及びその他のマー カーに影響する重要な臨床病理学的知見を行った。  SPSS II (SPSS Corp., Tokyo, Japan) was used to make important clinicopathological findings affecting hTERT, EGFR and other markers.
各々の臨床因子 (パラメーター)における層別分類は、論理学的回帰分析モデルを使用して、 多変量解析法によって評価した。  Stratification classification for each clinical factor (parameter) was evaluated by multivariate analysis using a logical regression model.
各々の腫瘍マーカ一について、多変量解析法によって、肺疾患の間に見られる重要な相違を 調べた。  For each tumor marker, a multivariate analysis was used to examine the significant differences seen during lung disease.
hTERT mRNA, EGFR mRNA, 従来の腫瘍マーカー及び臨床的因子(パラメーター)間 の相関を調べるために、ピアソンの相関係数 (Pearson' s relative index)を計算した。  In order to investigate the correlation between hTERT mRNA, EGFR mRNA, conventional tumor markers and clinical factors (parameters), Pearson's relative index was calculated.
この結果、 0. 05以下の確立で、統計上の差異があることが、判った。  As a result, it was found that there was a statistical difference with the establishment of 0.05 or less.
診断試験(diagnostic tests)の正確さを査定(assess)するため、 SPSS II (SPSS Corp., T okyo, Japan)を使用して、 CEA, SCC, CYFRA, EGFR mRNA及び hTERT mRNAに関する、 マッチ試験(the matched data sets (肺癌患者と肺癌ではない患者間 (patients with and without malignancies m lung)) ¾f、 ROC (receiver operator characteristic) 7 プ (cur ve)分析 (analysis)を行った。  In order to assess the accuracy of diagnostic tests, SPSS II (SPSS Corp., Tokyo, Japan) was used to match tests on CEA, SCC, CYFRA, EGFR mRNA and hTERT mRNA ( The matched data sets (patients with and without malignancies m lung) ¾f, ROC (receiver operator characteristic) 7 curve analysis.
ProGRP, NSE, TPA, SLXは、比較群のデータが無かったので、評価しなかった。 この評価分析は、コピー数(copy number) と RNA controls (r2 > 0. 99)を用いた PCR サイクル (PCR cycles)との間に強い直線関係があることを示していた。肺組織と血清との間の hTE RT mRNA と EGFR mRNAとの相関関係は、 2点 t 試験法(Paired t test)及びスペア マン試験(Spearman' s test)の両方を使用して解析した。 ProGRP, NSE, TPA, and SLX were not evaluated because there was no data for the comparison group. This evaluation analysis indicated a strong linear relationship between copy number and PCR cycles using RNA controls (r2> 0.99). The correlation between hTE RT mRNA and EGFR mRNA between lung tissue and serum was analyzed using both the 2-point t test (Paired t test) and the Spearman's test.
各々の定量分析において、コピー数と RNA controlsを用いた PCR cyclesとの間には、強い 直線関係が示された (r2>0. 99)。 In each quantitative analysis, a strong linear relationship was shown between the copy number and the PCR cycles using RNA controls (r 2 > 0.99).
hTERT mRNA及び EGFR mRNAの発現は、疾病の進行に伴って、徐々に、增加作用 を示し、また、その定量値は、健常人に比べ、肺癌において、有意に高くなつていた (Pく 0. 01)。 また、ピアソンの相関係数(Pearson' s relative index) によれば、 hTERT mRNA レベル は、 EGFR mRNA レベル(level)、肺疾患、 TPA (tissue polypeptide antigen), SCC:、 及 び、腫瘍数と有意差を持って関係がなレ、ことが判った(各々、 P = 0. 015, P=0. 017, Pく 0. 001,及び P=0. 042)。  The expression of hTERT mRNA and EGFR mRNA gradually increased as the disease progressed, and the quantitative values were significantly higher in lung cancer than in healthy individuals (P 0. 01). Also, according to Pearson's relative index, hTERT mRNA level is significantly different from EGFR mRNA level (level), lung disease, TPA (tissue polypeptide antigen), SCC :, and the number of tumors. It was found that there was no relationship with the difference (P = 0.015, P = 0.0117, P = 0.001, and P = 0.042 respectively).
また、ピアソンの相関係数(Pearson' s relative index )によれば、 EGFR mRNAは、(癌 に)占拠された肺葉(occupied lobular segment)の数, 転移、再発及び臨床病期と有意差を 持って相関関係力 Sあった(各々、. P=0. 033, P=0. 043, P = 0. 002, 及び P <0. 001)。 スペアマン試験(Spearman' s test )は、肺癌組織における hTERT mRNAと EGFR mRN Aと、血清中の hTERT mRNA と EGFR mRNAとが強い関係があることを示していた(各々、 P=0. 021 及ぴ P=0. 002)。  In addition, according to Pearson's relative index, EGFR mRNA has a significant difference in the number of occupied lobes (occupied lobular segments), metastasis, recurrence, and clinical stage. There was a correlation force S (P = 0.033, P = 0.043, P = 0.002, and P <0.001 respectively). The Spearman's test showed that there is a strong relationship between hTERT mRNA and EGFR mRNA in lung cancer tissues and hTERT mRNA and EGFR mRNA in serum (P = 0. P = 0.002).
図 6は、 hTERT mRNA及ぴ EGFR mRNAの各々の組織と血清との間の相関関係を表すグ ラフであり、図 6 (a)は、 hTERT mRNAの組織 と血清との間の相関関係を表すグラフであり、ま た、図 6 (b)は、 EGFR mRNAの組織と血清との間の相関関係を表すグラフである。 Figure 6 shows the correlation between the serum and each tissue of hTERT mRNA and EGFR mRNA. Fig. 6 (a) is a graph showing the correlation between hTERT mRNA tissue and serum, and Fig. 6 (b) is the correlation between EGFR mRNA tissue and serum. It is a graph showing a relationship.
この組織と血清との間の相関は、血清中の hTERT mRNAと EGFR mRNA とが肺癌組織か ら由来してレ、ることを示している 。  This correlation between tissue and serum indicates that hTERT mRNA and EGFR mRNA in serum originate from lung cancer tissue.
多変量解析によって、臨床病理学的知見として、血清中の hTERT及び EGFRの発現には強 い関係があることが判った(図 7を参照)。  Multivariate analysis revealed that there is a strong relationship between the expression of hTERT and EGFR in serum as a clinicopathological finding (see Figure 7).
喫煙、腫瘍の大きさ、腫瘍数、転移や再発の有無は、 hTERT mRNA発現と強い関係があるこ と力 S半 IJつた(各々、 P=0. 029, P=0. 002, P=0. 003, P=0. 004及ぴ P=0. 013, respe ctively)0 Cigarette smoking, tumor size, number of tumors, metastasis and recurrence have a strong relationship with hTERT mRNA expression. S half IJ (P = 0.029, P = 0.002, P = 0. 003, P = 0.004 and P = 0.013, respectively) 0
腫瘍数、腫瘍の大きさ、再発及び臨床ステージは、 EGFR mRNA発現と強い関係があることが 判った(各々、 P=0. 047, P=0. 043, P=0. 037及び P=0. 032)。  Tumor number, tumor size, recurrence and clinical stage were found to be strongly related to EGFR mRNA expression (P = 0.047, P = 0.043, P = 0.037 and P = 0, respectively) 032).
肺癌において、全ての腫瘍マーカーは、病因との関係を示さない。従来の腫瘍マーカーはどう 力といえば、 CEAレベルは、喫煙や (癌に)占拠された肺葉(occupied lobular segment)の数と 強い関係が有り (P=0. 031 for each)、 SGCレベルは、腫瘍数、腫瘍の大きさ及び転移と強い 関係が有り (各々、 P=0. 016, P=0. 015及び Ρ=0· 044)、また、 CYFRAレベルは、腫瘍数、 腫瘍の大きさ、転移及ぴ再発と強い関係がある (各々、 Ρ=0. 017, Ρ=0. 019, Ρ=0. 045及 び P=0. Oil ) (図 7を参照)。  In lung cancer, all tumor markers do not show a relationship with etiology. Speaking of the strength of conventional tumor markers, CEA levels are strongly related to the number of occupied lobular segments occupied by smoking and (cancer) (P = 0. 031 for each), and SGC levels are There is a strong relationship with the number of tumors, tumor size and metastasis (P = 0.016, P = 0.015 and Ρ = 0 · 044, respectively), and the CYFRA level is the number of tumors, tumor size, There is a strong relationship with metastasis and recurrence (各 々 = 0.017, Ρ = 0.019, Ρ = 0.045 and P = 0. Oil, respectively) (see Figure 7).
図 8は、ロックカーブ解析(ROC curve analyses)の結果を示すグラフである。  Fig. 8 is a graph showing the results of ROC curve analyses.
図 8から、肺癌に対する hTERT mRNAと EGFR mRNA の感受性 Z特異性は、各々、 71. 8%/72. 5% 及ぴ 60. 8%/62. 5%,であ ることが判った(図 9を参照)。 From Figure 8, the sensitivity Z-specificity of hTERT mRNA and EGFR mRNA for lung cancer is 71. It was found to be 8% / 72.5% and 60.8% / 62.5% (see Figure 9).
hTERT mRNAと EGFR mRNAの発現のォプティマルカットオフ値(Optimal cut-off Va lues)は、統計学的に、各々、 103. 76copies/0. 2 ml、 101. 21 copies/0. 2 mlであると して計算された。  The optimal cut-off values for hTERT mRNA and EGFR mRNA expression are statistically at 103.76copies / 0.2 ml and 101.21 copies / 0.2 ml, respectively. It was calculated as there was.
また、癌形成時の陽性予見値 (PPV)ノ陰性予見値 (NPV)は、各々、 hTERT mRNAにおレヽ て、 0. 775/0. 667であり、また、 EGFR mRNAiこおレヽて、 0. 667/0. 407であった。  In addition, the positive predictive value (PPV) and the negative negative predictive value (NPV) at the time of cancer formation are 0.775 / 0.667 for hTERT mRNA, and 0 for EGFR mRNAi. 667/0.
CYFRA、 SCC及び CEAの癌形成時の陽性予見値 (PPV) /陰性予見値(NPV)は、各々、 0. 650/0. 500、 0. 207/0. 875、及び、 0. 650/0. 391であった。  The positive predictive value (PPV) / negative predictive value (NPV) for carcinogenesis of CYFRA, SCC, and CEA are 0. 650/0. 500, 0. 207/0. 875, and 0. 650/0, respectively. It was 391.
癌形成時の陽性予見値 (PPV) /陰性予見値 (NPV)についての感受性/特異性の比較によ つて、多くの患者の定量化を用いた正確なカットオフ値(cut— off value)の設定(set— up)によ り、 hTERT mRNAと EGFR mRNAの統計的な評価を更に改善できた。  By comparing the sensitivity / specificity for positive predictive value (PPV) / negative predictive value (NPV) at the time of cancer formation, an accurate cut-off value using quantification of many patients The set-up could further improve the statistical evaluation of hTERT mRNA and EGFR mRNA.
次に、外科的処置の前と後(術後 3週間)の hTERT mRNAと EGFR mRNAの定量値につ いて説明する。 '  Next, the quantitative values of hTERT mRNA and EGFR mRNA before and after surgical treatment (3 weeks after surgery) will be explained. '
切除前と外科的処置後 3週間後との比較によれば、 hTERT mRNAと EGFR mRNAの術後 の定量値は、術前の定量値に比べ低くなつていた。  According to the comparison before excision and 3 weeks after surgical treatment, the postoperative quantitative values of hTERT mRNA and EGFR mRNA were lower than the preoperative quantitative values.
免疫組織学的試験において、 hTERT mRNA, EGFR mRNA、 SCC及び CYFRAの高い 発現は、 hTERT, EGFR, SCC, CYFRA蛋白質の高い発現を示しており、結果として、血清中 における測定値は、組織中における測定値と完全に互換できるものであった。  In immunohistological studies, high expression of hTERT mRNA, EGFR mRNA, SCC, and CYFRA indicates high expression of hTERT, EGFR, SCC, CYFRA protein, and as a result, measured values in serum It was completely compatible with the measured values.
また、血清中と腫瘍組織との間にある hTERT mRNAと EGFR mRNAとの相関は、血清中 において見出された hTERT mRNA腫瘍細 胞由来であることを強く示していた。 In addition, the correlation between hTERT mRNA and EGFR mRNA between serum and tumor tissue is It was strongly shown to be derived from hTERT mRNA tumor cells found in.
また、外科的処置前と外科的処理後 3 週間後を比較すると、外科手術後において、 hTERT mRNAと EGFR mRNAの両方のバイオマーカーの定量値は、手術前の、 hTERT mRNAと E GFR mRNA両方のバイオマーカーの定量値に比べ低くなつており、このことは、両方のパイォマ 一力一力 正確な腫瘍マーカーでありえることを示唆していた。  In addition, comparing the pre-surgical treatment and 3 weeks after the surgical treatment, the quantitative values of both the hTERT mRNA and EGFR mRNA biomarkers of both the hTERT mRNA and EGFR mRNA before surgery were compared. Compared to the quantitative value of biomarkers, this suggested that both pomas could be the most accurate tumor markers.
以上の説明から明らかなように、 EGFR mRNAは、肺癌患者に対し、高い感受性と特異性を示 した。  As is clear from the above explanation, EGFR mRNA showed high sensitivity and specificity for lung cancer patients.
即ち、本発明に係る癌診断方法は、癌の初期において癌細胞の存在証拠を血液中から検出で きるので、早期医療行為によって癌細胞を根絶することが可能になる。  That is, the cancer diagnostic method according to the present invention can detect evidence of the presence of cancer cells from the blood in the early stage of cancer, and thus can eradicate cancer cells by early medical practice.
また、体液中から mRNAを含む試料を得るようにしたので、癌組織腫瘍形成、転移後の切除組 織中力 EGFRを検出するような場合に比べ、癌細胞の有無を正確に検出することができる。  In addition, since samples containing mRNA were obtained from body fluids, the presence or absence of cancer cells can be detected more accurately than in the case where cancer tissue tumor formation, metastasized tissue after metastasis is detected. it can.
また、 PCRを行う際に使用するプライマーを工夫することにより、癌の初期において癌細胞の存' 在証拠を血液中力 検出できるようになった。  In addition, by devising the primers used for PCR, it has become possible to detect the presence of cancer cells in the blood in the early stage of cancer.
また、本発明に係る癌診断方法を用いれば、医師が、患者に対し、ゲフイチニブ (Gefitinib)の ような EGFRチロシンキナーゼ阻害作用剤を処方するか否かの判断するのが容易となり、また、患 者に対し、ゲフイチ-ブ (Gefitinib)のような EGFRチロシンキナーゼ阻害作用剤を処方後におい ても、ゲフイチ-ブ (Gefitinib)のような EGFRチロシンキナーゼ阻害作用剤が腫瘍に有効である か否かの追跡調査が容易に行える。  In addition, the cancer diagnosis method according to the present invention makes it easy for a doctor to determine whether or not to prescribe an EGFR tyrosine kinase inhibitor such as gefitinib to a patient. Whether an EGFR tyrosine kinase inhibitor such as Gefitinib is effective against tumors even after the prescription of an EGFR tyrosine kinase inhibitor such as Gefitinib Can be easily traced.
尚、本明細書の、発明を実施するための最良の形態では、本発明に係る癌診断方法として、血 液中力 RNAを抽出した例を示した力 本発 明に係る癌診断方法では、血液力 RNAを抽 出する場合に限られず、血液以外の体液力 RNAを抽出するようにしてもよい。 産業上の利用可能性 In the best mode for carrying out the invention of the present specification, the method for diagnosing cancer according to the present invention includes blood. In the cancer diagnosis method according to the present invention, an example in which fluid force RNA is extracted is not limited to extraction of blood force RNA, and fluid fluid RNA other than blood may be extracted. Industrial applicability
本発明に係る癌診断方法及び肺癌診断方法は、癌の初期にぉレ、て癌細胞の存在証拠を血液 中から検出できるので、早期医療行為によって癌細胞を根絶することが可能になり、また、患者に 処方する前に、本発明に係る癌診断方法及び肺癌診断方法を行えば、その結果に基づいて、抗 癌剤が有効か否かの判断や、患者に抗癌剤を処方後に、その患者を治療する際に、本発明に係 る癌診断方法及び肺癌診断方法を行うことで、その患者に処方されてレ、る抗癌剤が有効か否かを 判断できるので、癌治療の効果を高めることが可能になるので、産業上の利用可能性が高い。  The cancer diagnostic method and lung cancer diagnostic method according to the present invention can detect evidence of the presence of cancer cells from the blood in the early stage of cancer, and thus can eradicate cancer cells by early medical practice. If the cancer diagnosis method and lung cancer diagnosis method according to the present invention are performed before prescribing to the patient, based on the results, it is determined whether the anticancer agent is effective, and after the patient is prescribed the anticancer agent, the patient When the cancer diagnosis method and lung cancer diagnosis method according to the present invention are performed, it is possible to determine whether or not the anticancer drug prescribed by the patient is effective. Therefore, industrial applicability is high.

Claims

請求の範囲 The scope of the claims
【請求項 1】体液中から、体細胞 *癌細胞成分として、 RNAのみを含む試料を得る工程と、 前記 RNAのみを含む試料力 逆転写酵素で cDNAを生成する逆転写酵素反応と蛍光色素を用 いた PCRを、 EGFR mRNA の存在を検出する、プライマーセットを用いて行レ、、前記 PCRにより 増幅された PCR産物を前記 PCR産物と結合した蛍光色素を用レ \定量的に計測する工程とを備 える、癌診断方法。  1. A step of obtaining a sample containing only RNA as a somatic cell * cancer cell component from a body fluid; a sample force containing only the RNA; a reverse transcriptase reaction that generates cDNA with reverse transcriptase and a fluorescent dye PCR using the primer set to detect the presence of EGFR mRNA, quantitatively measuring the PCR product amplified by the PCR using the fluorescent dye bound to the PCR product, and A method for diagnosing cancer.
【請求項 2】前記プライマーセットが、上流側プライマーカ、 AACTGTGAGGTGGTCCTTGG であり、 下流側プライマ一が、 GTTGAGGGCAATGAGGACATである、請求項 1に記載の癌診断方法。  2. The cancer diagnostic method according to claim 1, wherein the primer set is an upstream primer AACTGTGAGGTGGTCCTTGG and the downstream primer is GTTGAGGGCAATGAGGACAT.
【請求項 3】前記体液が、血液である、請求項 1又は請求項 2に記載の癌診断方法。 3. The method for diagnosing cancer according to claim 1, wherein the body fluid is blood.
【請求項 4】請求項 1〜3のレ、ずれかに記載の癌診断方法を用いた、肺癌診断方法。 4. A method for diagnosing lung cancer using the method for diagnosing cancer according to any one of claims 1 to 3.
PCT/JP2006/312672 2005-06-20 2006-06-19 Diagnostic method for cancer and diagnostic method for lung cancer WO2006137551A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007522395A JPWO2006137551A1 (en) 2005-06-20 2006-06-19 Cancer diagnosis method and lung cancer diagnosis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005179542 2005-06-20
JP2005-179542 2005-06-20

Publications (2)

Publication Number Publication Date
WO2006137551A1 WO2006137551A1 (en) 2006-12-28
WO2006137551A2 true WO2006137551A2 (en) 2006-12-28

Family

ID=37570850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312672 WO2006137551A2 (en) 2005-06-20 2006-06-19 Diagnostic method for cancer and diagnostic method for lung cancer

Country Status (2)

Country Link
JP (1) JPWO2006137551A1 (en)
WO (1) WO2006137551A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122610A (en) * 2016-01-06 2017-07-13 コニカミノルタ株式会社 Image processing device and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122610A (en) * 2016-01-06 2017-07-13 コニカミノルタ株式会社 Image processing device and program

Also Published As

Publication number Publication date
JPWO2006137551A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP6630766B2 (en) Pancreatic cancer diagnostic composition and pancreatic cancer diagnostic method using the same
KR101032607B1 (en) Proteinic markers for diagnosing hepatocellular carcinoma
JP2006509185A (en) Cell-based detection and discrimination of disease states
KR102561377B1 (en) Methods and related uses for identifying individuals to be treated with chemotherapy based on marker molecules
CN112345755B (en) Biomarker for breast cancer and application thereof
Albarel et al. From nodule to differentiated thyroid carcinoma: contributions of molecular analysis in 2012
Koudelakova et al. Evaluation of HER2 gene status in breast cancer samples with indeterminate fluorescence in situ hybridization by quantitative real-time PCR
WO2013035095A1 (en) Methods for diagnosing cancer
JP6361943B2 (en) Pancreatic cancer diagnostic kit comprising an antibody that specifically binds to complement factor B protein and an antibody that specifically binds to sugar chain antigen 19-9 protein
WO2006137551A2 (en) Diagnostic method for cancer and diagnostic method for lung cancer
KR101004960B1 (en) Proteinic markers for diagnosing progression of hepatocellular carcinoma
KR102253304B1 (en) Biomarkers for predicting recurrence of gastric cancer
JP7237587B2 (en) Methods and Related Uses for Detecting Recurrence of Lung Adenocarcinoma Based on the Marker Human Epididymal Protein 4 (HE4)
KR102431271B1 (en) Biomarker predictive of responsiveness to an anticancer agent and use thereof
WO2006137550A2 (en) Diagnostic method for cancer and diagnostic method for lung cancer
WO2022260166A1 (en) Kit for diagnosis of cancer and use thereof
EP2093566A1 (en) Method for the prognosis of non-small cell lung cancer
KR102416614B1 (en) Radio-resistance biomarker and detecting method thereof
KR102416607B1 (en) Radio-resistance biomarker and detecting method thereof
EP3725898B1 (en) Eukaryotic translation initiation factors (eifs) as novel biomarkers in head and neck squamous cell carcinoma (hnscc)
JP7042753B2 (en) How to select individuals to receive immune checkpoint inhibitors
Babbar 72TiP Predictive value of tumour infiltrating lymphocytes to pathological complete response in neoadjuvant treated triple-negative breast cancer
Babbar 71TiP P16 protein expression as a predictive biomarker for response to neoadjuvant chemotherapy in osteosarcoma
KR20220151482A (en) Biomarker for diagnosis of prostate cancer
WO2024017854A1 (en) Novel biomarkers for determining prostate cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522395

Country of ref document: JP

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 06767289

Country of ref document: EP

Kind code of ref document: A2