WO2006137496A1 - Artificial heart pump with dynamic pressure bearing - Google Patents

Artificial heart pump with dynamic pressure bearing Download PDF

Info

Publication number
WO2006137496A1
WO2006137496A1 PCT/JP2006/312541 JP2006312541W WO2006137496A1 WO 2006137496 A1 WO2006137496 A1 WO 2006137496A1 JP 2006312541 W JP2006312541 W JP 2006312541W WO 2006137496 A1 WO2006137496 A1 WO 2006137496A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
dynamic pressure
casing
bearing
artificial heart
Prior art date
Application number
PCT/JP2006/312541
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Yamane
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2006137496A1 publication Critical patent/WO2006137496A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/196Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body replacing the entire heart, e.g. total artificial hearts [TAH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0646Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Definitions

  • the present invention relates to an artificial heart pump used in place of or together with a living heart, and more particularly to an artificial heart pump supported by a dynamic pressure bearing in both the radial direction and the thrust direction.
  • the pulsatile flow type is a method in which a fixed amount of blood is sent out for each stroke, and some assistive heart prostheses with advanced clinical applications have a track record of annual use.
  • the continuous flow type is a system in which blood is continuously sent out by a rotating mechanism, and the delivery amount is not directly related to the pump volume and is easy to miniaturize, which is promising for an implantable auxiliary artificial heart.
  • some animal experiments have reported that it survives without physiological problems.
  • a continuous flow pump is being developed as an auxiliary artificial heart that leaves a living heart.
  • continuous flow pumps such as centrifugal, axial flow and rotary displacement type.
  • the present invention relates to this continuous flow type artificial heart.
  • the present inventor has proposed a centrifugal pump for an artificial heart as shown in FIG. Patent No. 2807786 (Japanese Patent Laid-Open No. 10-33664 ⁇ Patent Document 1).
  • the centrifugal impeller 42 is supported by two opposing radial bearings 46-48 and pivot bearings 45-50.
  • An impeller driving device 51 is provided at the lower part of the casing 47, and the magnet 53 rotates inside to drive the magnet group 44 with a built-in impeller.
  • blood flows in from the inlet 54 formed in the upper part of the casing and can be discharged from the outlet loci provided around the lower part of the casing.
  • a direct drive type driving device in which the movable part 53 is replaced with an electromagnet group has been developed!
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-24434
  • Patent Document 2 proposes an artificial heart pump that does not use the pivot bearing as described above, but operates entirely with a hydrodynamic bearing. That is, as shown in FIG. 4, in this artificial heart pump, a fixed shaft 77 projects from a lower thrust receiver 76 provided at the lower center of the lower casing 75, and an upper thrust receiver 78 is fixed to the upper end.
  • An impeller support member 67 is provided below the impeller portion 62 provided with an inflow portion 63 in the center, and permanent magnets 81 are arranged at equal intervals on the outer periphery of the impeller support member 67.
  • a bearing forming member 68 is provided on the center side of the impeller support member 67, and a radial dynamic pressure bearing is formed between a cylindrical inner surface and a fixed shaft 77 having a radial dynamic pressure groove 80 formed on the outer periphery thereof.
  • an upper radial dynamic pressure bearing is formed between the upper thrust dynamic pressure generating groove 73 provided on the upper end surface 72 of the impeller support member 67 and the upper thrust receiver 78, and provided on the lower end surface 68 of the impeller support member 67.
  • a lower radial dynamic pressure bearing is configured between the lower thrust dynamic pressure generating groove 71 and the lower thrust receiver 76.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-33664
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-24434
  • Patent Document 3 Japanese Patent Publication No. 2001-515765
  • Patent Document 4 Japanese Patent Laid-Open No. 9-206372
  • the artificial heart pump has a problem that it requires particularly precise thrust pressure adjustment.
  • blood is circulated as a working fluid in these dynamic pressure bearings, and the blood discharged from the impeller is recirculated through the minute gap of the force dynamic pressure bearing, which prevents the blood from coagulating.
  • blood recirculated and discharged from the impeller may be circulated again to the hydrodynamic bearing portion, which is further disadvantageous in terms of blood coagulation.
  • the present invention has been made based on the above knowledge, and blood as an operating fluid that flows through the gap of the dynamic pressure bearing when the thrust direction and radial direction of the impeller are supported by the dynamic pressure bearing. It is possible to operate with stable operation without recirculating the discharge side force of the impeller.
  • Means for Solving the Problems whose main purpose is to provide an artificial heart pump with a hydrodynamic bearing
  • an artificial heart pump including a hydrodynamic bearing has a permanent inlet having an inflow port in an upper center portion and a plurality of poles along an outer peripheral surface of a lower cylindrical portion.
  • a magnet is disposed, and an impeller having a plurality of vanes extending radially around an opening communicating with the inlet on the lower surface side and an upper cylindrical portion protruding upward is opposed to an outer peripheral surface of a lower cylindrical portion of the impeller
  • a dynamic pressure groove is provided in a casing in which a plurality of electromagnets are arranged on a cylindrical inner peripheral surface that is rotatably and vertically movable, and is provided on either the upper cylindrical outer peripheral surface of the impeller or the casing inner peripheral surface facing the upper cylindrical portion.
  • a thrust dynamic pressure bearing provided with a dynamic pressure groove is formed between the upper surface of the impeller and the lower end surface of the casing facing the radial dynamic pressure bearing.
  • An artificial heart pump provided with another dynamic pressure bearing according to the present invention is the thrust dynamic pressure bearing provided with the dynamic pressure groove, wherein the fluid at the inlet of the impeller is used as an action of each dynamic pressure groove. In this way, it is guided to each dynamic pressure groove and flows out to the fluid discharge side of the vane.
  • An artificial heart pump provided with another dynamic pressure bearing according to the present invention is the thrust dynamic pressure bearing provided with the dynamic pressure groove, wherein the arrangement position of the permanent magnet in the vane is set in the casing. 2.
  • An artificial heart pump including another dynamic pressure bearing is a thrust dynamic pressure bearing including the dynamic pressure groove, wherein the impeller includes the permanent magnet inside and the vane on a lower surface side. And an impeller bearing member comprising an upper cylindrical portion and a disc portion located on the upper portion of the impeller main body, and any of the upper cylindrical portion outer peripheral surface and the casing inner peripheral surface facing the upper cylindrical portion A radial dynamic pressure bearing having a crab dynamic pressure groove is formed, and a thrust dynamic pressure bearing having a dynamic pressure groove is formed on either the upper surface of the disk portion or the lower end surface of the casing facing the disk portion.
  • An artificial heart pump provided with another dynamic pressure bearing according to the present invention is the thrust dynamic pressure bearing provided with the dynamic pressure groove, wherein the casing is opposed to an outer peripheral surface of an upper cylindrical portion of the impeller.
  • a casing bearing member having a facing inner peripheral surface and a lower end surface facing the upper surface of the impeller is formed separately from the casing body, and both are combined.
  • An artificial heart pump including another dynamic pressure bearing according to the present invention is a thrust dynamic pressure bearing including the dynamic pressure groove, wherein a bottom surface of the casing facing an end surface of the vane is A guide projection having a substantially conical surface is fixed immediately below the inlet of the impeller, and the fluid is guided by the guide projection in the direction of the center side force and the vane is operated in a semi-open vane manner.
  • the present invention is configured as described above, when supporting both the thrust direction and radial direction of the impeller by the dynamic pressure bearing, a part of the impeller from the inflow side of the impeller that bypasses the gap of the dynamic pressure bearing is bypassed.
  • the fluid as a working fluid is not recirculated even by the discharge side force of the impeller through the gap of the hydrodynamic bearing and guided to the discharge side of the impeller.
  • the thrust bearing can be supported and stably operated by only one side without providing both the upper and lower sides, the structure of the bearing can be simplified, and the cost can be reduced accordingly.
  • the adverse effect on blood due to flowing through the gap of the pressure bearing can be reduced.
  • FIG. 1 is a cross-sectional view of an embodiment of the present invention.
  • FIG. 2 is a perspective view, a plan view, and a bottom view of the impeller of the same embodiment.
  • FIG. 3 is a cross-sectional view of an artificial heart centrifugal pump previously proposed by the present inventors.
  • FIG. 4 is a cross-sectional view of an artificial heart centrifugal pump in which the present inventors have improved the pump.
  • Thrust dynamic pressure groove Casing bearing member Cylindrical inner peripheral surface Lower end surface
  • the present invention has a problem that the blood as the working fluid flowing through the gap between the impeller dynamic pressure bearings is not recirculated from the discharge side of the impeller, and there is only one thrust bearing.
  • a permanent magnet having a plurality of poles is arranged along the outer peripheral surface of the lower cylindrical portion, and a plurality of vanes extending radially around the opening communicating with the inlet are provided on the lower surface side, and project upward.
  • An impeller having an upper cylindrical portion is provided in a casing in which a plurality of electromagnets are arranged on a cylindrical inner peripheral surface facing a lower cylindrical portion outer peripheral surface of the impeller so as to be rotatable and vertically movable, and the upper cylindrical portion of the impeller
  • a radial dynamic pressure bearing having a dynamic pressure groove is formed on either the outer peripheral surface or the casing inner peripheral surface facing the outer peripheral surface, and the upper surface of the impeller and the lower end surface of the casing facing the same are shifted. It was solved by forming a thrust dynamic pressure bearing example Bei dynamic pressure generating grooves.
  • FIG. 1 is a cross-sectional view of an embodiment of the present invention.
  • a lower casing 2 an upper casing 3, and an inner casing that fits in the center of the upper casing 3. 4 and an impeller 5 rotating inside these casings.
  • the impeller 5 is provided with four vanes 6 protruding from the lower end surface side thereof, and the outer periphery of the impeller main body 8 made of resin having a cylindrical surface 7.
  • An impeller bearing member 9 that also has a ceramic equal force is fixed above it by press-fitting or bonding.
  • the impeller bearing member 9 is composed of a disc portion 10 having an outer diameter that matches the cylindrical surface 7 of the impeller body 8, an upper cylindrical portion 11 protruding upward, and a lower cylindrical portion 12 protruding downward.
  • the lower cylindrical part 12 is fitted and fixed to the upper part of the impeller body 8.
  • a radial dynamic pressure groove 14 is formed on the outer peripheral surface 13 of the upper cylindrical portion 11 of the impeller bearing member 9 and the thrust dynamic pressure is applied to the upper surface 15 of the disc portion 10.
  • a groove 16 is formed.
  • a casing bearing member 17 made of ceramics or the like is fitted and fixed to the lower end of the center of the inner casing 4, and this casing bearing member 17 is fitted with the upper cylindrical portion 11 of the impeller bearing member 9 with a gap.
  • a cylindrical inner peripheral surface 18, a lower end surface 19, and a central opening 20 are provided at the center thereof.
  • the radial dynamic pressure groove 14 of the impeller bearing member 9 faces the cylindrical inner peripheral surface 18 of the casing bearing member 17 with a gap therebetween, and the impeller The thrust dynamic pressure groove 16 of the bearing member 9 faces the lower end surface 19 of the casing bearing member 17.
  • the force shown in the example in which all the dynamic pressure grooves are formed on the impeller bearing member 9 side is shown.
  • the radial dynamic pressure grooves are formed on the cylindrical inner peripheral surface 18 of the casing bearing member 17 and the lower end surface 19 is formed.
  • a combination of forming a thrust dynamic pressure groove can be employed, and there is a combination of forming a radial dynamic pressure groove on the cylindrical inner peripheral surface 18 and forming a thrust dynamic pressure groove on the upper surface 15! /, An arbitrary combination such as a combination of forming a radial dynamic pressure groove on the outer peripheral surface 13 and forming a thrust dynamic pressure groove on the lower end surface 19 can be adopted.
  • permanent magnets 21 having a plurality of poles are arranged at equal intervals inside the cylindrical surface 7 that forms the outer peripheral surface of the lower cylindrical portion of the impeller body. These permanent magnets 21 are opposed to a plurality of electromagnetic stones 22 arranged on the inner peripheral side of the upper casing 3 in the figure.
  • the center line a of the row of the plurality of permanent magnets is positioned below the center line b of the plurality of electromagnets 22 when the impeller is lowered by its own weight at least when the impeller is not rotating.
  • the entire impeller 5 When the magnetic coupling with the permanent magnet is caused by energization of the electromagnet, the entire impeller 5 can be lifted and rotated by the magnetic force, and at that time, the upper surface 15 of the disk portion 10 and the casing bearing member 17 It is close to the lower end surface 19 and can be supported by a thrust hydrodynamic bearing in the gap.
  • the vanes 6 formed at the lower end of the impeller main body 8 are eccentric from the center of the central vane opening 23 and extend radially, and four are shown in the figure.
  • it In its assembled state, as shown in FIG. 1, it has a conical cross section fixed below the vane opening 23 and guides the blood flow flowing in the center in the pump axis direction in the outer peripheral direction.
  • the vane 6 includes an inclined end surface 25 facing the guide protrusion 24 and a lower end surface 27 facing the casing upper surface 26 of the lower casing 2.
  • An inlet 28 is formed at the center of the inner casing 4, and a connecting pipe 29 is fixed to the inlet 28. Further, in the illustrated embodiment, the outer periphery of the cylindrical portion 30 that extends downward in the inner casing 4 is fitted into the center portion of the upper casing 3, thereby the upper casing 3. 3 constitutes an inner partition for a plurality of electromagnets 22 fixed on the inner peripheral side. Further, an outer peripheral flange portion 31 that extends outward from the cylindrical portion 30 of the inner casing 4 is sandwiched between the lower casing 2 and the upper casing 3, and these are integrally coupled by a bolt 32.
  • the rotating impeller 5 When the electromagnet 22 is energized, the rotating impeller 5 is initially self-rotating due to the eccentricity of the electromagnet 22 and the permanent magnet in the vertical directions a and b and the force of blood flow in the vane 6.
  • a thrust dynamic pressure groove 16 formed on the upper surface 15 of the disk portion 10 of the impeller bearing member 15; The thrust force is supported by a thrust dynamic pressure bearing formed between the lower end surface 19 of the casing bearing member 17.
  • a radial dynamic pressure bearing formed between the radial dynamic pressure groove 14 formed on the outer peripheral surface 13 of the upper cylindrical portion 11 of the impeller bearing member 9 and the cylindrical inner peripheral surface 18 of the casing bearing member 17. It is supported in the radial direction. Therefore, in this artificial heart pump 1, the thrust bearings on both the upper and lower sides are required in the conventional pump, but in the present invention, as described above, only the thrust bearing on one side is stable. Can support rotation. When the force that moves the impeller 5 upward when the impeller 5 rotates is sufficiently obtained by the fluid pressure of the pump, the eccentricity between the electromagnet and the permanent magnet is not necessary.
  • the present invention can be effectively used as an artificial heart pump used inside and outside the body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Cardiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)

Abstract

In order not to recirculate blood serving as working fluid flowing through the gap in an impeller dynamic pressure bearing of an artificial heart pump from the delivery side of an impeller and to support the impeller body (8) only with one thrust dynamic pressure bearing, the impeller (5) is constituted of the impeller body (8) and an impeller bearing member (9), a permanent magnet (21) is arranged along the tubular surface (7), and vanes (6) are provided radially on the lower surface. An inside casing (4) is provided with a casing bearing member (17), a radial dynamic pressure bearing with a dynamic pressure groove is formed in any one of the outer circumferential surface (13) of the upper tubular portion (11) of the impeller bearing member (9) and the tubular inner circumferential surface (18) of the casing bearing member (17), and a thrust dynamic pressure bearing with a dynamic pressure groove is formed in one of the outer circumferential surface (13) of the upper surface (15) of the impeller bearing member (9) and the lower end face (19) of the casing bearing member (17). The working fluid is introduced through these dynamic pressure grooves from an impeller inlet and discharged to the impeller delivery side. During rotation, the impeller (5) is lifted and its thrust force is received only by the thrust dynamic pressure bearing arranged above.

Description

明 細 書  Specification
動圧軸受を備えた人工心臓ポンプ  Artificial heart pump with hydrodynamic bearing
技術分野  Technical field
[0001] この発明は生体の心臓の代わりに、或いは生体の心臓と共に用いる人工心臓用ポ ンプに関し、特にラジアル方向及びスラスト方向共に動圧軸受により支持した人工心 臓ポンプに関する。  The present invention relates to an artificial heart pump used in place of or together with a living heart, and more particularly to an artificial heart pump supported by a dynamic pressure bearing in both the radial direction and the thrust direction.
背景技術  Background art
[0002] 我が国においても、臓器移植法が施行され、脳死からの心臓移植が可能となって いるが、実情はドナー不足のため、なお残る患者を救う道は人工心臓し力ない。人工 心臓の研究は古くから行われ、臨床使用も多数報告されている。人工心臓には、生 体心臓を切除しないで並列に入れる補助人工心臓と、切除して結合する完全置換 人工心臓とがある。従来これらは、ベッドサイドに制御装置を設置した空気駆動型の ものがほとんどであつたが、近年は腹部埋め込みが可能で、ベルトないしリュックにつ けたバッテリを用いて電気駆動する補助人工心臓も開発され、現在の製品ではその サイズの点力も体格の大き 、患者用に限られるものの、在宅治療もできる人工心臓 が用いられるようになって 、る。  [0002] In Japan, an organ transplantation method has been implemented and heart transplantation from brain death is possible. However, since the actual situation is a shortage of donors, the way to save the remaining patients is not capable of artificial heart. Artificial heart has been studied for a long time and many clinical uses have been reported. There are two types of artificial heart: an auxiliary artificial heart that can be inserted in parallel without excising the living heart, and a complete replacement artificial heart that can be excised and combined. In the past, most of these were air-driven types with a control device installed on the bedside, but in recent years, an abdominal implant is possible, and an auxiliary artificial heart that is electrically driven using a battery attached to a belt or backpack has also been developed. In addition, the current products use an artificial heart that can be treated at home, although the size and strength of the product are limited to the patient's size.
[0003] このような人工心臓をポンプ形式の点力 分類すると、大別して拍動流式及び連続 流式の 2方式が存在する。拍動流型は、 1回の拍出毎に定量の血液を送出する方式 であり、臨床応用が進んだ補助人工心臓では年単位の使用実績を有するものもある 。連続流型は回転機構により連続的に血液を送出する方式であり、送出量がポンプ 容積には直接関係せず小型化が容易で、体内埋め込み型の補助人工心臓用に有 望である。無拍動流が生体に与える影響については、いくつかの動物実験によると、 生理的問題なく生存することが報告されている。ただし、生理的には拍動流が好まし V、とされて 、るため、連続流ポンプは生体心臓を残して付ける補助人工心臓として開 発が進められている。連続流型ポンプの中には遠心式、軸流式、回転容積式などの 個別形式がある。本発明は、この連続流型人工心臓に関するものである。  [0003] When such artificial hearts are classified into pump-type point forces, there are roughly two types: a pulsatile flow type and a continuous flow type. The pulsatile flow type is a method in which a fixed amount of blood is sent out for each stroke, and some assistive heart prostheses with advanced clinical applications have a track record of annual use. The continuous flow type is a system in which blood is continuously sent out by a rotating mechanism, and the delivery amount is not directly related to the pump volume and is easy to miniaturize, which is promising for an implantable auxiliary artificial heart. Regarding the effects of non-pulsatile flow on living bodies, some animal experiments have reported that it survives without physiological problems. However, physiologically, pulsatile flow is preferred, and V, and therefore, a continuous flow pump is being developed as an auxiliary artificial heart that leaves a living heart. There are individual types of continuous flow pumps such as centrifugal, axial flow and rotary displacement type. The present invention relates to this continuous flow type artificial heart.
[0004] 具体例として、本発明者によって図 3に示すような人工心臓用遠心ポンプが提案さ れ、特許第 2807786号として特許されている(特開平 10— 33664号 ·特許文献 1)。 この人工心臓ポンプによると、図 3に示すように遠心式インペラ 42を対向する 2面から なるラジアル軸受 46—48及びピボット軸受 45 - 50で支えて!/、る。ケーシング 47の 下部にはインペラ駆動装置 51を設け、その内部で磁石 53が回転することにより、イン ペラ内蔵の磁石群 44を回転駆動している。それによりケーシング上部に形成した流 入口 54から血液が流入し、ケーシングの下部周囲に設けた流出ロカゝらこれを吐出す ることができるようになつている。なお、上記のような磁気カップリングによりインペラを 回転する手段として、可動部分 53を電磁石群に置換したダイレクトドライブ方式の駆 動装置を採用したものも開発されて!、る。 As a specific example, the present inventor has proposed a centrifugal pump for an artificial heart as shown in FIG. Patent No. 2807786 (Japanese Patent Laid-Open No. 10-33664 · Patent Document 1). According to this artificial heart pump, as shown in FIG. 3, the centrifugal impeller 42 is supported by two opposing radial bearings 46-48 and pivot bearings 45-50. An impeller driving device 51 is provided at the lower part of the casing 47, and the magnet 53 rotates inside to drive the magnet group 44 with a built-in impeller. As a result, blood flows in from the inlet 54 formed in the upper part of the casing and can be discharged from the outlet loci provided around the lower part of the casing. As a means for rotating the impeller by the magnetic coupling as described above, a direct drive type driving device in which the movable part 53 is replaced with an electromagnet group has been developed!
[0005] 更に本発明者等は上記のような人工心臓ポンプの軽量化、ピボット軸受部分での 摩擦摺動の問題点を解決するため、特開 2003— 24434号公報 (特許文献 2)に示 されるようなピボット軸受を用いず、全て動圧軸受で作動する人工心臓ポンプを提案 している。即ち、この人工心臓ポンプは図 4に示すように、下側ケーシング 75の中心 下部に設けた下側スラスト受け 76に固定軸 77を突設し、上端部に上側スラスト受け 7 8を固定する。中心部に流入部 63を設けたインペラ部 62の下方にインペラ支持部材 67を設け、その外周に永久磁石 81を等間隔に配置し、この永久磁石 81に対向して 下側ケーシング 75の外周に電磁石 82を配置することにより、ダイレクト駆動のインべ ラ駆動装置 83を構成する。インペラ支持部材 67の中心側には軸受形成部材 68を設 け、その中心部の円筒状内面と外周にラジアル動圧溝 80を形成した固定軸 77間に ラジアル動圧軸受を形成している。また、インペラ支持部材 67の上端面 72に設けた 上側スラスト用動圧発生溝 73と上側スラスト受け 78との間で上側ラジアル動圧軸受 を構成し、インペラ支持部材 67の下端面 68に設けた下側スラスト用動圧発生溝 71と 下側スラスト受け 76との間で下側ラジアル動圧軸受を構成して 、る。このポンプにお いては、インペラ 61の流出部 69の血液を作動流体として各軸受部を循環させるもの である。 [0005] Furthermore, the present inventors have disclosed in Japanese Patent Laid-Open No. 2003-24434 (Patent Document 2) in order to solve the above-described problems of weight reduction of the artificial heart pump and frictional sliding at the pivot bearing portion. We are proposing an artificial heart pump that does not use the pivot bearing as described above, but operates entirely with a hydrodynamic bearing. That is, as shown in FIG. 4, in this artificial heart pump, a fixed shaft 77 projects from a lower thrust receiver 76 provided at the lower center of the lower casing 75, and an upper thrust receiver 78 is fixed to the upper end. An impeller support member 67 is provided below the impeller portion 62 provided with an inflow portion 63 in the center, and permanent magnets 81 are arranged at equal intervals on the outer periphery of the impeller support member 67. By disposing the electromagnet 82, a direct drive in- ber drive device 83 is configured. A bearing forming member 68 is provided on the center side of the impeller support member 67, and a radial dynamic pressure bearing is formed between a cylindrical inner surface and a fixed shaft 77 having a radial dynamic pressure groove 80 formed on the outer periphery thereof. Further, an upper radial dynamic pressure bearing is formed between the upper thrust dynamic pressure generating groove 73 provided on the upper end surface 72 of the impeller support member 67 and the upper thrust receiver 78, and provided on the lower end surface 68 of the impeller support member 67. A lower radial dynamic pressure bearing is configured between the lower thrust dynamic pressure generating groove 71 and the lower thrust receiver 76. In this pump, blood in the outflow portion 69 of the impeller 61 is circulated through each bearing portion using the working fluid.
[0006] このような構成の人工心臓ポンプによって、前記問題点を解決し、更に下記特許文 献 3に記載されているような人工心臓ポンプよりも、安定した回転を行わせることがで きるようになつている。また、下記特許文献 4に記載されているような人工心臓ポンプ のように、インペラの駆動に際してインペラを回転軸線方向に吸引しながら回転させ ることによる、大きなスラスト力の発生もなくすことができる。 [0006] With the artificial heart pump having such a configuration, the above-mentioned problems can be solved, and further, more stable rotation can be performed than the artificial heart pump described in Patent Document 3 below. It has become. Also, an artificial heart pump as described in Patent Document 4 below As described above, when the impeller is driven, a large thrust force can be eliminated by rotating the impeller while sucking it in the rotation axis direction.
特許文献 1:特開平 10— 33664号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-33664
特許文献 2:特開 2003 - 24434号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-24434
特許文献 3 :特表 2001— 515765号公報  Patent Document 3: Japanese Patent Publication No. 2001-515765
特許文献 4:特開平 9— 206372号公報  Patent Document 4: Japanese Patent Laid-Open No. 9-206372
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明者が提案した上記特許文献 2に開示した人工心臓ポンプにおいては、ピボ ット軸受を用いることなく安定した作動を行うことが出来るものであるが、 上側スラスト 軸受 73 - 78および下側スラスト軸受 71— 76の両隙間にお 、て、厳密な位置調節を 行わせるため隙間を狭く設定せざるを得ず、血液凝固 '血球破壊ともに良くない影響 を及ぼす恐れがある。 [0007] In the artificial heart pump disclosed in Patent Document 2 proposed by the present inventor, stable operation can be performed without using a pivot bearing, but the upper thrust bearing 73-78 and In both gaps of the lower thrust bearings 71-76, it is necessary to set the gap narrowly in order to perform strict position adjustment, which may adversely affect blood coagulation and blood cell destruction.
[0008] そのため上記人工心臓用ポンプにおいては、特に精密なスラスト圧力調整を必要 とする問題がある。また、これらの動圧軸受部分には動作流体として血液を循環させ ているものである力 動圧軸受の微少間隙にインペラから吐出した血液を再循環させ て用いているため血液の凝固防止の点から問題があり、特に再循環してインペラから 吐出した血液が再度動圧軸受部分に循環する可能性もあり、更に血液凝固の点で 不利である。  [0008] Therefore, the artificial heart pump has a problem that it requires particularly precise thrust pressure adjustment. In addition, blood is circulated as a working fluid in these dynamic pressure bearings, and the blood discharged from the impeller is recirculated through the minute gap of the force dynamic pressure bearing, which prevents the blood from coagulating. In particular, there is a possibility that blood recirculated and discharged from the impeller may be circulated again to the hydrodynamic bearing portion, which is further disadvantageous in terms of blood coagulation.
[0009] し力も、インペラから吐出した血液の動圧軸受への再循環に際して、下側スラスト動 圧軸受の間隙、ラジアル動圧軸受の間隙、上側スラスト動圧軸受の間隙を順に循環 させているため、多数の微少間隙を通ることとなり、血液に与える影響が大きぐ血液 の凝固防止に不利となるため、できる限り動圧軸受を通る回数を減らすことが望まれ る。  [0009] In the case of recirculation of blood discharged from the impeller to the hydrodynamic bearing, the gap of the lower thrust hydrodynamic bearing, the radial hydrodynamic bearing, and the upper thrust hydrodynamic bearing are sequentially circulated. For this reason, it passes through a large number of minute gaps, which has a large effect on blood and is disadvantageous in preventing blood coagulation. Therefore, it is desirable to reduce the number of times passing through the hydrodynamic bearing as much as possible.
[0010] 本発明は上記のような知見に基づいてなされたもので、インペラのスラスト方向及び ラジアル方向のいずれも動圧軸受で支持するに際して、動圧軸受の間隙を流れる動 作流体としての血液をインペラの吐出側力も再循環させることなぐまた、特にスラスト 軸受を上下両方に設けることなぐ片方のみで支持し安定して作動することができる ようにした、動圧軸受を備えた人工心臓ポンプを提供することを主たる目的としている 課題を解決するための手段 [0010] The present invention has been made based on the above knowledge, and blood as an operating fluid that flows through the gap of the dynamic pressure bearing when the thrust direction and radial direction of the impeller are supported by the dynamic pressure bearing. It is possible to operate with stable operation without recirculating the discharge side force of the impeller. Means for Solving the Problems whose main purpose is to provide an artificial heart pump with a hydrodynamic bearing
[0011] 本発明に係る動圧軸受を備えた人工心臓ポンプは、上記課題を解決するため、上 方中心部に流入口を形成し、下方円筒部外周面に沿って複数の極をもつ永久磁石 を配置し、下面側に前記流入口に連通する開口を中心として放射状に延びる複数の ベーンを備え、上方に突出する上方円筒部を備えたインペラを、前記インペラの下方 円筒部外周面に対向する円筒状内周面に複数の電磁石を配置したケーシング内に 回転且つ上下動自在に設け、前記インペラの上方円筒部外周面とこれに対向するケ 一シング内周面のいずれかに動圧溝を備えたラジアル動圧軸受を形成するとともに 、前記インペラの上面とこれに対向するケーシング下端面の 、ずれかに動圧溝を備 えたスラスト動圧軸受を形成したことを特徴とする。  [0011] In order to solve the above problems, an artificial heart pump including a hydrodynamic bearing according to the present invention has a permanent inlet having an inflow port in an upper center portion and a plurality of poles along an outer peripheral surface of a lower cylindrical portion. A magnet is disposed, and an impeller having a plurality of vanes extending radially around an opening communicating with the inlet on the lower surface side and an upper cylindrical portion protruding upward is opposed to an outer peripheral surface of a lower cylindrical portion of the impeller A dynamic pressure groove is provided in a casing in which a plurality of electromagnets are arranged on a cylindrical inner peripheral surface that is rotatably and vertically movable, and is provided on either the upper cylindrical outer peripheral surface of the impeller or the casing inner peripheral surface facing the upper cylindrical portion. A thrust dynamic pressure bearing provided with a dynamic pressure groove is formed between the upper surface of the impeller and the lower end surface of the casing facing the radial dynamic pressure bearing.
[0012] 本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラ スト動圧軸受において、前記インペラの流入口の流体を、前記各動圧溝の作用によ り各動圧溝に導き、ベーンの流体吐出側に流出させたことを特徴とする。  [0012] An artificial heart pump provided with another dynamic pressure bearing according to the present invention is the thrust dynamic pressure bearing provided with the dynamic pressure groove, wherein the fluid at the inlet of the impeller is used as an action of each dynamic pressure groove. In this way, it is guided to each dynamic pressure groove and flows out to the fluid discharge side of the vane.
[0013] 本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラ スト動圧軸受において、 前記べーン内の永久磁石の配置位置を、前記ケーシング 内の電磁石の配置位置より、少なくともインペラの非回転時には下方に配置したこと を特徴とする請求項 1記載の動圧軸受を備えた人工心臓ポンプ。  [0013] An artificial heart pump provided with another dynamic pressure bearing according to the present invention is the thrust dynamic pressure bearing provided with the dynamic pressure groove, wherein the arrangement position of the permanent magnet in the vane is set in the casing. 2. The artificial heart pump provided with a hydrodynamic bearing according to claim 1, wherein the artificial heart pump is arranged below at least when the impeller is not rotated from the arrangement position of the electromagnet.
[0014] 本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラ スト動圧軸受において、前記インペラは、内部に前記永久磁石を備え下面側に前記 ベーンを備えるインペラ本体と、前記上方円筒部と前記インペラ本体の上部に位置 する円板部とからなるインペラ軸受部材とから構成し、前記上方円筒部外周面とこれ に対向するケーシング内周面のいずれかに動圧溝を備えたラジアル動圧軸受を形 成し、前記円板部の上面とこれに対向するケーシング下端面のいずれかに動圧溝を 備えたスラスト動圧軸受を形成したことを特徴とする。  [0014] An artificial heart pump including another dynamic pressure bearing according to the present invention is a thrust dynamic pressure bearing including the dynamic pressure groove, wherein the impeller includes the permanent magnet inside and the vane on a lower surface side. And an impeller bearing member comprising an upper cylindrical portion and a disc portion located on the upper portion of the impeller main body, and any of the upper cylindrical portion outer peripheral surface and the casing inner peripheral surface facing the upper cylindrical portion A radial dynamic pressure bearing having a crab dynamic pressure groove is formed, and a thrust dynamic pressure bearing having a dynamic pressure groove is formed on either the upper surface of the disk portion or the lower end surface of the casing facing the disk portion. Features.
[0015] 本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラ スト動圧軸受において、前記ケーシングは、前記インペラの上方円筒部外周面に対 向する内周面と、前記インペラの上面に対向する下端面とを備えたケーシング軸受 部材を、ケーシング本体と別体に形成し、両者を結合してなることを特徴とする。 [0015] An artificial heart pump provided with another dynamic pressure bearing according to the present invention is the thrust dynamic pressure bearing provided with the dynamic pressure groove, wherein the casing is opposed to an outer peripheral surface of an upper cylindrical portion of the impeller. A casing bearing member having a facing inner peripheral surface and a lower end surface facing the upper surface of the impeller is formed separately from the casing body, and both are combined.
[0016] 本発明に係る他の動圧軸受を備えた人工心臓ポンプは、前記動圧溝を備えたスラ スト動圧軸受において、前記ケーシングにおいて前記べ一ンの端面が対向する底面 には、前記インペラの流入口の直下に略円錐面をなす案内突起を固定して、該案内 突起により流体を中心側力 外周方向に案内し、前記べーンをセミオープンベーン の態様で作動することを特徴とする。  [0016] An artificial heart pump including another dynamic pressure bearing according to the present invention is a thrust dynamic pressure bearing including the dynamic pressure groove, wherein a bottom surface of the casing facing an end surface of the vane is A guide projection having a substantially conical surface is fixed immediately below the inlet of the impeller, and the fluid is guided by the guide projection in the direction of the center side force and the vane is operated in a semi-open vane manner. Features.
発明の効果  The invention's effect
[0017] 本発明は上記のように構成したので、インペラのスラスト方向及びラジアル方向のい ずれも動圧軸受で支持するに際して、動圧軸受の間隙を流れる、インペラの流入側 から一部をバイパスして動圧軸受の間隙を通し、インペラの吐出側に導き、動作流体 としての血液をインペラの吐出側力も再循環させることがなくなる。また、特にスラスト 軸受を上下両方に設けることなぐ片方のみで支持し安定して作動することができ、 軸受の構成を簡素化することができ、その分安価なものとすることができると共に、動 圧軸受の間隙を流れることによる血液への悪影響を減少させることができる。  [0017] Since the present invention is configured as described above, when supporting both the thrust direction and radial direction of the impeller by the dynamic pressure bearing, a part of the impeller from the inflow side of the impeller that bypasses the gap of the dynamic pressure bearing is bypassed. As a result, the fluid as a working fluid is not recirculated even by the discharge side force of the impeller through the gap of the hydrodynamic bearing and guided to the discharge side of the impeller. In particular, the thrust bearing can be supported and stably operated by only one side without providing both the upper and lower sides, the structure of the bearing can be simplified, and the cost can be reduced accordingly. The adverse effect on blood due to flowing through the gap of the pressure bearing can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の実施例の断面図である。 FIG. 1 is a cross-sectional view of an embodiment of the present invention.
[図 2]同実施例のインペラの斜視図及び平面図及び底面図である。  FIG. 2 is a perspective view, a plan view, and a bottom view of the impeller of the same embodiment.
[図 3]本発明者等が先に提案した人工心臓用遠心ポンプの断面図である。  FIG. 3 is a cross-sectional view of an artificial heart centrifugal pump previously proposed by the present inventors.
[図 4]本発明者等により前記ポンプを改良した人工心臓用遠心ポンプの断面図であ る。  FIG. 4 is a cross-sectional view of an artificial heart centrifugal pump in which the present inventors have improved the pump.
符号の説明  Explanation of symbols
[0019] 1 人工心臓ポンプ [0019] 1 Artificial heart pump
2 下側ケーシング  2 Lower casing
3 上側ケーシング  3 Upper casing
4 内側ケーシング 円筒面 4 Inner casing Cylindrical surface
インペラ本体 インペラ軸受部材 円板部 Impeller body Impeller bearing member Disk
上方円筒部 下方円筒部 外周面  Upper cylindrical part Lower cylindrical part Outer peripheral surface
ラジアル動圧溝 上面  Radial dynamic pressure groove Upper surface
スラスト動圧溝 ケーシング軸受部材 円筒状内周面 下端面  Thrust dynamic pressure groove Casing bearing member Cylindrical inner peripheral surface Lower end surface
中心開口 永久磁石 電磁石  Center opening Permanent magnet Electromagnet
ベーン開口 案内突起 傾斜端面 ケーシング上面 下端面  Vane opening Guide protrusion Inclined end face Casing upper face Lower end face
流入口  Inflow
接続管  Connection pipe
円筒部  Cylindrical part
外周フランジ部 ボルト  Outer flange part Bolt
吐出通路 吐出部材 発明を実施するための最良の形態 Discharge passage Discharge member BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明は、インペラの動圧軸受の間隙を流れる作動流体としての血液をインペラの 吐出側から再循環させることなぐまたスラスト軸受を 1つだけにするという課題を、上 方中心部に流入口を形成し、下方円筒部外周面に沿って複数の極をもつ永久磁石 を配置し、下面側に前記流入口に連通する開口を中心として放射状に延びる複数の ベーンを備え、上方に突出する上方円筒部を備えたインペラを、前記インペラの下方 円筒部外周面に対向する円筒状内周面に複数の電磁石を配置したケーシング内に 回転且つ上下動自在に設け、前記インペラの上方円筒部外周面とこれに対向するケ 一シング内周面のいずれかに動圧溝を備えたラジアル動圧軸受を形成するとともに 、前記インペラの上面とこれに対向するケーシング下端面の 、ずれかに動圧溝を備 えたスラスト動圧軸受を形成することにより解決した。  [0020] The present invention has a problem that the blood as the working fluid flowing through the gap between the impeller dynamic pressure bearings is not recirculated from the discharge side of the impeller, and there is only one thrust bearing. A permanent magnet having a plurality of poles is arranged along the outer peripheral surface of the lower cylindrical portion, and a plurality of vanes extending radially around the opening communicating with the inlet are provided on the lower surface side, and project upward. An impeller having an upper cylindrical portion is provided in a casing in which a plurality of electromagnets are arranged on a cylindrical inner peripheral surface facing a lower cylindrical portion outer peripheral surface of the impeller so as to be rotatable and vertically movable, and the upper cylindrical portion of the impeller A radial dynamic pressure bearing having a dynamic pressure groove is formed on either the outer peripheral surface or the casing inner peripheral surface facing the outer peripheral surface, and the upper surface of the impeller and the lower end surface of the casing facing the same are shifted. It was solved by forming a thrust dynamic pressure bearing example Bei dynamic pressure generating grooves.
実施例  Example
[0021] 本発明の実施例を図面に沿って説明する。図 1は本発明の実施例の断面図であり 、図示する人工心臓ポンプ 1においては主要構成部材として、下側ケーシング 2と、 上側ケーシング 3と、上側ケーシング 3の中心部に嵌合する内側ケーシング 4と、これ らのケ一シング内部で回転するインペラ 5とを備えている。  Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an embodiment of the present invention. In the illustrated artificial heart pump 1, as main components, a lower casing 2, an upper casing 3, and an inner casing that fits in the center of the upper casing 3. 4 and an impeller 5 rotating inside these casings.
[0022] インペラ 5は図 2にも示しているように、下端面側に図中 4枚のベーン 6を突出して 設け、外周が円筒面 7をなしている榭脂製のインペラ本体 8に対して、その上方にセ ラミックス等力もなるインペラ軸受部材 9を圧入、或いは接着等により固定している。ィ ンペラ軸受部材 9はインペラ本体 8の円筒面 7と一致する外径を備えた円板部 10と、 その上方に突出した上方円筒部 11と、その下方に突出した下方円筒部 12とから成り 、下方円筒部 12をインペラ本体 8の上部に嵌合し固定して 、る。  As shown in FIG. 2, the impeller 5 is provided with four vanes 6 protruding from the lower end surface side thereof, and the outer periphery of the impeller main body 8 made of resin having a cylindrical surface 7. An impeller bearing member 9 that also has a ceramic equal force is fixed above it by press-fitting or bonding. The impeller bearing member 9 is composed of a disc portion 10 having an outer diameter that matches the cylindrical surface 7 of the impeller body 8, an upper cylindrical portion 11 protruding upward, and a lower cylindrical portion 12 protruding downward. The lower cylindrical part 12 is fitted and fixed to the upper part of the impeller body 8.
[0023] 図 1及び図 2に示す実施例においては、このインペラ軸受部材 9の上方円筒部 11 における外周面 13にラジアル動圧溝 14を形成し、円板部 10の上面 15にスラスト動 圧溝 16を形成している。一方、内側ケーシング 4の中心下端部にはセラミックス等か らなるケーシング軸受部材 17を嵌合して固定しており、このケーシング軸受部材 17 はインペラ軸受部材 9の上方円筒部 11と間隙をもって嵌合する円筒状内周面 18と、 下端面 19、及びその中心部には中心開口 20を備えて 、る。 [0024] 上記のようなインペラ軸受部材 9とケーシング軸受部材 17によって、インペラ軸受 部材 9の前記ラジアル動圧溝 14はケーシング軸受部材 17の円筒状内周面 18と間 隙介して対向し、インペラ軸受部材 9のスラスト動圧溝 16はケーシング軸受部材 17 の下端面 19と対向している。前記実施例においては動圧溝を全てインペラ軸受部材 9側に形成した例を示した力 逆にケーシング軸受部材 17における円筒状内周面 1 8にラジアル動圧溝を形成し、下端面 19にスラスト動圧溝を形成する組み合わせを 採用することができ、更には、前記円筒状内周面 18にラジアル動圧溝形成し、前記 上面 15にスラスト動圧溝を形成する組み合わせ、ある!/、は前記外周面 13にラジアル 動圧溝を形成し、前記下端面 19にスラスト動圧溝を形成する組み合わせ等、任意の 組み合わせを採用することができる。 In the embodiment shown in FIGS. 1 and 2, a radial dynamic pressure groove 14 is formed on the outer peripheral surface 13 of the upper cylindrical portion 11 of the impeller bearing member 9 and the thrust dynamic pressure is applied to the upper surface 15 of the disc portion 10. A groove 16 is formed. On the other hand, a casing bearing member 17 made of ceramics or the like is fitted and fixed to the lower end of the center of the inner casing 4, and this casing bearing member 17 is fitted with the upper cylindrical portion 11 of the impeller bearing member 9 with a gap. A cylindrical inner peripheral surface 18, a lower end surface 19, and a central opening 20 are provided at the center thereof. [0024] By the impeller bearing member 9 and the casing bearing member 17 as described above, the radial dynamic pressure groove 14 of the impeller bearing member 9 faces the cylindrical inner peripheral surface 18 of the casing bearing member 17 with a gap therebetween, and the impeller The thrust dynamic pressure groove 16 of the bearing member 9 faces the lower end surface 19 of the casing bearing member 17. In the above embodiment, the force shown in the example in which all the dynamic pressure grooves are formed on the impeller bearing member 9 side is shown. Conversely, the radial dynamic pressure grooves are formed on the cylindrical inner peripheral surface 18 of the casing bearing member 17 and the lower end surface 19 is formed. A combination of forming a thrust dynamic pressure groove can be employed, and there is a combination of forming a radial dynamic pressure groove on the cylindrical inner peripheral surface 18 and forming a thrust dynamic pressure groove on the upper surface 15! /, An arbitrary combination such as a combination of forming a radial dynamic pressure groove on the outer peripheral surface 13 and forming a thrust dynamic pressure groove on the lower end surface 19 can be adopted.
[0025] インペラ本体 8内にはインペラ本体の下方円筒部の外周面を形成する円筒面 7の 内側であって、円筒面 7に沿って複数の極をもつ永久磁石 21を等間隔に配置してお り、これらの永久磁石 21は図中上方ケーシング 3の内周側に配置した複数個の電磁 石 22と対向している。特に図示実施例においては、複数の永久磁石の列の中心線 a を、少なくともインペラの非回転時においてインペラが自重で降下しているとき、前記 複数の電磁石 22の中心線 bよりも下方に位置するように配置し、電磁石の通電による 永久磁石との磁気結合時に、その磁力によってインペラ 5全体を上方に持ち上げて 回転できるようにし、その際に円板部 10の上面 15とケーシング軸受部材 17の下端 面 19とが近接し、その間隙でのスラスト動圧軸受によって回転支持可能としている。  In the impeller body 8, permanent magnets 21 having a plurality of poles are arranged at equal intervals inside the cylindrical surface 7 that forms the outer peripheral surface of the lower cylindrical portion of the impeller body. These permanent magnets 21 are opposed to a plurality of electromagnetic stones 22 arranged on the inner peripheral side of the upper casing 3 in the figure. In particular, in the illustrated embodiment, the center line a of the row of the plurality of permanent magnets is positioned below the center line b of the plurality of electromagnets 22 when the impeller is lowered by its own weight at least when the impeller is not rotating. When the magnetic coupling with the permanent magnet is caused by energization of the electromagnet, the entire impeller 5 can be lifted and rotated by the magnetic force, and at that time, the upper surface 15 of the disk portion 10 and the casing bearing member 17 It is close to the lower end surface 19 and can be supported by a thrust hydrodynamic bearing in the gap.
[0026] インペラ本体 8の下端に形成したベーン 6は、図示実施例ではその中心のベーン 開口 23の中心と偏心して放射状に延びており、図中 4枚示している。その組み立て 状態においては図 1に示されるように、ベーン開口 23の下方に固定された断面円錐 形をなして、中心部をポンプ軸線方向に流入する血液流を、外周方向に案内する案 内突起 24と対向しており、ベーン 6はこの案内突起 24と対向する傾斜端面 25と、下 側ケーシング 2のケーシング上面 26と対向する下端面 27とを備えている。  [0026] In the illustrated embodiment, the vanes 6 formed at the lower end of the impeller main body 8 are eccentric from the center of the central vane opening 23 and extend radially, and four are shown in the figure. In its assembled state, as shown in FIG. 1, it has a conical cross section fixed below the vane opening 23 and guides the blood flow flowing in the center in the pump axis direction in the outer peripheral direction. The vane 6 includes an inclined end surface 25 facing the guide protrusion 24 and a lower end surface 27 facing the casing upper surface 26 of the lower casing 2.
[0027] 内側ケーシング 4の中心には流入口 28を形成し、この流入口 28には接続管 29を 固定している。また、図示実施例においては内側ケーシング 4において下方に延びる 円筒部 30の外周が上側ケーシング 3の中心部に嵌合し、それにより上側ケーシング 3の内周側に固定した複数の電磁石 22に対する内側隔壁を構成している。更に、内 側ケーシング 4の円筒部 30から外方に延びる外周フランジ部 31は下側ケーシング 2 と上側ケーシング 3の間に挟まれ、ボルト 32によってこれらを一体的に結合している。 An inlet 28 is formed at the center of the inner casing 4, and a connecting pipe 29 is fixed to the inlet 28. Further, in the illustrated embodiment, the outer periphery of the cylindrical portion 30 that extends downward in the inner casing 4 is fitted into the center portion of the upper casing 3, thereby the upper casing 3. 3 constitutes an inner partition for a plurality of electromagnets 22 fixed on the inner peripheral side. Further, an outer peripheral flange portion 31 that extends outward from the cylindrical portion 30 of the inner casing 4 is sandwiched between the lower casing 2 and the upper casing 3, and these are integrally coupled by a bolt 32.
[0028] 上記のような構造力もなり、図 1のように組み立てられた人工心臓用ポンプ 1の作動 に際しては、電磁石 22に通電すると通常のモータと同様に電磁石 22の電磁力の所 定の変化によって永久磁石 21が順に吸引及び反発して回転し、インペラ 5が回転す る。それにより、接続管 29から流入した体内の血液は、内側ケーシング 4の流入口 28 力もケーシング軸受部材 17の中心開口 20、インペラ軸受部材 9の貫通口 17、ベー ン開口 23をそれぞれ通り、案内突部 24によって外周方向に案内され、セミオープン ベーンの態様で、回転するべーン 6によって外周方向に加圧流動させられ、下側ケ 一シング 2の吐出通路 33から吐出部材 34の吐出口 35を経て体内に循環させること ができる。 [0028] When the artificial heart pump 1 assembled as shown in Fig. 1 is operated as described above, when the electromagnet 22 is energized, the predetermined change in the electromagnetic force of the electromagnet 22 is the same as that of a normal motor. As a result, the permanent magnet 21 is sequentially attracted and repelled to rotate, and the impeller 5 rotates. As a result, blood in the body flowing in from the connection pipe 29 passes through the inlet 28 of the inner casing 4 through the central opening 20 of the casing bearing member 17, the through-hole 17 of the impeller bearing member 9, and the vane opening 23, respectively. It is guided in the outer circumferential direction by the section 24, and is pressurized and flowed in the outer circumferential direction by the rotating vane 6 in a semi-open vane manner, and is discharged from the discharge passage 33 of the lower casing 2 to the discharge port 35 of the discharge member 34. Can be circulated through the body.
[0029] 上記電磁石 22への通電時に、前記のような電磁石 22と永久磁石の上下方向 a、 b の偏心により、またべーン 6内の血液流の力によって、回転するインペラ 5は最初自 重で下方に降下していた状態力 上方にスラスト力を受け移動し、図示実施例にお いては、インペラ軸受部材 15の円板部 10における上面 15に形成されるスラスト動圧 溝 16と、ケーシング軸受部材 17の下端面 19との間に形成されるスラスト動圧軸受で 上記スラスト力が支持される。  [0029] When the electromagnet 22 is energized, the rotating impeller 5 is initially self-rotating due to the eccentricity of the electromagnet 22 and the permanent magnet in the vertical directions a and b and the force of blood flow in the vane 6. In the illustrated embodiment, a thrust dynamic pressure groove 16 formed on the upper surface 15 of the disk portion 10 of the impeller bearing member 15; The thrust force is supported by a thrust dynamic pressure bearing formed between the lower end surface 19 of the casing bearing member 17.
[0030] また、インペラ軸受部材 9の上方円筒部 11の外周面 13に形成したラジアル動圧溝 14と、ケーシング軸受部材 17の円筒状内周面 18との間に形成されるラジアル動圧 軸受でラジアル方向に支持される。したがって、この人工心臓ポンプ 1においては、 前記従来のものにおいて上下両側にスラスト軸受が必要であつたのに対して、本発 明にお 、ては上記のように片側のスラスト軸受のみで安定して回転を支持することが できる。なお、インペラ 5の回転時にインペラ 5を上方に移動させる力は、ポンプの流 体加圧力によって充分得られるときには、前記のような電磁石と永久磁石の偏心は 不要となる。  In addition, a radial dynamic pressure bearing formed between the radial dynamic pressure groove 14 formed on the outer peripheral surface 13 of the upper cylindrical portion 11 of the impeller bearing member 9 and the cylindrical inner peripheral surface 18 of the casing bearing member 17. It is supported in the radial direction. Therefore, in this artificial heart pump 1, the thrust bearings on both the upper and lower sides are required in the conventional pump, but in the present invention, as described above, only the thrust bearing on one side is stable. Can support rotation. When the force that moves the impeller 5 upward when the impeller 5 rotates is sufficiently obtained by the fluid pressure of the pump, the eccentricity between the electromagnet and the permanent magnet is not necessary.
[0031] このとき上記のような動圧溝を充分深く形成することによって、ケーシング軸受部材 17の中心開口 20から流入する血液の一部力 インペラ軸受部材 9の上端部とケーシ ング軸受部材 17との間隙 35を通り、ラジアル軸受部の間隙にお 、てラジアル動圧溝 14によりポンプ軸線方向に加圧され、次いでスラスト軸受部の間隙においてスラスト 動圧溝 16により放射方向に加圧され、円板部 10の外周面及びインペラ本体 8の外 周面 7と、内側ケーシング 4の円筒部 30の内周面との間隙を^!に通り、ベーン 6から の吐出流に混合して吐出する。それにより、各動圧軸受を通る血液は再循環すること がなくなり、血液凝固の発生を防止することができる。 At this time, by forming the above-described dynamic pressure groove sufficiently deep, a partial force of blood flowing from the central opening 20 of the casing bearing member 17 and the upper end of the impeller bearing member 9 and the case Passing through the gap 35 with the radial bearing member 17, passing through the gap in the radial bearing section, pressurized in the pump axial direction by the radial dynamic pressure groove 14, and then in the radial direction by the thrust dynamic pressure groove 16 in the gap in the thrust bearing section. Pressurized, passes through the gap between the outer peripheral surface of the disk part 10 and the outer peripheral surface 7 of the impeller body 8 and the inner peripheral surface of the cylindrical part 30 of the inner casing 4, and mixes with the discharge flow from the vane 6. And then discharge. As a result, the blood passing through each dynamic pressure bearing is not recirculated, and the occurrence of blood coagulation can be prevented.
産業上の利用可能性 Industrial applicability
本発明は、体内及び体外で用いる人工心臓用ポンプとして有効に利用することが できる。  The present invention can be effectively used as an artificial heart pump used inside and outside the body.

Claims

請求の範囲 The scope of the claims
[1] 上方中心部に流入口を形成し、下方円筒部外周面に沿って複数の極をもつ永久 磁石を配置し、下面側に前記流入口に連通する開口を中心として放射状に延びる 複数のベーンを備え、上方に突出する上方円筒部を備えたインペラを、前記インペラ の下方円筒部外周面に対向する円筒状内周面に複数の電磁石を配置したケーシン グ内に回転且つ上下動自在に設け、  [1] An inlet is formed in the upper center portion, a permanent magnet having a plurality of poles is disposed along the outer peripheral surface of the lower cylindrical portion, and a plurality of radially extending portions centering on an opening communicating with the inlet on the lower surface side An impeller provided with a vane and having an upper cylindrical portion protruding upward can be rotated and moved up and down in a casing in which a plurality of electromagnets are arranged on a cylindrical inner peripheral surface facing the outer peripheral surface of the lower cylindrical portion of the impeller. Provided,
前記インペラの上方円筒部外周面とこれに対向するケーシング内周面のいずれか に動圧溝を備えたラジアル動圧軸受を形成するとともに、前記インペラの上面とこれ に対向するケーシング下端面のいずれかに動圧溝を備えたスラスト動圧軸受を形成 したことを特徴とする動圧軸受を備えた人工心臓ポンプ。  A radial dynamic pressure bearing having a dynamic pressure groove is formed on either the outer peripheral surface of the upper cylindrical portion of the impeller and the inner peripheral surface of the casing facing the impeller, and any of the upper surface of the impeller and the lower end surface of the casing facing the impeller An artificial heart pump provided with a dynamic pressure bearing, characterized in that a thrust dynamic pressure bearing provided with a crab dynamic pressure groove is formed.
[2] 前記インペラの流入口の流体を、前記各動圧溝の作用により各動圧溝に導き、ベ ーンの流体吐出側に流出させたことを特徴とする請求項 1記載の動圧軸受を備えた 人工心臓ポンプ。  [2] The dynamic pressure according to claim 1, wherein the fluid at the inlet of the impeller is guided to each dynamic pressure groove by the action of each dynamic pressure groove and flows out to the fluid discharge side of the vane. Artificial heart pump with bearings.
[3] 前記べーン内の永久磁石の配置位置を、前記ケーシング内の電磁石の配置位置 より、少なくともインペラの非回転時には下方に配置したことを特徴とする請求項 1記 載の動圧軸受を備えた人工心臓ポンプ。  [3] The hydrodynamic bearing according to claim 1, wherein the arrangement position of the permanent magnet in the vane is arranged below the arrangement position of the electromagnet in the casing at least when the impeller is not rotating. Artificial heart pump equipped with.
[4] 前記インペラは、内部に前記永久磁石を備え下面側に前記べーンを備えるインべ ラ本体と、前記上方円筒部と前記インペラ本体の上部に位置する円板部とからなるィ ンペラ軸受部材とから構成し、  [4] The impeller includes an impeller body including the permanent magnet therein and the vane on a lower surface side, and an impeller including the upper cylindrical portion and a disk portion positioned above the impeller body. A bearing member,
前記上方円筒部外周面とこれに対向するケーシング内周面のいずれかに動圧溝 を備えたラジアル動圧軸受を形成し、前記円板部の上面とこれに対向するケーシン グ下端面のいずれかに動圧溝を備えたスラスト動圧軸受を形成したことを特徴とする 請求項 1記載の動圧軸受を備えた人工心臓ポンプ。  A radial dynamic pressure bearing having a dynamic pressure groove is formed on either the outer peripheral surface of the upper cylindrical portion or the inner peripheral surface of the casing facing the upper cylindrical portion, and any of the upper surface of the disc portion and the lower end surface of the casing facing the disk portion. The artificial heart pump provided with the dynamic pressure bearing according to claim 1, wherein a thrust dynamic pressure bearing including a crab dynamic pressure groove is formed.
[5] 前記ケーシングは、前記インペラの上方円筒部外周面に対向する内周面と、前記 インペラの上面に対向する下端面とを備えたケーシング軸受部材を、ケーシング本 体と別体に形成し、両者を結合してなることを特徴とする請求項 1記載の動圧軸受を 備えた人工心臓ポンプ。 [5] The casing includes a casing bearing member having an inner peripheral surface facing the outer peripheral surface of the upper cylindrical portion of the impeller and a lower end surface facing the upper surface of the impeller separately from the casing main body. The artificial heart pump provided with the hydrodynamic bearing according to claim 1, wherein both are combined.
[6] 前記ケーシングにおいて前記べ一ンの端面が対向する底面には、前記インペラの 流入口の直下に略円錐面をなす案内突起を固定して、該案内突起により流体を中 心側から外周方向に案内し、前記べーンをセミオープンベーンの態様で作動するこ とを特徴とする請求項 1記載の動圧軸受を備えた人工心臓ポンプ。 [6] On the bottom surface of the casing facing the end surface of the vane, A guide projection having a substantially conical surface is fixed immediately below the inflow port, fluid is guided from the center side to the outer periphery by the guide projection, and the vane operates in a semi-open vane manner. An artificial heart pump comprising the hydrodynamic bearing according to claim 1.
PCT/JP2006/312541 2005-06-23 2006-06-22 Artificial heart pump with dynamic pressure bearing WO2006137496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-183582 2005-06-23
JP2005183582A JP4517076B2 (en) 2005-06-23 2005-06-23 Artificial heart pump with hydrodynamic bearing

Publications (1)

Publication Number Publication Date
WO2006137496A1 true WO2006137496A1 (en) 2006-12-28

Family

ID=37570523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312541 WO2006137496A1 (en) 2005-06-23 2006-06-22 Artificial heart pump with dynamic pressure bearing

Country Status (2)

Country Link
JP (1) JP4517076B2 (en)
WO (1) WO2006137496A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107807A2 (en) 2012-01-20 2013-07-25 Yasa Motors Poland Sp. Z O.O. Wet rotor pump
DE102012200806A1 (en) * 2012-01-20 2013-07-25 Yasa Motors Poland Sp. z.o.o. Wet runner pump with power electronics
DE102012200816A1 (en) * 2012-01-20 2013-07-25 Yasa Motors Poland Sp. z.o.o. Wet runner pump with permanent magnet
DE102012200807A1 (en) * 2012-01-20 2013-07-25 Yasa Motors Poland Sp. z.o.o. Wet runner pump with slide bearing
JP2013536021A (en) * 2010-08-20 2013-09-19 ソラテック コーポレーション Implantable blood pump
CN105324139A (en) * 2013-05-23 2016-02-10 纯净之心有限公司 Impeller of a centrifugal pump apparatus
EP3127562A1 (en) * 2015-08-04 2017-02-08 Abiomed Europe GmbH Self-flushing bearing
CN110075377A (en) * 2019-06-26 2019-08-02 上海微创医疗器械(集团)有限公司 Magnetic liquid suspension formula blood pump
US10973967B2 (en) 2018-01-10 2021-04-13 Tc1 Llc Bearingless implantable blood pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631236B2 (en) * 2011-02-21 2014-11-26 三菱電機株式会社 Pump and heat pump device
JP4875783B1 (en) 2011-09-15 2012-02-15 三菱重工業株式会社 Magnetic coupling pump and pump unit equipped with the same
EP2719403B1 (en) * 2012-10-12 2016-09-28 Abiomed Europe GmbH Centrifugal blood pump
JP2016044674A (en) 2014-08-22 2016-04-04 日本電産株式会社 Dynamic pressure bearing pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491396A (en) * 1990-07-31 1992-03-24 Ntn Corp Turbo type pump
US6227817B1 (en) * 1999-09-03 2001-05-08 Magnetic Moments, Llc Magnetically-suspended centrifugal blood pump
JP2002315824A (en) * 2001-04-23 2002-10-29 National Institute Of Advanced Industrial & Technology Rotary pump for artificial heart

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176999B8 (en) * 1999-04-23 2005-09-28 Ventrassist Pty Ltd A rotary blood pump and control system therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491396A (en) * 1990-07-31 1992-03-24 Ntn Corp Turbo type pump
US6227817B1 (en) * 1999-09-03 2001-05-08 Magnetic Moments, Llc Magnetically-suspended centrifugal blood pump
JP2002315824A (en) * 2001-04-23 2002-10-29 National Institute Of Advanced Industrial & Technology Rotary pump for artificial heart

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536021A (en) * 2010-08-20 2013-09-19 ソラテック コーポレーション Implantable blood pump
US10500321B2 (en) 2010-08-20 2019-12-10 Tc1 Llc Implantable blood pump
US9675741B2 (en) 2010-08-20 2017-06-13 Tc1 Llc Implantable blood pump
DE102012200816A8 (en) * 2012-01-20 2013-09-26 Yasa Motors Poland Sp. z.o.o. Wet runner pump with permanent magnet
DE102012200816A1 (en) * 2012-01-20 2013-07-25 Yasa Motors Poland Sp. z.o.o. Wet runner pump with permanent magnet
DE102012200807A1 (en) * 2012-01-20 2013-07-25 Yasa Motors Poland Sp. z.o.o. Wet runner pump with slide bearing
WO2013107807A2 (en) 2012-01-20 2013-07-25 Yasa Motors Poland Sp. Z O.O. Wet rotor pump
DE102012200806B4 (en) * 2012-01-20 2014-07-31 Yasa Motors Poland Sp. z.o.o. Wet runner pump with power electronics
DE102012200807B4 (en) * 2012-01-20 2014-09-25 Yasa Motors Poland Sp. z.o.o. Wet runner pump with slide bearing
DE102012200803B4 (en) * 2012-01-20 2015-04-02 Yasa Motors Poland Sp. z.o.o. Wet rotor
DE102012200816B4 (en) * 2012-01-20 2015-04-02 Yasa Motors Poland Sp. z.o.o. Wet runner pump with permanent magnet
DE102012200806A1 (en) * 2012-01-20 2013-07-25 Yasa Motors Poland Sp. z.o.o. Wet runner pump with power electronics
DE102012200803A1 (en) * 2012-01-20 2013-07-25 Yasa Motors Poland Sp. z.o.o. Wet rotor
US10001129B2 (en) 2013-05-23 2018-06-19 Reinheart Gmbh Impeller of a centrifugal pump apparatus
CN105324139A (en) * 2013-05-23 2016-02-10 纯净之心有限公司 Impeller of a centrifugal pump apparatus
WO2017021465A1 (en) * 2015-08-04 2017-02-09 Abiomed Europe Gmbh Blood pump
EP3127562A1 (en) * 2015-08-04 2017-02-08 Abiomed Europe GmbH Self-flushing bearing
US10780208B2 (en) 2015-08-04 2020-09-22 Abiomed Europe Gmbh Blood pump
EP3808404A1 (en) * 2015-08-04 2021-04-21 Abiomed Europe GmbH Self-flushing bearing
US11478627B2 (en) 2015-08-04 2022-10-25 Abiomed Europe Gmbh Blood pump
US11957892B2 (en) 2015-08-04 2024-04-16 Abiomed Europe Gmbh Blood pump
US10973967B2 (en) 2018-01-10 2021-04-13 Tc1 Llc Bearingless implantable blood pump
CN110075377A (en) * 2019-06-26 2019-08-02 上海微创医疗器械(集团)有限公司 Magnetic liquid suspension formula blood pump
CN110075377B (en) * 2019-06-26 2019-10-08 上海微创医疗器械(集团)有限公司 Magnetic liquid suspension formula blood pump

Also Published As

Publication number Publication date
JP4517076B2 (en) 2010-08-04
JP2007000350A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
WO2006137496A1 (en) Artificial heart pump with dynamic pressure bearing
JP3834610B2 (en) Artificial heart pump with hydrodynamic bearing
US11413443B2 (en) Rotary seal for cantilevered rotor pump and methods for axial flow blood pumping
JP6009421B2 (en) Centrifugal rotary blood pump
US10731652B2 (en) Hydrodynamic thrust bearings for rotary blood pump
EP3539584A1 (en) Microaxial pump for assisting blood circulation (variants)
US9162018B2 (en) Cardiac pump
US20140179983A1 (en) Stabilizing drive for contactless rotary blood pump impeller
US20060253194A1 (en) Devices and methods for displacing biological fluids incorporating stacked disc impeller systems
WO2014000753A1 (en) Centrifugal blood pump apparatus
AU2012261669B2 (en) Rotary blood pump
JP4866704B2 (en) Artificial heart pump with hydrodynamic bearing
US20230381489A1 (en) Implantable centrifugal cardiac assist pump having permanent magnets embedded in impeller
CN118105615A (en) Ventricular assist device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780628

Country of ref document: EP

Kind code of ref document: A1