WO2006137115A1 - 3d cad data conversion method, device, and program - Google Patents

3d cad data conversion method, device, and program Download PDF

Info

Publication number
WO2006137115A1
WO2006137115A1 PCT/JP2005/011266 JP2005011266W WO2006137115A1 WO 2006137115 A1 WO2006137115 A1 WO 2006137115A1 JP 2005011266 W JP2005011266 W JP 2005011266W WO 2006137115 A1 WO2006137115 A1 WO 2006137115A1
Authority
WO
WIPO (PCT)
Prior art keywords
data conversion
cad data
numerical value
value
tolerance value
Prior art date
Application number
PCT/JP2005/011266
Other languages
French (fr)
Japanese (ja)
Inventor
Haruyasu Watanabe
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/011266 priority Critical patent/WO2006137115A1/en
Publication of WO2006137115A1 publication Critical patent/WO2006137115A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the present invention relates to a 3D CAD data conversion method, apparatus, and program, and in particular, 3D CAD that converts 3D CAD data created by 3D CAD into a standard format called an intermediate file (or intermediate format).
  • the present invention relates to a data conversion method, apparatus, and program. Background art
  • 3D CAD is a general tool used in the design and manufacture of mechanisms and devices. 3D CAD is widely used as a tool that embodies the shapes studied and imagined by designers and performs the entire design work from creation of design drawings.
  • 3D CADs including so-called high-end and middle range, which are widely used.
  • high-end is defined as belonging to the high-performance, high-priced range of 3D CAD, and can be performed consistently from design to analysis and manufacturing. For example, ProZE, UG, CATIA (all are product names), etc. Point to.
  • the middle range is defined as a system specialized in design that belongs to a low-priced range, although the free-form surface function is weak even in 3D CAD. .
  • the 3D design tool uses 3D data such as CAE (analysis) and CAM (manufacturing support tool) that can be used only with 3D CAD.
  • CAE analysis
  • CAM Manufacturing support tool
  • CAE analysis
  • CAM Manufacturing Support Tool
  • 3D design data for example, for pre-verification as described above and downstream processes (molds, etc.) Data conversion is required for 3D CAD data).
  • 3D CAD Standard format that allows 3D CAD data to be exchanged between the data creation side (export side) and the side that performs pre-verification and downstream process using 3D CAD data (receiver side) Data conversion to is required.
  • intermediate files include the following.
  • STEP An assembly hierarchy that is an international standard and has a higher conversion rate than IGES. Includes solid data in addition to surface and wireframe data.
  • IGES US standard, basically surface and wireframe data. The assembly hierarchy is not converted.
  • DXF A file format used in the interface with AutoCAD. Basically, 2Dff data is the mainstream, and few CADs can input and output 3D data.
  • Non-various The body refers to the part where the thickness of a member or the like is 0, either by itself or by two or more solids (a clogged body) in line contact or point contact.
  • FIG. 1 is a perspective view showing an example of a non-manifold.
  • Figure 1 shows an example where two solids 1, 2 are in point contact at site 3.
  • FIG. 2 is a perspective view showing another example of a non-manifold.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-11013
  • Patent Document 2 JP 2000-29918 A
  • the present invention is to provide a 3D CAD data conversion method, apparatus, and program capable of performing data conversion processing of 3D CAD data as described above without causing any inconvenience!
  • the above problem is a 3D CAD data conversion method for converting 3D CAD data into an intermediate file in a standard format by data conversion processing, and automatically processing the non-polymorphic part of the 3D CAD data Detect and satisfy the relationship of (tolerance value (mm)) ⁇ (arbitrary numerical value (mm)) ⁇ (a value greater than the tolerance value) as internal data at the line contact or point contact of the non-manifold
  • a 3D CAD data conversion method characterized in that the data conversion process is performed by giving an arbitrary numerical value.
  • the above problem is a 3D CAD data conversion device that converts 3D CAD data into an intermediate file in a standard format by data conversion processing, and automatically converts the 3D CAD data force non-polymorphic part.
  • (Tolerance value (mm)) (arbitrary numerical value (mm)) ⁇ (a value greater than the tolerance value) as the internal data for the detection means and the line contact or point contact of the non-manifold!
  • the above-described problem is a program for causing a computer to convert 3D CAD data into a standard format intermediate file by data conversion processing, and for the computer to store the 3D CAD data force non-manifold part.
  • the internal data of the part where the computer makes line contact or point contact with the non-manifold is automatically detected.
  • This can also be achieved by a program characterized by including a procedure for applying an arbitrary numerical value satisfying the relationship of (a value greater than the value) and performing the data conversion process.
  • FIG. 1 is a perspective view showing an example of a non-manifold.
  • FIG. 2 is a perspective view showing another example of a non-manifold.
  • FIG. 3 is a perspective view showing an example of hem bending.
  • FIG. 4 is a side view showing the hem bending shown in FIG.
  • FIG. 5 is a perspective view showing an example of 90-degree bending.
  • FIG. 6 is a plan view showing the 90-degree bending shown in FIG.
  • FIG. 7 is a flowchart for explaining an embodiment of the 3D CAD data conversion method according to the present invention.
  • FIG. 8 is a perspective view of a computer system constituting one embodiment of a 3D CAD data conversion apparatus according to the present invention.
  • FIG. 9 is a block diagram showing a main part of the main body shown in FIG.
  • FIG. 10 is a perspective view for explaining processing in the case of hem bending.
  • 3D CAD data is intermediated by data conversion processing. Convert to standard format called file (or intermediate format).
  • the non-manifold is a defect in which the thickness of the member or the like becomes 0 as described with reference to FIGS. 1 and 2, for example, like hem bending and 90-degree bending, In some cases, designers have made nonmanifolds.
  • FIG. 3 is a perspective view showing an example of hem bending
  • FIG. 4 is a side view showing the hem bending shown in FIG.
  • hem bending folding
  • hem bending is a common shape for sheet metal casings, etc., and by bending the end face, strength is increased and at the same time an R shape is formed at the corner.
  • dimensional CAD it is treated as a non-manifold, that is, as an infeasible shape.
  • FIG. 5 is a perspective view showing an example of 90-degree bending
  • FIG. 6 is a plan view showing the 90-degree bending shown in FIG.
  • the 90-degree bend is a sheet metal bend similar to the hem bend, and the edges make line contact at the bend joint.
  • the present invention automatically detects a part corresponding to a non-manifold before converting 3D CAD data into an intermediate file by 3D CAD on the writing side.
  • the tolerance value is a model accuracy set by each tool, and is an area that can be customized by the user. Therefore, first, the tolerance value of the tool is detected, and the optimum value for avoiding non-manifolds is derived for the tolerance value.
  • the optimal value is an arbitrary value larger than the tolerance value because the non-manifold cannot be avoided unless the value is larger than the tolerance value.
  • the upper limit of any numerical value can be customized to an optimal numerical value for manufacturing viewpoint.
  • FIG. 7 is a flowchart for explaining an embodiment of the 3D CAD data conversion method according to the present invention.
  • an embodiment of the 3D CAD data conversion apparatus according to the present invention is used.
  • FIG. 8 is a perspective view of a computer system that constitutes an embodiment of the 3D CAD data conversion apparatus according to the present invention
  • FIG. 9 is a block diagram showing the main part of the main body shown in FIG. A computer system 100 shown in FIG.
  • a main body 101 incorporating a CPU, a disk drive, and the like, a display 102 that displays an image on a display screen 102a according to an instruction from the main body 101, and a variety of computer systems 100
  • a keyboard 103 for inputting information, a mouse 104 for specifying an arbitrary position on the display screen 102a of the display 102, an external database, etc. can be accessed to download programs stored in other computer systems. It has a modem 105.
  • Programs that have a CAD data conversion function (3D CAD software or 3D CAD data conversion software) are input to the computer system 100 and compiled.
  • the 3D CAD data conversion program according to the present invention includes such 3D CAD data conversion software.
  • the computer-readable storage medium according to the present invention also has a recording medium force such as the disk 110 storing the three-dimensional CAD data conversion program according to the present invention.
  • the recording medium constituting the computer-readable storage medium is not limited to a portable recording medium such as a disk 110, an IC card memory, a floppy (registered trademark) disk, a magneto-optical disk, or a CD-ROM. It includes various recording media accessible by a computer system connected via a communication device or communication means such as modem 105 or LAN.
  • the main unit 101 of the computer system 100 includes a CPU 201 connected by a bus 200, a memory unit 202 including RAM and ROM, a disk drive 203 for the disk 110, and a hard disk drive (HDD) 204.
  • the display 102, the keyboard 103 and the mouse 104 are also connected to the CPU 201 via the bus 200. These may be directly connected to the CPU 201.
  • the display 102 may be connected to the CPU 201 via a well-known graphic interface (not shown) for processing input / output image data.
  • the configuration of the computer system 100 is not limited to the configuration shown in FIGS. 8 and 9, and various known configurations may be used instead.
  • Steps S1 to S6 in the process shown in FIG. 7 are the steps for exporting to create 3D CAD data. It is executed by the CPU 201 of the side computer system 100. Steps S7 and S8 are executed by the CPU 201 of the computer system 100 on the receiver side that performs pre-verification and downstream processing using an intermediate file obtained by performing data conversion processing on the 3D CAD data. Needless to say, the same computer system 100 may be used as the writing side and the receiving side computer system.
  • step S1 3D CAD data relating to a 3D model (shape) of a device or the like to be designed is created by a known method using a 3D design tool such as 3D CAD.
  • step S2 the presence / absence of a part corresponding to the non-manifold is determined by performing a known shape test. If the decision result in the step S2 is NO, the process advances to a step S6 described later. On the other hand, if the decision result in the step S2 is YES, the process advances to a step S3.
  • step S3 a tolerance value (model allowable value) of the three-dimensional CAD is detected.
  • step S4 automatically calculates the optimum value for tolerance value.
  • step S5 the calculated arbitrary numerical value is automatically given to the part corresponding to the non-manifold.
  • step S6 a known data conversion process is performed on the 3D CAD data to convert it into a desired intermediate file.
  • step S7 the intermediate file obtained by the data conversion process is received by the tool on the receiving side.
  • step S8 the intermediate file is analyzed by a well-known method to perform a shape check of the three-dimensional model, and the process ends. Pre-validation and response to downstream processes (molds, etc.) can be performed through shape check, and the shape can be modified or changed as necessary.
  • FIG. 10 is a perspective view for explaining the process of step S4 in the case of hem bending.
  • step S4 since the edge 21 and the surface 22 are in line contact, the distance between them is Om Although it is m, by adding an arbitrary numerical value to the distance and recognizing that it is separated without correcting the shape of this part, the shape is prevented from being broken after data conversion.
  • Arbitrary numerical values are larger than the tolerance value (model allowable value) set by each CAD. For example, if the tolerance value is 0.0 OOlmm, the arbitrary numerical value is set to 0.01 mm.
  • the upper limit of an arbitrary numerical value is preferably set as follows. In order to avoid non-manifold defects, any numerical value must be set to a value greater than the tolerance value. In addition, as a shape (dimension) required by a general designer, the distance between the parts at the hem bend or 90 degree bend is allowed to be 0.1 mm or less. In addition, when processing products such as actual devices based on the 3D model, if the distance between the parts at the hem bend or 90 degree bend is 0.1 mm or less, processing problems will occur. do not do. Therefore, in step S4, it is sufficient to obtain an arbitrary numerical value satisfying the following relationship when automatically calculating an optimal numerical value of the tolerance value.
  • An arbitrary numerical value is set in advance so as to satisfy the above relationship, even if a predetermined numerical value is read out from a lookup table stored in the memory unit 202 or the like based on the tolerance value. May be stored. In the latter case, steps S3 and S4 can be omitted, and step S5 can be performed by automatically assigning a preset arbitrary value to the part corresponding to the non-manifold! ,.
  • the shape is corrected in terms of the convenience of dropping into 2D drawings and the realization of products such as real devices. I do not want to do it.
  • 3D CAD data is subjected to data conversion processing and converted to an intermediate file, the shape may be damaged. Therefore, in order to solve this contradiction, in this example, the shape is not changed, and an arbitrary numerical value is assigned to the internal data only as internal data, and the non-manifold part is also a finite distance. By recognizing that it is separated by (arbitrary numerical value)! / Cutter, the trouble at the time of data conversion processing is solved.
  • the present invention is applicable when converting 3D CAD data into various intermediate data by data conversion processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Or Creating Images (AREA)

Abstract

A 3D CAD data conversion method converts 3D CAD data into an intermediate file of the standard format by a data conversion process. The method automatically detects a portion of a non-manifold body from the 3D CAD data and adds an arbitrary numeric value satisfying the relationship (tolerance value (mm)) < (arbitrary numeric value (mm)) ≤ (value greater than the tolerance value) as internal data to a portion of the non-manifold body in linear contact or point contact before performing the data conversion process.

Description

3次元 CADデータ変換方法、装置及びプログラム  3D CAD data conversion method, apparatus and program
技術分野  Technical field
[0001] 本発明は、 3次元 CADデータ変換方法、装置及びプログラムに係り、特に 3次元 C ADで作成した 3次元 CADデータを中間ファイル (又は中間フォーマット)と呼ばれる 標準形式に変換する 3次元 CADデータ変換方法、装置及びプログラムに関する。 背景技術  The present invention relates to a 3D CAD data conversion method, apparatus, and program, and in particular, 3D CAD that converts 3D CAD data created by 3D CAD into a standard format called an intermediate file (or intermediate format). The present invention relates to a data conversion method, apparatus, and program. Background art
[0002] 機構や装置の設計、製造等において用いられる一般的なツールとして、 3次元 CA Dがある。 3次元 CADは、設計者が検討や想像した形状を具現化し、設計図面作成 に至るまでの設計業務全般を行うツールとして、広く一般的に使用されている。現在 汎用化されている 3次元 CADには、所謂ハイエンドやミドルレンジ含む数多くの CA Dが存在している。ここで、ハイエンドとは、 3次元 CADの中でも特に高機能高価格 帯に属し、設計から解析、製造まで一貫して行えると定義されており、例えば ProZE 、 UG、 CATIA (いずれも製品名)等を指す。又、ミドルレンジとは、 3次元 CADの中 でも自由曲面機能は弱いが低価格帯に属し、設計に特化したシステムと定義されて おり、例えば SolidWorks、 OneSpaceDesigner (いずれも製品名)等を指す。  [0002] 3D CAD is a general tool used in the design and manufacture of mechanisms and devices. 3D CAD is widely used as a tool that embodies the shapes studied and imagined by designers and performs the entire design work from creation of design drawings. Currently, there are many 3D CADs, including so-called high-end and middle range, which are widely used. Here, high-end is defined as belonging to the high-performance, high-priced range of 3D CAD, and can be performed consistently from design to analysis and manufacturing. For example, ProZE, UG, CATIA (all are product names), etc. Point to. Also, the middle range is defined as a system specialized in design that belongs to a low-priced range, although the free-form surface function is weak even in 3D CAD. .
[0003] 3次元設計ツールには、 3次元 CADだけでなぐ CAE (解析)や CAM (製造支援ッ ール)等の 3次元データを利用し、試作する前に事前検証や早期の金型立ち上げを 実現するためのツールもある。ここで、 CAE (解析)とは、熱 '構造'強度解析等、実際 に物を試作しなければ評価出来な 、ことをバーチャル (仮想空間)で評価するツール を指す。又、 CAM (製造支援ツール)とは、主にブラスティック製品等を製造する場 合、鉄を製品の逆の形状に削り込んでそこに材料を射出して製造するので、その鉄 を削り込む時のエンドミル (ドリル)の通る道を座標 (数字化)にするモジュールを指す  [0003] The 3D design tool uses 3D data such as CAE (analysis) and CAM (manufacturing support tool) that can be used only with 3D CAD. There are also tools to achieve this. Here, CAE (analysis) refers to a tool that evaluates in a virtual (virtual space), such as thermal 'structural' strength analysis, that cannot be evaluated without actually making a prototype. Also, CAM (Manufacturing Support Tool) is mainly used when manufacturing plastic products, etc., because the iron is cut into the opposite shape of the product and the material is injected there to manufacture it. Points to the module that coordinates the passage of the end mill (drill) at the time (digitization)
[0004] 通常、装置等の設計では、 1つの 3次元 CADで設計を行うが、上記の如き事前検 証や下流工程 (金型等)への対応等のために、 3次元の設計データ (以下、 3次元 C ADデータと言う)にデータ変換を施すことが必須になっている。つまり、 3次元 CAD データを作成した側(書き出し側)と、 3次元 CADデータを用いて事前検証や下流ェ 程への対応を行う側(受け手側)との間の 3次元 CADデータのやり取りを可能とする 標準形式へのデータ変換が必要となる。 [0004] Normally, equipment is designed with a single 3D CAD system. However, 3D design data (for example, for pre-verification as described above and downstream processes (molds, etc.) Data conversion is required for 3D CAD data). In other words, 3D CAD Standard format that allows 3D CAD data to be exchanged between the data creation side (export side) and the side that performs pre-verification and downstream process using 3D CAD data (receiver side) Data conversion to is required.
[0005] 3次元 CADデータのデータ変換処理では、書き出し側でー且、中間ファイル (又は 中間フォーマット)と呼ばれる標準形式に変換し、受け手側のツール (他の CADや C AE)で中間ファイルを受け取る処理を行う。中間ファイルには、例えば次のようなもの がある。 [0005] In the data conversion processing of 3D CAD data, the data is converted on the export side and converted into a standard format called an intermediate file (or intermediate format), and the intermediate file is converted with a tool (other CAD or CAE) on the receiver side. Process to receive. Examples of intermediate files include the following.
[0006] STEP :国際標準規格で IGESより変換率は高ぐアセンブリの階層構造も変換され る。サーフェス、ワイヤフレームデータに加えてソリッドデータを含む。  [0006] STEP: An assembly hierarchy that is an international standard and has a higher conversion rate than IGES. Includes solid data in addition to surface and wireframe data.
[0007] IGES :米国規格で、基本的にサーフェス、ワイヤフレームデータ。アセンブリの階 層構造は変換されない。  [0007] IGES: US standard, basically surface and wireframe data. The assembly hierarchy is not converted.
[0008] DXF: AutoCADとのインターフェースで使われるファイル形式。基本的に 2Dff 式 のデータが主流で、 3D形式のデータ入出力が可能な CADは少ない。  [0008] DXF: A file format used in the interface with AutoCAD. Basically, 2Dff data is the mainstream, and few CADs can input and output 3D data.
[0009] Parasolid:カーネル(CADのエンジン)であり、 UG、 SolidMX (いずれも商品名)はこ のカーネルを備える。同じカーネルを備えた CAD間では形状の受け渡しは IGES, STEPより断然良 、が、アセンブリの階層構造は渡らな 、場合が多 、。  [0009] Parasolid: Kernel (CAD engine). UG and SolidMX (both trade names) have this kernel. In CAD with the same kernel, shape transfer is much better than IGES and STEP, but the assembly hierarchy is often not passed.
[0010] 上記の如き中間ファイルを受け取る処理を行う時、各 CADが持つトレランス値(モ デル許容値)や内部データ構造の違いにより、データ変換時に不具合が発生してし まうことがある。一般に、 3次元モデルを作成する場合、 3次元モデルの精度の設定 が必要であり、特に自由曲面を伴った 3次元モデルでは、その形状を関数で表現し ているため、エッジの端点同士では Ommで接続できない場合がある。 Ommで接続し て 、な 、部位間の距離を測定した時、例えば lZlOOOOOmm程度であれば実用上 問題ないので、離れていても Ommでくつついていると判断する。その時、くっついて V、るのか離れて 、るのかの判断を行うために用いるしき!/、値がトレランス値(モデル許 容値)である。つまり、端点が離れている時、何 mmを境にくっついていると判断する 力 或いは、離れていると判断するかを決定するのがトレランス値である。  [0010] When an intermediate file is received as described above, problems may occur during data conversion due to differences in tolerance values (model tolerance values) and internal data structures of each CAD. In general, when creating a 3D model, it is necessary to set the accuracy of the 3D model. In particular, in the 3D model with a free-form surface, the shape is expressed as a function. You may not be able to connect with. When connecting with Omm and measuring the distance between parts, for example, if it is about lZlOOOOOmm, there is no problem in practical use, so it is judged that Omm is coming even if it is far away. At that time, V is the threshold value used to determine whether it is V, and it is far away! /, The value is the tolerance value (model tolerance). In other words, when the end points are separated, the tolerance value is used to determine how many millimeters are attached to the border or whether to judge that they are separated.
[0011] 又、 3次元設計ツールでは、全てに共通した不具合 (エラー)が存在しており、デー タ変換時の障壁になっている。代表的な不具合としては、「非多様体」がある。非多様 体とは、自分自身、或いは、 2つ以上のソリッド (身が詰まったボディ)が線接触や点 接触をしており、部材等の厚さが 0の箇所の部位を言う。 [0011] In addition, all three-dimensional design tools have a common defect (error), which is a barrier during data conversion. A typical defect is “non-manifold”. Non-various The body refers to the part where the thickness of a member or the like is 0, either by itself or by two or more solids (a clogged body) in line contact or point contact.
[0012] 図 1は、非多様体の一例を示す斜視図である。図 1は、 2つのソリッド 1, 2が部位 3 で点接触している例を示す。図 2は、非多様体の他の例を示す斜視図である。図 2はFIG. 1 is a perspective view showing an example of a non-manifold. Figure 1 shows an example where two solids 1, 2 are in point contact at site 3. FIG. 2 is a perspective view showing another example of a non-manifold. Figure 2
、 2つのソリッド 1, 2が部位 4で線接触している例を示す。 An example where two solids 1 and 2 are in line contact at part 4 is shown.
[0013] 3次元 CADデータのデータ変換方法としては、特許文献 1及び特許文献 2に記載 された如き方法が提案されて!ヽる。 [0013] As data conversion methods for 3D CAD data, methods such as those described in Patent Document 1 and Patent Document 2 have been proposed.
特許文献 1:特開 2000 - 11013  Patent Document 1: Japanese Patent Laid-Open No. 2000-11013
特許文献 2:特開 2000 - 29918  Patent Document 2: JP 2000-29918 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 3次元の世界で不具合であるはずの「非多様体」である力 板金形状のヘム曲げや[0014] A force that is a “non-manifold” that should be a defect in the three-dimensional world.
90度曲げ等の現実に存在し得る形状もあり、又、そういった形状を 3次元 CADの中 で 2次元図面を同時に作成したい場合等の理由で、不具合と認識しつつ「非多様体There are some shapes that can exist in reality, such as 90-degree bending, etc., and when it is desired to create a 2D drawing at the same time in 3D CAD, such as a non-manifold
」の形状をあえて作成した 、場合もある。 In some cases, the shape of "
[0015] そう!/、つた 3次元 CADデータを他の 3次元 CAD、 CAE, CAM等用にデータ変換 をすると、 3次元 CADデータを受け取った側のツール上でデータが壊れる場合があ る。このような場合、身の詰まったソリッドボディが空洞のボディになったり、一部の面 が剥がれると!、つた不都合が生じる。 [0015] Yes! / When converting 3D CAD data to other 3D CAD, CAE, CAM, etc., data may be corrupted on the tool receiving the 3D CAD data. In such a case, if the solid body becomes a hollow body or part of the surface is peeled off!
[0016] データが壊れた場合、データを書き出し側か受け手側のいずれかでデータを修正 することになるが、手動で修正する工数が発生するために、機構や装置等の開発ェ 程が複雑化、且つ、長期間化する要因になっている。 [0016] When data is broken, the data is corrected either on the writing side or on the receiving side. However, since the man-hours for manual correction are generated, the development process of mechanisms and devices is complicated. It is a factor that becomes longer and longer.
[0017] 上記の如ぐ 3次元 CADデータのデータ変換時において、不具合を発生させない ようにデータ変換処理を行うこと力 3次元 CADでの課題の 1つである。 [0017] At the time of data conversion of 3D CAD data as described above, it is one of the problems in 3D CAD that data conversion processing is performed so as not to cause problems.
[0018] そこで、本発明は、不都合を発生させな!/、ように 3次元 CADデータのデータ変換処 理を行うことのできる 3次元 CADデータ変換方法、装置及びプログラムを提供するこ とを課題とする。 [0018] Therefore, the present invention is to provide a 3D CAD data conversion method, apparatus, and program capable of performing data conversion processing of 3D CAD data as described above without causing any inconvenience! And
課題を解決するための手段 [0019] 上記の課題は、 3次元 CADデータをデータ変換処理により標準形式の中間フアイ ルに変換する 3次元 CADデータ変換方法であって、該 3次元 CADデータ力 非多 様体の部位を自動検出し、該非多様体の線接触又は点接触している部位に、内部 データとして(トレランス値 (mm) )く (任意の数値 (mm) )≤ (トレランス値より大きな値 )なる関係を満足する任意の数値を付与して力ゝら該データ変換処理を行うことを特徴 とする 3次元 CADデータ変換方法によって達成できる。 Means for solving the problem [0019] The above problem is a 3D CAD data conversion method for converting 3D CAD data into an intermediate file in a standard format by data conversion processing, and automatically processing the non-polymorphic part of the 3D CAD data Detect and satisfy the relationship of (tolerance value (mm)) く (arbitrary numerical value (mm)) ≤ (a value greater than the tolerance value) as internal data at the line contact or point contact of the non-manifold This can be achieved by a 3D CAD data conversion method characterized in that the data conversion process is performed by giving an arbitrary numerical value.
[0020] 上記の課題は、 3次元 CADデータをデータ変換処理により標準形式の中間フアイ ルに変換する 3次元 CADデータ変換装置であって、該 3次元 CADデータ力 非多 様体の部位を自動検出する手段と、該非多様体の線接触又は点接触して!/、る部位 に、内部データとして(トレランス値 (mm) )く (任意の数値 (mm) )≤ (トレランス値より 大きな値)なる関係を満足する任意の数値を付与してから該データ変換処理を行う 手段とを備えたことを特徴とする 3次元 CADデータ変換装置によっても達成できる。  [0020] The above problem is a 3D CAD data conversion device that converts 3D CAD data into an intermediate file in a standard format by data conversion processing, and automatically converts the 3D CAD data force non-polymorphic part. (Tolerance value (mm)) (arbitrary numerical value (mm)) ≤ (a value greater than the tolerance value) as the internal data for the detection means and the line contact or point contact of the non-manifold! It can also be achieved by a three-dimensional CAD data converter characterized by comprising means for performing the data conversion processing after assigning an arbitrary numerical value satisfying the following relationship.
[0021] 上記の課題は、コンピュータに、 3次元 CADデータをデータ変換処理により標準形 式の中間ファイルに変換させるプログラムであって、該コンピュータに、該 3次元 CA Dデータ力 非多様体の部位を自動検出させる手順と、該コンピュータに、該非多様 体の線接触又は点接触して 、る部位に、内部データとして(トレランス値 (mm) )く (任 意の数値 (mm) )≤ (トレランス値より大きな値)なる関係を満足する任意の数値を付 与して力 該データ変換処理を行わせる手順を含むことを特徴とするプログラムによ つても達成できる。  [0021] The above-described problem is a program for causing a computer to convert 3D CAD data into a standard format intermediate file by data conversion processing, and for the computer to store the 3D CAD data force non-manifold part. (Tolerance value (mm)) <(Tolerance value (mm)) ≤ (Tolerance value) The internal data of the part where the computer makes line contact or point contact with the non-manifold is automatically detected. This can also be achieved by a program characterized by including a procedure for applying an arbitrary numerical value satisfying the relationship of (a value greater than the value) and performing the data conversion process.
発明の効果  The invention's effect
[0022] 本発明によれば、不都合を発生させな!/、ように 3次元 CADデータのデータ変換処 理を行うことのできる 3次元 CADデータ変換方法、装置及びプログラムを実現できる という効果が得られる。  [0022] According to the present invention, there is an effect that it is possible to realize a 3D CAD data conversion method, apparatus, and program capable of performing data conversion processing of 3D CAD data without causing any inconvenience! It is done.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]非多様体の一例を示す斜視図である。 FIG. 1 is a perspective view showing an example of a non-manifold.
[図 2]非多様体の他の例を示す斜視図である。  FIG. 2 is a perspective view showing another example of a non-manifold.
[図 3]ヘム曲げの一例を示す斜視図である。  FIG. 3 is a perspective view showing an example of hem bending.
[図 4]図 3に示すヘム曲げを示す側面図である。 [図 5]90度曲げの一例を示す斜視図である。 FIG. 4 is a side view showing the hem bending shown in FIG. FIG. 5 is a perspective view showing an example of 90-degree bending.
[図 6]図 5に示す 90度曲げを示す平面図である。  FIG. 6 is a plan view showing the 90-degree bending shown in FIG.
[図 7]本発明になる 3次元 CADデータ変換方法の一実施例を説明するフローチヤ一 トである。  FIG. 7 is a flowchart for explaining an embodiment of the 3D CAD data conversion method according to the present invention.
[図 8]本発明になる 3次元 CADデータ変換装置の一実施例を構成するコンピュータ システムの斜視図である。  FIG. 8 is a perspective view of a computer system constituting one embodiment of a 3D CAD data conversion apparatus according to the present invention.
[図 9]図 8に示す本体部の要部を示すブロック図である。  FIG. 9 is a block diagram showing a main part of the main body shown in FIG.
[図 10]ヘム曲げの場合の処理を説明するための斜視図である。  FIG. 10 is a perspective view for explaining processing in the case of hem bending.
符号の説明  Explanation of symbols
[0024] 11, 12 非多様体 [0024] 11, 12 Non-manifold
100 コンピュータシステム  100 computer system
101 本体部  101 Main unit
102 ディスプレイ  102 display
201 CPU  201 CPU
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下に、本発明になる 3次元 CADデータ変換方法、装置及びプログラムの各実施 例を、図面と共に説明する。 [0025] Hereinafter, embodiments of the 3D CAD data conversion method, apparatus, and program according to the present invention will be described with reference to the drawings.
実施例  Example
[0026] 異種の 3次元 CAD間で 3次元 CADデータのやり取りを行ったり、 CAE, CAM等 用に 3次元 CADデータを変換する際は、殆どの場合、データ変換処理により 3次元 CADデータを中間ファイル (又は中間フォーマット)という標準フォーマット変換する。  [0026] When exchanging 3D CAD data between different types of 3D CAD, or converting 3D CAD data for CAE, CAM, etc., in most cases, 3D CAD data is intermediated by data conversion processing. Convert to standard format called file (or intermediate format).
[0027] 非多様体には、例えば図 1及び図 2と共に説明したように、部材等の厚さが 0になつ てしまう箇所がある不具合であるが、ヘム曲げや 90度曲げのように、設計者があえて 非多様体にした 、場合もある。  [0027] The non-manifold is a defect in which the thickness of the member or the like becomes 0 as described with reference to FIGS. 1 and 2, for example, like hem bending and 90-degree bending, In some cases, designers have made nonmanifolds.
[0028] 図 3は、ヘム曲げの一例を示す斜視図であり、図 4は、図 3に示すヘム曲げを示す 側面図である。図 3及び図 4に示すように、ヘム曲げ (折り返し)は、板金の筐体等に 良くある形状であり、端面を折り返す事で強度を出すのと同時に角に R形状を出して いる。現実には、図 4に示す部位 11で線接触している形状が存在し得る力 多くの 3 次元 CAD上では非多様体として、即ち、成り立たない形状として扱われる。 FIG. 3 is a perspective view showing an example of hem bending, and FIG. 4 is a side view showing the hem bending shown in FIG. As shown in Fig. 3 and Fig. 4, hem bending (folding) is a common shape for sheet metal casings, etc., and by bending the end face, strength is increased and at the same time an R shape is formed at the corner. In reality, there can be a shape that is in line contact with the part 11 shown in FIG. In dimensional CAD, it is treated as a non-manifold, that is, as an infeasible shape.
[0029] 図 5は、 90度曲げの一例を示す斜視図であり、図 6は、図 5に示す 90度曲げを示 す平面図である。図 5及び図 6に示すように、 90度曲げは、ヘム曲げと同様に板金の 曲げの形状であり、曲げの合わせ目でエッジが線接触するものである。現実には、図 5及び図 6に示す部位 12で線接触している形状が存在し得るが、多くの 3次元 CAD 上では非多様体として、即ち、成り立たない形状として扱われる。  FIG. 5 is a perspective view showing an example of 90-degree bending, and FIG. 6 is a plan view showing the 90-degree bending shown in FIG. As shown in Figs. 5 and 6, the 90-degree bend is a sheet metal bend similar to the hem bend, and the edges make line contact at the bend joint. In reality, there may be a shape that is in line contact with the region 12 shown in FIGS. 5 and 6, but it is treated as a non-manifold, that is, a shape that does not hold on many 3D CADs.
[0030] 上記の如き非多様体の不具合を持った 3次元 CADデータを変換すると、データを 受け手側のツール上でデータが壊れる場合がある。このような場合、非多様体の形 状を表現する(即ち、成り立たせる)ことができないために、身の詰まったソリッドとして 形状を形成できず、面データになってしまう。  [0030] When 3D CAD data having the non-manifold defects as described above is converted, the data may be corrupted on the tool on the receiver side. In such a case, the shape of the non-manifold cannot be expressed (that is, cannot be realized), so the shape cannot be formed as a solid solid, and surface data is obtained.
[0031] そこで、本発明は、 3次元 CADデータを書き出し側の 3次元 CADで中間ファイル に変換する前に、非多様体に対応する部位を自動的に検出する。  Therefore, the present invention automatically detects a part corresponding to a non-manifold before converting 3D CAD data into an intermediate file by 3D CAD on the writing side.
[0032] 次に、非多様体を回避するための数値を算出する必要があるが、トレランス値は各 ツールで設定されるモデル精度であり、ユーザがカスタマイズ出来る領域である。そ こで、最初に、そのツールのトレランス値を検出し、そのトレランス値に対して非多様 体を回避するのに最適な数値を導き出す。最適な数値とは、トレランス値より大きい 数値にしなければ非多様体を回避する事が出来ないので、トレランス値より大きな任 意の数値となる。任意の数値の上限は、ものづくりの観点力も最適な数値にカスタマ ィズ可能である。  Next, it is necessary to calculate a numerical value for avoiding non-manifolds. The tolerance value is a model accuracy set by each tool, and is an area that can be customized by the user. Therefore, first, the tolerance value of the tool is detected, and the optimum value for avoiding non-manifolds is derived for the tolerance value. The optimal value is an arbitrary value larger than the tolerance value because the non-manifold cannot be avoided unless the value is larger than the tolerance value. The upper limit of any numerical value can be customized to an optimal numerical value for manufacturing viewpoint.
[0033] 最後に導き出された任意の数値を非多様体に対応する部位に付与し、非多様体を 回避する。この際、形状の修正はせずに元の形状のままを保つ。  [0033] Arbitrary numerical values derived at the end are assigned to sites corresponding to non-manifolds to avoid non-manifolds. At this time, the original shape is maintained without correcting the shape.
[0034] その後は、データを従来の一般的な中間フォーマット(STEP, IGES等)に変換す る。 [0034] Thereafter, the data is converted into a conventional general intermediate format (STEP, IGES, etc.).
[0035] 図 7は、本発明になる 3次元 CADデータ変換方法の一実施例を説明するフローチ ヤートである。 3次元 CADデータ変換方法の本実施例では、本発明になる 3次元 CA Dデータ変換装置の一実施例を用いる。図 8は、本発明になる 3次元 CADデータ変 換装置の一実施例を構成するコンピュータシステムの斜視図であり、図 9は、図 8に 示す本体部の要部を示すブロック図である。 [0036] 図 8に示すコンピュータシステム 100は、 CPUやディスクドライブ等を内蔵した本体 部 101、本体部 101からの指示により表示画面 102a上に画像を表示するディスプレ ィ 102、コンピュータシステム 100に種々の情報を入力するためのキーボード 103、 ディスプレイ 102の表示画面 102a上の任意の位置を指定するマウス 104及び外部 のデータベース等にアクセスして他のコンピュータシステムに記憶されているプロダラ ム等をダウンロード可能なモデム 105を有する。 FIG. 7 is a flowchart for explaining an embodiment of the 3D CAD data conversion method according to the present invention. In this embodiment of the 3D CAD data conversion method, an embodiment of the 3D CAD data conversion apparatus according to the present invention is used. FIG. 8 is a perspective view of a computer system that constitutes an embodiment of the 3D CAD data conversion apparatus according to the present invention, and FIG. 9 is a block diagram showing the main part of the main body shown in FIG. A computer system 100 shown in FIG. 8 includes a main body 101 incorporating a CPU, a disk drive, and the like, a display 102 that displays an image on a display screen 102a according to an instruction from the main body 101, and a variety of computer systems 100 A keyboard 103 for inputting information, a mouse 104 for specifying an arbitrary position on the display screen 102a of the display 102, an external database, etc. can be accessed to download programs stored in other computer systems. It has a modem 105.
[0037] ディスク 110等の可搬型記録媒体に格納される力、モデム 105等の通信装置を使 つて他のコンピュータシステムの記録媒体 106からダウンロードされる、コンピュータ システム 100に 3次元 CAD機能や 3次元 CADデータ変換機能を持たせるプログラム (3次元 CADソフトウェアや 3次元 CADデータ変換ソフトウェア)は、コンピュータシス テム 100に入力されてコンパイルされる。本発明になる 3次元 CADデータ変換プログ ラムは、このような 3次元 CADデータ変換ソフトウェアを含む。  [0037] The power stored in the portable recording medium such as the disk 110, the 3D CAD function or 3D in the computer system 100 downloaded from the recording medium 106 of another computer system using a communication device such as the modem 105 Programs that have a CAD data conversion function (3D CAD software or 3D CAD data conversion software) are input to the computer system 100 and compiled. The 3D CAD data conversion program according to the present invention includes such 3D CAD data conversion software.
[0038] 本発明になるコンピュータ読み取り可能な記憶媒体は、本発明になる 3次元 CAD データ変換プログラムを格納した、例えばディスク 110等の記録媒体力もなる。コンビ ユータ読み取り可能な記憶媒体を構成する記録媒体は、ディスク 110、 ICカードメモ リ、フロッピー(登録商標)ディスク、光磁気ディスク、 CD—ROM等の可搬型記録媒 体に限定されるものではなぐモデム 105や LAN等の通信装置や通信手段を介して 接続されるコンピュータシステムでアクセス可能な各種記録媒体を含む。  The computer-readable storage medium according to the present invention also has a recording medium force such as the disk 110 storing the three-dimensional CAD data conversion program according to the present invention. The recording medium constituting the computer-readable storage medium is not limited to a portable recording medium such as a disk 110, an IC card memory, a floppy (registered trademark) disk, a magneto-optical disk, or a CD-ROM. It includes various recording media accessible by a computer system connected via a communication device or communication means such as modem 105 or LAN.
[0039] 図 9において、コンピュータシステム 100の本体部 101は、バス 200により接続され た CPU201、 RAMや ROM等からなるメモリ部 202、ディスク 110用のディスクドライ ブ 203及びハードディスクドライブ(HDD) 204からなる。本実施例では、ディスプレイ 102、キーボード 103及びマウス 104も、バス 200を介して CPU201に接続されてい る力 これらは直接 CPU201に接続されていても良い。又、ディスプレイ 102は、入 出力画像データの処理を行う周知のグラフィックインタフェース(図示せず)を介して CPU201に接続されて ヽても良 ヽ。  In FIG. 9, the main unit 101 of the computer system 100 includes a CPU 201 connected by a bus 200, a memory unit 202 including RAM and ROM, a disk drive 203 for the disk 110, and a hard disk drive (HDD) 204. Become. In this embodiment, the display 102, the keyboard 103 and the mouse 104 are also connected to the CPU 201 via the bus 200. These may be directly connected to the CPU 201. The display 102 may be connected to the CPU 201 via a well-known graphic interface (not shown) for processing input / output image data.
[0040] 尚、コンピュータシステム 100の構成は、図 8及び図 9に示す構成に限定されるもの ではなぐ代わりに各種周知の構成を使用しても良い。  Note that the configuration of the computer system 100 is not limited to the configuration shown in FIGS. 8 and 9, and various known configurations may be used instead.
[0041] 図 7に示す処理のうち、ステップ S1〜S6は、 3次元 CADデータを作成する書き出 し側のコンピュータシステム 100の CPU201により実行される。又、ステップ S7, S8 は、 3次元 CADデータにデータ変換処理を施して得られる中間ファイルを用いて事 前検証や下流工程への対応を行う受け手側のコンピュータシステム 100の CPU201 により実行される。尚、同じコンピュータシステム 100を、書き出し側と受けて側のコン ピュータシステムとして用いても良 、ことは言うまでもな 、。 [0041] Steps S1 to S6 in the process shown in FIG. 7 are the steps for exporting to create 3D CAD data. It is executed by the CPU 201 of the side computer system 100. Steps S7 and S8 are executed by the CPU 201 of the computer system 100 on the receiver side that performs pre-verification and downstream processing using an intermediate file obtained by performing data conversion processing on the 3D CAD data. Needless to say, the same computer system 100 may be used as the writing side and the receiving side computer system.
[0042] ステップ S1は、 3次元 CAD等の 3次元設計ツールにより、設計するべき装置等の 3 次元モデル (形状)に関する 3次元 CADデータを周知の方法で作成する。ステップ S 2は、周知の形状試験を行うことで、非多様体に対応する部位の有無を判定する。ス テツプ S2の判定結果が NOであると、処理は後述するステップ S6へ進む。他方、ステ ップ S2の判定結果が YESであると、処理はステップ S3へ進む。  In step S1, 3D CAD data relating to a 3D model (shape) of a device or the like to be designed is created by a known method using a 3D design tool such as 3D CAD. In step S2, the presence / absence of a part corresponding to the non-manifold is determined by performing a known shape test. If the decision result in the step S2 is NO, the process advances to a step S6 described later. On the other hand, if the decision result in the step S2 is YES, the process advances to a step S3.
[0043] ステップ S3は、 3次元 CADが持つトレランス値(モデル許容値)を検出する。ステツ プ S4は、トレランス値力 最適な任意の数値を自動的に算出する。又、ステップ S5は 、非多様体に対応する部位に、算出された任意の数値を自動的に付与する。ステツ プ S6は、 3次元 CADデータに周知のデータ変換処理を施して、所望の中間ファイル に変換する。  [0043] In step S3, a tolerance value (model allowable value) of the three-dimensional CAD is detected. Step S4 automatically calculates the optimum value for tolerance value. In step S5, the calculated arbitrary numerical value is automatically given to the part corresponding to the non-manifold. In step S6, a known data conversion process is performed on the 3D CAD data to convert it into a desired intermediate file.
[0044] ステップ S7は、データ変換処理により得られた中間ファイルを受け手側のツールで 取り込む。又、ステップ S8は、中間ファイルを周知の方法で解析することで、 3次元モ デルの形状チヱックを行い、処理は終了する。形状チェックにより事前検証や下流ェ 程 (金型等)への対応等を行 、、必要に応じて形状の修正や変更等を行うことができ る。  [0044] In step S7, the intermediate file obtained by the data conversion process is received by the tool on the receiving side. In step S8, the intermediate file is analyzed by a well-known method to perform a shape check of the three-dimensional model, and the process ends. Pre-validation and response to downstream processes (molds, etc.) can be performed through shape check, and the shape can be modified or changed as necessary.
[0045] 図 10は、ヘム曲げの場合のステップ S4の処理を説明するための斜視図である。図  FIG. 10 is a perspective view for explaining the process of step S4 in the case of hem bending. Figure
10に示す如きヘム曲げの例で説明すると、エッジ 21と面 22との間の距離を測定する と Ommであり非多様体である。 3次元 CADデータをこのままの状態でデータ変換処 理により中間ファイルに変換すれば、受け手側のツールで 3次元モデルが壊れる。具 体的には、受け手側のツールで非多様体部を検出すれば不具合と判断され、エッジ 間で接続できない 3次元モデルとして変換されるため、面の集合体のデータとなり、 結果としてソリッドボディを形成することができない。  In the example of hem bending as shown in Fig. 10, when the distance between the edge 21 and the surface 22 is measured, it is Omm, which is a non-manifold. If the 3D CAD data is converted to an intermediate file by data conversion processing in this state, the 3D model will be destroyed by the tool on the receiver side. Specifically, if a non-manifold part is detected with the tool on the receiver side, it will be judged as a defect, and it will be converted as a 3D model that cannot be connected between edges, so it will be a collection of faces, resulting in a solid body Can not form.
[0046] そこで、ステップ S4は、エッジ 21と面 22は線接触しているのでその間の距離は Om mであるものの、この部位の形状を修正せずに、距離に任意の数値を付与し離れて いると認識させることで、データ変換後に形状が壊れる事を防ぐ。任意の数値は、各 CADで設定して ヽるトレランス値 (モデル許容値)より大きな数値であり、例えばトレラ ンス値が 0. OOlmmであれば、任意の数値は 0. 01mmに設定する。 [0046] Therefore, in step S4, since the edge 21 and the surface 22 are in line contact, the distance between them is Om Although it is m, by adding an arbitrary numerical value to the distance and recognizing that it is separated without correcting the shape of this part, the shape is prevented from being broken after data conversion. Arbitrary numerical values are larger than the tolerance value (model allowable value) set by each CAD. For example, if the tolerance value is 0.0 OOlmm, the arbitrary numerical value is set to 0.01 mm.
[0047] 任意の数値の上限は、次のように設定することが望ま 、。非多様体の不具合を回 避する必要上、任意の数値はトレランス値より大きい値に設定する必要がある。又、 一般的な設計者が求める形状 (寸法)として、ヘム曲げや 90度曲げの部分での部位 間の距離は 0. 1mm以下であれば許容される。更に、 3次元モデルに基づいて実際 の装置等の製品を加工する際に、ヘム曲げや 90度曲げの部分での部位間の距離が 0. 1mm以下であれば、特に加工上の問題は発生しない。従って、ステップ S4は、ト レランス値力 最適な任意の数値を自動的に算出する際に、次のような関係を満足 する任意の数値を求めれば良 、。  [0047] The upper limit of an arbitrary numerical value is preferably set as follows. In order to avoid non-manifold defects, any numerical value must be set to a value greater than the tolerance value. In addition, as a shape (dimension) required by a general designer, the distance between the parts at the hem bend or 90 degree bend is allowed to be 0.1 mm or less. In addition, when processing products such as actual devices based on the 3D model, if the distance between the parts at the hem bend or 90 degree bend is 0.1 mm or less, processing problems will occur. do not do. Therefore, in step S4, it is sufficient to obtain an arbitrary numerical value satisfying the following relationship when automatically calculating an optimal numerical value of the tolerance value.
(トレランス値(mm) )〈(任意の数値(mm) )≤0. 1 (mm)  (Tolerance value (mm)) <(arbitrary numerical value (mm)) ≤ 0.1 (mm)
尚、任意の数値は、予め算出された数値をメモリ部 202等に格納したルックアップ テーブルからトレランス値に基づいて読み出すようにしても、上記の関係を満足する ように予め設定されメモリ部 202等に格納されていても良い。後者の場合、ステップ S 3, S4は省略可能であり、ステップ S5は、非多様体に対応する部位に、予め設定さ れた任意の数値を自動的に付与すれば良!、。  An arbitrary numerical value is set in advance so as to satisfy the above relationship, even if a predetermined numerical value is read out from a lookup table stored in the memory unit 202 or the like based on the tolerance value. May be stored. In the latter case, steps S3 and S4 can be omitted, and step S5 can be performed by automatically assigning a preset arbitrary value to the part corresponding to the non-manifold! ,.
[0048] 上記の如ぐ 3次元モデル上で不具合である非多様体であっても、 2次元図面への 落とし込みの利便性や現実の装置等の製品を具現ィ匕する意味では、形状を修正し たくない。し力しながら、 3次元 CADデータにデータ変換処理を施して中間ファイル に変換すると、形状が壊れる可能性がある。そこで、この矛盾を解決するため、本実 施例では形状は変えずに内部的なデータだけに任意の数値を内部データとして付 与し、非多様体の部位があたカゝも有限の距離 (任意の数値)だけ離れて!/ヽると認識さ せることで、データ変換処理時の不具合を解消する。従来のように、 3次元 CADデー タを他ツール用の中間ファイルに変換する際、非多様体の不具合を持ったデータは 受け手側で形状が壊れるのでは 3次元モデルを修正するという処理が発生して開発 工程が複雑化、且つ、長期間化してしまうが、本実施例ではそのような修正処理に関 わる工数を削減することができる。 [0048] Even for non-manifolds that are defective on the 3D model as described above, the shape is corrected in terms of the convenience of dropping into 2D drawings and the realization of products such as real devices. I do not want to do it. However, if 3D CAD data is subjected to data conversion processing and converted to an intermediate file, the shape may be damaged. Therefore, in order to solve this contradiction, in this example, the shape is not changed, and an arbitrary numerical value is assigned to the internal data only as internal data, and the non-manifold part is also a finite distance. By recognizing that it is separated by (arbitrary numerical value)! / Cutter, the trouble at the time of data conversion processing is solved. When converting 3D CAD data to an intermediate file for other tools as in the past, data with non-manifold defects will be processed to correct the 3D model because the shape will be broken on the receiver side. As a result, the development process becomes complicated and takes a long time. The number of man-hours can be reduced.
産業上の利用可能性  Industrial applicability
[0049] 本発明は、 3次元 CADデータをデータ変換処理により各種中間データに変換する 際に適用可能である。  [0049] The present invention is applicable when converting 3D CAD data into various intermediate data by data conversion processing.
[0050] 以上、本発明を実施例により説明したが、本発明は上記実施例に限定されるもので はなぐ本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。  [0050] Although the present invention has been described with reference to the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments, and various modifications and improvements can be made within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 3次元 CADデータをデータ変換処理により標準形式の中間ファイルに変換する 3 次元 CADデータ変換方法であって、  [1] A 3D CAD data conversion method for converting 3D CAD data into a standard intermediate file by data conversion processing.
該 3次元 CADデータ力 非多様体の部位を自動検出し、  The 3D CAD data force automatically detects non-manifold parts,
該非多様体の線接触又は点接触して 、る部位に、内部データとして(トレランス値( mm) )く (任意の数値 (mm) )≤ (トレランス値より大きな値)なる関係を満足する任意 の数値を付与して力ゝら該データ変換処理を行うことを特徴とする、 3次元 CADデータ 変換方法。  Arbitrary line data or point contact of the non-manifold has an internal data of (tolerance value (mm)) (arbitrary numerical value (mm)) ≤ (larger than tolerance value). A three-dimensional CAD data conversion method, characterized in that a numerical value is given and the data conversion process is performed.
[2] 前記トレランス値より大きな値の数値には上限が設けられていることを特徴とする、 請求項 1記載の CADデータ変換方法。  [2] The CAD data conversion method according to claim 1, wherein an upper limit is set for a numerical value larger than the tolerance value.
[3] 前記上限は 0. 1 (mm)であることを特徴とする、請求項 2記載の CADデータ変換 方法。 [3] The CAD data conversion method according to claim 2, wherein the upper limit is 0.1 (mm).
[4] 前記任意の数値は、予め設定されていることを特徴とする、請求項 1〜3のいずれ カゝ 1項記載の 3次元 CADデータ変換方法。  [4] The three-dimensional CAD data conversion method according to any one of claims 1 to 3, wherein the arbitrary numerical value is set in advance.
[5] 前記任意の数値は、前記トレランス値に基づ 、て求められることを特徴とする、請求 項 1〜3のいずれか 1項記載の 3次元 CADデータ変換方法。 5. The three-dimensional CAD data conversion method according to claim 1, wherein the arbitrary numerical value is obtained based on the tolerance value.
[6] 前記トレランス値は、 0. 00 lmmであることを特徴とする、請求項 1〜3のいずれ力 1 項記載の 3次元 CADデータ変換方法。 6. The 3D CAD data conversion method according to any one of claims 1 to 3, wherein the tolerance value is 0.00 lmm.
[7] 3次元 CADデータをデータ変換処理により標準形式の中間ファイルに変換する 3 次元 CADデータ変換装置であって、 [7] A 3D CAD data conversion device that converts 3D CAD data into a standard intermediate file by data conversion processing.
該 3次元 CADデータから非多様体の部位を自動検出する手段と、  Means for automatically detecting non-manifold parts from the 3D CAD data;
該非多様体の線接触又は点接触して 、る部位に、内部データとして(トレランス値( mm) )く (任意の数値 (mm) )≤ (トレランス値より大きな値)なる関係を満足する任意 の数値を付与して力ゝら該データ変換処理を行う手段とを備えたことを特徴とする、 3次 元 CADデータ変換装置。  Arbitrary line data or point contact of the non-manifold has an internal data of (tolerance value (mm)) (arbitrary numerical value (mm)) ≤ (larger than tolerance value). A three-dimensional CAD data conversion device comprising a means for applying a numerical value and performing the data conversion process.
[8] 前記トレランス値より大きな値の数値には上限が設けられていることを特徴とする、 請求項 7記載の CADデータ変換装置。 8. The CAD data conversion device according to claim 7, wherein an upper limit is set for a numerical value larger than the tolerance value.
[9] 前記上限は 0. 1 (mm)であることを特徴とする、請求項 8記載の CADデータ変換 装置。 9. The CAD data conversion according to claim 8, wherein the upper limit is 0.1 (mm). apparatus.
[10] 前記任意の数値は、予め設定されて ヽることを特徴とする、請求項 7〜9の 、ずれ カゝ 1項記載の 3次元 CADデータ変換方法。  10. The three-dimensional CAD data conversion method according to claim 7, wherein the arbitrary numerical value is set in advance.
[11] 前記任意の数値は、前記トレランス値に基づいて求められることを特徴とする、請求 項 7〜9のいずれか 1項記載の 3次元 CADデータ変換装置。 [11] The three-dimensional CAD data conversion device according to any one of claims 7 to 9, wherein the arbitrary numerical value is obtained based on the tolerance value.
[12] 前記トレランス値は、 0. 00 lmmであることを特徴とする、請求項 7〜9のいずれ力 1 項記載の 3次元 CADデータ変換装置。 12. The three-dimensional CAD data conversion device according to any one of claims 7 to 9, wherein the tolerance value is 0.00 lmm.
[13] コンピュータに、 3次元 CADデータをデータ変換処理により標準形式の中間フアイ ルに変換させるプログラムであって、 [13] A program that allows a computer to convert 3D CAD data into a standard intermediate file using data conversion processing.
該コンピュータに、該 3次元 CADデータ力 非多様体の部位を自動検出させる手 順と、  A procedure for causing the computer to automatically detect a part of the 3D CAD data force non-manifold;
該コンピュータに、該非多様体の線接触又は点接触している部位に、内部データと して(トレランス値 (mm) )く (任意の数値 (mm) )≤ (トレランス値より大きな値)なる関 係を満足する任意の数値を付与してから該データ変換処理を行わせる手順を含むこ とを特徴とする、プログラム。  In the computer, the relationship between the line contact or point contact of the non-manifold is (tolerance value (mm)) (arbitrary numerical value (mm)) ≤ (a value greater than the tolerance value). A program characterized by including a procedure for performing the data conversion processing after assigning an arbitrary numerical value satisfying the relationship.
[14] 前記トレランス値より大きな値の数値には上限が設けられていることを特徴とする、 請求項 13記載のプログラム。 14. The program according to claim 13, wherein an upper limit is set for a numerical value larger than the tolerance value.
[15] 前記上限は 0. 1 (mm)であることを特徴とする、請求項 14記載のプログラム。 15. The program according to claim 14, wherein the upper limit is 0.1 (mm).
[16] 前記任意の数値は、予め設定されていることを特徴とする、請求項 13〜15のいず れカ 1項記載のプログラム。 [16] The program according to any one of claims 13 to 15, wherein the arbitrary numerical value is set in advance.
[17] 前記任意の数値は、前記トレランス値に基づいて求められることを特徴とする、請求 項 13〜 15のいずれ力 1項記載のプログラム。 17. The program according to any one of claims 13 to 15, wherein the arbitrary numerical value is obtained based on the tolerance value.
[18] 前記トレランス値は、 0. 00 lmmであることを特徴とする、請求項 13〜15のいずれ 力 1項記載のプログラム。 18. The program according to any one of claims 13 to 15, wherein the tolerance value is 0.00 lmm.
[19] 請求項 13〜18のいずれか記載のプログラムを格納したことを特徴とする、コンビュ ータ読み取り可能な記憶媒体。 [19] A computer-readable storage medium, wherein the program according to any one of claims 13 to 18 is stored.
PCT/JP2005/011266 2005-06-20 2005-06-20 3d cad data conversion method, device, and program WO2006137115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011266 WO2006137115A1 (en) 2005-06-20 2005-06-20 3d cad data conversion method, device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011266 WO2006137115A1 (en) 2005-06-20 2005-06-20 3d cad data conversion method, device, and program

Publications (1)

Publication Number Publication Date
WO2006137115A1 true WO2006137115A1 (en) 2006-12-28

Family

ID=37570168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011266 WO2006137115A1 (en) 2005-06-20 2005-06-20 3d cad data conversion method, device, and program

Country Status (1)

Country Link
WO (1) WO2006137115A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105335928A (en) * 2015-12-12 2016-02-17 长沙乐购网络科技有限公司 Method and system for reusing materials for cartoon games
JP2019100649A (en) * 2017-12-05 2019-06-24 日立グローバルライフソリューションズ株式会社 refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISOGAI K.: "Fuguai no aru Data e Keijo Betsu ni Taio suru", NIKKEI DIGITAL ENGINEERING, JAPAN, NIKKEI BUSINESS PUBLICATIONS, INC., no. 37, 15 December 2000 (2000-12-15), pages 110 - 113, XP003006120 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105335928A (en) * 2015-12-12 2016-02-17 长沙乐购网络科技有限公司 Method and system for reusing materials for cartoon games
JP2019100649A (en) * 2017-12-05 2019-06-24 日立グローバルライフソリューションズ株式会社 refrigerator

Similar Documents

Publication Publication Date Title
US20240168460A1 (en) Conversion of mesh geometry to editable and watertight boundary representation in computer aided design
JP5272025B2 (en) Method for analyzing structural response of an object, computer for processing a computer program for executing computer software encoding the method, and computer-readable storage medium storing the computer program
Jun et al. A new curve-based approach to polyhedral machining
US8180605B1 (en) Methods and systems for creating a smooth contact-impact interface in finite element analysis
JP2007533465A (en) How to design creases in sheet material
Gu et al. Identifying, correcting, and avoiding errors in computer-aided design models which affect interoperability
Chen et al. A tool path generation strategy for sculptured surfaces machining
Lee et al. Rolling-ball method and contour marching approach to identifying critical regions for complex surface machining
US7372462B2 (en) Three-dimensional geometry processing system and method for CAD apparatus restricted in surface representations to import solid data
WO2006137115A1 (en) 3d cad data conversion method, device, and program
JP2004157724A (en) Analytic model conversion method
JP2012053556A (en) Analysis model generation method, structure analysis method, program, and analyzer
JP3593447B2 (en) Design support method and apparatus
US20060059855A1 (en) Computational geometry design for sheet metal machinery corner
JP4269652B2 (en) Crack display method
JP2011034505A (en) Design support apparatus and design support method
van den Berg et al. Validity maintenance for freeform feature modeling
JP2010044440A (en) Three-dimensional shape processing apparatus and processing method
JP2007331500A (en) Creation method of simulation model of pneumatic tire and program for making computer execute creation method
JP2000123199A (en) Device and method for cutting three-dimensional shape and storage medium storing cutting processing program
JP3903334B2 (en) 3D shape creation device
JP5383370B2 (en) Analytical model creation apparatus and analytical model creation method
JP2006059014A (en) Device for calculating distance of three-dimensional cad data and measured three-dimensional data, distance calculating method, and its program
JPH1185833A (en) Three-dimensional sheet metal cad-to-cam converter and record medium recorded with program of the converter
Kulkarni et al. Computation of midsurface by feature-based simplification–abstraction–decomposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05751368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP