JP2006059014A - Device for calculating distance of three-dimensional cad data and measured three-dimensional data, distance calculating method, and its program - Google Patents

Device for calculating distance of three-dimensional cad data and measured three-dimensional data, distance calculating method, and its program Download PDF

Info

Publication number
JP2006059014A
JP2006059014A JP2004238371A JP2004238371A JP2006059014A JP 2006059014 A JP2006059014 A JP 2006059014A JP 2004238371 A JP2004238371 A JP 2004238371A JP 2004238371 A JP2004238371 A JP 2004238371A JP 2006059014 A JP2006059014 A JP 2006059014A
Authority
JP
Japan
Prior art keywords
design reference
reference plane
dimensional
dimensional data
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004238371A
Other languages
Japanese (ja)
Inventor
Takashi Akasaka
貴志 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004238371A priority Critical patent/JP2006059014A/en
Publication of JP2006059014A publication Critical patent/JP2006059014A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve shape evaluation in relation between a design reference surface and its slave surface concerning the whole surfaces of a three-dimensional shape object having not less than two design reference surfaces in a coaxial direction. <P>SOLUTION: A distance calculating device positions the three-dimensional CAD data and measured three-dimensional data of the three-dimensional shape object so as to calculate mutual distances. A three-dimensional CAD data storage means 6 stores the design reference surface and the slave surface, to which relating information for marking the design reference surface is given, as the three-dimensional CAD data. A measured three-dimensional data storage means 7 stores the measured three-dimensional data, and also, stores information which is obtained by relating the measured three-dimensional data to the design reference surface and the slave surface, respectively, by a relating means 8. A positioning means 9 positions the measured three-dimensional data on the basis of the design reference surface and the measured three-dimensional data related to the deign reference surface. A distance calculating means 10 calculates the distance between the positioned slave surface and the measured three-dimensional data related to the slave surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、成形品等の3次元形状物の形状評価や合否判定に用いられ、3次元形状物の3次元CADデータと測定3次元データを位置合わせして互いの距離を算出する3次元CADデータと測定3次元データの距離算出装置、距離算出方法及び距離算出プログラムに関する。   The present invention is used for, for example, shape evaluation and pass / fail judgment of a three-dimensional shaped object such as a molded product, and calculates the distance between the three-dimensional CAD data of the three-dimensional shaped object and the measured three-dimensional data. The present invention relates to a distance calculation device, a distance calculation method, and a distance calculation program for dimensional CAD data and measured three-dimensional data.

従来から、3次元CADデータに基づいて加工された3次元形状物を、該3次元CADデータと比較して加工精度を評価する場合に、前記3次元形状物を3次元空間座標で表される点の集合に変換し、各点と3次元CADデータを重ね合わせて互いの距離を算出する方法が採用されている。(例えば、特許文献1)。   Conventionally, when a processing accuracy is evaluated by comparing a three-dimensional object processed based on three-dimensional CAD data with the three-dimensional CAD data, the three-dimensional object is represented by three-dimensional space coordinates. A method is employed in which each point is converted into a set of points and the distance between each point and three-dimensional CAD data is calculated to calculate each other's distance. (For example, patent document 1).

詳述すると、まず、接触式3次元測定装置又は非接触式3次元測定装置等により、3次元形状物の表面形状をスキャンして3次元空間座標値を取得し、これを測定3次元データとする。次いで、前記3次元形状物の3次元CADデータの立体画像と、前記測定3次元データの各点により形成される立体画像とをモニタ等に表示させる。   More specifically, first, the surface shape of a three-dimensional object is scanned by a contact-type three-dimensional measurement device or a non-contact-type three-dimensional measurement device to obtain a three-dimensional spatial coordinate value, and this is obtained as measurement three-dimensional data. To do. Next, a three-dimensional image of the three-dimensional CAD data of the three-dimensional object and a three-dimensional image formed by each point of the measurement three-dimensional data are displayed on a monitor or the like.

次いで、前記3次元CADデータの立体画像の異なる軸方向の任意の3面について、前記3次元CADデータとの距離の2乗和が最小となる位置に、前記測定3次元データを移動する。このように前記測定3次元データを3次元CADデータに対して移動させる作業を位置合わせといい、該位置合わせの基準となる面、すなわち、前記測定3次元データとの距離の誤差2乗和を最小にする面に、前記3次元CADデータの設計基準面を使用する。   Next, the measurement three-dimensional data is moved to a position where the sum of squares of the distance to the three-dimensional CAD data is minimized for any three surfaces in different axial directions of the stereoscopic image of the three-dimensional CAD data. The operation of moving the measured three-dimensional data with respect to the three-dimensional CAD data is referred to as alignment, and the error sum of squares of the distance from the surface serving as a reference for the alignment, that is, the measured three-dimensional data is calculated. The design reference plane of the three-dimensional CAD data is used as the plane to be minimized.

ここで、一般に設計基準面とは、現実の3次元形状物を設計するにあたって、該3次元形状物を構成する各面の寸法定義等において基準となる面をいう。また、3次元CADデータの設計基準面とは、前記3次元形状物の設計基準面に対応する3次元CADデータをいい、測定3次元データを位置合わせする際の基準となる面である(例えば、特許文献2)。さらに、前記3次元形状物の各面のうち、設計基準面を基準に寸法定義等される面を従属面という。   Here, in general, the design reference plane refers to a plane that serves as a reference in defining the dimensions of each surface constituting the three-dimensional shape object when designing an actual three-dimensional shape object. The design reference plane of the three-dimensional CAD data refers to the three-dimensional CAD data corresponding to the design reference plane of the three-dimensional shape object, and is a plane that serves as a reference when aligning the measured three-dimensional data (for example, Patent Document 2). Further, among the surfaces of the three-dimensional shape object, a surface whose dimension is defined based on the design reference surface is referred to as a dependent surface.

その後、上記のように位置合わせした前記3次元CADデータと測定3次元データを比較し、前記3次元CADデータに対する前記測定3次元データの距離に基づいて加工精度を求める。なお、必要な場合は、前記3次元CADデータと測定3次元データの距離に応じて色分け等し、ユーザに評価結果を視認可能に表示することが行われる。
特許3057960号公報 特開2001−82951号公報
Thereafter, the three-dimensional CAD data aligned as described above and the measured three-dimensional data are compared, and processing accuracy is obtained based on the distance of the measured three-dimensional data with respect to the three-dimensional CAD data. If necessary, the evaluation result is displayed to the user so that the evaluation result can be visually recognized by color-coding according to the distance between the three-dimensional CAD data and the measured three-dimensional data.
Japanese Patent No. 30579960 JP 2001-82951 A

しかし、上述した従来の3次元形状の評価方法では、加工精度の評価対象となる3次元形状物が、同軸方向に複数の設計基準面を現実に有し、且つ該3次元形状物に寸法誤差があった場合に、各従属面からそれぞれに対応する3次元CADデータまでの距離を算出して該寸法誤差を評価することはできるが、3次元CADデータと測定3次元データの位置合わせの基準とならない設計基準面からその従属面までの寸法が適正か否かまで評価することができないという問題があった。   However, in the conventional three-dimensional shape evaluation method described above, the three-dimensional shape object to be evaluated for machining accuracy actually has a plurality of design reference planes in the coaxial direction, and the three-dimensional shape object has a dimensional error. In the case where there is an error, the distance from each dependent surface to the corresponding three-dimensional CAD data can be calculated and the dimensional error can be evaluated, but the reference for the alignment of the three-dimensional CAD data and the measured three-dimensional data There is a problem that it is impossible to evaluate whether or not the dimension from the design reference plane that does not become the dependent plane is appropriate.

例えば、図3A、B、Cに示すように、3次元形状物が、直方体の上面に角穴を形成した形状であると仮定する。該3次元形状物の面Bと面Cは面Aを基準に寸法定義等してあり、面Dは面Cを基準に寸法定義等してある。すなわち、面Aと面Cはそれぞれ設計基準面であり、面Bと面Cは面Aの従属面、面Dは面Cの従属面である。   For example, as shown in FIGS. 3A, 3B, and 3C, it is assumed that the three-dimensional shape has a shape in which square holes are formed on the upper surface of a rectangular parallelepiped. The surface B and the surface C of the three-dimensionally shaped object are dimensionally defined based on the surface A, and the surface D is dimensionally defined based on the surface C. That is, surface A and surface C are design reference surfaces, surface B and surface C are dependent surfaces of surface A, and surface D is a dependent surface of surface C.

このような前提において、該3次元形状物の角穴が、図示しない角材を挿通するに適した寸法に加工されているか否か形状評価するためには、該角穴を構成するC面からD面までの距離を算出して、これが許容範囲内であるか否か評価する必要がある。   Under such a premise, in order to evaluate the shape of whether or not the square hole of the three-dimensional shape has been machined to a size suitable for inserting a square member (not shown), it is necessary to determine from the C plane that forms the square hole to D It is necessary to calculate the distance to the surface and evaluate whether this is within the allowable range.

ところが、上述した従来の3次元形状の評価方法では、2つの設計基準面である面Aと面Cのうち、面Aのみを基準にして該3次元形状物の3次元CADデータと測定3次元データを位置合わせしていたので、例えば、前記3次元形状物の面Aと面Cの間に寸法誤差があった場合には、該寸法誤差が位置合わせの工程において面Aの従属面である面C,面Dまでにも及んでしまう。このため、たとえ面Cから面Dまでの寸法が許容範囲内に加工されていたとしても、測定3次元データと3次元CADデータの距離に基づいて一律に不良と評価されてしまい、位置合わせの基準とならない設計基準面からその従属面までの寸法を適正に評価することができなかった。   However, in the above-described conventional three-dimensional shape evaluation method, the three-dimensional CAD data and the measured three-dimensional shape of the three-dimensional shape object based on only the surface A out of the two design reference surfaces A and C. Since the data is aligned, for example, when there is a dimensional error between the surface A and the surface C of the three-dimensional shape object, the dimensional error is a dependent surface of the surface A in the alignment process. It extends to plane C and plane D. For this reason, even if the dimension from the surface C to the surface D is processed within the allowable range, it is uniformly evaluated as defective based on the distance between the measured three-dimensional data and the three-dimensional CAD data. It was not possible to properly evaluate the dimensions from the design reference plane, which is not the reference, to the dependent plane.

本発明は、上記問題点に鑑みてなされたものであり、同軸方向に複数の設計基準面を有する3次元形状物の全ての面について適正な形状評価を行うことができる3次元CADデータと測定3次元データの距離算出装置、距離算出方法及び距離算出プログラムを提供することを目的とする。   The present invention has been made in view of the above problems, and 3D CAD data and measurement capable of performing appropriate shape evaluation on all surfaces of a 3D shape object having a plurality of design reference surfaces in the coaxial direction. It is an object to provide a distance calculation device, a distance calculation method, and a distance calculation program for three-dimensional data.

上記目的を達成するために、本発明の3次元CADデータと測定3次元データの距離算出装置は、3次元形状物の3次元CADデータと測定3次元データを位置合わせして互いの距離を算出する3次元CADデータと測定3次元データの距離算出装置において、設計基準面、及び該設計基準面を標示する関連付け情報を付与した従属面を、前記3次元CADデータとして記憶する3次元CADデータ記憶手段と、前記測定3次元データを記憶する測定3次元データ記憶手段と、前記測定3次元データを前記設計基準面又は従属面とそれぞれ対応付けした情報を前記測定3次元データ記憶手段に記憶させる対応付け手段と、前記設計基準面、及び該設計基準面に対応付けた前記測定3次元データを基準とし、前記設計基準面と該設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする位置合わせ手段と、位置合わせした前記従属面と該従属面に対応付けた測定3次元データの距離を算出する距離算出手段とを備えた構成としてある。   In order to achieve the above object, the distance calculation apparatus for 3D CAD data and measured 3D data according to the present invention calculates the distance between the 3D CAD data and the measured 3D data of a 3D shape object by aligning them. 3D CAD data storage for storing a design reference plane and a dependent plane provided with association information for indicating the design reference plane as the three-dimensional CAD data in a distance calculation apparatus between the three-dimensional CAD data to be measured and the measured three-dimensional data And means for storing the measurement three-dimensional data storage means for storing the measurement three-dimensional data, and information for associating the measurement three-dimensional data with the design reference plane or the dependent plane, respectively, in the measurement three-dimensional data storage means The design reference plane and the design reference plane are matched with the design reference plane and the design three-dimensional data associated with the design reference plane. Alignment means for aligning the attached measurement three-dimensional data, the dependent surface and the measurement three-dimensional data associated with the dependent surface, the measured dependent surface and the measurement 3 associated with the dependent surface A distance calculating means for calculating the distance of the dimension data is provided.

好ましくは、前記位置合わせ手段が、前記設計基準面と該設計基準面に対応付けた前記測定3次元データの距離が最小となるように、前記設計基準面、該設計基準面に対応付けた前記測定3次元データ、前記従属面、該従属面に対応付けた前記測定3次元データの位置を座標変換するとともに、前記距離算出手段が、変換後の座標に基づいて、前記従属面と該従属面に対応付けた前記測定3次元データの距離を算出する構成とする。   Preferably, the positioning means associates the design reference plane with the design reference plane so that a distance between the design reference plane and the measurement three-dimensional data associated with the design reference plane is minimized. The coordinate calculation is performed on the measurement three-dimensional data, the dependent surface, and the position of the measurement three-dimensional data associated with the dependent surface, and the distance calculation unit is configured to convert the dependent surface and the dependent surface based on the converted coordinates. The distance of the measurement three-dimensional data associated with is calculated.

好ましくは、前記3次元CADデータ記憶手段が、複数の前記設計基準面を記憶するとともに、一の設計基準面を標示する関連付け情報を他の設計基準面に付与し、前記位置合わせ手段が、前記一の設計基準面及び該一の設計基準面に対応付けた前記測定3次元データを基準として、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データ及び前記一の設計基準面に関連付けた従属面と該従属面に対応する前記測定3次元データとを位置合わせするとともに、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データを基準として、該他の設計基準面に関連付けた従属面と該従属面に対応する前記測定3次元データを位置合わせする構成とする。   Preferably, the three-dimensional CAD data storage means stores a plurality of the design reference planes, assigns association information indicating one design reference plane to another design reference plane, and the positioning means Using the one design reference plane and the measurement three-dimensional data associated with the one design reference plane as a reference, the other design reference plane and the three-dimensional measurement data associated with the other design reference plane and the one design reference plane The dependent plane associated with the design reference plane is aligned with the measurement three-dimensional data corresponding to the dependent plane, and the measurement three-dimensional data associated with the other design reference plane and the other design reference plane Is used as a reference, and a dependent surface associated with the other design reference surface is aligned with the measurement three-dimensional data corresponding to the dependent surface.

好ましくは、前記設計基準面を複数記憶するとともに、一の設計基準面を標示する関連付け情報を他の設計基準面に付与した前記3次元CADデータ記憶手段と、前記一の設計基準面、及び該一の設計基準面に対応付けた前記測定3次元データを基準とし、前記一の設計基準面と該一の設計基準面に対応付けた前記測定3次元データ、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする前記位置合わせ手段と、位置合わせした前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離を算出する補正距離算出手段と、位置合わせした前記従属面と該従属面に対応付けた前記測定3次元データの距離を算出する距離算出手段と、前記補正距離算出手段が算出した距離に基づいて、前記距離算出手段が算出した距離を補正する補正手段とを備えた構成とする。   Preferably, a plurality of the design reference planes are stored, and the three-dimensional CAD data storage means in which association information indicating one design reference plane is given to another design reference plane, the one design reference plane, and the Using the three-dimensional measurement data associated with one design reference plane as a reference, the one design reference plane and the three-dimensional measurement data associated with the one design reference plane, the other design reference plane and the other The measurement three-dimensional data associated with the design reference plane, and the alignment means for aligning the dependent plane and the measurement three-dimensional data associated with the dependent plane, and the other design reference plane aligned Correction distance calculating means for calculating a distance between the measured three-dimensional data associated with the other design reference plane, and calculating the distance between the aligned dependent plane and the measured three-dimensional data associated with the dependent plane Distance A calculation unit, on the basis of the corrected distance distance calculating means is calculated, a structure in which a correcting means for correcting the distance which the distance calculating means has calculated.

好ましくは、前記補正距離算出手段が、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの平均距離を算出するとともに、前記補正手段が、前記距離算出手段の算出した距離に、前記補正距離算出手段の算出した平均距離を加減することにより補正する構成とする。   Preferably, the correction distance calculation unit calculates an average distance between the other design reference plane and the measurement three-dimensional data associated with the other design reference plane, and the correction unit includes the distance calculation unit The calculated distance is corrected by adding or subtracting the average distance calculated by the correction distance calculating means.

好ましくは、前記設計基準面と従属面の関連付け情報、前記一と他の設計基準面の関連付け情報を3次元CADデータに含めた構成、又は、前記設計基準面と従属面の関連付け情報、前記一と他の設計基準面の関連付け情報を入力する入力手段を備えた構成とする。   Preferably, the design reference plane and dependent plane association information, the configuration in which the one and other design reference plane association information is included in three-dimensional CAD data, or the design reference plane and dependent plane association information, And an input means for inputting association information between other design reference planes.

また、上記目的を達成するために、本発明の3次元CADデータと測定3次元データの距離算出方法は、3次元形状物の3次元CADデータと測定3次元データを位置合わせして互いの距離を算出する3次元CADデータと測定3次元データの距離算出方法において、設計基準面、及び該設計基準面を標示する関連付け情報を付与した従属面を、前記3次元CADデータとして記憶する工程と、前記測定3次元データを記憶する工程と、前記測定3次元データを前記設計基準面又は従属面とそれぞれ対応付けした情報を記憶する工程と、前記設計基準面、及び該設計基準面に対応付けた前記測定3次元データを基準とし、前記設計基準面と該設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする工程と、位置合わせした前記従属面と該従属面に対応付けた測定3次元データの距離を算出する工程とを含む手順としてある。   In order to achieve the above object, the distance calculation method between the three-dimensional CAD data and the measured three-dimensional data according to the present invention aligns the three-dimensional CAD data of the three-dimensional shape object and the measured three-dimensional data, and distances each other. Storing a design reference plane and a dependent plane to which association information indicating the design reference plane is added as the three-dimensional CAD data in the distance calculation method between the three-dimensional CAD data and the measured three-dimensional data. Storing the measurement three-dimensional data, storing information in which the measurement three-dimensional data is associated with the design reference plane or the dependent plane, the design reference plane, and the design reference plane Using the measurement three-dimensional data as a reference, the measurement reference surface and the measurement three-dimensional data associated with the design reference surface, and the measurement 3 associated with the dependent surface and the dependent surface Aligning the original data, there a procedure comprising the step of calculating the distance measured three-dimensional data associated with the slave surface and the driven metal surface which aligned.

好ましくは、前記設計基準面を複数記憶するとともに、一の設計基準面を標示する関連付け情報を他の設計基準面に付与する工程と、前記一の設計基準面、及び該一の設計基準面に対応付けた前記測定3次元データを基準とし、前記一の設計基準面と該一の設計基準面に対応付けた前記測定3次元データ、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする工程と、位置合わせした前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離を算出する工程と、位置合わせした前記従属面と該従属面に対応付けた前記測定3次元データの距離を算出する工程と、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離に基づいて、前記従属面と該従属面に対応付けた前記測定3次元データの距離を補正する工程とを含む手順とする。   Preferably, a plurality of the design reference planes are stored, association information indicating one design reference plane is given to another design reference plane, the one design reference plane, and the one design reference plane Corresponding to the one design reference plane and the one measurement reference plane, the other design reference plane and the other design reference plane based on the corresponding measurement three-dimensional data The measured three-dimensional data attached, and the step of aligning the dependent plane and the measured three-dimensional data associated with the dependent plane; corresponding to the aligned other design reference plane and the other design reference plane Calculating the distance of the attached measurement three-dimensional data, calculating the distance between the aligned dependent surface and the measurement three-dimensional data associated with the dependent surface, the other design reference plane, Map to other design reference plane Based on the distance of the measuring three-dimensional data, the procedure including the step of correcting the distance of the measured three-dimensional data associated with the slave surface and the driven metal surface.

さらに、上記目的を達成するために、本発明の3次元CADデータと測定3次元データの距離算出プログラムは、3次元形状物の3次元CADデータと測定3次元データを位置合わせして互いの距離を算出する3次元CADデータと測定3次元データの距離を算出することをコンピュータに実行させるプログラムにおいて、設計基準面、及び該設計基準面を標示する関連付け情報を付与した従属面を、前記3次元CADデータとして記憶する工程と、前記測定3次元データを記憶する工程と、前記測定3次元データを前記設計基準面又は従属面とそれぞれ対応付けした情報を記憶する工程と、前記設計基準面、及び該設計基準面に対応付けた前記測定3次元データを基準とし、前記設計基準面と該設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする工程と、位置合わせした前記従属面と該従属面に対応付けた測定3次元データの距離を算出する工程とをコンピュータに実行させるようにしてある。   Furthermore, in order to achieve the above object, the distance calculation program for the three-dimensional CAD data and the measured three-dimensional data according to the present invention aligns the three-dimensional CAD data and the measured three-dimensional data of the three-dimensional shape object to each other. In the program for causing a computer to calculate the distance between the three-dimensional CAD data for calculating and the measured three-dimensional data, the design reference plane and the dependent plane to which the association information indicating the design reference plane is given Storing as CAD data; storing the measurement three-dimensional data; storing information in which the measurement three-dimensional data is associated with the design reference plane or the dependent plane; and the design reference plane; Using the measurement three-dimensional data associated with the design reference plane as a reference, the design reference plane and the measurement three-dimensional data associated with the design reference plane And a step of aligning the dependent surface and the measured three-dimensional data associated with the dependent surface, and calculating a distance between the aligned dependent surface and the measured three-dimensional data associated with the dependent surface; Is executed on a computer.

好ましくは、前記設計基準面を複数記憶するとともに、一の設計基準面を標示する関連付け情報を他の設計基準面に付与する工程と、前記一の設計基準面、及び該一の設計基準面に対応付けた前記測定3次元データを基準とし、前記一の設計基準面と該一の設計基準面に対応付けた前記測定3次元データ、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする工程と、位置合わせした前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離を算出する工程と、位置合わせした前記従属面と該従属面に対応付けた前記測定3次元データの距離を算出する工程と、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離に基づいて、前記従属面と該従属面に対応付けた前記測定3次元データの距離を補正する工程とをコンピュータに実行させるようにする。   Preferably, a plurality of the design reference planes are stored, association information indicating one design reference plane is given to another design reference plane, the one design reference plane, and the one design reference plane Corresponding to the one design reference plane and the one measurement reference plane, the other design reference plane and the other design reference plane based on the corresponding measurement three-dimensional data The measured three-dimensional data attached, and the step of aligning the dependent plane and the measured three-dimensional data associated with the dependent plane; corresponding to the aligned other design reference plane and the other design reference plane Calculating the distance of the attached measurement three-dimensional data, calculating the distance between the aligned dependent surface and the measurement three-dimensional data associated with the dependent surface, the other design reference plane, Map to other design reference plane Based on the distance of the measuring three-dimensional data, so as to execute a step of correcting the distance of the measured three-dimensional data associated with the slave surface and the driven metal surface on the computer.

本発明の3次元CADデータと測定3次元データの距離算出装置、距離算出方法及び距離算出プログラムによれば、加工精度の評価対象となる3次元形状物が、同軸方向に複数の設計基準面を有する場合でも、3次元CADデータとしての設計基準面と従属面、又は設計基準面どうしの関連付け情報を、3次元CADデータと測定3次元データの位置合わせ、及び3次元CADデータと測定3次元データの距離算出に用いることにより、設計基準面とその従属面の関係における形状評価の適正化を図ることができる。   According to the distance calculation apparatus, the distance calculation method, and the distance calculation program for the three-dimensional CAD data and the measured three-dimensional data according to the present invention, the three-dimensional shape object to be evaluated for machining accuracy has a plurality of design reference planes in the coaxial direction. Even if it has, associating information between design reference plane and dependent plane as 3D CAD data, or design reference plane, alignment of 3D CAD data and measurement 3D data, and 3D CAD data and measurement 3D data Therefore, it is possible to optimize the shape evaluation in the relationship between the design reference plane and its dependent plane.

以下、本発明の3次元CADデータと測定3次元データの距離算出装置、距離算出方法及び距離算出プログラムの好適な実施の形態について、図面を参照しながら詳細に説明する。
<実施形態1>
図1は、本実施形態に係る3次元CADデータと測定3次元データの距離算出装置を示すブロック図である。同図において、本距離算出装置1は、CPU2、メモリ3、入力手段4、出力手段5、3次元CADデータ記憶手段6、測定3次元データ記憶手段7、対応付け手段8、位置合わせ手段9及び距離算出手段10を備えた構成としてあり、CAD装置11、測定3次元データ取得装置12と接続してある。これらの装置は、互いにケーブルや無線によるLAN等のネットワークで接続するか、ディスク等の可搬記録媒体によってデータの授受が可能となっている。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a distance calculation apparatus, a distance calculation method, and a distance calculation program for 3D CAD data and measurement 3D data according to the present invention will be described in detail with reference to the drawings.
<Embodiment 1>
FIG. 1 is a block diagram showing a distance calculation apparatus for 3D CAD data and measured 3D data according to the present embodiment. In this figure, the distance calculation device 1 includes a CPU 2, a memory 3, an input means 4, an output means 5, a three-dimensional CAD data storage means 6, a measurement three-dimensional data storage means 7, an association means 8, an alignment means 9 and The distance calculation means 10 is provided, which is connected to a CAD device 11 and a measurement three-dimensional data acquisition device 12. These devices can be connected to each other via a network such as a cable or a wireless LAN, or can exchange data with a portable recording medium such as a disk.

CAD装置11としては、3次元CADソフトの実行可能なパーソナルコンピュータ又はワークステーション等の情報処理装置を用いることができる。測定3次元データ取得装置12として、例えば、プローブ式3次元測定装置、レーザ式3次元デジタイザ、カメラ式3次元デジタイザ等を用いることができる。該測定3次元データ取得装置12により、例えば、様々な機器の部品及びその筐体等の3次元形状物をスキャンすることで、該3次元形状物が、3次元座標を有する点データの集合である測定3次元データとされる。なお、本実施形態では、測定3次元データを点データとしたが、これに限定されるものではなく、測定3次元データとして線データ、面データ等を用いる場合であっても、本発明の適用が可能である。   As the CAD apparatus 11, an information processing apparatus such as a personal computer or a workstation capable of executing three-dimensional CAD software can be used. As the measurement three-dimensional data acquisition device 12, for example, a probe-type three-dimensional measurement device, a laser-type three-dimensional digitizer, a camera-type three-dimensional digitizer, or the like can be used. The measurement three-dimensional data acquisition device 12 scans a three-dimensional object such as a component of various equipment and its housing, for example, so that the three-dimensional object is a set of point data having three-dimensional coordinates. Some measured three-dimensional data is used. In this embodiment, the measurement three-dimensional data is point data. However, the present invention is not limited to this, and the present invention can be applied even when line data, surface data, or the like is used as the measurement three-dimensional data. Is possible.

このような距離算出装置1は、パーソナルコンピュータ又はワークステーション等の情報処理装置によって実現される。CPU2は、メモリ3に格納された制御プログラムを実行させることにより、距離算出装置1全体を制御する。メモリ3は、制御プログラムのほか、CAD装置11又は測定3次元データ取得装置12から読み込んだデータを格納する。入力手段4は、例えば、キーボードやポインティングデバイス等の、ユーザがデータを入力するための手段である。出力手段5は、例えば、液晶ディスプレイやCRTディスプレイ等のモニタ等であり、3次元CADデータ、測定3次元データ、評価の結果等のデータを出力する。   Such a distance calculation device 1 is realized by an information processing device such as a personal computer or a workstation. The CPU 2 controls the entire distance calculation device 1 by executing a control program stored in the memory 3. In addition to the control program, the memory 3 stores data read from the CAD device 11 or the measurement three-dimensional data acquisition device 12. The input unit 4 is a unit for the user to input data, such as a keyboard or a pointing device. The output means 5 is, for example, a monitor such as a liquid crystal display or a CRT display, and outputs data such as three-dimensional CAD data, measurement three-dimensional data, and evaluation results.

3次元CADデータ記憶手段6は、3次元形状物の設計基準面、及び該設計基準面を標示する関連付け情報を付与した従属面を、3次元CADデータとして記憶する。測定3次元データ記憶手段7は、測定3次元データを記憶する。対応付け手段8は、測定3次元データを設計基準面又は従属面とそれぞれ対応付け、該対応付け情報を測定3次元データ記憶手段に記憶させる。位置合わせ手段9は、設計基準面、及び該設計基準面に対応付けた測定3次元データを基準とし、設計基準面と該設計基準面に対応付けた前記測定3次元データ、及び従属面と該従属面に対応付けた測定3次元データを位置合わせする。距離算出手段10は、位置合わせした従属面と該従属面に対応付けた測定3次元データの距離を算出する。   The three-dimensional CAD data storage means 6 stores, as three-dimensional CAD data, a design reference surface of a three-dimensional shape object and a dependent surface to which association information indicating the design reference surface is given. The measurement three-dimensional data storage means 7 stores measurement three-dimensional data. The association unit 8 associates the measurement three-dimensional data with the design reference plane or the dependent plane, and stores the association information in the measurement three-dimensional data storage unit. The alignment means 9 uses the design reference plane and the measurement three-dimensional data associated with the design reference plane as a reference, the design reference plane, the measurement three-dimensional data associated with the design reference plane, the dependent plane, and the The measurement three-dimensional data associated with the dependent plane is aligned. The distance calculation means 10 calculates the distance between the aligned dependent surface and the measured three-dimensional data associated with the dependent surface.

図2は、本実施形態に係る3次元形状評価装置の動作を表すフローチャートである。以下、同図を参照して3次元CADデータと測定3次元データとの距離算出処理の概要を説明する。   FIG. 2 is a flowchart showing the operation of the three-dimensional shape evaluation apparatus according to this embodiment. The outline of the distance calculation process between the three-dimensional CAD data and the measured three-dimensional data will be described below with reference to FIG.

まず、ステップS1で、3次元CADデータの読み込みを行う。CAD装置11から、3次元形状物の設計データである3次元CADデータを、LAN等のネットワーク又は記録媒体等を介し、メモリ3に記憶させる。   First, in step S1, 3D CAD data is read. Three-dimensional CAD data, which is design data for a three-dimensional object, is stored in the memory 3 from the CAD device 11 via a network such as a LAN or a recording medium.

次に、ステップS2で、測定3次元データの読み込みを行う。測定3次元データ取得装置12から、実際に加工された3次元形状物についてスキャンして取得された測定3次元データを、LAN等のネットワーク又は記録媒体等を介して、メモリ3に記憶させる。   Next, in step S2, the measurement three-dimensional data is read. The measurement three-dimensional data acquired by scanning the actually processed three-dimensional shape object from the measurement three-dimensional data acquisition device 12 is stored in the memory 3 via a network such as a LAN or a recording medium.

ステップS3では、3次元CADデータの従属面を選択し、次に、該従属面を設計するために使用した設計基準面を選択する。この処理により選択された従属面は、選択された設計基準面を使用して設計されたという関連付けがされる。なお、設計基準面を標示する関連付け情報については、3次元CADデータに予め含まれることとしてもよいし、キーボード等の入力手段から入力されることとしてもよい。   In step S3, a dependent surface of the three-dimensional CAD data is selected, and then a design reference surface used for designing the dependent surface is selected. The dependent surface selected by this process is associated with the design of the selected design reference surface. The association information indicating the design reference plane may be included in the three-dimensional CAD data in advance or may be input from an input unit such as a keyboard.

図3A、3B及び3Cは、設計基準面、該設計基準面を基準に寸法定義等して設計された従属面を説明するための図面であり、図3Aは3次元形状物の斜視図、図3Bは図3Aの3次元形状物の上面図、図3Cは図3Aの側面図である。   3A, 3B, and 3C are drawings for explaining a design reference plane and a dependent plane that is designed by defining a dimension based on the design reference plane. FIG. 3A is a perspective view of a three-dimensional shape object. 3B is a top view of the three-dimensional shape object of FIG. 3A, and FIG. 3C is a side view of FIG. 3A.

これら図面において、面A、該面Aと対向する面B、凹部で面Aと平行な面C及び面Dがある。面Cは面Dよりも面Aに近い側にある。面Bと面Cとは面Aからの距離で形状を評価し、面Dは面Cからの距離で形状を評価する、と仮定する。この場合、該3次元形状物の面Bと面Cは面Aを基準に寸法定義等してあり、面Dは面Cを基準に寸法定義等してある。すなわち、面Aと面Cはそれぞれ設計基準面であり、面Bと面Cは面Aの従属面、面Dは面Cの従属面である。   In these drawings, there are a surface A, a surface B opposed to the surface A, a surface C and a surface D parallel to the surface A at the concave portions. The plane C is closer to the plane A than the plane D. It is assumed that the surface B and the surface C are evaluated by the distance from the surface A, and the surface D is evaluated by the distance from the surface C. In this case, the surface B and the surface C of the three-dimensionally shaped object are dimensionally defined with respect to the surface A, and the surface D is dimensionally defined with respect to the surface C. That is, surface A and surface C are design reference surfaces, surface B and surface C are dependent surfaces of surface A, and surface D is a dependent surface of surface C.

ユーザが、モニタ等に表示された3次元CADデータを、ポインティングデバイス等を介して従属面、及び該従属面を設計するために使用した設計基準面を選択する。選択された従属面についての形状評価は、その次に選択された設計基準面からの距離に基づいてなされる。ここで、全ての従属面について設計基準面との関連付けを行うのであるが、上述のしたA面(一の設計基準面)とC面(他の設計基準面)のように、従属関係のある複数の設計基準面がある場合は、これら設計基準面どうしを関連付けする。例えば、図3Aにおいて、面Cは、面Dの設計基準面であるけれども、面C自身は面Aにより評価されるので、面Cについては、面Aを設計基準面とする従属面であるとして関連付けを行う。   The user selects the dependent surface and the design reference surface used to design the dependent surface from the 3D CAD data displayed on the monitor or the like via a pointing device or the like. The shape evaluation for the selected dependent surface is made based on the distance from the next selected design reference surface. Here, all the dependent surfaces are associated with the design reference surface, but there is a dependency relationship such as the above-described A surface (one design reference surface) and C surface (other design reference surfaces). When there are a plurality of design reference planes, these design reference planes are associated with each other. For example, in FIG. 3A, although the surface C is the design reference surface of the surface D, the surface C itself is evaluated by the surface A, so that the surface C is a dependent surface having the surface A as the design reference surface. Make an association.

ステップS4で、ユーザが、設計基準面及び従属面と対応する測定3次元データとの対応付けを行う。出力手段5に表示された設計基準面及び従属面に対して、ユーザが、ポインティングデバイス等を用いて選択し、次に、対応する測定3次元データを、例えば、矩形で囲む等して選択することにより対応付けが行われる。全ての設計基準面及び従属面について測定3次元データとの対応付けを行う。   In step S4, the user associates the design reference plane and the dependent plane with the corresponding measurement three-dimensional data. The user selects the design reference plane and the dependent plane displayed on the output unit 5 by using a pointing device or the like, and then selects the corresponding measurement three-dimensional data, for example, by surrounding it with a rectangle. Thus, the association is performed. All design reference planes and dependent planes are associated with measured three-dimensional data.

ステップS5で、設計基準面に対応付けられた測定3次元データについて、位置合わせするための座標変換行列を求める。具体的には、設計基準面に対応付けられた測定3次元データから設計基準面に垂線を下ろし、該測定3次元データから垂線の設計基準面との交点までの距離を求め、該距離の二乗和の最小となる座標変換行列を求める。このステップS5で、設計基準面の数の分だけ座標変換行列が求められる。ここで、上述のした面Cのように、面Dとの関係では設計基準面でありながら、面Aと関係では従属面であるような場合は、面Cを面Dの設計基準面として取り扱い、面Cに対応付けられた測定3次元データを、該面Cに位置合わせするための座標変換列を求める。   In step S5, a coordinate transformation matrix for aligning the measurement three-dimensional data associated with the design reference plane is obtained. Specifically, a perpendicular is drawn from the measured three-dimensional data associated with the design reference plane to the design reference plane, the distance from the measured three-dimensional data to the intersection of the perpendicular and the design reference plane is obtained, and the square of the distance is obtained. Find the coordinate transformation matrix that minimizes the sum. In step S5, coordinate transformation matrices are obtained for the number of design reference planes. Here, when the surface is a design reference surface in relation to the surface D as in the surface C described above, but is a dependent surface in the relationship with the surface A, the surface C is handled as the design reference surface of the surface D. A coordinate conversion sequence for aligning the measurement three-dimensional data associated with the surface C with the surface C is obtained.

ステップS6では、先のステップS5で求めた座標変換行列を用いて、設計基準面又は従属面にそれぞれ対応付けられた測定3次元データの座標変換を行う。ここで、上述のした面Cのように、面Dとの関係では設計基準面でありながら、面Aと関係では従属面であるような場合は、面Cを面Aの従属面として取り扱い、先のステップS5で求めた、面Aに対応付けられた測定3次元データの座標変換行列を用いて、面Cの測定3次元データの座標変換を行う。   In step S6, using the coordinate transformation matrix obtained in the previous step S5, coordinate transformation of the measurement three-dimensional data respectively associated with the design reference plane or the dependent plane is performed. Here, as in the case of the surface C described above, when the surface is a design reference surface in relation to the surface D but is a dependent surface in the relationship with the surface A, the surface C is handled as a dependent surface of the surface A. Using the coordinate transformation matrix of the measurement three-dimensional data associated with the surface A obtained in the previous step S5, the coordinate transformation of the measurement three-dimensional data of the surface C is performed.

ステップS7では、先のステップS6で座標変換された測定3次元データから、これに対応付けられた従属面に垂線を下ろし、該測定3次元データから垂線の従属面との交点を求める。そして、ステップ8で、該測定3次元データから垂線の従属面との交点までの距離を求める。   In step S7, a perpendicular is drawn from the measurement three-dimensional data coordinate-transformed in the previous step S6 to the dependent surface associated therewith, and the intersection of the perpendicular and the dependent surface is obtained from the measurement three-dimensional data. In step 8, the distance from the measured three-dimensional data to the intersection of the perpendicular and the dependent surface is obtained.

ステップS9で、先のステップS8で求めた距離に応じて色分け等により形状評価の結果を表示し、処理を終了する。ここで、面Aと面Cの間に許容範囲を超える寸法誤差があった場合、面Cに対応付けられた測定3次元データは、面Aに対応付けられた測定3次元データの座標変換行列を用いて、その座標変換を行っているので、前記寸法誤差の影響を受けて「不良」と評価される。一方、面Dに対応付けられた測定3次元データは、設計基準面として面Cに位置合わせするための、該面Cに対応付けられた測定3次元データの座標変換行列を用いて、その座標変換を行っているので、前記寸法誤差の影響を受けずに「良」と評価される。すなわち、設計基準面である面Cからその従属面である面Dまでの距離ないし寸法が適正に評価される。   In step S9, the result of shape evaluation is displayed by color coding or the like according to the distance obtained in the previous step S8, and the process ends. Here, when there is a dimensional error exceeding the allowable range between the surface A and the surface C, the measurement three-dimensional data associated with the surface C is the coordinate transformation matrix of the measurement three-dimensional data associated with the surface A. Since the coordinate conversion is performed using, it is evaluated as “defective” under the influence of the dimensional error. On the other hand, the measurement three-dimensional data associated with the surface D is coordinated using the coordinate transformation matrix of the measurement three-dimensional data associated with the surface C for alignment with the surface C as a design reference surface. Since conversion is performed, it is evaluated as “good” without being affected by the dimensional error. That is, the distance or dimension from the surface C that is the design reference surface to the surface D that is the dependent surface is appropriately evaluated.

なお、ステップS1の3次元CADデータの読み込みとステップS2の測定3次元データの読み込みとは、上記の順番に限定されず、先にステップS2を実行した後、ステップS1を実行させてもよい。   Note that the reading of the three-dimensional CAD data in step S1 and the reading of the measurement three-dimensional data in step S2 are not limited to the above order, and step S1 may be executed after step S2 is executed first.

以下、3次元CADデータ及び測定3次元データの構造について、図4と図5とを用いて説明する。
図4は、3次元CADデータのディレクトリセクションの構造図である。3次元CADデータのフォーマットは、例えば異種CAD間の中間フォーマットとして広く普及しているIGES(Initial Graphic Exchange Specification)が用いられる。IGESのデータ形式は、1レコード(1カード)80バイトのASCII(アスキー)のテキストファイルである。IGESは、スタートセクション、グローバルセクション、ディレクトリセクション、パラメータセクション及びターミネートセクションに分類される。スタートセクションは、データ名、データの生成日時等を記述するのに用いられる。グローバルセクションは、IGESファイルを生成したシステムのシステム情報を、受け側のシステムに伝達するのに用いられる。ディレクトリセクションは、3次元形状物を表したCADデータの、要素型、層、線フォント等の属性情報が格納される。パラメータセクションには、具体的なCADデータが格納される。ターミネートセクションは、先の4つのセクションに含まれるカード数(レコード数)を管理する。
Hereinafter, the structures of the three-dimensional CAD data and the measured three-dimensional data will be described with reference to FIGS.
FIG. 4 is a structural diagram of a directory section of three-dimensional CAD data. As the format of the three-dimensional CAD data, for example, IGES (Initial Graphic Exchange Specification) widely used as an intermediate format between different types of CAD is used. The data format of IGES is an ASCII text file of 80 bytes per record (one card). The IGES is classified into a start section, a global section, a directory section, a parameter section, and a terminate section. The start section is used to describe a data name, data generation date and time, and the like. The global section is used to transmit the system information of the system that generated the IGES file to the receiving system. The directory section stores attribute information such as element type, layer, and line font of CAD data representing a three-dimensional shape. Specific CAD data is stored in the parameter section. The terminator section manages the number of cards (number of records) included in the previous four sections.

図4に示されるように、3次元CADデータのディレクトリセクションに格納されるデータは、1要素、つまりパラメータセクションに格納されるCADデータの1単位につき2レコードで構成される。各レコードは、8文字から構成される10個のフィールドに分割された、固定フィールド形式で記述される。このうち、第16パラメータに、その要素面が評価される際に基準とされる設計基準面のシーケンス番号が格納される。ここで、シーケンス番号とは、カードの順番を示す数字を指す。シーケンス番号は1から開始し、1カードにつき1ずつ増加する。   As shown in FIG. 4, the data stored in the directory section of the three-dimensional CAD data is composed of two records per element, that is, one unit of CAD data stored in the parameter section. Each record is described in a fixed field format divided into 10 fields composed of 8 characters. Among these, the 16th parameter stores the sequence number of the design reference plane that is used as a reference when the element plane is evaluated. Here, the sequence number refers to a number indicating the order of cards. The sequence number starts at 1 and increases by 1 for each card.

図5は、本実施形態に係る、3次元CADデータから作成した3次元形状物をスキャンして得られた、測定3次元データのデータ構造図である。測定3次元データは、ASCIIのテキストファイルである。3次元形状物を、例えば点の集合と捉え、1つの点につき1レコードで表す。測定3次元データの1レコードは、4つのパラメータから構成され、4のフィールドに分割された、固定フィールド形式で記述される。第1パラメータとして、測定3次元データの座標値が格納される。第2パラメータには、対応付けられた設計基準面及び従属面の、ディレクトリセクションのシーケンス番号が対応付け情報として格納される。第3パラメータには、その測定3次元データから対応付けられた従属面に下ろした垂線と従属面との交点の座標値が格納される。第4パラメータには、第1パラメータで表される点と第3パラメータで表される点との間の距離が格納される。初め、測定3次元データ取得装置12によってスキャンされ、得られたデータが図1のメモリ3に記憶される段階においては、第1パラメータのみ値が格納されている。図2の処理に従って、順次第2パラメータから第4パラメータに値が格納される。図2のステップS6で座標変換された測定3次元データは、第1パラメータに上書きされる。   FIG. 5 is a data structure diagram of measured three-dimensional data obtained by scanning a three-dimensional shape object created from three-dimensional CAD data according to the present embodiment. The measured three-dimensional data is an ASCII text file. A three-dimensional shape is regarded as a set of points, for example, and is represented by one record per point. One record of the measured three-dimensional data is composed of four parameters and is described in a fixed field format divided into four fields. As the first parameter, the coordinate value of the measured three-dimensional data is stored. In the second parameter, the sequence number of the directory section of the associated design reference plane and dependent plane is stored as correlation information. The third parameter stores the coordinate value of the intersection point of the perpendicular line and the dependent surface that are lowered from the measured three-dimensional data to the associated dependent surface. The fourth parameter stores the distance between the point represented by the first parameter and the point represented by the third parameter. Initially, at the stage where the measured data is scanned by the measurement three-dimensional data acquisition device 12 and the obtained data is stored in the memory 3 of FIG. 1, only the value of the first parameter is stored. In accordance with the processing of FIG. 2, values are sequentially stored from the second parameter to the fourth parameter. The measurement three-dimensional data coordinate-transformed in step S6 in FIG. 2 is overwritten on the first parameter.

図4で表される3次元CADデータのディレクトリセクションの第16パラメータに、ある面が評価の際に基準とされる面(設計基準面)のシーケンス番号が格納されている。設計基準面及び従属面と測定3次元データとの対応付けがなされる際に、図5の測定3次元データの第2パラメータとして、対応付けられた設計基準面及び従属面のシーケンス番号が格納される。   The 16th parameter of the directory section of the three-dimensional CAD data shown in FIG. 4 stores the sequence number of a surface (design reference surface) that is used as a reference when a certain surface is evaluated. When the design reference plane and the dependent plane are associated with the measurement three-dimensional data, the sequence numbers of the associated design reference plane and the dependent plane are stored as the second parameter of the measurement three-dimensional data in FIG. The

まず、設計基準面とこれに対応付けられた測定3次元データとの距離の二乗和が最小になる座標変換行列を求める。得られた座標変換行列によって、設計基準面と設計基準面を基準に設計された面に対応付けられた測定3次元データを、前記座標変換行列により、座標変換させる。座標変換した測定3次元データから、測定3次元データに対応付けられた従属面に下ろした垂線と従属面との交点の座標値が第3パラメータに、測定3次元データと交点との距離が第4パラメータに格納される。第4パラメータの値に基づいて、色分け等により表示する。   First, a coordinate transformation matrix that minimizes the sum of squares of the distance between the design reference plane and the measured three-dimensional data associated therewith is obtained. Based on the obtained coordinate transformation matrix, the measurement reference plane and the measured three-dimensional data associated with the plane designed on the basis of the design reference plane are coordinate transformed by the coordinate transformation matrix. The coordinate value of the intersection point between the perpendicular line and the dependent surface, which is drawn from the coordinate-converted measurement three-dimensional data to the dependent surface associated with the measurement three-dimensional data, is the third parameter, and the distance between the measurement three-dimensional data and the intersection point is the third parameter. Stored in 4 parameters. Based on the value of the fourth parameter, display is performed by color coding or the like.

以上説明したように、本実施形態に係る3次元CADデータと測定3次元データとの距離算出装置によれば、設計基準面を同軸方向に2つ以上有する設計基準面を有する3次元形状物について、従属面が保有する設計基準面を標示する関連付け情報を使用して設計基準面ごとに位置合わせすることにより、全ての面に対して、その面の設計基準面からの距離が許容範囲内であるか否かの判断が可能とされる。
<実施形態2>
まず、上述した実施形態1と以下に述べる実施形態2の相違点を簡単に説明すると、実施形態1では、複数の設計基準面をそれぞれ基準にして、3次元CADデータと測定3次元データの位置合わせを行い、その距離算出を行った。これに対し、本実施形態2では、複数の設計基準面のうち、一の設計基準面を基準にして、3次元CADデータと測定3次元データの位置合わせを行い、3次元CADデータと測定3次元データとの距離算出の際に、位置合わせの基準とならなかった他の設計基準面とこれに対応付けされた測定3次元データの距離を用いて補正を行っている相違がある。
As described above, according to the distance calculation apparatus between the three-dimensional CAD data and the measured three-dimensional data according to this embodiment, the three-dimensional shape object having the design reference surface having two or more design reference surfaces in the coaxial direction. By aligning each design reference plane using the association information indicating the design reference plane held by the subordinate plane, the distance from the design reference plane is within the allowable range for all planes. It is possible to determine whether or not there is.
<Embodiment 2>
First, the difference between the above-described first embodiment and the second embodiment described below will be briefly described. In the first embodiment, the positions of the three-dimensional CAD data and the measured three-dimensional data are each based on a plurality of design reference planes. The distance was calculated and the distance was calculated. On the other hand, in the second embodiment, the three-dimensional CAD data and the measurement three-dimensional data are aligned by using one design reference plane as a reference among the plurality of design reference planes. When calculating the distance to the dimensional data, there is a difference in that correction is performed using the distance between the other design reference plane that has not become the alignment reference and the measured three-dimensional data associated therewith.

以下、実施形態1と相違する点を中心に、本実施形態2に係る3次元CADデータと測定3次元データの距離算出装置、距離算出方法及び距離算出プログラムについて説明する。なお、本距離算出装置の構成は、実施形態1の図1に示すに距離算出装置とほぼ同様となっているのでその説明を省略する。その他、実施形態1と同様の箇所についても同じ図番号を参照して説明する。   In the following, the distance calculation apparatus, the distance calculation method, and the distance calculation program for the three-dimensional CAD data and the measured three-dimensional data according to the second embodiment will be described with a focus on differences from the first embodiment. The configuration of the distance calculation device is substantially the same as that of the distance calculation device shown in FIG. Other parts similar to those of the first embodiment will be described with reference to the same figure numbers.

図6は、本実施形態に係る3次元CADデータと測定3次元データの距離算出装置の動作を表すフローチャートである。図6を参照して、本実施形態に係る距離算出装置1の処理について説明する。その際に、3次元形状物の一例として図7を用いる。   FIG. 6 is a flowchart showing the operation of the distance calculation apparatus for 3D CAD data and measured 3D data according to this embodiment. With reference to FIG. 6, the process of the distance calculation apparatus 1 which concerns on this embodiment is demonstrated. At that time, FIG. 7 is used as an example of a three-dimensional shape.

図7は、3次元形状物の側面図である。図中右方向をx軸正方向とする。図中の面Cと面Dとの間の距離を評価すると仮定する。なお、面Cと面Dとに関し、図中で実線は3次元CADデータを、破線は実際の測定3次元データを表す。他の面については、測定3次元データは省略する。面Aにおいて、3次元CADデータと測定3次元データとで位置合わせされる。   FIG. 7 is a side view of the three-dimensional shape object. The right direction in the figure is the positive x-axis direction. Assume that the distance between surface C and surface D in the figure is evaluated. Regarding the surface C and the surface D, in the figure, the solid line represents the three-dimensional CAD data, and the broken line represents the actual measurement three-dimensional data. For the other surfaces, the measurement three-dimensional data is omitted. In plane A, the three-dimensional CAD data and the measured three-dimensional data are aligned.

まず、ステップS11からステップS14までの処理は、実施形態1と同様の処理であるので、詳細な説明は省略する。ステップS15では、3次元CADデータを構成する設計基準面のうち、上位の設計基準面が存在しない設計基準面(一の設計基準面、例えば、図7の面A)について、対応付けられた測定3次元データとの距離の二乗和が最小となる座標変換行列を求める。ステップS16で、全ての測定3次元データを、先のステップS15で求めた座標変換行列を用いて座標変換する。   First, since the process from step S11 to step S14 is the same process as Embodiment 1, detailed description is abbreviate | omitted. In step S15, among the design reference planes constituting the three-dimensional CAD data, a measurement reference associated with a design reference plane (one design reference plane, for example, plane A in FIG. 7) for which there is no upper design reference plane. A coordinate transformation matrix that minimizes the sum of squares of the distance to the three-dimensional data is obtained. In step S16, all the measured three-dimensional data are coordinate-transformed using the coordinate transformation matrix obtained in the previous step S15.

ステップS17、S18における処理は、図2のステップS7、S8と同様であり、各測定3次元データから対応付けられた従属面(例えば、図7の面D)に対して下ろした垂線と従属面との交点、測定3次元データと交点とその交点との距離をそれぞれの処理で求める。ステップS18で得られる距離は、図7のXがこれに相当する。   The processing in steps S17 and S18 is the same as that in steps S7 and S8 in FIG. 2, and the perpendicular and the dependent surface drawn with respect to the dependent surface (for example, the surface D in FIG. 7) associated with each measurement three-dimensional data. , The measured three-dimensional data, and the distance between the intersection and the intersection are obtained by each processing. The distance obtained in step S18 corresponds to X in FIG.

ステップS19で、ステップS15で使用した設計基準面以外の設計基準面(他の設計基準面、例えば、図7の面C)と、これに対応付けられた測定3次元データとの距離の平均値(図7ではΔXave)を求める。なお、平均値は、測定3次元データが、設計基準面より、上位の設計基準面側にある場合は、符号はマイナスとなる。平均値は、設計基準面ごとに算出される。   In step S19, the average distance between the design reference planes other than the design reference plane used in step S15 (other design reference planes, for example, the plane C in FIG. 7) and the measured three-dimensional data associated therewith (ΔXave in FIG. 7) is obtained. The average value has a minus sign when the measured three-dimensional data is on the design reference plane side higher than the design reference plane. The average value is calculated for each design reference plane.

ステップS20では、ステップS18で求めた測定3次元データと対応付けられた従属面との距離Xから、ステップS19で求めた設計基準面と設計基準面に対応付けられた測定3次元データとの距離の平均値ΔXaveを減算した値(平均距離、図7ではX−(−ΔXave)=X+ΔXave)を求める。   In step S20, the distance between the design reference plane obtained in step S19 and the measured three-dimensional data associated with the design reference plane from the distance X between the dependent plane associated with the measurement three-dimensional data obtained in step S18. Is obtained by subtracting the average value ΔXave (average distance, X − (− ΔXave) = X + ΔXave in FIG. 7).

ステップS21では、先のステップS20で求めた距離に応じて色分け等により結果を表示し、処理を終了する。ここで、図7に示すように、面Aと面Cの間に許容範囲を超える寸法誤差(図7では−ΔXave)があった場合、面Cに対応付けられた測定3次元データは、面Aに対応付けられた測定3次元データの座標変換行列を用いて、その座標変換を行っているので、前記寸法誤差の影響を受けて「不良」と評価される。一方、面Dに対応付けられた測定3次元データは、平均距離(X+ΔXave)の補正を行って3次元CADデータまでを距離算出しているので、前記寸法誤差の影響を受けずに「良」と評価される。すなわち、設計基準面である面Cからその従属面である面Dまでの距離ないし寸法が適正に評価される。   In step S21, the result is displayed by color coding or the like according to the distance obtained in the previous step S20, and the process ends. Here, as shown in FIG. 7, when there is a dimensional error (−ΔXave in FIG. 7) that exceeds the allowable range between the surfaces A and C, the measured three-dimensional data associated with the surface C is Since the coordinate transformation is performed using the coordinate transformation matrix of the measurement three-dimensional data associated with A, it is evaluated as “bad” due to the influence of the dimensional error. On the other hand, the measured three-dimensional data associated with the surface D is corrected to the average distance (X + ΔXave) and the distance is calculated up to the three-dimensional CAD data, so that it is “good” without being affected by the dimensional error. It is evaluated. That is, the distance or dimension from the surface C that is the design reference surface to the surface D that is the dependent surface is appropriately evaluated.

図8は、本実施形態に係る測定3次元データのデータ構造図である。なお、3次元CADデータの構造図については、実施形態1の図4に係る構造と同様であり、その説明は省略する。   FIG. 8 is a data structure diagram of measurement three-dimensional data according to the present embodiment. The structure diagram of the three-dimensional CAD data is the same as the structure according to FIG. 4 of the first embodiment, and a description thereof will be omitted.

図8において、第1パラメータから第4パラメータについては、図5のデータ構造と同様であるので、ここでは第5、第6パラメータについてのみ説明する。第5パラメータは、測定3次元データと対応付けられた従属面と関連付されている設計基準面と、その設計基準面に対応付けられた測定3次元データとの距離の平均値(図7ではΔXave)が格納される。第6パラメータは、第4パラメータに格納された値Xに、測定3次元データと対応付けられている従属面と関連付された設計基準面と、その設計基準面に対応付けられている測定3次元データとの距離の平均値を減じた値(図7ではX+ΔXave)が格納される。   In FIG. 8, the first parameter to the fourth parameter are the same as the data structure of FIG. 5, and therefore only the fifth and sixth parameters will be described here. The fifth parameter is an average value of the distance between the design reference plane associated with the dependent plane associated with the measurement three-dimensional data and the measurement three-dimensional data associated with the design reference plane (in FIG. 7). ΔXave) is stored. The sixth parameter includes a design reference plane associated with the dependent plane associated with the measurement three-dimensional data and the value X stored in the fourth parameter, and the measurement 3 associated with the design reference plane. A value (X + ΔXave in FIG. 7) obtained by subtracting the average value of the distance from the dimension data is stored.

図7において、面Cが面Aを基準として距離を算出して寸法誤差を求めることが必要で、面Fが面Eを基準として距離算出して寸法誤差を求めることが必要な時でも、面Cと面F、双方について距離算出が可能である。   In FIG. 7, even when the surface C needs to calculate the distance by calculating the distance with respect to the surface A, and the surface F needs to calculate the distance by calculating the distance with respect to the surface E, the surface error Distance calculation is possible for both C and surface F.

以上説明したように、本実施形態1及び2に係る3次元CADデータと測定3次元データの距離算出装置、距離算出方法及び距離算出プログラムによれば、加工精度の評価対象となる3次元形状物が、同軸方向に複数の設計基準面を有する場合でも、3次元CADデータとしての設計基準面と従属面、又は設計基準面どうしの関連付け情報を、3次元CADデータと測定3次元データの位置合わせ、及び3次元CADデータと測定3次元データの距離算出に用いることにより、設計基準面とその従属面の関係における形状評価の適正化を図ることができる。   As described above, according to the distance calculation apparatus, the distance calculation method, and the distance calculation program between the three-dimensional CAD data and the measured three-dimensional data according to the first and second embodiments, the three-dimensional shape object to be evaluated for machining accuracy. However, even when there are a plurality of design reference planes in the coaxial direction, the alignment information between the design reference plane and the dependent plane as the three-dimensional CAD data or the design reference planes is aligned between the three-dimensional CAD data and the measured three-dimensional data. Further, by using it for calculating the distance between the three-dimensional CAD data and the measured three-dimensional data, it is possible to optimize the shape evaluation in the relationship between the design reference plane and its dependent plane.

実施形態1に係る3次元CADデータと測定3次元データとの距離算出装置のブロック図である。It is a block diagram of the distance calculation apparatus of 3D CAD data and measurement 3D data concerning Embodiment 1. 実施形態1に係る3次元CADデータと測定3次元データとの距離算出装置の動作を表すフローチャートである。6 is a flowchart showing the operation of the distance calculation apparatus between the three-dimensional CAD data and the measured three-dimensional data according to the first embodiment. 3次元形状物の斜視図の例である。It is an example of the perspective view of a three-dimensional shape thing. 図3Aの3次元形状物の上面図である。It is a top view of the three-dimensional shape object of FIG. 3A. 図3Aの3次元形状物の側面図である。It is a side view of the three-dimensional shape object of FIG. 3A. 3次元CADデータのディレクトリセクションの構造図である。It is a structure figure of the directory section of three-dimensional CAD data. 実施形態1に係る測定3次元データのデータ構造図である。3 is a data structure diagram of measured three-dimensional data according to Embodiment 1. FIG. 実施形態2に係る3次元CADデータと測定3次元データとの距離算出装置の動作を表すフローチャートである。10 is a flowchart showing the operation of the distance calculation device between the three-dimensional CAD data and the measured three-dimensional data according to the second embodiment. 3次元形状物の側面図である。It is a side view of a three-dimensional shape object. 実施形態2に係る測定3次元データのデータ構造図である。6 is a data structure diagram of measurement three-dimensional data according to Embodiment 2. FIG.

符号の説明Explanation of symbols

1 3次元CADデータと測定3次元データとの距離算出装置
6 3次元CADデータ記憶手段
7 測定3次元データ記憶手段
8 対応付け手段
9 位置合わせ手段
10 距離算出手段
11 CAD装置
12 測定3次元データ取得装置

DESCRIPTION OF SYMBOLS 1 Distance calculation apparatus of 3D CAD data and measurement 3D data 6 3D CAD data storage means 7 Measurement 3D data storage means 8 Association means 9 Positioning means 10 Distance calculation means 11 CAD apparatus 12 Measurement 3D data acquisition apparatus

Claims (11)

3次元形状物の3次元CADデータと測定3次元データを位置合わせして互いの距離を算出する3次元CADデータと測定3次元データの距離算出装置において、
設計基準面、及び該設計基準面を標示する関連付け情報を付与した従属面を、前記3次元CADデータとして記憶する3次元CADデータ記憶手段と、
前記測定3次元データを記憶する測定3次元データ記憶手段と、
前記測定3次元データを前記設計基準面又は従属面とそれぞれ対応付けした情報を前記測定3次元データ記憶手段に記憶させる対応付け手段と、
前記設計基準面、及び該設計基準面に対応付けた前記測定3次元データを基準とし、前記設計基準面と該設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする位置合わせ手段と、
位置合わせした前記従属面と該従属面に対応付けた測定3次元データの距離を算出する距離算出手段とを備えたことを特徴とする3次元CADデータと測定3次元データの距離算出装置。
In the distance calculation apparatus for 3D CAD data and measurement 3D data, in which the 3D CAD data of the 3D shape and the measurement 3D data are aligned and the distance between them is calculated.
A three-dimensional CAD data storage means for storing a design reference plane and a dependent plane to which association information indicating the design reference plane is given as the three-dimensional CAD data;
Measurement three-dimensional data storage means for storing the measurement three-dimensional data;
Association means for storing in the measurement three-dimensional data storage means information that associates the measurement three-dimensional data with the design reference plane or the dependent plane, respectively;
Based on the design reference plane and the measurement three-dimensional data associated with the design reference plane, the design reference plane and the measurement three-dimensional data associated with the design reference plane, and the dependent plane and the dependent plane Alignment means for aligning the measurement three-dimensional data associated with
A distance calculation device for three-dimensional CAD data and measured three-dimensional data, comprising: the aligned dependent surface and a distance calculating unit that calculates a distance between the measured three-dimensional data associated with the dependent surface.
前記位置合わせ手段が、前記設計基準面と該設計基準面に対応付けた前記測定3次元データの距離が最小となるように、前記設計基準面、該設計基準面に対応付けた前記測定3次元データ、前記従属面、該従属面に対応付けた前記測定3次元データの位置を座標変換するとともに、前記距離算出手段が、変換後の座標に基づいて、前記従属面と該従属面に対応付けた前記測定3次元データの距離を算出することを特徴とする請求項1記載の3次元CADデータと測定3次元データの距離算出装置。   The alignment means is configured to associate the design reference plane with the design reference plane so that the distance between the design reference plane and the measurement three-dimensional data associated with the design reference plane is minimized. The coordinates of the data, the dependent surface, and the position of the measurement three-dimensional data associated with the dependent surface are coordinate-converted, and the distance calculation means associates the dependent surface with the dependent surface based on the converted coordinates. 2. The distance calculation apparatus between the three-dimensional CAD data and the measured three-dimensional data according to claim 1, wherein the distance between the measured three-dimensional data is calculated. 前記3次元CADデータ記憶手段が、複数の前記設計基準面を記憶するとともに、一の設計基準面を標示する関連付け情報を他の設計基準面に付与し、
前記位置合わせ手段が、前記一の設計基準面及び該一の設計基準面に対応付けた前記測定3次元データを基準として、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データ及び前記一の設計基準面に関連付けた従属面と該従属面に対応する前記測定3次元データとを位置合わせするとともに、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データを基準として、該他の設計基準面に関連付けた従属面と該従属面に対応する前記測定3次元データを位置合わせすることを特徴とする請求項1又は2記載の3次元CADデータと測定3次元データの距離算出装置。
The three-dimensional CAD data storage means stores a plurality of the design reference planes, and gives association information indicating one design reference plane to another design reference plane,
The alignment means uses the one design reference plane and the measurement three-dimensional data associated with the one design reference plane as a reference, and associates the other design reference plane with the other design reference plane. Align the measurement three-dimensional data and the dependent plane associated with the one design reference plane with the measurement three-dimensional data corresponding to the dependent plane, and correspond to the other design reference plane and the other design reference plane 3. The alignment of the dependent plane associated with the other design reference plane and the measured three-dimensional data corresponding to the dependent plane with the measured three-dimensional data attached as a reference. 4. A distance calculation device for 3D CAD data and measured 3D data.
前記設計基準面を複数記憶するとともに、一の設計基準面を標示する関連付け情報を他の設計基準面に付与した前記3次元CADデータ記憶手段と、
前記一の設計基準面、及び該一の設計基準面に対応付けた前記測定3次元データを基準とし、前記一の設計基準面と該一の設計基準面に対応付けた前記測定3次元データ、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする前記位置合わせ手段と、
位置合わせした前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離を算出する補正距離算出手段と、
位置合わせした前記従属面と該従属面に対応付けた前記測定3次元データの距離を算出する距離算出手段と、
前記補正距離算出手段が算出した距離に基づいて、前記距離算出手段が算出した距離を補正する補正手段とを備えたことを特徴とする請求項1〜3いずれか記載の3次元CADデータと測定3次元データの距離算出装置。
A plurality of the design reference planes, and the three-dimensional CAD data storage means for giving association information indicating one design reference plane to another design reference plane;
Based on the one design reference plane and the measurement three-dimensional data associated with the one design reference plane, the measurement three-dimensional data associated with the one design reference plane and the one design reference plane; The positioning means for aligning the other design reference plane and the measurement three-dimensional data associated with the other design reference plane, and the dependent plane and the measurement three-dimensional data associated with the dependent plane;
Correction distance calculation means for calculating a distance between the other design reference plane aligned and the measurement three-dimensional data associated with the other design reference plane;
Distance calculating means for calculating a distance between the aligned dependent surface and the measured three-dimensional data associated with the dependent surface;
The three-dimensional CAD data and measurement according to any one of claims 1 to 3, further comprising correction means for correcting the distance calculated by the distance calculation means based on the distance calculated by the correction distance calculation means. A distance calculation device for three-dimensional data.
前記補正距離算出手段が、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの平均距離を算出するとともに、前記補正手段が、前記距離算出手段の算出した距離に、前記補正距離算出手段の算出した平均距離を加減することにより補正することを特徴とする請求項4記載の3次元CADデータと測定3次元データの距離算出装置。   The correction distance calculation means calculates an average distance between the other design reference plane and the measurement three-dimensional data associated with the other design reference plane, and the correction means calculates the distance calculated by the distance calculation means. 5. The distance calculation apparatus for three-dimensional CAD data and measurement three-dimensional data according to claim 4, wherein the correction is performed by adjusting the average distance calculated by the correction distance calculation means. 前記設計基準面と従属面の関連付け情報、前記一と他の設計基準面の関連付け情報を3次元CADデータに含めたことを特徴とする請求項1〜5いずれか記載の3次元CADデータと測定3次元データの距離算出装置。   6. The three-dimensional CAD data and measurement according to claim 1, wherein association information between the design reference plane and the dependent plane and association information between the one and another design reference plane are included in the three-dimensional CAD data. A distance calculation device for three-dimensional data. 前記設計基準面と従属面の関連付け情報、前記一と他の設計基準面の関連付け情報を入力する入力手段を備えたことを特徴とする請求項1〜5いずれか記載の3次元CADデータと測定3次元データの距離算出装置。   6. The three-dimensional CAD data and measurement according to claim 1, further comprising input means for inputting association information between the design reference plane and the dependent plane, and association information between the one and another design reference plane. A distance calculation device for three-dimensional data. 3次元形状物の3次元CADデータと測定3次元データを位置合わせして互いの距離を算出する3次元CADデータと測定3次元データの距離算出方法において、
設計基準面、及び該設計基準面を標示する関連付け情報を付与した従属面を、前記3次元CADデータとして記憶する工程と、
前記測定3次元データを記憶する工程と、
前記測定3次元データを前記設計基準面又は従属面とそれぞれ対応付けした情報を記憶する工程と、
前記設計基準面、及び該設計基準面に対応付けた前記測定3次元データを基準とし、前記設計基準面と該設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする工程と、
位置合わせした前記従属面と該従属面に対応付けた測定3次元データの距離を算出する工程とを含むことを特徴とする3次元CADデータと測定3次元データの距離算出方法。
In the method for calculating the distance between the three-dimensional CAD data and the measured three-dimensional data, the three-dimensional CAD data of the three-dimensional object and the measured three-dimensional data are aligned and the distance between them is calculated.
Storing a design reference plane and a dependent plane provided with association information indicating the design reference plane as the three-dimensional CAD data;
Storing the measured three-dimensional data;
Storing information associating the measurement three-dimensional data with the design reference plane or the dependent plane,
Based on the design reference plane and the measurement three-dimensional data associated with the design reference plane, the design reference plane and the measurement three-dimensional data associated with the design reference plane, and the dependent plane and the dependent plane Aligning the measured three-dimensional data associated with
A method for calculating the distance between the three-dimensional CAD data and the measured three-dimensional data, comprising: calculating the distance between the aligned dependent surface and the measured three-dimensional data associated with the dependent surface.
前記設計基準面を複数記憶するとともに、一の設計基準面を標示する関連付け情報を他の設計基準面に付与する工程と、
前記一の設計基準面、及び該一の設計基準面に対応付けた前記測定3次元データを基準とし、前記一の設計基準面と該一の設計基準面に対応付けた前記測定3次元データ、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする工程と、
位置合わせした前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離を算出する工程と、
位置合わせした前記従属面と該従属面に対応付けた前記測定3次元データの距離を算出する工程と、
前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離に基づいて、前記従属面と該従属面に対応付けた前記測定3次元データの距離を補正する工程とを含むことを特徴とする請求項8記載の3次元CADデータと測定3次元データの距離算出方法。
A step of storing a plurality of the design reference planes and giving association information indicating one design reference plane to other design reference planes;
Based on the one design reference plane and the measurement three-dimensional data associated with the one design reference plane, the measurement three-dimensional data associated with the one design reference plane and the one design reference plane; Aligning the other design reference plane with the measurement three-dimensional data associated with the other design reference plane, and the dependent plane with the measurement three-dimensional data associated with the dependent plane;
Calculating a distance between the aligned other design reference plane and the measured three-dimensional data associated with the other design reference plane;
Calculating the distance between the aligned dependent surface and the measured three-dimensional data associated with the dependent surface;
Correcting a distance between the dependent surface and the measurement three-dimensional data associated with the dependent surface based on a distance between the other design reference surface and the measured three-dimensional data associated with the other design reference surface. The method for calculating the distance between the three-dimensional CAD data and the measured three-dimensional data according to claim 8.
3次元形状物の3次元CADデータと測定3次元データを位置合わせして互いの距離を算出する3次元CADデータと測定3次元データの距離を算出することをコンピュータに実行させるプログラムにおいて、
設計基準面、及び該設計基準面を標示する関連付け情報を付与した従属面を、前記3次元CADデータとして記憶する工程と、
前記測定3次元データを記憶する工程と、
前記測定3次元データを前記設計基準面又は従属面とそれぞれ対応付けした情報を記憶する工程と、
前記設計基準面、及び該設計基準面に対応付けた前記測定3次元データを基準とし、前記設計基準面と該設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする工程と、
位置合わせした前記従属面と該従属面に対応付けた測定3次元データの距離を算出する工程とをコンピュータに実行させることを特徴とする3次元CADデータと測定3次元データの距離算出プログラム。
In a program for causing a computer to calculate the distance between the three-dimensional CAD data and the measured three-dimensional data by aligning the three-dimensional CAD data of the three-dimensional shape and the measured three-dimensional data and calculating the distance between them,
Storing a design reference plane and a dependent plane provided with association information indicating the design reference plane as the three-dimensional CAD data;
Storing the measured three-dimensional data;
Storing information associating the measurement three-dimensional data with the design reference plane or the dependent plane,
Based on the design reference plane and the measurement three-dimensional data associated with the design reference plane, the design reference plane and the measurement three-dimensional data associated with the design reference plane, and the dependent plane and the dependent plane Aligning the measured three-dimensional data associated with
A program for calculating the distance between three-dimensional CAD data and measured three-dimensional data, causing a computer to execute the step of calculating the distance between the aligned dependent surface and the measured three-dimensional data associated with the dependent surface.
前記設計基準面を複数記憶するとともに、一の設計基準面を標示する関連付け情報を他の設計基準面に付与する工程と、
前記一の設計基準面、及び該一の設計基準面に対応付けた前記測定3次元データを基準とし、前記一の設計基準面と該一の設計基準面に対応付けた前記測定3次元データ、前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データ、及び前記従属面と該従属面に対応付けた前記測定3次元データを位置合わせする工程と、
位置合わせした前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離を算出する工程と、
位置合わせした前記従属面と該従属面に対応付けた前記測定3次元データの距離を算出する工程と、
前記他の設計基準面と該他の設計基準面に対応付けた前記測定3次元データの距離に基づいて、前記従属面と該従属面に対応付けた前記測定3次元データの距離を補正する工程とをコンピュータに実行させることを特徴とする請求項10記載の3次元CADデータと測定3次元データの距離算出プログラム。

A step of storing a plurality of the design reference planes and giving association information indicating one design reference plane to other design reference planes;
Based on the one design reference plane and the measurement three-dimensional data associated with the one design reference plane, the measurement three-dimensional data associated with the one design reference plane and the one design reference plane; Aligning the other design reference plane with the measurement three-dimensional data associated with the other design reference plane, and the dependent plane with the measurement three-dimensional data associated with the dependent plane;
Calculating a distance between the aligned other design reference plane and the measured three-dimensional data associated with the other design reference plane;
Calculating the distance between the aligned dependent surface and the measured three-dimensional data associated with the dependent surface;
Correcting a distance between the dependent surface and the measurement three-dimensional data associated with the dependent surface based on a distance between the other design reference surface and the measured three-dimensional data associated with the other design reference surface. 11. The computer-executable program for calculating the distance between the three-dimensional CAD data and the measured three-dimensional data according to claim 10.

JP2004238371A 2004-08-18 2004-08-18 Device for calculating distance of three-dimensional cad data and measured three-dimensional data, distance calculating method, and its program Withdrawn JP2006059014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004238371A JP2006059014A (en) 2004-08-18 2004-08-18 Device for calculating distance of three-dimensional cad data and measured three-dimensional data, distance calculating method, and its program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004238371A JP2006059014A (en) 2004-08-18 2004-08-18 Device for calculating distance of three-dimensional cad data and measured three-dimensional data, distance calculating method, and its program

Publications (1)

Publication Number Publication Date
JP2006059014A true JP2006059014A (en) 2006-03-02

Family

ID=36106450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238371A Withdrawn JP2006059014A (en) 2004-08-18 2004-08-18 Device for calculating distance of three-dimensional cad data and measured three-dimensional data, distance calculating method, and its program

Country Status (1)

Country Link
JP (1) JP2006059014A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868230B1 (en) 2006-09-21 2008-11-12 삼성중공업 주식회사 A method of marking process on the surface of a wall using IGPS
KR100972157B1 (en) 2007-11-06 2010-07-26 삼성중공업 주식회사 Method for marking cutting line using 3d measuring system
WO2019239531A1 (en) 2018-06-13 2019-12-19 株式会社ニコン Computation device, detection system, molding device, computation method, detection method, molding method, computation program, detection program, and molding program
WO2019239530A1 (en) 2018-06-13 2019-12-19 株式会社ニコン Arithmetic device, detection system, modeling apparatus, arithmetic method, detection method, modeling method, arithmetic program, detection program, and modeling program
KR20200042068A (en) * 2018-10-12 2020-04-23 주식회사 화승알앤에이 Method of extracting difference between 3d model of measurement object and 3d scan data of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868230B1 (en) 2006-09-21 2008-11-12 삼성중공업 주식회사 A method of marking process on the surface of a wall using IGPS
KR100972157B1 (en) 2007-11-06 2010-07-26 삼성중공업 주식회사 Method for marking cutting line using 3d measuring system
WO2019239531A1 (en) 2018-06-13 2019-12-19 株式会社ニコン Computation device, detection system, molding device, computation method, detection method, molding method, computation program, detection program, and molding program
WO2019239530A1 (en) 2018-06-13 2019-12-19 株式会社ニコン Arithmetic device, detection system, modeling apparatus, arithmetic method, detection method, modeling method, arithmetic program, detection program, and modeling program
KR20200042068A (en) * 2018-10-12 2020-04-23 주식회사 화승알앤에이 Method of extracting difference between 3d model of measurement object and 3d scan data of the same
KR102134590B1 (en) * 2018-10-12 2020-08-27 주식회사 화승알앤에이 Method of extracting difference between 3d model of measurement object and 3d scan data of the same

Similar Documents

Publication Publication Date Title
US7830374B2 (en) System and method for integrating dispersed point-clouds of multiple scans of an object
JP4492654B2 (en) 3D measuring method and 3D measuring apparatus
EP1596330B1 (en) Estimating position and orientation of markers in digital images
US7630539B2 (en) Image processing apparatus
US7596468B2 (en) Method for measuring a selected portion of a curved surface of an object
CN110096540B (en) Mapping data conversion method, device, storage medium and device
CN109740487B (en) Point cloud labeling method and device, computer equipment and storage medium
US8718358B2 (en) Filler metal installation position checking method and filler metal installation position checking system
CN106323286B (en) A kind of robot coordinate system and the transform method of three-dimensional measurement coordinate system
US20090289953A1 (en) System and method for adjusting view of a measuring report of an object
KR20150104909A (en) The simulation system and method for precision analysis of ship hull&#39;s block based on measurement data
JP2008084210A (en) Height-limit computing device, height-limit computing method, height-limit computing program, and manufacturing method of three-dimensional structure
JP2006059014A (en) Device for calculating distance of three-dimensional cad data and measured three-dimensional data, distance calculating method, and its program
JP5081311B2 (en) Map information processing apparatus, map information processing method, map information processing program, and recording medium
KR101237434B1 (en) Realistic 3D Architecture Modeling Method using Survey Instrument
JP2000171214A (en) Corresponding point retrieving method and three- dimensional position measuring method utilizing same
KR100871139B1 (en) Picture log of corrected drawing reference point coodinates input error indication method
TWI773075B (en) Augmented reality processing auxiliary system and the usage method thereof
JPH0650730A (en) Three-dimensional shape measuring device
WO2020208974A1 (en) Reference position setting method and operation detection device
JP2001082951A (en) Non-contact measured-point data positioning device, its method, and storage medium
JP2006302125A (en) Sheet metal 3d-cad system and sheet metal development creation method
JP2000306096A (en) Formation of virtual camera image
JPH0636048A (en) Volume data clipping system
KR20100079627A (en) An web-based integrated management method for power generation equipments using a 3d laser scan device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106