JPH0491396A - Turbo type pump - Google Patents

Turbo type pump

Info

Publication number
JPH0491396A
JPH0491396A JP20434790A JP20434790A JPH0491396A JP H0491396 A JPH0491396 A JP H0491396A JP 20434790 A JP20434790 A JP 20434790A JP 20434790 A JP20434790 A JP 20434790A JP H0491396 A JPH0491396 A JP H0491396A
Authority
JP
Japan
Prior art keywords
impeller
dynamic pressure
rotor
permanent magnet
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20434790A
Other languages
Japanese (ja)
Other versions
JP2989233B2 (en
Inventor
Shizuka Yamazaki
山崎 静
Masaaki Suzuki
正昭 鈴木
Haruhisa Harada
晴久 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP20434790A priority Critical patent/JP2989233B2/en
Priority to DE4123433A priority patent/DE4123433A1/en
Publication of JPH0491396A publication Critical patent/JPH0491396A/en
Application granted granted Critical
Publication of JP2989233B2 publication Critical patent/JP2989233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0473Bearings hydrostatic; hydrodynamic for radial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To feed liquid in a clean condition without any stagnation by generat ing dynamic pressure following the rotation of an impeller in dynamic pressure grooves provided on one surface of the impeller, and supporting the impeller without touching through the action of the dynamic pressure and the suction force of a permanent magnet. CONSTITUTION:When a rotor 7 rotates in the direction of the arrow (A), a magnetic coupling is composed by permanent magnets 6 and 8, and an impeller 3 rotates in the same direction as mat of a rotor 7. Dynamic pressure is generat ed between one surface 5 of the impeller 3 and the inner surface 12 of a casing 2 through the action of a dynamic groove 10 in response to the rotation of the impeller 3. Thereby the impeller 3 rises against the suction force between respective permanent magnets 6 and 8, and rotates in a non-contact condition. Also, the rotation of the impeller 3 makes operation fluid to flow from a fixed shaft 9 side to a spiral chamber 13 side as shown by the arrow (B), (C), and (D). Accordingly, the whole volume of a pump becomes small and compact without contaminating operating fluid, and also solidification and/or precipitation of impurities due to the stagnation of operating fluid does not occur.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はターボ形ポンプに関し、特に、バイオテクノ
ロジー、宇宙基地用機器、半導体製造技術および医療機
器等に適用されるターボ形ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a turbo pump, and particularly to a turbo pump applied to biotechnology, space base equipment, semiconductor manufacturing technology, medical equipment, and the like.

[従来の技術] ターボ形ポンプは、インペラ(別車)を回転させ、流体
に回転運動を与えて圧力を上げるものであり、工業界に
広く用いられている。
[Prior Art] Turbo pumps rotate an impeller (separate wheel) to give rotational motion to fluid to increase pressure, and are widely used in industry.

第12図はバイオテクノロジー、半導体製造技術および
医療機器等に用いられる従来のターボ形ポンプを示す図
である。第12図を参jl/(して、ポンプ30は、流
体に回転運動を与えるためのインペラ31を備える。イ
ンペラ31は回転軸32に軸支される。回転軸32は、
転がり軸受33により支持され、モータ34により駆動
される。モ−タ34により回転軸32が回転すると、回
転軸32に軸支されたインペラ31が回転する。インペ
ラ31の回転により、流体は吸込管36から吸上げられ
、渦巻室37を経て吐出される。
FIG. 12 is a diagram showing a conventional turbo pump used in biotechnology, semiconductor manufacturing technology, medical equipment, and the like. Refer to FIG. 12. The pump 30 includes an impeller 31 for imparting rotational motion to the fluid. The impeller 31 is supported by a rotating shaft 32. The rotating shaft 32 is
It is supported by a rolling bearing 33 and driven by a motor 34. When the rotating shaft 32 is rotated by the motor 34, the impeller 31, which is supported by the rotating shaft 32, rotates. Due to the rotation of the impeller 31, fluid is sucked up from the suction pipe 36 and discharged through the volute chamber 37.

バイオテクノロジー、半導体製造技術および医療機器等
に用いられるポンプは、極めてクリーンであることが要
求される。このため、第12図に示すポンプ30では、
流体を汚染する汚染物質を発生する転がり軸受33およ
びモータ34から流体を隔離するために、インペラ31
側の軸受33とインペラ31との間にシール35を設け
ている。
Pumps used in biotechnology, semiconductor manufacturing technology, medical equipment, etc. are required to be extremely clean. Therefore, in the pump 30 shown in FIG.
Impeller 31 is used to isolate the fluid from rolling bearings 33 and motor 34, which generate contaminants that contaminate the fluid.
A seal 35 is provided between the side bearing 33 and the impeller 31.

[発明が解決しようとする課題] しかしながら、上記シール35は回転軸32と接触して
いるため、この接触部分における発熱や汚染物質の発生
により流体が汚染されるという問題がある。
[Problems to be Solved by the Invention] However, since the seal 35 is in contact with the rotating shaft 32, there is a problem in that the fluid is contaminated due to heat generation and generation of contaminants at this contact portion.

また、軸受部やモータ部からのごみあるいはさびによる
汚染を少なくするために、モータなどの電磁石をモール
ドし、あるいは鉄部にメツキを施すことが考えられる。
Furthermore, in order to reduce contamination from dust or rust from the bearing and motor parts, it is conceivable to mold the electromagnets such as the motor, or to plate the iron parts.

しかしながら、このような改良を加えたとしても、従来
のポンプではスピンドル内に流体が澱むところがあり、
このような澱みは流体の凝固や不純物の沈澱を生じるた
め、バイオテクノロジーや医療機器等においては重大な
問題である。
However, even with these improvements, conventional pumps still have fluid stagnation inside the spindle.
Such stagnation causes coagulation of the fluid and precipitation of impurities, which is a serious problem in biotechnology, medical equipment, and the like.

それゆえに、この発明の主たる目的は、流体をクリーン
な状態でかつ澱みなく送ることのできるターボ形ポンプ
を提供することである。
Therefore, the main object of the present invention is to provide a turbo pump that can transport fluid in a clean state and without stagnation.

[課題を解決するための手段〕 この発明はケーシングと該ケーシング内に回転可能に設
けられ、流体を送るためのインペラと、該インペラを回
転駆動するためのロータとを備えたターボ形ポンプであ
り、インペラの一方面に設けられた第1の永久磁石と、
ケーシングを介してインペラの一方面に対向するように
してロータに設けられ、第1の永久磁石と磁気カップリ
ングする第2の永久磁石と、インペラの一方面に設けら
れ、第1および第2の永久磁石の磁気力に抗する方向に
動圧を生じるように配置された動圧溝とを備えたターボ
形ポンプである。
[Means for Solving the Problems] The present invention is a turbo pump that includes a casing, an impeller that is rotatably provided in the casing and that sends fluid, and a rotor that rotationally drives the impeller. , a first permanent magnet provided on one side of the impeller;
A second permanent magnet is provided on the rotor to face one side of the impeller through the casing and magnetically couples with the first permanent magnet, and a first and second permanent magnet is provided on one side of the impeller. This is a turbo pump equipped with dynamic pressure grooves arranged to generate dynamic pressure in a direction that opposes the magnetic force of a permanent magnet.

[作用] この発明では、インペラの一方面に設けられた第1の永
久磁石と、ロータに設けた第2の永久磁石との磁気カッ
プリングによってロータの回転力をインペラに伝達する
ようにしている。また、インペラの一方面に設けた動圧
溝によりインペラの回転に伴なって動圧が発生するよう
にし、この動圧と第1および第2の永久磁石の吸引力と
の作用により、インペラを非接触でケーシング内に支持
するようにしている。
[Operation] In this invention, the rotational force of the rotor is transmitted to the impeller by magnetic coupling between the first permanent magnet provided on one side of the impeller and the second permanent magnet provided on the rotor. . In addition, a dynamic pressure groove provided on one side of the impeller generates dynamic pressure as the impeller rotates, and the action of this dynamic pressure and the attractive force of the first and second permanent magnets causes the impeller to move. It is supported within the casing without contact.

〔発明の実施例] 第1図はこの発明の一実施例のターボ形ポンプを示す断
面図である。第1図において、ポンプ1のケーシング2
内にはインペラ3が設けられる。
[Embodiment of the Invention] FIG. 1 is a sectional view showing a turbo pump according to an embodiment of the invention. In FIG. 1, casing 2 of pump 1
An impeller 3 is provided inside.

ケーシング2は、非磁性体の材料からなる。インペラ3
は羽根を有し、かつ非磁性体からなる非磁性部材4を含
み、非磁性部材4の一方面5には、永久磁石6が取付け
られている。永久磁石6は円周方向に分割して配置され
ており、各永久磁石6は隣接するもの同士の磁界の方向
が逆方向となるように着磁されている。この永久磁石6
に対向し、かつケーシング−を介して吸引力が作用する
ように、ロータフにはインペラ側と同数の永久磁石8が
取付けられている。ロータ7は、図示しないモータによ
り、固定軸9のまわりを回転するようになっている。
The casing 2 is made of a non-magnetic material. impeller 3
includes a non-magnetic member 4 having blades and made of a non-magnetic material, and a permanent magnet 6 is attached to one side 5 of the non-magnetic member 4. The permanent magnets 6 are divided and arranged in the circumferential direction, and each permanent magnet 6 is magnetized so that the directions of magnetic fields of adjacent permanent magnets are opposite to each other. This permanent magnet 6
The same number of permanent magnets 8 as on the impeller side are attached to the rotor so that they face each other and apply an attractive force through the casing. The rotor 7 is configured to rotate around a fixed shaft 9 by a motor (not shown).

また、インペラ3の一方面5には、第2図で示すような
、動圧効果を得るための動圧溝10が渦巻状に形成され
る。動圧溝の他の例を第3A図および第3B図に示す。
Further, on one side 5 of the impeller 3, a dynamic pressure groove 10 is formed in a spiral shape to obtain a dynamic pressure effect, as shown in FIG. Other examples of dynamic pressure grooves are shown in FIGS. 3A and 3B.

第3A図において、非磁性部材4aの表面には、第3B
図に示すような深さhの溝10aが環状の凸部11の回
りに渦巻状に形成される。
In FIG. 3A, there is a third B on the surface of the non-magnetic member 4a.
A groove 10a having a depth h as shown in the figure is formed in a spiral shape around the annular convex portion 11.

第1図に示す矢印A方向にロータ7が回転すると、永久
磁石6と永久磁石8とが磁気カップリングを構成し、イ
ンペラ3がロータ7と同じ方向に回転する。このインペ
ラ3の回転に応じて、動圧溝10の作用によってインペ
ラ3の一方面5とケーシング2の内面12との間に動圧
が発生する。
When the rotor 7 rotates in the direction of arrow A shown in FIG. 1, the permanent magnets 6 and 8 form a magnetic coupling, and the impeller 3 rotates in the same direction as the rotor 7. In response to this rotation of the impeller 3, dynamic pressure is generated between the one surface 5 of the impeller 3 and the inner surface 12 of the casing 2 due to the action of the dynamic pressure grooves 10.

これにより、インペラ3は永久磁石6.8どうしの吸引
力に抗して浮上し、非接触の状態で回転する。インペラ
3の回転により、作動流体は第1図に示す矢印B、C,
Dで示すように固定軸9側から渦巻室13側へ流れる。
As a result, the impeller 3 floats against the attraction force between the permanent magnets 6.8 and rotates in a non-contact state. Due to the rotation of the impeller 3, the working fluid flows through arrows B, C, as shown in FIG.
As shown by D, it flows from the fixed shaft 9 side to the swirl chamber 13 side.

なお、上記動圧溝10,1.Oaは上述のように渦巻状
に構成されているので、作動流体は中心軸側から円周部
方向に容易に流れる。
Note that the dynamic pressure grooves 10, 1. Since Oa has a spiral configuration as described above, the working fluid easily flows from the central axis side to the circumferential direction.

以上のように、インペラ3は回転中、非接触で支持され
るようになっており、転がり軸受等の機械的な軸受が存
在しないで、作動流体を汚すことがない。また、ケーシ
ング2内には、インペラ3のみが設けられており、軸等
は設けられていないので、ポンプの全容積が小さく、コ
ンパクトになる。さらに、作動流体は上述のように流れ
るので、澱みが生じることなく、流体の凝固や不純物の
沈澱を生ずることがない。
As described above, the impeller 3 is supported in a non-contact manner during rotation, and there is no mechanical bearing such as a rolling bearing, so that the working fluid is not contaminated. In addition, only the impeller 3 is provided inside the casing 2, and no shaft or the like is provided, so the total volume of the pump is small and compact. Furthermore, since the working fluid flows as described above, there is no stagnation, no coagulation of the fluid, and no precipitation of impurities.

第4図ないし第7図はこの発明の一実施例の変形例を示
す図である。第4図に示す例では、作動流体の一部は矢
印Fで示す斜め方向に流れるが、主としてEで示す半径
方向に流れるようになっている。
4 to 7 are diagrams showing modifications of one embodiment of the present invention. In the example shown in FIG. 4, a portion of the working fluid flows diagonally as indicated by arrow F, but it primarily flows in the radial direction as indicated by E.

第5図に示す例では、作動流体は主として矢印Eで示す
半径方向に流れるが、一部は矢印Gで示す軸方向にも流
れるようになっている。
In the example shown in FIG. 5, the working fluid mainly flows in the radial direction indicated by arrow E, but also partially flows in the axial direction indicated by arrow G.

第6図に示す例では、作動流体は吸上げられた後、矢印
Hで示す斜め方向に流れるようになっている。
In the example shown in FIG. 6, the working fluid flows in the diagonal direction indicated by arrow H after being sucked up.

第7図に示す例では、上記例と異なり、ロータ7は作動
流体の導入路14側とは反対の側に設けられる。作動流
体は第6図に示すものと同様、斜め方向に流れる。
In the example shown in FIG. 7, unlike the above example, the rotor 7 is provided on the side opposite to the working fluid introduction path 14 side. The working fluid flows in an oblique direction similar to that shown in FIG.

上記変形例においても、インペラの一方面には永久磁石
6が設けられるとともに、動圧溝が形成され、ケーシン
グを介してインペラの一方面と対向するロータの面には
、インペラの永久磁石6と吸引する永久磁石8が設けら
れている。
Also in the above modification, the permanent magnet 6 is provided on one surface of the impeller, and a dynamic pressure groove is formed, and the permanent magnet 6 of the impeller is provided on the surface of the rotor that faces the one surface of the impeller through the casing. A permanent magnet 8 for attraction is provided.

第8図および第9図はこの発明の他の実施例を示す図で
ある。第8図および第9図に示す実施例では、インペラ
3の一方面5たけではなく、他方面15にも永久磁石1
6が取付けられる。また、該他方面15には一方面5と
同様の動圧溝が形成されている。それ以外の構成は上述
した実施例の場合とほぼ同様であるので、説明を省略す
る。
FIGS. 8 and 9 are diagrams showing other embodiments of the present invention. In the embodiments shown in FIGS. 8 and 9, a permanent magnet 1 is placed not only on one side 5 of the impeller 3 but also on the other side 15.
6 is installed. Furthermore, dynamic pressure grooves similar to those on the one side 5 are formed on the other side 15 . The rest of the configuration is almost the same as that of the embodiment described above, so the explanation will be omitted.

第8図に示す例では、永久磁石16に対向するケーシン
グ2の部分17は磁性体からなり、永久磁石16との間
で吸引・力が作用するようになっている。
In the example shown in FIG. 8, a portion 17 of the casing 2 facing the permanent magnet 16 is made of a magnetic material, and is configured to exert attraction and force with the permanent magnet 16.

第9図に示す例では、永久磁石16に対向するケーシン
グ2の部分にはリング状の磁性体18あるいはリング状
の永久磁石19が配置され、永久磁石16との間で吸引
力が作用するようになっている。
In the example shown in FIG. 9, a ring-shaped magnetic body 18 or a ring-shaped permanent magnet 19 is arranged in the part of the casing 2 facing the permanent magnet 16, so that an attractive force acts between it and the permanent magnet 16. It has become.

第10図はこの発明のさらに他の実施例を示す図である
。第10図に示す実施例では、インペラ3の軸中心の位
置に貫通孔20が設けられ、ケーシング2の軸中心に軸
21が設けられる。円筒状の軸21の表面22には、第
11図に示すようなヘリングボーン形状の動圧溝23が
形成される。
FIG. 10 is a diagram showing still another embodiment of the present invention. In the embodiment shown in FIG. 10, a through hole 20 is provided at the axial center of the impeller 3, and a shaft 21 is provided at the axial center of the casing 2. A herringbone-shaped dynamic pressure groove 23 as shown in FIG. 11 is formed on the surface 22 of the cylindrical shaft 21. As shown in FIG.

その他の構成は第8図および第9図に示すものとほぼ同
様であるので説明を省略する。
The rest of the configuration is substantially the same as that shown in FIGS. 8 and 9, so the explanation will be omitted.

軸21の周囲に設けられた動圧溝23の作用により、イ
ンペラ3は軸21の周りを非接触でかつ所定の間隔を有
して回転するので、インペラ3が回転するとき、ロータ
7とインペラ3の中心位置のずれによって生じるラジア
ル振れを抑えることが、できる。
Due to the action of the dynamic pressure groove 23 provided around the shaft 21, the impeller 3 rotates around the shaft 21 without contact and with a predetermined interval, so that when the impeller 3 rotates, the rotor 7 and the impeller It is possible to suppress the radial run-out caused by the deviation of the center position of 3.

なお、この実施例では、インペラの両面に永久磁石およ
び渦巻状動圧溝が設けたものにヘリングボーン状動圧溝
23を適用したが、第1図および第4図ないし第7図に
示すように、インペラの一方面にのみ永久磁石および渦
巻状動圧溝が設けたものに適用してもよい。
In this embodiment, the herringbone-shaped dynamic pressure grooves 23 were applied to an impeller in which permanent magnets and spiral dynamic pressure grooves were provided on both sides, but as shown in FIGS. 1 and 4 to 7, Alternatively, the present invention may be applied to an impeller in which a permanent magnet and a spiral dynamic pressure groove are provided only on one side of the impeller.

[発明の効果] 以上のように、この発明によれば、インペラの一方面に
設けた第1の永久磁石とロータに設けた第2の永久磁石
との磁気カップリングによってロータの回転力をインペ
ラに伝達するとともに、インペラの一方面に設けた動圧
溝の作用による動圧と第1および第2の永久磁石の吸引
力との作用により、インペラを非接触でケーシング内に
支持するようにしたので、インペラを軸支する手段がな
いためコンパクトでかつ澱みのないターボ形ポンプを提
供することができる。
[Effects of the Invention] As described above, according to the present invention, the rotational force of the rotor is transferred to the impeller by magnetic coupling between the first permanent magnet provided on one side of the impeller and the second permanent magnet provided on the rotor. At the same time, the impeller is supported in the casing without contact by the action of the dynamic pressure generated by the dynamic pressure groove provided on one side of the impeller and the attraction force of the first and second permanent magnets. Therefore, since there is no means for pivotally supporting the impeller, it is possible to provide a compact turbo pump without stagnation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のターボ形ポンプの断面図
である。第2図は第1図に示すインペラの一方面に設け
られた動圧溝の形状を示す図である。第3A図および第
3B図は動圧溝の他の例を示す図である。第4図ないし
第7図はこの発明の一実施例の変形例を示す図である。 第8図および第9図はこの発明の他の実施例を示す断面
図である。第10図および第11図はこの発明のさらに
他の実施例を示す図である。第12図は従来のターボ形
ポンプの構成を示す断面図である。 図において、1はターボ形ポンプ、2はケーシング、3
はインペラ、6はインペラに取付けられた永久磁石、7
はロータ、8はロータに取付けられた永久磁石、10お
よび10aは動圧溝を示す。
FIG. 1 is a sectional view of a turbo pump according to an embodiment of the present invention. FIG. 2 is a diagram showing the shape of dynamic pressure grooves provided on one side of the impeller shown in FIG. 1. FIGS. 3A and 3B are diagrams showing other examples of dynamic pressure grooves. 4 to 7 are diagrams showing modifications of one embodiment of the present invention. FIGS. 8 and 9 are cross-sectional views showing other embodiments of the present invention. FIGS. 10 and 11 are diagrams showing still other embodiments of the present invention. FIG. 12 is a sectional view showing the structure of a conventional turbo pump. In the figure, 1 is a turbo pump, 2 is a casing, and 3
is an impeller, 6 is a permanent magnet attached to the impeller, and 7 is an impeller.
is a rotor, 8 is a permanent magnet attached to the rotor, and 10 and 10a are dynamic pressure grooves.

Claims (1)

【特許請求の範囲】 ケーシングと、 前記ケーシング内に回転可能に設けられ、流体を送るた
めのインペラと、 前記インペラを回転駆動するためのロータとを備えたタ
ーボ形ポンプにおいて、 前記インペラの一方面に設けられた第1の永久磁石と、 前記ケーシングを介して前記インペラの前記一方面と対
向するようにして前記ロータに設けられ、前記第1の永
久磁石と磁気カップリングする第2の永久磁石と、 前記インペラの前記一方面に設けられ、前記第1および
第2の永久磁石の磁気力に抗する方向に動圧を生じるよ
うに配置された動圧溝を備え、前記インペラは前記ロー
タが回転するとき、前記磁気カップリングによって回転
駆動されるとともに、前記磁気力と前記動圧力との作用
により、前記ケーシング内に非接触で支持されることを
特徴とする、ターボ形ポンプ。
[Claims] A turbo pump comprising: a casing; an impeller rotatably provided in the casing for sending fluid; and a rotor for rotationally driving the impeller; a first permanent magnet provided on the rotor so as to face the one surface of the impeller via the casing, and a second permanent magnet magnetically coupled to the first permanent magnet. and a dynamic pressure groove provided on the one surface of the impeller and arranged to generate a dynamic pressure in a direction that resists the magnetic force of the first and second permanent magnets, the impeller is arranged so that the rotor is A turbo pump characterized in that, when rotating, it is rotationally driven by the magnetic coupling and is supported in a non-contact manner within the casing by the action of the magnetic force and the dynamic pressure.
JP20434790A 1990-07-31 1990-07-31 Turbo type pump Expired - Lifetime JP2989233B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20434790A JP2989233B2 (en) 1990-07-31 1990-07-31 Turbo type pump
DE4123433A DE4123433A1 (en) 1990-07-31 1991-07-15 Rotary pump assembly - has rotor with permanent magnets and spiral grooves inside non-magnetic housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20434790A JP2989233B2 (en) 1990-07-31 1990-07-31 Turbo type pump

Publications (2)

Publication Number Publication Date
JPH0491396A true JPH0491396A (en) 1992-03-24
JP2989233B2 JP2989233B2 (en) 1999-12-13

Family

ID=16488999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20434790A Expired - Lifetime JP2989233B2 (en) 1990-07-31 1990-07-31 Turbo type pump

Country Status (1)

Country Link
JP (1) JP2989233B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627283A (en) * 1992-07-09 1994-02-04 Hitachi Ltd Internal pump
EP1598087A2 (en) 2004-03-24 2005-11-23 Terumo Kabushiki Kaisha Blood pump apparatus
JP2006167173A (en) * 2004-12-16 2006-06-29 Terumo Corp Centrifugal type blood pump apparatus
WO2006137496A1 (en) * 2005-06-23 2006-12-28 National Institute Of Advanced Industrial Science And Technology Artificial heart pump with dynamic pressure bearing
JP2008104664A (en) * 2006-10-26 2008-05-08 National Institute Of Advanced Industrial & Technology Artificial heart pump equipped with dynamic pressure bearing
WO2008071264A1 (en) * 2006-12-13 2008-06-19 Robert Bosch Gmbh Pump device
WO2010067682A1 (en) 2008-12-08 2010-06-17 Ntn株式会社 Centrifugal pump device
WO2010101107A1 (en) 2009-03-06 2010-09-10 Ntn株式会社 Centrifugal pump device
WO2010101082A1 (en) 2009-03-05 2010-09-10 Ntn株式会社 Centrifugal pump device
WO2011102176A1 (en) 2010-02-16 2011-08-25 Ntn株式会社 Centrifugal pump device
WO2011118325A1 (en) 2010-03-26 2011-09-29 テルモ株式会社 Centrifugal blood pump device
WO2012008297A1 (en) 2010-07-12 2012-01-19 Ntn株式会社 Centrifugal pump device
WO2013107807A3 (en) * 2012-01-20 2013-10-03 Yasa Motors Poland Sp. Z O.O. Wet rotor pump
JP2014128516A (en) * 2012-12-29 2014-07-10 San Medical Gijutsu Kenkyusho:Kk Blood pump and auxiliary artificial heart system
CN104776032A (en) * 2015-05-02 2015-07-15 齐齐哈尔医学院 Micro constant-current pump
US9109601B2 (en) 2008-06-23 2015-08-18 Thoratec Corporation Blood pump apparatus
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
CN105833368A (en) * 2016-05-11 2016-08-10 北京精密机电控制设备研究所 Centrifugal impeller for blood pump
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
JP2018033571A (en) * 2016-08-30 2018-03-08 テルモ株式会社 Medical device and treatment method
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
EP3490122A1 (en) 2009-07-29 2019-05-29 Thoratec Corporation Rotation drive device and centrifugal pump device
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization
JP2021510319A (en) * 2018-12-12 2021-04-22 シェンジェン コア メディカル テクノロジー カンパニー リミテッドShenzhen Core Medical Technology Co.,Ltd. Ventricular assist device

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627283A (en) * 1992-07-09 1994-02-04 Hitachi Ltd Internal pump
US7748964B2 (en) 2004-03-24 2010-07-06 Terumo Kabushiki Kaisha Blood pump apparatus
EP1598087A2 (en) 2004-03-24 2005-11-23 Terumo Kabushiki Kaisha Blood pump apparatus
US8430652B2 (en) 2004-03-24 2013-04-30 Terumo Kabushiki Kaisha Blood pump apparatus
EP1598087A3 (en) * 2004-03-24 2007-04-25 Terumo Kabushiki Kaisha Blood pump apparatus
JP2006167173A (en) * 2004-12-16 2006-06-29 Terumo Corp Centrifugal type blood pump apparatus
WO2006137496A1 (en) * 2005-06-23 2006-12-28 National Institute Of Advanced Industrial Science And Technology Artificial heart pump with dynamic pressure bearing
JP4517076B2 (en) * 2005-06-23 2010-08-04 独立行政法人産業技術総合研究所 Artificial heart pump with hydrodynamic bearing
JP2007000350A (en) * 2005-06-23 2007-01-11 National Institute Of Advanced Industrial & Technology Artificial heart pump equipped with dynamic pressure bearing
JP2008104664A (en) * 2006-10-26 2008-05-08 National Institute Of Advanced Industrial & Technology Artificial heart pump equipped with dynamic pressure bearing
WO2008071264A1 (en) * 2006-12-13 2008-06-19 Robert Bosch Gmbh Pump device
US9109601B2 (en) 2008-06-23 2015-08-18 Thoratec Corporation Blood pump apparatus
WO2010067682A1 (en) 2008-12-08 2010-06-17 Ntn株式会社 Centrifugal pump device
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
WO2010101082A1 (en) 2009-03-05 2010-09-10 Ntn株式会社 Centrifugal pump device
US8770945B2 (en) 2009-03-06 2014-07-08 Thoratec Corporation Centrifugal pump apparatus
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
WO2010101107A1 (en) 2009-03-06 2010-09-10 Ntn株式会社 Centrifugal pump device
EP3832861A1 (en) 2009-07-29 2021-06-09 Thoratec Corporation Rotation drive device and centrifugal pump device
EP3490122A1 (en) 2009-07-29 2019-05-29 Thoratec Corporation Rotation drive device and centrifugal pump device
WO2011102176A1 (en) 2010-02-16 2011-08-25 Ntn株式会社 Centrifugal pump device
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
WO2011118325A1 (en) 2010-03-26 2011-09-29 テルモ株式会社 Centrifugal blood pump device
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
WO2012008297A1 (en) 2010-07-12 2012-01-19 Ntn株式会社 Centrifugal pump device
US9068572B2 (en) 2010-07-12 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device
WO2013107807A3 (en) * 2012-01-20 2013-10-03 Yasa Motors Poland Sp. Z O.O. Wet rotor pump
JP2014128516A (en) * 2012-12-29 2014-07-10 San Medical Gijutsu Kenkyusho:Kk Blood pump and auxiliary artificial heart system
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US11724094B2 (en) 2013-04-30 2023-08-15 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10980928B2 (en) 2013-04-30 2021-04-20 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10456513B2 (en) 2013-04-30 2019-10-29 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization
US11712167B2 (en) 2015-02-11 2023-08-01 Tc1 Llc Heart beat identification and pump speed synchronization
US10856748B2 (en) 2015-02-11 2020-12-08 Tc1 Llc Heart beat identification and pump speed synchronization
US11724097B2 (en) 2015-02-12 2023-08-15 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10874782B2 (en) 2015-02-12 2020-12-29 Tc1 Llc System and method for controlling the position of a levitated rotor
US11781551B2 (en) 2015-02-12 2023-10-10 Tc1 Llc Alternating pump gaps
US11015605B2 (en) 2015-02-12 2021-05-25 Tc1 Llc Alternating pump gaps
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
CN104776032A (en) * 2015-05-02 2015-07-15 齐齐哈尔医学院 Micro constant-current pump
US10888645B2 (en) 2015-11-16 2021-01-12 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US11639722B2 (en) 2015-11-16 2023-05-02 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
CN105833368A (en) * 2016-05-11 2016-08-10 北京精密机电控制设备研究所 Centrifugal impeller for blood pump
JP2018033571A (en) * 2016-08-30 2018-03-08 テルモ株式会社 Medical device and treatment method
JP2021510319A (en) * 2018-12-12 2021-04-22 シェンジェン コア メディカル テクノロジー カンパニー リミテッドShenzhen Core Medical Technology Co.,Ltd. Ventricular assist device

Also Published As

Publication number Publication date
JP2989233B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JPH0491396A (en) Turbo type pump
US4806080A (en) Pump with shaftless impeller
JP2005127222A (en) Magnetic levitating pump
JP4340183B2 (en) Centrifugal blood pump device
JPH0653790U (en) Clean pump
JP3006865B2 (en) Turbo pump
US3438328A (en) Magnetic torque transmission device
JP2009192041A (en) Thrust force generation device, electromagnetic machine applying thrust force generation device
JP4124977B2 (en) Rotating device
JPH04112994A (en) Turbo pump
JP4485379B2 (en) Bearing and blood pump
JPH09322473A (en) Spindle motor of which rotary shaft having magnetic bearings rotates
US3846050A (en) Centrifugal pumps having rotatable pole rings supported in contactless bearings
JPH0751955B2 (en) Clean pump
JP2001254693A (en) Magnetic levitation type seal-less pump
JP2000240587A (en) Closed fluid device
JP2007303316A (en) Motor pump
JP3357639B2 (en) Turbo type pump
JP3034598B2 (en) Turbo pump
JPS6128793A (en) Shaft sealing mechanism of water pump
JPH11117935A (en) Bearing device
JPH0716074Y2 (en) Magnet pump cooling device
JP2003061305A (en) Motor and disc device
JP2007077829A (en) Compressor
JP2003164107A (en) Rotating drive unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

EXPY Cancellation because of completion of term