WO2006132248A1 - Method for ubiquitination of runx - Google Patents

Method for ubiquitination of runx Download PDF

Info

Publication number
WO2006132248A1
WO2006132248A1 PCT/JP2006/311333 JP2006311333W WO2006132248A1 WO 2006132248 A1 WO2006132248 A1 WO 2006132248A1 JP 2006311333 W JP2006311333 W JP 2006311333W WO 2006132248 A1 WO2006132248 A1 WO 2006132248A1
Authority
WO
WIPO (PCT)
Prior art keywords
nedd4
runx
seq
polynucleotide
represented
Prior art date
Application number
PCT/JP2006/311333
Other languages
French (fr)
Japanese (ja)
Inventor
Gen Kudo
Takehiko Takata
Haruna Hayasaka
Hirofumi Doi
Yasuhiro Kikuchi
Original Assignee
Daiichi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006024521A external-priority patent/JP2008206398A/en
Application filed by Daiichi Pharmaceutical Co., Ltd. filed Critical Daiichi Pharmaceutical Co., Ltd.
Publication of WO2006132248A1 publication Critical patent/WO2006132248A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/9015Ligases (6)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to a RUNX (Runt—related transcription factor) ubiquitination method and degradation method. More specifically, the present invention relates to a RUNX ubiquitin method and decomposition method characterized by coexistence of RUNX and NEDD4 (Neural precursor cell Expressed, developmentally down-regulated 4).
  • the present invention also relates to a RUNX ubiquitinating agent and degrading agent.
  • the present invention further relates to a method for inhibiting RUNX ubiquitin and degradation. More specifically, the present invention relates to a method for inhibiting RUNX ubiquitin and degradation by NEDD4, characterized by inhibiting at least one of the binding of NEDD4 and RUNX, the enzyme activity of NEDD4, and the expression of NEDD4. .
  • the present invention also relates to a RUNX ubiquitin inhibitor and degradation inhibitor of NEDD4.
  • the present invention further relates to a polynucleotide having a partial base sequence ability of NEDD4.
  • the present invention also relates to a polynucleotide comprising a partial base sequence of NEDD4 and a double-stranded polynucleotide comprising a complementary base sequence of the base sequence.
  • the present invention also relates to a method for promoting osteogenesis and an agent for promoting osteogenesis. More specifically, the present invention relates to an osteogenesis promoting method and an osteogenesis promoter characterized by inhibiting the expression and Z or function of NEDD4.
  • the present invention further relates to a method for inhibiting tumor growth and a tumor growth inhibitor. More details
  • the present invention relates to a method for inhibiting tumor growth and a tumor growth inhibitor, characterized by inhibiting the expression and Z or function of NEDD4.
  • the present invention also relates to a method for identifying a compound that inhibits or promotes RUNX ubiquitin by NEDD4, and a method for identifying a compound that inhibits or promotes the binding of NEDD4 to RUNX.
  • the present invention further relates to a method for identifying a compound capable of promoting bone formation.
  • the present invention also relates to a method for identifying a compound capable of suppressing tumor growth.
  • the present invention further includes NEDD4, a polynucleotide encoding NEDD4, a vector containing the polynucleotide, and a transformant containing the vector, and a polynucleotide encoding RUNX and RUNX.
  • a reagent kit comprising at least one of a vector containing the polynucleotide and a transformant containing the vector.
  • the present invention also relates to a disease caused by an abnormality in RUNX, for example, a disease caused by an increase or decrease in the function and Z or expression of RUNX, specifically a preventive and Z or therapeutic agent for cancer diseases, etc. , And prevention and Z or treatment methods.
  • a disease caused by an abnormality in RUNX for example, a disease caused by an increase or decrease in the function and Z or expression of RUNX, specifically a preventive and Z or therapeutic agent for cancer diseases, etc. , And prevention and Z or treatment methods.
  • the present invention further relates to a preventive and Z or therapeutic agent for diseases associated with bone loss, and a preventive and Z or therapeutic method.
  • RUNX is a protein characterized by having a Runt domain, and many family proteins are known.
  • the Runt domain has been identified as (1) AML1 associated with acute myeloid leukemia in humans, acute myelocytic leukemia 1), (2) Retronoles hennoenser ⁇ [a transcription factor that binds to a common core. CBF (core binding factor), and (3) the alpha subunit of PEBP2 (polyomavirus enhancer binding protein 2), a transcription factor identified as an enzyme that regulates gene expression and DNA replication in poliovirus. It is a highly homologous sequence with about 130 amino acid residues.
  • RUNX is known to form a heterodimer with ⁇ 2 CBF j8 subunit (PEBP2 j8 ZCBF j8) and act as a transcription factor.
  • the Runt domain is responsible for both DNA binding and heterodimerization with the j8 subunit, and is an important domain for the action of RUNX as a transcription factor.
  • RUNX is known to have three types of family proteins in mammals, namely RUNX1, RUNX2 and RUNX3 (Non-patent Documents 1 and 2). Homology between human RUNX3 and human RUNX1 and human RUNX2 is 57% and 54%, respectively, at the amino acid level
  • the RUNX family acts as a transcription factor and plays an important role in normal differentiation and tumorigenesis Fulfill.
  • RUNX1 is present on human chromosome 21 (21q22) and has been identified as the gene with the most frequent chromosomal translocation in acute myeloid leukemia (AML) (Non-patent Document 3). On the other hand, it has been reported that RUNX1 also plays a crucial role in regulating the differentiation of hematopoietic cells (Non-patent Documents 4 and 5). In AML, a reciprocal translocation (t (8; 21)) in which the long arms of chromosomes 8 and 21 are interchanged is frequently observed, and this chromosomal translocation acts on dominant negative for RUNX1. It is known that chimeric proteins are produced.
  • Non-patent Document 6 It has been reported that when RUNX1 is expressed in large quantities in proliferating cells expressing this chimeric protein, cell proliferation is suppressed and differentiation is promoted. On the other hand, even in leukemia cells without chromosomal translocation, loss of RUNX1 transcriptional activity due to point mutations has been reported, and this loss of function seems to play an important role in the development of leukemia. (Non-patent document 7).
  • RUNX2 is an important transcription factor involved in bone formation, and is essential for chondrocyte differentiation 'maturation, osteoblast differentiation and bone marrow formation (Non-patent Documents 26 and 27).
  • both membranous ossification and endochondral ossification are deficient, so the skeleton is formed only from cartilage (Non-patent Document 8).
  • the skeleton is constructed by membranous ossification directly formed by osteoblasts and endochondral ossification where the cartilage is replaced by bone after the cartilage is formed. Both osteoblasts and chondrocytes differentiate from mesenchymal stem cells.
  • RUNX2 site force-in such as BMP (bone morphogenetic protein) and various transcription factors. Since RUNX2 binds to the transcription factor Smadl, which is involved in the induction of bone morphogenetic gene expression by BMP stimulation, it is thought to be involved in bone formation signals via BMP stimulation (Non-patent Document 28). ). RUNX2 affects the differentiation of bone cells and also expresses bone matrix genes (Collal, Colla2, osteopontin, osteocalcin, bone sialoprotein). It has been shown to be active (Non-patent Document 29).
  • BMP bone morphogenetic protein
  • Non-patent Document 9 Since RUNX3 binds to Smad, an intracellular mediator of TGF-j8 (tumor growth factor-j8), it is considered to be involved in TGF- ⁇ signaling (Non-patent Document 10). Mutations of TGF- ⁇ receptor and Smad are known in many cancers (Non-patent Document 11), and RUNX3 is also considered to be involved in cancer.
  • RUNX3 is highly expressed in normal gastric mucosal epithelium (Non-patent Document 12), but when RUNX3 is knocked out, mucosal thickening due to increased proliferation of gastric mucosal epithelial cells is observed. This increase in cell proliferation has been shown to be due to suppression of apoptosis.
  • gastric mucosal epithelial cells of RUNX3 knockout mice are resistant to the growth-inhibiting action of TGF- ⁇ , suggesting that mucosal thickening is caused by abnormal TGF- ⁇ signaling due to RUNX3 deficiency (non- Patent Document 13).
  • Non-patent Documents 14 mucosal thickening due to proliferation of gastric mucosal epithelial cells is also observed in TGF- ⁇ knockout mice.
  • RUNX3 is deficient in human esophageal cancer SEG-1 cells and is resistant to the production of TGF- ⁇ .
  • the reactivity is restored (Non-Patent Document 15). .
  • RUNX3 is located on chromosome 1 (1 ⁇ 36), where many tumor suppressor genes are present. This region is frequently defective in gastric cancer, colon cancer, bile duct cancer, and spleen cancer.
  • the expression of RUNX3 in gastric cancer cells decreased with the progression of cancer, and the expression of RUNX3 gene decreased in about 90% of stage 4 gastric cancer (Non-patent Document 13).
  • RUNX3 expression is thought to be due to hemizygous deletion and methylation of the promoter region of RUNX3.
  • the tumor formation inhibitory effect of RUN X3 has been confirmed in animal experiments using a transplant model.When RUNX3 gene was expressed in RU NX3-deficient human gastric cancer cells, tumor growth after transplantation of nude mice was significantly suppressed (non- Patent Document 13).
  • NEDD4 is an H £ LC ⁇ (homologous to the papillomavirus K6-associated protein car boxyl terminus) type ubiquitin ligase.
  • NEDD4 is a C2 domain involved in binding to membrane lipids in the N-terminal region, four WW domains involved in binding to the substrate in the middle, and a ubiquitin ⁇ catalytic domain in the C-terminal region and ubiquitin ligase activity It has a HECT domain that indicates (Non-patent Document 18).
  • the ubiquitin proteasome system is a selective and active proteolytic mechanism that regulates various physiological phenomena such as the cell cycle and signal transduction, and is thus involved in maintaining homeostasis of proteins and cells.
  • Ubiquitin is an evolutionarily conserved protein with 76 amino acid residues existing in eukaryotes, which is covalently linked in a chain to the target protein and acts as a degradation signal.
  • the binding of ubiquitin to the target protein occurs by the continuous catalysis of ubiquitin activity enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3).
  • ubiquitin ligase (E3) is important as an enzyme responsible for substrate selectivity.
  • the ubiquitinated target protein is degraded by the proteasome that recognizes ubiquitin bound in a chain to the protein.
  • Abnormalities in the ubiquitin proteasome system lead to protein deficiency due to excessive degradation of the target protein, or protein accumulation due to inhibition of target protein degradation, thereby causing various diseases.
  • the involvement of the ubiquitin proteasome system in cancer diseases has been reported (Non-patent Document 20).
  • NEDD4 The tissue distribution of NEDD4 is highly expressed in muscle in normal tissues. Also, in some cancer cell lines, such as the human eclampsia cancer cell line HeLa, the human lung cancer cell line A549, and the human leukemia cell line K562, the expression of NEDD4 is increased at the mRNA level! It has been reported (Non-patent Document 21). In addition, NEDD4 is known to decrease in expression with neuronal differentiation (Non-patent Document 22).
  • Non-patent Document 23 As a substrate for NEDD4, Bel 10 which is a regulator of NF- ⁇ (nuclear factor- ⁇ ) has been reported (Non-patent Document 23). Another substrate for NEDD4 is amyloid-sensitive epithelial sodium channel (ENaC) (Non-patent Document 24).
  • ENaC amyloid-sensitive epithelial sodium channel
  • Non-patent Document 30 HECT type E already as E3 ligase of RUNX2 Smurfl (Smad ubiquitination regulatory factor 1) known as 3 ligase has been reported (Non-patent Document 31). It has been reported that treatment with proteasome inhibitors induces osteoblast differentiation in vitro and promotes bone formation in individuals (Non-patent Documents 31 and 32).
  • Non-Patent Document 1 Lund A. H. et al., “Cancer Cell”, 2002, No. 1, No. 3, p. 213-215.
  • Non-Patent Document 2 Otto F. et al., “Journal of Cellular Biochemistry”, 2003, No. 89, No. 1, p. 9-1
  • Non-Patent Document 3 Miyoshi H. et al., "Proceedings of the National Academy of Sciences of fhe United 3 ⁇ 4 tates of America” 1991, 88th, 23rd, p. 10431-10434.
  • Non-Patent Document 4 Okuda T. et al., “Cell”, 1996, 84, No. 2, p. 321—330.
  • Non-Patent Document 5 Wang Q. et al., “Cell”, 1996, 87th, No. 4, p. 6 97—708.
  • Non-Patent Document 6 Kitabayashi I. et al., “EMBO Journal”, 1998, Vol. 17, No. 11, p. 2994—3004.
  • Non-Patent Document 7 Osato M. et al., “Blood”, 1999, No. 93, No. 6, p. 1817-1824.
  • Non-Patent Document 8 Otto F. et al., “Cell”, 1997, 89th, No. 5, p. 765—771.
  • Non-Patent Document 9 Valliant F. et al., “Oncogene”, 1999, No. 18, No. 50, p. 7124-7134.
  • Non-Patent Document 10 Ito Y. et al., “Current Opinion in Genetics and Development”, 2000, 13th, No. 1, p. 43— 47.
  • Non-Patent Document 11 Kawabata M. et al., “Journal of Biochemistry J, 1999, 125th, No. 1, p. 9-16.
  • Non-Patent Document 12 Osaki M. et al., “European Journal of Clinical Investigation”, 2004, No. 34, No. 9, p. 605 — 612.
  • Non-Patent Document 13 Li Q. L. et al., “Cell”, 2002, No. 109, No. 1, p. 11 3-124.
  • Non-Patent Document 14 Crawford S. E. et al., “Cell”, 1998, 93rd, No. 7, p. 1159-1170.
  • Non-Patent Document 15 Torquati A. et al., “Surgery”, 2004, Vol. 136, No. 2, p. 310-316.
  • Non-Patent Document 16 Wada M. et al., “Oncogene”, 2004, 23rd, No. 13, p. 2401—2407.
  • Non-Patent Document 17 Goel A. et al., “International Journal of Cancer”, 2004, 112, 5, p. 7 54-759.
  • Non-Patent Document 18 Harvey K. F. et al., “Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (Trends in-cell biology (
  • Non-Patent Document 19 Hershko A. et al., “Annual Review of Biochemistry”, 1998, 67th, p. 425-4
  • Non-Patent Document 20 Burger AM et al., “Eurpoean Journal of Cancer”, 2004, No. 40, No. 15, p. 22 17-2229.
  • Non-Patent Document 21 Anan T. et al., “Genes to Cells”, 1998, No. 3, No. 11, p. 751-763.
  • Non-Patent Document 22 Kumar S. et al., “Biochemical and Biophysical Research Communications”, 1992, No. 185, No. 3, p. 1155-1161.
  • Non-Patent Document 23 Scharschmidt E et al., “Molecular and Cellular Biology”, 2004, Vol. 24, No. 9, p. 3860-3873.
  • Non-Patent Document 24 Staub O. et al., “EMBO Journal J, 1996, Vol. 15, No. 10, p. 2371-2380.
  • Non-Patent Document 25 Jin Y. H. et al., “The Journal of Biological Chemistry”, 2004, No. 279, No. 28, p. 29409-29417.
  • Non-Patent Document 26 Komori, “Journal of Cellular Biochemistry”, 2005, Vol. 95, p. 445-453.
  • Non-Patent Document 27 Himeno, M. et al., “Journal of Bone and Mineral Research", 2002, 17th, p. 1297-1305.
  • Non-Patent Document 28 Hanai, J. I. et al., “The Journal of Biological Chemistry”, 1999, No. 274, p. 3 1577-31582.
  • Non-Patent Document 29 Komori, T., “Journal of Cellular Biochemistry”, 2002, 87th, p. 1-8.
  • Non-Patent Document 30 HTintut, Y.) et al., “The Journal of Biological Chemistry”, 1999, 274th p. 28875—28879.
  • Non-Patent Document 31 Zhao M. et al., “The Journal of Biological Chemistry”, 2003, No. 278, p. 279 39-27944.
  • Non-Patent Document 32 Garrett, L R. et al., “The Journal of Clinical Investigation”, 2003, 111, p. 1771—1782. .
  • Non-Patent Document 33 Yamashita, M. et al., “Cell”, 2005, 121, p. 101-113.
  • RUNX is a protein that acts as a transcription factor and plays an important role in normal differentiation and tumorigenesis. Abnormalities in RUNX cause, for example, abnormal differentiation and tumor formation. Therefore, by regulating the action of RUNX, it is possible to prevent and Z or treat diseases caused by abnormal RUNX.
  • An object of the present invention is to find and provide a protein that interacts with RUNX to regulate its action.
  • the subject of the present invention includes providing means for adjusting the action of RUNX.
  • the subject of the present invention includes providing a useful means for the prevention and Z or treatment of diseases caused by abnormalities in RUNX, such as cancer diseases. Means for solving the problem
  • NE DD4 which is a HECT-type E3 ligase, interacts with RUNX3.
  • NEDD4 ubiquitinated RUNX, thereby reducing the stability of RUNX.
  • D NEDD4 binds to RUNX3 intracellularly
  • NEDD4 binds to RUNX1 in cells
  • NEDD4 reduces RUNX1 stability.
  • NEDD4 binds to RUNX to catalyze the ubiquitination of RUNX, and as a result, the ubiquitinated RUNX is degraded by the ubiquitin proteasome system and its stability decreases Can do.
  • RUNX degradation is regulated by the ubiquitin proteasome system involving NEDD4, thereby regulating the function of RUNX, for example, as a transcription factor, resulting in various physiological phenomena involving RUNX, such as the cell cycle. And signal transduction are regulated.
  • inhibition of RUNX ubiquitination by NEDD4 can inhibit degradation of RUNX by the ubiquitin proteasome system, thereby inhibiting reduction of RUNX.
  • the physiological phenomena involved in RUNX can be recovered, so that diseases caused by the reduction of RUNX and its function can be prevented and / or treated.
  • by promoting RUNX ubiquitin by NEDD4 degradation of RUNX by the ubiquitin proteasome system can be promoted, so RUNX can be reduced.
  • physiological phenomena involving RUNX can be inhibited, so that diseases caused by increased RUNX or enhanced function can be prevented and / or treated.
  • NEDD4 or short-chain NEDD4 also binds to RUNX to catalyze the ubiquitination of RU NX, whereas it binds to RUNX but does not have E3 ligase activity.
  • Type NEDD4 mutants and inactive short chain NEDD4 mutants have demonstrated that RUNX is not ubiquitinous.
  • the inactive NEDD4 mutant and the inactive short NEDD4 mutant all bind to RUNX but have no E3 ligase activity.
  • the inventors believe that antagonistic inhibition of binding between NEDD4 or short-chain NEDD4 and RUNX results in inhibition of RUNX ubiquitination by NEDD4 or short-chain NEDD4.
  • NEDD4 E3 ligase activity is important for RUNX ubiquitination by NEDD4, and it binds to RUNX but does not have E3 ligase activity! /, NEDD4 inactive mutant Revealed that RUNX ubiquitin can be inhibited.
  • a double-stranded polynucleotide capable of inhibiting the expression of NEDD4 was identified.
  • the double-stranded polynucleotide is specifically a double-stranded RNA having a polynucleotide strength consisting of a polynucleotide having a partial base sequence ability of a polynucleotide encoding NEDD4 and a complementary base sequence of the partial base sequence, Reduced the expression of NEDD4.
  • NEDD4 siRNA such double-stranded RNA is sometimes referred to as NEDD4 siRNA or Nedd4 siRNA.
  • NEDD4 inactive mutant that binds to a double-stranded polynucleotide and RUNX that can inhibit NEDD4 expression but does not have E3 ligase activity. It was found that the model cell promotes bone breakdown by BMP stimulation. Based on this, the present inventors believe that inhibiting the expression and Z or function of NEDD4 promotes bone differentiation and, as a result, promotes bone formation.
  • the present invention relates to a RUNX ubiquity method characterized in that RUNX and NEDD4 coexist.
  • the present invention also relates to the above-mentioned RUNX ubiquitination method, wherein RUNX is any one selected from human RUNX1, human RUNX2 and human RUNX3.
  • the present invention relates to a RUNX ubiquitinating agent comprising NEDD4.
  • RUNX is derived from human RUNX1, human RUNX2, and human RUNX3.
  • the RUNX ubiquitinating agent is any one selected.
  • the present invention uses the RUNX ubiquitin method described above.
  • the present invention relates to a method for decomposing RUNX, characterized in that RUNX is processed using the RUNX ubiquitinating agent.
  • the present invention relates to a decomposing agent for RUNX comprising NEDD4.
  • the present invention also relates to a method for inhibiting RUNX ubiquitin, which comprises inhibiting the binding of RUNX and NEDD4.
  • the present invention uses the protein represented by the amino acid sequence set forth in SEQ ID NO: 11 of the sequence listing and the protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12 above.
  • the present invention relates to a method for inhibiting RUNX ubiquitination.
  • the present invention relates to a method for inhibiting RUNX ubiquitin ⁇ , which comprises inhibiting the enzyme activity of NEDD4.
  • the present invention also relates to a RUNX ubiquitin-inhibiting method characterized by inhibiting the expression of NEDD4.
  • the present invention relates to a RUNX ubiquitin-inhibiting method characterized by using a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
  • the present invention relates to a method of inhibiting RUNX ubiquitin ⁇ characterized by using any one double-stranded polynucleotide selected from the following group:
  • a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
  • a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
  • a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
  • the present invention also relates to any one of the aforementioned RUNX ubiquitination inhibiting methods, wherein RUNX is any force 1 selected from human RUNX1, human RUNX2 and human RUNX3.
  • the present invention provides a partial base sequence of a polynucleotide encoding NEDD4, wherein The present invention relates to a polynucleotide having any one base sequence ability selected from the base sequences described in column numbers 21 to 26.
  • the present invention provides a double-stranded polynucleotide comprising a polynucleotide having a partial base sequence ability of a polynucleotide encoding NEDD4, and a polynucleotide having a complementary base sequence ability of the partial base sequence, With respect to any one double-stranded polynucleotide selected from the group of:
  • a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
  • a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
  • a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
  • the present invention provides a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing, and a protein represented by Z or a protein represented by the amino acid sequence set forth in SEQ ID NO: 12.
  • the present invention further comprises a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
  • the present invention relates to a RUNX ubiquitination inhibitor comprising the double-stranded polynucleotide.
  • the present invention also relates to the RUNX ubiquitination inhibitor, wherein RUNX is any one selected from human RUNX1, human RUNX2 and human RUNX3.
  • the present invention relates to a method for inhibiting RUNX degradation, characterized by using any one of the aforementioned methods for inhibiting RUNX ubiquitination.
  • the present invention relates to a method for inhibiting RUNX degradation, characterized by using the RUNX ubiquitination inhibitor.
  • the present invention also includes a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing, and a protein represented by Z or a protein represented by the amino acid sequence set forth in SEQ ID NO: 12.
  • the present invention further comprises a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
  • the present invention relates to a RUNX degradation inhibitor comprising the double-stranded polynucleotide.
  • the present invention also relates to a method for promoting osteogenesis, which comprises inhibiting the expression and Z or function of NEDD4.
  • the present invention uses a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 of the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12
  • the present invention relates to a formation promotion method.
  • the present invention relates to a method for promoting osteogenesis, comprising using a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
  • the present invention also relates to a method for promoting osteogenesis, comprising using the double-stranded polynucleotide.
  • the present invention provides a bone formation promoter comprising a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 of the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12. About.
  • the present invention relates to an osteogenesis promoter comprising a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
  • the present invention also relates to an osteogenesis promoter comprising the double-stranded polynucleotide.
  • the present invention relates to a method for suppressing tumor growth, which comprises inhibiting the expression and Z or function of NEDD4.
  • the present invention is characterized by using a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 of the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12.
  • the present invention relates to a method for inhibiting tumor growth.
  • the present invention also relates to a method for inhibiting tumor growth, comprising using a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
  • the present invention relates to a method for inhibiting tumor growth, characterized by using the double-stranded polynucleotide.
  • the present invention provides a tumor growth inhibitor comprising a protein represented by the amino acid sequence represented by SEQ ID NO: 11 in the sequence listing and a protein represented by Z or the amino acid sequence represented by SEQ ID NO: 12. About.
  • the present invention also relates to a tumor growth inhibitor comprising a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
  • the present invention relates to a tumor growth inhibitor comprising the double-stranded polynucleotide.
  • the present invention provides a method for identifying a compound that inhibits or promotes RUNX ubiquitin by NEDD4, comprising contacting NEDD4 and Z or RUNX with a compound (test compound), Using a system that uses a signal that detects RUNX ubiquitin by NEDD4 and a system that uses Z or a marker, and detects the presence or absence or change of this signal and Z or marker, the test compound is The present invention relates to an identification method including a step of determining whether or not to inhibit or promote RUNX ubiquitin.
  • the present invention also relates to a method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX, wherein NEDD4 and Z or RUNX are contacted with a compound, and then! The ability to inhibit the binding of NEDD4 and RUNX by detecting the presence or absence or change of the signal and Z or marker using a system that uses the signal and Z or marker resulting from binding.
  • the present invention relates to an identification method including a step of determining whether or not to promote power.
  • the present invention relates to a method for identifying a compound capable of promoting bone formation, which comprises the step of measuring whether or not a test compound has a force that inhibits the expression and Z or function of SNEDD4.
  • the present invention is a process power for measuring whether a test compound is capable of inhibiting the expression and Z or function of NEDD4.
  • the bone formation is any one process selected from the following group: Relates to methods for identifying compounds that can promote:
  • NEDD4 and Z or RUNX is brought into contact with the test compound, and then the presence or absence of the signal and Z or the marker using a system using the signal and Z or marker generated by the binding of NEDD4 and RUNX Alternatively, a step of determining whether or not the test compound is capable of inhibiting the binding of NEDD4 and RUNX by detecting a change.
  • the present invention further includes the step of measuring whether or not a test compound that has been shown to inhibit the expression and Z or function of NEDD4 can promote bone formation.
  • the present invention relates to a method for identifying a compound that can be promoted.
  • the present invention relates to a method for identifying a compound capable of suppressing tumor growth, which comprises a step of measuring whether or not a test compound is capable of inhibiting the expression and Z or function of NEDD4.
  • the present invention is a process power for measuring whether or not a test compound is capable of inhibiting the expression and Z or function of NEDD4.
  • the tumor growth is any one process selected from the following group: Relates to a method for identifying compounds capable of inhibiting
  • test compound (D. The step of determining whether or not the test compound is capable of inhibiting the expression of NEDD4 by contacting the test compound with a polynucleotide encoding D NEDD4 and then measuring NED D4,
  • NEDD4 and Z or RUNX are brought into contact with the test compound, and then the presence or absence of the signal and Z or marker using a system using the signal and Z or marker generated by binding of NEDD4 and RUNX Alternatively, a step of determining whether or not the test compound is capable of inhibiting the binding of NEDD4 and RUNX by detecting a change.
  • the present invention further comprises the step of measuring whether or not a test compound that has been shown to inhibit the expression and Z or function of NEDD4 can suppress tumor growth.
  • the present invention relates to a method for identifying a compound that can be produced.
  • the present invention relates to NEDD4, a polynucleotide encoding NEDD4, a recombinant vector containing the polynucleotide and a transformant containing the recombinant vector, and at least one of RUNX, RUNX And a reagent kit containing at least one of a recombinant vector containing the polynucleotide and a transformant containing the recombinant vector.
  • the present invention provides a preventive and Z or therapeutic agent for a disease caused by increased RUNX function and Z or expression, comprising an effective amount of the RUNX ubiquitinating agent and Z or the RUNX degrading agent. About.
  • the present invention also relates to prevention and Z or treatment of a disease caused by a decrease in RUNX function and Z or expression, comprising an effective amount of the RUNX ubiquitination inhibitor and Z or the RUNX degradation inhibitor. It relates to the agent.
  • the present invention uses the method or agent of at least one of the RUNX ubiquitination method, the RUNX ubiquitinating agent, the RUNX decomposition method, and the RUNX decomposition agent.
  • the present invention relates to a method for the prevention and Z or treatment of diseases caused by RUNX function and increased Z or expression.
  • the present invention provides at least any one of the RUNX ubiquitination inhibiting method, the RU NX ubiquitination inhibitor, the RUNX degradation inhibiting method, and the RUNX degradation inhibitor.
  • RU characterized by using any method or agent
  • the present invention relates to a method for preventing and / or treating a disease caused by decreased function or Z or expression of NX.
  • the present invention also relates to a preventive and Z or therapeutic agent for diseases associated with bone loss, comprising an effective amount of the osteogenesis promoter.
  • the present invention relates to prevention and Z or treatment of a disease accompanied by bone loss, characterized by using at least one agent or method of the osteogenesis promoting agent and the osteogenesis promoting method. Regarding the method.
  • the present invention relates to a preventive and Z or therapeutic agent for cancer diseases comprising an effective amount of the tumor growth inhibitor.
  • the present invention also relates to a method for the prevention and Z or treatment of cancer diseases, characterized by using at least one agent or method of the tumor growth inhibitor and the tumor growth inhibition method. .
  • a RUNX ubiquitin method and a decomposition method can be provided.
  • a RUNX ubiquitination method and decomposition method characterized by coexistence of RUNX and NEDD4 can be provided. It can also provide RUNX ubiquitinating and degrading agents.
  • the present invention can provide a method for inhibiting RUNX ubiquitination and degradation by NEDD4.
  • a method for inhibiting RUNX ubiquitination and degradation which comprises inhibiting at least one of binding of NEDD4 and RUNX, enzyme activity of NEDD4, and expression of NE DD4.
  • an inhibitor of RUNX ubiquitin by NEDD4 and an inhibitor of RUNX degradation by NEDD4 can be provided. Further, it is possible to provide a method for identifying a compound that inhibits or promotes RUNX ubiquitin by NED D4, and a method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX.
  • NEDD4 a polynucleotide encoding NEDD4, a vector containing the polynucleotide, and at least one of the transformants containing the vector, a polynucleotide encoding RUNX, RUNX, and the polynucleotide
  • a reagent kit comprising at least one of a vector containing the vector and a transformant containing the vector.
  • a preventive and Z or therapeutic agent for cancer diseases and the like, and a preventive and Z or therapeutic method can be provided.
  • RUNX ubiquitination can be performed using, for example, NEDD4.
  • RUNX ubiquitin by NEDD4 can be promoted using compounds obtained by the method of identifying compounds that promote RUNX ubiquitin by NEDD4.
  • degradation of RUNX can be promoted. Therefore, prevention and Z or treatment of diseases caused by increased RUNX and enhanced function can be expected.
  • RUNX ubiquitination by NEDD4 for example, by inhibiting the binding of NEDD4 to RUNX using an inactive NEDD4 mutant that binds to RUNX but has no E3 ligase activity, Can inhibit.
  • RUNX ubiquitin caused by NEDD4 can be inhibited using a compound obtained by the method for identifying a compound that inhibits RUNX ubiquitin caused by NEDD4.
  • By inhibiting RUNX ubiquitination by NEDD4 degradation of RUNX can be inhibited. Therefore, prevention and Z or treatment of diseases caused by reduction of RUNX and its function can be expected.
  • the ability to bind bone formation for example, bone formation caused by BMP-2 stimulation, for example, the ability to bind to RUNX 3 ⁇ 43 Inactive NEDD4 mutant that does not have ligase activity, or a duplex that can inhibit the expression of NEDD4 It can be facilitated using polynucleotides.
  • bone formation for example, bone formation by BMP-2 stimulation, can be promoted using the compound obtained by the method for identifying a compound capable of promoting bone formation according to the present invention.
  • tumor growth for example, inactive NEDD4 mutants that bind to RUNX but have E3 ligase activity, or double-stranded polynucleotides that can inhibit the expression of NEDD4 can be suppressed using tides.
  • tumor growth can be suppressed using a compound obtained by the method for identifying a compound capable of suppressing tumor growth according to the present invention. By using these compounds capable of suppressing tumor growth, prevention and Z or treatment of diseases associated with tumor growth, such as cancer diseases, can be expected.
  • RUNX ubiquitination by NEDD4 or short-chain NEDD4 degradation of RUNX can be regulated, and as a result, RUNX functions, for example, functions as transcription factors can be regulated.
  • RUNX functions for example, functions as transcription factors
  • prevention and Z or treatment of diseases caused by abnormal RUNX can be expected.
  • bone formation can be promoted, and prevention and Z or treatment of diseases associated with bone loss can be expected.
  • tumor growth can be suppressed, and prevention and Z or treatment of diseases associated with tumor growth such as cancer diseases can be expected.
  • FIG. 1 is a diagram showing the results of in silico prediction of the interaction between RUNX3 and NEDD4. A local alignment was done between RUNX3 and NEDD4, and the area showing the high! And score was shown.
  • the amino acid sequence is represented by one letter. The numbers in the figure mean the position of the N-terminal amino acid in each region shown in the amino acid sequence of RUNX3 or NED D4. (Example 1)
  • FIG. Panels A and B show the results of immunoblotting using anti-Myc antibody and anti-FLAG antibody, respectively, for immunoprecipitates with anti-FLAG antibody.
  • + and 1 indicate the presence or absence of each expression plasmid
  • IP indicates a sample immunoprecipitated using anti-FLAG M2 antibody
  • cell lysate indicates a V-cell lysate sample that has not been immunoprecipitated.
  • the numbers listed in the left column of the figure are the molecular weights of the molecular weight markers. Only in samples prepared from cells co-expressing Myc-NEDD4 and FLAG-RUNX3, coprecipitation of Myc-NEDD4 and FLAG-RUNX3 was observed by immunoprecipitation using anti-FLAG M2 antibody (Panel A). On the other hand, from FLAG—RUNX3 non-expressing cells No coprecipitation of Myc-NEDD4 was observed in the prepared sample. My C—NEDD4 expression was similar in both samples (Panel A). It was also confirmed that FLAG-RUNX3 expressed in the cells was recovered by anti-FLAG M2 antibody (panel B). (Example 2)
  • FIG. 3 In vivo ubiquitination of human RUNX3 by human NEDD4, immunoprecipitation using human cultured cells transiently co-expressing FLAG—RUN X3, Myc—NEDD4 and HA—ubiquitin It is a figure which shows the result examined by the method. Panels A and B show the results of immunoblotting using an anti-FLAG antibody and an anti-HA antibody, respectively, for the immunoprecipitates obtained from the anti-FLAG antibody. Panel C shows the results of immunoblotting using anti-Myc antibody for cell lysate. In the figure, + and indicate the presence or absence of each expression plasmid. The numbers listed in the left column are the molecular weight markers.
  • FIG. 4 Results of Western blotting on the effects of human NEDD4 on the stability of human RUNX3 using human cultured cells in which FLAG-RUNX3 and Myc-NEDD4 were transiently co-expressed.
  • FIG. Panels A, B and C show the results of immunoblotting using anti-FLAG antibody, anti-Myc antibody and anti-actin antibody, respectively.
  • + and 1 indicate the presence or absence of each expression plasmid, and the number indicates the amount of DNA introduced.
  • the numbers listed in the right column of the figure are the molecular weights of the molecular weight markers. is there.
  • FIG. 5 Human NEDD4 binding to human RUNX1 and human NEDD4 in vitro ubiquitin 4 using human cultured cells transiently co-expressing FLAG—RUNX1, Myc—NEDD4 and HA—ubiquitin. It is a figure which shows the result examined by the immunoprecipitation method. Panels A, B and C show the results of immunoblotting with anti-Myc antibody, anti-FLAG antibody and anti-HA antibody, respectively, for immunoprecipitates with anti-FLAG antibody. Panel D shows the results of immuno plotting of cell lysate with anti-Myc antibody. In the figure, + and-indicate the presence or absence of each expression plasmid.
  • the numerical value described in the left column of the figure is the molecular weight of the molecular weight marker.
  • Myc—NEDD4 and FLAG—RUNX1 co-precipitated in samples prepared from cells co-expressed with Myc-NED D4, FLAG—RUNX1 and HA—Ub (panel A), higher molecular weight than FLAG—RUNX1 (Panel B) and an increase in FLAG-RUNX1 with HA-Ub attached (Panel C).
  • Myc—NEDD4 (C967A), FLAG—RUNX1 and HA which have inactivated E3 ligase activity.
  • FIG. Panels A, B and C show the results of immunoblotting using anti-FLAG antibody, anti-Myc antibody and anti-actin antibody, respectively.
  • + and 1 indicate the presence or absence of each expression plasmid, and the number indicates the amount of DNA introduced.
  • FIG. 7 The size of endogenous NEDD4 detected in human cancer cell lines was compared with human NEDD4 transiently expressed in human cell lines and short-chain human NEDD4 by Western blotting. It is a figure which shows a result.
  • Panel A shows HEK293T cells expressing short-chain NEDD4 (lane 1), short-chain NEDD4 (C867A) with inactivated E3 ligase activity (lane 2), or Myc—NEDD4 (lane 3).
  • the results of immunoblotting using an anti-NEDD4 antibody are shown for cell lysate and human breast cancer cell line T-4 7D cell lysate (lane 4).
  • Panel B shows the results of immunoblotting using anti-NEDD4 antibody for cell lysates from various human cancer cell lines.
  • the numbers in the left column of the figure are the molecular weights of the molecular weight markers. (Example 7)
  • FIG. 4 is a diagram showing the results of examination by immunoprecipitation using cultured human cells in which ubiquitin is transiently co-expressed.
  • Panels A, B and C show anti-Myc antibody, anti-FLAG antibody and anti-HA anti-HA antibody anti-FLAG antibody immunoprecipitates, respectively. The result of having performed immunoblotting by a body is shown.
  • Panel D shows the results of immunoblotting with anti-Myc antibody for cell lysate.
  • + and 1 indicate the presence or absence of each expression plasmid.
  • the numbers listed in the left column of the figure are the molecular weights of the molecular weight markers.
  • Myc—short chain type NEDD4, FLAG—RUNX1 and HA—Ub were co-expressed in samples prepared from cells co-precipitated with Myc—short chain type NEDD4 and FLAG—RUNX1 (Panel A).
  • Multiple proteins with a molecular weight higher than RUNX1 were detected (Panel B), and an increase in FLAG—RUNX1 with HA—Ub added was observed (Panel C).
  • FIG. 5 is a diagram showing the results of examination by immunoprecipitation using human cultured cells in which HA-ubiquitin is transiently co-expressed.
  • Panels A, B and C show the results of immunoblotting with anti-Myc antibody, anti-FLAG antibody and anti-HA antibody, respectively, for the immunoprecipitates with anti-FLAG antibody.
  • Panel D shows the results of immunoblotting with anti-Myc antibody for cell lysate.
  • + and 1 indicate the presence or absence of each expression plasmid.
  • the numbers listed in the left column of the figure are the molecular weights of the molecular weight markers.
  • FIG. 6 is a view showing the results of examination by immunoprecipitation using cultured human cells.
  • Panel A, Panel B and Panel C show the results of immunoblotting with anti-Myc antibody, anti-FLAG antibody and anti-HA antibody, respectively, for the immunoprecipitates with anti-FLAG antibody.
  • Panel D shows the results of immunoblotting with anti-Myc antibody for cell lysate.
  • + and 1 indicate the presence or absence of each expression plasmid, respectively.
  • the numbers in the left column of the figure are the molecular weight markers.
  • Samples prepared from cells co-expressed with Myc short-chain NEDD4, FLAG-RUNX2 and HA-Ub showed coprecipitation of Myc short-chain NEDD4 and FLAG-RUNX2 (Panel A).
  • Several proteins with higher molecular weight than FLAG—RUNX2 were detected (Panel B), and increased FLAG—RUNX2 with HA—Ub added (Panel C).
  • samples prepared from cells co-expressed with Myc-short-chain NE DD4 (C867A), FLAG-RUNX2 and HA-Ub co-expressed with E3 ligase activity were inactive.
  • FIG. 11 In mouse C2C12 cells, short-chain human NE DD4 (C867A) with inactivated E3 ligase activity enhances alkaline phosphatase (ALP) activity under BMP-2 stimulation.
  • FIG. An empty vector (Empty vector), short-chain human NEDD4 expression plasmid or short-chain human NEDD4 (C867A) expression plasmid was introduced into cells, cultured for 3 days under 300 ⁇ gZml BMP-2 stimulation, and ALP activity in the cells was measured. Each data shows the relative value of ALP activity in BMP-2 untreated empty vector-introduced cells (mean value SD, n 6).
  • short human NEDD4 and short human NEDD4 are simply indicated as NEDD4 and NEDD4 (C867A), respectively.
  • ALP activity in BMP 2 treated short-chain human NEDD4 (C867A) expression plasmid-introduced cells and ALP activity in BMP 2-treated empty vector-introduced cells (*: P ⁇ 0. 05).
  • Nedd4 knockdown by mouse Nedd4 siRNA inhibited the expression of endogenous Nedd4 (Panel B), and as a result, ALP activity of the cells was enhanced under BMP-2 stimulation.
  • Nedd4 knockdown effect by mouse Nedd4 siRNA was evaluated by Western blotting (Panel B). Intensity indicates the relative value of the concentration of Nedd4 band detected in each cell with respect to the concentration of Nedd4 band detected in BMP-2 untreated negative control siRNA-introduced cells. When calculating the relative value, it is detected in each cell. The concentration of Nedd4 band was corrected by the concentration of Actin band. (Example 11)
  • F-test statistical analysis using Student's t-test or Welch's t-test showed that the negative control siRNA treatment group and the human NEDD4 siRNA treatment group Significant differences were observed (*: p ⁇ 0.05).
  • the endogenous NEDD4 knockdown effect of human NEDD4 siRNA was evaluated by Western blotting (panel)
  • Intensity in the figure represents the relative value of the concentration of the human NEDD4 band detected in the human NEDD4 siRNA treatment group relative to the concentration of the human NEDD4 band detected in the negative control siRNA treatment group.
  • protein As used herein generically, it means an isolated or synthetic full-length protein; an isolated or synthetic full-length polypeptide; or an isolated or synthetic full-length oligopeptide.
  • protein may be used.
  • the protein, polypeptide or oligopeptide includes two or more amino acids linked to each other by peptide bonds or modified peptide bonds. In the following, amino acids may be represented by one or three letters.
  • isolated full length DNA and Z or RNA synthetic full length DNA and Z or RNA; isolated DNA and Z or RNA oligonucleotides; or synthetic DNA and Z or RNA
  • polynucleotide is sometimes used as a generic term to refer to RNA oligonucleotides. Where such DNA and Z or RNA have a minimum size of 2 nucleotides
  • RUNX By regulating the degradation of RUNX by the ubiquitin proteasome system involving NEDD4, the functions of RUNX, for example, functions as a transcription factor, are regulated. As a result, various physiological phenomena involving RUNX, For example, the cell cycle and signal transduction are regulated.
  • RUNX ubiquitination by NEDD4 by regulating RUNX ubiquitination by NEDD4, degradation of RUNX can be regulated, thereby regulating the function of RUNX, for example, as a transcription factor.
  • RUNX By regulating the function of RUNX, diseases caused by abnormal RUNX can be prevented and Z or treated.
  • Ubiquitination means modification of a protein by ubiquitin by covalently binding one or more ubiquitins to one molecule of protein. Ubiquitin is covalently bound to a lysine residue in the target protein. Similar to protein ubiquitination, multiple ubiquitins are bound to a protein in a chain by further covalently binding another ubiquitin to a lysine residue in ubiquitin bound to a lysine residue in the target protein.
  • Ubiquitin is a protein consisting of 76 amino acids that is universally present in eukaryotes.
  • Ubiquitin is linked to the target protein by covalent bonds in a chain in the ubiquitin proteasome system known as the proteolytic mechanism.
  • ubiquitin-active enzyme E1
  • ubiquitin-conjugating enzyme E2
  • ubiquitin ligase E3
  • ubiquitin ligase E3 is important as an enzyme responsible for substrate selectivity.
  • Ubiquitin ligase (E3) is also referred to as E3 ligase.
  • target protein means a protein to be ubiquitinated.
  • substrate means a molecule that is catalyzed by an enzyme.
  • the "ubiquitin proteasome system” is a selective and active proteolytic mechanism. Yes, it regulates various physiological phenomena such as cell cycle and signal transduction, and is involved in maintaining homeostasis of proteins and cells (Non-patent Document 19).
  • the ubiquitinated target protein is degraded by the proteasome that recognizes ubiquitin bound in a chain to the protein. Abnormalities in the ubiquitin proteasome system lead to protein deficiency due to excessive degradation of the target protein, or protein accumulation due to inhibition of target protein degradation, thereby causing various diseases. Specifically, for example, the involvement of the ubiquitin proteasome system in cancer diseases has been reported (Non-patent Document 20).
  • NEDD4 is a HECT-type E3 ligase involved in the ubiquitin proteasome system, a proteolytic mechanism. NEDD4 has a C2 domain that is involved in binding to membrane lipids, four WW domains that are involved in binding to substrates, and a HECT domain that is the catalytic domain of ubiquitin and exhibits E3 ligase activity (Non-patent Document 18). .
  • NEDD4 substrates include RUNX.
  • E3 ligases since many of E3 ligases have self-ubiquitin activity, self-protein can be mentioned as a substrate for NEDD4.
  • NEDD4 wild-type NEDD4 having E3 ligase activity.
  • E3 ligase activity refers to ubiquitin that recognizes a target protein as a substrate in ubiquitin protein, and is activated by ubiquitin activity enzyme (E1) and bound to ubiquitin-binding enzyme (E2). It means the action of binding to the target protein.
  • the E3 ligase activity of NEDD4 recognizes RUNX as a substrate and is activated by ubiquitin activating enzyme (E1). This is the action of NEDD4 that binds ubiquitin bound to) to RUNX.
  • the E3 ligase activity of NEDD4 specifically refers to, for example, self-protein ubiquitin, which recognizes self-protein as a substrate and is activated by ubiquitin-activating enzyme (E1). This is the action of NEDD4 that binds ubiquitin bound to) to self-proteins.
  • the measurement of E3 ligase activity can be performed using the binding of ubiquitin to the target protein by E3 ligase as an index.
  • the binding of ubiquitin to the target protein was ubiquitinated. It can be measured by detecting the target protein. Detection of the ubiquitinated target protein can be performed by a known method such as Western blotting (see Examples 3, 5, 8 and 9).
  • the measurement of the EDD ligase activity of NEDD4 can be specifically performed by, for example, using RUNX as a substrate and detecting RUNX that has been ubiquitinated.
  • RUNX as a substrate
  • self-protein can be used as a substrate and ubiquitinated self-protein can be detected.
  • NEDD4 is preferably a protein encoded by a human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1, for example.
  • the protein encoded by the human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 is preferably a human-derived protein represented by the amino acid sequence set forth in SEQ ID NO: 2.
  • the amino acid sequence described in SEQ ID NO: 2 is registered as P46934 in the Swiss plot database.
  • NEDD4 is not limited to the above protein, has sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1, and has the same structural features and the same as the protein. Any protein is included as long as it is a protein having a biological function.
  • the polynucleotide encoding NEDD4 is not limited to the above-mentioned polynucleotide, and has a sequence homology with the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 and a protein encoded by the polynucleotide. As long as it is a polynucleotide encoding a protein having similar structural characteristics or biological functions, any polynucleotide is also included.
  • sequence homology is usually 50% or more of the entire amino acid sequence or base sequence, preferably at least 70%. More preferably, it is 70% or more, more preferably 80% or more, even more preferably 90% or more, and even more preferably 95% or more.
  • the protein having sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 contains one or more amino acid sequences in the amino acid sequence of the protein encoded by the polynucleotide For example, 1 to: L00, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to several amino acid residues. It includes proteins represented by amino acid sequences with mutations such as deletion, substitution, addition or insertion.
  • the polynucleotide having sequence homology with the polynucleotide represented by the nucleotide sequence shown in SEQ ID NO: 1 in the nucleotide sequence, one or more, for example, 1 to 300, preferably 1 to 90, Preferably, it includes a polynucleotide represented by a base sequence having a mutation such as deletion, substitution, addition or insertion of 1 to 60 nucleotides, more preferably 1 to 30, particularly preferably 1 to several nucleotides. It is.
  • the degree of mutation and the position thereof are the same as the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 in the protein having the mutation or the protein encoded by the polynucleotide having the mutation. As long as it has the following structural features and biological functions, it is not particularly limited. Proteins and polynucleotides having mutations may be naturally occurring or artificially introduced with mutations.
  • the structural features of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 include, for example, the C2 domain involved in binding to membrane lipids, and the WW domain involved in binding to substrates It is a catalytic domain of ubiquitin and a HECT domain that exhibits E3 ligase activity.
  • the structural features similar to those of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 are domains having sequence homology and similar functions to the above-described domain existing in the protein. Means.
  • the sequence homology of the domain is preferably at least 70%, more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and even more preferably 95% or more. It is.
  • Examples of the biological function of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 include E3 ligase activity.
  • the biological function of this protein includes binding to RUNX.
  • Preferred examples of RUNX that binds to this protein include human-derived RUNX1, RUNX2, and RUNX3.
  • the RUNX that binds to the present protein is not limited to those exemplified, and can be any RUNX family protein as long as it binds to the present protein.
  • the E3 ligase activity of the protein to be examined can be measured by measuring the ubiquitination of the target protein of the E3 ligase, for example, RUNX. RUNX conversion to ubiquitin This measurement can be performed using the RUNX ubiquitin method described later.
  • the measurement of the binding between the protein to be examined and RUNX can be performed using a protein binding assay known per se. Specifically, the protein and RUNX are allowed to coexist in vivo or in vitro, and then complex formation of the protein and RUNX is performed by Western blotting, immunoprecipitation, pull-down, two-hybrid, and fluorescence resonance energy. The binding between the protein and RUNX can be measured by measuring using a known method such as the Luge-Issage transfer method.
  • a protein having sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 and having the same structural characteristics and biological function as the protein is:
  • a protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 3 is preferable.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 3 is preferably a protein represented by the amino acid sequence set forth in SEQ ID NO: 4.
  • the nucleotide sequence set forth in SEQ ID NO: 3 and the amino acid sequence set forth in SEQ ID NO: 4 are registered in the NCBI database as accession numbers NM-0 06154 and NP-006145, respectively.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 is the N-terminal first protein of the protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 1.
  • the second power is a protein from which the 100th amino acid residue at the 100th is deleted.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 3 is the N-terminal side first force of the protein represented by the amino acid sequence set forth in SEQ ID NO: 2 and the 100th 100 It is a protein in which one amino acid residue is deleted.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 3 may be referred to as "short-chain NEDD4".
  • a protein encoded by a polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 may be referred to as “full-length NEDD4J”.
  • Short-chain NEDD4J has a full-length NEDD4 with a deleted amino acid residue at the N-terminal side, but, like full-length NEDD4, has a C2 domain, a WW domain, and a HECT domain.
  • a protein that functions as a HECT-type E3 ligase in the present specification, when simply referred to as short-chain NEDD4, it means short-chain NEDD4 having E3 ligase activity.
  • RUNX is a protein characterized by having a Runt domain, forms a heterodimer with PEBP2 ⁇ / C BF
  • RUNX has a number of family proteins. In mammals, three types of family proteins are known, namely RUNX 1, RUNX2 and RUNX3 (Non-patent Documents 1 and 2). Homology between human RUNX3 and human RUNX1 and human RUNX2 is 57% and 54%, respectively, at the amino acid level.
  • RUNX is preferably RUNX1, RUNX2, and RUNX3.
  • RUNX is not limited to those exemplified, and may be a RUNX family protein as long as it is bound to NEDD4 and ubiquitinated.
  • RUNX1 is preferably a protein encoded by a human-derived polynucleotide represented by the base sequence described in SEQ ID NO: 5, for example.
  • the protein encoded by the human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 5 is preferably a human-derived protein represented by the amino acid sequence set forth in SEQ ID NO: 6.
  • the base sequence described in SEQ ID NO: 5 and the amino acid sequence described in SEQ ID NO: 6 are registered in the NCBI database as accession numbers NM-001754 and NP-001745, respectively.
  • RUNX2 is preferably a protein encoded by a human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 7, for example.
  • the protein encoded by the human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 7 is preferably a human-derived protein represented by the amino acid sequence set forth in SEQ ID NO: 8.
  • the base sequence described in SEQ ID NO: 7 and the amino acid sequence described in SEQ ID NO: 8 are registered in the NCBI database as accession numbers NM-004348 and NP-004339, respectively.
  • RUNX3 is preferably a protein encoded by a human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 9, for example.
  • the protein encoded by the human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 9 is preferably a human-derived protein represented by the amino acid sequence set forth in SEQ ID NO: 10.
  • the base sequence described in SEQ ID NO: 9 and the amino acid sequence described in SEQ ID NO: 10 are respectively stored in the NCBI database.
  • the session numbers are registered as NM-004350 and NP-004341.
  • RUNX is not limited to the above protein, and has sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOS: 5, 7, and 9. Any protein is included as long as the protein has the same structural characteristics and biological function as the protein.
  • the polynucleotide encoding RUNX is not limited to the above-mentioned polynucleotide, and has sequence homology with the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5, 7, and 9, and As long as the polynucleotide encodes a protein having the same structural characteristics and biological function as the protein encoded by the polynucleotide, any of the polynucleotides is also included.
  • sequence homology is usually 50% or more of the entire amino acid sequence or base sequence, preferably at least 70%. More preferably, it is 70% or more, more preferably 80% or more, even more preferably 90% or more, and even more preferably 95% or more.
  • a protein having sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 5, 7, and 9 includes a protein encoded by the polynucleotide. 1 or more, such as 1 to: LOO, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to several amino acid residues. Proteins represented by amino acid sequences in which mutations such as deletions, substitutions, additions or insertions exist are included.
  • polynucleotide having sequence homology with the polynucleotide represented by the nucleotide sequence described in any one of SEQ ID NOs: 5, 7, and 9, one or more, for example, 1 to 300, in the nucleotide sequence Preferably, it is represented by a nucleotide sequence having a mutation such as deletion, substitution, addition or insertion of 1 to 90, more preferably 1 to 60, still more preferably 1 to 30, and particularly preferably 1 to several nucleotides. Polynucleotides are included.
  • the degree of mutation and the position thereof are represented by the nucleotide sequence of SEQ ID NO: 5, 7, and 9, wherein the protein having the mutation or the protein encoded by the polynucleotide having the mutation is selected from
  • the protein is not particularly limited as long as it has the same structural characteristics and biological function as the protein encoded by the polynucleotide. Proteins and polynucleotides with mutations can be naturally occurring In addition, an artificially introduced mutation may be used.
  • the structural feature of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 5, 7, and 9 is, for example, the Runt domain.
  • the structural characteristics of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 5, 7, and 9 are similar to the Runt domain present in the protein and have the same sequence homology. This means a Runt domain with the following functions.
  • the sequence homology of the Runt domain is preferably at least 70%, more preferably 70% or more, further preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more. It is.
  • Examples of the biological function of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 5, 7, and 9 include transcription factor activity.
  • Transcription factor activity refers to a transcription device that synthesizes RNA from DNA, recognizes and binds to a characteristic nucleotide sequence in the DNA, and directly or indirectly (in eukaryotes). This means the action of regulating transcription positively or negatively (including basic transcription factors).
  • the transcription factor activity can be measured using a known transcription activity measurement method.
  • RUN X forms a dimer with PEBP2 ⁇ / CBF ⁇ and is involved in the expression of various genes as a transcription factor (Non-patent Document 2).
  • RUNX transcription factor activity can be measured, for example, by creating a vector in which a reporter gene is linked in place of the gene downstream of the promoter or enhancer site of the gene in which the dimer acts as a transcription factor. It can be carried out by contacting RUNX with an excised cell such as a eukaryotic cell and measuring the presence or absence and change of the reporter gene.
  • a reporter gene a gene generally used in reporter assembly can be used.
  • a gene having an enzyme activity such as luciferase, 13 galactosidase, or chloramphee-cholacetyl transferase can be used.
  • the expression of the reporter gene can be measured by detecting the gene product itself or the activity of the gene product.
  • the expression of a reporter gene as described above is up to the gene product itself. Alternatively, it can be measured by detecting the enzyme activity of the gene product.
  • One embodiment of the present invention relates to a RUNX ubiquitin method using NEDD4, and a RUNX decomposition method using the method.
  • one embodiment of the present invention is a RUNX ubiquitinating agent comprising NEDD4 and
  • one embodiment of the present invention relates to a method for decomposing RUNX, characterized by treating RUNX using a RUNX ubiquitinating agent.
  • the RUNX ubiquitin method characterized by using NEDD4 and the RUNX decomposition method characterized by using the method can be carried out by coexisting NEDD4 and RUNX.
  • Coexistence of NEDD4 and RUNX can preferably be performed in cells. Specifically, eukaryotic cells or cultured cell lines that have been found to express RUNX are used, and a vector containing a polynucleotide encoding NEDD4 is transfected into the cells or cell lines. By allowing NEDD4 and RUNX to coexist in a cell, a RUNX ubiquitination method and a RUNX degradation method characterized by using this method can be carried out (see Examples 3, 5, 8 and 9).
  • both the vector containing the polynucleotide encoding NEDD4 and the vector containing the polynucleotide encoding RUNX are transfected into the cells or cell lines.
  • a RUNX ubiquitination method and a RUNX degradation method characterized by using the method can be carried out.
  • NEDD4 and RUNX are combined as described above.
  • a vector containing a polynucleotide encoding ubiquitin can be further transfected into the expressed or expressed cells.
  • ubiquitin-active enzyme (E1), ubiquitin-binding enzyme (E2) and ubiquitin are required in addition to NEDD4 for the ubiquitination reaction of the target protein. Therefore, it is appropriate to use these enzymes and ubiquitin together with NEDD4.
  • proteasomes can also be prepared with cellular power with proteasomes.
  • preferred cells for example, human erythrocytes can be used.
  • the proteanome can be prepared by the method of Emma Rich et al. (“The Journal of Biological Chemistry”, 2000, Vol. 275, p. 21140-21148). Yes! / ⁇ can also use a commercially available proteasome.
  • proteasomes can be purchased from AFFINITI Research Products Ltd.
  • Detection of ubiquitin can be measured by detection of a ubiquitinated target protein.
  • Detection of the ubiquitinated target protein can be performed by a known method such as Western blotting (see Examples 3, 5, 8 and 9).
  • a target protein having an increased molecular weight is detected after the ubiquitin reaction, compared to before the ubiquitin reaction of the target protein, it can be determined that the target protein has been ubiquitinated.
  • Detection of protein degradation can be performed by a known method such as Western blotting (see Examples 4, 6, 8 and 9). It can be determined that the target protein has been degraded when the amount of the target protein is reduced after the ubiquitin reaction, compared to before the ubiquitin reaction of the target protein.
  • RUNX ubiquitinating agent and RUNX degrading agent are characterized by comprising NEDD4.
  • the RUNX ubiquitinating agent according to the present invention the RUNX ubiquitination method and the RUNX decomposition method can be carried out.
  • One embodiment of the present invention provides a method for inhibiting RUNX ubiquitin and uses the inhibition method
  • the present invention relates to a method for inhibiting RUNX degradation.
  • the method for inhibiting RUNX ubiquitin and the method for inhibiting degradation of RUNX, which is characterized by using the inhibition method, can be carried out under in vitro and in vitro conditions.
  • one embodiment of the present invention relates to a RUNX ubiquitin-inhibitor and a degradation inhibitor.
  • one embodiment of the present invention relates to a method for inhibiting RUNX degradation, which comprises using a RUNX ubiquitination inhibitor.
  • NEDD4 binds to RUNX to catalyze the ubiquitination of RUNX. It was found that the stability of the product is degraded by the degradation.
  • Inhibiting NEDD4's action on RUNX can be achieved by inhibiting NEDD4 expression and Z or function.
  • NEDD4 functions means the functions that NEDD4 has! As described above, NEDD4 functions as follows: NEDD4 enzyme activity, and NEDD4 and other proteins such as
  • Inhibiting NEDD4 function means reducing or eliminating the function of NEDD4. Inhibiting the function of NEDD4 can be exemplified by inhibiting the enzyme activity of NEDD4 or binding of NEDD4 to other proteins such as RUNX.
  • the method for inhibiting RUNX ubiquitination can be carried out by inhibiting at least one of the binding of RUNX and NEDD4, the enzyme activity of NEDD4, and the expression of NEDD4.
  • the method for inhibiting RUNX ubiquitination includes, for example, a compound that inhibits the binding of RUNX to NEDD4, a compound that inhibits the enzyme activity of NEDD4, and a compound that inhibits the expression of NEDD4. This can be done by using at least 1.
  • compounds having such an inhibitory effect for example, polypeptides having competitive inhibitory effects, antibodies, low-molecular compounds, etc. are referred to as inhibitors.
  • RUNX ubiquitination inhibitor and RUNX degradation inhibitor are compounds that inhibit the binding of RUNX and NEDD4, compounds that inhibit the enzyme activity of NEDD4, and compounds that inhibit the expression of NEDD 4 1 At least.
  • RUNX and NEDD4 Binding of RUNX and NEDD4 means that RUNX and NEDD4 interact with each other by a non-covalent bond such as a hydrogen bond, a hydrophobic bond, or an electrostatic interaction so as to form a complex. Means. In this case, it is sufficient that RUNX and NEDD4 are partly connected.
  • the amino acids that make up RUNX or NEDD4 may contain amino acids that are not involved in the binding of RUNX and NEDD4! /.
  • “Inhibiting the binding of RUNX and NEDD4” means reducing or eliminating the amount of the complex formed from RUNX and NEDD4.
  • the measurement of the binding between RUNX and NEDD4 can be carried out by a method known per se, such as Western blotting, immunoprecipitation, pull-down, two-hybrid, and fluorescence resonance energy transfer. These methods can be used in combination.
  • the compound that inhibits the binding of RUNX and NEDD4 is preferably a compound that specifically inhibits the binding, and more preferably a low molecular weight compound that specifically inhibits the binding.
  • a compound that specifically inhibits the binding is preferably a compound that specifically inhibits the binding, and more preferably a low molecular weight compound that specifically inhibits the binding.
  • To specifically inhibit the binding of RUNX and NEDD4 means that the binding is strongly inhibited, but the binding between other proteins is not inhibited or is weakly inhibited.
  • the compound that inhibits the binding of RUNX and NEDD4 can be, for example, an inactive mutant of NEDD4 (hereinafter sometimes referred to as inactive NEDD4).
  • inactive NEDD4 an inactive mutant of NEDD4 having the ability to bind to RUNX and having no E3 ligase activity can be used.
  • Such inactive NEDD4 can inhibit the action of NEDD4 on RUNX by binding to RUNX in competition with wild-type NEDD4. Therefore, such inactive NEDD4 can inhibit RUNX ubiquitination.
  • Inactive NEDD4 is designed by designing a desired protein based on the amino acid sequence of NEDD4 and producing it using a known method. It can obtain by sorting using the method of.
  • an "inactive mutant of NEDD4" is a NEDD4 mutant in which mutations such as amino acid deletion, substitution, addition or insertion have been introduced into NEDD4, compared to wild-type NEDD4. This means a NEDD4 mutant whose E3 ligase activity is attenuated or lost. Inactive NEDD4 may be naturally occurring or artificially mutated.
  • the mutation site in inactive NEDD4 is, for example, a site necessary for NEDD4 E3 ligase activity in the amino acid sequence of NEDD4.
  • this site is, for example, the 967th cysteine residue in the amino acid sequence set forth in SEQ ID NO: 2.
  • the cysteine residue corresponds to the 867th cysteine residue in the amino acid sequence shown in SEQ ID NO: 4.
  • the cysteine residue is an active site of E3 ligase activity to which ubiquitin binds, and is an amino acid residue essential for NEDD4 E3 ligase activity.
  • Inactive NEDD4 is preferably a protein represented by the amino acid sequence of SEQ ID NO: 11 or SEQ ID NO: 12, for example.
  • the protein represented by the amino acid sequence shown in SEQ ID NO: 11 is a protein represented by the amino acid sequence in which the 967th cysteine residue is substituted with an alanine residue in the amino acid sequence shown in SEQ ID NO: 2.
  • the protein represented by the amino acid sequence shown in SEQ ID NO: 12 is a protein represented by the amino acid sequence in which the 867th cysteine residue is substituted with an alanine residue in the amino acid sequence shown in SEQ ID NO: 4 (hereinafter referred to as the amino acid sequence shown below).
  • inactive short chain NEDD4 is sometimes referred to as inactive short chain NEDD4.
  • the compound that inhibits the binding of RUNX and NEDD4 may be a polypeptide that also has an amino acid sequence at the site where RUNX and NEDD4 bind.
  • Such polypeptides are Binding between proteins can be competitively inhibited.
  • Such a polypeptide can be obtained by designing the amino acid sequence of RUNX or NEDD4 and selecting one that inhibits the binding of RUNX and NEDD4 from those synthesized by a peptide synthesis method known per se.
  • a polypeptide in which mutations such as deletion, substitution, addition or insertion of one to several amino acid residues are introduced into the identified polypeptide is also encompassed in the scope of the present invention.
  • the polypeptide into which such a mutation is introduced preferably inhibits the binding of RUNX and NEDD4.
  • Polypeptides having mutations may be naturally occurring or artificially introduced with mutations. These polypeptides can be obtained by a general production method described later.
  • the compound that inhibits the binding of RUNX and NEDD4 may be an antibody that recognizes RUNX or NEDD4, and an antibody that inhibits the binding of RUNX and NEDD4, or a fragment thereof.
  • an antibody can be obtained by a known antibody production method using RUNX or NEDD4 itself, or a fragment thereof, preferably a polypeptide consisting of the amino acid sequence of the site where RUNX and NEDD4 bind to each other as an antigen.
  • the compound that inhibits the binding of RUNX and NEDD4 may also be an aptamer that specifically recognizes RUNX or NEDD4 and inhibits the binding of RUNX and NEDD4.
  • the aptamer can be a nucleic acid aptamer or a peptide aptamer, and a powerful aptamer can be a known method (eg, Hermann T. et al., “Science”, 2000, 287th, No. 5454, p. 820-825; Burgstaller P. et al., “Current Opinion in Drug Discovery and Development”, 2002, V. 5, 690-700; and Hop pe-Seyler F. et al., "Current Molecular Medicine", 2004, IV, 5, p. 529-538. ) Can be obtained using the method described in).
  • Enzyme activity of NEDD4 means the E3 ligase activity of NEDD4.
  • “Inhibiting NEDD4 enzyme activity” means reducing or eliminating NEDD4 E3 ligase activity.
  • a compound that inhibits the enzyme activity of NEDD4 can be obtained using the compound identification method described below.
  • the compound that inhibits the enzyme activity of NEDD4 may be, for example, an antibody or a fragment thereof that inhibits the enzyme activity of NEDD4, and is an abutama that specifically binds to NEDD4 and has an action of inhibiting the activity.
  • You can also An antibody or aptamer can be obtained by the above-mentioned method. By measuring the inhibitory action of these enzyme activities of NEDD4 by the method described in the compound identification method described later, the action of inhibiting the enzyme activity of NEDD4 can be obtained. Antibody or abutama can be obtained.
  • NEDD4 "Expression of NEDD4" means that gene information of DNA encoding NEDD4 is transferred to mRNA, or is transcribed into mRNA and translated as the amino acid sequence of protein (NEDD4) Say.
  • NEDD4 expression means that the gene information of DNA encoding NEDD4 is transcribed into mRNA, or is transcribed into mRNA and translated as the amino acid sequence of protein (NEDD4) By interfering with at least one of the various reactions that occur during the process, the transcription of the NEDD4 gene means that the production of NEDD4 by translation is prevented.
  • a compound that inhibits the expression of NEDD4 can be obtained using the compound identification method described below.
  • the compound that inhibits the expression of NEDD4 can be, for example, an antisense oligonucleotide of a polynucleotide encoding NEDD4 or a double-stranded polynucleotide that can inhibit the expression of NEDD4.
  • a double-stranded polynucleotide capable of inhibiting the expression of NEDD4 has been identified.
  • this double-stranded polynucleotide is a double-stranded RNA that also has the power of a polynucleotide having a partial base sequence ability of a polynucleotide encoding NEDD4 and a polynucleotide comprising a complementary base sequence of the partial base sequence.
  • double-stranded polynucleotide capable of inhibiting the expression of NEDD4 include the following double-stranded polynucleotide: (i) a polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 21 A double-stranded polynucleotide comprising a nucleotide and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22, (ii) a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and the base sequence set forth in SEQ ID NO: 24 (Iii) a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 And a double-stranded polynucleotide comprising the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 26.
  • Each of these double-stranded polynucleotides is a double-stranded RNA comprising a polynucleotide consisting of a partial sequence of a polynucleotide encoding NEDD4 derived from human and a polynucleotide consisting of a complementary base sequence of the partial base sequence.
  • the double-stranded polynucleotide that can be used in the present invention is not limited to those exemplified above, and any double-stranded polynucleotide can be used as long as it is a double-stranded polynucleotide that can inhibit the expression of NEDD4. But it can be.
  • double-stranded polynucleotides that can inhibit NEDD4 expression include short double-stranded polynucleotides that can inhibit NED D4 expression by RNA interference, ie, siRNA (small interfering RNA) against NEDD4 ( Elbashir SM et al., “Nature”, 2001, 411, p. 494-498; and Pad dison PJ et al., “Genes and Development”, 2002 Year 16th, p. 948-958).
  • siRNA small interfering RNA
  • the siRNA for NEDD4 is composed of RNA consisting of a partial sequence of NEDD4 mRNA (sense RNA) and RNA consisting of a base sequence complementary to the base sequence of the RNA (antisense RNA) based on the sequence of NEDD4 mRNA.
  • a double-stranded RNA is produced by designing and synthesizing by a chemical synthesis method known per se, and making the obtained RNA noislative, and its intermediate force can also inhibit the expression of NEDD4. It can be acquired by selecting. Selection of siRNA that can inhibit NEDD4 expression involves transfecting the double-stranded RNA to be examined in cells expressing NEDD4, measuring the expression level of endogenous NEDD4, and inhibiting the expression level.
  • the sense RNA and the antisense RNA constituting the siRNA each consist of several or about ten or more nucleotides.
  • one or several nucleotide sequences called an overhang sequence are bound to the 3 ′ end of each nucleotide.
  • the overhang sequence has the effect of protecting RNA from nuclease power.
  • the overhang sequence is not particularly limited as long as it does not inhibit the RNA interference effect of the RNA, preferably 1 to 10, more preferably 1 to 4, more preferably 2 Any of those having nucleotide strength can be used.
  • a sequence that also includes deoxythymidylate eg, TT
  • a sequence that also includes uridylate eg, UU
  • a sequence that is linked to deoxythymidylate, followed by any nucleotide eg, TN
  • an array can be illustrated.
  • two deoxythymidylate sequences are used as overhang sequences because they can be synthesized inexpensively and are more resistant to nucleases.
  • the overhang sequence is bound to the ribose hydroxyl group at the 3 'end of each of sense RNA and antisense RNA by a diester bond.
  • shRNA is a short double-stranded RNA with a hairpin structure and, like siRNA, suppresses gene expression by RNA interference (Paddison PJ et al., “Genes and Development (Genes and Development). ”, 2002, 16th pp. 948-958).
  • shRNA has a hairpin-like structure because sense RNA and antisense RNA are linked by, for example, an oligonucleotide, and a sense RNA-derived portion and an antisense RNA-derived portion form a double strand.
  • shRNA is designed based on the nucleotide sequence of NEDD4 mRNA by designing RNA containing oligonucleotides that link these two RNAs and form a loop structure. Can be obtained by producing a short double-stranded RNA having a hairpin structure and selecting one that can inhibit the expression of NEDD4. The selection of shRNAs that can inhibit NEDD 4 expression is achieved by transfecting short double-stranded RNA with a hairpin structure that expresses NEDD4! It can be carried out by measuring the amount and selecting one that can inhibit the expression level.
  • oligonucleotide that forms a loop structure means an oligonucleotide that exists between a sense RNA and an antisense RNA and that can link both RNAs and itself forms a loop structure.
  • the design of such oligonucleotides is described in the literature (Paddison PJ et al., “Genes and Development”, 2002, Vol. 16, p.
  • RNA-derived portion 948-95. It can be implemented with reference to the description in 8). Preferably 4 to 23, more preferably 4 or 8 nucleotides are desirable. For example, sequences such as TTCAAGAGA (Ambion or Oligoengine), AACGTT, TTAA, CAAGCTTC and the like can be mentioned. Formation of a duplex having a hairpin structure can be carried out by annealing a sense RNA-derived portion and an antisense RNA-derived portion by a conventional method.
  • An embodiment of the present invention includes the double-stranded polynucleotide.
  • the following double-stranded polynucleotide can be exemplified: (i) consisting of a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22 A heavy chain polynucleotide, (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and (iii) a sequence A polynucleotide represented by the nucleotide sequence represented by No. 25 and a double-stranded polynucleotide comprising the polynucleotide represented by the nucleotide sequence represented by SEQ ID No. 26
  • polypeptide constituting the double-stranded polynucleotide for example, a polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 21 to 26. included.
  • the RUNX ubiquitin inhibition method and the RUNX degradation inhibition method according to the present invention are preferably performed using the NEDD4 inactive mutant and the double-stranded polynucleotide capable of inhibiting the expression of NEDD4. it can.
  • the method for inhibiting RUNX ubiquitination and the method for inhibiting RUNX degradation according to the present invention can be performed using at least one selected from the following proteins and double-stranded polynucleotides: SEQ ID NO: 1 A protein represented by the amino acid sequence described; a protein represented by the amino acid sequence represented by SEQ ID NO: 12; a polynucleotide represented by the base sequence represented by SEQ ID NO: 21 and the base sequence represented by SEQ ID NO: 22.
  • a double-stranded polynucleotide comprising the polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24; and A duplex comprising the polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and the polynucleotide represented by the base sequence set forth in SEQ ID NO: 26 Strand polynucleotide.
  • the RUNX ubiquitin inhibitor and the RUNX degradation inhibitor according to the present invention are preferably selected for the NEDD4 inactive mutant and the double-stranded polynucleotide force capable of inhibiting the expression of NEDD4.
  • the RUNX ubiquitin inhibitor and the RUNX degradation inhibitor according to the present invention comprise an effective amount of at least one selected from the following proteins and double-stranded polynucleotides: SEQ ID NO: 11 A protein represented by the amino acid sequence described; a protein represented by the amino acid sequence represented by SEQ ID NO: 12; a polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 21; and a base sequence represented by SEQ ID NO: 22.
  • a double-stranded polynucleotide comprising the polynucleotide represented; a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the polynucleotide represented by the base sequence set forth in SEQ ID NO: 24 And a duplex comprising the polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and the polynucleotide represented by the base sequence set forth in SEQ ID NO: 26 Li nucleotide.
  • the RUNX ubiquitination inhibition method and the RUNX degradation inhibition method can be carried out.
  • One aspect of the present invention relates to a pharmaceutical composition comprising an effective amount of the RUNX ubiquitinating agent according to the present invention and Z or the RUNX decomposing agent according to the present invention as active ingredients.
  • Another aspect of the present invention relates to a pharmaceutical composition comprising the RUNX ubiquitin inhibitor according to the present invention and Z or the RUNX degradation inhibitor according to the present invention as an effective ingredient.
  • a RUNX ubiquitinating agent according to the present invention a RUNX decomposing agent according to the present invention, and a pharmaceutical composition comprising the ubiquitinating agent and an effective amount of Z or the RUNX decomposing agent, In addition, it can be used as a preventive and Z or therapeutic agent for diseases caused by reduction of RUNX degradation by the ubiquitination.
  • These drugs and pharmaceutical compositions can be used to implement prevention and Z or treatment methods for such diseases.
  • the RUNX ubiquitin inhibitor according to the present invention, the RUNX degradation inhibitor according to the present invention, and the pharmaceutical composition comprising the ubiquitin inhibitor and Z or the RUNX degradation inhibitor in an effective amount, RUNX ubiquitination and RUNX by ubiquitination It can be used as a preventive and z or therapeutic agent for diseases caused by increased degradation of These drugs and pharmaceutical compositions can be used to implement prevention and Z or treatment methods for such diseases.
  • RUNX1 is involved in hematopoietic cell sorting and is a causative gene of leukemia (Non-patent Documents 4 and 5). Specifically, there are reports showing that loss of RUNX1 function is involved in the development of leukemia (Non-patent Documents 6 and 7). Based on this, the inventors believe that reduction of RUNX1 is involved in the onset and exacerbation of cancer diseases such as leukemia.
  • RUNX2 is an important transcription factor involved in bone formation, and is essential for chondrocyte differentiation 'maturation, osteoblast differentiation and bone marrow formation (Non-patent Documents 26 and 27). For example, since bone formation is not observed in RUNX2 knockout mice, it is considered that the defect causes bone formation failure (Non-patent Document 8). Since RUNX2 binds to the transcription factor Smadl, which is involved in the induction of bone morphogenetic gene expression by BMP stimulation, it is thought that RUNX2 is involved in bone formation signals via BMP stimulation (Non-Patent Documents). 28).
  • RU NX2 acts on the differentiation of bone cells, and also expresses bone matrix genes (Collal, Colla2, osteopontin, osteocalcin), bone sialoprotein, etc. Has been shown to be active (Non-patent Document 29). From these, the inventors believe that reduction of RUNX2 is associated with abnormal bone formation, such as bone loss.
  • osteogenesis model cells stimulated with BMP-2 are inactivated NEDD4 that binds to RUNX but does not have E3 ligase activity, or siRNA that can inhibit the expression of NEDD4.
  • NEDD4 expression and Z or function increases alkaline phosphatase activity, which is an indicator of bone formation (see Examples 10 and 11).
  • Bone-type alkaline phosphatase present in the osteoblastic membrane reflects early osteoblast activity, for example, when pre-osteoblasts differentiate into osteoblasts and then transition from the proliferative phase to the substrate synthesis phase. ing. That is, NEDD4 Inhibition of expression and Z or function can be thought to promote osteoblast ossification by BMP-2 stimulation.
  • BMP is a site force-in that induces bone tissue by differentiating and proliferating undifferentiated mesenchymal stem cells into chondrocytes and osteoblasts in vivo.
  • BMP-2 has been shown to be expressed early in the fracture healing process and is involved in the progression of a series of cascades in bone repair.
  • BMP-2 is applied to muscles, bone is formed ectopically, and when it is applied to the bone surface, callus-like osteogenesis occurs. Based on these facts, it is considered that BMP-2 is used to repair bone tissues such as fractures, bone defects, and root surgery (Chen, D. et al., “Growth Factor”). 2004, 22nd, 4th, p. 233-241).
  • osteoporosis is a disease in which the bone balance is unbalanced due to decreased osteoblast function and increased bone resorption, resulting in bone loss and increased fractures. Therefore, the enhancement of BMP-2 signal is It is thought to reinforce both the restoration of osteoblast function and the promotion of fracture healing for the disease.
  • inhibition of NEDD4 expression and Z or function increases the alkaline phosphatase activity of bone formation model cells stimulated with BMP-2, and, as described above, the short chain type.
  • NEDD4 and RUNX2 combined. Based on these findings, inhibition of NEDD4 expression and Z or function resulted in bowel I inhibition of RUNX2 ubiquitination by NEDD4 in RUNX2, which is involved in osteogenesis signals by BMP-2 stimulation. It can be considered that this promoted the osteogenic signal.
  • the bone differentiation of the bone formation model cell is promoted and its alkaline phosphatase activity is increased.
  • RUNX 2 ubiquitination by NEDD4 and degradation of RUNX2 by the ubiquitination can be inhibited, and RUNX2 can be stabilized.
  • osteogenesis signals involving RUNX2 can be promoted, and osteoblast differentiation and osteogenesis can be further promoted.
  • the inventors believe that by promoting osteoblast differentiation and bone formation in this way, it is possible to prevent and Z or treat abnormal bone formation, such as bone loss disease, more specifically osteoporosis, for example. ing.
  • One embodiment of the present invention based on this finding relates to an osteogenesis promoter characterized by inhibiting the expression and Z or function of NEDD4.
  • the osteogenesis promoter according to the present invention is preferably an osteogenesis promoter by RUNX, more preferably RUNX2.
  • the bone formation promoter according to the present invention comprises at least one of a compound that inhibits the function of NEDD4 and a compound that inhibits the expression of NEDD4.
  • the osteogenesis promoter according to the present invention is represented by an inactive NEDD4 that binds to RUNX but does not have E3 ligase activity, for example, the amino acid sequence set forth in SEQ ID NO: 11 in the Sequence Listing.
  • An osteogenesis promoter comprising an effective amount of a protein and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12.
  • the osteogenesis promoter according to the present invention may be an osteogenesis promoter comprising a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
  • Preferred examples of the double-stranded polynucleotide contained in the osteogenesis promoter according to the present invention include the following double-stranded polynucleotides: (i) a polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 21 A double-stranded polynucleotide comprising a nucleotide and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22; (ii) a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and the base set forth in SEQ ID NO: 24 A double-stranded polynucleotide comprising a polynucleotide represented by the sequence; and (iii) a polynucleotide
  • the promotion of bone formation by these three types of double-stranded polynucleotides has not been studied.
  • these three types of double-stranded polynucleotides inhibited NEDD4 expression (see Example 12), and also derived from mouse-derived double-stranded polynucleotides (represented by the nucleotide sequence set forth in SEQ ID NO: 19).
  • Inhibition of NEDD4 expression using a polynucleotide and a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 20 promoted alkaline phosphatase activity, an indicator of bone formation, in mouse cell lines (Example 10). Therefore, the inventors consider that the three types of double-stranded polynucleotides have a bone formation promoting action.
  • the osteogenesis promoting method of the present invention can be used to implement the osteogenesis promoting method.
  • One aspect of the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of the osteogenesis promoter according to the present invention as an active ingredient.
  • Such a pharmaceutical composition can be used as a preventive and Z or therapeutic agent for abnormal bone formation, such as bone loss diseases, more specifically osteoporosis.
  • These agents and pharmaceutical compositions can be used to implement prevention and Z or treatment methods for such diseases.
  • RUNX2 has also been reported that its overexpression causes abnormalities in T cell differentiation and is involved in lymphoma formation through synergistic action with c-myc (Non-patent Document 9). Based on this, the inventors think that increased RUNX2 calorie is involved in the development and exacerbation of lymphoma.
  • RUNX2 can be degraded by ubiquitinating RUNX2 with NEDD4, resulting in prevention and Z or treatment of lymphoma.
  • Non-patent Document 10 Since RUNX3 binds to Smad, an intracellular mediator of TGF- ⁇ , it is considered to be involved in TGF- ⁇ signaling (Non-patent Document 10). Mutations in the TGF- ⁇ receptor and Smad have been observed in many cancers (Non-patent document 11), and RUNX3 is thought to be involved in cancer via the TGF-
  • Non-patent Document 13 the tumor formation inhibitory effect of RUN X3 has been confirmed in animal experiments using a transplant model. From these, the inventors think that the reduction of RUNX3 is involved in the onset and exacerbation of cancer diseases such as gastric cancer, colon cancer, bile duct cancer, and spleen cancer.
  • RUNX2 has been reported to be involved in lymphoma formation through synergism with c-myc (Non-patent Document 9), while RUNX3 has been reported to be involved in tumor growth inhibition (Non-patent Document 9).
  • References 10-17 the extent of RUNX's involvement in tumorigenesis and tumor growth inhibition and its mechanism are not clear.
  • NEDD4 ubiquitinates RUNX but the difference in the degree of ubiquitin by NEDD4 for each RUNX family protein such as RUNX1, RUNX2, and RUNX3 is not clear.
  • RUNX is ubiquitinated by NEDD4. (See Examples 3, 5, 8 and 9), and in human uterine cervical cancer cell line HeLa and human gastric cancer cell line NCI-N87, using siRNA that can inhibit the expression of NEDD4, It was found that tumor growth was suppressed by inhibiting expression (see Example 12).
  • NEDD4 expression is increased at the mRNA level in several cancer cell lines, such as the human eclampsia cancer cell line HeLa, the human lung cancer cell line A549, and the human leukemia cell line K562! Has been reported (Non-patent Document 21). However, there are no reports suggesting an increase in the expression of NEDD4 in human clinical specimens or a link between NEDD4 and cancer diseases.
  • inhibition of NEDD4 expression suppresses tumor growth, and as described above, short-chain NEDD4 binds to RUNX, and RUNX force SNEDD4 causes ubiquitin secretion.
  • RUNX3 is thought to be involved in tumor growth inhibition.
  • the inventors believe that suppression of tumor growth by inhibiting the expression of NEDD4 may be related to the inhibition of RUNX3 ubiquitination by NEDD4 and stabilization of RUNX3. Therefore, the inventors think that tumor growth can be suppressed not only by the expression of NEDD4 but also by inhibiting the function of NEDD4.
  • One embodiment of the present invention based on this finding relates to a tumor growth inhibitor characterized by inhibiting the expression and Z or function of NEDD4.
  • the tumor growth inhibitor according to the present invention comprises at least any one of a compound that inhibits the function of NEDD4 and a compound that inhibits the expression of NEDD4.
  • the tumor growth inhibitor according to the present invention binds to RUNX but does not have E3 ligase activity, and is represented by inactive NEDD4, for example, the amino acid sequence set forth in SEQ ID NO: 11 of the Sequence Listing.
  • a tumor growth inhibitor comprising an effective amount of the protein represented by Z or the amino acid sequence represented by SEQ ID NO: 12.
  • the tumor growth inhibitor according to the present invention may be a tumor growth inhibitor comprising a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
  • Preferred examples of the double-stranded polynucleotide contained in the tumor growth inhibitor according to the present invention include the following double-stranded polynucleotide: (i) a polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 21 Nucleotides and sequences A double-stranded polynucleotide comprising the polynucleotide represented by the nucleotide sequence represented by No.
  • double-stranded polynucleotides are double-stranded polynucleotides having a human-derived polynucleotide ability. All of these three types of double-stranded polynucleotides inhibited cell growth as a result of transfection into human cancer cell lines (see Example 12).
  • the method for inhibiting tumor growth can be carried out using the tumor growth inhibitor according to the present invention.
  • One aspect of the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of the tumor growth inhibitor according to the present invention as an active ingredient.
  • Such a pharmaceutical composition can be used as a preventive and Z or therapeutic agent for diseases associated with tumor growth, such as cancer diseases, more specifically, cancer diseases such as stomach cancer, colon cancer, bile duct cancer, liver cancer and the like. .
  • cancer diseases such as stomach cancer, colon cancer, bile duct cancer, liver cancer and the like.
  • These agents and pharmaceutical compositions can be used to implement prevention and Z or treatment methods for such diseases.
  • inhibition of NEDD4 expression and Z or function can inhibit RUNX3 degradation by RUNX3 ubiquitination by NED D4 and stabilize RUNX3.
  • tumor growth is suppressed by RUNX3.
  • cancer diseases more specifically cancer diseases such as gastric cancer, colon cancer, bile duct cancer, and liver cancer.
  • the pharmaceutical composition according to the present invention is usually preferably prepared as a pharmaceutical composition containing one or more pharmaceutical carriers in addition to the active ingredient.
  • the amount of the active ingredient contained in the pharmaceutical preparation according to the present invention is appropriately selected from a wide range. Usually, it is appropriate that the amount is in the range of about 0.0001 to 70% by weight, preferably about 0.0001 to 5% by weight.
  • the pharmaceutical carrier includes a filler, a bulking agent, a binder, a moistening agent, a disintegrant, a lubricant, a diluent, an excipient, and the like that are generally used according to the form of use of the preparation. used. They are It is appropriately selected and used depending on the administration form of the resulting preparation.
  • water pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polybutylpyrrolidone, carboxyvinyl polymer, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin , Xanthan gum, gum arabic gum, casein, gelatin, agar, glycerin, propylene glycol, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin, mannitol, sorbitol, ratatose, etc. .
  • These may be used singly or in combination of two or more according to the dosage form of the pharmaceutical composition.
  • the stabilizer for example, human serum albumin, ordinary L-amino acid, saccharide, cellulose derivative and the like can be used. These can be used alone or in combination with a surfactant or the like. In particular, according to this combination, the stability of the active ingredient may be further improved.
  • the L amino acid is not particularly limited, and may be any of glycine, cysteine, glutamic acid and the like.
  • Sugars are not particularly limited, for example, monosaccharides such as glucose, mannose, galactose and fructose, sugar alcohols such as mannitol, inositol and xylitol, disaccharides such as sucrose, maltose and lactose, dextran, hydroxypropyl starch, Any of polysaccharides such as chondroitin sulfate and hyaluronic acid, and derivatives thereof may be used.
  • monosaccharides such as glucose, mannose, galactose and fructose
  • sugar alcohols such as mannitol, inositol and xylitol
  • disaccharides such as sucrose, maltose and lactose
  • dextran hydroxypropyl starch
  • Any of polysaccharides such as chondroitin sulfate and hyaluronic acid, and derivatives thereof may be used.
  • the cellulose derivative is not particularly limited, and may be any of methyl cellulose, ethyl cenololose, hydroxy ethino reseno relose, hydroxypropino reseno relose, hydroxy open propyl methyl cellulose, carboxymethyl cellulose sodium and the like.
  • surfactant any of an ionic surfactant and a nonionic surfactant can be used.
  • Surfactants include, for example, polyoxyethylene glycol sorbitan alkyl ester, polyoxyethylene alkyl ether, sorbitan monoacyl ester, and fatty acid glyceride.
  • Buffering agents include, for example, boric acid, phosphoric acid, acetic acid, citrate, ⁇ -aminocaproic acid, dartamic acid and ⁇ or a salt thereof (for example, sodium salt, potassium salt, calcium salt, magnesium salt thereof) Alkali metal salts such as alkaline earth metal salts).
  • tonicity agent for example, sodium chloride sodium, potassium salt sodium, saccharide, and glycerin can be used.
  • chelating agent for example, sodium edetate or quenate can be used.
  • the medicine and pharmaceutical composition according to the present invention can be used as a solution preparation, and after freezing, drying and storing it, it contains water, physiological saline, etc. It can also be used after it is dissolved in a buffer solution or the like to prepare an appropriate concentration.
  • the dose range of the medicine and the pharmaceutical composition is not particularly limited, and the effectiveness of the contained ingredient, the administration form, the administration route, the type of the disease, the nature of the subject (weight, age, medical condition and use of other medicines) Or the like) and the judgment of the doctor in charge.
  • a suitable dose is, for example, in the range of about 0.01 ⁇ g to 100 mg, preferably about 0.1: g to lmg, per kg of body weight of the subject.
  • these dosage changes can be made using general routine experimentation for optimization well known in the art.
  • the above dosage can be divided into once to several times a day, and may be administered intermittently at a rate of once every several days or weeks! /.
  • the pharmaceutical composition When administering the pharmaceutical composition according to the present invention, the pharmaceutical composition may be used alone or in combination with other compounds or medicines necessary for the prevention and Z or treatment of the target disease. May be. For example, you may mix
  • the route of administration can be selected from systemic administration or local administration!
  • an appropriate administration route is selected according to the disease, symptom and the like.
  • parenteral routes include normal intravenous administration and intraarterial administration, as well as subcutaneous, intradermal, intramuscular administration and the like. It can also be administered by the oral route.
  • transmucosal administration or transdermal administration is possible. When used for cancer diseases, it can be administered directly to the tumor by injection or the like.
  • various forms can be selected according to the purpose. Typical examples include solid dosage forms such as tablets, pills, powders, powders, fine granules, granules, capsules, aqueous preparations, ethanol solution preparations, suspensions, fat emulsions, and ribosome preparations. , Cyclodextrin, etc. Liquid dosage forms such as clathrate, syrup, elixir and the like.
  • these can be further administered orally, parenterally (instillations, injections), nasal preparations, inhalants, vaginal preparations, suppositories, sublingual, eye drops, ear drops, ointments, creams And can be prepared, molded and prepared according to conventional methods.
  • One embodiment of the present invention relates to a method for identifying a compound that inhibits or promotes RUNX ubiquitin.
  • RUNX ubiquitination can be thought to be performed by NEDD4 participating as an E3 ligase and binding to RUNX to catalyze RUNX ubiquitination.
  • the method for identifying a compound that inhibits or promotes RUNX ubiquitination is preferably a method for identifying a compound that inhibits or promotes RUNX ubiquitination by NEDD4.
  • the method for identifying a compound according to the present invention can be carried out using a pharmaceutical screening system known per se.
  • a method for identifying a compound that inhibits or promotes RUNX ubiquitin by NEDD4 can be carried out using the method generally used in screening for inhibitors of E3 ligase.
  • the substrate in vivo or E3 ligase itself is used as the substrate for E3 ligase.
  • RUNX or NEDD4 itself can be used as a substrate for NEDD4.
  • a compound that inhibits the binding of NEDD4 and RUNX can be obtained, so it is more preferable to use RUNX as the substrate. ,.
  • a method for identifying a compound that inhibits or promotes RUNX ubiquitin can be performed using, for example, an experimental system using the RUNX ubiquitin method according to NEDD4 of the present invention.
  • the experimental system using the RUNX ubiquitination method by NEDD4 according to the present invention refers to an experimental system in which NEDD4 and RUNX coexist and RUNX is ubiquitinated by NEDD4.
  • the compound identified by the identification method using such an experimental system includes a compound that inhibits or promotes the enzyme activity of NEDD4, and a compound that inhibits or promotes the binding of NEDD4 to RUNX.
  • a signal (hereinafter referred to as a test compound) is brought into contact with NEDD4 and / or RUNX, and a signal capable of detecting RUNX ubiquitination by NEDD4 and Use a system that uses Z or a marker to detect the presence or absence or change of this signal and Z or marker and whether or not the test compound inhibits RUNX ubiquitination by NEDD4 By determining whether to do so, compounds that inhibit or promote RUNX ubiquitination by NEDD4 can be identified.
  • the test compound can coexist in the RUNX ubiquitin reaction by NEDD4, or the test compound can be previously contacted with NEDD4 and Z or RUNX, followed by the RUNX ubiquitination reaction by NEDD 4. it can. Signal produced by RUNX ubiquitin by NEDD4 or marker power of ubiquitin ⁇ ⁇ ⁇ When test compound is contacted with NE DD4 and Z or RUNX, compared to when test compound is not contacted If it shows a change such as decrease or disappearance, it can be determined that the test compound inhibits RUNX ubiquitination by NED D4.
  • the test compound when the test compound is brought into contact with NEDD4 and Z or RUNX, the signal or marker force is increased or generated compared to when the test compound is not brought into contact with the test compound. If indicated, it can be judged that the test compound promotes RUNX ubiquitination by NEDD4.
  • Such an experimental system can be performed under both in vivo and in vitro conditions.
  • ubiquitin activity enzyme (E1) ubiquitin activity enzyme
  • E2 ubiquitin-conjugating enzyme
  • ubiquitin are required in addition to NEDD4 in the ubiquitination reaction of the target protein.
  • the in vivo experimental system may preferably be an experimental system using eukaryotic cells or cultured cell lines expressing both NEDD4 and RUNX, for example.
  • eukaryotic cells or cultured cell lines expressing RUNX or NEDD4 can be used.
  • a eukaryotic cell or cultured cell line that expresses both NEDD4 and RUNX, or a cell that further expresses ubiquitin in a eukaryotic cell or cultured cell line that expresses NEDD4 or RUNX can be used.
  • the expression of these proteins in cells uses appropriate vectors containing a polynucleotide encoding NEDD4, appropriate vectors containing a polynucleotide encoding RUNX, and appropriate vectors containing a polynucleotide encoding Z or ubiquitin. This can be achieved by transfecting these vectors into cells using conventional genetic engineering techniques.
  • test compound can be determined to inhibit RUNX ubiquitination by NEDD4.
  • signal or marker shows a change such as an increase or occurrence when the cell is treated with the test compound compared to when the cell is not treated with the test compound.
  • Test compounds can be judged to promote RUNX ubiquitination by NEDD4.
  • compounds that inhibit the enzyme activity of NEDD4 can be identified by measuring self-ubiquitin activity by NEDD4 without using RUNX.
  • Compounds that inhibit the enzymatic activity of NEDD4 can inhibit RUNX ubiquitination by NEDD4. Therefore, compounds that can inhibit RUNX ubiquitination by NEDD4 can also be identified by measuring self-ubiquitination by NEDD4 without using RUNX in the above experimental system.
  • Detection of ubiquitin can be measured by detection of a ubiquitinated target protein.
  • Detection of the ubiquitinated target protein can be performed by a known method such as Western blotting (see Examples 3, 5, 8 and 9).
  • the ubiquitin reaction of the target protein If a target protein having an increased molecular weight is detected after the ubiquitin reaction compared to before, it can be determined that the target protein has been ubiquitinated.
  • ubiquitinated labeled protein can be easily detected using the labeling substance as an index, and thus the use of such a labeled ubiquitin is useful. .
  • tag peptides such as HA-tag and FLAG-tag as labeling substances is not limited to these, and as long as it is a substance that does not inhibit NEDD4 ubiquitination of RUNX Can also be used.
  • the labeling substance can be detected using a detection method known per se.
  • tag peptides can be detected by anti-tag peptide antibodies. In this case, detection can be more easily carried out by using an antibody labeled with HRP (Hosradish peroxidase), alkaline phosphatase, a radioisotope, a fluorescent substance or piotin as an anti-tag peptide antibody.
  • HRP Hosradish peroxidase
  • alkaline phosphatase a radioisotope
  • a fluorescent substance or piotin as an anti-tag peptide antibody.
  • a secondary antibody labeled with the above enzyme, radioisotope, fluorescent substance, piotin or the like may be used.
  • methods for identifying a compound that inhibits or promotes RUNX ubiquitination by NEDD4 include, for example, an appropriate vector containing a polynucleotide encoding RUNX, an appropriate vector containing NEDD4, and an HA-tag.
  • the test compound When ubiquitinated RUNX is reduced or eliminated compared to untreated cells, the test compound can be determined as a compound that inhibits RUNX ubiquitination by NEDD4. In contrast, when ubiquitination RUNX increases, the test compound can be determined as a compound that promotes RU NX ubiquitination by NEDD4.
  • the ubiquitination RUNX contained in the cell lysate can be measured, for example, by detecting ubiquitin bound to RUNX with an HRP-labeled anti-HA antibody.
  • any method can be used without limitation as long as it is generally used in screening for inhibitors of ubiquitin E3 ligase.
  • a system using a fluorescence resonance energy transfer assay (FRET Assay), a dissociation-enhanced lanthanum-defluorinated assay (DELFIA Assay), or electrochemiluminescence (ECL) should be used.
  • FRET Assay fluorescence resonance energy transfer assay
  • DELFIA Assay dissociation-enhanced lanthanum-defluorinated assay
  • ECL electrochemiluminescence
  • Applied systems, systems that apply Scintillation Kimi City 1 Atsei (SPA), etc. can be used suitably (Yi Sun, “Methods in Enzymology”, 2005, No. 3 99) , P. 654—663).
  • RUNX can be used as a substrate for ubiquitination, and self-ubiquitin activity using NEDD4 itself as a substrate can be
  • One embodiment of the present invention also relates to a method for identifying a compound that inhibits or promotes the binding of NEDD4 to RUNX.
  • a method for identifying a compound that inhibits or promotes the binding between NEDD4 and RUNX can be carried out using a protein binding assay generally used in screening for binding inhibitors for IJ.
  • a method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX can be carried out, for example, using an experimental system in which NEDD4 and RUNX coexist and NEDD4 and RUNX are combined.
  • a test compound is brought into contact with NEDD4 and Z or RUNX, and a system using a signal and Z or marker that can detect the binding of NEDD4 and RUNX is used. By detecting the presence or absence or change of this signal and Z or marker and determining whether the test compound inhibits or promotes the binding of NEDD4 to RUNX. And compounds that inhibit or promote the binding of RUNX.
  • the test compound can coexist in the binding reaction of NEDD4 and RUNX, or the test compound can be previously contacted with NEDD4 and Z or RUNX, and then the binding reaction of NEDD4 and RUNX can be performed.
  • Signal or binding marker force generated by binding of NEDD4 and RUNX When test compound is brought into contact with NEDD4 and Z or RUNX, it decreases or disappears compared to when test compound is not in contact with force If there is a change, it can be determined that the test compound inhibits the binding of NEDD4 and RUNX.
  • the signal or marker increases or occurs when the test compound is brought into contact with NEDD4 and Z or RU NX compared to when the test compound is not brought into contact with the test compound. If it shows a change, it can be determined that the test compound promotes the binding of NEDD4 and RUNX.
  • An in vitro experimental system can be carried out with reference to identification methods generally used in screening for protein binding inhibitors.
  • the in vitro experimental system can be, for example, an experimental system in which NE DD4 and RUNX are reacted in vitro and the binding of both proteins is detected by a pull-down method.
  • the in vivo experimental system may preferably be an experimental system using eukaryotic cells or cultured cell lines expressing both NEDD4 and RUNX, for example.
  • Eukaryotic cells or cultured cell lines expressing RUNX or NEDD4 can also be used in such experimental systems. Expression of these proteins in the cells is accomplished by conventional genetic engineering techniques using appropriate vectors containing a polynucleotide encoding NEDD4 and appropriate vectors containing a polynucleotide encoding Z or RUNX. This can be achieved by transformation.
  • the binding between NEDD4 and RUNX can be performed by a known protein detection method such as immunoprecipitation method, pull-down method, two-hybrid method, western blotting and fluorescence resonance energy transfer method, or a combination of these methods. In addition, it can be carried out by detecting the complex formed by NEDD4 and RUNX.
  • NEDD4 and Z or RUNX are preferably labeled with an appropriate labeling substance.
  • tag peptides such as FLAG-tag, Myc tag and HA-tag can be preferably used. Detection of the labeling substance can be performed using a detection method known per se.
  • tag peptides can be detected by anti-tag peptide antibodies.
  • detection can be performed more easily by using an antibody labeled with HRP (horseradish peroxidase), alkaline phosphatase, radioisotope, fluorescent substance or piotin as an anti-tag peptide antibody.
  • HRP horseradish peroxidase
  • alkaline phosphatase alkaline phosphatase
  • radioisotope fluorescent substance or piotin
  • a secondary antibody labeled with the above enzyme, radioisotope, fluorescent substance, piotin or the like may be used.
  • a method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX includes, for example, an appropriate vector containing a polynucleotide encoding RUNX with a FLAG-tag added to the N-terminus, and This can be carried out using cells transfected with an appropriate vector containing a polynucleotide encoding NEDD4 with a Myc-tag attached to the N-terminus (see Example 2). After the cells are treated with the test compound, the cells are collected, lysed by an appropriate method to prepare cell lysate, and the complex of NEDD4 and RUNX contained in the cell lysate is detected.
  • Measurement of the complex contained in the cell lysate can be carried out by immunoprecipitation using an anti-FLAG antibody followed by Western blotting using an anti-Myc antibody. Quantities of NEDD4 and RUNX complex detected when cells are treated with test compound If cells are not treated with test compound, sometimes reduced or disappeared compared to the amount of complex detected On the other hand, it can be determined that the test compound inhibits the binding of NE DD4 and RUNX. In contrast, the amount of complex of NEDD4 and RUNX detected when cells are treated with the test compound Increased compared to the amount of complex detected when cells are not treated with the test compound It can be determined that the test compound promotes the binding of NEDD4 and RUNX.
  • a method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX can also be performed using a known two-hybrid method.
  • a plasmid that expresses NE DD4 and a DNA binding protein as a fusion protein a plasmid that expresses RUNX and a transcriptional activation protein as a fusion protein
  • a plasmid containing a reporter gene such as lacZ connected to an appropriate promoter gene can be used in yeast or true.
  • the expression level of the reporter gene when the cells are treated with a test compound after transfection into a cell such as a nuclear cell, and the expression level of the reporter gene when the cell is not treated with the test compound Compare.
  • the test compound may be NEDD4 and RUNX. It can be determined that binding is inhibited. In contrast, the expression level of the reporter gene in the cells treated with the test compound is Not treated with the compound! When the expression level of the reporter gene in the cell increases, it can be determined that the test compound promotes the binding between NEDD4 and RUNX.
  • the compound identified by the identification method is a compound that inhibits or promotes the binding of NEDD4 and RUNX.
  • a method for identifying a compound that inhibits or promotes the expression of NEDD4 can also be carried out.
  • a method for identifying a compound that inhibits the expression of NEDD4 can be carried out using an experimental system capable of measuring the expression of NEDD4.
  • an experimental system capable of measuring the expression of NEDD4.
  • a polynucleotide encoding NEDD4 and a test compound were allowed to coexist and their expression was measured, and the change in expression compared to the measurement result in the absence of the test compound. By detecting (decrease, disappearance or increase), compounds that inhibit or promote NEDD4 expression can be identified.
  • the experimental system that can measure the expression of NEDD4 can be specifically an experimental system that expresses NEDD4 using cells transfected with an expression vector containing a polynucleotide encoding NEDD4.
  • the cells are collected, lysed by an appropriate method to prepare cell lysate, and NEDD4 contained in the cell lysate is detected. .
  • the amount of NEDD4 detected when cells are treated with the test compound If the amount of NEDD4 is reduced or disappears compared to the amount of NEDD4 detected when cells are not treated with the test compound, the test compound is It can be determined that expression is inhibited. In contrast, the amount of NEDD4 detected when cells are treated with the test compound. When the amount of NEDD4 detected when cells are not treated with the test compound increases, Can be determined to promote the expression of NEDD4.
  • the expression of NEDD4 can be measured by directly detecting NEDD4 by a known protein detection method such as Western blotting.
  • NEDD4 can be easily measured by introducing a signal serving as an expression index into an experimental system and detecting the signal.
  • a signal serving as an expression index for example, a labeling substance can be used.
  • NEDD4 can be easily measured by labeling NEDD4 with a labeling substance and measuring the labeling substance.
  • FLAG -tag, Myc— tag And tag peptides such as HA-tag can be preferably used. Detection of the labeling substance can be carried out using a known detection method. For example, tag peptides can be detected with anti-tag peptide antibodies.
  • detection can be more easily carried out by using an antibody labeled with HRP (horseradish bar oxidase), alkaline phosphatase, radioisotope, fluorescent substance or piotin as an anti-tag peptide antibody.
  • HRP horseradish bar oxidase
  • alkaline phosphatase alkaline phosphatase
  • radioisotope fluorescent substance or piotin
  • secondary antibody labeled with the above enzyme radioisotope, fluorescent substance, or piotin.
  • an experimental system that can measure the expression of NEDD4 creates a vector in which a reporter gene is linked instead of the polynucleotide downstream of the promoter region of the polynucleotide encoding NEDD4, It may be an experimental system using a cell that has been cleaved, such as a eukaryotic cell. In such an experimental system, the expression level of the reporter gene when the cells are treated with the test compound is compared with the expression level of the reporter gene when the cells are not treated with the test compound.
  • the test compound is NEDD4 Can be determined to inhibit the expression of.
  • the test sample The compound can be determined to promote the expression of NEDD4.
  • a reporter gene a gene generally used in reporter assembly can be used, and for example, a gene having an enzyme activity such as luciferase, j8-galactosidase, or chloramphee-cholase transferase can be used.
  • the expression of the reporter gene can be detected by detecting the activity of the gene product, for example, the enzyme activity in the case of the reporter gene.
  • test compound for example, a chemical library, a compound derived from a natural product, or a compound obtained by drug design based on the primary structure or three-dimensional structure of NEDD 4 and RUNX can be used. .
  • a compound obtained by drug design based on the structure of a polypeptide consisting of the amino acid sequence of the binding site of NEDD4 and RUNX is also suitable as the test compound.
  • Another embodiment of the present invention relates to a method for identifying a compound capable of promoting bone formation. The method for identifying a compound capable of promoting bone formation according to the present invention is characterized by measuring whether a test compound is capable of inhibiting the expression and Z or function of NEDD4.
  • BMP is inhibited by inhibiting the expression and Z or function of NEDD4.
  • a compound that inhibits the expression and Z or function of NEDD4 may cause inhibition of RUNX2's ubiquitination by NEDD4, thereby promoting RUNX2's stabilization and the resulting osteogenic signal. it can.
  • Such compounds can be thought to promote bone differentiation and bone formation by promoting bone formation signals.
  • a method for identifying a compound capable of promoting bone formation characterized by measuring whether a test compound inhibits NEDD4 expression, is a method for identifying a compound that inhibits the above-mentioned NEDD4 expression. Can be implemented. When the test compound inhibits the expression of NEDD4, it can be determined that the test compound can promote bone formation.
  • the function of NEDD4 can be evaluated, for example, by measuring its E3 ligase activity and its ability to bind to RUNX.
  • the E3 ligase activity of NEDD4 can be measured, for example, by detecting RUNX or self-ubiquitin using RUNX or NED D4 as a substrate.
  • the ubiquitin activity is detected using RUNX as a substrate.
  • a method for identifying a compound capable of promoting bone formation characterized by measuring the power of the test compound to inhibit the function of NEDD4, is described, for example, by NEDD4. It can be carried out using a method for identifying a compound that inhibits RUNX ubiquitin.
  • NEDD4 itself can be used as a substrate instead of RUNX, and a compound that inhibits self-ubiquitination by NEDD4 can be identified.
  • the test compound inhibits RUNX ubiquitin or auto-ubiquitin caused by NEDD4
  • the method for identifying a compound capable of promoting bone formation is characterized in that the test compound measures the force or inability to inhibit the function of NEDD4.
  • the above-mentioned binding method of NEDD4 and RUNX is inhibited. It can carry out using the identification method of the compound to do.
  • the test compound inhibits the binding of NEDD 4 and RUNX it can be determined that the test compound can promote bone formation.
  • RUNX2 is known to play an important role in bone formation, and therefore it is characterized by measuring whether or not a test compound inhibits the function of NEDD4. In the method for identifying a compound that can promote bone formation, RUNX2 is preferably used.
  • the test compound that has been shown to inhibit NEDD4 expression and Z or function by the above-described identification method is further used. It may be an identification method that further includes a step of measuring force dynamism capable of promoting the above.
  • mouse C2C12 cells can be used as osteogenesis model cells.
  • Mouse C2C12 cells are myoblasts and are derived from the same mesenchymal stem cells as osteoblasts and chondrocytes.
  • C2C12 cells show typical osteoblastic phenotypes upon stimulation with BMP-2, such as increased alkaline phosphatase activity and osteocalcin production. It has been used as a model cell (Katagiri T. et al., “The Journal of Cell Biology”, 1994, 127, p. 1755—1766).
  • BMP-2 can be preferably used as a site force-in that promotes bone formation.
  • a bone formation marker for example, alkaline phosphatase or osteocalcin can be used.
  • the site force-in and the bone formation marker that promote bone formation are not limited to these, and any site force-in or marker that is generally used for evaluation of bone formation can be used.
  • the bone formation marker can be measured by a generally used method for measuring a bone formation marker.
  • a test compound that can promote bone formation can be identified by treating the cells with the test compound.
  • the bone formation marker in the cell treated with the test compound increases with respect to the cell compared with the bone formation marker when treated with the test compound, it is judged that the bone differentiation and bone formation of the cell are promoted. it can.
  • One embodiment of the present invention also relates to a method for identifying a compound capable of suppressing tumor growth.
  • the method for identifying a compound capable of suppressing tumor growth according to the present invention is characterized in that the test compound measures the power and inability to inhibit the expression and Z or function of NEDD4.
  • NEDD4 binds to RUNX3 and ubiquitinates RUNX3 (Examples 2 and 3). It was also found that inhibition of NEDD4 expression suppresses the growth of human cancer cell tumor lines (see Example 12).
  • a method for identifying a compound capable of suppressing tumor growth characterized by measuring whether a test compound inhibits the expression of NEDD4, is a compound that inhibits the expression of NEDD4 as described above.
  • the identification method can be used. When NEDD4 expression is inhibited by the test compound, it can be determined that the test compound can suppress tumor growth.
  • NEDD4 functions by, for example, measuring its E3 ligase activity and its ability to bind to RUNX. Can be evaluated.
  • the ligase activity of NEDD4 can be measured, for example, by detecting RUNX ubiquitination or self-ubiquitination using RUNX or NEDD4 as a substrate.
  • the ubiquitin activity is detected using RUNX as a substrate.
  • a method for identifying a compound capable of suppressing tumor growth characterized by measuring the power of the test compound to inhibit NEDD4 function, is, for example, RUNX ubiquitination by NEDD4. It can be carried out by using a method for identifying a compound that inhibits the above.
  • NEDD4 itself can be used as a substrate instead of RUNX, and it can be carried out by identifying compounds that inhibit self-ubiquitination by NEDD4.
  • the test compound inhibits RUNX ubiquitin or self-ubiquitin caused by NEDD 4, it can be determined that the test compound can suppress tumor growth.
  • the binding ability of NEDD4 and RUNX is generally used in screening for binding inhibitors, and can be performed using the protein binding assay.
  • a method for identifying a compound capable of suppressing tumor growth characterized by measuring the power of the test compound to inhibit the function of NEDD4, includes, for example, the above-mentioned binding of NEDD4 and RUNX. This can be carried out using a method for identifying a compound to be inhibited.
  • the test compound inhibits the binding of NEDD4 and RUNX, it can be determined that the test compound can suppress tumor growth.
  • RUNX3 is known to play an important role in tumor growth suppression. Therefore, it is characterized by measuring the power of the test compound to inhibit the function of NEDD4. It is preferable to use RUNX3 as RUNX in the method for identifying compounds that can suppress tumor growth! /.
  • the test compound that has been shown to inhibit the expression and Z or function of NEDD4 by the above-described identification method is further used.
  • the identification method may further include a step of measuring a force force that can be suppressed.
  • an experimental system capable of measuring suppression of tumor growth for example, an experimental system using a human cancer cell line can be used.
  • an experimental system using a human cancer cell line can be used.
  • by treating cancer cells with a test compound when the growth of cancer cells is suppressed as compared with cancer cells not treated with the test compound, it can be determined that the test compound can suppress tumor growth.
  • One embodiment of the present invention relates to a reagent kit.
  • This reagent kit encodes at least one of NEDD4, a polynucleotide encoding NEDD4, a recombinant vector containing the polynucleotide, and a transformant containing the recombinant vector, and RUNX and RUN X.
  • a reagent kit comprising at least one of a polynucleotide containing the polynucleotide, a recombinant vector containing the polynucleotide, and a transformant containing the recombinant vector.
  • the reagent kit further comprises at least one of ubiquitin, a polynucleotide encoding ubiquitin, a recombinant vector containing the polynucleotide, and a transformant containing the recombinant vector. It can be.
  • This reagent kit can be used, for example, in the method for identifying a compound according to the present invention.
  • the reagent kit according to the present invention may contain a required substance such as a signal and Z or a marker, a buffer, and a salt used in the identification method.
  • a required substance such as a signal and Z or a marker
  • a buffer such as a buffer
  • a salt used in the identification method.
  • stabilizers and substances such as Z or preservatives may be included.
  • NEDD4, RUNX and ubiquitin are preferably human-derived proteins.
  • mammalian-derived proteins having the same functions and structural homology as the human-derived proteins such as mice, It can be a protein such as mah, hidge, ushi, nu, monkey, cat, bear, rat or rabbit.
  • the polynucleotides encoding NEDD4, RUNX and ubiquitin are preferably human-derived polynucleotides, but mammals having the same functions and structural homology as the human-derived proteins.
  • NEDD4 As long as it is a polynucleotide encoding a protein derived from, it can be a polynucleotide derived from, for example, mouse, horse, hidge, ushi, dog, monkey, cat, bear, rat, or rabbit.
  • the properties and functions of NEDD4, RUNX and ubiquitin include, for example, the binding of NEDD4 and RU NX, the binding of ubiquitin to RUNX by NEDD4 (ubiquitination), and the ligase activity of NEDD 4. [0317] NEDD4, RUNX and ubiquitin were either expressed in genetically engineered cells or biological samples prepared, cell-free or chemically synthesized products, or further purified from them It may be a thing.
  • NEDD4, RU NX and ubiquitin are expressed by a genetic engineering technique.
  • NEDD4, RUNX, and ubiquitin are genetically linked to other proteins or polypeptides on the N-terminal side or C-terminal side, either directly or indirectly through linker peptides, as long as their properties and functions are affected. It may be attached using engineering techniques.
  • proteins and polypeptides include, for example, enzymes such as dartathione S-transferase (GST), ⁇ -galatatosidase, horseradish peroxidase (HR ⁇ ) or alkaline phosphatase (ALP), His-tag, Myc-tag Tag peptides such as HA-tag, FLAG-tag or Xpress-tag can be used.
  • GST dartathione S-transferase
  • HR ⁇ horseradish peroxidase
  • ALP alkaline phosphatase
  • His-tag His-tag
  • Myc-tag Tag peptides such as HA-tag, FLAG-tag or Xpress-tag can be used.
  • Any known method can be used as a genetic engineering technique.
  • the method described in the book (edited by Sambrook et al., “Molecular Cloning, Laboratory Manual, Second Edition”, 1989, Cold Spring Harbor Laboratory; edited by Masami Muramatsu, “Laboratory-Genetic Engineering” 1988, Maruzen Co., Ltd .; Ulmer, KM, Science, 1983, 219th, p. 666-671; edited by Ehrlich, HA, PCR Technology, DNA Amplification Principles and Applications ”(see 1989, Stotton Press etc.) can be used.
  • Polynucleotides encoding NEDD4, RUNX, and ubiquitin can be easily obtained from, for example, appropriate sources in which the expression of each polynucleotide is observed using a cloning method known per se.
  • As the origin of these polynucleotides various cells and tissues in which the expression of the polynucleotide has been confirmed, or cultured cells derived therefrom can be used.
  • As a source of a polynucleotide encoding NEDD4 for example, cells derived from human muscle or muscle tissue can be used.
  • RUNX for example, various cancer cell lines can be used.
  • As the origin of the polynucleotide encoding ubiquitin for example, cells derived from human brain and brain tissue can be used.
  • Isolation of total RNA from origin, isolation and purification of mRNA, acquisition of cDNA and its cloning, etc. can all be performed according to conventional methods.
  • commercially available cDNA libraries Can also be used.
  • the method for selecting a desired clone as well as the cDNA library is not particularly limited, and a conventional method can be used. For example, a plaque hybridization method using a probe that selectively binds to a target DNA sequence, a colony hybridization method, or a combination of these methods can be used.
  • DNA chemically synthesized based on information on the nucleotide sequences of polynucleotides encoding NEDD4, RUNX and ubiquitin, respectively, can be generally used.
  • sense primers and antisense primers designed based on the nucleotide sequence information of the polynucleotide can be used as such probes.
  • Selection of the target clone from the cDNA library can be performed, for example, by confirming the expressed protein for each clone using a known protein expression system and using the biological function as an index.
  • Primers used for PCR can be appropriately designed based on the DNA sequence information of DNA, and can be obtained by synthesis according to conventional methods. Isolation and purification of the amplified DNAZRNA fragment can be performed by a conventional method. For example, DNAZRNA fragments can be isolated and purified by gel electrophoresis or the like.
  • the polynucleotide may be, for example, GST, ⁇ -galactosidase, HRP or ALP. Enzymes such as His-tag, Myc-tag, or HA-tag, FLAG-tag or Xpress-tag etc.
  • the nucleotide can be one or more added polynucleotides. The attachment of these polynucleotides can be performed by conventional genetic engineering techniques.
  • NEDD4, RUNX and ubiquitin By constructing a recombinant vector containing a polynucleotide encoding NEDD4, RUNX and ubiquitin, respectively, and expressing the polynucleotide in an appropriate host cell using the recombinant vector, NEDD4, RUNX and ubiquitin are used. Among them, cells expressing at least 1 can be obtained. Moreover, NEDD4, RUNX and ubiquitin can be prepared from the cells by a known method.
  • the vector DNA is not particularly limited as long as it can replicate in the host, and is appropriately selected depending on the type of host and intended use.
  • the vector DNA may be one obtained by extracting a naturally occurring one, or a part of the DNA other than that required for replication.
  • Representative vector DNAs are, for example, vector DNAs derived from plasmids, butteriophages and viruses.
  • plasmid DNA for example, a plasmid derived from E. coli, a plasmid derived from Bacillus subtilis, or a plasmid derived from yeast can be used.
  • ⁇ phage can be used as the pacteriophage DNA.
  • virus-derived vector DNA examples include vectors derived from animal viruses such as retrovirus, vaccinia virus, adenovirus, papovavirus, SV40, fowlpox virus, and pseudorabies virus, or insect viruses such as baculovirus. You can use vectors.
  • vector DNA derived from a transposon, an insertion element, or a yeast chromosomal element can be used.
  • a vector DNA prepared by combining them for example, a vector DNA (such as cosmid phage phagemid) prepared by combining genetic elements of plasmid and butteriophage can be used.
  • an expression vector or a cloning vector can be used as desired.
  • a gene sequence carrying information regarding replication and control for example, a ribosome binding sequence, a terminator, a signal sequence, a cis-element such as an enhancer, a splicing signal, and a selectable marker may be selected as desired.
  • a selection marker for example, a dihydrofolate reductase gene, an ampicillin resistance gene, or a neomycin resistance gene can be used.
  • the target gene sequence is treated with an appropriate restriction enzyme, cleaved at a specific site, mixed with vector DNA treated in the same manner in V, and religated by ligase.
  • the desired recombinant vector can also be obtained by ligating an appropriate linker to the target gene sequence and inserting it into the multicloning site of the appropriate vector.
  • a transformant can be obtained by transfecting a recombinant vector containing polynucleotides encoding NEDD4, RUNX and ubiquitin, respectively, into a host. If an expression vector is used as the vector DNA, cells expressing at least one of these polynucleotides can be obtained, and NEDD4, RUNX or ubiquitin can be produced by using the cells by a known method.
  • the transformant can be further transfected with one or more vector DNAs containing a desired polynucleotide other than polynucleotides encoding NEDD4, RUNX and ubiquitin, respectively.
  • Prokaryotic and eukaryotic! / Slack can also be used as hosts.
  • Prokaryotes include, for example, the genus Escherichia such as Escherichia coli, the Bacillus genus such as Bacillus subtilis, the Syudomonas genus such as Pseudomonas putida, and the Rhizobium meriroti (Rhizobium). Bacteria belonging to the genus Rhizobium such as meliloti) can be used.
  • yeasts such as Saccharomyces cerevisiae and Schizosaccharomyces pombe
  • insect cells such as Sf9 and Sf21
  • COS cells monkey kidney-derived cells
  • Vero cells monkey kidney-derived cells
  • Chinese hamsters Animal cells such as ovary cells (CHO cells), mouse L cells, rat GH3 cells, and human HEK293T cells can be used.
  • animal cells are used.
  • Transfection of vector DNA into a host cell can be carried out by a method known per se.
  • a standard method described in a book (Sambrook et al. Ng, Laboratories-Second Edition ", 1989, Cold Sp It can be implemented by the Ringnober Laboratory.
  • an integration method into a chromosome can be used in consideration of gene stability.
  • an autonomous replication system using extranuclear genes can be used. Specific methods include, for example, calcium phosphate transfer, DEAE-dextran mediated transfer, microinjection, cationic lipid mediated transfer, electoral position, transduction, scrape loading. ), Ballistic introduction and infection.
  • NEDD4, RUNX, and ubiquitin are cells, biological samples, or cell-free or chemically synthesized products that express genetically engineered polynucleotides encoding NEDD4, RUNX, and ubiquitin, respectively. However, it may be purified or further purified from these. In addition, these proteins can be expressed in cells containing a polynucleotide encoding the protein.
  • the cell may be a transformant obtained by transfecting a vector containing a polynucleotide encoding RUNX and ubiquitin, respectively.
  • NEDD4, RUNX, and ubiquitin can be further modified without significant changes in function, such as modification of its constituent amino groups or carboxyl groups, for example, by amidation.
  • it is labeled by adding another protein or the like to the N-terminal side or C-terminal side directly or indirectly using a genetic engineering method through a linker peptide or the like. May be.
  • a label that does not inhibit the basic properties of the protein is desirable.
  • proteins to be added include enzymes such as GST, ⁇ -galatatosidase, HRP or ALP, tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag, fluoro Fluorescent dyes such as fluorescein isothiocyanate or phycoerythrin, maltose binding protein, Fc fragment of immunoglobulin or piotin can be used, but not limited thereto. It can also be labeled with a radioisotope. One or a combination of two or more substances can be added for labeling.
  • these proteins are obtained by culturing a transformant obtained by transfecting a vector DNA containing NEDD4, RUNX or ubiquitin, and then recovering the target protein from the obtained culture. Can be manufactured.
  • the transformant can be cultured using culture conditions and culture methods known per se optimal for each host. Culturing can be performed using the present protein expressed by the transformant itself or its function as an index. Some may be cultured using the present protein itself or the amount of the protein produced in or outside the host as an index, and subculture or batch culture may be performed using the amount of transformant in the medium as an index. You may go.
  • the target protein When the target protein is expressed in the cell or on the cell membrane of the transformant, the target protein is extracted by crushing the transformant. When the target protein is secreted outside the transformant, use the culture solution as it is, or use a culture solution from which the transformant has been removed by centrifugation or the like.
  • NEDD4, RUNX or ubiquitin can also be produced by common chemical synthesis methods.
  • the methods described in the book (“Peptide Synthesis”, Maruzen Co., Ltd., 1975 and “Peptide Synthesis”, Interscience, New York, 1996) are used. Not limited to these, known methods can be widely used.
  • Known methods for chemically synthesizing proteins include solid-phase synthesis methods and liquid-phase synthesis methods. Any of these methods can be used.
  • such a protein synthesis method is based on amino acid sequence information, in which each amino acid is sequentially linked one by one to extend the chain, and the so-called stepwise longong method,
  • the condensation methods used in the above protein synthesis can also follow conventional methods, for example, azide method, mixed acid anhydride method, DCC method, active ester method, redox method, DPPA (diphenylphosphoryl azide) method, DCC +
  • the methods such as potassium (1-hydroxybenzotriazole, ⁇ -hydroxysuccinamide, ⁇ -hydroxy-5-norbornene-1,2,3-dicarboximide), and the Wordword method can be used.
  • these proteins can be produced using a commercially available amino acid synthesizer.
  • NEDD4, RUNX or ubiquitin having a mutation introduced therein can also be used in the present invention.
  • Proteins, polypeptides and means for introducing mutations into polypeptides are known per se, such as Ulmer's technology (KM Ulmer, Science), 1983, 219, p. 666-671. ). From the viewpoint of not changing the basic properties (physical properties, functions, immunological activity, etc.) in introducing such mutations, for example, homologous amino acids (polar amino acids, nonpolar amino acids, hydrophobic amino acids). Mutual substitution between acids, hydrophilic amino acids, positively charged amino acids, negatively charged amino acids, aromatic amino acids, etc.) is readily envisioned. Furthermore, these usable polypeptides can be altered to a degree without significant or altered functions, such as modification of their constituent amino groups or carboxyl groups, for example by amido.
  • NEDD4, RUNX or ubiquitin can be purified and / or separated by various separation methods utilizing its physical properties, chemical properties, etc., if desired. Separation and Z or purification can be performed using the function of the protein as an indicator.
  • separation operation method for example, ammonium sulfate precipitation, ultrafiltration, gel chromatography, ion exchange chromatography, affinity chromatography, high performance liquid chromatography, dialysis method and the like can be used alone or in appropriate combination.
  • a specific antibody against them is prepared and specifically adsorbed using the antibody, for example, affinity chromatography using a column to which the antibody is bound. It is recommended to use graphy.
  • Prediction of a protein having a function of interacting with RUNX3 was carried out as follows according to the in silico prediction method described in International Publication No. WO01Z67299: (i) Oligopeptide having a certain length of amino acid sequence of RUNX3 (Ii) search the database for proteins having the amino acid sequence of each oligopeptide or an amino acid sequence homologous to the amino acid sequence, and (iii) local alignment between the obtained protein and RUNX3. (Iv) Predict that a protein with a high local alignment score interacts with RUNX3.
  • NEDD4 was found as a protein predicted to have a function of interacting with RUNX3.
  • Oligopeptides consisting of partial amino acid sequences of RUNX3 FPYSA T (SEQ ID NO: 13), AELRNA (SEQ ID NO: 15) and LSVAGM (SEQ ID NO: 17), homologous oligopeptides FEYSAT (SEQ ID NO: 14), AEELNA (SEQ ID NO: 16) ) And GRVAGM (SEQ ID NO: 18) were found in the amino acid sequence of NEDD4.
  • a human RUNX3 expression plasmid was constructed as described below.
  • Human RUNX3 cDNA was purchased from Open Biosystems (clone number MHS1011-74936).
  • the ORF was amplified by PCR using the purchased human RUNX3 cDNA in a cage, primers with EcoRI and Xhol sites attached, and the nucleotide sequence was confirmed by sequencing. Subsequently, the obtained ORF region was incorporated into an animal cell expression plasmid pCMV-Tag2 (STRATAGENE) for expressing an N-terminal FLAG-tag binding protein at the EcoRlZXhoI site to construct a human RUNX3 expression plasmid.
  • STRATAGENE animal cell expression plasmid pCMV-Tag2
  • FLAG-RUNX3 N-terminal FLAG-tag binding human RUNX3 (hereinafter referred to as FLAG-RUNX3) is expressed.
  • the deduced amino acid sequence encoded by the cloned human RUNX3 cDNA was the same as that published in the NCBI protein database accession number NP-004341 (registered gene name is RUNX3).
  • a human NEDD4 expression plasmid was constructed as described below.
  • Human NEDD4 cDNA was prepared based on the nucleotide sequence of the KIAA0093 clone (NCBI accession number D42055). The base sequence of the KIAA0093 clone was considered to have a deletion of 218 bp on the end side compared to the genomic sequence. In view of this, cDNA was prepared by further extending 218 bp to the ⁇ -terminal side of the base sequence of the KIAA0093 clone with reference to the genome sequence.
  • Extension 218 bp per minute was obtained from human skeletal muscle-derived cDNA (QUICK-clone cDNA ⁇ Clontech) by PCR, and the nucleotide sequence was confirmed by sequencing.
  • Acquired human NEDD4 cDNA after adding the Myc-tag coding sequence at the 5 'end was incorporated into the expression for animal cell bra plasmid P CI (Promega Corp.) to construct a human NEDD4 expression plasmid.
  • This human NEDD4 expression plasmid expresses N-terminal Myc-tag-linked human NEDD4 (hereinafter referred to as Myc-NEDD4).
  • Myc-NEDD4 N-terminal Myc-tag-linked human NEDD4
  • the cells were suspended in the suspension and allowed to stand for 20 minutes on ice to lyse the cells. Thereafter, the supernatant was collected by centrifugation at 15, 0 OOrpm for 15 minutes at 4 ° C and used as a cell lysate. Subsequently, 50% of ⁇ 50% of protein G sepharose 4 FastFlow (manufactured by Amersham Biosciences) was added to the cell lysate and mixed by inversion at 4 ° C for 1 hour. After centrifugation at 10, OOOrpm for 15 seconds at 4 ° C, add 0.5 L of anti-FLAG M2 antibody (Sigma) to the collected supernatant, and mix by inverting at 4 ° C for 2 hours.
  • anti-FLAG M2 antibody Sigma
  • Protein G sepharos e 4 FastFlow 50% slurry was newly added, and the mixture was mixed again by inversion at 4 ° C for 2 hours.
  • Protein G sepharos e 4 FastFlow was collected by centrifugation, washed 3 times with lysis buffer, and then 20 / zL of 2X SDS sample buffer was prepared and heat-treated at 100 ° C for 5 minutes as an SDS-PAGE sample. used.
  • E3 ligase inactive human NEDD4 In vivo ubiquitination of RUNX3 by NEDD4 was examined by immunoprecipitation using human cultured cells in which human RUNX3, human NEDD4 and human ubiquitin were transiently co-expressed. In addition, using a human NEDD4 mutant whose E3 ligase activity was inactivated by the introduction of the mutation (hereinafter sometimes referred to as E3 ligase inactive human NEDD4) was examined.
  • the expression plasmid prepared in Example 2 was used as the human RUNX3 expression plasmid.
  • This human RUNX3 expression plasmid expresses FLAG-RUNX3.
  • the expression plasmid prepared in Example 2 was used as the human NEDD4 expression plasmid. Myc-NEDD4 is expressed by this human NEDD4 expression plasmid.
  • Human NEDD4 (C967A), which is a human NEDD4 mutant in which a mutation was introduced into the HECT domain, was used as a human NEDD4 mutant.
  • Human NEDD4 (C967A) is a human NEDD4 mutant in which the 967th cysteine residue is substituted with an alanine residue in the amino acid sequence of human NEDD4, thereby inactivating the E3 ligase activity.
  • the human NEDD4 (C967A) expression plasmid is a human NEDD4 expression plasmid (see Example 2), and is a primer that can introduce a substitution of the 967th cysteine residue of human NEDD4 to an alanine residue.
  • This human NEDD4 (C967 A) expression plasmid expresses N-terminal Myc-tag binding human NEDD4 (C967A) (hereinafter referred to as Myc-NEDD4 (C967A)).
  • a human ubiquitin (Ub) expression plasmid was constructed as described below.
  • Human Ub cDNA was obtained by PCR from human brain-derived cDNA (QUICK-clone cDNA ⁇ Clontech), and the nucleotide sequence was confirmed by sequencing.
  • the Ub expression plasmid was constructed by incorporating human Ub cDNA into an animal cell expression plasmid pCMV-HA (Clontech) for expressing the N-terminal HA tag binding protein.
  • This Ub expression plasmid expresses N-terminal HA-tag binding Ub (hereinafter referred to as HA-Ub).
  • the deduced amino acid sequence encoded by the cloned Ub cDNA was identical to that published in NCBI protein database accession number NP-0666289 (registered gene name is UBC).
  • human NEDD4 expression plasmid 2.0 g, and human Ub expression plasmid 0.25 ⁇ g were transfected into cells using FuGENE6 (Roche diagnostics).
  • human NEDD4 expression plasmid instead of the human NEDD4 expression plasmid, cells transfected with human NEDD4 (C967A) expression plasmid were prepared in the same manner.
  • cells transfected with only the human RUNX3 expression plasmid and cells transfected with the human RUNX3 expression plasmid and the human Ub expression plasmid were prepared in the same manner and used as controls. The total amount of DNA introduced was corrected with an empty vector. Cells cultured for 2 days after transfection were treated in the same manner as in Example 2 to prepare cell lysate.
  • Protein G sepharose 4 FastFlow is collected by centrifugation, washed 3 times with a lysis buffer (same composition as in Example 2), 20 ⁇ L of 2 X SDS sample buffer is added, and heated at 100 ° C for 5 minutes The treated sample was used as an SDS-PAGE sample. Samples were separated by 5-20% SDS-PAGE, and then Western blotting was performed using peroxidase-labeled anti-c-Myc antibody (manufactured by Nacalai Testa) for Myc-NEDD 4 and Myc-NEDD4 (C967A).
  • FLAG-RUNX3 was detected with a FLAG M2 antibody (manufactured by Sigma), and HA-Ub was detected with a peroxidase-labeled anti-HA antibody (manufactured by Roche di agnostics). Detection was performed using 7 ECL western blotting detection kits (Amersham Biosciences).
  • the expression plasmids prepared in Examples 2 and 3 were used as the human NEDD4 expression plasmid and the human NEDD4 (C967A) expression plasmid.
  • Myc-NEDD4 is expressed by this human NEDD4 expression plasmid.
  • Myc—NEDD4 (C967A) is expressed by this human NEDD4 (C967A) expression plasmid.
  • l; z g was transfected into cells using FuGENE6 (Roche di agnostics) with human NEDD4 expression plasmid 1.0-2.
  • cells were prepared by transfecting 2.0 g of a human NEDD4 (C967A) expression plasmid in the same manner instead of the human NEDD4 expression plasmid.
  • cells transfected with only the human RUNX3 expression plasmid were prepared in the same manner and used as a control. The total amount of DNA introduced was corrected with an empty vector. The day after transfection, cells were washed with PBS and harvested using trypsin Z ethylenediaminetetraacetic acid (EDTA) solution.
  • EDTA trypsin Z ethylenediaminetetraacetic acid
  • the collected cells were lysed by adding 60 ⁇ L of lysis buffer (Cell Signaling), suspending with pipetting, and then allowing to stand on ice for 5 minutes. Thereafter, the supernatant was collected by centrifugation at 15, OOOrpm for 10 minutes at 4 ° C and used as cell lysate. Next, an equal volume of 2 X SDS sample buffer was added to the cell lysate and calcined at 100 ° C for 5 minutes and used as an SDS-PAGE sample.
  • lysis buffer Cell Signaling
  • 2 X SDS sample buffer was added to the cell lysate and calcined at 100 ° C for 5 minutes and used as an SDS-PAGE sample.
  • the human RUNX1 expression plasmid was constructed as described below.
  • Human RUNX1 cDNA was obtained from human kidney-derived cDNA (QUCIK-clone cDNA Clontech) by PCR using primers with EcoRI and Xhol sites added, and the nucleotide sequence was confirmed by sequencing. The obtained cDNA was incorporated at the EcoRl / XhoI site into an animal cell expression plasmid pCMV-Tag2 (STRATAGENE) for expressing an N-terminal FLAG-tag binding protein to construct a human RUNX1 expression plasmid.
  • STRATAGENE animal cell expression plasmid pCMV-Tag2
  • This human RU NX1 expression plasmid expresses N-terminal FLAG-tag binding human RUNXl (hereinafter referred to as FLAG-RUNX1).
  • the deduced amino acid sequence encoded by the cloned human RUNX1 cDNA was the same as that published in the NCBI protein database accession number NP-001745 (registered gene RUNX1).
  • the expression plasmids prepared in Examples 2 and 3 were used as the human NEDD4 expression plasmid and the human NEDD4 (C967A) expression plasmid, respectively.
  • This human NEDD4 expression plasmid expresses Myc—NEDD4.
  • Myc—NEDD4 (C967A) is expressed by this human NEDD4 (C967A) expression plasmid.
  • the expression plasmid prepared in Example 3 was used as the human ubiquitin (Ub) expression plasmid. This human Ub expression plasmid expresses HA-Ub.
  • human NEDD4 expression plasmid 2.0 g, and human Ub expression plasmid 0.25 ⁇ g were transfected into cells using FuGENE6 (Roche diagnostics).
  • human NEDD4 expression plasmid instead of the human NEDD4 expression plasmid, cells transfected with human NEDD4 (C967A) expression plasmid were prepared in the same manner.
  • cells transfected with human RUNX1 expression plasmid and human Ub expression plasmid were prepared in the same manner and used as a control. The total amount of DNA introduced was corrected with an empty vector. Cells cultured for 2 days after transfection were treated in the same manner as in Example 2 to prepare cell lysates.
  • Protein G sepharose 4 FastFlow is collected by centrifugation, washed 3 times with lysis buffer (same composition as in Example 2), then 20 / z L 2 X SDS sample buffer is prepared, and 5 ° C at 100 ° C. What was heat-processed for minutes was used as a SDS-PAGE sample. Samples were separated by 5-20% SDS-PAGE, and Western blotting was performed using peroxidase-labeled anti-c-Myc antibody (manufactured by Nacalai Testa) for Myc-NEDD4 and Myc-NEDD4 (C967A), and peroxidase-labeled anti-FLAG.
  • M2 antibody manufactured by Sigma
  • FLAG—RUNX1 and peroxidase-labeled anti-HA antibody were detected.
  • Detection was carried out using an ECL western blotting detection kit (Amersham Biosciences).
  • samples prepared from cells co-expressing FLAG-RUNX1, Myc-NEDD4 and HA-Ub were subjected to immunoprecipitation using anti-FLAG M2 antibody to Myc-NEDD4. And FLAG—RUNX1 coprecipitation was observed.
  • coprecipitation of Myc-NEDD4 (C967A) and FLAG-RUNX1 was observed in samples prepared from cells co-expressed with Myc-NEDD4 (C967A), FLAG-RUNX1 and HA-Ub.
  • samples prepared from cells co-expressing FLAG—RUNX1, Myc—NEDD4 and HA—Ub showed immunoprecipitation using anti-FLAG M2 antibody and The protein strength detected by immunoblotting using anti-HA antibody Myc-NE DD4 was also significantly increased compared to the prepared sample.
  • the detected protein is FLAG-RUNX1 with HA-Ub added. That is, in samples prepared from cells co-expressing FLAG-RUNX1, Myc-NEDD4 and HA-Ub, an increase in FLAG-RUNX1 with HA-Ub attached was observed.
  • the expression plasmid prepared in Example 5 was used as the human RUNX1 expression plasmid.
  • This human RUNX1 expression plasmid expresses FLAG-RUNX1.
  • the expression plasmids prepared in Examples 2 and 3 were used as the human NEDD4 expression plasmid and the human NEDD4 (C967A) expression plasmid, respectively. With this human NEDD4 expression plasmid, Myc—NEDD4 is expressed. In addition, Myc—NEDD4 (C967A) is expressed by this human NEDD4 (C967A) expression plasmid.
  • HEK293T cells were transfected with 0.1 g of human RUN XI expression plasmid and 1.0 to 2.0 g of human NEDD4 expression plasmid in the same manner as described in Example 4.
  • human NEDD4 expression plasmid cells were prepared by transfecting 2.0 g of human NEDD4 (C967A) expression plasmid in the same manner.
  • cells transfected with only the human RUNX1 expression plasmid were prepared in the same manner and used as a control. The total amount of DNA introduced was corrected with an empty vector. On the day after the transfer, cells were collected by the same method as described in Example 4 to prepare cell lysate.
  • the size of endogenous NEDD4 detected in human cancer cell lines was compared with the size of human NEDD4 transiently expressed in cultured human cell lines and the size of short human NEDD4 by Western blotting.
  • the expression plasmid prepared in Example 2 was used as the human NEDD4 expression plasmid. This human
  • Myc—NEDD4 is expressed by the NEDD4 expression plasmid.
  • the first force on the N-terminal side of human NEDD4 is also 10th.
  • Short-chain human NEDD4 whose E3 ligase activity was inactivated by mutation Mutants were used.
  • a short-chain human NEDD4 mutant a short-chain human NEDD4 (C867A), which is a short-chain human NEDD4 mutant with a mutation introduced in the HECT domain, was prepared.
  • Short-chain human NEDD4 (C867A) is a short-chain human in which the 867th cysteine residue was replaced with an alanine residue in the amino acid sequence of short-chain human NEDD4, thereby inactivating E3 ligase activity.
  • NEDD4 mutant The 867th cysteine residue in short-chain human NEDD4 corresponds to the 967th cysteine residue in human NEDD4.
  • a short human NEDD4 expression plasmid was constructed as described below. Of the ORF region of the human NEDD4 gene, a region encoding the 101st to 1000th amino acid sequences of human NEDD4 (hereinafter referred to as short human NEDD4 cDNA) is amplified by PCR and sequenced. The base sequence was confirmed. PCR was performed using the human NEDD4 expression plasmid prepared in Example 2 as a saddle and primers added with EcoRI site and Xhol site. The acquired short human NEDD4 cDNA was incorporated into an animal cell expression plasmid pCI (Promega) to construct a short human NEDD4 expression plasmid.
  • pCI Promega
  • the deduced amino acid sequence encoded by the cloned short-chain human NEDD4 cDNA is identical to the amino acid sequence published in the N CBI database under the accession number NP-006145 (KIAA0093), and Swiss-Prot It matched the amino acid sequence from the 101st to the 1000th amino acid sequence published in the database accession number P46934 (registered gene name is NEDD4).
  • the short-chain human NEDD4 (C867A) expression plasmid is a short-chain human NEDD4 expression plasmid, and the substitution of the 867th cysteine residue of a short-chain human NEDD4 with an alanine residue is introduced.
  • the primers obtained were designed and synthesized and used to construct the QuikChange Site—Directed Mutagenesis kit (manufactured by STRATAGENE). The sequence of the constructed expression plasmid was performed, and it was confirmed that a mutation was introduced into the expression plasmid.
  • HEK293T cells with 1.0 x 10 6 cells are seeded in 6cm dishes and cultured in spear culture at 37 ° C under 5% CO / 95% air in DMEM medium containing 10% FBS.
  • Short human NEDD4 expression plasmid and short human NEDD4 (C867A) expression plasmid One of the plasmids, 1.0 g, was transfected into cells using FuGENE6 (Roche diagnostics). Using cells cultured for 2 days after transfection, cells were collected by the same method as described in Example 4 to prepare cell lysate.
  • Endogenous NEDD4 expressed in human cancer cell lines was detected in breast cancer-derived cell lines (T-4 7D cells, MDA-MB-468 cells and BT-20 cells), colon cancer cell lines (SW480 cells).
  • Cell lysates lung cancer cell lines (A549 cells), myeloid leukemia cell lines (K562 cells and HL-60 cells), lymphoid leukemia cells (MOLT-4 cells), gastric cancer cell lines (MKN28 cells and MKN74 cells) was carried out.
  • Cell lysates of cancer cell lines other than MKN28 and MKN74 cells were purchased from SantaCruz.
  • MKN28 cells and MKN74 cells are treated with RIPA buffer (50 mM Tris-HCl (pH 8.0) / 150 mM NaCl / 1% Triton X-100 / 0.1% SDS) containing the protease inhibitor cocktail Complete Mini (Roche di agnostics). / 0. 1% DOC) to prepare a cell lysate.
  • RIPA buffer 50 mM Tris-HCl (pH 8.0) / 150 mM NaCl / 1% Triton X-100 / 0.1% SDS
  • protease inhibitor cocktail Complete Mini (Roche di agnostics).
  • 0. 1% DOC / 0. 1% DOC
  • Short-chain human NEDD4 was detected in HEK293 cells transfected with a short-chain human NEDD4 expression plasmid (Panel A in FIG. 7, lane 1).
  • Short-chain human NEDD4 (C867A) was detected in HEK293 cells transfected with a short-chain human NE DD4 (C867A) expression plasmid (Panel A in FIG. 7, lane 2).
  • NEDD4 expressed mainly in cancer cell lines is considered to be short-chain NEDD4.
  • the expression plasmid prepared in Example 5 was used as the human RUNX1 expression plasmid.
  • This human RUNX1 expression plasmid expresses FLAG-RUNX1.
  • the expression plasmid prepared in Example 2 was used as the human RUNX3 expression plasmid.
  • This human RUNX3 expression plasmid expresses FLAG-RUNX3.
  • a Myc-tag binding short human NEDD4 expression plasmid was constructed as described below.
  • Short-chain human NEDD4 cDNA (see Example 7) was added to the ⁇ -end with a Myc-tag coding sequence, and then incorporated into an animal cell expression plasmid pC Promega).
  • a tag-binding short human NEDD4 expression plasmid (hereinafter referred to as Myc short human NEDD4 expression plasmid) was constructed.
  • This Myc short-chain human NEDD4 expression plasmid expresses Myc short-chain human NEDD4 (hereinafter referred to as Myc short-chain NEDD4).
  • a Myc-tag binding short human NEDD4 (C867A) expression plasmid was constructed as described below.
  • Short-chain human NEDD4 (C867A) cDNA (see Example 7) was added with a Myc-tag coding sequence at its 5 'end, and then incorporated into an animal cell expression plasmid pCI (manufactured by Promega).
  • a tag-binding short human NEDD4 (C867A) expression plasmid hereinafter referred to as Myc short human NEDD4 (C867A) expression plasmid was constructed.
  • the Myc-short human NEDD4 (C867A) expression plasmid expresses Myc-short human NEDD4 (C867A) (hereinafter referred to as Myc short-chain NEDD4 (C867A)).
  • the expression plasmid prepared in Example 3 was used as the human ubiquitin (Ub) expression plasmid.
  • This human Ub expression plasmid expresses N-terminal HA-tag-linked human Ub (hereinafter referred to as HA-Ub).
  • Myc short chain was obtained by immunoprecipitation using anti-FLAG M2 antibody in a sample prepared by co-expression of FLAG-RUNX1, Myc short chain type NEDD4 and HA-Ub. Co-precipitation of type NEDD4 and FLAG—RUNX1 was observed. In addition, coprecipitation of Myc short chain type NEDD4 (C867A) and FL AG— RUNX1 was observed in samples prepared with cell force co-expressing Myc short chain type NEDD4 (C867A), FLAG—RUNX1 and HA—Ub. .
  • FLAG—RUNX1, Myc short chain NEDD4 and H as shown in Panel C of Figure 8
  • the protein detected by immunoprecipitation using anti-FLAG M2 antibody and immunoblotting using anti-HA antibody expressed My c—short-chain NEDD4 Compared with the prepared sample, the increased cell force was significantly increased.
  • the detected protein is FLAG-RUNX1 with HA-Ub added.
  • samples prepared from cells coexpressed with FLAG-RUNX1, Myc short-chain NEDD4 and HA-Ub showed an increase in FLAG-RUNX1 with HA-Ub added.
  • FLAG-RUNX1 with HA-Ub added was also detected in a sample prepared by co-expression of Myc short-chain NEDD4 (C86 7A) instead of Myc short-chain NEDD4.
  • the amount and the degree of ubiquitination were significantly lower than those of the cell-force-prepared samples expressing Myc short-chain NEDD4.
  • anti-FLAG M2 antibody was used in samples prepared by co-expression of FLAG-RUNX3, Myc short chain type NEDD4 and HA-Ub. Proteins detected by immunoprecipitation and immunoblotting using anti-HA antibody increased significantly compared to samples prepared with strong cell strength that did not express Myc-short chain type NEDD4. The detected protein is FLAG-RUNX3 with HA-Ub added. In other words, samples prepared from cells co-expressed with FLAG—RUNX3, Myc—short-chain NEDD4, and HA—Ub showed an increase in FLAG—RUNX3 with HA-Ub added.
  • short-chain human NEDD4 and short-chain human NEDD4 (C867A) bind to human RU NX3 intracellularly (Panel A in Fig. 9). It was also revealed that human RUNX3 is ubiquitinated in cells by short-chain human NEDD4 (Panel C in Figure 9), and that human RUNX3 is polymerized (Panel B in Figure 9). Furthermore, it was found that E3 ligase activity of short-chain human NEDD4 is important for ubiquitination and high molecularization of human RUNX3 by short-chain human NEDD4.
  • the human RUNX2 expression plasmid was constructed as described below.
  • Human RUNX2 cDNA was obtained from human bone marrow-derived cDNA (QUCIK—clone cDNA ⁇ Clontech) by PCR using primers with EcoRV site and Xhol site added, and the nucleotide sequence was confirmed by sequencing.
  • the obtained cDNA was incorporated at the EcoRVZXhoI site into an animal cell expression plasmid pCMV-Tag2 (STRATAGENE) for expressing an N-terminal FLAG-tag binding protein to construct a human RUNX2 expression plasmid.
  • the human RUNX2 expression plasmid expresses N-terminal FLAG-tag-linked human RUNX2 (hereinafter referred to as FLAG-RUNX2).
  • FLAG-RUNX2 N-terminal FLAG-tag-linked human RUNX2
  • the deduced amino acid sequence encoded by the cloned human RUNX2 cDNA was identical to that disclosed in the NCBI protein database accession number NP-004339 (registered gene RUNX2).
  • the expression plasmid prepared in Example 8 was used as the Myc short-chain human NEDD4 expression plasmid and the Myc short-chain human NEDD4 (C867 A) expression plasmid.
  • This Myc short human NEDD4 expression plasmid expresses Myc short human NEDD4.
  • This Myc short human NEDD4 (C867A) expression plasmid expresses Myc short human NE DD4 (C867A).
  • the expression plasmid prepared in Example 3 was used as the human ubiquitin (Ub) expression plasmid. This human Ub expression plasmid expresses HA-Ub.
  • Cell lysate was prepared by treating cells cultured for 2 days after transfection in the same manner as in Example 2. Next, Senolehuise ⁇ Tokoko protein G sepharose 4 FastFlow (Amersham Bioscienc es) 50% slurry was mixed at 40 / z L and mixed by inversion at 4 ° C for 1 hour. Then, centrifuge at 1,00 Orpm for 15 seconds at 4 ° C, add anti-FLAG M2 antibody (Sigma) 0. to the collected supernatant, and mix by inverting for 2.5 hours at 4 ° C.
  • Protein G sepharose 4 FastFlow 50% slurry was newly added, and the mixture was mixed again by inversion at 4 ° C for 2 hours.
  • Protein G sepharose 4 FastFlow is collected by centrifugation, washed 3 times with lysis buffer (same composition as described in Example 2), and then 20 ⁇ L of 2 X SDS sample buffer is added, and 100 ° A sample heat-treated for 5 minutes at C was used as an SDS-PAGE sample.
  • samples prepared from cells co-expressing FLAG-RUNX2, Myc short-chain NEDD4 and HA-Ub were subjected to Myc-by immunoprecipitation using anti-FLAG M2 antibody.
  • Short-chain NEDD4 and FLAG-RUNX2 were co-precipitated.
  • coprecipitation of Myc short-chain NEDD4 (C867A) and FLAG-RUNX2 was observed in cells prepared using cell force co-expressed Myc short-chain NEDD4 (C867A), FLAG-RUNX2 and HA-Ub. It was.
  • FLAG-RUNX2, Myc-short-chain NEDD4 and HA-Ub co-expressed samples were immunized with anti-FLAG M2 antibody. Proteins detected by immunoblotting using sedimentation and anti-HA antibody increased significantly compared to samples prepared with strong cell strength that did not express Myc-short chain type NEDD4. The detected protein is FLAG-RUNX2 with HA-Ub added. In other words, samples prepared from cells co-expressing FLAG—RUNX2, Myc—short-chain NEDD4, and HA—Ub showed an increase in FLAG—RUNX2 with HA-Ub added. On the other hand, in samples prepared from cells co-expressed with Myc—short chain type NEDD4 (C86 7A) instead of Myc—short chain type NEDD4, 1 ⁇ -1 ⁇ UNX2 No band was detected.
  • E3 ligase-inactive human NEDD4 was transiently expressed in cultured mouse cells, and alkaline phosphatase (hereinafter referred to as bone formation marker) (Abbreviated as ALP) activity was measured
  • C2C12 cells are mouse myoblasts and are derived from the same mesenchymal stem cells as osteoblasts and chondrocytes.
  • C2 C12 cells are stimulated by BMP-2 stimulation and are typically osteoblastic phenotypes such as ALP activity. It has been used as a model cell for osteogenesis depending on BMP-2 signal (Katagiri T. et al., “The Journal of Cell Biology (The Journal of Cell Biology), 1994, 127, p. 1755—1766).
  • BMP is a site force-in that induces bone tissue by differentiating and proliferating undifferentiated mesenchymal stem cells into chondrocytes and osteoblasts in vivo.
  • BMP-2 has been shown to be expressed early in the fracture healing process and is involved in the progression of a series of cascades in bone repair.
  • Short-chain human NEDD4 (C867A) was used as E3 ligase inactive human NEDD4.
  • the Myc-tag-linked short human NEDD4 (C867A) expression plasmid is designed and synthesized using primers that can introduce substitution of the 867th cysteine residue of a short human NEDD 4 to an alanine residue. It was constructed using a Quick Change Site Directed Mutagenesis Kit (manufactured by STRATAGENE). The constructed expression plasmid was sequenced to confirm that the mutation was introduced into the expression plasmid.
  • the Myc short-chain human NEDD4 (C867A) expression plasmid expresses N-terminal Myc-tag-linked short-chain human NEDD4 (C867A) (hereinafter referred to as Myc-short chain NEDD4 (C867A)).
  • Myc short-chain NEDD4 N-terminal Myc-tag binding short-chain human NEDD4 (hereinafter referred to as Myc short-chain NEDD4).
  • Myc-short human NEDD4 (C867A) expression plasmid was transfected into cells by electroporation using Nucleofector (Amaxa).
  • Myc short-chain human NEDD 4 (C867A) expression plasmid cells transfected with the Myc short-chain human NEDD4 expression plasmid were prepared in the same manner.
  • these expression plasmids instead, cells transfected with an empty vector (animal cell expression plasmid pCI) were prepared in the same manner and used as a control.
  • 1.6 ⁇ 10 5 cells were seeded on each well of the 6-well plate, and after culturing, the culture medium was treated with phenol red-free DMEMZ 5% Thiacol-dextran-treated FCS (Hyclone The medium was replaced with a medium supplemented with BMP-2 (R & D Systems) to a final concentration of 300 ngZml. After culturing for 3 days in the presence of BMP-2, the cells were collected, and a cell lysate was prepared with a lysis buffer (20 mM Tris (pH 8.0) /0.1% Triton X-100). After measuring the protein concentration of the cell lysate, ALP activity (Ab595nmZminZg) in each 20 g protein was measured using BluPhos Microwell Phosphatase Substrate System (KPL).
  • KPL BluPhos Microwell Phosphatase Substrate System
  • F-test was performed for the variance of ALP activity data of each treatment group, and Student's t test (Welch's t-test) or Welch's t test (Welch's t-test) was performed for the difference between the mean values.
  • Short human NEDD4 (C867A) is E3 ligase inactive short human NEDD4.
  • NM-010890-stealth-360 purchased from Invitrogen was used as the siRNA for mouse NEDD4 (published in NCBI database with accession number NM-010890!).
  • a control siRNA a negative control siRNA manufactured by QIAGEN was used.
  • Nedd4 The nucleotide sequences of sense RNA and antisense RNA constituting siRNA of mouse NEDD4 (hereinafter referred to as Nedd4) are shown below.
  • Sense RNA 5'— GGAGUUGAAUCCGAAUUCCCUGGAA— 3 ′ (SEQ ID NO: 19)
  • Antisense RNA 5 '-UUCCAGGGAAUUCGGAUUCAACUCC-3' (SEQ ID NO: 20)
  • siRNA was introduced into cells as described below.
  • Mouse myoblast C2C12 cells with 4 ⁇ 10 5 cells were seeded in a 6 cm dish and cultured in a DMEM medium containing 10% FBS at 37 ° C. under conditions of 5% CO 2/95% air.
  • Lipofectamione 2000 (Lipofectamione 2000, manufactured by Invitrogen) was added to the M medium and incubated at room temperature for 5 minutes. Then mix with 500 1 OPTI-MEM medium supplemented with 250 pmol Nedd4 siRNA or negative control siRNA (total lml) and incubate for additional 20 min at room temperature to prepare siRNA / 1 ipof ectamine2000 mixture did. The culture medium for the above cells was replaced with 3 ml of OPTI-MEM, and siRNAZlipofectamine 2000 mixture was added.
  • Nedd4 siRNA was examined as described below. After siRNA is introduced into the cells and cultured for 6 hours, the culture medium is treated with phenol red-free Caro DMEMZ 5% Thiacol-dextran treated FCS (Hyclone) and BMP-2 (R & D Systems) to a final concentration of 600 ngZml. The medium was replaced with After culturing for 3 days in the presence of BMP-2, the cells were collected and lysis buffer (20 mM Tris (p A cell lysate was prepared with H8.0) /0.1% Triton X-100). After measuring the protein concentration in the cell lysate, the ALP activity (Ab595nmZminZg) in each 20 ⁇ g protein was measured using Blu Phos Microwell Phosphatase Substrate System (KPL).
  • KPL Blu Phos Microwell Phosphatase Substrate System
  • ALP activity of cell lysate prepared from cells transfected with Nedd4 siRNA compared to ALP activity of cell lysate prepared from cells transfected with negative control siRNA under no addition of BMP-2
  • the relative value was calculated, and the effect of Nedd4 siRNA on the bone differentiation effect of BMP-2 was evaluated based on the obtained relative value.
  • Statistical processing was performed on the obtained data. For the variance of ALP activity data of each treatment group, F test was performed, and for difference in mean value, Student's t test or Welch's t test was performed.
  • the relative value of the concentration of Nedd4 band detected in each cell relative to the concentration of Nedd4 band detected in BMP-2 untreated negative control siRNA-introduced cells was calculated.
  • the concentration of the Nedd 4 band detected in each cell was corrected by the concentration of the actin band.
  • Nedd4 siRNA-treated cells ALP activity by BMP-2 stimulation was increased approximately 2-fold compared to negative control siRNA-treated cells (Panel A in Fig. 12).
  • Nedd4 expression was markedly inhibited in Nedd4 siRNA-treated cells (panel B in Figure 12).
  • Nedd4 knockdown rate by Nedd4 siRNA was more than 50%.
  • endogenous NEDD4 was knocked down by transfection of NEDD4 siRNA in human cancer cell lines, and the proliferation of the cancer cell lines was measured.
  • Human eclampsia cancer cell line HeLa and human gastric cancer cell line NCI-N87 were used as human cancer cell lines.
  • siRNA of human NEDD4 (published in NCBI database with accession number NM—006154) was purchased from Invitrogen using D42055—stealth—757, D42 055—stealth—1053 and D42055—stealth—1376 did. In addition, QIAGEN's negative control siRNA was used as the control siRNA.
  • Sense RNA 5, — GGACAACCUAACAGAUGCUGAGAAU— 3, (SEQ ID NO: 2 1)
  • Antisense RNA 5'— AUUCUCAGCAUCUGUUAGGUUGUCC— 3 '(SEQ ID NO: 22)
  • Sense RNA 5'— GCAGAAGAGGCAGCUUACAAGCCUA— 3 ′ (SEQ ID NO: 2 3)
  • Antisense RNA 5 '-UAGGCUUGUAAGCUGCCUCUUCUGC-3' (SEQ ID NO: 24)
  • Sense RNA 5'—GCACCAAAUGGGAGGCCUUUCUUUA—3 '(SEQ ID NO: 25)
  • Antisense RNA 5 '-U AAAG AAAGGCCUCCC AUUUGGUGC-3' (Column number 26)
  • NCI-N87 cells were seeded on a 24 well plate at 5 X 10 4 Zwell, and in 10% FBS-containing RPMI164 0 medium at 37 ° C, 5% CO / 95% air for 2 days. After incubation, transfer
  • siRNA introduction amount is equivalent to 2 OpmolZwell
  • This sample was separated on a 5-20% acrylamide gel, and the primary antibody was labeled with anti-NEDD4 antibody H-135 and anti-beta-tubulin antibody H-235 (Santa Cruz Biotechnology).
  • Western blotting using a goat anti-rabbit IgG antibody Alexa Fluor 680, goat anti-rab bit IgG, manufactured by Molecular Probe was performed.
  • the detection and quantification of the protein band was performed by an Odyssey imaging system (Aloka).
  • the knockdown effect of NEDD4 by siRNA was evaluated based on the ratio of the concentration of protein band detected in each NEDD 4 siRNA treatment group to the concentration of NEDD4 protein band detected in the negative control siRNA treatment group.
  • a method for ubiquitinating RUNX using NEDD4 or short-chain NEDD4 can be provided.
  • the identification method can be provided.
  • NEDD4, or a compound that promotes RUNX ubiquitination by NEDD4 or short-chain NEDD4 can be used to promote RUNX ubiquitination by NEDD4 or short-chain NED D4, thereby promoting RUNX degradation it can.
  • RUNX ubiquitination with NEDD4 or short-chain NEDD4 using inactive NEDD4, a double-stranded polynucleotide that inhibits the expression of NEDD4, or a compound that inhibits RUNX ubiquitination with NEDD4 or short-chain NEDD4 Can be inhibited, thereby inhibiting the degradation of RUNX.
  • RUNX ubiquitin and its degradation it is possible to prevent and Z or treat diseases caused by RU NX abnormalities. Since RUNX is considered to be involved in tumor formation and exacerbation of cancer diseases, various cancer diseases can be prevented and / or treated according to the present invention. Further, since RUNX2 is considered to be involved in bone formation, the present invention can prevent and Z or treat bone loss diseases.
  • the present invention it is possible to provide a method for identifying a compound capable of promoting bone formation, characterized by identifying a compound that inhibits the function of NEDD4 or short-chain NEDD4. Since the compound obtained by this identification method is a compound capable of promoting bone formation, it can be used as an effective component for prevention and Z or treatment of osteoporosis such as bone loss disease.
  • the present invention is useful for basic research and drug development regarding RUNX degradation mechanism, transcription mechanism involving RUNX, and diseases caused by RUNX abnormality. Furthermore, the present invention can be used for the prevention and Z or treatment of diseases caused by abnormalities in RUNX, such as cancer diseases. In addition, the present invention is useful for the prevention of bone loss diseases such as osteoporosis and the development of Z or therapeutic agents.
  • SEQ ID NO: 1 Polynucleotide encoding human NEDD4 (SEQ ID NO: 2).
  • SEQ ID NO: 2 human NEDD4.
  • SEQ ID NO: 3 A polynucleotide encoding a protein (SEQ ID NO: 4) in which the 100th amino acid residue at the N-terminal side of human NEDD4 (SEQ ID NO: 2) has also been deleted.
  • SEQ ID NO: 4 A protein from which the 100th amino acid residue at the N-terminal side of human NEDD4 (SEQ ID NO: 2) has also been deleted.
  • SEQ ID NO: 5 Polynucleotide encoding human RUNX1 (SEQ ID NO: 6).
  • SEQ ID NO: 6 human RUNX1.
  • SEQ ID NO: 7 Polynucleotide encoding human RUNX2 (SEQ ID NO: 8).
  • SEQ ID NO: 8 human RUNX2.
  • SEQ ID NO: 9 Polynucleotide encoding human RUNX3 (SEQ ID NO: 10).
  • SEQ ID NO: 10 human RUNX3.
  • SEQ ID NO: 11 Inactive mutant of human NEDD4 (SEQ ID NO: 2).
  • SEQ ID NO: 12 Inactive mutant of a protein (SEQ ID NO: 4) in which the 100th amino acid residue in the N-terminal side of human NEDD4 (SEQ ID NO: 2) is deleted in the 100th amino acid.
  • SEQ ID NO: 13 Human RU having high homology with a partial sequence of human NEDD4 (SEQ ID NO: 2)
  • SEQ ID NO: 14 Partial sequence of human NE DD4 (SEQ ID NO: 2) having high homology with the partial sequence of human RUNX3 (SEQ ID NO: 10).
  • SEQ ID NO: 15 Partial sequence of human RU NX3 (SEQ ID NO: 10) having high homology with the partial sequence of human NEDD4 (SEQ ID NO: 2).
  • SEQ ID NO: 16 Partial sequence of human NE DD4 (SEQ ID NO: 2) having high homology with the partial sequence of human RUNX3 (SEQ ID NO: 10).
  • SEQ ID NO: 17 Partial sequence of human RU NX3 (SEQ ID NO: 10) having high homology with the partial sequence of human NEDD4 (SEQ ID NO: 2).
  • SEQ ID NO: 18 Partial sequence of human NE DD4 (SEQ ID NO: 2) having high homology with the partial sequence of human RUNX3 (SEQ ID NO: 10).
  • SEQ ID NO: 19 sense RNA constituting siRNA for mouse Nedd4
  • SEQ ID NO: 20 Antisense RNA constituting siRNA against mouse Nedd4
  • SEQ ID NO: 21 sense RNA constituting siRNA against human NEDD4
  • Sequence number 22 Antisense RNA which comprises siRNA with respect to human NEDD4.
  • Sequence number 23 The sense RNA which comprises siRNA with respect to human NEDD4.
  • SEQ ID NO: 24 antisense RNA constituting siRNA against human NEDD4
  • SEQ ID NO: 25 sense RNA constituting siRNA against human NEDD4
  • SEQ ID NO: 26 antisense RNA constituting siRNA against human NEDD4

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

[PROBLEMS] To find a protein capable of interacting with RUNX to regulate the action of RUNX, provide a means for regulating the action of RUNX and provide a means useful for the prevention and/or treatment of a disease caused by RUNX abnormality. [MEANS FOR SOLVING PROBLEMS] It is found that NEDD4 which is a HECT E3 ligase can ubiquitinate RUNX to cause the degradation of RUNX. Based on this finding, there are provided a method for the ubiquitination of RUNX or a method for the degradation of RUNX which is characterized by using NEDD4; a ubiquitinating agent or a degrading agent for RUNX; a method for the inhibition of the ubiquitination or the degradation of RUNX by NEDD4; a ubiquitination inhibitor or a degradation inhibitor for RUNX; a method for the identification of a compound capable of inhibiting or enhancing the ubiquitination of RUNX; a method for the identification of a compound capable of inhibiting or enhancing the binding between RUNX and NEDD4; a reagent kit; and a method for the prevention and/or treatment of a disease caused by RUNX abnormality.

Description

明 細 書  Specification
RUNXのュビキチンィ匕方法 技術分野  RUNX's Ubiquity Method Technology Field
[0001] 本発明は、 RUNX (Runt— related transcription factor)のュビキチン化方法 および分解方法に関する。より詳しくは、本発明は RUNXと NEDD4 (Neural prec ursor cell Expressed, developmentally down― regulated 4)とを共存させ ることを特徴とする RUNXのュビキチンィ匕方法および分解方法に関する。  [0001] The present invention relates to a RUNX (Runt—related transcription factor) ubiquitination method and degradation method. More specifically, the present invention relates to a RUNX ubiquitin method and decomposition method characterized by coexistence of RUNX and NEDD4 (Neural precursor cell Expressed, developmentally down-regulated 4).
[0002] 本発明はまた、 RUNXのュビキチン化剤および分解剤に関する。  [0002] The present invention also relates to a RUNX ubiquitinating agent and degrading agent.
[0003] 本発明はさらに RUNXのュビキチンィ匕および分解の阻害方法に関する。より詳しく は、本発明は NEDD4と RUNXの結合、 NEDD4の酵素活性、および NEDD4の発 現のうちの少なくとも 1を阻害することを特徴とする、 NEDD4による RUNXのュビキ チンィ匕および分解の阻害方法に関する。  [0003] The present invention further relates to a method for inhibiting RUNX ubiquitin and degradation. More specifically, the present invention relates to a method for inhibiting RUNX ubiquitin and degradation by NEDD4, characterized by inhibiting at least one of the binding of NEDD4 and RUNX, the enzyme activity of NEDD4, and the expression of NEDD4. .
[0004] 本発明はまた、 NEDD4による RUNXのュビキチンィ匕阻害剤および分解阻害剤に 関する。  [0004] The present invention also relates to a RUNX ubiquitin inhibitor and degradation inhibitor of NEDD4.
[0005] 本発明はさらに NEDD4の部分塩基配列力もなるポリヌクレオチドに関する。また、 本発明は NEDD4の部分塩基配列からなるポリヌクレオチドと、該塩基配列の相補的 塩基配列からなる二重鎖ポリヌクレオチドに関する。  [0005] The present invention further relates to a polynucleotide having a partial base sequence ability of NEDD4. The present invention also relates to a polynucleotide comprising a partial base sequence of NEDD4 and a double-stranded polynucleotide comprising a complementary base sequence of the base sequence.
[0006] 本発明はまた、骨形成促進方法および骨形成促進剤に関する。より詳しくは、本発 明は、 NEDD4の発現および Zまたは機能を阻害することを特徴とする骨形成促進 方法および骨形成促進剤に関する。 [0006] The present invention also relates to a method for promoting osteogenesis and an agent for promoting osteogenesis. More specifically, the present invention relates to an osteogenesis promoting method and an osteogenesis promoter characterized by inhibiting the expression and Z or function of NEDD4.
[0007] 本発明はさらに、腫瘍増殖抑制方法および腫瘍増殖抑制剤に関する。より詳しくは[0007] The present invention further relates to a method for inhibiting tumor growth and a tumor growth inhibitor. More details
、本発明は、 NEDD4の発現および Zまたは機能を阻害することを特徴とする腫瘍 増殖抑制方法および腫瘍増殖抑制剤に関する。 The present invention relates to a method for inhibiting tumor growth and a tumor growth inhibitor, characterized by inhibiting the expression and Z or function of NEDD4.
[0008] 本発明はまた、 NEDD4による RUNXのュビキチンィ匕を阻害する化合物または促 進する化合物の同定方法、並びに NEDD4と RUNXの結合を阻害する化合物また は促進する化合物の同定方法に関する。 [0008] The present invention also relates to a method for identifying a compound that inhibits or promotes RUNX ubiquitin by NEDD4, and a method for identifying a compound that inhibits or promotes the binding of NEDD4 to RUNX.
[0009] 本発明はさらに、骨形成を促進させ得る化合物の同定方法に関する。 [0009] The present invention further relates to a method for identifying a compound capable of promoting bone formation.
[0010] 本発明はまた、腫瘍増殖を抑制させ得る化合物の同定方法に関する。 [0011] 本発明はさらに、 NEDD4、 NEDD4をコードするポリヌクレオチド、該ポリヌクレオ チドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくとも いずれか 1つと、 RUNX、 RUNXをコードするポリヌクレオチド、該ポリヌクレオチドを 含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくともいずれ 力 1つとを含んでなる試薬キットに関する。 [0010] The present invention also relates to a method for identifying a compound capable of suppressing tumor growth. [0011] The present invention further includes NEDD4, a polynucleotide encoding NEDD4, a vector containing the polynucleotide, and a transformant containing the vector, and a polynucleotide encoding RUNX and RUNX. And a reagent kit comprising at least one of a vector containing the polynucleotide and a transformant containing the vector.
[0012] 本発明はまた、 RUNXの異常に起因する疾患、例えば RUNXの機能および Zま たは発現の亢進や低下に起因する疾患、具体的には癌疾患等の予防および Zまた は治療剤、並びに予防および Zまたは治療方法に関する。  [0012] The present invention also relates to a disease caused by an abnormality in RUNX, for example, a disease caused by an increase or decrease in the function and Z or expression of RUNX, specifically a preventive and Z or therapeutic agent for cancer diseases, etc. , And prevention and Z or treatment methods.
[0013] 本発明はさらに、骨損失を伴う疾患の予防および Zまたは治療剤、並びに予防お よび Zまたは治療方法に関する。  [0013] The present invention further relates to a preventive and Z or therapeutic agent for diseases associated with bone loss, and a preventive and Z or therapeutic method.
背景技術  Background art
[0014] RUNXは、 Runtドメインを有することを特徴とする蛋白質であり、数々のファミリー 蛋白質が知られている。 Runtドメインは、(1)ヒトの急性骨髄性白血病に関連する A MLl、acute myelocytic leukemia 1)、 (2)レトロゥ ノレスのェンノヽンサ ~~【こ共 通するコアに結合する転写因子として同定された CBF (core binding factor)、お よび(3)ポリオ一マウィルスの遺伝子発現と DNA複製を制御するェンノヽンサ一として 同定された転写因子 PEBP2 (polyomavirus enhancer binding protein 2)の αサブユニットが共有する約 130アミノ酸残基力もなる非常に相同性の高い配列であ る。  [0014] RUNX is a protein characterized by having a Runt domain, and many family proteins are known. The Runt domain has been identified as (1) AML1 associated with acute myeloid leukemia in humans, acute myelocytic leukemia 1), (2) Retronoles hennoenser ~~ [a transcription factor that binds to a common core. CBF (core binding factor), and (3) the alpha subunit of PEBP2 (polyomavirus enhancer binding protein 2), a transcription factor identified as an enzyme that regulates gene expression and DNA replication in poliovirus. It is a highly homologous sequence with about 130 amino acid residues.
[0015] RUNXは、 ΡΕΒΡ2 CBF j8サブユニット(PEBP2 j8 ZCBF j8 )とへテロ二量体 を形成し、転写因子として作用することが知られている。 Runtドメインは、 DNA結合 および j8サブユニットとのヘテロ二量体化を共に担い、 RUNXの転写因子としての 作用に重要なドメインである。  [0015] RUNX is known to form a heterodimer with ΡΕΒΡ2 CBF j8 subunit (PEBP2 j8 ZCBF j8) and act as a transcription factor. The Runt domain is responsible for both DNA binding and heterodimerization with the j8 subunit, and is an important domain for the action of RUNX as a transcription factor.
[0016] RUNXは、哺乳動物では 3種類のファミリー蛋白質、すなわち RUNX1、 RUNX2 および RUNX3が知られている(非特許文献 1および 2)。ヒト RUNX3とヒト RUNX1 およびヒト RUNX2との相同性は、アミノ酸レベルでそれぞれ 57%および 54%である  [0016] RUNX is known to have three types of family proteins in mammals, namely RUNX1, RUNX2 and RUNX3 (Non-patent Documents 1 and 2). Homology between human RUNX3 and human RUNX1 and human RUNX2 is 57% and 54%, respectively, at the amino acid level
[0017] RUNXファミリ一は、転写因子として作用し、正常な分化や腫瘍形成に重要な役割 を果たす。 [0017] The RUNX family acts as a transcription factor and plays an important role in normal differentiation and tumorigenesis Fulfill.
[0018] RUNX1はヒト第 21染色体(21q22)上に存在し、急性骨髄性白血病 (AML)で染 色体転座が最も高頻度にみられる遺伝子として同定された (非特許文献 3)。一方、 R UNX1が造血細胞の分化調節にも決定的な役割を果たして 、ることが報告されて!ヽ る(非特許文献 4および 5)。 AMLでは第 8染色体と第 21染色体の長腕が入れ替わ る相互転座 (t (8; 21) )が高頻度に見られ、該染色体転座により RUNX1に対してド ミナントネガティブに作用するキメラ蛋白質が生じることが知られている。このキメラ蛋 白質を発現している増殖細胞に、 RUNX1を大量に発現させると細胞の増殖は抑制 され分化が促進されたことが報告されている (非特許文献 6)。一方、染色体転座の みられない白血病細胞でも、点突然変異による RUNX1転写活性ィヒ能の消失が報 告されており、その機能消失が白血病の発症に重要な役割を果たしていると考えら れる (非特許文献 7)。  [0018] RUNX1 is present on human chromosome 21 (21q22) and has been identified as the gene with the most frequent chromosomal translocation in acute myeloid leukemia (AML) (Non-patent Document 3). On the other hand, it has been reported that RUNX1 also plays a crucial role in regulating the differentiation of hematopoietic cells (Non-patent Documents 4 and 5). In AML, a reciprocal translocation (t (8; 21)) in which the long arms of chromosomes 8 and 21 are interchanged is frequently observed, and this chromosomal translocation acts on dominant negative for RUNX1. It is known that chimeric proteins are produced. It has been reported that when RUNX1 is expressed in large quantities in proliferating cells expressing this chimeric protein, cell proliferation is suppressed and differentiation is promoted (Non-patent Document 6). On the other hand, even in leukemia cells without chromosomal translocation, loss of RUNX1 transcriptional activity due to point mutations has been reported, and this loss of function seems to play an important role in the development of leukemia. (Non-patent document 7).
[0019] RUNX2は骨形成に関わる重要な転写因子であり、軟骨細胞の分化'成熟、骨芽 細胞の分化、骨髄形成に必須である(非特許文献 26および 27)。 RUNX2のノックァ ゥトマウスでは膜性骨化および軟骨内骨化の両方が欠損しているため、骨格は軟骨 のみから形成される (非特許文献 8)。骨格は、骨芽細胞カゝら直接形成される膜性骨 化と、軟骨が形成された後に該軟骨が骨に置換される軟骨内骨化により構築される。 骨芽細胞と軟骨細胞はいずれも間葉系幹細胞より分化する。これら細胞の間葉系幹 細胞からの分化には、 BMP (bone morphogenetic protein)等のサイト力インお よび各種の転写因子群が関与している。 RUNX2は細胞内で、 BMP刺激による骨 形成遺伝子の発現誘導に関与する転写因子 Smadlと結合することから、 BMP刺激 を介した骨形成シグナルに関与していると考えられている(非特許文献 28)。また、 R UNX2は骨細胞の分化に作用する他、骨基質遺伝子群(Collal、 Colla2、ォステ ォポンチン(osteopontin)、ォステオカノレシン(osteocalcin) ,骨シァロプロテイン( bone sialoprotein)等)の発現を活性ィ匕させることが明らかにされている(非特許文 献 29)。  [0019] RUNX2 is an important transcription factor involved in bone formation, and is essential for chondrocyte differentiation 'maturation, osteoblast differentiation and bone marrow formation (Non-patent Documents 26 and 27). In RUNX2 knockout mice, both membranous ossification and endochondral ossification are deficient, so the skeleton is formed only from cartilage (Non-patent Document 8). The skeleton is constructed by membranous ossification directly formed by osteoblasts and endochondral ossification where the cartilage is replaced by bone after the cartilage is formed. Both osteoblasts and chondrocytes differentiate from mesenchymal stem cells. Differentiation of these cells from mesenchymal stem cells involves site force-in such as BMP (bone morphogenetic protein) and various transcription factors. Since RUNX2 binds to the transcription factor Smadl, which is involved in the induction of bone morphogenetic gene expression by BMP stimulation, it is thought to be involved in bone formation signals via BMP stimulation (Non-patent Document 28). ). RUNX2 affects the differentiation of bone cells and also expresses bone matrix genes (Collal, Colla2, osteopontin, osteocalcin, bone sialoprotein). It has been shown to be active (Non-patent Document 29).
[0020] 一方、 RUNX2の過剰発現が T細胞分ィ匕に異常をもたらし、 c mycとの相乗作用 によりリンパ腫形成に関与することが報告されている (非特許文献 9)。 [0021] RUNX3は TGF— j8 (tumor growth factor— j8 )の細胞内メディエーターであ る Smadと結合することから、 TGF- βシグナル伝達への関与が考えられている(非 特許文献 10)。 TGF- βレセプターや Smadの変異は、多くの癌で知られており(非 特許文献 11)、 RUNX3についても癌への関与が考えられている。 RUNX3は正常 の胃粘膜上皮で高発現しているが(非特許文献 12)、 RUNX3をノックアウトすると胃 粘膜上皮細胞の増殖亢進による粘膜肥厚がみられる。この細胞増殖亢進は、アポト 一シスの抑制に起因することが明らかにされている。さらに RUNX3ノックアウトマウス の胃粘膜上皮細胞は、 TGF- βの増殖抑制作用に対して抵抗性を示すことから、 粘膜肥厚は RUNX3欠損による TGF— βシグナル伝達の異常が原因と考えられて いる(非特許文献 13)。これは、 TGF— βのノックアウトマウスにおいても、同様に胃 粘膜上皮細胞の増殖による粘膜肥厚がみられることからも支持される(非特許文献 1 4)。また、ヒト食道癌 SEG— 1細胞でも RUNX3が欠損しており、 TGF— βの増殖抑 制作用に対して抵抗性を示すが、 RUNX3を発現させると反応性が回復する (非特 許文献 15)。これらの事象は、 RUNX3が TGF— βシグナルを介して癌に関与する ことを示唆する。 [0020] On the other hand, it has been reported that overexpression of RUNX2 causes abnormalities in T cell differentiation and is involved in lymphoma formation by synergistic action with c myc (Non-patent Document 9). [0021] Since RUNX3 binds to Smad, an intracellular mediator of TGF-j8 (tumor growth factor-j8), it is considered to be involved in TGF-β signaling (Non-patent Document 10). Mutations of TGF-β receptor and Smad are known in many cancers (Non-patent Document 11), and RUNX3 is also considered to be involved in cancer. RUNX3 is highly expressed in normal gastric mucosal epithelium (Non-patent Document 12), but when RUNX3 is knocked out, mucosal thickening due to increased proliferation of gastric mucosal epithelial cells is observed. This increase in cell proliferation has been shown to be due to suppression of apoptosis. In addition, gastric mucosal epithelial cells of RUNX3 knockout mice are resistant to the growth-inhibiting action of TGF-β, suggesting that mucosal thickening is caused by abnormal TGF-β signaling due to RUNX3 deficiency (non- Patent Document 13). This is supported by the fact that mucosal thickening due to proliferation of gastric mucosal epithelial cells is also observed in TGF-β knockout mice (Non-patent Documents 14). In addition, RUNX3 is deficient in human esophageal cancer SEG-1 cells and is resistant to the production of TGF-β. However, when RUNX3 is expressed, the reactivity is restored (Non-Patent Document 15). . These events suggest that RUNX3 is involved in cancer through the TGF-β signal.
[0022] ヒトの癌と RUNX3との関連性については既にいくつかの報告がある。 RUNX3は 多くの癌抑制遺伝子が存在する第 1染色体(1ρ36)上にあり、ここは胃癌、大腸癌、 胆管癌、脾臓癌等で頻繁に欠損がみられる領域である。胃癌細胞での RUNX3の発 現は癌の進行と共に低下しており、ステージ 4の胃癌では約 90%で RUNX3の遺伝 子発現が低下していた (非特許文献 13)。また、 60%以上の胆管癌、脾臓癌および 大腸癌細胞株で RUNX3の遺伝子発現が低下して ヽたと ヽぅ報告もある (非特許文 献 16および 17)。 RUNX3発現低下の原因は、半接合体欠失(hemizygous delet ion)および RUNX3のプロモーター領域のメチル化が原因と考えられている。 RUN X3の腫瘍形成抑制作用は、移植モデルを使用した動物実験で確認されており、 RU NX3欠損ヒト胃癌細胞に RUNX3遺伝子を発現させると、ヌードマウス移植後の腫瘍 増殖が著しく抑制された (非特許文献 13)。  [0022] Several reports have already been made on the relationship between human cancer and RUNX3. RUNX3 is located on chromosome 1 (1ρ36), where many tumor suppressor genes are present. This region is frequently defective in gastric cancer, colon cancer, bile duct cancer, and spleen cancer. The expression of RUNX3 in gastric cancer cells decreased with the progression of cancer, and the expression of RUNX3 gene decreased in about 90% of stage 4 gastric cancer (Non-patent Document 13). In addition, it has been reported that RUNX3 gene expression decreased in more than 60% of bile duct cancer, spleen cancer and colon cancer cell lines (Non-patent Documents 16 and 17). The cause of decreased RUNX3 expression is thought to be due to hemizygous deletion and methylation of the promoter region of RUNX3. The tumor formation inhibitory effect of RUN X3 has been confirmed in animal experiments using a transplant model.When RUNX3 gene was expressed in RU NX3-deficient human gastric cancer cells, tumor growth after transplantation of nude mice was significantly suppressed (non- Patent Document 13).
[0023] NEDD4は、蛋白質分解機構であるュビキチンプロテアソームシステムを構成する H£LC Γ (homologous to the papillomavirus K6― associated protein car boxyl terminus)型ュビキチンリガーゼである。 NEDD4は、 N末端領域に膜脂質 との結合に関与する C2ドメイン、中央部に基質との結合に関与する 4つの WWドメイ ン、および C末端領域にュビキチンィ匕の触媒ドメインでありュビキチンリガーゼ活性を 示す HECTドメインを有する(非特許文献 18)。 [0023] NEDD4 is an H £ LC Γ (homologous to the papillomavirus K6-associated protein car boxyl terminus) type ubiquitin ligase. NEDD4 is a C2 domain involved in binding to membrane lipids in the N-terminal region, four WW domains involved in binding to the substrate in the middle, and a ubiquitin 触媒 catalytic domain in the C-terminal region and ubiquitin ligase activity It has a HECT domain that indicates (Non-patent Document 18).
[0024] ュビキチンプロテアソームシステムは、選択的かつ能動的な蛋白質分解機構であり 、細胞周期やシグナル伝達等の様々な生理現象を調節し、それにより蛋白質や細胞 の恒常性維持に関与している(非特許文献 19)。ュビキチンは真核生物に存在する 進化的に保存された 76アミノ酸残基力もなる蛋白質であり、これが標的蛋白質に鎖 状に共有結合し、分解シグナルとして作用する。標的蛋白質へのュビキチンの結合 はュビキチン活性ィ匕酵素 (E1)、ュビキチン結合酵素 (E2)およびュビキチンリガ一 ゼ (E3)の連続的な触媒作用で起こる。これら酵素の中で、ュビキチンリガーゼ (E3) が基質選択性を担う酵素として重要である。ュビキチン化された標的蛋白質は、該蛋 白質に鎖状に結合したュビキチンを認識するプロテアソームにより分解される。ュビ キチンプロテアソームシステムの異常は、標的蛋白質の過剰な分解による蛋白質の 欠乏、あるいは標的蛋白質の分解阻害による蛋白質の蓄積を招き、それにより様々 な疾患を引き起こす。具体的には、たとえば癌疾患におけるュビキチンプロテアソー ムシステムの関与が報告されて ヽる (非特許文献 20)。 [0024] The ubiquitin proteasome system is a selective and active proteolytic mechanism that regulates various physiological phenomena such as the cell cycle and signal transduction, and is thus involved in maintaining homeostasis of proteins and cells. (Non-patent document 19). Ubiquitin is an evolutionarily conserved protein with 76 amino acid residues existing in eukaryotes, which is covalently linked in a chain to the target protein and acts as a degradation signal. The binding of ubiquitin to the target protein occurs by the continuous catalysis of ubiquitin activity enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). Among these enzymes, ubiquitin ligase (E3) is important as an enzyme responsible for substrate selectivity. The ubiquitinated target protein is degraded by the proteasome that recognizes ubiquitin bound in a chain to the protein. Abnormalities in the ubiquitin proteasome system lead to protein deficiency due to excessive degradation of the target protein, or protein accumulation due to inhibition of target protein degradation, thereby causing various diseases. Specifically, for example, the involvement of the ubiquitin proteasome system in cancer diseases has been reported (Non-patent Document 20).
[0025] NEDD4の組織分布は正常組織では筋肉で発現が高 、。また、 、くつかの癌細胞 株、例えばヒト子宫頸部癌細胞株 HeLa、ヒト肺癌細胞株 A549、およびヒト白血病細 胞株 K562にお!/、て NEDD4の発現が mRNAレベルで亢進して!/、ることが報告され ている(非特許文献 21)。また、 NEDD4は神経細胞の分化とともに発現が減少する ことが知られて ヽる (非特許文献 22)。  [0025] The tissue distribution of NEDD4 is highly expressed in muscle in normal tissues. Also, in some cancer cell lines, such as the human eclampsia cancer cell line HeLa, the human lung cancer cell line A549, and the human leukemia cell line K562, the expression of NEDD4 is increased at the mRNA level! It has been reported (Non-patent Document 21). In addition, NEDD4 is known to decrease in expression with neuronal differentiation (Non-patent Document 22).
[0026] NEDD4の基質として、 NF— κ Β (nuclear factor- κ Β)の制御因子である Bel 10が報告されている(非特許文献 23)。 NEDD4の基質にはその他、アミロイド感受 性上皮ナトリウムチャネル (ENaC)が知られて 、る(非特許文献 24)。  [0026] As a substrate for NEDD4, Bel 10 which is a regulator of NF-κΒ (nuclear factor-κΒ) has been reported (Non-patent Document 23). Another substrate for NEDD4 is amyloid-sensitive epithelial sodium channel (ENaC) (Non-patent Document 24).
[0027] RUNXの安定性に対するュビキチンプロテアソームシステムの関与についていく つかの報告がある。例えば、 RUNX2の細胞内での安定性は、ュビキチンィ匕依存的 に制御されている(非特許文献 30)。 RUNX2の E3リガーゼとして既に、 HECT型 E 3リガーゼとして知られている Smurfl (Smad ubiquitination regulatory facto r 1)が報告されている(非特許文献 31)。プロテアソームインヒビター処理により、ィ ンビトロ (in vitro)での骨芽細胞の分ィ匕の誘導および個体での骨形成の促進が報 告されている(非特許文献 31および 32)。しかしながら、 Smurflのノックアウトマウス における RUNX2の発現量および Smadシグナルは野生型マウスのものと差はなく、 生体内で RUNX2が Smurfl依存的に分解されて ヽるかは不明である(非特許文献 33)。また、 RUNX3が、 Smurflおよび Smurf 2によってュビキチン化され、分解す ることが報告されて!ヽる (非特許文献 25)。 [0027] There are several reports on the involvement of the ubiquitin proteasome system in the stability of RUNX. For example, the intracellular stability of RUNX2 is controlled in a ubiquitin-dependent manner (Non-patent Document 30). HECT type E already as E3 ligase of RUNX2 Smurfl (Smad ubiquitination regulatory factor 1) known as 3 ligase has been reported (Non-patent Document 31). It has been reported that treatment with proteasome inhibitors induces osteoblast differentiation in vitro and promotes bone formation in individuals (Non-patent Documents 31 and 32). However, the expression level of RUNX2 and the Smad signal in knockout mice of Smurfl are not different from those of wild-type mice, and it is unclear whether RUNX2 is degraded in vivo in a Smurfl-dependent manner (Non-patent Document 33) . It has also been reported that RUNX3 is ubiquitinated and degraded by Smurfl and Smurf 2 (Non-patent Document 25).
[0028] しかしながら、 NEDD4による RUNXファミリーのュビキチン化は報告されていない 。また、 NEDD4と Smurflおよび Smurf 2との相同性は低ぐアミノ酸レベルでそれ ぞれ 39%および 43%である。  [0028] However, ubiquitination of the RUNX family by NEDD4 has not been reported. The homology between NEDD4 and Smurfl and Smurf 2 is 39% and 43%, respectively, at the low amino acid level.
[0029] 非特許文献 1 :ランド(LundA. H. )ら、「キャンサー セル(Cancer Cell)」、 2002 年、第 1卷、第 3号、 p. 213— 215。  [0029] Non-Patent Document 1: Lund A. H. et al., “Cancer Cell”, 2002, No. 1, No. 3, p. 213-215.
非特許文献 2 :オット一(Otto F. )ら、「ジャーナル ォブ セルラー バイオケミストリ 一(Journal of Cellular Biochemistry)」、 2003年、第 89卷、第 1号、 p. 9— 1 Non-Patent Document 2: Otto F. et al., “Journal of Cellular Biochemistry”, 2003, No. 89, No. 1, p. 9-1
80 8 0
非特許文献 3 :ミヨシ(Miyoshi H. )ら、「プロシーディングス ォブ ザ ナショナル アカデミー ォブ サイェンシズ ォブ ザ ユナイテッド ステーッ ォブ アメリカ ]: oceedmgs of The National Academy of sciences of fhe United ¾ tates of America)」、 1991年、第 88卷、第 23号、 p. 10431— 10434。  Non-Patent Document 3: Miyoshi H. et al., "Proceedings of the National Academy of Sciences of fhe United ¾ tates of America" 1991, 88th, 23rd, p. 10431-10434.
非特許文献 4:ォクダ (Okuda T. )ら、「セル (Cell)」、 1996年、第 84卷、第 2号、 p 。 321— 330。  Non-Patent Document 4: Okuda T. et al., “Cell”, 1996, 84, No. 2, p. 321—330.
非特許文献 5 :ワン (Wang Q. )ら、「セル (Cell)」、 1996年、第 87卷、第 4号、 p。 6 97— 708。  Non-Patent Document 5: Wang Q. et al., “Cell”, 1996, 87th, No. 4, p. 6 97—708.
非特許文献 6 :キタバヤシ(Kitabayashi I. )ら、「ェンボ ジャーナル(EMBO Jou rnal)」、 1998年、第 17卷、第 11号、 p. 2994— 3004。  Non-Patent Document 6: Kitabayashi I. et al., “EMBO Journal”, 1998, Vol. 17, No. 11, p. 2994—3004.
非特許文献 7 :ォーサト(Osato M. )ら、「ブラッド(Blood)」、 1999年、第 93卷、第 6号、 p. 1817—1824。 非特許文献 8 :オット一(Otto F. )ら、「セル (Cell)」、 1997年、第 89卷、第 5号、 p 。 765— 771。 Non-Patent Document 7: Osato M. et al., “Blood”, 1999, No. 93, No. 6, p. 1817-1824. Non-Patent Document 8: Otto F. et al., “Cell”, 1997, 89th, No. 5, p. 765—771.
非特許文献 9 :ヴアリアント(Valliant F. )ら、「オンコジーン(Oncogene)」、 1999 年、第 18卷、第 50号、 p. 7124— 7134。 Non-Patent Document 9: Valliant F. et al., “Oncogene”, 1999, No. 18, No. 50, p. 7124-7134.
非特許文献 10 :イト一(Ito Y. )ら、「カレント オピニオン イン ジエネテイクス アン ド ティベロフメント (Current Opinion in Genetics and Development)」 , 2 003年、第 13卷、第 1号、 p. 43—47。 Non-Patent Document 10: Ito Y. et al., “Current Opinion in Genetics and Development”, 2000, 13th, No. 1, p. 43— 47.
非特許文献 11 :カヮバタ(Kawabata M. )ら、「ジャーナル ォブ パイオケミストリ 一 (Journal of Biochemistry) J、 1999年、第 125卷、第 1号、 p. 9— 16。 Non-Patent Document 11: Kawabata M. et al., “Journal of Biochemistry J, 1999, 125th, No. 1, p. 9-16.
非特許文献 12 :ォーサキ(Osaki M. )ら、「ョ一口ビアン ジャーナル ォブ クリニ カル インべスティグーシヨン (European Journal of Clinical Investigation)」 、 2004年、第 34卷、第 9号、 p. 605— 612。 Non-Patent Document 12: Osaki M. et al., “European Journal of Clinical Investigation”, 2004, No. 34, No. 9, p. 605 — 612.
非特許文献 13 :リ(Li Q. L. )ら、「セル (Cell)」、 2002年、第 109卷、第 1号、 p. 11 3— 124。 Non-Patent Document 13: Li Q. L. et al., “Cell”, 2002, No. 109, No. 1, p. 11 3-124.
非特許文献 14 :クラウフォード(Crawford S. E. )ら、「セル(Cell)」、 1998年、第 9 3卷、第 7号、 p. 1159— 1170。 Non-Patent Document 14: Crawford S. E. et al., “Cell”, 1998, 93rd, No. 7, p. 1159-1170.
非特許文献 15 :トークヮッティ(Torquati A. )ら、「サージエリー(Surgery)」、 2004 年、第 136卷、第 2号、 p. 310— 316。 Non-Patent Document 15: Torquati A. et al., “Surgery”, 2004, Vol. 136, No. 2, p. 310-316.
非特許文献 16 :ヮダ (Wada M. )ら、「オンコジーン(Oncogene)」、 2004年、第 23 卷、第 13号、 p. 2401— 2407。 Non-Patent Document 16: Wada M. et al., “Oncogene”, 2004, 23rd, No. 13, p. 2401—2407.
非特許文献 17 :グール(Goel A. )ら、「インターナショナル ジャーナル ォブ キヤ ンサー(International Journal of Cancer)」、 2004年、第 112卷、第 5号、 p. 7 54— 759。 Non-Patent Document 17: Goel A. et al., “International Journal of Cancer”, 2004, 112, 5, p. 7 54-759.
非特許文献 18 :ハーベイ(Harvey K. F. )ら、「トレンズ イン セル バイオロジー(Non-Patent Document 18: Harvey K. F. et al., “Trends in-cell biology (
Trends in Cell Biology)」、 1999年、第 9卷、第 5号、 p. 166—169。 Trends in Cell Biology), 1999, No. 9, No. 5, p. 166-169.
非特許文献 19 :ハーシコ(Hershko A. )ら、「ァ-ュアル レビュー ォブ バイオケ ミストリー(Annual Review of Biochemistry)」、 1998年、第 67卷、 p. 425— 4 非特許文献 20 :バーガー(Burger A. M. )ら、「ョ一口ビアン ジャーナル ォブ キ ヤンサー(Eurpoean Journal of Cancer)」、 2004年、第 40卷、第 15号、 p. 22 17— 2229。 Non-Patent Document 19: Hershko A. et al., “Annual Review of Biochemistry”, 1998, 67th, p. 425-4 Non-Patent Document 20: Burger AM et al., “Eurpoean Journal of Cancer”, 2004, No. 40, No. 15, p. 22 17-2229.
非特許文献 21 :アナン (Anan T. )ら、「ジーンズ トウ セルズ(Genes to Cells) 」、 1998年、第 3卷、第 11号、 p. 751— 763。 Non-Patent Document 21: Anan T. et al., “Genes to Cells”, 1998, No. 3, No. 11, p. 751-763.
非特許文献 22 :クマール (Kumar S. )ら、「バイオケミカル アンド バイオフイジ力 ノレ リサーチ コ ュニケーションズ (Biochemical and Biophysical Research Communications)」、 1992年、第 185卷、第 3号、 p. 1155— 1161。 Non-Patent Document 22: Kumar S. et al., “Biochemical and Biophysical Research Communications”, 1992, No. 185, No. 3, p. 1155-1161.
非特許文献 23 :シヤールシュミット(Scharschmidt E)ら、「モレキュラー アンド セ ルラー ノ ィォロジ一(Molecular and Cellular Biology)」、 2004年、第 24卷、 第 9号、 p. 3860— 3873。 Non-Patent Document 23: Scharschmidt E et al., “Molecular and Cellular Biology”, 2004, Vol. 24, No. 9, p. 3860-3873.
非特許文献 24:スタウプ(Staub O. )ら、「ェンボ ジャーナル(EMBO Journal) J 、 1996年、第 15卷、第 10号、 p. 2371— 2380。 Non-Patent Document 24: Staub O. et al., “EMBO Journal J, 1996, Vol. 15, No. 10, p. 2371-2380.
非特許文献 25 :ジン (Jin Y. H. )ら、「ザ ジャーナル ォブ バイオロジカル ケミス トリー(The Journal of Biological Chemistry)」、 2004年、第 279卷、第 28号 、 p. 29409— 29417。 Non-Patent Document 25: Jin Y. H. et al., “The Journal of Biological Chemistry”, 2004, No. 279, No. 28, p. 29409-29417.
非特許文献 26 :コモリ(Komori, T. )「ジャーナル ォブ セルラーバイオケミストリー (Journal of Cellular Biochemistry)」、 2005年、第 95卷、 p. 445— 453。 非特許文献 27 :ヒメノ(Himeno, M. )ら、「ジャーナル ォブ ボーン アンド ミネラ ル リサーチ(Journal of Bone and Mineral Research)」、 2002年、第 17卷 、 p. 1297—1305。 Non-Patent Document 26: Komori, “Journal of Cellular Biochemistry”, 2005, Vol. 95, p. 445-453. Non-Patent Document 27: Himeno, M. et al., "Journal of Bone and Mineral Research", 2002, 17th, p. 1297-1305.
非特許文献 28 :ノ、ナイ(Hanai, J. I. )ら、「ザ ジャーナル ォブ バイオロジカル ケ ミストリー(The Journal of Biological Chemistry)」、 1999年、第 274卷、 p. 3 1577— 31582。 Non-Patent Document 28: Hanai, J. I. et al., “The Journal of Biological Chemistry”, 1999, No. 274, p. 3 1577-31582.
非特許文献 29 :コモリ(Komori, T. ) ,「ジャーナル ォブ セルラーバイオケミストリ 一(Journal of Cellular Biochemistry)」、 2002年、第 87卷、 p. 1— 8。 Non-Patent Document 29: Komori, T., “Journal of Cellular Biochemistry”, 2002, 87th, p. 1-8.
非特許文献 30 :チンタツ HTintut, Y. )ら、「ザ ジャーナル ォブ バイオロジカル ケミストリー(The Journal of Biological Chemistry)」、 1999年、第 274卷、 p . 28875— 28879。 Non-Patent Document 30: HTintut, Y.) et al., “The Journal of Biological Chemistry”, 1999, 274th p. 28875—28879.
非特許文献 31 :ザォ(Zhao M. )ら、「ザ ジャーナル ォブ バイオロジカル ケミス トリー(The Journal of Biological Chemistry)」、 2003年、第 278卷、 p. 279 39— 27944。  Non-Patent Document 31: Zhao M. et al., “The Journal of Biological Chemistry”, 2003, No. 278, p. 279 39-27944.
非特許文献 32 :ガレット(Garrett, L R. )ら、「ザ ジャーナル ォブ タリ-カル ィ ンべスティゲーシヨン(The Journal of Clinical Investigation)」、 2003年、第 111卷、 p. 1771— 1782。  Non-Patent Document 32: Garrett, L R. et al., “The Journal of Clinical Investigation”, 2003, 111, p. 1771—1782. .
非特許文献 33 :ヤマシタ(Yamashita, M. )ら、「セル(Cell)」、 2005年、第 121卷 、 p. 101— 113。  Non-Patent Document 33: Yamashita, M. et al., “Cell”, 2005, 121, p. 101-113.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0030] RUNXは、転写因子として作用し、正常な分化や腫瘍形成に重要な役割を果たす 蛋白質である。 RUNXの異常により、例えば、分化の異常や腫瘍形成が引き起こさ れる。したがって、 RUNXの作用を調節することにより、 RUNXの異常に起因する疾 患を予防および Zまたは治療できる。  [0030] RUNX is a protein that acts as a transcription factor and plays an important role in normal differentiation and tumorigenesis. Abnormalities in RUNX cause, for example, abnormal differentiation and tumor formation. Therefore, by regulating the action of RUNX, it is possible to prevent and Z or treat diseases caused by abnormal RUNX.
[0031] 本発明の課題は、 RUNXと相互作用してその作用を調節する蛋白質を見出して提 供することである。また、本発明の課題には、 RUNXの作用を調節する手段を提供 することが含まれる。さらに、本発明の課題には、 RUNXの異常に起因する疾患、例 えば癌疾患の予防および Zまたは治療に有用な手段を提供することが含まれる。 課題を解決するための手段  [0031] An object of the present invention is to find and provide a protein that interacts with RUNX to regulate its action. The subject of the present invention includes providing means for adjusting the action of RUNX. Furthermore, the subject of the present invention includes providing a useful means for the prevention and Z or treatment of diseases caused by abnormalities in RUNX, such as cancer diseases. Means for solving the problem
[0032] 上記課題を解決すべく本発明者らは鋭意努力し、 HECT型 E3リガーゼである NE DD4が RUNX3と相互作用することをインシリコ(in silico)で予測した。  [0032] In order to solve the above-mentioned problems, the present inventors made diligent efforts and predicted in silico that NE DD4, which is a HECT-type E3 ligase, interacts with RUNX3.
[0033] そして、 NEDD4が RUNXをュビキチン化し、それにより RUNXの安定性を低下さ せることを実証した。具体的には、(D NEDD4が RUNX3と細胞内で結合すること、 (2) NEDD4により RUNX3が細胞内でュビキチン化されること、および(3) NEDD4 により RUNX3の安定性が低下することを実証した。さらに、(4) NEDD4が RUNX1 と細胞内で結合すること、(5) NEDD4により RUNX1がュビキチン化されること、お よび (6) NEDD4により RUNX1の安定性が低下することを実証した。また、(7)癌細 胞では、 N末端側のアミノ酸残基が欠失して 、る短鎖型 NEDD4が発現して 、ること を見出し、(8)短鎖型 NEDD4と RUNX1、 RUNX2および RUNX3とがそれぞれ結 合すること、および(9)短鎖型 NEDD4により RUNX1、 RUNX2および RUNX3が ュビキチンィ匕されることを実証した。 [0033] Then, it was demonstrated that NEDD4 ubiquitinated RUNX, thereby reducing the stability of RUNX. Specifically, (D NEDD4 binds to RUNX3 intracellularly, (2) RUNX3 is ubiquitinated by NEDD4, and (3) NEDD4 reduces RUNX3 stability. Furthermore, (4) NEDD4 binds to RUNX1 in cells, (5) RUNX1 is ubiquitinated by NEDD4, and (6) NEDD4 reduces RUNX1 stability. (7) Cancer details In the cell, the N-terminal amino acid residue is deleted and the short-chain NEDD4 is expressed, and (8) the short-chain NEDD4 and RUNX1, RUNX2, and RUNX3 bind to each other. And (9) RUNX1, RUNX2 and RUNX3 were demonstrated to be ubiquitined by short-chain NEDD4.
[0034] 本発明における実証結果から、 NEDD4が RUNXと結合して RUNXのュビキチン 化を触媒し、その結果ュビキチン化された RUNXがュビキチンプロテアソームシステ ムにより分解されてその安定性が低下すると考えることができる。 RUNXの分解が、 NEDD4が関与するュビキチンプロテアソームシステムにより調節されることにより、 R UNXの機能、例えば転写因子としての機能が調節され、その結果、 RUNXが関与 する様々な生理現象、例えば細胞周期やシグナル伝達等が調節される。  [0034] From the verification results in the present invention, NEDD4 binds to RUNX to catalyze the ubiquitination of RUNX, and as a result, the ubiquitinated RUNX is degraded by the ubiquitin proteasome system and its stability decreases Can do. RUNX degradation is regulated by the ubiquitin proteasome system involving NEDD4, thereby regulating the function of RUNX, for example, as a transcription factor, resulting in various physiological phenomena involving RUNX, such as the cell cycle. And signal transduction are regulated.
[0035] したがって、 NEDD4による RUNXのュビキチン化を調節することにより、 RUNXの 分解を調節でき、それにより RUNXの機能、例えば転写因子としての機能を調節で きる。 RUNXの機能を調節することにより、 RUNXの異常に起因する疾患を予防およ び Zまたは治療できる。  Therefore, by regulating the RUNX ubiquitination by NEDD4, it is possible to regulate the degradation of RUNX, thereby regulating the function of RUNX, for example, the function as a transcription factor. By regulating the function of RUNX, diseases caused by abnormal RUNX can be prevented and Z or treated.
[0036] 具体的には、 NEDD4による RUNXのュビキチン化を阻害することにより、 RUNX のュビキチンプロテアソームシステムによる分解を阻害できるため、 RUNXの低減を 阻害できる。 RUNXの低減を阻害することにより、 RUNXが関与する生理現象を回 復できるため、 RUNXの低減やその機能の低減に起因する疾患を予防および Zま たは治療できる。また、 NEDD4による RUNXのュビキチンィ匕を促進することにより、 RUNXのュビキチンプロテアソームシステムによる分解を促進できるため、 RUNXを 低減させることができる。 RUNXを低減させることにより、 RUNXが関与する生理現 象を阻害できるため、 RUNXの増加やその機能の亢進に起因する疾患を予防およ び Zまたは治療できる。  [0036] Specifically, inhibition of RUNX ubiquitination by NEDD4 can inhibit degradation of RUNX by the ubiquitin proteasome system, thereby inhibiting reduction of RUNX. By inhibiting the reduction of RUNX, the physiological phenomena involved in RUNX can be recovered, so that diseases caused by the reduction of RUNX and its function can be prevented and / or treated. Moreover, by promoting RUNX ubiquitin by NEDD4, degradation of RUNX by the ubiquitin proteasome system can be promoted, so RUNX can be reduced. By reducing RUNX, physiological phenomena involving RUNX can be inhibited, so that diseases caused by increased RUNX or enhanced function can be prevented and / or treated.
[0037] 本発明にお 、てはまた、 NEDD4または短鎖型 NEDD4が RUNXと結合して RU NXのュビキチン化を触媒するのに対し、 RUNXと結合するが E3リガーゼ活性を有 さない不活性型 NEDD4変異体および不活性型短鎖 NEDD4変異体は RUNXをュ ビキチンィ匕しな ヽことを実証した。不活性型 NEDD4変異体および不活性型短鎖 N EDD4変異体は、 、ずれも RUNXと結合するが E3リガーゼ活性を有さな 、ことから 、 NEDD4または短鎖型 NEDD4と RUNXとの結合を拮抗的に阻害し、その結果、 NEDD4または短鎖型 NEDD4による RUNXのュビキチン化を阻害すると発明者ら は考えている。 [0037] In the present invention, NEDD4 or short-chain NEDD4 also binds to RUNX to catalyze the ubiquitination of RU NX, whereas it binds to RUNX but does not have E3 ligase activity. Type NEDD4 mutants and inactive short chain NEDD4 mutants have demonstrated that RUNX is not ubiquitinous. The inactive NEDD4 mutant and the inactive short NEDD4 mutant all bind to RUNX but have no E3 ligase activity. The inventors believe that antagonistic inhibition of binding between NEDD4 or short-chain NEDD4 and RUNX results in inhibition of RUNX ubiquitination by NEDD4 or short-chain NEDD4.
[0038] このように、 NEDD4による RUNXのュビキチン化には、 NEDD4の E3リガーゼ活 性が重要であること、また RUNXと結合するが E3リガーゼ活性を有さな!/、NEDD4 不活性型変異体により RUNXのュビキチンィ匕を阻害できることが明らかになった。  [0038] Thus, NEDD4 E3 ligase activity is important for RUNX ubiquitination by NEDD4, and it binds to RUNX but does not have E3 ligase activity! /, NEDD4 inactive mutant Revealed that RUNX ubiquitin can be inhibited.
[0039] また本発明にお 、て、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを同定 した。本二重鎖ポリヌクレオチドは、具体的には NEDD4をコードするポリヌクレオチド の部分塩基配列力 なるポリヌクレオチドと、該部分塩基配列の相補的塩基配列から なるポリヌクレオチド力 なる二重鎖 RNAであり、 NEDD4の発現を低下させた。以 下、このような二重鎖 RNAを NEDD4 siRNAあるいは Nedd4 siRNAと称すること がある。  [0039] Further, in the present invention, a double-stranded polynucleotide capable of inhibiting the expression of NEDD4 was identified. The double-stranded polynucleotide is specifically a double-stranded RNA having a polynucleotide strength consisting of a polynucleotide having a partial base sequence ability of a polynucleotide encoding NEDD4 and a complementary base sequence of the partial base sequence, Reduced the expression of NEDD4. Hereinafter, such double-stranded RNA is sometimes referred to as NEDD4 siRNA or Nedd4 siRNA.
[0040] 本発明においては、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドおよび R UNXと結合するが E3リガーゼ活性を有さな ヽ NEDD4不活性型変異体カ^、ずれも 、骨形成のモデル細胞にぉ 、て BMP刺激による骨分ィ匕を促進することを見出した。 このことから、 NEDD4の発現および Zまたは機能を阻害することにより、骨分化を促 進し、その結果、骨形成を促進できると発明者らは考えている。  [0040] In the present invention, a NEDD4 inactive mutant that binds to a double-stranded polynucleotide and RUNX that can inhibit NEDD4 expression but does not have E3 ligase activity. It was found that the model cell promotes bone breakdown by BMP stimulation. Based on this, the present inventors believe that inhibiting the expression and Z or function of NEDD4 promotes bone differentiation and, as a result, promotes bone formation.
[0041] さらに本発明において、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチド力 ヒ ト由来腫瘍細胞株の増殖を抑制することを見出した。このことから、 NEDD4の発現 および Zまたは機能を阻害することにより、腫瘍増殖を抑制できると発明者らは考え ている。  [0041] Further, in the present invention, it has been found that the growth of a double-stranded polynucleotide strength human tumor cell line capable of inhibiting the expression of NEDD4 is suppressed. Based on this, the present inventors believe that tumor growth can be suppressed by inhibiting the expression and Z or function of NEDD4.
[0042] 本発明は、これら知見により完成した。  [0042] The present invention has been completed based on these findings.
[0043] すなわち本発明は、 RUNXと NEDD4とを共存させることを特徴とする RUNXのュ ビキチンィ匕方法に関する。  That is, the present invention relates to a RUNX ubiquity method characterized in that RUNX and NEDD4 coexist.
[0044] また本発明は、 RUNXが、ヒト RUNX1、ヒト RUNX2およびヒト RUNX3から選ば れるいずれか 1である前記 RUNXのュビキチン化方法に関する。 [0044] The present invention also relates to the above-mentioned RUNX ubiquitination method, wherein RUNX is any one selected from human RUNX1, human RUNX2 and human RUNX3.
[0045] さらに本発明は、 NEDD4を含んでなる RUNXのュビキチン化剤に関する。 [0045] Furthermore, the present invention relates to a RUNX ubiquitinating agent comprising NEDD4.
[0046] さらにまた本発明は、 RUNXが、ヒト RUNX1、ヒト RUNX2およびヒト RUNX3から 選らばれるいずれか 1である前記 RUNXのュビキチン化剤に関する。 [0046] Furthermore, in the present invention, RUNX is derived from human RUNX1, human RUNX2, and human RUNX3. The RUNX ubiquitinating agent is any one selected.
[0047] また本発明は、前記 RUNXのュビキチンィ匕方法を使用することを特徴とする RUN[0047] Further, the present invention uses the RUNX ubiquitin method described above.
Xの分解方法に関する。 It relates to the decomposition method of X.
[0048] さらに本発明は、前記 RUNXのュビキチン化剤を使用して RUNXを処理すること を特徴とする RUNXの分解方法に関する。 [0048] Furthermore, the present invention relates to a method for decomposing RUNX, characterized in that RUNX is processed using the RUNX ubiquitinating agent.
[0049] さらにまた本発明は、 NEDD4を含んでなる RUNXの分解剤に関する。 [0049] Furthermore, the present invention relates to a decomposing agent for RUNX comprising NEDD4.
[0050] また本発明は、 RUNXと NEDD4の結合を阻害することを特徴とする RUNXのュ ビキチンィ匕阻害方法に関する。 [0050] The present invention also relates to a method for inhibiting RUNX ubiquitin, which comprises inhibiting the binding of RUNX and NEDD4.
[0051] さらに本発明は、配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質お よび Zまたは配列番号 12に記載のアミノ酸配列で表される蛋白質を使用することを 特徴とする前記 RUNXのュビキチン化阻害方法に関する。 [0051] Further, the present invention uses the protein represented by the amino acid sequence set forth in SEQ ID NO: 11 of the sequence listing and the protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12 above. The present invention relates to a method for inhibiting RUNX ubiquitination.
[0052] さらにまた本発明は、 NEDD4の酵素活性を阻害することを特徴とする RUNXのュ ビキチンィ匕阻害方法に関する。 [0052] Furthermore, the present invention relates to a method for inhibiting RUNX ubiquitin 匕, which comprises inhibiting the enzyme activity of NEDD4.
[0053] また本発明は、 NEDD4の発現を阻害することを特徴とする RUNXのュビキチンィ匕 阻害方法に関する。 [0053] The present invention also relates to a RUNX ubiquitin-inhibiting method characterized by inhibiting the expression of NEDD4.
[0054] さらに本発明は、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを使用するこ とを特徴とする RUNXのュビキチンィ匕阻害方法に関する。  [0054] Further, the present invention relates to a RUNX ubiquitin-inhibiting method characterized by using a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
[0055] さらにまた本発明は、下記の群より選択されるいずれか 1つの二重鎖ポリヌクレオチ ドを使用することを特徴とする RUNXのュビキチンィ匕阻害方法に関する: [0055] Furthermore, the present invention relates to a method of inhibiting RUNX ubiquitin 匕 characterized by using any one double-stranded polynucleotide selected from the following group:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、  (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[0056] また本発明は、 RUNXが、ヒト RUNX1、ヒト RUNX2およびヒト RUNX3から選ば れるいずれ力 1である前記いずれかの RUNXのュビキチン化阻害方法に関する。  [0056] The present invention also relates to any one of the aforementioned RUNX ubiquitination inhibiting methods, wherein RUNX is any force 1 selected from human RUNX1, human RUNX2 and human RUNX3.
[0057] さらに本発明は、 NEDD4コードするポリヌクレオチドの部分塩基配列であって、配 列番号 21から 26に記載の塩基配列より選択されるいずれか 1つの塩基配列力もなる ポリヌクレオチドに関する。 [0057] Further, the present invention provides a partial base sequence of a polynucleotide encoding NEDD4, wherein The present invention relates to a polynucleotide having any one base sequence ability selected from the base sequences described in column numbers 21 to 26.
[0058] さらにまた本発明は、 NEDD4コードするポリヌクレオチドの部分塩基配列力 なる ポリヌクレオチドと、該部分塩基配列の相補的塩基配列力 なるポリヌクレオチドとか らなる二重鎖ポリヌクレオチドであって、下記の群より選択されるいずれか 1つの二重 鎖ポリヌクレオチドに関する: [0058] Furthermore, the present invention provides a double-stranded polynucleotide comprising a polynucleotide having a partial base sequence ability of a polynucleotide encoding NEDD4, and a polynucleotide having a complementary base sequence ability of the partial base sequence, With respect to any one double-stranded polynucleotide selected from the group of:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、  (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[0059] また本発明は、配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質およ び Zまたは配列番号 12に記載のアミノ酸配列で表される蛋白質を含んでなる RUN [0059] Further, the present invention provides a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing, and a protein represented by Z or a protein represented by the amino acid sequence set forth in SEQ ID NO: 12.
Xのュビキチンィ匕阻害剤に関する。 Relates to X ubiquitin inhibitors.
[0060] さらに本発明は、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを含んでなる[0060] The present invention further comprises a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
RUNXのュビキチン化阻害剤に関する。 It relates to RUNX ubiquitination inhibitors.
[0061] さらにまた本発明は、前記二重鎖ポリヌクレオチドを含んでなる RUNXのュビキチ ン化阻害剤に関する。 [0061] Furthermore, the present invention relates to a RUNX ubiquitination inhibitor comprising the double-stranded polynucleotide.
[0062] また本発明は、 RUNXが、ヒト RUNX1、ヒト RUNX2およびヒト RUNX3から選らば れるいずれか 1である前記 RUNXのュビキチン化阻害剤に関する。  [0062] The present invention also relates to the RUNX ubiquitination inhibitor, wherein RUNX is any one selected from human RUNX1, human RUNX2 and human RUNX3.
[0063] さらに本発明は、前記いずれかの RUNXのュビキチン化阻害方法を使用すること を特徴とする RUNXの分解阻害方法に関する。 [0063] Further, the present invention relates to a method for inhibiting RUNX degradation, characterized by using any one of the aforementioned methods for inhibiting RUNX ubiquitination.
[0064] さらにまた本発明は、前記 RUNXのュビキチン化阻害剤を使用することを特徴とす る RUNXの分解阻害方法に関する。 [0064] Furthermore, the present invention relates to a method for inhibiting RUNX degradation, characterized by using the RUNX ubiquitination inhibitor.
[0065] また本発明は、配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質およ び Zまたは配列番号 12に記載のアミノ酸配列で表される蛋白質を含んでなる RUN[0065] The present invention also includes a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing, and a protein represented by Z or a protein represented by the amino acid sequence set forth in SEQ ID NO: 12.
Xの分解阻害剤に関する。 [0066] さらに本発明は、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを含んでなるIt relates to an X degradation inhibitor. [0066] The present invention further comprises a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
RUNXの分解阻害剤に関する。 It relates to RUNX degradation inhibitors.
[0067] さらにまた本発明は、前記二重鎖ポリヌクレオチドを含んでなる RUNXの分解阻害 剤に関する。 [0067] Furthermore, the present invention relates to a RUNX degradation inhibitor comprising the double-stranded polynucleotide.
[0068] また本発明は、 NEDD4の発現および Zまたは機能を阻害することを特徴とする骨 形成促進方法に関する。  [0068] The present invention also relates to a method for promoting osteogenesis, which comprises inhibiting the expression and Z or function of NEDD4.
[0069] さらに本発明は、配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質お よび Zまたは配列番号 12に記載のアミノ酸配列で表される蛋白質を使用することを 特徴とする骨形成促進方法に関する。 [0069] Furthermore, the present invention uses a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 of the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12 The present invention relates to a formation promotion method.
[0070] さらにまた本発明は、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを使用 することを特徴とする骨形成促進方法に関する。 [0070] Furthermore, the present invention relates to a method for promoting osteogenesis, comprising using a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
[0071] また本発明は、前記二重鎖ポリヌクレオチドを使用することを特徴とする骨形成促 進方法に関する。 [0071] The present invention also relates to a method for promoting osteogenesis, comprising using the double-stranded polynucleotide.
[0072] さらに本発明は、配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質お よび Zまたは配列番号 12に記載のアミノ酸配列で表される蛋白質を含んでなる骨形 成促進剤に関する。  [0072] Furthermore, the present invention provides a bone formation promoter comprising a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 of the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12. About.
[0073] さらにまた本発明は、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを含んで なる骨形成促進剤に関する。  [0073] Furthermore, the present invention relates to an osteogenesis promoter comprising a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
[0074] また本発明は、前記二重鎖ポリヌクレオチドを含んでなる骨形成促進剤に関する。 [0074] The present invention also relates to an osteogenesis promoter comprising the double-stranded polynucleotide.
[0075] さらに本発明は、 NEDD4の発現および Zまたは機能を阻害することを特徴とする 腫瘍増殖抑制方法に関する。 [0075] Furthermore, the present invention relates to a method for suppressing tumor growth, which comprises inhibiting the expression and Z or function of NEDD4.
[0076] さらにまた本発明は、配列表の配列番号 11に記載のアミノ酸配列で表される蛋白 質および Zまたは配列番号 12に記載のアミノ酸配列で表される蛋白質を使用するこ とを特徴とする腫瘍増殖抑制方法に関する。 [0076] Furthermore, the present invention is characterized by using a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 of the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12. The present invention relates to a method for inhibiting tumor growth.
[0077] また本発明は、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを使用すること を特徴とする腫瘍増殖抑制方法に関する。 [0077] The present invention also relates to a method for inhibiting tumor growth, comprising using a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
[0078] さらに本発明は、前記二重鎖ポリヌクレオチドを使用することを特徴とする腫瘍増殖 抑制方法に関する。 [0079] さらにまた本発明は、配列表の配列番号 11に記載のアミノ酸配列で表される蛋白 質および Zまたは配列番号 12に記載のアミノ酸配列で表される蛋白質を含んでなる 腫瘍増殖抑制剤に関する。 [0078] Further, the present invention relates to a method for inhibiting tumor growth, characterized by using the double-stranded polynucleotide. [0079] Furthermore, the present invention provides a tumor growth inhibitor comprising a protein represented by the amino acid sequence represented by SEQ ID NO: 11 in the sequence listing and a protein represented by Z or the amino acid sequence represented by SEQ ID NO: 12. About.
[0080] また本発明は、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを含んでなる 腫瘍増殖抑制剤に関する。 [0080] The present invention also relates to a tumor growth inhibitor comprising a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
[0081] さらに本発明は、前記二重鎖ポリヌクレオチドを含んでなる腫瘍増殖抑制剤に関す る。 [0081] Furthermore, the present invention relates to a tumor growth inhibitor comprising the double-stranded polynucleotide.
[0082] さらにまた本発明は、 NEDD4による RUNXのュビキチンィ匕を阻害する化合物また は促進する化合物の同定方法であって、 NEDD4および Zまたは RUNXとある化合 物(被検化合物)とを接触させ、 NEDD4による RUNXのュビキチンィ匕を検出するシ グナルおよび Zまたはマーカーを使用する系を使用し、このシグナルおよび Zまた はマーカーの存在または不存在または変化を検出することにより、被検化合物が NE DD4による RUNXのュビキチンィ匕を阻害する力否かまたは促進する力否かを決定 する工程を含む同定方法に関する。  [0082] Furthermore, the present invention provides a method for identifying a compound that inhibits or promotes RUNX ubiquitin by NEDD4, comprising contacting NEDD4 and Z or RUNX with a compound (test compound), Using a system that uses a signal that detects RUNX ubiquitin by NEDD4 and a system that uses Z or a marker, and detects the presence or absence or change of this signal and Z or marker, the test compound is The present invention relates to an identification method including a step of determining whether or not to inhibit or promote RUNX ubiquitin.
[0083] また本発明は、 NEDD4と RUNXの結合を阻害する化合物または促進する化合物 の同定方法であって、 NEDD4および Zまたは RUNXとある化合物とを接触させ、 次!、で、 NEDD4と RUNXの結合により生じるシグナルおよび Zまたはマーカーを 使用する系を使用して、該シグナルおよび Zまたはマーカーの存在若しくは不存在 または変化を検出することにより、該化合物が NEDD4と RUNXの結合を阻害する か否力または促進する力否かを決定する工程を含む同定方法に関する。  [0083] The present invention also relates to a method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX, wherein NEDD4 and Z or RUNX are contacted with a compound, and then! The ability to inhibit the binding of NEDD4 and RUNX by detecting the presence or absence or change of the signal and Z or marker using a system that uses the signal and Z or marker resulting from binding. Alternatively, the present invention relates to an identification method including a step of determining whether or not to promote power.
[0084] さらに本発明は、骨形成を促進させ得る化合物の同定方法であって、被検化合物 力 SNEDD4の発現および Zまたは機能を阻害する力否かを測定する工程を含む方 法に関する。  [0084] Further, the present invention relates to a method for identifying a compound capable of promoting bone formation, which comprises the step of measuring whether or not a test compound has a force that inhibits the expression and Z or function of SNEDD4.
[0085] さらにまた本発明は、被検化合物が NEDD4の発現および Zまたは機能を阻害す る力否かを測定する工程力 下記の群より選択されるいずれか 1の工程である、前記 骨形成を促進させ得る化合物の同定方法に関する:  [0085] Furthermore, the present invention is a process power for measuring whether a test compound is capable of inhibiting the expression and Z or function of NEDD4. The bone formation is any one process selected from the following group: Relates to methods for identifying compounds that can promote:
(D NEDD4をコードするポリヌクレオチドと被検化合物とを接触させ、次いで、 NED D4を測定することにより、該被検化合物が NEDD4の発現を阻害する力否かを決定 する工程、 (D) Determine whether the test compound is capable of inhibiting the expression of NEDD4 by contacting the test compound with a polynucleotide encoding D NEDD4 and then measuring NED D4 The process of
(2) NEDD4および Zまたは RUNXと被検化合物とを接触させ、 NEDD4による NE DD4および Zまたは RUNXのュビキチン化を検出するシグナルおよび Zまたはマ 一力一を使用する系を用いて、該シグナルおよび Zまたはマーカーの存在若しくは 不存在または変化を検出することにより、該被検化合物が NEDD4による NEDD4お よび Zまたは RUNXのュビキチンィ匕を阻害するか否かを決定する工程、  (2) Using NEDD4 and Z or RUNX in contact with a test compound, a signal that detects ubiquitination of NEDD4 and Z or RUNX by NEDD4 and a system that uses Z or single force, Determining whether the test compound inhibits NEDD4 and Z or RUNX ubiquitin by NEDD4 by detecting the presence or absence or change of Z or a marker;
および  and
(3) NEDD4および Zまたは RUNXと被検化合物とを接触させ、次いで、 NEDD4と RUNXの結合により生じるシグナルおよび Zまたはマーカーを使用する系を用いて 、該シグナルおよび Zまたはマーカーの存在若しくは不存在または変化を検出する ことにより、該被検化合物が NEDD4と RUNXの結合を阻害する力否かを決定する 工程。  (3) NEDD4 and Z or RUNX is brought into contact with the test compound, and then the presence or absence of the signal and Z or the marker using a system using the signal and Z or marker generated by the binding of NEDD4 and RUNX Alternatively, a step of determining whether or not the test compound is capable of inhibiting the binding of NEDD4 and RUNX by detecting a change.
[0086] また本発明は、 NEDD4の発現および Zまたは機能を阻害することが明らかになつ た被検化合物が、骨形成を促進させ得るか否かを測定する工程をさらに含む、前記 骨形成を促進させ得る化合物の同定方法に関する。  [0086] The present invention further includes the step of measuring whether or not a test compound that has been shown to inhibit the expression and Z or function of NEDD4 can promote bone formation. The present invention relates to a method for identifying a compound that can be promoted.
[0087] さらに本発明は、腫瘍増殖を抑制させ得る化合物の同定方法であって、被検化合 物が NEDD4の発現および Zまたは機能を阻害する力否かを測定する工程を含む 同定方法に関する。 [0087] Furthermore, the present invention relates to a method for identifying a compound capable of suppressing tumor growth, which comprises a step of measuring whether or not a test compound is capable of inhibiting the expression and Z or function of NEDD4.
[0088] さらにまた本発明は、被検化合物が NEDD4の発現および Zまたは機能を阻害す る力否かを測定する工程力 下記の群より選択されるいずれか 1の工程である、前記 腫瘍増殖を抑制させ得る化合物の同定方法に関する:  [0088] Furthermore, the present invention is a process power for measuring whether or not a test compound is capable of inhibiting the expression and Z or function of NEDD4. The tumor growth is any one process selected from the following group: Relates to a method for identifying compounds capable of inhibiting
(D NEDD4をコードするポリヌクレオチドと被検化合物とを接触させ、次いで、 NED D4を測定することにより、該被検化合物が NEDD4の発現を阻害する力否かを決定 する工程、  (D. The step of determining whether or not the test compound is capable of inhibiting the expression of NEDD4 by contacting the test compound with a polynucleotide encoding D NEDD4 and then measuring NED D4,
(2) NEDD4および Zまたは RUNXと被検化合物とを接触させ、 NEDD4による NE DD4および Zまたは RUNXのュビキチン化を検出するシグナルおよび Zまたはマ 一力一を使用する系を用いて、該シグナルおよび Zまたはマーカーの存在若しくは 不存在または変化を検出することにより、該被検化合物が NEDD4による NEDD4お よび Zまたは RUNXのュビキチンィ匕を阻害するか否かを決定する工程、 (2) Using NEDD4 and Z or RUNX in contact with a test compound, a signal that detects ubiquitination of NE DD4 and Z or RUNX by NEDD4 and a system that uses Z or single force, By detecting the presence or absence or change of Z or marker, the test compound is And determining whether or not to inhibit ubiquitin of Z or RUNX,
および  and
(3) NEDD4および Zまたは RUNXと被検化合物とを接触させ、次いで、 NEDD4と RUNXの結合により生じるシグナルおよび Zまたはマーカーを使用する系を用いて 、該シグナルおよび Zまたはマーカーの存在若しくは不存在または変化を検出する ことにより、該被検化合物が NEDD4と RUNXの結合を阻害する力否かを決定する 工程。  (3) NEDD4 and Z or RUNX are brought into contact with the test compound, and then the presence or absence of the signal and Z or marker using a system using the signal and Z or marker generated by binding of NEDD4 and RUNX Alternatively, a step of determining whether or not the test compound is capable of inhibiting the binding of NEDD4 and RUNX by detecting a change.
[0089] また本発明は、 NEDD4の発現および Zまたは機能を阻害することが明らかになつ た被検化合物が腫瘍増殖を抑制させ得るか否力を測定する工程をさらに含む、前記 腫瘍増殖を抑制させ得る化合物の同定方法に関する。  [0089] The present invention further comprises the step of measuring whether or not a test compound that has been shown to inhibit the expression and Z or function of NEDD4 can suppress tumor growth. The present invention relates to a method for identifying a compound that can be produced.
[0090] さらに本発明は、 NEDD4、 NEDD4をコードするポリヌクレオチド、該ポリヌクレオ チドを含有する組換えベクターおよび該組換えベクターを含有する形質転換体のう ち少なくともいずれ力 1つ、および RUNX、 RUNXをコードするポリヌクレオチド、該 ポリヌクレオチドを含有する組換えベクターおよび該組換えベクターを含有する形質 転換体のうち少なくともいずれか 1つを含有してなる試薬キットに関する。  [0090] Furthermore, the present invention relates to NEDD4, a polynucleotide encoding NEDD4, a recombinant vector containing the polynucleotide and a transformant containing the recombinant vector, and at least one of RUNX, RUNX And a reagent kit containing at least one of a recombinant vector containing the polynucleotide and a transformant containing the recombinant vector.
[0091] さらにまた本発明は、前記 RUNXのュビキチン化剤および Zまたは前記 RUNXの 分解剤を有効量含んでなる、 RUNXの機能および Zまたは発現の亢進に起因する 疾患の予防および Zまたは治療剤に関する。  [0091] Furthermore, the present invention provides a preventive and Z or therapeutic agent for a disease caused by increased RUNX function and Z or expression, comprising an effective amount of the RUNX ubiquitinating agent and Z or the RUNX degrading agent. About.
[0092] また本発明は、前記 RUNXのュビキチン化阻害剤および Zまたは前記 RUNXの 分解阻害剤を有効量含んでなる、 RUNXの機能および Zまたは発現の低下に起因 する疾患の予防および Zまたは治療剤に関する。  [0092] The present invention also relates to prevention and Z or treatment of a disease caused by a decrease in RUNX function and Z or expression, comprising an effective amount of the RUNX ubiquitination inhibitor and Z or the RUNX degradation inhibitor. It relates to the agent.
[0093] さらに本発明は、前記 RUNXのュビキチン化方法、前記 RUNXのュビキチン化剤 、前記 RUNXの分解方法、および前記 RUNXの分解剤のうち少なくともいずれか 1 の方法または剤を使用することを特徴とする RUNXの機能および Zまたは発現の亢 進に起因する疾患の予防および Zまたは治療方法に関する。  Furthermore, the present invention uses the method or agent of at least one of the RUNX ubiquitination method, the RUNX ubiquitinating agent, the RUNX decomposition method, and the RUNX decomposition agent. The present invention relates to a method for the prevention and Z or treatment of diseases caused by RUNX function and increased Z or expression.
[0094] さらにまた本発明は、前記いずれかの RUNXのュビキチン化阻害方法、前記 RU NXのュビキチン化阻害剤、前記 RUNXの分解阻害方法、および前記 RUNXの分 解阻害剤のうち少なくともいずれか 1の方法または剤を使用することを特徴とする RU NXの機能および Zまたは発現の低下に起因する疾患の予防および Zまたは治療 方法に関する。 [0094] Furthermore, the present invention provides at least any one of the RUNX ubiquitination inhibiting method, the RU NX ubiquitination inhibitor, the RUNX degradation inhibiting method, and the RUNX degradation inhibitor. RU characterized by using any method or agent The present invention relates to a method for preventing and / or treating a disease caused by decreased function or Z or expression of NX.
[0095] また本発明は、前記骨形成促進剤を有効量含んでなる、骨損失を伴う疾患の予防 および Zまたは治療剤に関する。  [0095] The present invention also relates to a preventive and Z or therapeutic agent for diseases associated with bone loss, comprising an effective amount of the osteogenesis promoter.
[0096] さらに本発明は、前記骨形成促進剤および前記骨形成促進方法のうち少なくとも いずれか 1の剤または方法を使用することを特徴とする骨損失を伴う疾患の予防およ び Zまたは治療方法に関する。 [0096] Further, the present invention relates to prevention and Z or treatment of a disease accompanied by bone loss, characterized by using at least one agent or method of the osteogenesis promoting agent and the osteogenesis promoting method. Regarding the method.
[0097] さらにまた本発明は、前記腫瘍増殖抑制剤を有効量含んでなる、癌疾患の予防お よび Zまたは治療剤に関する。 [0097] Furthermore, the present invention relates to a preventive and Z or therapeutic agent for cancer diseases comprising an effective amount of the tumor growth inhibitor.
[0098] また本発明は、前記腫瘍増殖抑制剤および前記腫瘍増殖抑制方法のうち少なくと もいずれか 1の剤または方法を使用することを特徴とする癌疾患の予防および Zまた は治療方法に関する。 [0098] The present invention also relates to a method for the prevention and Z or treatment of cancer diseases, characterized by using at least one agent or method of the tumor growth inhibitor and the tumor growth inhibition method. .
発明の効果  The invention's effect
[0099] 本発明により、 RUNXのュビキチンィ匕方法および分解方法を提供できる。例えば、 RUNXと NEDD4とを共存させることを特徴とする RUNXのュビキチン化方法および 分解方法を提供できる。また、 RUNXのュビキチン化剤および分解剤を提供できる。 さらに本発明により、 NEDD4による RUNXのュビキチン化および分解、の阻害方法 を提供できる。例えば、 NEDD4と RUNXの結合、 NEDD4の酵素活性、および NE DD4の発現のうちの少なくとも 1を阻害することを特徴とする、 RUNXのュビキチン化 および分解、の阻害方法を提供できる。また、 NEDD4による RUNXのュビキチンィ匕 の阻害剤および NEDD4による RUNXの分解の阻害剤を提供できる。さらに、 NED D4による RUNXのュビキチンィ匕を阻害する化合物または促進する化合物の同定方 法、並びに NEDD4と RUNXの結合を阻害する化合物または促進する化合物の同 定方法を提供できる。また、 NEDD4、 NEDD4をコードするポリヌクレオチド、該ポリ ヌクレオチドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少 なくともいずれ力 1つと、 RUNX, RUNXをコードするポリヌクレオチド、該ポリヌクレ ォチドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくと もいずれか 1つとを含んでなる試薬キットを提供できる。さら〖こ、 RUNXの異常に起因 する疾患、例えば RUNXの機能および Zまたは発現の亢進や低下に起因する疾患[0099] According to the present invention, a RUNX ubiquitin method and a decomposition method can be provided. For example, a RUNX ubiquitination method and decomposition method characterized by coexistence of RUNX and NEDD4 can be provided. It can also provide RUNX ubiquitinating and degrading agents. Furthermore, the present invention can provide a method for inhibiting RUNX ubiquitination and degradation by NEDD4. For example, it is possible to provide a method for inhibiting RUNX ubiquitination and degradation, which comprises inhibiting at least one of binding of NEDD4 and RUNX, enzyme activity of NEDD4, and expression of NE DD4. In addition, an inhibitor of RUNX ubiquitin by NEDD4 and an inhibitor of RUNX degradation by NEDD4 can be provided. Further, it is possible to provide a method for identifying a compound that inhibits or promotes RUNX ubiquitin by NED D4, and a method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX. Further, NEDD4, a polynucleotide encoding NEDD4, a vector containing the polynucleotide, and at least one of the transformants containing the vector, a polynucleotide encoding RUNX, RUNX, and the polynucleotide And a reagent kit comprising at least one of a vector containing the vector and a transformant containing the vector. Sarako, due to RUNX abnormality Diseases that result from increased or decreased RUNX function and Z or expression
、具体的には癌疾患等の予防および Zまたは治療剤、並びに予防および Zまたは 治療方法を提供できる。 Specifically, a preventive and Z or therapeutic agent for cancer diseases and the like, and a preventive and Z or therapeutic method can be provided.
[0100] また本発明により、 NEDD4の発現および Zまたは機能を阻害することを特徴とす る骨形成促進方法および骨形成促進剤を提供できる。さらに本発明により、骨形成 を促進させ得る化合物の同定方法を提供できる。また、骨損失を伴う疾患の予防お よび Zまたは治療剤、並びに予防および Zまたは治療方法を提供できる。  [0100] Further, according to the present invention, it is possible to provide an osteogenesis promoting method and an osteogenesis promoter characterized by inhibiting the expression and Z or function of NEDD4. Furthermore, the present invention can provide a method for identifying a compound capable of promoting bone formation. In addition, it is possible to provide a preventive and Z or therapeutic agent and a preventive and Z or therapeutic method for diseases associated with bone loss.
[0101] したがって、本発明により、 RUNXのュビキチン化を、例えば NEDD4を使用して 実施できる。また、 NEDD4による RUNXのュビキチンィ匕を、 NEDD4による RUNX のュビキチンィ匕を促進する化合物の同定方法により取得されたィ匕合物を使用して促 進できる。 NEDD4による RUNXのュビキチン化を促進することにより、 RUNXの分 解を促進できるため、 RUNXの増加やその機能の亢進に起因する疾患の予防およ び Zまたは治療が期待できる。  [0101] Thus, according to the present invention, RUNX ubiquitination can be performed using, for example, NEDD4. In addition, RUNX ubiquitin by NEDD4 can be promoted using compounds obtained by the method of identifying compounds that promote RUNX ubiquitin by NEDD4. By promoting RUNX ubiquitination by NEDD4, degradation of RUNX can be promoted. Therefore, prevention and Z or treatment of diseases caused by increased RUNX and enhanced function can be expected.
[0102] また、 NEDD4による RUNXのュビキチン化を、例えば RUNXに結合するが E3リ ガーゼ活性を有さな ヽ不活性型 NEDD4変異体を使用して NEDD4と RUNXとの 結合を阻害することにより、阻害できる。また、 NEDD4による RUNXのュビキチンィ匕 を、 NEDD4による RUNXのュビキチンィ匕を阻害する化合物の同定方法により取得 された化合物を使用して阻害できる。 NEDD4による RUNXのュビキチン化を阻害 することにより、 RUNXの分解を阻害できるため、 RUNXの低減やその機能の低減 に起因する疾患の予防および Zまたは治療が期待できる。  [0102] In addition, RUNX ubiquitination by NEDD4, for example, by inhibiting the binding of NEDD4 to RUNX using an inactive NEDD4 mutant that binds to RUNX but has no E3 ligase activity, Can inhibit. Moreover, RUNX ubiquitin caused by NEDD4 can be inhibited using a compound obtained by the method for identifying a compound that inhibits RUNX ubiquitin caused by NEDD4. By inhibiting RUNX ubiquitination by NEDD4, degradation of RUNX can be inhibited. Therefore, prevention and Z or treatment of diseases caused by reduction of RUNX and its function can be expected.
[0103] さらに、骨形成、例えば BMP— 2刺激による骨形成を、例えば RUNXに結合する 力 ¾3リガーゼ活性を有さない不活性型 NEDD4変異体、または、 NEDD4の発現を 阻害し得る二重鎖ポリヌクレオチドを使用して促進できる。また、骨形成、例えば BM P— 2刺激による骨形成を、本発明に係る骨形成を促進させ得る化合物の同定方法 により取得された化合物を使用して促進できる。これら骨形成を促進させ得る化合物 を使用することにより、骨損失を伴う疾患の予防および Zまたは治療が期待できる。  [0103] Furthermore, the ability to bind bone formation, for example, bone formation caused by BMP-2 stimulation, for example, the ability to bind to RUNX ¾3 Inactive NEDD4 mutant that does not have ligase activity, or a duplex that can inhibit the expression of NEDD4 It can be facilitated using polynucleotides. In addition, bone formation, for example, bone formation by BMP-2 stimulation, can be promoted using the compound obtained by the method for identifying a compound capable of promoting bone formation according to the present invention. By using these compounds that can promote bone formation, prevention and Z or treatment of diseases accompanied by bone loss can be expected.
[0104] さらにまた、腫瘍増殖を、例えば RUNXに結合するが E3リガーゼ活性を有さな ヽ 不活性型 NEDD4変異体、または、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオ チドを使用して抑制できる。また、腫瘍増殖を、本発明に係る腫瘍増殖を抑制させ得 る化合物の同定方法により取得された化合物を使用して抑制できる。これら腫瘍増 殖を抑制させ得る化合物を使用することにより、腫瘍増殖を伴う疾患、例えば癌疾患 の予防および Zまたは治療が期待できる。 [0104] Furthermore, tumor growth, for example, inactive NEDD4 mutants that bind to RUNX but have E3 ligase activity, or double-stranded polynucleotides that can inhibit the expression of NEDD4 Can be suppressed using tides. Moreover, tumor growth can be suppressed using a compound obtained by the method for identifying a compound capable of suppressing tumor growth according to the present invention. By using these compounds capable of suppressing tumor growth, prevention and Z or treatment of diseases associated with tumor growth, such as cancer diseases, can be expected.
[0105] このように、 NEDD4または短鎖型 NEDD4による RUNXのュビキチン化を調節す ることにより、 RUNXの分解を調節でき、その結果、 RUNXの機能、例えば転写因子 としての機能を調節できる。 RUNXの機能を調節することにより、 RUNXの異常に起 因する疾患の予防および Zまたは治療が期待できる。また、 NEDD4の発現および Zまたは機能を阻害することにより、骨形成を促進でき、骨損失を伴う疾患の予防お よび Zまたは治療が期待できる。さらにまた、 NEDD4の発現および Zまたは機能を 阻害することにより、腫瘍増殖を抑制でき、腫瘍増殖を伴う疾患、例えば癌疾患の予 防および Zまたは治療が期待できる。  [0105] Thus, by regulating RUNX ubiquitination by NEDD4 or short-chain NEDD4, degradation of RUNX can be regulated, and as a result, RUNX functions, for example, functions as transcription factors can be regulated. By regulating the function of RUNX, prevention and Z or treatment of diseases caused by abnormal RUNX can be expected. Moreover, by inhibiting the expression and Z or function of NEDD4, bone formation can be promoted, and prevention and Z or treatment of diseases associated with bone loss can be expected. Furthermore, by inhibiting the expression and Z or function of NEDD4, tumor growth can be suppressed, and prevention and Z or treatment of diseases associated with tumor growth such as cancer diseases can be expected.
図面の簡単な説明  Brief Description of Drawings
[0106] [図 1]RUNX3と NEDD4の相互作用をインシリコで予測した結果を示す図である。 R UNX3と NEDD4の間でローカルァライメントを行 ヽ、高!、スコア (score)を示した領 域を図示した。アミノ酸配列は 1文字表記した。図中の数字は、 RUNX3または NED D4の各アミノ酸配列における、図示した各領域の N末端アミノ酸の位置を意味する。 (実施例 1)  [0106] FIG. 1 is a diagram showing the results of in silico prediction of the interaction between RUNX3 and NEDD4. A local alignment was done between RUNX3 and NEDD4, and the area showing the high! And score was shown. The amino acid sequence is represented by one letter. The numbers in the figure mean the position of the N-terminal amino acid in each region shown in the amino acid sequence of RUNX3 or NED D4. (Example 1)
[0107] [図 2]ヒト RUNX3とヒト NEDD4の in vivoでの結合を、 FLAG— RUNX3および My c NEDD4を一過性共発現させたヒト培養細胞を使用して免疫沈降法により検出し た結果を示す図である。パネル Aおよびパネル Bは、抗 FLAG抗体による免疫沈降 物につ 、てそれぞれ抗 Myc抗体および抗 FLAG抗体を使用してィムノブロットを行 つた結果を示す。図中、 +および一はそれぞれ各発現プラスミドの有無を、 IPは抗 F LAG M2抗体を使用して免疫沈降した試料を、セルライセートは免疫沈降していな Vヽ細胞溶解液試料を示す。図の左列に記載した数値は分子量マーカーの分子量で ある。 Myc— NEDD4と FLAG— RUNX3とを共発現させた細胞から調製した試料 でのみ、抗 FLAG M2抗体を使用した免疫沈降により Myc— NEDD4と FLAG— RUNX3の共沈が認められた(パネル A)。一方、 FLAG— RUNX3非発現細胞から 調製した試料では Myc— NEDD4の共沈が認められなかった。両試料における My C— NEDD4の発現は同程度であった(パネル A)。また、細胞で発現した FLAG— R UNX3が抗 FLAG M2抗体により回収されていることが確認された(パネル B)。(実 施例 2) [0107] [Figure 2] Results of in vivo binding of human RUNX3 and human NEDD4 detected by immunoprecipitation using cultured human cells transiently co-expressing FLAG—RUNX3 and My c NEDD4 FIG. Panels A and B show the results of immunoblotting using anti-Myc antibody and anti-FLAG antibody, respectively, for immunoprecipitates with anti-FLAG antibody. In the figure, + and 1 indicate the presence or absence of each expression plasmid, IP indicates a sample immunoprecipitated using anti-FLAG M2 antibody, and cell lysate indicates a V-cell lysate sample that has not been immunoprecipitated. The numbers listed in the left column of the figure are the molecular weights of the molecular weight markers. Only in samples prepared from cells co-expressing Myc-NEDD4 and FLAG-RUNX3, coprecipitation of Myc-NEDD4 and FLAG-RUNX3 was observed by immunoprecipitation using anti-FLAG M2 antibody (Panel A). On the other hand, from FLAG—RUNX3 non-expressing cells No coprecipitation of Myc-NEDD4 was observed in the prepared sample. My C—NEDD4 expression was similar in both samples (Panel A). It was also confirmed that FLAG-RUNX3 expressed in the cells was recovered by anti-FLAG M2 antibody (panel B). (Example 2)
[0108] [図 3]ヒト NEDD4によるヒト RUNX3の in vivoでのュビキチン化を、 FLAG— RUN X3、 Myc— NEDD4および HA—ュビキチンを一過性共発現させたヒト培養細胞を 使用して免疫沈降法により検討した結果を示す図である。パネル Aおよびパネル Bは 、抗 FLAG抗体による免疫沈降物について、それぞれ抗 FLAG抗体および抗 HA抗 体を使用したィムノブロットを行った結果を示す。また、パネル Cはセルライセートに ついて抗 Myc抗体を使用したィムノブロットを行った結果を示す。図中、 +および はそれぞれ各発現プラスミドの有無を示す。図の左列に記載した数値は分子量マー カーの分子量である。 FLAG— RUNX3、 Myc— NEDD4および HA— Ubを共発 現させた細胞力も調製した試料にぉ 、て、 FLAG— RUNX3より高 、分子量を有す る複数の蛋白質が検出され (パネル A)、また、 HA—Ubが付加された FLAG—RU NX3の増加が認められた(パネル: B)。一方、 Myc— NEDD4の代ゎりにE3リガーゼ 活性が不活ィ匕された Myc— NEDD4 (C967A)を共発現させた細胞から調製した試 料においては、高分子量蛋白質の検出量は少なく(パネル A)、また、 HA—Ubが付 加された FLAG—RUNX3の量およびそのュビキチン化の程度は著しく低かった( パネル: B)。 FLAG—RUNX3、 Myc— NEDD4および HA— Ubを共発現させた細 胞における Myc - NEDD4の発現、および Myc - NEDD4の代わりに Myc - NED D4 (C967A)を共発現させた細胞における Myc— NEDD4 (C967A)の発現は同 程度であった (パネル C)。(実施例 3)  [0108] [Figure 3] In vivo ubiquitination of human RUNX3 by human NEDD4, immunoprecipitation using human cultured cells transiently co-expressing FLAG—RUN X3, Myc—NEDD4 and HA—ubiquitin It is a figure which shows the result examined by the method. Panels A and B show the results of immunoblotting using an anti-FLAG antibody and an anti-HA antibody, respectively, for the immunoprecipitates obtained from the anti-FLAG antibody. Panel C shows the results of immunoblotting using anti-Myc antibody for cell lysate. In the figure, + and indicate the presence or absence of each expression plasmid. The numbers listed in the left column are the molecular weight markers. In addition to the samples prepared with cell forces that co-expressed FLAG—RUNX3, Myc—NEDD4 and HA—Ub, multiple proteins with higher molecular weight than FLAG—RUNX3 were detected (Panel A). Increased FLAG—RU NX3 with HA-Ub added (Panel: B). On the other hand, in samples prepared from cells co-expressed with Myc-NEDD4 (C967A) in which E3 ligase activity was inactivated instead of Myc-NEDD4, the amount of high molecular weight protein detected was small (Panel A). ), And the amount of FLAG-RUNX3 with HA-Ub added and its degree of ubiquitination was significantly lower (Panel: B). Myc-NEDD4 expression in cells co-expressed with FLAG—RUNX3, Myc—NEDD4 and HA—Ub, and Myc—NEDD4 (C967A) instead of Myc—NEDD4 The expression of C967A) was similar (Panel C). (Example 3)
[0109] [図 4]ヒト RUNX3の安定性に対するヒト NEDD4の影響を、 FLAG—RUNX3および Myc— NEDD4を一過性性共発現させたヒト培養細胞を使用し、ウェスタンブロッテ イングにより検討した結果を示す図である。パネル A、パネル Bおよびパネル Cは、そ れぞれ抗 FLAG抗体、抗 Myc抗体および抗ァクチン抗体を使用したィムノブロットを 行った結果を示す。図中、 +および一はそれぞれ各発現プラスミドの有無を示し、数 字は DNA導入量を示す。図の右列に記載した数値は分子量マーカーの分子量で ある。 NEDD4発現プラスミドの導入量に依存して、 FLAG— RUNX3の減少が認め られた(パネル A)。一方、 E3リガーゼ活性が不活化された NEDD4 (C967A)の発 現プラスミドをトランスフエクシヨンした細胞から調製した試料では、 FLAG—RUNX3 の減少は認められなかった(パネル A)。 Myc— NEDD4がNEDD4発現プラスミド の導入量に依存して発現されていること、また Myc— NEDD4 (C967A)が NEDD4 (C967A)発現プラスミドにより発現されていることは確認された (パネル B)。また、コ ントロールであるァクチンの発現量は 、ずれの試料にぉ 、ても同程度であった (パネ ル C)。(実施例 4) [0109] [Fig. 4] Results of Western blotting on the effects of human NEDD4 on the stability of human RUNX3 using human cultured cells in which FLAG-RUNX3 and Myc-NEDD4 were transiently co-expressed. FIG. Panels A, B and C show the results of immunoblotting using anti-FLAG antibody, anti-Myc antibody and anti-actin antibody, respectively. In the figure, + and 1 indicate the presence or absence of each expression plasmid, and the number indicates the amount of DNA introduced. The numbers listed in the right column of the figure are the molecular weights of the molecular weight markers. is there. Depending on the amount of NEDD4 expression plasmid introduced, a decrease in FLAG-RUNX3 was observed (Panel A). On the other hand, no decrease in FLAG-RUNX3 was observed in samples prepared from cells transfected with the expression plasmid of NEDD4 (C967A) in which E3 ligase activity was inactivated (panel A). It was confirmed that Myc—NEDD4 was expressed depending on the amount of NEDD4 expression plasmid introduced, and that Myc—NEDD4 (C967A) was expressed by the NEDD4 (C967A) expression plasmid (Panel B). In addition, the expression level of actin, which is a control, was almost the same in all samples (panel C). (Example 4)
[図 5]ヒト NEDD4とヒト RUNX1の結合およびヒト NEDD4によるヒト RUNX1の in vi vo ュビキチンィ匕を、 FLAG— RUNX1、 Myc— NEDD4および HA—ュビキチンを 一過性共発現させたヒト培養細胞を使用して免疫沈降法により検討した結果を示す 図である。パネル A、パネル Bおよびパネル Cは、抗 FLAG抗体による免疫沈降物に ついて、それぞれ抗 Myc抗体、抗 FLAG抗体および抗 HA抗体によるィムノブロット を行った結果を示す。パネル Dは、セルライセートについて、抗 Myc抗体によるィムノ プロットを行った結果を示す。図中、 +および—はそれぞれ各発現プラスミドの有無 を示す。図の左列に記載した数値は分子量マーカーの分子量である。 Myc -NED D4、 FLAG— RUNX1および HA— Ubを共発現させた細胞から調製した試料にお いて、 Myc— NEDD4と FLAG— RUNX1の共沈が認められ(パネル A)、 FLAG— RUNX1より高い分子量を有する複数の蛋白質が検出され (パネル B)、また、 HA— Ubが付カ卩された FLAG— RUNX1の増加が認められた(パネル C)。一方、 E3リガ ーゼ活性が不活化された Myc— NEDD4 (C967A)、 FLAG— RUNX1および HA[Figure 5] Human NEDD4 binding to human RUNX1 and human NEDD4 in vitro ubiquitin 4 using human cultured cells transiently co-expressing FLAG—RUNX1, Myc—NEDD4 and HA—ubiquitin. It is a figure which shows the result examined by the immunoprecipitation method. Panels A, B and C show the results of immunoblotting with anti-Myc antibody, anti-FLAG antibody and anti-HA antibody, respectively, for immunoprecipitates with anti-FLAG antibody. Panel D shows the results of immuno plotting of cell lysate with anti-Myc antibody. In the figure, + and-indicate the presence or absence of each expression plasmid. The numerical value described in the left column of the figure is the molecular weight of the molecular weight marker. Myc—NEDD4 and FLAG—RUNX1 co-precipitated in samples prepared from cells co-expressed with Myc-NED D4, FLAG—RUNX1 and HA—Ub (panel A), higher molecular weight than FLAG—RUNX1 (Panel B) and an increase in FLAG-RUNX1 with HA-Ub attached (Panel C). On the other hand, Myc—NEDD4 (C967A), FLAG—RUNX1 and HA, which have inactivated E3 ligase activity.
— Ubを共発現させた細胞から調製した試料では、 Myc— NEDD4 (C967A)と FL AG— RUNX1の共沈が認められたが(パネル A)、高分子量の蛋白質はほとんど検 出されず(パネル B)、また、 HA— Ubが付カ卩された FLAG— RUNX1の量およびそ のュビキチン化の程度は低かった(パネル C)。 FLAG—RUNX1、 Myc— NEDD4 および HA— Ubを共発現させた細胞における Myc— NEDD4の発現、および Myc— Myc—NEDD4 (C967A) and FL AG—RUNX1 coprecipitation was observed in samples prepared from Ub co-expressed cells (Panel A), but few high molecular weight proteins were detected (Panel A). B) Also, the amount of FLAG-RUNX1 with HA-Ub attached and the degree of ubiquitination were low (Panel C). FLAG—RUNX1, Myc—NEDD4 and HA—Uc co-expressed cells Myc—NEDD4 expression, and Myc
— NEDD4の代わりに Myc— NEDD4 (C967A)を共発現させた細胞における Myc -NEDD4 (C967A)の発現は同程度であった (パネル D)。(実施例 5) [0111] [図 6]ヒト RUNX1の安定性に対するヒト NEDD4の影響を、 FLAG— RUNX1および Myc— NEDD4を一過性性共発現させたヒト培養細胞を使用し、ウェスタンブロッテ イングにより検討した結果を示す図である。パネル A、パネル Bおよびパネル Cは、そ れぞれ抗 FLAG抗体、抗 Myc抗体および抗ァクチン抗体を使用したィムノブロットを 行った結果を示す。図中、 +および一はそれぞれ各発現プラスミドの有無を示し、数 字は DNA導入量を示す。図の右列に記載した数値は分子量マーカーの分子量で ある。 NEDD4発現プラスミドの導入量に依存して、 FLAG— RUNX1の減少が認め られた(パネル A)。一方、 E3リガーゼ活性が不活化された NEDD4 (C967A)の発 現プラスミドをトランスフエクシヨンした細胞から調製した試料では、 FLAG—RUNX1 の減少は認められなかった(パネル A)。 Myc— NEDD4がNEDD4発現プラスミド の導入量に依存して発現されていること、また Myc— NEDD4 (C967A)が NEDD4 (C967A)発現プラスミドにより発現されていることは確認された (パネル B)。また、コ ントロールであるァクチンの発現量は 、ずれの試料にぉ 、ても同程度であった (パネ ル C)。(実施例 6) — Myc—NEDD4 (C967A) expression was similar in cells co-expressed with Myc—NEDD4 (C967A) instead of NEDD4 (Panel D). (Example 5) [0111] [Fig. 6] Results of Western blotting on the effects of human NEDD4 on the stability of human RUNX1 using human cultured cells that transiently co-expressed FLAG—RUNX1 and Myc—NEDD4 FIG. Panels A, B and C show the results of immunoblotting using anti-FLAG antibody, anti-Myc antibody and anti-actin antibody, respectively. In the figure, + and 1 indicate the presence or absence of each expression plasmid, and the number indicates the amount of DNA introduced. The numbers listed in the right column of the figure are the molecular weights of the molecular weight markers. Depending on the amount of NEDD4 expression plasmid introduced, a decrease in FLAG-RUNX1 was observed (Panel A). On the other hand, no decrease in FLAG-RUNX1 was observed in samples prepared from cells transfected with the expression plasmid of NEDD4 (C967A) in which E3 ligase activity was inactivated (panel A). It was confirmed that Myc—NEDD4 was expressed depending on the amount of NEDD4 expression plasmid introduced, and that Myc—NEDD4 (C967A) was expressed by the NEDD4 (C967A) expression plasmid (Panel B). In addition, the expression level of actin, which is a control, was almost the same in all samples (panel C). (Example 6)
[0112] [図 7]ヒト癌細胞株で検出される内因性 NEDD4の大きさを、ヒト培養細胞株で一過性 発現させたヒト NEDD4および短鎖型ヒト NEDD4とウェスタンブロッテイングにより比 較した結果を示す図である。パネル Aは、短鎖型 NEDD4 (レーン 1)、 E3リガーゼ活 性が不活化された短鎖型 NEDD4 (C867A) (レーン 2)、または Myc— NEDD4 (レ ーン 3)を発現させた HEK293T細胞のセルライセート、およびヒト乳癌細胞株 T— 4 7Dのセルライセート(レーン 4)について、抗 NEDD4抗体を使用したィムノブロットを 行った結果を示す。パネル Bは、様々なヒト癌細胞株のセルライセートについて、抗 N EDD4抗体を使用したィムノブロットを行った結果を示す。図の左列に記載した数値 は分子量マーカーの分子量である。(実施例 7)  [0112] [Fig. 7] The size of endogenous NEDD4 detected in human cancer cell lines was compared with human NEDD4 transiently expressed in human cell lines and short-chain human NEDD4 by Western blotting. It is a figure which shows a result. Panel A shows HEK293T cells expressing short-chain NEDD4 (lane 1), short-chain NEDD4 (C867A) with inactivated E3 ligase activity (lane 2), or Myc—NEDD4 (lane 3). The results of immunoblotting using an anti-NEDD4 antibody are shown for cell lysate and human breast cancer cell line T-4 7D cell lysate (lane 4). Panel B shows the results of immunoblotting using anti-NEDD4 antibody for cell lysates from various human cancer cell lines. The numbers in the left column of the figure are the molecular weights of the molecular weight markers. (Example 7)
[0113] [図 8]短鎖型ヒト NEDD4とヒト RUNX1の結合、および短鎖型ヒト NEDD4によるヒト R UNX1の in vivoュビキチン化を、 FLAG— RUNX1、 Myc—短鎖型 NEDD4およ び HA—ュビキチンを一過性共発現させたヒト培養細胞を使用して免疫沈降法により 検討した結果を示す図である。パネル A、パネル Bおよびパネル Cは、抗 FLAG抗体 による免疫沈降物について、それぞれ抗 Myc抗体、抗 FLAG抗体および抗 HA抗 体によるィムノブロットを行った結果を示す。パネル Dは、セルライセートについて、抗 Myc抗体によるィムノブロットを行った結果を示す。図中、 +および一はそれぞれ各 発現プラスミドの有無を示す。図の左列に記載した数値は分子量マーカーの分子量 である。 Myc—短鎖型 NEDD4、 FLAG—RUNXlぉょびHA—Ubを共発現させた 細胞から調製した試料において、 Myc—短鎖型 NEDD4と FLAG— RUNX1の共 沈が認められ (パネル A)、 FLAG— RUNX1より高!、分子量を有する複数の蛋白質 が検出され (パネル B)、また、 HA— Ubが付加された FLAG—RUNX1の増加が認 められた (パネル C)。一方、 E3リガーゼ活性が不活ィ匕された Myc—短鎖型 NEDD4 (C867A)、 FLAG— RUNX1および HA—Ubを共発現させた細胞から調製した試 料では、 Myc—短鎖型 NEDD4 (C867A)と FLAG— RUNX1の共沈が認められた が(パネル A)、高分子量の蛋白質はほとんど検出されず (パネル B)、また、 HA—U bが付加された FLAG— RUNX1の量およびそのュビキチン化の程度は著しく低か つた(パネル C)。 FLAG—RUNX1、 Myc—短鎖型 NEDD4および HA—Ubを共 発現させた細胞における Myc—短鎖型 NEDD4の発現、および Myc—短鎖型 NE DD4の代わりに Myc—短鎖型 NEDD4 (C867A)を共発現させた細胞における My c—短鎖型 NEDD4 (C867A)の発現は同程度であった (パネル D)。(実施例 8) [図 9]短鎖型ヒト NEDD4とヒト RUNX3の結合、および短鎖型ヒト NEDD4によるヒト R UNX3の in vivoュビキチン化を、 FLAG— RUNX3、 Myc—短鎖型 NEDD4およ び HA—ュビキチンを一過性共発現させたヒト培養細胞を使用して免疫沈降法により 検討した結果を示す図である。パネル A、パネル Bおよびパネル Cは、抗 FLAG抗体 による免疫沈降物について、それぞれ抗 Myc抗体、抗 FLAG抗体および抗 HA抗 体によるィムノブロットを行った結果を示す。パネル Dは、セルライセートについて、抗 Myc抗体によるィムノブロットを行った結果を示す。図中、 +および一はそれぞれ各 発現プラスミドの有無を示す。図の左列に記載した数値は分子量マーカーの分子量 である。 Myc—短鎖型 NEDD4、 FLAG— RUNX3および HA—Ubを共発現させた 細胞から調製した試料において、 Myc—短鎖型 NEDD4と FLAG— RUNX3の共 沈が認められ (パネル A)、 FLAG— RUNX3より高い分子量を有する複数の蛋白質 が検出され (パネル B)、また、 HA— Ubが付加された FLAG— RUNX3の増加が認 められた (パネル C)。一方、 E3リガーゼ活性が不活ィ匕された Myc 短鎖型 NEDD4 (C867A)、 FLAG—RUNX3ぉょびHA—Ubを共発現させた細胞から調製した試 料では、 Myc 短鎖型 NEDD4 (C867A)と FLAG— RUNX3の共沈が認められた が(パネル A)、高分子量の蛋白質はほとんど検出されず (パネル B)、また、 HA—U bが付加された FLAG—RUNX3の量およびそのュビキチン化の程度は低かった( パネル C)。 FLAG— RUNX3、 Myc 短鎖型 NEDD4および HA— Ubを共発現さ せた細胞における Myc 短鎖型 NEDD4の発現、および Myc 短鎖型 NEDD4の 代わりに Myc -短鎖型 NEDD4 (C867A)を共発現させた細胞における Myc -短 鎖型 NEDD4 (C867A)の発現は同程度であった (パネル D)。(実施例 8) [0113] [Figure 8] Binding of short-chain human NEDD4 and human RUNX1, and in vivo ubiquitination of human RUNX1 by short-chain human NEDD4, FLAG—RUNX1, Myc—short-chain NEDD4 and HA— FIG. 4 is a diagram showing the results of examination by immunoprecipitation using cultured human cells in which ubiquitin is transiently co-expressed. Panels A, B and C show anti-Myc antibody, anti-FLAG antibody and anti-HA anti-HA antibody anti-FLAG antibody immunoprecipitates, respectively. The result of having performed immunoblotting by a body is shown. Panel D shows the results of immunoblotting with anti-Myc antibody for cell lysate. In the figure, + and 1 indicate the presence or absence of each expression plasmid. The numbers listed in the left column of the figure are the molecular weights of the molecular weight markers. Myc—short chain type NEDD4, FLAG—RUNX1 and HA—Ub were co-expressed in samples prepared from cells co-precipitated with Myc—short chain type NEDD4 and FLAG—RUNX1 (Panel A). — Multiple proteins with a molecular weight higher than RUNX1 were detected (Panel B), and an increase in FLAG—RUNX1 with HA—Ub added was observed (Panel C). On the other hand, samples prepared from cells co-expressed with Myc—short chain type NEDD4 (C867A), FLAG—RUNX1 and HA—Ub, in which E3 ligase activity was inactivated, Myc—short chain type NEDD4 (C867A) ) And FLAG—RUNX1 were co-precipitated (Panel A), but no high molecular weight protein was detected (Panel B), and HA—Ub added FLAG—RUNX1 and its ubiquitin. The degree of conversion was extremely low (Panel C). FLAG—RUNX1, Myc—Short-chain NEDD4 and HA—Ub co-expressed Myc—Short-chain NEDD4 expression, and Myc—Short-chain NE DD4 instead of Myc—Short-chain NEDD4 (C867A) Expression of My c-short chain NEDD4 (C867A) in cells co-expressed was similar (Panel D). (Example 8) [Fig. 9] Binding of short-chain human NEDD4 and human RUNX3, and in vivo ubiquitination of human RUNX3 by short-chain human NEDD4, FLAG—RUNX3, Myc—short-chain NEDD4 and FIG. 5 is a diagram showing the results of examination by immunoprecipitation using human cultured cells in which HA-ubiquitin is transiently co-expressed. Panels A, B and C show the results of immunoblotting with anti-Myc antibody, anti-FLAG antibody and anti-HA antibody, respectively, for the immunoprecipitates with anti-FLAG antibody. Panel D shows the results of immunoblotting with anti-Myc antibody for cell lysate. In the figure, + and 1 indicate the presence or absence of each expression plasmid. The numbers listed in the left column of the figure are the molecular weights of the molecular weight markers. Myc—short chain NEDD4 and FLAG—RUNX3 co-precipitated in samples prepared from cells co-expressed with Myc—short chain NEDD4, FLAG—RUNX3 and HA—Ub (Panel A), FLAG—RUNX3 Multiple proteins with higher molecular weights were detected (Panel B) and an increase in FLAG—RUNX3 with HA—Ub added was observed. (Panel C). On the other hand, samples prepared from cells co-expressed with Myc short-chain NEDD4 (C867A) and FLAG-RUNX3 and HA-Ub co-expressed with E3 ligase activity showed that Myc short-chain NEDD4 (C867A ) And FLAG—RUNX3 co-precipitated (Panel A), but no high molecular weight protein was detected (Panel B), and the amount of FLAG—RUNX3 with HA—U b added and its ubiquitin The degree of conversion was low (Panel C). FLAG—RUNX3, Myc short chain NEDD4 and HA—Ub co-expressed Myc short chain NEDD4, and Myc short chain NEDD4 instead of Myc short chain NEDD4 (C867A) Expression of Myc-short-chain NEDD4 (C867A) in the cultured cells was similar (Panel D). (Example 8)
[図 10]短鎖型ヒト NEDD4とヒト RUNX2の結合、および短鎖型ヒト NEDD4によるヒト RUNX2の in vivoュビキチンィ匕を、 FLAG— RUNX2、 Myc 短鎖型 NEDD4お よび HA ュビキチンを一過性共発現させたヒト培養細胞を使用して免疫沈降法に より検討した結果を示す図である。パネル A、パネル Bおよびパネル Cは、抗 FLAG 抗体による免疫沈降物について、それぞれ抗 Myc抗体、抗 FLAG抗体および抗 H A抗体によるィムノブロットを行った結果を示す。パネル Dは、セルライセートについて 、抗 Myc抗体によるィムノブロットを行った結果を示す。図中、 +および一はそれぞ れ各発現プラスミドの有無を示す。図の左列に記載した数値は分子量マーカーの分 子量である。 Myc 短鎖型 NEDD4、 FLAG—RUNX2ぉょびHA—Ubを共発現 させた細胞から調製した試料にぉ 、て、 Myc 短鎖型 NEDD4と FLAG— RUNX2 の共沈が認められ(パネル A)、 FLAG— RUNX2より高い分子量を有する複数の蛋 白質が検出され (パネル B)、また、 HA— Ubが付加された FLAG—RUNX2の増カロ が認められた (パネル C)。一方、 E3リガーゼ活性が不活ィ匕された Myc -短鎖型 NE DD4 (C867A)、 FLAG— RUNX2および HA—Ubを共発現させた細胞から調製し た試料では、 Myc 短鎖型 NEDD4 (C867A)と FLAG— RUNX2の共沈が認めら れたが (パネル A)、高分子量の蛋白質は検出されず (パネル B)、また、 HA— Ubが 付力卩された FLAG— RUNX2も検出されなかった(パネル C)。 FLAG—RUNX2、 Myc 短鎖型 NEDD4および HA— Ubを共発現させた細胞における Myc 短鎖 型 NEDD4の発現、および Myc 短鎖型 NEDD4の代わりに Myc 短鎖型 NEDD 4 (C867A)を共発現させた細胞における Myc 短鎖型 NEDD4 (C867A)の発現 は同程度であった (パネル D)。(実施例 9) [Fig. 10] Short-chain human NEDD4 and human RUNX2 binding, and short-chain human NEDD4 in vivo ubiquitin of human RUNX2, FLAG— RUNX2, Myc short-chain NEDD4 and HA ubiquitin transiently co-expressed FIG. 6 is a view showing the results of examination by immunoprecipitation using cultured human cells. Panel A, Panel B and Panel C show the results of immunoblotting with anti-Myc antibody, anti-FLAG antibody and anti-HA antibody, respectively, for the immunoprecipitates with anti-FLAG antibody. Panel D shows the results of immunoblotting with anti-Myc antibody for cell lysate. In the figure, + and 1 indicate the presence or absence of each expression plasmid, respectively. The numbers in the left column of the figure are the molecular weight markers. Samples prepared from cells co-expressed with Myc short-chain NEDD4, FLAG-RUNX2 and HA-Ub showed coprecipitation of Myc short-chain NEDD4 and FLAG-RUNX2 (Panel A). Several proteins with higher molecular weight than FLAG—RUNX2 were detected (Panel B), and increased FLAG—RUNX2 with HA—Ub added (Panel C). On the other hand, samples prepared from cells co-expressed with Myc-short-chain NE DD4 (C867A), FLAG-RUNX2 and HA-Ub co-expressed with E3 ligase activity were inactive. ) And FLAG—RUNX2 (Panel A), but no high molecular weight protein was detected (Panel B), nor was HA—Ub-enhanced FLAG—RUNX2 detected. (Panel C). FLAG—RUNX2, Myc short chain type NEDD4 and HA— Ub co-expressed cells Myc short chain type NEDD4 expression, and Myc short chain type NEDD4 instead of Myc short chain type NEDD4 4 Expression of Myc short-chain NEDD4 (C867A) in cells co-expressed with C867A was similar (Panel D). (Example 9)
[0116] [図 11]マウス C2C12細胞において、 E3リガーゼ活性が不活ィ匕された短鎖型ヒト NE DD4 (C867A)が BMP— 2刺激下でアルカリフォスファターゼ(ALP)活性を亢進さ せることを示す図面である。空ベクター(Empty vector)、短鎖型ヒト NEDD4発現 プラスミドまたは短鎖型ヒト NEDD4 (C867A)発現プラスミドを細胞に導入し、 300η gZmlの BMP— 2刺激下で 3日間培養後、細胞中の ALP活性を測定した。各デー タは BMP— 2無処理の空ベクター導入細胞における ALP活性に対する相対値 (Rel ative ALP activity)を示す(平均値士 SD、 n=6)。図中、短鎖型ヒト NEDD4お よび短鎖型ヒト NEDD4 (C867A)はそれぞれ、単に NEDD4および NEDD4 (C86 7A)と表示する。ウエルチの t検定を使用して統計解析を行った結果、 BMP 2処 理した短鎖型ヒト NEDD4 (C867A)発現プラスミド導入細胞における ALP活性と、 B MP 2処理した空ベクター導入細胞の ALP活性との間に有意差が認められた ( *: p< 0. 05)。(実施例 10)  [0116] [Fig. 11] In mouse C2C12 cells, short-chain human NE DD4 (C867A) with inactivated E3 ligase activity enhances alkaline phosphatase (ALP) activity under BMP-2 stimulation. FIG. An empty vector (Empty vector), short-chain human NEDD4 expression plasmid or short-chain human NEDD4 (C867A) expression plasmid was introduced into cells, cultured for 3 days under 300 ηgZml BMP-2 stimulation, and ALP activity in the cells Was measured. Each data shows the relative value of ALP activity in BMP-2 untreated empty vector-introduced cells (mean value SD, n = 6). In the figure, short human NEDD4 and short human NEDD4 (C867A) are simply indicated as NEDD4 and NEDD4 (C867A), respectively. As a result of statistical analysis using Welch's t-test, ALP activity in BMP 2 treated short-chain human NEDD4 (C867A) expression plasmid-introduced cells and ALP activity in BMP 2-treated empty vector-introduced cells (*: P <0. 05). (Example 10)
[0117] [図 12]マウス C2C12細胞において、マウス Nedd4 siRNAによる Nedd4ノックダウ ンにより内因性 Nedd4の発現が阻害され (パネル B)、その結果、 BMP— 2刺激下で 該細胞の ALP活性が亢進した (パネル A)ことを示す図面である。ネガティブコント口 ール siRNA (Negative control siRNA)またはマウス Nedd4 siRNAを細胞に 導入し、 600ngZmlの BMP— 2刺激下で 3日間培養後、細胞中の ALP活性を測定 した(パネル A)。各データは BMP— 2無処理の空ベクター導入細胞における ALP 活性に対する相対値 (Relative ALP activity)を示す(平均値士 SD、 n= 6)。ゥ エルチの t検定を使用して統計解析を行った結果、 BMP— 2処理したネガティブコン トロール siRNA導入細胞における ALP活性と、マウス Nedd4 siRNA導入細胞の ALP活性との間に有意差が認められた(* :p< 0. 05)。マウス Nedd4 siRNAによ る Nedd4ノックダウン効果はウェスタンブロッテイングにより評価した (パネル B)。図中 、 Intensityは、 BMP— 2無処理のネガティブコントロール siRNA導入細胞におい て検出された Nedd4のバンドの濃度に対する、各細胞において検出された Nedd4 のバンドの濃度の相対値を示す。相対値を算出するとき、各細胞において検出され た Nedd4のバンドの濃度は、ァクチン (Actin)のバンドの濃度により補正した。(実施 例 11) [0117] [Figure 12] In mouse C2C12 cells, Nedd4 knockdown by mouse Nedd4 siRNA inhibited the expression of endogenous Nedd4 (Panel B), and as a result, ALP activity of the cells was enhanced under BMP-2 stimulation. (Panel A) is a drawing showing that. Negative control siRNA (Negative control siRNA) or mouse Nedd4 siRNA was introduced into the cells, cultured for 3 days under 600 ngZml of BMP-2 stimulation, and ALP activity in the cells was measured (panel A). Each data shows the relative value with respect to the ALP activity in the empty vector-transfected cells not treated with BMP-2 (mean SD, n = 6). As a result of statistical analysis using Welch's t-test, there was a significant difference between ALP activity in BMP-2 treated negative control siRNA-transfected cells and mouse Nedd4 siRNA-transfected cells. (*: P <0. 05). Nedd4 knockdown effect by mouse Nedd4 siRNA was evaluated by Western blotting (Panel B). Intensity indicates the relative value of the concentration of Nedd4 band detected in each cell with respect to the concentration of Nedd4 band detected in BMP-2 untreated negative control siRNA-introduced cells. When calculating the relative value, it is detected in each cell. The concentration of Nedd4 band was corrected by the concentration of Actin band. (Example 11)
[0118] [図 13]ヒト子宫頸部癌細胞株 HeLaにおいて、ヒト NEDD4 siRNAによる NEDD4ノ ックダウンにより内因性 NEDD4の発現が阻害され (パネル B)、その結果、該細胞の 増殖が抑制された (パネル A)ことを示す図面である。ネガティブコントロール (Negati ve control) siRNAまたはヒト NEDD4 siRNA (D42055— 757または D42055 — 1053)を細胞にトランスフエクシヨン後 3日間培養し、細胞増殖を測定した (パネル [0118] [Figure 13] In the human eclampsia cancer cell line HeLa, NEDD4 knockdown by human NEDD4 siRNA inhibited endogenous NEDD4 expression (panel B), and as a result, the proliferation of the cells was suppressed ( Panel A). Negative control (Negati ve control) siRNA or human NEDD4 siRNA (D42055—757 or D42055—1053) were cultured in cells for 3 days after transfection, and cell proliferation was measured (panel)
A)。増殖率は、ネガティブコントロール siRNA処理群の増殖に対するヒト NEDD4 siRNA処理群の増殖の割合で示している(平均値士 SD、 n=4)。 F検定にて分散 を確認後、スチューデントの t検定もしくはウエルチの t検定を使用して統計解析を行 つた結果、ネガティブコントロール siRNA処理群の増殖と、ヒト NEDD4 siRNA処 理群の増殖との間に有意差が認められた(* :p< 0. 05)。ヒト NEDD4 siRNAによ る内因性 NEDD4ノックダウン効果はウェスタンブロッテイングにより評価した(パネルA). The growth rate is shown as the ratio of the growth of the human NEDD4 siRNA treatment group to the growth of the negative control siRNA treatment group (mean person SD, n = 4). After confirming the variance by F-test, statistical analysis using Student's t-test or Welch's t-test showed that the negative control siRNA treatment group and the human NEDD4 siRNA treatment group Significant differences were observed (*: p <0.05). The endogenous NEDD4 knockdown effect of human NEDD4 siRNA was evaluated by Western blotting (panel)
B)。図中、 Intensityは、ネガティブコントロール siRNA処理群において検出され たヒト NEDD4のバンドの濃度に対する、ヒト NEDD4 siRNA処理群において検出 されたヒト NEDD4のバンドの濃度の相対値を示す。(実施例 12) B). Intensity in the figure represents the relative value of the concentration of the human NEDD4 band detected in the human NEDD4 siRNA treatment group relative to the concentration of the human NEDD4 band detected in the negative control siRNA treatment group. (Example 12)
[0119] [図 14]ヒト胃癌細胞株 NCI— N87において、ヒト NEDD4 siRNAによる NEDD4ノ ックダウンにより内因性 NEDD4の発現が阻害され (パネル B)、その結果、該細胞の 増殖が抑制された (パネル A)ことを示す図面である。ネガティブコントロール (Negati ve control) siRNAまたはヒト NEDD4 siRNA (D42055— 757、 D42055— 1 053または D42055— 1376)を細胞にトランスフエクシヨン後 4日間培養し、細胞増 殖を測定した (パネル A)。増殖率は、ネガティブコントロール siRNA処理群の増殖 に対するヒト NEDD4 siRNA処理群の増殖の割合で示している(平均値士 SD、 n =4)。 F検定にて分散を確認後、スチューデントの t検定もしくはウエルチの t検定を 使用して統計解析を行った結果、ネガティブコントロール siRNA処理群の増殖と、 ヒト NEDD4 siRNA処理群の増殖との間に有意差が認められた(* :p< 0. 05)。ヒ ト NEDD4 siRNAによる内因性 NEDD4ノックダウン効果はウェスタンブロッテイン グにより評価した(パネル: B)。図中、 Intensityは、ネガティブコントロール siRNA処 理群において検出されたヒト NEDD4のバンドの濃度に対する、ヒト NEDD4 siRN A処理群にぉ 、て検出されたヒト NEDD4のバンドの濃度の相対値を示す。(実施例 12) [0119] [Fig. 14] In human gastric cancer cell line NCI-N87, NEDD4 knockdown by human NEDD4 siRNA inhibited endogenous NEDD4 expression (panel B), and as a result, the growth of the cells was suppressed (panel) A) is a drawing showing this. Negative control siRNA or human NEDD4 siRNA (D42055-757, D42055-1 053 or D42055-1376) were cultured in cells for 4 days after transfection, and cell proliferation was measured (Panel A). The growth rate is shown as the ratio of the growth of the human NEDD4 siRNA treatment group to the growth of the negative control siRNA treatment group (mean SD SD, n = 4). After confirming the variance by F-test, statistical analysis was performed using Student's t-test or Welch's t-test. As a result, there was a significant difference between the growth of the negative control siRNA treatment group and the growth of the human NEDD4 siRNA treatment group. Differences were noted (*: p <0. 05). The endogenous NEDD4 knockdown effect of human NEDD4 siRNA was evaluated by Western blotting (Panel: B). Intensity indicates negative control siRNA treatment. The relative value of the concentration of the human NEDD4 band detected in the human NEDD4 siRNA treatment group relative to the concentration of the human NEDD4 band detected in the physical group is shown. (Example 12)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0120] 以下、本発明について発明の実施の態様をさらに詳しく説明する。  [0120] Hereinafter, embodiments of the present invention will be described in more detail.
本明細書にぉ ヽては単離された若しくは合成の完全長蛋白質;単離された若しくは 合成の完全長ポリペプチド;または単離された若しくは合成の完全長オリゴペプチド を意味する総称的用語として「蛋白質」 t 、う用語を使用することがある。ここで蛋白 質、ポリペプチド若しくはオリゴペプチドはペプチド結合または修飾されたペプチド結 合により互いに結合している 2個以上のアミノ酸を含むものである。以降、アミノ酸を 表記する場合、 1文字または 3文字にて表記することがある。  As used herein generically, it means an isolated or synthetic full-length protein; an isolated or synthetic full-length polypeptide; or an isolated or synthetic full-length oligopeptide. The term “protein” may be used. Here, the protein, polypeptide or oligopeptide includes two or more amino acids linked to each other by peptide bonds or modified peptide bonds. In the following, amino acids may be represented by one or three letters.
[0121] 本明細書においては単離された完全長 DNAおよび Zまたは RNA;合成完全長 D NAおよび Zまたは RNA;単離された DNAおよび Zまたは RN Aオリゴヌクレオチド 類;あるいは合成 DNAおよび Zまたは RNAオリゴヌクレオチド類を意味する総称的 用語として「ポリヌクレオチド」という用語を使用することがある。ここでそのような DNA および Zまたは RNAは最小サイズが 2ヌクレオチドである  [0121] As used herein, isolated full length DNA and Z or RNA; synthetic full length DNA and Z or RNA; isolated DNA and Z or RNA oligonucleotides; or synthetic DNA and Z or RNA The term “polynucleotide” is sometimes used as a generic term to refer to RNA oligonucleotides. Where such DNA and Z or RNA have a minimum size of 2 nucleotides
[0122] 本発明においては、 RUNX3が HECT型 E3リガーゼである NEDD4と相互作用す る可能性をインシリコで予測し、さらにその可能性を実験的に検証した。その結果、 ( 1 ) NEDD4が RUNX3と細胞内で結合すること、 ( 2) NEDD4により RUNX3が細胞 内でュビキチン化されること、および(3) NEDD4により RUNX3の安定性が低下す ることを実証した。さらに、(4) NEDD4が RUNX1と細胞内で結合すること、(5) NE DD4により RUNXlがュビキチン化されること、および(6) NEDD4により RUNX1の 安定性が低下することを実証した。また、(7)癌細胞では、 N末端側のアミノ酸残基が 欠失して!/、る短鎖型 NEDD4が発現して 、ることを見出し、 (8)短鎖型 NEDD4と R UNX1、 RUNX2および RUNX3とがそれぞれ結合すること、および(9)短鎖型 NE DD4により RUNX1、RUNX2および RUNX3がュビキチン化されることを実証した  [0122] In the present invention, the possibility that RUNX3 interacts with NEDD4, a HECT-type E3 ligase, was predicted in silico, and the possibility was experimentally verified. As a result, (1) NEDD4 binds to RUNX3 in cells, (2) RUNX3 is ubiquitinated by NEDD4, and (3) NEDD4 reduces RUNX3 stability. did. Furthermore, (4) NEDD4 binds to RUNX1 in cells, (5) RUNXl is ubiquitinated by NE DD4, and (6) NEDD4 reduces RUNX1 stability. In addition, (7) in cancer cells, the N-terminal amino acid residue is deleted! /, And the short-chain NEDD4 is expressed, and (8) the short-chain NEDD4 and RUNX1, RUNX2 and RUNX3 bind to each other, and (9) RUNX1, RUNX2 and RUNX3 are ubiquitinated by short-chain NE DD4
[0123] 本実証結果から、 NEDD4が RUNXと結合して RUNXのュビキチン化を触媒し、 その結果ュビキチン化された RUNXがュビキチンプロテアソームシステムにより分解 されてその安定性が低下すると発明者らは考えている。 [0123] From the results of this demonstration, NEDD4 combined with RUNX to catalyze the ubiquitination of RUNX, As a result, the inventors believe that ubiquitinated RUNX is degraded by the ubiquitin proteasome system and its stability decreases.
[0124] RUNXの分解が、 NEDD4が関与するュビキチンプロテアソームシステムにより調 節されることにより、 RUNXの機能、例えば転写因子としての機能が調節され、その 結果、 RUNXが関与する様々な生理現象、例えば細胞周期やシグナル伝達等が調 節される。 [0124] By regulating the degradation of RUNX by the ubiquitin proteasome system involving NEDD4, the functions of RUNX, for example, functions as a transcription factor, are regulated. As a result, various physiological phenomena involving RUNX, For example, the cell cycle and signal transduction are regulated.
[0125] したがって、 NEDD4による RUNXのュビキチン化を調節することにより、 RUNXの 分解を調節でき、それにより RUNXの機能、例えば転写因子としての機能を調節で きる。 RUNXの機能を調節することにより、 RUNXの異常に起因する疾患を予防およ び Zまたは治療できる。  [0125] Therefore, by regulating RUNX ubiquitination by NEDD4, degradation of RUNX can be regulated, thereby regulating the function of RUNX, for example, as a transcription factor. By regulating the function of RUNX, diseases caused by abnormal RUNX can be prevented and Z or treated.
[0126] 「ュビキチン化」とは、 1分子の蛋白質に 1以上のュビキチンが共有結合することに よる、ュビキチンによる該蛋白質の修飾を意味する。ュビキチンは、標的蛋白質内の リジン残基に共有結合する。蛋白質のュビキチン化と同様、標的蛋白質内のリジン残 基に結合したュビキチン内のリジン残基に、別のュビキチンがさらに共有結合するこ とにより、蛋白質には複数のュビキチンが鎖状に結合する。  [0126] "Ubiquitination" means modification of a protein by ubiquitin by covalently binding one or more ubiquitins to one molecule of protein. Ubiquitin is covalently bound to a lysine residue in the target protein. Similar to protein ubiquitination, multiple ubiquitins are bound to a protein in a chain by further covalently binding another ubiquitin to a lysine residue in ubiquitin bound to a lysine residue in the target protein.
[0127] 「ュビキチン」は、真核生物に普遍的に存在するアミノ酸 76個からなる蛋白質であり [0127] "Ubiquitin" is a protein consisting of 76 amino acids that is universally present in eukaryotes.
、進化的に保存性が高い。ュビキチンは、蛋白質分解機構として知られているュビキ チンプロテアソームシステムにおいて、標的蛋白質に鎖状に共有結合することによりHighly conserved in evolution. Ubiquitin is linked to the target protein by covalent bonds in a chain in the ubiquitin proteasome system known as the proteolytic mechanism.
、蛋白質分解の標識として働く。すなわち、蛋白質がュビキチン化されると、該蛋白 質に鎖状に結合したュビキチンが該蛋白質の分解の標識となり、該標識を認識する プロテアソームにより該蛋白質が分解される。 Acts as a proteolytic marker. That is, when a protein is ubiquitinated, ubiquitin bound to the protein in a chain form becomes a label for the degradation of the protein, and the protein is degraded by the proteasome that recognizes the label.
[0128] 標的蛋白質へのュビキチンの結合はュビキチン活性ィ匕酵素 (E1)、ュビキチン結 合酵素 (E2)およびュビキチンリガーゼ (E3)の連続的な触媒作用で起こる。これら酵 素の中で、ュビキチンリガーゼ (E3)が基質選択性を担う酵素として重要である。ュビ キチンリガーゼ (E3)は、 E3リガーゼとも称する。  [0128] The binding of ubiquitin to the target protein occurs by the continuous catalytic action of ubiquitin-active enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). Among these enzymes, ubiquitin ligase (E3) is important as an enzyme responsible for substrate selectivity. Ubiquitin ligase (E3) is also referred to as E3 ligase.
[0129] ここで「標的蛋白質」とは、ュビキチン化される蛋白質を意味する。「基質」とは、酵 素によって触媒作用を受ける分子を意味する。  Here, “target protein” means a protein to be ubiquitinated. “Substrate” means a molecule that is catalyzed by an enzyme.
[0130] 「ュビキチンプロテアソームシステム」は、選択的かつ能動的な蛋白質分解機構で あり、細胞周期やシグナル伝達等の様々な生理現象を調節し、それにより蛋白質や 細胞の恒常性維持に関与して 、る (非特許文献 19)。ュビキチン化された標的蛋白 質は、該蛋白質に鎖状に結合したュビキチンを認識するプロテアソームにより分解さ れる。ュビキチンプロテアソームシステムの異常は、標的蛋白質の過剰な分解による 蛋白質の欠乏、あるいは標的蛋白質の分解阻害による蛋白質の蓄積を招き、それに より様々な疾患を引き起こす。具体的には例えば、癌疾患におけるュビキチンプロテ ァソームシステムの関与が報告されて 、る(非特許文献 20)。 [0130] The "ubiquitin proteasome system" is a selective and active proteolytic mechanism. Yes, it regulates various physiological phenomena such as cell cycle and signal transduction, and is involved in maintaining homeostasis of proteins and cells (Non-patent Document 19). The ubiquitinated target protein is degraded by the proteasome that recognizes ubiquitin bound in a chain to the protein. Abnormalities in the ubiquitin proteasome system lead to protein deficiency due to excessive degradation of the target protein, or protein accumulation due to inhibition of target protein degradation, thereby causing various diseases. Specifically, for example, the involvement of the ubiquitin proteasome system in cancer diseases has been reported (Non-patent Document 20).
[0131] 「NEDD4」は、蛋白質分解機構であるュビキチンプロテアソームシステムに関与す る HECT型 E3リガーゼである。 NEDD4は、膜脂質との結合に関与する C2ドメイン、 基質との結合に関与する 4つの WWドメイン、およびュビキチンィ匕の触媒ドメインであ り E3リガーゼ活性を示す HECTドメインを有する(非特許文献 18)。  [0131] "NEDD4" is a HECT-type E3 ligase involved in the ubiquitin proteasome system, a proteolytic mechanism. NEDD4 has a C2 domain that is involved in binding to membrane lipids, four WW domains that are involved in binding to substrates, and a HECT domain that is the catalytic domain of ubiquitin and exhibits E3 ligase activity (Non-patent Document 18). .
[0132] NEDD4が関与する蛋白質ュビキチン化において、 NEDD4の基質として、例えば RUNXを挙げることができる。また、 E3リガーゼの多くが自己ュビキチンィ匕作用を有 することから、 NEDD4の基質として、 自己蛋白質を挙げることができる。  [0132] In protein ubiquitination involving NEDD4, examples of NEDD4 substrates include RUNX. In addition, since many of E3 ligases have self-ubiquitin activity, self-protein can be mentioned as a substrate for NEDD4.
[0133] 本明細書にぉ 、て、単に NEDD4と称するときは、 E3リガーゼ活性を有する野生 型の NEDD4を意味する。  In the present specification, when simply referred to as NEDD4, it means wild-type NEDD4 having E3 ligase activity.
[0134] 「E3リガーゼ活性」とは、蛋白質のュビキチンィ匕において、標的蛋白質を基質とし て認識し、ュビキチン活性ィ匕酵素 (E1)により活性化されュビキチン結合酵素 (E2) に結合したュビキチンを、標的蛋白質に結合させる作用を意味する。  [0134] "E3 ligase activity" refers to ubiquitin that recognizes a target protein as a substrate in ubiquitin protein, and is activated by ubiquitin activity enzyme (E1) and bound to ubiquitin-binding enzyme (E2). It means the action of binding to the target protein.
[0135] NEDD4の E3リガーゼ活性は、具体的には例えば、 RUNXのュビキチン化におい て、 RUNXを基質として認識し、そして、ュビキチン活性化酵素 (E1)により活性ィ匕さ れュビキチン結合酵素(E2)に結合したュビキチンを RUNXに結合させる、 NEDD4 の作用である。また、 NEDD4の E3リガーゼ活性とは、具体的には例えば、自己蛋 白質のュビキチンィ匕において、自己蛋白質を基質として認識し、そして、ュビキチン 活性化酵素 (E1)により活性化されュビキチン結合酵素 (E2)に結合したュビキチン を自己蛋白質に結合させる、 NEDD4の作用である。  [0135] Specifically, the E3 ligase activity of NEDD4, for example, in RUNX ubiquitination, recognizes RUNX as a substrate and is activated by ubiquitin activating enzyme (E1). This is the action of NEDD4 that binds ubiquitin bound to) to RUNX. The E3 ligase activity of NEDD4 specifically refers to, for example, self-protein ubiquitin, which recognizes self-protein as a substrate and is activated by ubiquitin-activating enzyme (E1). This is the action of NEDD4 that binds ubiquitin bound to) to self-proteins.
[0136] E3リガーゼ活性の測定は、 E3リガーゼによる標的蛋白質へのュビキチンの結合を 指標にして実施できる。標的蛋白質へのュビキチンの結合は、ュビキチンィ匕された 標的蛋白質の検出により測定できる。ュビキチン化された標的蛋白質の検出は、公 知のウェスタンブロッテイング等の方法により実施できる(実施例 3、 5、 8および 9参照[0136] The measurement of E3 ligase activity can be performed using the binding of ubiquitin to the target protein by E3 ligase as an index. The binding of ubiquitin to the target protein was ubiquitinated. It can be measured by detecting the target protein. Detection of the ubiquitinated target protein can be performed by a known method such as Western blotting (see Examples 3, 5, 8 and 9).
) o ) o
[0137] NEDD4の E3リガーゼ活性の測定は、具体的には例えば、基質として RUNXを用 い、ュビキチンィ匕された RUNXを検出することにより実施できる。または、基質として 自己蛋白質を用い、ュビキチン化された自己蛋白質を検出することによつても実施で きる。  [0137] The measurement of the EDD ligase activity of NEDD4 can be specifically performed by, for example, using RUNX as a substrate and detecting RUNX that has been ubiquitinated. Alternatively, self-protein can be used as a substrate and ubiquitinated self-protein can be detected.
[0138] NEDD4は、好ましくは例えば、配列番号 1に記載の塩基配列で表されるヒト由来 のポリヌクレオチドによりコードされる蛋白質である。配列番号 1に記載の塩基配列で 表されるヒト由来のポリヌクレオチドによりコードされる蛋白質は、好ましくは配列番号 2に記載のアミノ酸配列で表されるヒト由来の蛋白質である。配列番号 2に記載のアミ ノ酸配列は、 Swiss plotデータベースに P46934として登録されている。  [0138] NEDD4 is preferably a protein encoded by a human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1, for example. The protein encoded by the human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 is preferably a human-derived protein represented by the amino acid sequence set forth in SEQ ID NO: 2. The amino acid sequence described in SEQ ID NO: 2 is registered as P46934 in the Swiss plot database.
[0139] NEDD4は、上記蛋白質に制限されず、配列番号 1に記載の塩基配列で表される ポリヌクレオチドによりコードされる蛋白質と配列相同性を有し、かつ該蛋白質と同様 の構造的特徴および生物学的機能を有する蛋白質である限りにおいていずれの蛋 白質も包含される。また、 NEDD4をコードするポリヌクレオチドは、上記ポリヌクレオ チドに制限されず、配列番号 1に記載の塩基配列で表されるポリヌクレオチドと配列 相同性を有し、かつ該ポリヌクレオチドによりコードされる蛋白質と同様の構造的特徴 や生物学的機能を有する蛋白質をコードするポリヌクレオチドである限りにお!/、て!/、 ずれのポリヌクレオチドも包含される。  [0139] NEDD4 is not limited to the above protein, has sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1, and has the same structural features and the same as the protein. Any protein is included as long as it is a protein having a biological function. Further, the polynucleotide encoding NEDD4 is not limited to the above-mentioned polynucleotide, and has a sequence homology with the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 and a protein encoded by the polynucleotide. As long as it is a polynucleotide encoding a protein having similar structural characteristics or biological functions, any polynucleotide is also included.
[0140] 配列相同性は、通常、アミノ酸配列または塩基配列の全体で 50%以上、好ましくは 少なくとも 70%であることが適当である。より好ましくは 70%以上、さらに好ましくは 8 0%以上、さらにより好ましくは 90%以上、またさらにより好ましくは 95%以上であるこ とが適当である。  [0140] The sequence homology is usually 50% or more of the entire amino acid sequence or base sequence, preferably at least 70%. More preferably, it is 70% or more, more preferably 80% or more, even more preferably 90% or more, and even more preferably 95% or more.
[0141] 配列番号 1に記載の塩基配列で表されるポリヌクレオチドによりコードされる蛋白質 と配列相同性を有する蛋白質には、該ポリヌクレオチドによりコードされる蛋白質のァ ミノ酸配列において、 1個以上、例えば 1〜: L00個、好ましくは 1〜30個、より好ましく は 1〜20個、さらに好ましくは 1〜10個、特に好ましくは 1〜数個のアミノ酸残基の欠 失、置換、付加または挿入といった変異が存するアミノ酸配列で表される蛋白質が含 まれる。また、配列番号 1に記載の塩基配列で表されるポリヌクレオチドと配列相同性 を有するポリヌクレオチドには、該塩基配列において、 1個以上、例えば 1〜300個、 好ましくは 1〜90個、より好ましくは 1〜60個、さらに好ましくは 1〜30個、特に好まし くは 1〜数個のヌクレオチドの欠失、置換、付加または挿入といった変異が存する塩 基配列で表されるポリヌクレオチドが含まれる。変異の程度およびそれらの位置等は 、該変異を有する蛋白質あるいは該変異を有するポリヌクレオチドによりコードされる 蛋白質が、配列番号 1に記載の塩基配列で表されるポリヌクレオチドによりコードされ る蛋白質と同様の構造的特徴および生物学的機能を有するものである限り特に制限 されない。変異を有する蛋白質およびポリヌクレオチドは天然に存在するものであつ てよぐまた人工的に変異を導入したものであってもよい。 [0141] The protein having sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 contains one or more amino acid sequences in the amino acid sequence of the protein encoded by the polynucleotide For example, 1 to: L00, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to several amino acid residues. It includes proteins represented by amino acid sequences with mutations such as deletion, substitution, addition or insertion. In addition, in the polynucleotide having sequence homology with the polynucleotide represented by the nucleotide sequence shown in SEQ ID NO: 1, in the nucleotide sequence, one or more, for example, 1 to 300, preferably 1 to 90, Preferably, it includes a polynucleotide represented by a base sequence having a mutation such as deletion, substitution, addition or insertion of 1 to 60 nucleotides, more preferably 1 to 30, particularly preferably 1 to several nucleotides. It is. The degree of mutation and the position thereof are the same as the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 in the protein having the mutation or the protein encoded by the polynucleotide having the mutation. As long as it has the following structural features and biological functions, it is not particularly limited. Proteins and polynucleotides having mutations may be naturally occurring or artificially introduced with mutations.
[0142] 配列番号 1に記載の塩基配列で表されるポリヌクレオチドによりコードされる蛋白質 の構造的特徴は、例えば、膜脂質との結合に関与する C2ドメイン、基質との結合に 関与する WWドメイン、およびュビキチンィ匕の触媒ドメインであり E3リガーゼ活性を示 す HECTドメインである。配列番号 1に記載の塩基配列で表されるポリヌクレオチドに よりコードされる蛋白質と同様の構造的特徴とは、該蛋白質に存在する上記ドメインと 配列相同性を有しかつ同様の機能を有するドメインを意味する。ドメインの配列相同 性は、好ましくは少なくとも 70%、より好ましくは 70%以上、さらに好ましくは 80%以 上、さらにより好ましくは 90%以上、またさらにより好ましくは 95%以上であることが適 当である。 [0142] The structural features of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 include, for example, the C2 domain involved in binding to membrane lipids, and the WW domain involved in binding to substrates It is a catalytic domain of ubiquitin and a HECT domain that exhibits E3 ligase activity. The structural features similar to those of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 are domains having sequence homology and similar functions to the above-described domain existing in the protein. Means. The sequence homology of the domain is preferably at least 70%, more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and even more preferably 95% or more. It is.
[0143] 配列番号 1に記載の塩基配列で表されるポリヌクレオチドによりコードされる蛋白質 の生物学的機能として、例えば、 E3リガーゼ活性が挙げられる。また、本蛋白質の生 物学的機能として、 RUNXとの結合が挙げられる。本蛋白質と結合する RUNXとし て、ヒト由来の RUNX1、 RUNX2、および RUNX3が好ましく例示できる。本蛋白質 と結合する RUNXは、これら例示されたものに限定されず、本蛋白質と結合する限り にお 、て 、ずれの RUNXファミリー蛋白質でもあり得る。  [0143] Examples of the biological function of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 include E3 ligase activity. The biological function of this protein includes binding to RUNX. Preferred examples of RUNX that binds to this protein include human-derived RUNX1, RUNX2, and RUNX3. The RUNX that binds to the present protein is not limited to those exemplified, and can be any RUNX family protein as long as it binds to the present protein.
[0144] 調べようとする蛋白質の E3リガーゼ活性の測定は、 E3リガーゼの標的蛋白質、例 えば RUNXのュビキチン化を測定することにより実施できる。 RUNXのュビキチン化 の測定は、後述する RUNXのュビキチンィ匕方法を利用して実施できる。 [0144] The E3 ligase activity of the protein to be examined can be measured by measuring the ubiquitination of the target protein of the E3 ligase, for example, RUNX. RUNX conversion to ubiquitin This measurement can be performed using the RUNX ubiquitin method described later.
[0145] 調べようとする蛋白質と RUNXとの結合の測定は、自体公知のプロテインバインデ イングアツセィを利用して実施できる。具体的には、該蛋白質と RUNXとをインビボま たはインビトロで共存させ、次いで該蛋白質と RUNXとの複合体形成を、ウェスタン ブロッテイング、免疫沈降法、プルダウン法、ツーハイブリッド法および蛍光共鳴エネ ルギ一転移法等の公知の方法を使用して測定することにより、該蛋白質と RUNXと の結合を測定できる。 [0145] The measurement of the binding between the protein to be examined and RUNX can be performed using a protein binding assay known per se. Specifically, the protein and RUNX are allowed to coexist in vivo or in vitro, and then complex formation of the protein and RUNX is performed by Western blotting, immunoprecipitation, pull-down, two-hybrid, and fluorescence resonance energy. The binding between the protein and RUNX can be measured by measuring using a known method such as the Luge-Issage transfer method.
[0146] 配列番号 1に記載の塩基配列で表されるポリヌクレオチドによりコードされる蛋白質 と配列相同性を有し、かつ該蛋白質と同様の構造的特徴および生物学的機能を有 する蛋白質は、好ましくは例えば、配列番号 3に記載の塩基配列で表されるポリヌク レオチドによりコードされる蛋白質である。配列番号 3に記載の塩基配列で表される ポリヌクレオチドによりコードされる蛋白質は、好ましくは配列番号 4に記載のアミノ酸 配列で表される蛋白質である。配列番号 3に記載の塩基配列および配列番号 4に記 載のアミノ酸配列は、 NCBIデータベースにそれぞれァクセッションナンバー NM—0 06154および NP— 006145として登録されて!、る。  [0146] A protein having sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 and having the same structural characteristics and biological function as the protein is: A protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 3 is preferable. The protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 3 is preferably a protein represented by the amino acid sequence set forth in SEQ ID NO: 4. The nucleotide sequence set forth in SEQ ID NO: 3 and the amino acid sequence set forth in SEQ ID NO: 4 are registered in the NCBI database as accession numbers NM-0 06154 and NP-006145, respectively.
[0147] 配列番号 3に記載の塩基配列で表されるポリヌクレオチドによりコードされる蛋白質 は、配列番号 1に記載の塩基配列で表されるポリヌクレオチドによりコードされる蛋白 質の N末端側第 1番目力も第 100番目の 100個のアミノ酸残基が欠失した蛋白質で ある。言い換えれば、配列番号 3に記載の塩基配列で表されるポリヌクレオチドにより コードされる蛋白質は、配列番号 2に記載のアミノ酸配列で表される蛋白質の N末端 側第 1番目力も第 100番目の 100個のアミノ酸残基が欠失した蛋白質である。  [0147] The protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 is the N-terminal first protein of the protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 1. The second power is a protein from which the 100th amino acid residue at the 100th is deleted. In other words, the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 3 is the N-terminal side first force of the protein represented by the amino acid sequence set forth in SEQ ID NO: 2 and the 100th 100 It is a protein in which one amino acid residue is deleted.
[0148] 配列番号 3に記載の塩基配列で表されるポリヌクレオチドによりコードされる蛋白質 を、「短鎖型 NEDD4」と称することがある。それに対し、配列番号 1に記載の塩基配 列で表されるポリヌクレオチドによりコードされる蛋白質を「全長 NEDD4Jと称するこ とがある。  [0148] The protein encoded by the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 3 may be referred to as "short-chain NEDD4". In contrast, a protein encoded by a polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 may be referred to as “full-length NEDD4J”.
[0149] 「短鎖型 NEDD4Jは、全長 NEDD4にお!/、てその N末端側のアミノ酸残基が欠失 しているが、全長 NEDD4と同様、 C2ドメイン、 WWドメインおよび HECTドメインを 有し、 HECT型 E3リガーゼとして機能する蛋白質である。 [0150] 本明細書にぉ 、て、単に短鎖型 NEDD4と称するときは、 E3リガーゼ活性を有す る短鎖型 NEDD4を意味する。 [0149] “Short-chain NEDD4J has a full-length NEDD4 with a deleted amino acid residue at the N-terminal side, but, like full-length NEDD4, has a C2 domain, a WW domain, and a HECT domain. A protein that functions as a HECT-type E3 ligase. In the present specification, when simply referred to as short-chain NEDD4, it means short-chain NEDD4 having E3 ligase activity.
[0151] 「RUNX」は、 Runtドメインを有することを特徴とする蛋白質であり、 PEBP2 β /C BF |8とへテロ二量体を形成し、転写因子として作用する。 RUNXには数々のファミリ 一蛋白質が知られている。哺乳動物では 3種類のファミリー蛋白質、すなわち RUNX 1、 RUNX2および RUNX3が知られている(非特許文献 1および 2)。ヒト RUNX3と ヒト RUNX1およびヒト RUNX2との相同性は、アミノ酸レベルでそれぞれ 57%および 54%である。  [0151] “RUNX” is a protein characterized by having a Runt domain, forms a heterodimer with PEBP2 β / C BF | 8, and acts as a transcription factor. RUNX has a number of family proteins. In mammals, three types of family proteins are known, namely RUNX 1, RUNX2 and RUNX3 (Non-patent Documents 1 and 2). Homology between human RUNX3 and human RUNX1 and human RUNX2 is 57% and 54%, respectively, at the amino acid level.
[0152] 本発明において RUNXは、好ましくは RUNX1、 RUNX2および RUNX3のいず れもあり得る。また、 RUNXは、これら例示されたものに限定されず、 NEDD4と結合 してュビキチンィ匕される限りにお 、て 、ずれの RUNXファミリー蛋白質でもあり得る。  [0152] In the present invention, RUNX is preferably RUNX1, RUNX2, and RUNX3. RUNX is not limited to those exemplified, and may be a RUNX family protein as long as it is bound to NEDD4 and ubiquitinated.
[0153] RUNX1は、好ましくは例えば、配列番号 5に記載の塩基配列で表されるヒト由来 のポリヌクレオチドによりコードされる蛋白質である。配列番号 5に記載の塩基配列で 表されるヒト由来のポリヌクレオチドによりコードされる蛋白質は、好ましくは配列番号 6に記載のアミノ酸配列で表されるヒト由来の蛋白質である。配列番号 5に記載の塩 基配列および配列番号 6に記載のアミノ酸配列は、 NCBIデータベースにそれぞれ ァクセッションナンバー NM— 001754および NP— 001745として登録されて!、る。  [0153] RUNX1 is preferably a protein encoded by a human-derived polynucleotide represented by the base sequence described in SEQ ID NO: 5, for example. The protein encoded by the human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 5 is preferably a human-derived protein represented by the amino acid sequence set forth in SEQ ID NO: 6. The base sequence described in SEQ ID NO: 5 and the amino acid sequence described in SEQ ID NO: 6 are registered in the NCBI database as accession numbers NM-001754 and NP-001745, respectively.
[0154] RUNX2は、好ましくは例えば、配列番号 7に記載の塩基配列で表されるヒト由来 のポリヌクレオチドによりコードされる蛋白質である。配列番号 7に記載の塩基配列で 表されるヒト由来のポリヌクレオチドによりコードされる蛋白質は、好ましくは配列番号 8に記載のアミノ酸配列で表されるヒト由来の蛋白質である。配列番号 7に記載の塩 基配列および配列番号 8に記載のアミノ酸配列は、 NCBIデータベースにそれぞれ ァクセッションナンバー NM— 004348および NP— 004339として登録されている。  [0154] RUNX2 is preferably a protein encoded by a human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 7, for example. The protein encoded by the human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 7 is preferably a human-derived protein represented by the amino acid sequence set forth in SEQ ID NO: 8. The base sequence described in SEQ ID NO: 7 and the amino acid sequence described in SEQ ID NO: 8 are registered in the NCBI database as accession numbers NM-004348 and NP-004339, respectively.
[0155] RUNX3は、好ましくは例えば、配列番号 9に記載の塩基配列で表されるヒト由来 のポリヌクレオチドによりコードされる蛋白質である。配列番号 9に記載の塩基配列で 表されるヒト由来のポリヌクレオチドによりコードされる蛋白質は、好ましくは配列番号 10に記載のアミノ酸配列で表されるヒト由来の蛋白質である。配列番号 9に記載の塩 基配列および配列番号 10に記載のアミノ酸配列は、 NCBIデータベースにそれぞれ ァクセッションナンバー NM— 004350および NP— 004341として登録されている。 [0155] RUNX3 is preferably a protein encoded by a human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 9, for example. The protein encoded by the human-derived polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 9 is preferably a human-derived protein represented by the amino acid sequence set forth in SEQ ID NO: 10. The base sequence described in SEQ ID NO: 9 and the amino acid sequence described in SEQ ID NO: 10 are respectively stored in the NCBI database. The session numbers are registered as NM-004350 and NP-004341.
[0156] RUNXは、上記蛋白質に制限されず、配列番号 5、 7および 9のいずれか 1に記載 の塩基配列で表されるポリヌクレオチドによりコードされる蛋白質と配列相同性を有し 、かつ該蛋白質と同様の構造的特徴および生物学的機能を有する蛋白質である限り においていずれの蛋白質も包含される。また、 RUNXをコードするポリヌクレオチドは 、上記ポリヌクレオチドに制限されず、配列番号 5、 7および 9のいずれ力 1に記載の 塩基配列で表されるポリヌクレオチドと配列相同性を有し、かつ該ポリヌクレオチドに よりコードされる蛋白質と同様の構造的特徴や生物学的機能を有する蛋白質をコー ドするポリヌクレオチドである限りにお ヽて 、ずれのポリヌクレオチドも包含される。 [0156] RUNX is not limited to the above protein, and has sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOS: 5, 7, and 9. Any protein is included as long as the protein has the same structural characteristics and biological function as the protein. In addition, the polynucleotide encoding RUNX is not limited to the above-mentioned polynucleotide, and has sequence homology with the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5, 7, and 9, and As long as the polynucleotide encodes a protein having the same structural characteristics and biological function as the protein encoded by the polynucleotide, any of the polynucleotides is also included.
[0157] 配列相同性は、通常、アミノ酸配列または塩基配列の全体で 50%以上、好ましくは 少なくとも 70%であることが適当である。より好ましくは 70%以上、さらに好ましくは 8 0%以上、さらにより好ましくは 90%以上、またさらにより好ましくは 95%以上であるこ とが適当である。 [0157] The sequence homology is usually 50% or more of the entire amino acid sequence or base sequence, preferably at least 70%. More preferably, it is 70% or more, more preferably 80% or more, even more preferably 90% or more, and even more preferably 95% or more.
[0158] 配列番号 5、 7および 9のいずれか 1に記載の塩基配列で表されるポリヌクレオチド によりコードされる蛋白質と配列相同性を有する蛋白質には、該ポリヌクレオチドによ りコードされる蛋白質のアミノ酸配列において、 1個以上、例えば 1〜: LOO個、好ましく は 1〜30個、より好ましくは 1〜20個、さらに好ましくは 1〜10個、特に好ましくは 1〜 数個のアミノ酸残基の欠失、置換、付加または挿入といった変異が存するアミノ酸配 列で表される蛋白質が含まれる。また、配列番号 5、 7および 9のいずれ力 1に記載の 塩基配列で表されるポリヌクレオチドと配列相同性を有するポリヌクレオチドには、該 塩基配列において、 1個以上、例えば 1〜300個、好ましくは 1〜90個、より好ましく は 1〜60個、さらに好ましくは 1〜30個、特に好ましくは 1〜数個のヌクレオチドの欠 失、置換、付加または挿入といった変異が存する塩基配列で表されるポリヌクレオチ ドが含まれる。変異の程度およびそれらの位置等は、該変異を有する蛋白質あるい は該変異を有するポリヌクレオチドによりコードされる蛋白質が、配列番号 5、 7および 9の 、ずれか 1に記載の塩基配列で表されるポリヌクレオチドによりコードされる蛋白 質と同様の構造的特徴および生物学的機能を有するものである限り特に制限されな い。変異を有する蛋白質およびポリヌクレオチドは天然に存在するものであってよぐ また人工的に変異を導入したものであってもよい。 [0158] A protein having sequence homology with the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 5, 7, and 9 includes a protein encoded by the polynucleotide. 1 or more, such as 1 to: LOO, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to several amino acid residues. Proteins represented by amino acid sequences in which mutations such as deletions, substitutions, additions or insertions exist are included. In addition, in the polynucleotide having sequence homology with the polynucleotide represented by the nucleotide sequence described in any one of SEQ ID NOs: 5, 7, and 9, one or more, for example, 1 to 300, in the nucleotide sequence, Preferably, it is represented by a nucleotide sequence having a mutation such as deletion, substitution, addition or insertion of 1 to 90, more preferably 1 to 60, still more preferably 1 to 30, and particularly preferably 1 to several nucleotides. Polynucleotides are included. The degree of mutation and the position thereof are represented by the nucleotide sequence of SEQ ID NO: 5, 7, and 9, wherein the protein having the mutation or the protein encoded by the polynucleotide having the mutation is selected from The protein is not particularly limited as long as it has the same structural characteristics and biological function as the protein encoded by the polynucleotide. Proteins and polynucleotides with mutations can be naturally occurring In addition, an artificially introduced mutation may be used.
[0159] 配列番号 5、 7および 9のいずれか 1に記載の塩基配列で表されるポリヌクレオチド によりコードされる蛋白質の構造的特徴は、例えば Runtドメインである。配列番号 5、 7および 9のいずれか 1に記載の塩基配列で表されるポリヌクレオチドによりコードさ れる蛋白質の構造的特徴とは、該蛋白質に存在する Runtドメインと配列相同性を有 しかつ同様の機能を有する Runtドメインを意味する。 Runtドメインの配列相同性は 、好ましくは少なくとも 70%、より好ましくは 70%以上、さらに好ましくは 80%以上、さ らにより好ましくは 90%以上、またさらにより好ましくは 95%以上であることが適当で ある。  [0159] The structural feature of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 5, 7, and 9 is, for example, the Runt domain. The structural characteristics of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 5, 7, and 9 are similar to the Runt domain present in the protein and have the same sequence homology. This means a Runt domain with the following functions. The sequence homology of the Runt domain is preferably at least 70%, more preferably 70% or more, further preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more. It is.
[0160] 配列番号 5、 7および 9のいずれか 1に記載の塩基配列で表されるポリヌクレオチド によりコードされる蛋白質の生物学的機能として、例えば転写因子活性が挙げられる  [0160] Examples of the biological function of the protein encoded by the polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 5, 7, and 9 include transcription factor activity.
[0161] 「転写因子活性」とは、 DNAから RNAを合成する転写反応において、該 DNA内 の特徴的な塩基配列を認識して結合し、直接または間接に転写装置 (真核生物にお ける基本転写因子群を含む)に作用して、転写を正または負に調節する作用を意味 する。 [0161] "Transcription factor activity" refers to a transcription device that synthesizes RNA from DNA, recognizes and binds to a characteristic nucleotide sequence in the DNA, and directly or indirectly (in eukaryotes). This means the action of regulating transcription positively or negatively (including basic transcription factors).
[0162] 転写因子活性の測定は、公知の転写活性測定方法を使用して実施できる。 RUN Xは PEBP2 β /CBF βと二量体を形成して転写因子として様々な遺伝子の発現に 関与している(非特許文献 2)。 RUNXの転写因子活性の測定は、例えば、この二量 体が転写因子として作用する遺伝子のプロモーターまたはェンハンサー部位の下流 に、該遺伝子の代わりにレポーター遺伝子を連結したベクターを作成し、該ベクター をトランスフエクシヨンした細胞、例えば真核細胞等と RUNXとを接触させ、レポータ 一遺伝子の発現の有無および変化を測定することにより実施できる。レポーター遺伝 子として、レポーターアツセィで一般的に使用されている遺伝子を使用できる。例え ば、ルシフェラーゼ、 13 ガラクトシダーゼまたはクロラムフエ-コールァセチルトラン スフエラーゼ等の酵素活性を有する遺伝子を使用できる。レポーター遺伝子の発現 の測定は、その遺伝子産物自体または該遺伝子産物の活性を検出することにより実 施できる。例えば、上記のようなレポーター遺伝子の発現は、その遺伝子産物自体ま たは該遺伝子産物の酵素活性を検出することにより測定できる。 [0162] The transcription factor activity can be measured using a known transcription activity measurement method. RUN X forms a dimer with PEBP2 β / CBF β and is involved in the expression of various genes as a transcription factor (Non-patent Document 2). RUNX transcription factor activity can be measured, for example, by creating a vector in which a reporter gene is linked in place of the gene downstream of the promoter or enhancer site of the gene in which the dimer acts as a transcription factor. It can be carried out by contacting RUNX with an excised cell such as a eukaryotic cell and measuring the presence or absence and change of the reporter gene. As a reporter gene, a gene generally used in reporter assembly can be used. For example, a gene having an enzyme activity such as luciferase, 13 galactosidase, or chloramphee-cholacetyl transferase can be used. The expression of the reporter gene can be measured by detecting the gene product itself or the activity of the gene product. For example, the expression of a reporter gene as described above is up to the gene product itself. Alternatively, it can be measured by detecting the enzyme activity of the gene product.
[0163] (RUNXのュビキチンィ匕方法、分解方法、ュビキチン化剤および分解剤) [0163] (RUNX ubiquitin method, decomposition method, ubiquitinating agent and decomposing agent)
本発明の一態様は、 NEDD4を使用することを特徴とする RUNXのュビキチンィ匕 方法、および該方法を使用することを特徴とする RUNXの分解方法に関する。  One embodiment of the present invention relates to a RUNX ubiquitin method using NEDD4, and a RUNX decomposition method using the method.
[0164] また、本発明の一態様は、 NEDD4を含んでなる RUNXのュビキチン化剤および[0164] Further, one embodiment of the present invention is a RUNX ubiquitinating agent comprising NEDD4 and
RUNXの分解剤に関する。 RUNX decomposition agent.
[0165] さらに、本発明の一態様は、 RUNXのュビキチン化剤を使用して RUNXを処理す ることを特徴とする RUNXの分解方法に関する。 [0165] Furthermore, one embodiment of the present invention relates to a method for decomposing RUNX, characterized by treating RUNX using a RUNX ubiquitinating agent.
[0166] NEDD4を使用することを特徴とする RUNXのュビキチンィ匕方法および該方法を 使用することを特徴とする RUNXの分解方法は、 NEDD4と RUNXとを共存させるこ とにより実施できる。 [0166] The RUNX ubiquitin method characterized by using NEDD4 and the RUNX decomposition method characterized by using the method can be carried out by coexisting NEDD4 and RUNX.
[0167] NEDD4と RUNXとの共存は、インビボ(in vivo)およびインビトロ(in vitro)のい ずれの条件においても実施できる。  [0167] The coexistence of NEDD4 and RUNX can be carried out under both in vivo and in vitro conditions.
[0168] NEDD4と RUNXとの共存は好ましくは細胞において実施できる。具体的には、 R UNXを発現して ヽることが認められた真核細胞または培養細胞株を使用し、該細胞 または細胞株に NEDD4をコードするポリヌクレオチドを含むベクターをトランスフエク シヨンして NEDD4と RUNXとを細胞内で共存させることにより、 RUNXのュビキチン 化方法および該方法を使用することを特徴とする RUNXの分解方法を実施できる( 実施例 3、 5、 8および 9参照)。また、 RUNXを発現していない真核細胞または培養 細胞株を使用し、該細胞または細胞株に NEDD4をコードするポリヌクレオチドを含 むベクターおよび RUNXをコードするポリヌクレオチドを含むベクターを共にトランス フエクシヨンして NEDD4と RUNXとを細胞内で共存させることにより、 RUNXのュビ キチン化方法および該方法を使用することを特徴とする RUNXの分解方法を実施で きる。  [0168] Coexistence of NEDD4 and RUNX can preferably be performed in cells. Specifically, eukaryotic cells or cultured cell lines that have been found to express RUNX are used, and a vector containing a polynucleotide encoding NEDD4 is transfected into the cells or cell lines. By allowing NEDD4 and RUNX to coexist in a cell, a RUNX ubiquitination method and a RUNX degradation method characterized by using this method can be carried out (see Examples 3, 5, 8 and 9). In addition, using eukaryotic cells or cultured cell lines that do not express RUNX, both the vector containing the polynucleotide encoding NEDD4 and the vector containing the polynucleotide encoding RUNX are transfected into the cells or cell lines. By coexisting NEDD4 and RUNX in the cell, a RUNX ubiquitination method and a RUNX degradation method characterized by using the method can be carried out.
[0169] NEDD4と RUNXとを細胞内で共存させて RUNXのュビキチン化方法および該方 法を使用することを特徴とする RUNXの分解方法を実施するとき、上記のように NE DD4と RUNXとを発現しているまたは発現させた細胞に、さらにュビキチンをコード するポリヌクレオチドを含むベクターをトランスフエクシヨンすることができる。 [0170] NEDD4と RUNXとの共存をインビトロで実施する場合、標的蛋白質のュビキチン 化反応には NEDD4以外に、ュビキチン活性ィ匕酵素 (E1)、ュビキチン結合酵素 (E 2)およびュビキチンが必要とされるため、これら酵素およびュビキチンを NEDD4と 共に使用することが適当である。また、 NEDD4による RUNXの分解方法を実施する 場合、ュビキチンィ匕された標的蛋白質の分解にはプロテアノームが関与しているた め、プロテアソームをこれら酵素やュビキチンと共に使用することが好ましい。プロテ ァソームは、プロテアソームを有する細胞力も調製できる。好ましい細胞として、例え ば、ヒト赤血球を使用できる。プロテアノームの調製は、エマ一リッチらの方法(「ザ ジャーナル ォブ バイオロジカル ケミストリー(The Journal of Biological Ch emistry)」、 2000年、第 275卷、 p. 21140— 21148)【こ従って実施できる。ある!/ヽ は、市販のプロテアソームを使用することもできる。例えば、ァフィユティーリサーチプ 口ダクッ社 (AFFINITI Research Products Ltd. )からプロテアソームを購入で きる。 [0169] When performing a RUNX decomposition method characterized in that NEDD4 and RUNX coexist in a cell and using this method, NE DD4 and RUNX are combined as described above. A vector containing a polynucleotide encoding ubiquitin can be further transfected into the expressed or expressed cells. [0170] When coexistence of NEDD4 and RUNX in vitro, ubiquitin-active enzyme (E1), ubiquitin-binding enzyme (E2) and ubiquitin are required in addition to NEDD4 for the ubiquitination reaction of the target protein. Therefore, it is appropriate to use these enzymes and ubiquitin together with NEDD4. In addition, when the RUNX degradation method using NEDD4 is carried out, it is preferable to use the proteasome together with these enzymes and ubiquitin since the proteanome is involved in the degradation of the ubiquitinated target protein. Proteasomes can also be prepared with cellular power with proteasomes. As preferred cells, for example, human erythrocytes can be used. The proteanome can be prepared by the method of Emma Rich et al. (“The Journal of Biological Chemistry”, 2000, Vol. 275, p. 21140-21148). Yes! / ヽ can also use a commercially available proteasome. For example, proteasomes can be purchased from AFFINITI Research Products Ltd.
[0171] ュビキチンィ匕の検出は、ュビキチン化された標的蛋白質の検出により測定できる。  [0171] Detection of ubiquitin can be measured by detection of a ubiquitinated target protein.
ュビキチンィ匕された標的蛋白質の検出は、公知のウェスタンブロッテイング等の方法 により実施できる(実施例 3、 5、 8および 9参照)。標的蛋白質のュビキチンィ匕反応を 行なう前と比較して、ュビキチンィ匕反応を行った後に、分子量が増加した標的蛋白質 が検出された場合、該標的蛋白質はュビキチン化されたと判定できる。  Detection of the ubiquitinated target protein can be performed by a known method such as Western blotting (see Examples 3, 5, 8 and 9). When a target protein having an increased molecular weight is detected after the ubiquitin reaction, compared to before the ubiquitin reaction of the target protein, it can be determined that the target protein has been ubiquitinated.
[0172] 蛋白質の分解の検出は、公知のウェスタンブロッテイング等の方法により実施でき る(実施例 4、 6、 8および 9参照)。標的蛋白質のュビキチンィ匕反応を行なう前と比較 して、ュビキチンィ匕反応を行った後に、標的蛋白質量が低減した場合、該標的蛋白 質は分解されたと判定できる。  [0172] Detection of protein degradation can be performed by a known method such as Western blotting (see Examples 4, 6, 8 and 9). It can be determined that the target protein has been degraded when the amount of the target protein is reduced after the ubiquitin reaction, compared to before the ubiquitin reaction of the target protein.
[0173] RUNXのュビキチン化剤および RUNXの分解剤は、 NEDD4を含んでなることを 特徴とする。本発明に係る RUNXのュビキチン化剤を使用して、 RUNXのュビキチ ン化方法および RUNXの分解方法を実施できる。  [0173] RUNX ubiquitinating agent and RUNX degrading agent are characterized by comprising NEDD4. Using the RUNX ubiquitinating agent according to the present invention, the RUNX ubiquitination method and the RUNX decomposition method can be carried out.
[0174] (RUNXのュビキチンィ匕阻害方法、分解阻害方法、ュビキチン化阻害剤および分解 阻害剤)  [0174] (RUNX ubiquitin inhibition method, degradation inhibition method, ubiquitination inhibitor and degradation inhibitor)
本発明の一態様は、 RUNXのュビキチンィ匕阻害方法、および該阻害方法を使用 することを特徴とする RUNXの分解阻害方法に関する。 RUNXのュビキチンィ匕阻害 方法、および該阻害方法を使用することを特徴とする RUNXの分解阻害方法は、ィ ンビボおよびインビトロの 、ずれの条件にぉ 、ても実施できる。 One embodiment of the present invention provides a method for inhibiting RUNX ubiquitin and uses the inhibition method The present invention relates to a method for inhibiting RUNX degradation. The method for inhibiting RUNX ubiquitin and the method for inhibiting degradation of RUNX, which is characterized by using the inhibition method, can be carried out under in vitro and in vitro conditions.
[0175] また、本発明の一態様は、 RUNXのュビキチンィ匕阻害剤、および分解阻害剤に関 する。 [0175] Further, one embodiment of the present invention relates to a RUNX ubiquitin-inhibitor and a degradation inhibitor.
[0176] さらに、本発明の一態様は、 RUNXのュビキチン化阻害剤を使用することを特徴と する RUNXの分解阻害方法に関する。  [0176] Further, one embodiment of the present invention relates to a method for inhibiting RUNX degradation, which comprises using a RUNX ubiquitination inhibitor.
[0177] 本発明においては、 RUNX1、 RUNX2および RUNX3と NEDD4とを用いた実験 結果から、 NEDD4が RUNXと結合して RUNXのュビキチン化を触媒し、その結果 ュビキチン化された RUNXがュビキチンプロテアソームシステムにより分解されてそ の安定性が低下すると考えられることを見出した。  [0177] In the present invention, from the results of experiments using RUNX1, RUNX2, and RUNX3 and NEDD4, NEDD4 binds to RUNX to catalyze the ubiquitination of RUNX. It was found that the stability of the product is degraded by the degradation.
[0178] したがって、 RUNXに対する NEDD4の作用を阻害することにより、 RUNXのュビ キチンィ匕を阻害できると発明者らは考えている。また、 RUNXのュビキチンィ匕が阻害 されれば RUNXがプロテアソームにより認識されなくなるため、 RUNXのュビキチン 化を阻害することにより RUNXのュビキチンプロテアソームシステムによる分解を阻 害できる。すなわち、 RUNXに対する NEDD4の作用を阻害することにより、 RUNX の分解を阻害できる。  [0178] Accordingly, the inventors believe that inhibiting the action of NEDD4 on RUNX can inhibit RUNX ubiquitin 匕. In addition, if RUNX ubiquitin is inhibited, RUNX will not be recognized by the proteasome, so inhibiting RUNX ubiquitination can prevent degradation of RUNX by the ubiquitin proteasome system. That is, by inhibiting the action of NEDD4 on RUNX, degradation of RUNX can be inhibited.
[0179] RUNXに対する NEDD4の作用を阻害することは、 NEDD4の発現および Zまた は機能を阻害することにより実施できる。  [0179] Inhibiting NEDD4's action on RUNX can be achieved by inhibiting NEDD4 expression and Z or function.
[0180] 「NEDD4の機能」とは、 NEDD4が備えて!/、る働きを意味する。 NEDD4の機能と して、上述したように、 NEDD4の酵素活性、および NEDD4と他の蛋白質、例えば[0180] "NEDD4 functions" means the functions that NEDD4 has! As described above, NEDD4 functions as follows: NEDD4 enzyme activity, and NEDD4 and other proteins such as
RUNXとの結合を例示できる。 An example of the connection with RUNX.
[0181] 「NEDD4の機能を阻害する」とは、 NEDD4が備えて 、る働きを低減させるまたは 消失させることを意味する。 NEDD4の機能を阻害することとして、 NEDD4の酵素活 性、または NEDD4と他の蛋白質、例えば RUNXとの結合を阻害することを例示でき る。 [0181] "Inhibiting NEDD4 function" means reducing or eliminating the function of NEDD4. Inhibiting the function of NEDD4 can be exemplified by inhibiting the enzyme activity of NEDD4 or binding of NEDD4 to other proteins such as RUNX.
[0182] RUNXのュビキチン化阻害方法は、 RUNXと NEDD4の結合、 NEDD4の酵素活 性、および NEDD4の発現のうちの少なくとも 1を阻害することにより実施できる。 [0183] 具体的には、 RUNXのュビキチン化阻害方法は、例えば RUNXと NEDD4との結 合を阻害する化合物、 NEDD4の酵素活性を阻害する化合物、および NEDD4の発 現を阻害する化合物のうちの少なくとも 1を使用することにより実施できる。ここでは、 このような阻害効果を有する化合物 (例えば競合阻害効果を有するポリペプチド類、 抗体および低分子化合物等を挙げられる)を阻害剤と称する。 [0182] The method for inhibiting RUNX ubiquitination can be carried out by inhibiting at least one of the binding of RUNX and NEDD4, the enzyme activity of NEDD4, and the expression of NEDD4. [0183] Specifically, the method for inhibiting RUNX ubiquitination includes, for example, a compound that inhibits the binding of RUNX to NEDD4, a compound that inhibits the enzyme activity of NEDD4, and a compound that inhibits the expression of NEDD4. This can be done by using at least 1. Here, compounds having such an inhibitory effect (for example, polypeptides having competitive inhibitory effects, antibodies, low-molecular compounds, etc.) are referred to as inhibitors.
[0184] RUNXのュビキチン化阻害剤および RUNXの分解阻害剤は、 RUNXと NEDD4 の結合を阻害する化合物、 NEDD4の酵素活性の阻害する化合物、および NEDD 4の発現を阻害する化合物のうちいずれ力 1を少なくとも含んでなる。  [0184] RUNX ubiquitination inhibitor and RUNX degradation inhibitor are compounds that inhibit the binding of RUNX and NEDD4, compounds that inhibit the enzyme activity of NEDD4, and compounds that inhibit the expression of NEDD 4 1 At least.
[0185] 「RUNXと NEDD4の結合」とは、 RUNXと NEDD4とが、複合体を开成するように 、水素結合、疎水結合または静電的相互作用等の非共有結合により相互作用するこ とを意味する。ここでの結合とは、 RUNXと NEDD4がその一部分において結合す れば足りる。例えば、 RUNXまたは NEDD4を構成するアミノ酸の中に、 RUNXと N EDD4との結合に関与しな 、アミノ酸が含まれて 、てもよ!/、。  [0185] "Binding of RUNX and NEDD4" means that RUNX and NEDD4 interact with each other by a non-covalent bond such as a hydrogen bond, a hydrophobic bond, or an electrostatic interaction so as to form a complex. Means. In this case, it is sufficient that RUNX and NEDD4 are partly connected. For example, the amino acids that make up RUNX or NEDD4 may contain amino acids that are not involved in the binding of RUNX and NEDD4! /.
[0186] 「RUNXと NEDD4の結合を阻害する」とは、 RUNXと NEDD4とから形成される複 合体の量を低減させるまたは消失させることを意味する。  [0186] “Inhibiting the binding of RUNX and NEDD4” means reducing or eliminating the amount of the complex formed from RUNX and NEDD4.
[0187] RUNXと NEDD4との結合の測定は、ウェスタンブロッテイング、免疫沈降法、プル ダウン法、ツーハイブリッド法および蛍光共鳴エネルギー転移法等の自体公知の方 法により実施できる。これらの方法は、組合わせて利用することができる。  [0187] The measurement of the binding between RUNX and NEDD4 can be carried out by a method known per se, such as Western blotting, immunoprecipitation, pull-down, two-hybrid, and fluorescence resonance energy transfer. These methods can be used in combination.
[0188] RUNXと NEDD4の結合を阻害する化合物は、好ましくは当該結合を特異的に阻 害する化合物、より好ましくは当該結合を特異的に阻害する低分子量化合物である 。 RUNXと NEDD4の結合を特異的に阻害するとは、当該結合を強く阻害するが、 他の蛋白質間結合は阻害しな 、か、弱く阻害することを意味する。  [0188] The compound that inhibits the binding of RUNX and NEDD4 is preferably a compound that specifically inhibits the binding, and more preferably a low molecular weight compound that specifically inhibits the binding. To specifically inhibit the binding of RUNX and NEDD4 means that the binding is strongly inhibited, but the binding between other proteins is not inhibited or is weakly inhibited.
[0189] RUNXと NEDD4の結合を阻害する化合物は、例えば、 NEDD4の不活性型変異 体(以下、不活性型 NEDD4と称することがある)であり得る。好ましい不活性型 NED D4として、 RUNXとの結合能を有する力 E3リガーゼ活性を有さない不活性型 NE DD4を使用できる。このような不活性型 NEDD4は、野生型の NEDD4と拮抗して R UNXと結合することにより、 RUNXに対する NEDD4の作用を阻害できる。したがつ て、このような不活性型 NEDD4は、 RUNXのュビキチン化を阻害できる。不活性型 NEDD4は、 NEDD4のアミノ酸配列に基づいて所望の蛋白質を設計して公知の方 法で製造し、取得した蛋白質の中力 RUNXと NEDD4の結合を阻害するものを、 後述の化合物の同定方法に記載の方法を使用して選別することにより取得できる。 [0189] The compound that inhibits the binding of RUNX and NEDD4 can be, for example, an inactive mutant of NEDD4 (hereinafter sometimes referred to as inactive NEDD4). As a preferred inactive NED D4, an inactive NE DD4 having the ability to bind to RUNX and having no E3 ligase activity can be used. Such inactive NEDD4 can inhibit the action of NEDD4 on RUNX by binding to RUNX in competition with wild-type NEDD4. Therefore, such inactive NEDD4 can inhibit RUNX ubiquitination. Inactive NEDD4 is designed by designing a desired protein based on the amino acid sequence of NEDD4 and producing it using a known method. It can obtain by sorting using the method of.
[0190] 「NEDD4の不活性型変異体」とは、 NEDD4に、アミノ酸の欠失、置換、付加また は挿入等の変異が導入された NEDD4変異体であって、野生型の NEDD4と比較し て E3リガーゼ活性が減弱したまたは消失した NEDD4変異体を意味する。不活性型 NEDD4は、天然に存在するものであってもよぐ人工的に変異を導入したものであ つてもよい。 [0190] An "inactive mutant of NEDD4" is a NEDD4 mutant in which mutations such as amino acid deletion, substitution, addition or insertion have been introduced into NEDD4, compared to wild-type NEDD4. This means a NEDD4 mutant whose E3 ligase activity is attenuated or lost. Inactive NEDD4 may be naturally occurring or artificially mutated.
[0191] 不活性型 NEDD4における変異部位は、例えば、 NEDD4のアミノ酸配列におい て NEDD4の E3リガーゼ活性に必要な部位である。具体的には本部位は、例えば、 配列番号 2に記載のアミノ酸配列において第 967番目のシスティン残基である。該シ スティン残基は、配列番号 4に記載のアミノ酸配列においては第 867番目のシスティ ン残基に相当する。該システィン残基は、ュビキチンが結合する E3リガーゼ活性の 活性部位であり、 NEDD4の E3リガーゼ活性に必須なアミノ酸残基である。  [0191] The mutation site in inactive NEDD4 is, for example, a site necessary for NEDD4 E3 ligase activity in the amino acid sequence of NEDD4. Specifically, this site is, for example, the 967th cysteine residue in the amino acid sequence set forth in SEQ ID NO: 2. The cysteine residue corresponds to the 867th cysteine residue in the amino acid sequence shown in SEQ ID NO: 4. The cysteine residue is an active site of E3 ligase activity to which ubiquitin binds, and is an amino acid residue essential for NEDD4 E3 ligase activity.
[0192] 不活性型 NEDD4は、好ましくは例えば、配列番号 11または配列番号 12に記載の アミノ酸配列で表される蛋白質である。配列番号 11に記載のアミノ酸配列で表される 蛋白質は、配列番号 2に記載のアミノ酸配列において第 967番目のシスティン残基 をァラニン残基に置換したアミノ酸配列で表される蛋白質である。配列番号 12に記 載のアミノ酸配列で表される蛋白質は、配列番号 4に記載のアミノ酸配列において第 867番目のシスティン残基をァラニン残基に置換したアミノ酸配列で表される蛋白質 である(以下、不活性型短鎖 NEDD4と称することがある)。  [0192] Inactive NEDD4 is preferably a protein represented by the amino acid sequence of SEQ ID NO: 11 or SEQ ID NO: 12, for example. The protein represented by the amino acid sequence shown in SEQ ID NO: 11 is a protein represented by the amino acid sequence in which the 967th cysteine residue is substituted with an alanine residue in the amino acid sequence shown in SEQ ID NO: 2. The protein represented by the amino acid sequence shown in SEQ ID NO: 12 is a protein represented by the amino acid sequence in which the 867th cysteine residue is substituted with an alanine residue in the amino acid sequence shown in SEQ ID NO: 4 (hereinafter referred to as the amino acid sequence shown below). , Sometimes referred to as inactive short chain NEDD4).
[0193] 上記不活性型 NEDD4はいずれも、 RUNXと結合するが E3リガーゼ活性を有さず 、 RUNXをュビキチン化しない(実施例 3、 4、 5、 6、 8および 9参照)。このことから、こ れら不活性型変異体は 、ずれも、 NEDD4または短鎖型 NEDD4と RUNXとの結合 を拮抗的に阻害し、その結果、 NEDD4または短鎖型 NEDD4による RUNXのュビ キチンィ匕を阻害し得ると発明者らは考えて 、る。  [0193] None of the inactive NEDD4 binds to RUNX but does not have E3 ligase activity and does not ubiquitinate RUNX (see Examples 3, 4, 5, 6, 8, and 9). From these results, these inactive mutants, in turn, competitively inhibit the binding of NEDD4 or short-chain NEDD4 to RUNX, and as a result, RUNX ubiquitin by NEDD4 or short-chain NEDD4. The inventors believe that they can inhibit wrinkles.
[0194] また、 RUNXと NEDD4の結合を阻害する化合物は、 RUNXと NEDD4とが結合 する部位のアミノ酸配列力もなるポリペプチドであり得る。このようなポリペプチドは、 蛋白質間の結合を競合的に阻害できる。このようなポリペプチドは、 RUNXまたは N EDD4のアミノ酸配列力も設計し、自体公知のペプチド合成法により合成したものか ら、 RUNXと NEDD4の結合を阻害するものを選択することにより取得できる。このよ うに特定されたポリペプチドに、 1〜数個のアミノ酸残基の欠失、置換、付加または挿 入等の変異を導入したものも本発明の範囲に包含される。このような変異を導入した ポリペプチドは、 RUNXと NEDD4の結合を阻害するものが好ましい。変異を有する ポリペプチドは天然に存在するものであってよぐまた人工的に変異を導入したもの であってもよい。これらポリペプチドは、後述する一般的な製造方法により取得できる [0194] The compound that inhibits the binding of RUNX and NEDD4 may be a polypeptide that also has an amino acid sequence at the site where RUNX and NEDD4 bind. Such polypeptides are Binding between proteins can be competitively inhibited. Such a polypeptide can be obtained by designing the amino acid sequence of RUNX or NEDD4 and selecting one that inhibits the binding of RUNX and NEDD4 from those synthesized by a peptide synthesis method known per se. A polypeptide in which mutations such as deletion, substitution, addition or insertion of one to several amino acid residues are introduced into the identified polypeptide is also encompassed in the scope of the present invention. The polypeptide into which such a mutation is introduced preferably inhibits the binding of RUNX and NEDD4. Polypeptides having mutations may be naturally occurring or artificially introduced with mutations. These polypeptides can be obtained by a general production method described later.
[0195] また、 RUNXと NEDD4の結合を阻害する化合物は、 RUNXまたは NEDD4を認 識する抗体であって、 RUNXと NEDD4の結合を阻害する抗体およびそのフラグメ ントであり得る。かかる抗体は、 RUNXまたは NEDD4自体、またはこれらの断片、好 ましくは RUNXと NEDD4が結合する部位のアミノ酸配列からなるポリペプチドを抗 原として自体公知の抗体作製法により取得できる。 [0195] Further, the compound that inhibits the binding of RUNX and NEDD4 may be an antibody that recognizes RUNX or NEDD4, and an antibody that inhibits the binding of RUNX and NEDD4, or a fragment thereof. Such an antibody can be obtained by a known antibody production method using RUNX or NEDD4 itself, or a fragment thereof, preferably a polypeptide consisting of the amino acid sequence of the site where RUNX and NEDD4 bind to each other as an antigen.
[0196] RUNXと NEDD4の結合を阻害する化合物はさらにまた、 RUNXまたは NEDD4 を特異的に認識するァプタマ一であって、 RUNXと NEDD4の結合を阻害するァプ タマ一であり得る。ァプタマ一は、核酸ァプタマ一あるいはペプチドァプタマ一である ことができ、力かるァプタマ一は、公知の方法(例えば、ハーマン(Hermann T. )ら 、「サイエンス(Science)」、 2000年、第 287卷、第 5454号、 p. 820— 825 ;ノーグ スタラー(Burgstaller P. )ら、「カレント オピニオン イン ドラッグ ディスカバリー アンド ティベロフメント (Current Opinion in Drug Discovery and Devel opment)」、 2002年、第 5卷、第 5号、 p. 690— 700 ;およびホップ—セイラー(Hop pe-Seyler F. )ら、「カレント モレキュラー メデイシン(Current Molecular M edicine)」、 2004年、第 4卷、第 5号、 p. 529- 538)に記載された方法)を使用して 取得できる。  [0196] The compound that inhibits the binding of RUNX and NEDD4 may also be an aptamer that specifically recognizes RUNX or NEDD4 and inhibits the binding of RUNX and NEDD4. The aptamer can be a nucleic acid aptamer or a peptide aptamer, and a powerful aptamer can be a known method (eg, Hermann T. et al., “Science”, 2000, 287th, No. 5454, p. 820-825; Burgstaller P. et al., “Current Opinion in Drug Discovery and Development”, 2002, V. 5, 690-700; and Hop pe-Seyler F. et al., "Current Molecular Medicine", 2004, IV, 5, p. 529-538. ) Can be obtained using the method described in).
[0197] 「NEDD4の酵素活性」とは、 NEDD4の E3リガーゼ活性を意味する。  [0197] "Enzyme activity of NEDD4" means the E3 ligase activity of NEDD4.
[0198] 「NEDD4の酵素活性を阻害する」とは、 NEDD4の E3リガーゼ活性を低減させる または消失させることを意味する。 [0199] NEDD4の酵素活性を阻害する化合物は、後述する化合物の同定方法を使用し て取得できる。 NEDD4の酵素活性を阻害する化合物は、例えば、 NEDD4の酵素 活性を阻害する抗体またはそのフラグメントであってもよ 、し、 NEDD4に特異的に 結合しその活性を阻害する作用を有するアブタマ一であることもできる。抗体ある ヽ はァプタマ一は上述の方法で取得でき、これらの NEDD4の酵素活性の阻害作用を 後述する化合物の同定方法に記載の方法で測定することにより、 NEDD4の酵素活 性を阻害する作用を有する抗体あるいはアブタマ一を取得できる。 [0198] "Inhibiting NEDD4 enzyme activity" means reducing or eliminating NEDD4 E3 ligase activity. [0199] A compound that inhibits the enzyme activity of NEDD4 can be obtained using the compound identification method described below. The compound that inhibits the enzyme activity of NEDD4 may be, for example, an antibody or a fragment thereof that inhibits the enzyme activity of NEDD4, and is an abutama that specifically binds to NEDD4 and has an action of inhibiting the activity. You can also An antibody or aptamer can be obtained by the above-mentioned method. By measuring the inhibitory action of these enzyme activities of NEDD4 by the method described in the compound identification method described later, the action of inhibiting the enzyme activity of NEDD4 can be obtained. Antibody or abutama can be obtained.
[0200] 「NEDD4の発現」とは、 NEDD4をコードする DNAの遺伝子情報が mRNAに転 写されること、または、 mRNAに転写され、かつ蛋白質 (NEDD4)のアミノ酸配列と して翻訳されることをいう。  [0200] "Expression of NEDD4" means that gene information of DNA encoding NEDD4 is transferred to mRNA, or is transcribed into mRNA and translated as the amino acid sequence of protein (NEDD4) Say.
[0201] 「NEDD4の発現を阻害する」とは、 NEDD4をコードする DNAの遺伝子情報が m RNAに転写される過程、または、 mRNAに転写され、かつ蛋白質(NEDD4)のアミ ノ酸配列として翻訳される過程で生じる様々な反応の少なくとも 1つを妨げることによ り、 NEDD4遺伝子の転写 '翻訳による NEDD4の生成を妨げることを意味する。  [0201] “Inhibits NEDD4 expression” means that the gene information of DNA encoding NEDD4 is transcribed into mRNA, or is transcribed into mRNA and translated as the amino acid sequence of protein (NEDD4) By interfering with at least one of the various reactions that occur during the process, the transcription of the NEDD4 gene means that the production of NEDD4 by translation is prevented.
[0202] NEDD4の発現を阻害する化合物は、後述する化合物の同定方法を使用して取 得できる。 NEDD4の発現を阻害する化合物は、例えば、 NEDD4をコードするポリ ヌクレオチドのアンチセンスオリゴヌクレオチドや、 NEDD4の発現を阻害し得る二重 鎖ポリヌクレオチドであり得る。  [0202] A compound that inhibits the expression of NEDD4 can be obtained using the compound identification method described below. The compound that inhibits the expression of NEDD4 can be, for example, an antisense oligonucleotide of a polynucleotide encoding NEDD4 or a double-stranded polynucleotide that can inhibit the expression of NEDD4.
[0203] 本発明にお 、ては、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを同定し た。本二重鎖ポリヌクレオチドは、具体的には NEDD4をコードするポリヌクレオチド の部分塩基配列力 なるポリヌクレオチドと、該部分塩基配列の相補的塩基配列から なるポリヌクレオチドと力もなる二重鎖 RNAである。  [0203] In the present invention, a double-stranded polynucleotide capable of inhibiting the expression of NEDD4 has been identified. Specifically, this double-stranded polynucleotide is a double-stranded RNA that also has the power of a polynucleotide having a partial base sequence ability of a polynucleotide encoding NEDD4 and a polynucleotide comprising a complementary base sequence of the partial base sequence. .
[0204] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドとして、具体的には、次に示す 二重鎖ポリヌクレオチドを例示できる:(i)配列番号 21に記載の塩基配列で表される ポリヌクレオチドと配列番号 22に記載の塩基配列で表されるポリヌクレオチドからなる 二重鎖ポリヌクレオチド、 (ii)配列番号 23に記載の塩基配列で表されるポリヌクレオ チドと配列番号 24に記載の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリ ヌクレオチド、および (iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチド と配列番号 26に記載の塩基配列で表されるポリヌクレオチド力 なる二重鎖ポリヌク レオチド。これら二重鎖ポリヌクレオチドはいずれも、ヒト由来の NEDD4をコードする ポリヌクレオチドの部分配列からなるポリヌクレオチドと、該部分塩基配列の相補的塩 基配列からなるポリヌクレオチドとからなる二重鎖 RNAであり、ヒト癌細胞株にトランス フエクシヨンしたときに内因性 NEDD4の発現を低下させた (実施例 12)。 [0204] Specific examples of the double-stranded polynucleotide capable of inhibiting the expression of NEDD4 include the following double-stranded polynucleotide: (i) a polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 21 A double-stranded polynucleotide comprising a nucleotide and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22, (ii) a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and the base sequence set forth in SEQ ID NO: 24 (Iii) a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 And a double-stranded polynucleotide comprising the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 26. Each of these double-stranded polynucleotides is a double-stranded RNA comprising a polynucleotide consisting of a partial sequence of a polynucleotide encoding NEDD4 derived from human and a polynucleotide consisting of a complementary base sequence of the partial base sequence. Yes, endogenous NEDD4 expression was reduced when transfected into human cancer cell lines (Example 12).
[0205] 本発明において使用できる二重鎖ポリヌクレオチドは上記例示したものに限定され ず、 NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドである限りにお ヽて 、ずれ の二重鎖ポリヌクレオチドでもあり得る。  [0205] The double-stranded polynucleotide that can be used in the present invention is not limited to those exemplified above, and any double-stranded polynucleotide can be used as long as it is a double-stranded polynucleotide that can inhibit the expression of NEDD4. But it can be.
[0206] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドとして、 RNA干渉により NED D4の発現を阻害し得る短鎖二重鎖ポリヌクレオチド、すなわち NEDD4に対する siR NA (small interfering RNA)を例示できる(エルバシ(Elbashir S. M. )ら、「 ネイチヤー(Nature)」、 2001年、第 411卷、 p. 494— 498 ;およびパディソン(Pad dison P. J. )ら、「ジーンズ アンド ディべロプメント(Genes and Development )」、 2002年、第 16卷、 p. 948— 958)。  [0206] Examples of double-stranded polynucleotides that can inhibit NEDD4 expression include short double-stranded polynucleotides that can inhibit NED D4 expression by RNA interference, ie, siRNA (small interfering RNA) against NEDD4 ( Elbashir SM et al., “Nature”, 2001, 411, p. 494-498; and Pad dison PJ et al., “Genes and Development”, 2002 Year 16th, p. 948-958).
[0207] NEDD4に対する siRNAは、 NEDD4 mRNAの部分配列からなる RNA (センス RNA)と該 RNAの塩基配列に相補的な塩基配列からなる RNA (アンチセンス RNA )とを、 NEDD4 mRNAの配列に基づいて設計し、 自体公知の化学合成法により合 成し、得られた両 RNAをノヽイブリダィゼーシヨンさせることにより二重鎖 RNAを製造 し、さらにその中力も NEDD4の発現を阻害し得るものを選択することにより取得でき る。 NEDD4の発現を阻害し得る siRNAの選択は、 NEDD4を発現している細胞に 調べようとする二重鎖 RNAをトランスフエクシヨンし、内因性 NEDD4の発現量を測定 し、該発現量を阻害し得るものを選択することにより実施できる。 siRNAを構成するセ ンス RNAおよびアンチセンス RNAは、それぞれ数個な ヽし 10数個程度のヌクレオ チドからなることが好ましい。また、それぞれ、その 3'末端に、オーバーハング配列と 呼ばれる 1個な 、し数個の塩基配列からなるヌクレオチドを結合させることが好ま ヽ 。オーバーハング配列は、 RNAをヌクレアーゼ力 保護する作用を有する。オーバ 一ハング配列は、該 RNAの RN A干渉効果を阻害しない限りにお 、て特に制限され ず、好ましくは 1個ないし 10個、より好ましくは 1個ないし 4個、さらに好ましくは 2個の ヌクレオチド力もなるものをいずれも用いることができる。具体的には、デォキシチミジ ル酸カもなる配列(例えば TT)、ゥリジル酸カもなる配列(例えば UU)、デォキシチミ ジル酸に続!、て任意のヌクレオチドが結合した配列(例えば TN) t 、つた配列を例 示できる。合成を安価に行えることおよびヌクレアーゼ耐性がより強いことから、より好 ましくは、 2つのデォキシチミジル酸力 なる配列をオーバーハング配列として用いる 。オーバーハング配列は、センス RNAおよびアンチセンス RNAのそれぞれの 3'末 端のリボース^水酸基部位にジエステル結合により結合させる。 [0207] The siRNA for NEDD4 is composed of RNA consisting of a partial sequence of NEDD4 mRNA (sense RNA) and RNA consisting of a base sequence complementary to the base sequence of the RNA (antisense RNA) based on the sequence of NEDD4 mRNA. A double-stranded RNA is produced by designing and synthesizing by a chemical synthesis method known per se, and making the obtained RNA noislative, and its intermediate force can also inhibit the expression of NEDD4. It can be acquired by selecting. Selection of siRNA that can inhibit NEDD4 expression involves transfecting the double-stranded RNA to be examined in cells expressing NEDD4, measuring the expression level of endogenous NEDD4, and inhibiting the expression level. It can be implemented by selecting what to obtain. It is preferable that the sense RNA and the antisense RNA constituting the siRNA each consist of several or about ten or more nucleotides. In addition, it is preferable that one or several nucleotide sequences called an overhang sequence are bound to the 3 ′ end of each nucleotide. The overhang sequence has the effect of protecting RNA from nuclease power. The overhang sequence is not particularly limited as long as it does not inhibit the RNA interference effect of the RNA, preferably 1 to 10, more preferably 1 to 4, more preferably 2 Any of those having nucleotide strength can be used. Specifically, a sequence that also includes deoxythymidylate (eg, TT), a sequence that also includes uridylate (eg, UU), a sequence that is linked to deoxythymidylate, followed by any nucleotide (eg, TN) t An array can be illustrated. More preferably, two deoxythymidylate sequences are used as overhang sequences because they can be synthesized inexpensively and are more resistant to nucleases. The overhang sequence is bound to the ribose hydroxyl group at the 3 'end of each of sense RNA and antisense RNA by a diester bond.
NEDD4の発現を RNA干渉の手法により阻害し得る siRNAとしてまた、 shRNAを 例示できる。 shRNAは、ヘアピン構造を有する短鎖二重鎖 RNAであり、 siRNAと同 様、 RNA干渉により遺伝子の発現を抑制する(パディソン (Paddison P. J. )ら、「ジ ーンズ アンド ディべ口プメント(Genes and Development)」、 2002年、第 16 卷、 p. 948— 958)。 shRNAは、センス RNAとアンチセンス RNAとが例えばオリゴ ヌクレオチド等により連結され、センス RNA由来部分とアンチセンス RNA由来部分 が二重鎖を形成するため、ヘアピン様構造を呈する。 shRNAは、センス RNAとアン チセンス RNAに加え、これら 2つの RNAを連結しかつループ構造を形成するような オリゴヌクレオチドを含む RNAを、 NEDD4 mRNAの塩基配列に基づいて設計し て、自体公知の方法によりヘアピン構造を有する短鎖二重鎖 RNA製造し、さらにそ の中力も NEDD4の発現を阻害し得るものを選択することにより取得できる。 NEDD 4の発現を阻害し得る shRNAの選択は、 NEDD4を発現して!/ヽる細胞に調べようと するヘアピン構造を有する短鎖二重鎖 RNAをトランスフエクシヨンし、内因性 NEDD 4の発現量を測定し、該発現量を阻害し得るものを選択することにより実施できる。好 ましくは、センス RNAの ^末端とループ構造を形成するオリゴヌクレオチドの^末端 とが結合し、さらにループ構造を形成するオリゴヌクレオチドの^末端とアンチセンス RNAの ^末端とが結合したオリゴヌクレオチドであることが望まし 、。ループ構造を 形成するオリゴヌクレオチドとは、センス RNAとアンチセンス RNAの間に存在して両 RNAを連結でき、それ自体がループ構造を形成するものを意味する。このようなオリ ゴヌクレオチドの設計は、文献 (パディソン(Paddison P. J. )ら、「ジーンズ アンド ディべロプメント(Genes and Development)」、 2002年、第 16卷、 p. 948— 95 8)の記載を参考にして実施できる。好ましくは 4個ないし 23個、より好ましくは 4個な いし 8個のヌクレオチドからなるものが望ましい。例えば、 TTCAAGAGA (Ambion 社製または Oligoengine社製)、 AACGTT、 TTAA、 CAAGCTTC等の配列を挙 げることができる。ヘアピン構造を有する二重鎖の形成は、センス RNA由来部分とァ ンチセンス RNA由来部分とを慣用の方法でアニーリングすることにより実施できる。 Examples of siRNA that can inhibit the expression of NEDD4 by RNA interference techniques include shRNA. shRNA is a short double-stranded RNA with a hairpin structure and, like siRNA, suppresses gene expression by RNA interference (Paddison PJ et al., “Genes and Development (Genes and Development). ”, 2002, 16th pp. 948-958). shRNA has a hairpin-like structure because sense RNA and antisense RNA are linked by, for example, an oligonucleotide, and a sense RNA-derived portion and an antisense RNA-derived portion form a double strand. In addition to sense RNA and antisense RNA, shRNA is designed based on the nucleotide sequence of NEDD4 mRNA by designing RNA containing oligonucleotides that link these two RNAs and form a loop structure. Can be obtained by producing a short double-stranded RNA having a hairpin structure and selecting one that can inhibit the expression of NEDD4. The selection of shRNAs that can inhibit NEDD 4 expression is achieved by transfecting short double-stranded RNA with a hairpin structure that expresses NEDD4! It can be carried out by measuring the amount and selecting one that can inhibit the expression level. It is preferable that the ^ terminus of the sense RNA and the ^ terminus of the oligonucleotide forming the loop structure are combined, and further the oligonucleotide linking the ^ terminus of the oligonucleotide forming the loop structure and the ^ terminus of the antisense RNA. Hope to be. An oligonucleotide that forms a loop structure means an oligonucleotide that exists between a sense RNA and an antisense RNA and that can link both RNAs and itself forms a loop structure. The design of such oligonucleotides is described in the literature (Paddison PJ et al., “Genes and Development”, 2002, Vol. 16, p. 948-95. It can be implemented with reference to the description in 8). Preferably 4 to 23, more preferably 4 or 8 nucleotides are desirable. For example, sequences such as TTCAAGAGA (Ambion or Oligoengine), AACGTT, TTAA, CAAGCTTC and the like can be mentioned. Formation of a duplex having a hairpin structure can be carried out by annealing a sense RNA-derived portion and an antisense RNA-derived portion by a conventional method.
[0209] 本発明の態様には、上記二重鎖ポリヌクレオチドが含まれる。好ましくは、次に示す 二重鎖ポリヌクレオチドを例示できる:(i)配列番号 21に記載の塩基配列で表される ポリヌクレオチドと配列番号 22に記載の塩基配列で表されるポリヌクレオチドからなる 二重鎖ポリヌクレオチド、 (ii)配列番号 23に記載の塩基配列で表されるポリヌクレオ チドと配列番号 24に記載の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリ ヌクレオチド、および (iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチド と配列番号 26に記載の塩基配列で表されるポリヌクレオチド力 なる二重鎖ポリヌク レオチド。 [0209] An embodiment of the present invention includes the double-stranded polynucleotide. Preferably, the following double-stranded polynucleotide can be exemplified: (i) consisting of a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22 A heavy chain polynucleotide, (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and (iii) a sequence A polynucleotide represented by the nucleotide sequence represented by No. 25 and a double-stranded polynucleotide comprising the polynucleotide represented by the nucleotide sequence represented by SEQ ID No. 26.
[0210] また本発明の態様には、上記二重鎖ポリヌクレオチドを構成する一本鎖ポリべプチ ド、例えば配列番号 21から 26のいずれか 1に記載の塩基配列で表されるポリヌクレ ォチドも含まれる。  [0210] In the embodiment of the present invention, there is also a single-stranded polypeptide constituting the double-stranded polynucleotide, for example, a polynucleotide represented by the nucleotide sequence set forth in any one of SEQ ID NOs: 21 to 26. included.
[0211] 本発明に係る RUNXのュビキチンィ匕阻害方法および RUNXの分解阻害方法は、 好ましくは、上記 NEDD4不活性型変異体および上記 NEDD4の発現を阻害し得る 二重鎖ポリヌクレオチドを使用して実施できる。より好ましくは本発明に係る RUNXの ュビキチン化阻害方法および RUNXの分解阻害方法は、次に示す蛋白質および二 重鎖ポリヌクレオチドから選択される少なくとも 1つを使用して実施できる:配列番号 1 1に記載のアミノ酸配列で表される蛋白質;配列番号 12に記載のアミノ酸配列で表さ れる蛋白質;配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 2 2に記載の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド;配列 番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載の塩基 配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド;および配列番号 25 に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載の塩基配列で表 されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 [0212] 本発明に係る RUNXのュビキチンィ匕阻害剤および RUNXの分解阻害剤は、好ま しくは、上記 NEDD4不活性型変異体および上記 NEDD4の発現を阻害し得る二重 鎖ポリヌクレオチド力も選択される少なくとも 1つを有効量含んでなる。より好ましくは 本発明に係る RUNXのュビキチンィ匕阻害剤および RUNXの分解阻害剤は、次に示 す蛋白質および二重鎖ポリヌクレオチドから選択される少なくとも 1つを有効量含んで なる:配列番号 11に記載のアミノ酸配列で表される蛋白質;配列番号 12に記載のァ ミノ酸配列で表される蛋白質;配列番号 21に記載の塩基配列で表されるポリヌクレオ チドと配列番号 22に記載の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリ ヌクレオチド;配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 2 4に記載の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド;およ び配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 [0211] The RUNX ubiquitin inhibition method and the RUNX degradation inhibition method according to the present invention are preferably performed using the NEDD4 inactive mutant and the double-stranded polynucleotide capable of inhibiting the expression of NEDD4. it can. More preferably, the method for inhibiting RUNX ubiquitination and the method for inhibiting RUNX degradation according to the present invention can be performed using at least one selected from the following proteins and double-stranded polynucleotides: SEQ ID NO: 1 A protein represented by the amino acid sequence described; a protein represented by the amino acid sequence represented by SEQ ID NO: 12; a polynucleotide represented by the base sequence represented by SEQ ID NO: 21 and the base sequence represented by SEQ ID NO: 22. A double-stranded polynucleotide comprising the polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24; and A duplex comprising the polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and the polynucleotide represented by the base sequence set forth in SEQ ID NO: 26 Strand polynucleotide. [0212] The RUNX ubiquitin inhibitor and the RUNX degradation inhibitor according to the present invention are preferably selected for the NEDD4 inactive mutant and the double-stranded polynucleotide force capable of inhibiting the expression of NEDD4. Contains an effective amount of at least one. More preferably, the RUNX ubiquitin inhibitor and the RUNX degradation inhibitor according to the present invention comprise an effective amount of at least one selected from the following proteins and double-stranded polynucleotides: SEQ ID NO: 11 A protein represented by the amino acid sequence described; a protein represented by the amino acid sequence represented by SEQ ID NO: 12; a polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 21; and a base sequence represented by SEQ ID NO: 22. A double-stranded polynucleotide comprising the polynucleotide represented; a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the polynucleotide represented by the base sequence set forth in SEQ ID NO: 24 And a duplex comprising the polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and the polynucleotide represented by the base sequence set forth in SEQ ID NO: 26 Li nucleotide.
[0213] 本発明に係る RUNXのュビキチン化阻害剤を使用して、 RUNXのュビキチン化阻 害方法および RUNXの分解阻害方法を実施できる。  [0213] Using the RUNX ubiquitination inhibitor according to the present invention, the RUNX ubiquitination inhibition method and the RUNX degradation inhibition method can be carried out.
[0214] (医薬組成物)  [0214] (Pharmaceutical composition)
本発明の一態様は、本発明に係る RUNXのュビキチン化剤および Zまたは本発 明に係る RUNXの分解剤を有効成分としてその有効量含んでなる医薬組成物に関 する。また、本発明の別の一態様は、本発明に係る RUNXのュビキチンィ匕阻害剤お よび Zまたは本発明に係る RUNXの分解阻害剤を有効成分としてその有効量含ん でなる医薬組成物に関する。  One aspect of the present invention relates to a pharmaceutical composition comprising an effective amount of the RUNX ubiquitinating agent according to the present invention and Z or the RUNX decomposing agent according to the present invention as active ingredients. Another aspect of the present invention relates to a pharmaceutical composition comprising the RUNX ubiquitin inhibitor according to the present invention and Z or the RUNX degradation inhibitor according to the present invention as an effective ingredient.
[0215] 本発明に係る RUNXのュビキチン化剤、本発明に係る RUNXの分解剤、並びに 該ュビキチン化剤および Zまたは該 RUNXの分解剤を有効量含んでなる医薬組成 物は、 RUNXのュビキチン化および該ュビキチン化による RUNXの分解の低減に 起因する疾患の予防および Zまたは治療剤として使用できる。これら薬剤および医 薬組成物を使用して、このような疾患の予防および Zまたは治療方法を実施できる。  [0215] A RUNX ubiquitinating agent according to the present invention, a RUNX decomposing agent according to the present invention, and a pharmaceutical composition comprising the ubiquitinating agent and an effective amount of Z or the RUNX decomposing agent, In addition, it can be used as a preventive and Z or therapeutic agent for diseases caused by reduction of RUNX degradation by the ubiquitination. These drugs and pharmaceutical compositions can be used to implement prevention and Z or treatment methods for such diseases.
[0216] 本発明に係る RUNXのュビキチンィ匕阻害剤、本発明に係る RUNXの分解阻害剤 、並びに該ュビキチンィ匕阻害剤および Zまたは該 RUNXの分解阻害剤を有効量含 んでなる医薬組成物は、 RUNXのュビキチン化および該ュビキチン化による RUNX の分解の亢進に起因する疾患の予防および zまたは治療剤として使用できる。これ ら薬剤および医薬組成物を使用して、このような疾患の予防および Zまたは治療方 法を実施できる。 [0216] The RUNX ubiquitin inhibitor according to the present invention, the RUNX degradation inhibitor according to the present invention, and the pharmaceutical composition comprising the ubiquitin inhibitor and Z or the RUNX degradation inhibitor in an effective amount, RUNX ubiquitination and RUNX by ubiquitination It can be used as a preventive and z or therapeutic agent for diseases caused by increased degradation of These drugs and pharmaceutical compositions can be used to implement prevention and Z or treatment methods for such diseases.
[0217] RUNX1は造血細胞の分ィ匕に関与しており、白血病の原因遺伝子である(非特許 文献 4および 5)。具体的には、 RUNX1機能の消失が白血病の発症に関与すること を示す報告がある(非特許文献 6および 7)。このことから、 RUNX1の低減が白血病 等の癌疾患の発症や増悪に関与すると発明者らは考えている。  [0217] RUNX1 is involved in hematopoietic cell sorting and is a causative gene of leukemia (Non-patent Documents 4 and 5). Specifically, there are reports showing that loss of RUNX1 function is involved in the development of leukemia (Non-patent Documents 6 and 7). Based on this, the inventors believe that reduction of RUNX1 is involved in the onset and exacerbation of cancer diseases such as leukemia.
[0218] NEDD4による RUNX1のュビキチン化および該ュビキチン化による RUNX1の分 解を阻害することにより、 RUNX1の低減を阻害でき、その結果、白血病等の癌疾患 を予防および Zまたは治療できると発明者らは考えている。  [0218] By inhibiting the ubiquitination of RUNX1 by NEDD4 and the degradation of RUNX1 by the ubiquitination, reduction of RUNX1 can be inhibited, resulting in prevention and Z or treatment of cancer diseases such as leukemia. Is thinking.
[0219] RUNX2は骨形成に関わる重要な転写因子であり、軟骨細胞の分化'成熟、骨芽 細胞の分化、骨髄形成に必須である(非特許文献 26および 27)。例えば、 RUNX2 のノックアウトマウスでは骨形成が認められないことから、その欠損は骨形成不全を引 き起こすと考えられる(非特許文献 8)。 RUNX2は細胞内で、 BMP刺激による骨形 成遺伝子の発現誘導に関与する転写因子 Smadlと結合することから、 BMP刺激を 介した骨形成シグナルに関与していると考えられている(非特許文献 28)。また、 RU NX2は骨細胞の分化に作用する他、骨基質遺伝子群(Collal、 Colla2、ォステオ ポンチン(osteopontin)、ォステオカノレシン(osteocalcin) ,骨シァロプロテイン(bo ne sialoprotein)等)の発現を活性ィ匕させることが明らかにされている(非特許文献 29)。これらから、 RUNX2の低減は骨形成の異常、例えば骨損失に関与すると発明 者らは考えている。  [0219] RUNX2 is an important transcription factor involved in bone formation, and is essential for chondrocyte differentiation 'maturation, osteoblast differentiation and bone marrow formation (Non-patent Documents 26 and 27). For example, since bone formation is not observed in RUNX2 knockout mice, it is considered that the defect causes bone formation failure (Non-patent Document 8). Since RUNX2 binds to the transcription factor Smadl, which is involved in the induction of bone morphogenetic gene expression by BMP stimulation, it is thought that RUNX2 is involved in bone formation signals via BMP stimulation (Non-Patent Documents). 28). RU NX2 acts on the differentiation of bone cells, and also expresses bone matrix genes (Collal, Colla2, osteopontin, osteocalcin), bone sialoprotein, etc. Has been shown to be active (Non-patent Document 29). From these, the inventors believe that reduction of RUNX2 is associated with abnormal bone formation, such as bone loss.
[0220] 実際、 BMP— 2で刺激した骨形成モデル細胞にぉ 、て、 RUNXと結合するが E3リ ガーゼ活性を有さない不活性型 NEDD4、または、 NEDD4の発現を阻害し得る siR NAを使用して、 NEDD4の発現および Zまたは機能を阻害することにより、骨形成 の指標であるアルカリホスファターゼ活性が上昇することを本発明にお ヽて実証した (実施例 10および 11参照)。骨芽細胞膜に存在する骨型アルカリホスファターゼは、 早期の骨芽細胞の活性、例えば前骨芽細胞が骨芽細胞へ分化し、さらにその増殖 期から基質合成期に移行するといつた活性を反映している。すなわち、 NEDD4の 発現および Zまたは機能の阻害は、 BMP— 2刺激による骨芽細胞の骨分ィ匕を促進 すると考えることができる。 [0220] In fact, osteogenesis model cells stimulated with BMP-2 are inactivated NEDD4 that binds to RUNX but does not have E3 ligase activity, or siRNA that can inhibit the expression of NEDD4. Using it, it was demonstrated in the present invention that inhibition of NEDD4 expression and Z or function increases alkaline phosphatase activity, which is an indicator of bone formation (see Examples 10 and 11). Bone-type alkaline phosphatase present in the osteoblastic membrane reflects early osteoblast activity, for example, when pre-osteoblasts differentiate into osteoblasts and then transition from the proliferative phase to the substrate synthesis phase. ing. That is, NEDD4 Inhibition of expression and Z or function can be thought to promote osteoblast ossification by BMP-2 stimulation.
[0221] BMPは生体内で未分化間葉系幹細胞を軟骨細胞、骨芽細胞に分化、増殖させ骨 組織を誘導するサイト力インである。 BMP— 2は骨折治癒過程の初期に発現すること が確認されており、骨修復における一連のカスケードの進行に関与している。また、 B MPを筋肉内に作用させると異所性に骨を形成し、骨表面に作用させると仮骨様の 骨新生を生じる。これらの事実から、骨折や骨欠損疾患、歯根手術等の骨組織の修 復に BMP— 2を使用することが考えられている(チェン(Chen, D. )ら、「グロース ファクター(Growth Factor)」、 2004年、第 22卷、第 4号、 p. 233— 241)。また、 骨粗しょう症は、骨芽細胞機能の低下と骨吸収の亢進により骨収支が不均衡となり、 骨量が減少し骨折を来たしやすくなる疾患であるため、 BMP— 2シグナルの増強は 、本疾患に対し骨芽細胞機能の回復と骨折治癒の促進の両面を補強すると考えられ る。 [0221] BMP is a site force-in that induces bone tissue by differentiating and proliferating undifferentiated mesenchymal stem cells into chondrocytes and osteoblasts in vivo. BMP-2 has been shown to be expressed early in the fracture healing process and is involved in the progression of a series of cascades in bone repair. In addition, when BMP is applied to muscles, bone is formed ectopically, and when it is applied to the bone surface, callus-like osteogenesis occurs. Based on these facts, it is considered that BMP-2 is used to repair bone tissues such as fractures, bone defects, and root surgery (Chen, D. et al., “Growth Factor”). 2004, 22nd, 4th, p. 233-241). In addition, osteoporosis is a disease in which the bone balance is unbalanced due to decreased osteoblast function and increased bone resorption, resulting in bone loss and increased fractures. Therefore, the enhancement of BMP-2 signal is It is thought to reinforce both the restoration of osteoblast function and the promotion of fracture healing for the disease.
[0222] このように本発明においては、 NEDD4の発現および Zまたは機能の阻害により、 BMP— 2で刺激した骨形成モデル細胞のアルカリホスファターゼ活性が上昇するこ と、および上述のように短鎖型 NEDD4と RUNX2が結合することを見出した。これら の知見から、 NEDD4の発現および Zまたは機能の阻害は、 BMP— 2刺激による骨 形成シグナルに関与する RUNX2の NEDD4によるュビキチン化の阻害を弓 Iき起こ し、その結果、 RUNX2の安定化とそれによる該骨形成シグナルの促進を引き起こし たと考えることができる。そして、骨形成シグナルが促進された結果、骨形成モデル 細胞の骨分化が促進され、そのアルカリホスファターゼ活性が上昇したと考えること ができる。  [0222] Thus, in the present invention, inhibition of NEDD4 expression and Z or function increases the alkaline phosphatase activity of bone formation model cells stimulated with BMP-2, and, as described above, the short chain type. We found that NEDD4 and RUNX2 combined. Based on these findings, inhibition of NEDD4 expression and Z or function resulted in bowel I inhibition of RUNX2 ubiquitination by NEDD4 in RUNX2, which is involved in osteogenesis signals by BMP-2 stimulation. It can be considered that this promoted the osteogenic signal. As a result of the promotion of the bone formation signal, it can be considered that the bone differentiation of the bone formation model cell is promoted and its alkaline phosphatase activity is increased.
[0223] NEDD4の発現および Zまたは機能を阻害することにより、 NEDD4による RUNX 2のュビキチン化および該ュビキチン化による RUNX2の分解を阻害でき、 RUNX2 を安定ィ匕することができる。その結果、 RUNX2が関与する骨形成シグナルを促進で き、さらに骨芽細胞の分化および骨形成を促進することができる。このように骨芽細胞 の分化および骨形成を促進することにより、骨形成の異常、例えば骨損失疾患、より 具体的には例えば骨粗しょう症を予防および Zまたは治療できると発明者らは考え ている。 [0223] By inhibiting NEDD4 expression and Z or function, RUNX 2 ubiquitination by NEDD4 and degradation of RUNX2 by the ubiquitination can be inhibited, and RUNX2 can be stabilized. As a result, osteogenesis signals involving RUNX2 can be promoted, and osteoblast differentiation and osteogenesis can be further promoted. The inventors believe that by promoting osteoblast differentiation and bone formation in this way, it is possible to prevent and Z or treat abnormal bone formation, such as bone loss disease, more specifically osteoporosis, for example. ing.
[0224] 本知見に基づく本発明の一態様は、 NEDD4の発現および Zまたは機能を阻害す ることを特徴とする骨形成促進剤に関する。本発明に係る骨形成促進剤は、好ましく は RUNX、より好ましくは RUNX2による骨形成の促進剤である。本発明に係る骨形 成促進剤は、 NEDD4の機能を阻害する化合物および NEDD4の発現を阻害する 化合物のうちいずれか 1を少なくとも含んでなる。  [0224] One embodiment of the present invention based on this finding relates to an osteogenesis promoter characterized by inhibiting the expression and Z or function of NEDD4. The osteogenesis promoter according to the present invention is preferably an osteogenesis promoter by RUNX, more preferably RUNX2. The bone formation promoter according to the present invention comprises at least one of a compound that inhibits the function of NEDD4 and a compound that inhibits the expression of NEDD4.
[0225] 好ましくは、本発明に係る骨形成促進剤は、 RUNXと結合するが E3リガーゼ活性 を有さない不活性型 NEDD4、例えば、配列表の配列番号 11に記載のアミノ酸配列 で表される蛋白質および Zまたは配列番号 12に記載のアミノ酸配列で表される蛋白 質を有効量含んでなる骨形成促進剤である。  [0225] Preferably, the osteogenesis promoter according to the present invention is represented by an inactive NEDD4 that binds to RUNX but does not have E3 ligase activity, for example, the amino acid sequence set forth in SEQ ID NO: 11 in the Sequence Listing. An osteogenesis promoter comprising an effective amount of a protein and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12.
[0226] また、本発明に係る骨形成促進剤は、 NEDD4の発現を阻害し得る二重鎖ポリヌク レオチドを含んでなる骨形成促進剤であり得る。本発明に係る骨形成促進剤に含ま れる二重鎖ポリヌクレオチドとして、好ましくは、次に示す二重鎖ポリヌクレオチドを例 示できる:(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 2 2に記載の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、 (ii) 配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載の 塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (iii)配 列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載の塩 基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。上記例示した 3種 類の二重鎖ポリヌクレオチドは、ヒト由来のポリヌクレオチドからなる二重鎖ポリヌクレ ォチドである。これら 3種類の二重鎖ポリヌクレオチドによる骨形成促進は検討して ヽ ない。しかし、これら 3種類の二重鎖ポリヌクレオチドが NEDD4の発現を阻害したこ と(実施例 12参照)、また、マウス由来の二重鎖ポリヌクレオチド (配列番号 19に記載 の塩基配列で表されるポリヌクレオチドと配列番号 20に記載の塩基配列で表される ポリヌクレオチド)を用いた NEDD4の発現阻害により骨形成の指標であるアルカリホ スファターゼ活性がマウス細胞株にぉ 、て促進したこと(実施例 10および 11参照)か ら、該 3種類の二重鎖ポリヌクレオチドは骨形成促進作用を示すと発明者らは考えて いる。 [0227] 本発明に係る骨形成促進剤を使用して骨形成促進方法を実施できる。 [0226] Furthermore, the osteogenesis promoter according to the present invention may be an osteogenesis promoter comprising a double-stranded polynucleotide capable of inhibiting the expression of NEDD4. Preferred examples of the double-stranded polynucleotide contained in the osteogenesis promoter according to the present invention include the following double-stranded polynucleotides: (i) a polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 21 A double-stranded polynucleotide comprising a nucleotide and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22; (ii) a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and the base set forth in SEQ ID NO: 24 A double-stranded polynucleotide comprising a polynucleotide represented by the sequence; and (iii) a polynucleotide represented by the base sequence described in SEQ ID NO: 25 and a polynucleotide represented by the base sequence described in SEQ ID NO: 26 A double-stranded polynucleotide consisting of The three types of double-stranded polynucleotides exemplified above are double-stranded polynucleotides comprising human-derived polynucleotides. The promotion of bone formation by these three types of double-stranded polynucleotides has not been studied. However, these three types of double-stranded polynucleotides inhibited NEDD4 expression (see Example 12), and also derived from mouse-derived double-stranded polynucleotides (represented by the nucleotide sequence set forth in SEQ ID NO: 19). Inhibition of NEDD4 expression using a polynucleotide and a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 20 promoted alkaline phosphatase activity, an indicator of bone formation, in mouse cell lines (Example 10). Therefore, the inventors consider that the three types of double-stranded polynucleotides have a bone formation promoting action. [0227] The osteogenesis promoting method of the present invention can be used to implement the osteogenesis promoting method.
[0228] また本発明の一態様は、本発明に係る骨形成促進剤を有効成分としてその有効量 含んでなる医薬組成物に関する。このような医薬組成物は、骨形成の異常、例えば 骨損失疾患、より具体的には例えば骨粗しょう症の予防および Zまたは治療剤として 使用できる。これら薬剤および医薬組成物を使用して、このような疾患の予防および Zまたは治療方法を実施できる。  [0228] One aspect of the present invention also relates to a pharmaceutical composition comprising an effective amount of the osteogenesis promoter according to the present invention as an active ingredient. Such a pharmaceutical composition can be used as a preventive and Z or therapeutic agent for abnormal bone formation, such as bone loss diseases, more specifically osteoporosis. These agents and pharmaceutical compositions can be used to implement prevention and Z or treatment methods for such diseases.
[0229] RUNX2はまた、その過剰発現が T細胞分ィ匕に異常をもたらし、 c—mycとの相乗 作用によりリンパ腫形成に関与することが報告されている (非特許文献 9)。このことか ら、 RUNX2の増カロがリンパ腫発症や増悪に関与すると発明者らは考えて 、る。  [0229] RUNX2 has also been reported that its overexpression causes abnormalities in T cell differentiation and is involved in lymphoma formation through synergistic action with c-myc (Non-patent Document 9). Based on this, the inventors think that increased RUNX2 calorie is involved in the development and exacerbation of lymphoma.
[0230] NEDD4により RUNX2をュビキチンィ匕して RUNX2を分解することにより、 RUNX 2を低減させることができ、その結果、リンパ腫を予防および Zまたは治療できると発 明者らは考えている。  [0230] The inventors believe that RUNX2 can be degraded by ubiquitinating RUNX2 with NEDD4, resulting in prevention and Z or treatment of lymphoma.
[0231] RUNX3は TGF— βの細胞内メディエーターである Smadと結合することから、 TG F- βシグナル伝達への関与が考えられている(非特許文献 10)。 TGF- βレセプ ターや Smadの変異は、多くの癌で認められており(非特許文献 11)、 RUNX3は T GF— |8シグナルを介して癌に関与すると考えられている(非特許文献 12、 14および 15)。その他、 RUNX3とヒト癌疾患、例えば胃癌、大腸癌、胆管癌、脾臓癌との関連 性について既にいくつかの報告がある(非特許文献 13、 16および 17)。また、 RUN X3の腫瘍形成抑制作用が、移植モデルを使用した動物実験で確認されている(非 特許文献 13)。これらから、 RUNX3の低減が胃癌、大腸癌、胆管癌、脾臓癌等の癌 疾患の発症や増悪に関与すると発明者らは考えている。  [0231] Since RUNX3 binds to Smad, an intracellular mediator of TGF-β, it is considered to be involved in TGF-β signaling (Non-patent Document 10). Mutations in the TGF-β receptor and Smad have been observed in many cancers (Non-patent document 11), and RUNX3 is thought to be involved in cancer via the TGF- | 8 signal (Non-patent document 12). 14 and 15). In addition, there have already been several reports on the relationship between RUNX3 and human cancer diseases such as stomach cancer, colon cancer, bile duct cancer, and spleen cancer (Non-patent Documents 13, 16 and 17). In addition, the tumor formation inhibitory effect of RUN X3 has been confirmed in animal experiments using a transplant model (Non-patent Document 13). From these, the inventors think that the reduction of RUNX3 is involved in the onset and exacerbation of cancer diseases such as gastric cancer, colon cancer, bile duct cancer, and spleen cancer.
[0232] RUNX2は c—mycとの相乗作用によりリンパ腫形成に関与することが報告され (非 特許文献 9)、一方では RUNX3は腫瘍増殖抑制に関与することが報告されているよ うに (非特許文献 10〜17)、RUNXの腫瘍形成や腫瘍増殖抑制への関与の程度や その機構は明らかではない。また本発明において、 NEDD4が RUNXをュビキチン 化することは明らかになつたが、 RUNX1、 RUNX2、 RUNX3等の各 RUNXファミリ 一蛋白質に対する NEDD4によるュビキチンィ匕の程度の差は明らかではない。  [0232] RUNX2 has been reported to be involved in lymphoma formation through synergism with c-myc (Non-patent Document 9), while RUNX3 has been reported to be involved in tumor growth inhibition (Non-patent Document 9). References 10-17), the extent of RUNX's involvement in tumorigenesis and tumor growth inhibition and its mechanism are not clear. In the present invention, it has become clear that NEDD4 ubiquitinates RUNX, but the difference in the degree of ubiquitin by NEDD4 for each RUNX family protein such as RUNX1, RUNX2, and RUNX3 is not clear.
[0233] し力し、本発明において発明者らは、 RUNXが NEDD4によりュビキチン化される こと(実施例 3、 5、 8および 9参照)、およびヒト子宫頸部癌細胞株 HeLaおよびヒト胃 癌細胞株 NCI— N87において、 NEDD4の発現を阻害し得る siRNAを使用して、 N EDD4の発現を阻害することにより腫瘍増殖が抑制されることを見出した (実施例 12 参照)。 [0233] However, in the present invention, the inventors found that RUNX is ubiquitinated by NEDD4. (See Examples 3, 5, 8 and 9), and in human uterine cervical cancer cell line HeLa and human gastric cancer cell line NCI-N87, using siRNA that can inhibit the expression of NEDD4, It was found that tumor growth was suppressed by inhibiting expression (see Example 12).
[0234] NEDD4の発現がいくつかの癌細胞株、例えばヒト子宫頸部癌細胞株 HeLa、ヒト 肺癌細胞株 A549およびヒト白血病細胞株 K562にお!/、て、 mRNAレベルで亢進し ていることが報告されている(非特許文献 21)。し力しながら、ヒトの臨床検体におけ る NEDD4の発現の亢進や、 NEDD4と癌疾患との関連を示唆する報告はな 、。  [0234] NEDD4 expression is increased at the mRNA level in several cancer cell lines, such as the human eclampsia cancer cell line HeLa, the human lung cancer cell line A549, and the human leukemia cell line K562! Has been reported (Non-patent Document 21). However, there are no reports suggesting an increase in the expression of NEDD4 in human clinical specimens or a link between NEDD4 and cancer diseases.
[0235] このように本発明において、 NEDD4の発現を阻害することにより、腫瘍増殖が抑 制されること、および上述のように短鎖型 NEDD4と RUNXが結合すること、 RUNX 力 SNEDD4によりュビキチンィ匕されることを見出した。また、 RUNX3は腫瘍増殖抑制 に関与すると考えられる。これらの知見から、 NEDD4の発現の阻害による腫瘍増殖 抑制には、 NEDD4による RUNX3のュビキチン化が阻害され RUNX3が安定化し たことが関与している可能性があると発明者らは考えている。したがって、 NEDD4の 発現のみならず NEDD4の機能を阻害することによつても、腫瘍増殖を抑制し得ると 発明者らは考えている。  [0235] Thus, in the present invention, inhibition of NEDD4 expression suppresses tumor growth, and as described above, short-chain NEDD4 binds to RUNX, and RUNX force SNEDD4 causes ubiquitin secretion. I found out that RUNX3 is thought to be involved in tumor growth inhibition. Based on these findings, the inventors believe that suppression of tumor growth by inhibiting the expression of NEDD4 may be related to the inhibition of RUNX3 ubiquitination by NEDD4 and stabilization of RUNX3. Therefore, the inventors think that tumor growth can be suppressed not only by the expression of NEDD4 but also by inhibiting the function of NEDD4.
[0236] 本知見に基づく本発明の一態様は、 NEDD4の発現および Zまたは機能を阻害す ることを特徴とする腫瘍増殖抑制剤に関する。本発明に関する腫瘍増殖抑制剤は、 NEDD4の機能を阻害する化合物および NEDD4の発現を阻害する化合物のうち いずれか 1を少なくとも含んでなる。  [0236] One embodiment of the present invention based on this finding relates to a tumor growth inhibitor characterized by inhibiting the expression and Z or function of NEDD4. The tumor growth inhibitor according to the present invention comprises at least any one of a compound that inhibits the function of NEDD4 and a compound that inhibits the expression of NEDD4.
[0237] 好ましくは、本発明に係る腫瘍増殖抑制剤は、 RUNXと結合するが E3リガーゼ活 性を有さな 、不活性型 NEDD4、例えば配列表の配列番号 11に記載のアミノ酸配 列で表される蛋白質および Zまたは配列番号 12に記載のアミノ酸配列で表される蛋 白質を有効量含んでなる腫瘍増殖抑制剤である。  [0237] Preferably, the tumor growth inhibitor according to the present invention binds to RUNX but does not have E3 ligase activity, and is represented by inactive NEDD4, for example, the amino acid sequence set forth in SEQ ID NO: 11 of the Sequence Listing. And a tumor growth inhibitor comprising an effective amount of the protein represented by Z or the amino acid sequence represented by SEQ ID NO: 12.
[0238] また、本発明に係る腫瘍増殖抑制剤は、 NEDD4の発現を阻害し得る二重鎖ポリヌ クレオチドを含んでなる腫瘍増殖抑制剤であり得る。本発明に係る腫瘍増殖抑制剤 に含まれる二重鎖ポリヌクレオチドとして、好ましくは、次に示す二重鎖ポリヌクレオチ ドを例示できる:(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列 番号 22に記載の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチ ド、(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に 記載の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および( iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。上記例示し た二重鎖ポリヌクレオチドのうち次に示す 3種類の二重鎖ポリヌクレオチドは、ヒト由来 のポリヌクレオチド力もなる二重鎖ポリヌクレオチドである。これら 3種類の二重鎖ポリ ヌクレオチドはいずれも、ヒト癌細胞株にトランスフエクシヨンした結果、細胞増殖を抑 制した (実施例 12参照)。 [0238] Furthermore, the tumor growth inhibitor according to the present invention may be a tumor growth inhibitor comprising a double-stranded polynucleotide capable of inhibiting the expression of NEDD4. Preferred examples of the double-stranded polynucleotide contained in the tumor growth inhibitor according to the present invention include the following double-stranded polynucleotide: (i) a polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 21 Nucleotides and sequences A double-stranded polynucleotide comprising the polynucleotide represented by the nucleotide sequence represented by No. 22; (ii) the polynucleotide represented by the nucleotide sequence represented by SEQ ID No. 23 and the nucleotide sequence represented by SEQ ID No. 24; A double-stranded polynucleotide comprising the polynucleotide represented by: and (iii) a duplex comprising the polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and the polynucleotide represented by the base sequence set forth in SEQ ID NO: 26 Polynucleotide. Of the above-exemplified double-stranded polynucleotides, the following three types of double-stranded polynucleotides are double-stranded polynucleotides having a human-derived polynucleotide ability. All of these three types of double-stranded polynucleotides inhibited cell growth as a result of transfection into human cancer cell lines (see Example 12).
[0239] 本発明に係る腫瘍増殖抑制剤を使用して腫瘍増殖抑制方法を実施できる。  [0239] The method for inhibiting tumor growth can be carried out using the tumor growth inhibitor according to the present invention.
[0240] また本発明の一態様は、本発明に係る腫瘍増殖抑制剤を有効成分としてその有効 量含んでなる医薬組成物に関する。このような医薬組成物は、腫瘍の増殖を伴う疾 患、例えば癌疾患、より具体的には胃癌、大腸癌、胆管癌、肝臓癌等の癌疾患の予 防および Zまたは治療剤として使用できる。これら薬剤および医薬組成物を使用して 、このような疾患の予防および Zまたは治療方法を実施できる。  [0240] One aspect of the present invention also relates to a pharmaceutical composition comprising an effective amount of the tumor growth inhibitor according to the present invention as an active ingredient. Such a pharmaceutical composition can be used as a preventive and Z or therapeutic agent for diseases associated with tumor growth, such as cancer diseases, more specifically, cancer diseases such as stomach cancer, colon cancer, bile duct cancer, liver cancer and the like. . These agents and pharmaceutical compositions can be used to implement prevention and Z or treatment methods for such diseases.
[0241] より具体的には、 NEDD4の発現および Zまたは機能を阻害することにより、 NED D4による RUNX3のュビキチン化による RUNX3の分解を阻害でき、 RUNX3を安 定ィ匕することができる。その結果、 RUNX3による腫瘍増殖の抑制がなされる。このよ うに、腫瘍の増殖を抑制することにより、腫瘍の増殖を伴う疾患、例えば癌疾患、より 具体的には胃癌、大腸癌、胆管癌、肝臓癌等の癌疾患を予防および Zまたは治療 できると発明者らは考えている。  [0241] More specifically, inhibition of NEDD4 expression and Z or function can inhibit RUNX3 degradation by RUNX3 ubiquitination by NED D4 and stabilize RUNX3. As a result, tumor growth is suppressed by RUNX3. Thus, by suppressing tumor growth, it is possible to prevent and Z or treat diseases associated with tumor growth, such as cancer diseases, more specifically cancer diseases such as gastric cancer, colon cancer, bile duct cancer, and liver cancer. The inventors think.
[0242] 本発明に係る医薬組成物は、通常、有効成分に加えて 1種または 2種以上の医薬 用担体を含む医薬組成物として製造することが好ましい。  [0242] The pharmaceutical composition according to the present invention is usually preferably prepared as a pharmaceutical composition containing one or more pharmaceutical carriers in addition to the active ingredient.
[0243] 本発明に係る医薬製剤中に含まれる有効成分の量は、広範囲から適宜選択される 。通常、約 0. 00001〜70重量%、好ましくは 0. 0001〜5重量%程度の範囲とする のが適当である。  [0243] The amount of the active ingredient contained in the pharmaceutical preparation according to the present invention is appropriately selected from a wide range. Usually, it is appropriate that the amount is in the range of about 0.0001 to 70% by weight, preferably about 0.0001 to 5% by weight.
[0244] 医薬用担体は、製剤の使用形態に応じて一般的に使用される、充填剤、増量剤、 結合剤、付湿剤、崩壊剤、滑沢剤、希釈剤および賦形剤等が使用される。これらは 得られる製剤の投与形態に応じて適宜選択して使用される。 [0244] The pharmaceutical carrier includes a filler, a bulking agent, a binder, a moistening agent, a disintegrant, a lubricant, a diluent, an excipient, and the like that are generally used according to the form of use of the preparation. used. They are It is appropriately selected and used depending on the administration form of the resulting preparation.
[0245] より具体的には、水、医薬的に許容される有機溶剤、コラーゲン、ポリビニルアルコ ール、ポリビュルピロリドン、カルボキシビ-ルポリマー、アルギン酸ナトリウム、水溶性 デキストラン、カルボキシメチルスターチナトリウム、ぺクチン、キサンタンガム、ァラビ ァゴム、カゼイン、ゼラチン、寒天、グリセリン、プロピレングリコール、ポリエチレングリ コール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン 、マン-トール、ソルビトールおよびラタトース等を医薬用単体として使用できる。これ らは、本医薬組成物の剤形に応じて適宜 1種類または 2種類以上を組合わせて使用 される。  [0245] More specifically, water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polybutylpyrrolidone, carboxyvinyl polymer, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin , Xanthan gum, gum arabic gum, casein, gelatin, agar, glycerin, propylene glycol, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin, mannitol, sorbitol, ratatose, etc. . These may be used singly or in combination of two or more according to the dosage form of the pharmaceutical composition.
[0246] 所望により、通常の蛋白質製剤に使用され得る各種の成分、例えば、安定化剤、 殺菌剤、緩衝剤、等張化剤、キレート剤、界面活性剤、および pH調整剤を適宜使用 することちでさる。  [0246] Various components that can be used in normal protein preparations, for example, stabilizers, bactericides, buffering agents, tonicity agents, chelating agents, surfactants, and pH adjusters are appropriately used as desired. Say it with a word.
[0247] 安定化剤は、例えば、ヒト血清アルブミンや通常の L—アミノ酸、糖類、セルロース 誘導体等を使用できる。これらは単独でまたは界面活性剤等と組合わせて使用でき る。特にこの組合わせによれば、有効成分の安定性をより向上させ得る場合がある。 L アミノ酸は、特に限定はなぐ例えば、グリシン、システィン、グルタミン酸等のい ずれでもよい。糖類も特に限定はなぐ例えば、グルコース、マンノース、ガラクトース および果糖等の単糖類、マンニトール、イノシトールおよびキシリトール等の糖アルコ ール、ショ糖、マルトースおよび乳糖等の二糖類、デキストラン、ヒドロキシプロピルス ターチ、コンドロイチン硫酸およびヒアルロン酸等の多糖類、並びにそれらの誘導体 のいずれでもよい。セルロース誘導体も特に限定はなぐメチルセルロース、ェチル セノレロース、ヒドロキシェチノレセノレロース、ヒドロキシプロピノレセノレロース、ヒドロキシプ 口ピルメチルセルロースおよびカルボキシメチルセルロースナトリウム等のいずれでも よい。  [0247] As the stabilizer, for example, human serum albumin, ordinary L-amino acid, saccharide, cellulose derivative and the like can be used. These can be used alone or in combination with a surfactant or the like. In particular, according to this combination, the stability of the active ingredient may be further improved. The L amino acid is not particularly limited, and may be any of glycine, cysteine, glutamic acid and the like. Sugars are not particularly limited, for example, monosaccharides such as glucose, mannose, galactose and fructose, sugar alcohols such as mannitol, inositol and xylitol, disaccharides such as sucrose, maltose and lactose, dextran, hydroxypropyl starch, Any of polysaccharides such as chondroitin sulfate and hyaluronic acid, and derivatives thereof may be used. The cellulose derivative is not particularly limited, and may be any of methyl cellulose, ethyl cenololose, hydroxy ethino reseno relose, hydroxypropino reseno relose, hydroxy open propyl methyl cellulose, carboxymethyl cellulose sodium and the like.
[0248] 界面活性剤も特に限定はなぐイオン性界面活性剤および非イオン性界面活性剤 のいずれも使用できる。界面活性剤には、例えば、ポリオキシエチレングリコールソル ビタンアルキルエステル系、ポリオキシエチレンアルキルエーテル系、ソルビタンモノ ァシルエステル系、脂肪酸グリセリド系が包含される。 [0249] 緩衝剤は、例えば、ホウ酸、リン酸、酢酸、クェン酸、 ε アミノカプロン酸、ダルタミ ン酸および Ζまたはそれらに対応する塩 (例えばそれらのナトリウム塩、カリウム塩、 カルシウム塩、マグネシウム塩等のアルカリ金属塩やアルカリ土類金属塩)を使用で きる。 [0248] As the surfactant, any of an ionic surfactant and a nonionic surfactant can be used. Surfactants include, for example, polyoxyethylene glycol sorbitan alkyl ester, polyoxyethylene alkyl ether, sorbitan monoacyl ester, and fatty acid glyceride. [0249] Buffering agents include, for example, boric acid, phosphoric acid, acetic acid, citrate, ε-aminocaproic acid, dartamic acid and Ζ or a salt thereof (for example, sodium salt, potassium salt, calcium salt, magnesium salt thereof) Alkali metal salts such as alkaline earth metal salts).
[0250] 等張化剤は、例えば、塩ィ匕ナトリウム、塩ィ匕カリウム、糖類、グリセリンを使用できる。  [0250] As the tonicity agent, for example, sodium chloride sodium, potassium salt sodium, saccharide, and glycerin can be used.
[0251] キレート剤は、例えば、ェデト酸ナトリウム、クェン酸を使用できる。  [0251] As the chelating agent, for example, sodium edetate or quenate can be used.
[0252] 本発明に係る医薬および医薬組成物は、溶液製剤として使用できる他に、これを凍 結乾燥ィ匕し保存し得る状態にした後、用時、水や生理的食塩水等を含む緩衝液等 で溶解して適当な濃度に調製した後に使用することもできる。  [0252] The medicine and pharmaceutical composition according to the present invention can be used as a solution preparation, and after freezing, drying and storing it, it contains water, physiological saline, etc. It can also be used after it is dissolved in a buffer solution or the like to prepare an appropriate concentration.
[0253] 医薬および医薬組成物の用量範囲は特に限定されず、含有される成分の有効性、 投与形態、投与経路、疾患の種類、対象の性質 (体重、年齢、病状および他の医薬 の使用の有無等)、および担当医師の判断等応じて適宜選択される。一般的には適 当な用量は、例えば対象の体重 lkgあたり約 0. 01 μ g〜100mg程度、好ましくは約 0.: g〜lmg程度の範囲であることが好ましい。し力しながら、当該分野において よく知られた最適化のための一般的な常套的実験を使用してこれらの用量の変更を 行い得る。上記投与量は 1日 1回〜数回に分けて投与することができ、数日または数 週間に 1回の割合で間欠的に投与してもよ!/、。  [0253] The dose range of the medicine and the pharmaceutical composition is not particularly limited, and the effectiveness of the contained ingredient, the administration form, the administration route, the type of the disease, the nature of the subject (weight, age, medical condition and use of other medicines) Or the like) and the judgment of the doctor in charge. In general, a suitable dose is, for example, in the range of about 0.01 μg to 100 mg, preferably about 0.1: g to lmg, per kg of body weight of the subject. However, these dosage changes can be made using general routine experimentation for optimization well known in the art. The above dosage can be divided into once to several times a day, and may be administered intermittently at a rate of once every several days or weeks! /.
[0254] 本発明に係る医薬組成物を投与するときは、該医薬組成物を単独で使用してもよく 、あるいは目的の疾患の予防および Zまたは治療に必要な他の化合物または医薬と 共に使用してもよい。例えば、抗腫瘍用医薬の有効成分等を配合してもよい。  [0254] When administering the pharmaceutical composition according to the present invention, the pharmaceutical composition may be used alone or in combination with other compounds or medicines necessary for the prevention and Z or treatment of the target disease. May be. For example, you may mix | blend the active ingredient of the medicine for anti-tumor etc.
[0255] 投与経路は、全身投与または局所投与の!/ヽずれも選択できる。この場合、疾患、症 状等に応じた適当な投与経路を選択する。例えば、非経口経路として、通常の静脈 内投与、動脈内投与の他、皮下、皮内、筋肉内等への投与を挙げることができる。あ るいは経口経路で投与することもできる。さらに、経粘膜投与または経皮投与も可能 である。癌疾患に使用する場合は、腫瘍に注射等により直接投与することができる。  [0255] The route of administration can be selected from systemic administration or local administration! In this case, an appropriate administration route is selected according to the disease, symptom and the like. For example, examples of parenteral routes include normal intravenous administration and intraarterial administration, as well as subcutaneous, intradermal, intramuscular administration and the like. It can also be administered by the oral route. Furthermore, transmucosal administration or transdermal administration is possible. When used for cancer diseases, it can be administered directly to the tumor by injection or the like.
[0256] 投与形態は、各種の形態が目的に応じて選択できる。その代表的なものは、錠剤、 丸剤、散剤、粉末剤、細粒剤、顆粒剤、カプセル剤等の固体投与形態や、水溶液製 剤、エタノール溶液製剤、懸濁剤、脂肪乳剤、リボソーム製剤、シクロデキストリン等 の包接体、シロップ、エリキシル等の液剤投与形態が含まれる。これらはさらに投与 経路に応じて経口剤、非経口剤(点滴剤、注射剤)、経鼻剤、吸入剤、経膣剤、坐剤 、舌下剤、点眼剤、点耳剤、軟膏剤、クリーム剤、経皮吸収剤、経粘膜吸収剤等に分 類され、それぞれ通常の方法に従い、調合、成形、調製できる。 [0256] As the dosage form, various forms can be selected according to the purpose. Typical examples include solid dosage forms such as tablets, pills, powders, powders, fine granules, granules, capsules, aqueous preparations, ethanol solution preparations, suspensions, fat emulsions, and ribosome preparations. , Cyclodextrin, etc. Liquid dosage forms such as clathrate, syrup, elixir and the like. Depending on the route of administration, these can be further administered orally, parenterally (instillations, injections), nasal preparations, inhalants, vaginal preparations, suppositories, sublingual, eye drops, ear drops, ointments, creams And can be prepared, molded and prepared according to conventional methods.
[0257] (化合物の同定方法)  [0257] (Compound identification method)
本発明の一態様は、 RUNXのュビキチンィ匕を阻害する化合物または促進するィ匕 合物の同定方法に関する。  One embodiment of the present invention relates to a method for identifying a compound that inhibits or promotes RUNX ubiquitin.
[0258] RUNXのュビキチン化は、 NEDD4が E3リガーゼとして関与し、 RUNXと結合して RUNXのュビキチンィ匕を触媒することにより行われると考えることができる。  [0258] RUNX ubiquitination can be thought to be performed by NEDD4 participating as an E3 ligase and binding to RUNX to catalyze RUNX ubiquitination.
[0259] したがって、 RUNXのュビキチン化を阻害する化合物または促進する化合物の同 定方法は、好ましくは NEDD4による RUNXのュビキチン化を阻害する化合物また は促進する化合物の同定方法である。  [0259] Accordingly, the method for identifying a compound that inhibits or promotes RUNX ubiquitination is preferably a method for identifying a compound that inhibits or promotes RUNX ubiquitination by NEDD4.
[0260] 本発明に係る化合物の同定方法は、自体公知の医薬品スクリーニングシステムを 利用して実施できる。例えば、 NEDD4による RUNXのュビキチンィ匕を阻害するィ匕 合物または促進する化合物の同定方法は、一般的に E3リガーゼの阻害剤のスクリー ユングで用いられて 、る方法を利用して実施できる。 E3リガーゼの阻害剤のスクリー ユングでは、 E3リガーゼの基質として、生体内における基質または E3リガーゼ自身 が用いられている。本同定方法では NEDD4の基質として、 RUNXまたは NEDD4 自身を用いることができる。基質として RUNXを用いた同定方法では、 NEDD4の酵 素活性を阻害する化合物の他に、 NEDD4と RUNXの結合を阻害する化合物を得 ることができるので、基質として RUNXを用いることがより好まし 、。  [0260] The method for identifying a compound according to the present invention can be carried out using a pharmaceutical screening system known per se. For example, a method for identifying a compound that inhibits or promotes RUNX ubiquitin by NEDD4 can be carried out using the method generally used in screening for inhibitors of E3 ligase. In screening of E3 ligase inhibitors, the substrate in vivo or E3 ligase itself is used as the substrate for E3 ligase. In this identification method, RUNX or NEDD4 itself can be used as a substrate for NEDD4. In the identification method using RUNX as the substrate, in addition to the compound that inhibits the enzyme activity of NEDD4, a compound that inhibits the binding of NEDD4 and RUNX can be obtained, so it is more preferable to use RUNX as the substrate. ,.
[0261] RUNXのュビキチンィ匕を阻害する化合物または促進する化合物の同定方法は、 例えば、本発明に係る NEDD4による RUNXのュビキチンィ匕方法を利用した実験系 を使用して実施できる。本発明に係る NEDD4による RUNXのュビキチン化方法を 利用した実験系とは、 NEDD4と RUNXとを共存させて、 NEDD4により RUNXをュ ビキチン化させる実験系をいう。このような実験系を使用した同定方法で同定される 化合物は、 NEDD4の酵素活性を阻害する化合物または促進する化合物、および、 NEDD4と RUNXの結合を阻害する化合物または促進する化合物を含む。 [0262] 具体的には、このような実験系において、ある化合物(以下、被検化合物と称する) と NEDD4および/または RUNXとを接触させ、 NEDD4による RUNXのュビキチ ン化を検出し得るシグナルおよび Zまたはマーカーを使用する系を使用して、このシ グナルおよび Zまたはマーカーの存在若しくは不存在または変化を検出し、被検化 合物が NEDD4による RUNXのュビキチン化を阻害するか否かまたは促進するか否 かを決定することにより、 NEDD4による RUNXのュビキチン化を阻害する化合物ま たは促進する化合物を同定できる。 [0261] A method for identifying a compound that inhibits or promotes RUNX ubiquitin can be performed using, for example, an experimental system using the RUNX ubiquitin method according to NEDD4 of the present invention. The experimental system using the RUNX ubiquitination method by NEDD4 according to the present invention refers to an experimental system in which NEDD4 and RUNX coexist and RUNX is ubiquitinated by NEDD4. The compound identified by the identification method using such an experimental system includes a compound that inhibits or promotes the enzyme activity of NEDD4, and a compound that inhibits or promotes the binding of NEDD4 to RUNX. [0262] Specifically, in such an experimental system, a signal (hereinafter referred to as a test compound) is brought into contact with NEDD4 and / or RUNX, and a signal capable of detecting RUNX ubiquitination by NEDD4 and Use a system that uses Z or a marker to detect the presence or absence or change of this signal and Z or marker and whether or not the test compound inhibits RUNX ubiquitination by NEDD4 By determining whether to do so, compounds that inhibit or promote RUNX ubiquitination by NEDD4 can be identified.
[0263] 被検化合物は NEDD4による RUNXのュビキチンィ匕反応に共存させることもできる し、被検化合物を予め NEDD4および Zまたは RUNXと接触させ、その後に NEDD 4による RUNXのュビキチン化反応を行うこともできる。 NEDD4による RUNXのュビ キチンィ匕により生じるシグナルまたはュビキチンィ匕のマーカー力 被検化合物を NE DD4および Zまたは RUNXと接触させたときに、被検化合物を接触させなカゝつたと きと比較して低下あるいは消失する等の変化を示す場合、当該被検化合物は NED D4による RUNXのュビキチン化を阻害すると判定できる。これに対して、該シグナル またはマーカー力 被検化合物を NEDD4および Zまたは RUNXと接触させたとき に、被検化合物を接触させな力つたときと比較して増加するあるいは発生する等の変 化を示す場合、当該被検化合物は NEDD4による RUNXのュビキチン化を促進す ると判定できる。  [0263] The test compound can coexist in the RUNX ubiquitin reaction by NEDD4, or the test compound can be previously contacted with NEDD4 and Z or RUNX, followed by the RUNX ubiquitination reaction by NEDD 4. it can. Signal produced by RUNX ubiquitin by NEDD4 or marker power of ubiquitin と き に When test compound is contacted with NE DD4 and Z or RUNX, compared to when test compound is not contacted If it shows a change such as decrease or disappearance, it can be determined that the test compound inhibits RUNX ubiquitination by NED D4. In contrast, when the test compound is brought into contact with NEDD4 and Z or RUNX, the signal or marker force is increased or generated compared to when the test compound is not brought into contact with the test compound. If indicated, it can be judged that the test compound promotes RUNX ubiquitination by NEDD4.
[0264] このような実験系は、インビボおよびインビトロのいずれの条件においても実施でき る。  [0264] Such an experimental system can be performed under both in vivo and in vitro conditions.
[0265] インビトロの実験系においては、標的蛋白質のュビキチン化反応に NEDD4の他、 ュビキチン活性ィ匕酵素 (E1)、ュビキチン結合酵素 (E2)、およびュビキチンが必要と されるため、これら酵素およびュビキチンを共に使用することが適当である。  [0265] In an in vitro experimental system, ubiquitin activity enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin are required in addition to NEDD4 in the ubiquitination reaction of the target protein. Are suitable for use together.
[0266] インビボの実験系は、好ましくは例えば、 NEDD4と RUNXとを共に発現している 真核細胞または培養細胞株を使用した実験系であり得る。また、 RUNXや NEDD4 を発現させた真核細胞または培養細胞株を使用できる。さらに、 NEDD4と RUNXと を共に発現した真核細胞または培養細胞株、ある 、は NEDD4や RUNXを発現さ せた真核細胞または培養細胞株に、さらにュビキチン発現させた細胞を使用できる。 細胞におけるこれら蛋白質の発現は、 NEDD4をコードするポリヌクレオチドを含む 適当なベクター、 RUNXをコードするポリヌクレオチドを含む適当なベクター、および Zまたは、ュビキチンをコードするポリヌクレオチドを含む適当なベクターを使用して 慣用の遺伝子工学的手法でこれらベクターを細胞にトランスフエクシヨンすることによ り達成できる。 [0266] The in vivo experimental system may preferably be an experimental system using eukaryotic cells or cultured cell lines expressing both NEDD4 and RUNX, for example. In addition, eukaryotic cells or cultured cell lines expressing RUNX or NEDD4 can be used. Furthermore, a eukaryotic cell or cultured cell line that expresses both NEDD4 and RUNX, or a cell that further expresses ubiquitin in a eukaryotic cell or cultured cell line that expresses NEDD4 or RUNX can be used. The expression of these proteins in cells uses appropriate vectors containing a polynucleotide encoding NEDD4, appropriate vectors containing a polynucleotide encoding RUNX, and appropriate vectors containing a polynucleotide encoding Z or ubiquitin. This can be achieved by transfecting these vectors into cells using conventional genetic engineering techniques.
[0267] NEDD4と RUNXとを共に発現した細胞を使用した実験系にお 、て、被検化合物 により該細胞を処理し、 NEDD4による RUNXのュビキチン化を検出し得るシグナル および Zまたはマーカーを使用する系を使用して、このシグナルおよび Zまたはマ 一力一の存在若しくは不存在または変化を検出し、被検化合物が NEDD4による R UNXのュビキチンィ匕を阻害する力否力または促進する力否かを決定することにより、 NEDD4による RUNXのュビキチンィ匕を阻害する化合物または促進する化合物を同 定できる。細胞を被検化合物により処理したときに、 NEDD4による RUNXのュビキ チン化により生じるシグナルまたはュビキチンィ匕のマーカ一が、細胞を被検化合物に より処理しないときと比較して低下あるいは消失する等の変化を示す場合、当該被検 化合物は NEDD4による RUNXのュビキチン化を阻害すると判定できる。これに対し て、該シグナルまたはマーカーが、細胞を被検化合物により処理したときに、細胞を 被検化合物により処理しないときと比較して増加するあるいは発生する等の変化を示 す場合、当該被検化合物は NEDD4による RUNXのュビキチンィ匕を促進すると判定 できる。  [0267] In an experimental system using cells expressing both NEDD4 and RUNX, treat the cells with a test compound and use a signal and Z or marker that can detect RUNX ubiquitination by NEDD4 The system is used to detect this signal and the presence or absence or change of Z or the best, and to determine whether the test compound is able to inhibit or promote the ability of NEDD4 to inhibit RUNX ubiquitin. By determining, compounds that inhibit or promote RUNX ubiquitin by NEDD4 can be identified. When cells are treated with a test compound, the signal generated by RUNX ubiquitination by NEDD4 or the marker of ubiquitin decreases or disappears compared to when cells are not treated with the test compound. The test compound can be determined to inhibit RUNX ubiquitination by NEDD4. On the other hand, when the signal or marker shows a change such as an increase or occurrence when the cell is treated with the test compound compared to when the cell is not treated with the test compound, Test compounds can be judged to promote RUNX ubiquitination by NEDD4.
[0268] 上記インビトロまたはインビボの実験系にお 、て、 RUNXを用いず、 NEDD4によ る自己ュビキチンィ匕を測定することによって、 NEDD4の酵素活性を阻害する化合物 を同定することができる。 NEDD4の酵素活性を阻害する化合物は、 NEDD4による RUNXのュビキチン化を阻害し得る。したがって、上記実験系において RUNXを用 いず、 NEDD4による自己ュビキチン化を測定することによつても、 NEDD4による R UNXのュビキチンィ匕を阻害し得る化合物を同定できる。  [0268] In the above in vitro or in vivo experimental system, compounds that inhibit the enzyme activity of NEDD4 can be identified by measuring self-ubiquitin activity by NEDD4 without using RUNX. Compounds that inhibit the enzymatic activity of NEDD4 can inhibit RUNX ubiquitination by NEDD4. Therefore, compounds that can inhibit RUNX ubiquitination by NEDD4 can also be identified by measuring self-ubiquitination by NEDD4 without using RUNX in the above experimental system.
[0269] ュビキチンィ匕の検出は、ュビキチン化された標的蛋白質の検出により測定できる。  [0269] Detection of ubiquitin can be measured by detection of a ubiquitinated target protein.
ュビキチンィ匕された標的蛋白質の検出は、公知のウェスタンブロッテイング等の方法 により実施できる(実施例 3、 5、 8および 9参照)。標的蛋白質のュビキチンィ匕反応を 行なう前と比較して、ュビキチンィ匕反応を行った後に、分子量が増加した標的蛋白質 が検出された場合、該標的蛋白質はュビキチン化されたと判定できる。また、適当な 標識物質により標識したュビキチンを使用することにより、該標識物質を指標にして ュビキチン化された標識蛋白質を容易に検出できるため、このような標識ィ匕ュビキチ ンの使用は有用である。標識物質として、 HA— tagや FLAG— tag等のタグべプチ ド類が好ましく使用できる力 これらに制限されず、 NEDD4による RUNXのュビキチ ン化を阻害しな 、物質である限りにおいて 、ずれの物質も使用できる。標識物質の 検出は、自体公知の検出方法を使用して実施できる。例えば、タグペプチド類は、抗 タグペプチド抗体により検出できる。このとき、抗タグペプチド抗体として、 HRP (ホー スラディッシュ 'パーォキシダーゼ)、アルカリホスファターゼ、放射性同位元素、蛍光 物質またはピオチン等で標識した抗体を使用することにより検出がより容易に実施で きる。あるいは、上記酵素、放射性同位元素、蛍光物質、ピオチン等で標識した二次 抗体を使用してもよい。 Detection of the ubiquitinated target protein can be performed by a known method such as Western blotting (see Examples 3, 5, 8 and 9). The ubiquitin reaction of the target protein If a target protein having an increased molecular weight is detected after the ubiquitin reaction compared to before, it can be determined that the target protein has been ubiquitinated. In addition, by using ubiquitin labeled with an appropriate labeling substance, ubiquitinated labeled protein can be easily detected using the labeling substance as an index, and thus the use of such a labeled ubiquitin is useful. . The ability to use tag peptides such as HA-tag and FLAG-tag as labeling substances is not limited to these, and as long as it is a substance that does not inhibit NEDD4 ubiquitination of RUNX Can also be used. The labeling substance can be detected using a detection method known per se. For example, tag peptides can be detected by anti-tag peptide antibodies. In this case, detection can be more easily carried out by using an antibody labeled with HRP (Hosradish peroxidase), alkaline phosphatase, a radioisotope, a fluorescent substance or piotin as an anti-tag peptide antibody. Alternatively, a secondary antibody labeled with the above enzyme, radioisotope, fluorescent substance, piotin or the like may be used.
[0270] 具体的には、 NEDD4による RUNXのュビキチン化を阻害する化合物または促進 する化合物の同定方法は、例えば、 RUNXコードするポリヌクレオチドを含む適当な ベクター、 NEDD4を含む適当なベクターおよび HA— tagが N末端に付カ卩されたュ ビキチンをコードするポリヌクレオチドを含む適当なベクターをトランスフエクシヨンした 細胞(実施例 3、 5、 8および 9参照)を使用して実施できる。該細胞を、被検化合物で 処理した後、細胞を回収し、適当な方法で細胞を溶解してセルライセートを調製し、 該セルライセート中に含まれるュビキチン化 RUNXを測定し、被検化合物で処理し ない細胞と比較して、ュビキチン化 RUNXが低減または消失したとき、該被検化合 物は、 NEDD4による RUNXのュビキチン化を阻害する化合物と判定できる。これに 対して、ュビキチン化 RUNXが増加したとき、該被検化合物は、 NEDD4による RU NXのュビキチン化を促進する化合物と判定できる。セルライセート中に含まれるュビ キチン化 RUNXの測定は、例えば、 HRP標識抗 HA抗体により RUNXに結合した ュビキチンを検出することにより実施できる。  [0270] Specifically, methods for identifying a compound that inhibits or promotes RUNX ubiquitination by NEDD4 include, for example, an appropriate vector containing a polynucleotide encoding RUNX, an appropriate vector containing NEDD4, and an HA-tag. Can be carried out using cells transfected with an appropriate vector containing a polynucleotide encoding ubiquitin attached to the N-terminus (see Examples 3, 5, 8 and 9). After the cells are treated with the test compound, the cells are collected, lysed by an appropriate method to prepare cell lysate, ubiquitinated RUNX contained in the cell lysate is measured, and the test compound is used. When ubiquitinated RUNX is reduced or eliminated compared to untreated cells, the test compound can be determined as a compound that inhibits RUNX ubiquitination by NEDD4. In contrast, when ubiquitination RUNX increases, the test compound can be determined as a compound that promotes RU NX ubiquitination by NEDD4. The ubiquitination RUNX contained in the cell lysate can be measured, for example, by detecting ubiquitin bound to RUNX with an HRP-labeled anti-HA antibody.
[0271] その他、一般的にュビキチン E3リガーゼの阻害剤のスクリーニングで用いられてい る方法であれば制限無ぐいずれの方法を使用することも可能であり、特に高速で多 検体をスクリーニングする場合には、蛍光共鳴エネルギー転移アツセィ (FRET Ass ay)を応用した系、ディソシエーシヨン一ェンハンスド ランタ-ド フルォロイムノアツ セィ(DELFIA Assay)、電気化学発光(ECL)を応用した系、シンチレーシヨン プ 口キミシティ一 アツセィ(SPA)を応用した系等を好適に使用できる(サン (Yi Sun) 、「メソッズ イン ェンザィモロジ一(Methods in Enzymology)」、 2005年、第 3 99卷、 p. 654— 663)。この時、ュビキチン化の基質としては、 RUNXを使用するこ ともできるし、 NEDD4自身を基質とする自己ュビキチンィ匕活性を検出することも可能 であるが、 RUNXを基質として使用することが望ましい。 [0271] In addition, any method can be used without limitation as long as it is generally used in screening for inhibitors of ubiquitin E3 ligase. When screening specimens, a system using a fluorescence resonance energy transfer assay (FRET Assay), a dissociation-enhanced lanthanum-defluorinated assay (DELFIA Assay), or electrochemiluminescence (ECL) should be used. Applied systems, systems that apply Scintillation Kimi City 1 Atsei (SPA), etc. can be used suitably (Yi Sun, “Methods in Enzymology”, 2005, No. 3 99) , P. 654—663). At this time, RUNX can be used as a substrate for ubiquitination, and self-ubiquitin activity using NEDD4 itself as a substrate can be detected, but it is desirable to use RUNX as a substrate.
[0272] 本発明の一態様はまた、 NEDD4と RUNXの結合を阻害する化合物または促進す る化合物の同定方法に関する。  [0272] One embodiment of the present invention also relates to a method for identifying a compound that inhibits or promotes the binding of NEDD4 to RUNX.
[0273] NEDD4と RUNXの結合を阻害する化合物または促進する化合物の同定方法は 、一般的に結合阻害剤のスクリーニングで用いられて ヽるプロテインバインディングァ ッセィを禾 IJ用して実施できる。  [0273] A method for identifying a compound that inhibits or promotes the binding between NEDD4 and RUNX can be carried out using a protein binding assay generally used in screening for binding inhibitors for IJ.
[0274] NEDD4と RUNXの結合を阻害する化合物または促進する化合物の同定方法は 、例えば、 NEDD4と RUNXとを共存させて、 NEDD4と RUNXを結合させる実験系 を使用して実施できる。  [0274] A method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX can be carried out, for example, using an experimental system in which NEDD4 and RUNX coexist and NEDD4 and RUNX are combined.
[0275] このような実験系にお 、て、被検化合物と NEDD4および Zまたは RUNXとを接触 させ、 NEDD4と RUNXの結合を検出し得るシグナルおよび Zまたはマーカーを使 用する系を使用して、このシグナルおよび Zまたはマーカーの存在若しくは不存在ま たは変化を検出し、被検化合物が NEDD4と RUNXの結合を阻害するカゝ否カゝまたは 促進する力否かを決定することにより、 NEDD4と RUNXの結合を阻害する化合物ま たは促進する化合物を同定できる。  [0275] In such an experimental system, a test compound is brought into contact with NEDD4 and Z or RUNX, and a system using a signal and Z or marker that can detect the binding of NEDD4 and RUNX is used. By detecting the presence or absence or change of this signal and Z or marker and determining whether the test compound inhibits or promotes the binding of NEDD4 to RUNX. And compounds that inhibit or promote the binding of RUNX.
[0276] 被検化合物は NEDD4と RUNXの結合反応に共存させることもできるし、被検化合 物を予め NEDD4および Zまたは RUNXと接触させ、その後に NEDD4と RUNXの 結合反応を行うこともできる。 NEDD4と RUNXの結合により生じるシグナルまたは結 合のマーカー力 被検化合物を NEDD4および Zまたは RUNXと接触させたときに 、被検化合物を接触させな力つたときと比較して低下あるいは消失する等の変化を示 す場合、当該被検化合物は NEDD4と RUNXの結合を阻害すると判定できる。これ に対して、該シグナルまたはマーカーが、被検化合物を NEDD4および Zまたは RU NXと接触させたときに、被検化合物を接触させな力 たときと比較して増加するある いは発生する等の変化を示す場合、当該被検化合物は NEDD4と RUNXの結合を 促進すると判定できる。 [0276] The test compound can coexist in the binding reaction of NEDD4 and RUNX, or the test compound can be previously contacted with NEDD4 and Z or RUNX, and then the binding reaction of NEDD4 and RUNX can be performed. Signal or binding marker force generated by binding of NEDD4 and RUNX When test compound is brought into contact with NEDD4 and Z or RUNX, it decreases or disappears compared to when test compound is not in contact with force If there is a change, it can be determined that the test compound inhibits the binding of NEDD4 and RUNX. this On the other hand, the signal or marker increases or occurs when the test compound is brought into contact with NEDD4 and Z or RU NX compared to when the test compound is not brought into contact with the test compound. If it shows a change, it can be determined that the test compound promotes the binding of NEDD4 and RUNX.
[0277] このような実験系は、インビボおよびインビトロのいずれの条件においても実施でき る。  [0277] Such experimental systems can be performed under both in vivo and in vitro conditions.
[0278] インビトロの実験系は、蛋白質の結合阻害剤のスクリーニングにおいて一般的に使 用されている同定方法を参考にして実施できる。インビトロの実験系は、例えば、 NE DD4と RUNXとをインビトロで反応させて、プルダウン法により両蛋白質の結合を検 出する実験系であり得る。  [0278] An in vitro experimental system can be carried out with reference to identification methods generally used in screening for protein binding inhibitors. The in vitro experimental system can be, for example, an experimental system in which NE DD4 and RUNX are reacted in vitro and the binding of both proteins is detected by a pull-down method.
[0279] インビボの実験系は、好ましくは例えば、 NEDD4と RUNXとを共に発現している 真核細胞または培養細胞株を使用した実験系であり得る。 RUNXや NEDD4を発現 させた真核細胞または培養細胞株をこのような実験系に使用することもできる。細胞 におけるこれら蛋白質の発現は、 NEDD4をコードするポリヌクレオチドを含む適当 なベクターおよび Zまたは RUNXをコードするポリヌクレオチドを含む適当なベクタ 一を使用して慣用の遺伝子工学的手法でこれらベクターを細胞にトランスフエクショ ンすることにより達成できる。  [0279] The in vivo experimental system may preferably be an experimental system using eukaryotic cells or cultured cell lines expressing both NEDD4 and RUNX, for example. Eukaryotic cells or cultured cell lines expressing RUNX or NEDD4 can also be used in such experimental systems. Expression of these proteins in the cells is accomplished by conventional genetic engineering techniques using appropriate vectors containing a polynucleotide encoding NEDD4 and appropriate vectors containing a polynucleotide encoding Z or RUNX. This can be achieved by transformation.
[0280] NEDD4と RUNXの結合の検出は、自体公知の蛋白質の検出方法、例えば免疫 沈降法、プルダウン法、ツーハイブリッド法、ウェスタンブロッテイングおよび蛍光共鳴 エネルギー転移法等の方法またはこれらの方法を組合わせて、 NEDD4と RUNXに より形成される複合体を検出することにより実施できる。 NEDD4と RUNXの複合体 の検出を容易にするために、 NEDD4および Zまたは RUNXは、適当な標識物質に より標識されたものを使用することが好ましい。標識物質として、 FLAG -tag, Myc tagおよび HA— tag等のタグペプチド類が好ましく使用できる。標識物質の検出 は、自体公知の検出方法を使用して実施できる。例えば、タグペプチド類は、抗タグ ペプチド抗体により検出できる。このとき、抗タグペプチド抗体として、 HRP (ホースラ ディッシュ 'パーォキシダーゼ)、アルカリホスファターゼ、放射性同位元素、蛍光物 質またはピオチン等で標識した抗体を使用することにより検出がより容易に実施でき る。あるいは、上記酵素、放射性同位元素、蛍光物質、ピオチン等で標識した二次抗 体を使用してもよい。 [0280] The binding between NEDD4 and RUNX can be performed by a known protein detection method such as immunoprecipitation method, pull-down method, two-hybrid method, western blotting and fluorescence resonance energy transfer method, or a combination of these methods. In addition, it can be carried out by detecting the complex formed by NEDD4 and RUNX. In order to facilitate detection of a complex of NEDD4 and RUNX, NEDD4 and Z or RUNX are preferably labeled with an appropriate labeling substance. As the labeling substance, tag peptides such as FLAG-tag, Myc tag and HA-tag can be preferably used. Detection of the labeling substance can be performed using a detection method known per se. For example, tag peptides can be detected by anti-tag peptide antibodies. At this time, detection can be performed more easily by using an antibody labeled with HRP (horseradish peroxidase), alkaline phosphatase, radioisotope, fluorescent substance or piotin as an anti-tag peptide antibody. The Alternatively, a secondary antibody labeled with the above enzyme, radioisotope, fluorescent substance, piotin or the like may be used.
[0281] 具体的には、 NEDD4と RUNXの結合を阻害する化合物または促進する化合物の 同定方法は、例えば、 N末端に FLAG— tagが付加された RUNXをコードするポリヌ クレオチドを含む適当なベクターおよび N末端に Myc— tagが付カ卩された NEDD4を コードするポリヌクレオチドを含む適当なベクターをトランスフエクシヨンした細胞(実施 例 2参照)を使用して実施できる。該細胞を、被検化合物で処理した後、細胞を回収 し、適当な方法で細胞を溶解してセルライセートを調製し、該セルライセート中に含ま れる NEDD4と RUNXの複合体を検出する。セルライセート中に含まれる該複合体 の測定は、抗 FLAG抗体を使用した免疫沈降の後に、抗 Myc抗体を使用してウェス タンブロッテイングを行うことにより実施できる。細胞を被検化合物で処理したときに検 出される NEDD4と RUNXの複合体の量力 細胞を被検化合物で処理しな!、ときに 検出される複合体の量と比較して低減または消失する場合には、被検化合物は NE DD4と RUNXの結合を阻害すると判定できる。これに対して、細胞を被検化合物で 処理したときに検出される NEDD4と RUNXの複合体の量力 細胞を被検化合物で 処理しないときに検出される複合体の量と比較して増加する場合には、被検化合物 は NEDD4と RUNXの結合を促進すると判定できる。  [0281] Specifically, a method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX includes, for example, an appropriate vector containing a polynucleotide encoding RUNX with a FLAG-tag added to the N-terminus, and This can be carried out using cells transfected with an appropriate vector containing a polynucleotide encoding NEDD4 with a Myc-tag attached to the N-terminus (see Example 2). After the cells are treated with the test compound, the cells are collected, lysed by an appropriate method to prepare cell lysate, and the complex of NEDD4 and RUNX contained in the cell lysate is detected. Measurement of the complex contained in the cell lysate can be carried out by immunoprecipitation using an anti-FLAG antibody followed by Western blotting using an anti-Myc antibody. Quantities of NEDD4 and RUNX complex detected when cells are treated with test compound If cells are not treated with test compound, sometimes reduced or disappeared compared to the amount of complex detected On the other hand, it can be determined that the test compound inhibits the binding of NE DD4 and RUNX. In contrast, the amount of complex of NEDD4 and RUNX detected when cells are treated with the test compound Increased compared to the amount of complex detected when cells are not treated with the test compound It can be determined that the test compound promotes the binding of NEDD4 and RUNX.
[0282] NEDD4と RUNXの結合を阻害する化合物または促進する化合物の同定方法は また、公知のツーハイブリッド (two— hybrid)法を使用して実施できる。例えば、 NE DD4と DNA結合蛋白質を融合蛋白質として発現するプラスミド、 RUNXと転写活性 化蛋白質を融合蛋白質として発現するプラスミド、および適切なプロモーター遺伝子 に接続した lacZ等レポーター遺伝子を含有するプラスミドを酵母や真核細胞等の細 胞にトランスフエクシヨンし、該細胞を被検化合物で処理したときのレポーター遺伝子 の発現量を、被検化合物で該細胞を処理しな ヽときのレポーター遺伝子の発現量と を比較する。被検化合物で処理した該細胞のレポーター遺伝子の発現量が、被検 化合物で処理しない該細胞のレポーター遺伝子の発現量と比較して低減または消 失する場合、該被検化合物は NEDD4と RUNXの結合を阻害すると判定できる。こ れに対し、被検化合物で処理した該細胞のレポーター遺伝子の発現量が、被検化 合物で処理しな!ヽ該細胞のレポーター遺伝子の発現量と比較して増加する場合、該 被検化合物は NEDD4と RUNXの結合を促進すると判定できる。 [0282] A method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX can also be performed using a known two-hybrid method. For example, a plasmid that expresses NE DD4 and a DNA binding protein as a fusion protein, a plasmid that expresses RUNX and a transcriptional activation protein as a fusion protein, and a plasmid containing a reporter gene such as lacZ connected to an appropriate promoter gene can be used in yeast or true. The expression level of the reporter gene when the cells are treated with a test compound after transfection into a cell such as a nuclear cell, and the expression level of the reporter gene when the cell is not treated with the test compound Compare. If the expression level of the reporter gene in the cells treated with the test compound is reduced or disappeared compared to the expression level of the reporter gene in the cells not treated with the test compound, the test compound may be NEDD4 and RUNX. It can be determined that binding is inhibited. In contrast, the expression level of the reporter gene in the cells treated with the test compound is Not treated with the compound! When the expression level of the reporter gene in the cell increases, it can be determined that the test compound promotes the binding between NEDD4 and RUNX.
[0283] 上記同定方法により同定される化合物は、 NEDD4と RUNXの結合を阻害するィ匕 合物または促進する化合物である。  [0283] The compound identified by the identification method is a compound that inhibits or promotes the binding of NEDD4 and RUNX.
[0284] 本発明においてはまた、 NEDD4の発現を阻害するまたは促進する化合物の同定 方法を実施できる。 NEDD4の発現を阻害する化合物の同定方法は、 NEDD4の発 現を測定できる実験系を使用して実施できる。このような実験系において、 NEDD4 をコードするポリヌクレオチドと被検化合物とを共存させてその発現を測定し、っ 、で 、被検化合物の非存在下での測定結果との比較における発現の変化 (低減、消失ま たは増加)を検出することにより、 NEDD4の発現を阻害するまたは促進する化合物 を同定できる。  [0284] In the present invention, a method for identifying a compound that inhibits or promotes the expression of NEDD4 can also be carried out. A method for identifying a compound that inhibits the expression of NEDD4 can be carried out using an experimental system capable of measuring the expression of NEDD4. In such an experimental system, a polynucleotide encoding NEDD4 and a test compound were allowed to coexist and their expression was measured, and the change in expression compared to the measurement result in the absence of the test compound. By detecting (decrease, disappearance or increase), compounds that inhibit or promote NEDD4 expression can be identified.
[0285] NEDD4の発現を測定できる実験系は、具体的には例えば、 NEDD4をコードする ポリヌクレオチドを含む発現ベクターをトランスフエクシヨンした細胞を使用して NEDD 4を発現させる実験系であり得る。このような実験系において、該細胞を、被検化合物 で処理した後、細胞を回収し、適当な方法で細胞を溶解してセルライセートを調製し 、該セルライセート中に含まれる NEDD4を検出する。細胞を被検化合物で処理した ときに検出される NEDD4の量力 細胞を被検化合物で処理しないときに検出される NEDD4の量と比較して低減または消失する場合には、被検化合物は NEDD4の発 現を阻害すると判定できる。これに対して、細胞を被検化合物で処理したときに検出 される NEDD4の量力 細胞を被検化合物で処理しないときに検出される NEDD4 の量と比較して増加する場合には、被検化合物は NEDD4の発現を促進すると判定 できる。  [0285] The experimental system that can measure the expression of NEDD4 can be specifically an experimental system that expresses NEDD4 using cells transfected with an expression vector containing a polynucleotide encoding NEDD4. In such an experimental system, after treating the cells with a test compound, the cells are collected, lysed by an appropriate method to prepare cell lysate, and NEDD4 contained in the cell lysate is detected. . The amount of NEDD4 detected when cells are treated with the test compound. If the amount of NEDD4 is reduced or disappears compared to the amount of NEDD4 detected when cells are not treated with the test compound, the test compound is It can be determined that expression is inhibited. In contrast, the amount of NEDD4 detected when cells are treated with the test compound. When the amount of NEDD4 detected when cells are not treated with the test compound increases, Can be determined to promote the expression of NEDD4.
[0286] NEDD4の発現の測定は、自体公知の蛋白質の検出方法、例えばウェスタンブロ ッティング等の方法により、 NEDD4を直接的に検出することにより実施できる。また、 発現の指標となるシグナルを実験系に導入して該シグナルを検出することにより、 N EDD4の測定を容易に実施できる。発現の指標となるシグナルとして、例えば、標識 物質を使用できる。標識物質で NEDD4を標識し、該標識物質を測定することにより 、 NEDD4の測定を容易に実施できる。標識物質として、 FLAG -tag, Myc— tag および HA— tag等のタグペプチド類を好ましく使用できる。標識物質の検出は、自 体公知の検出方法を使用して実施できる。例えば、タグペプチド類は、抗タグべプチ ド抗体により検出できる。このとき、抗タグペプチド抗体として、 HRP (ホースラデイツ シュ'バーオキシダーゼ)、アルカリホスファターゼ、放射性同位元素、蛍光物質また はピオチン等で標識した抗体を使用することにより検出がより容易に実施できる。ある いは、上記酵素、放射性同位元素、蛍光物質、ピオチン等で標識した二次抗体を使 用してちょい。 [0286] The expression of NEDD4 can be measured by directly detecting NEDD4 by a known protein detection method such as Western blotting. In addition, NEDD4 can be easily measured by introducing a signal serving as an expression index into an experimental system and detecting the signal. As a signal serving as an expression index, for example, a labeling substance can be used. NEDD4 can be easily measured by labeling NEDD4 with a labeling substance and measuring the labeling substance. FLAG -tag, Myc— tag And tag peptides such as HA-tag can be preferably used. Detection of the labeling substance can be carried out using a known detection method. For example, tag peptides can be detected with anti-tag peptide antibodies. In this case, detection can be more easily carried out by using an antibody labeled with HRP (horseradish bar oxidase), alkaline phosphatase, radioisotope, fluorescent substance or piotin as an anti-tag peptide antibody. Alternatively, use a secondary antibody labeled with the above enzyme, radioisotope, fluorescent substance, or piotin.
[0287] また、 NEDD4の発現を測定できる実験系は、 NEDD4をコードするポリヌクレオチ ドのプロモーター領域の下流に、該ポリヌクレオチドの代わりにレポーター遺伝子を 連結したベクターを作成し、該ベクターをトランスフエクシヨンした細胞、例えば真核細 胞等を使用した実験系であり得る。このような実験系において、該細胞を被検化合物 で処理したときのレポーター遺伝子の発現量を、被検化合物で該細胞を処理しな ヽ ときのレポーター遺伝子の発現量とを比較する。被検化合物で処理した該細胞のレ ポーター遺伝子の発現量が、被検化合物で処理しな!、該細胞のレポーター遺伝子 の発現量と比較して低減または消失する場合、該被検化合物は NEDD4の発現を 阻害すると判定できる。これに対し、被検化合物で処理した該細胞のレポーター遺伝 子の発現量が、被検化合物で処理しな!、該細胞のレポーター遺伝子の発現量と比 較して増加する場合、該被検化合物は NEDD4の発現を促進すると判定できる。レ ポーター遺伝子として、レポーターアツセィで一般的に使用されて!ヽる遺伝子を使用 でき、例えば、ルシフェラーゼ、 j8—ガラクトシダーゼまたはクロラムフエ-コールァセ チルトランスフェラーゼ等の酵素活性を有する遺伝子を使用できる。レポーター遺伝 子の発現の検出は、その遺伝子産物の活性、例えば、上記レポーター遺伝子の場 合は酵素活性を検出することにより実施できる。  [0287] In addition, an experimental system that can measure the expression of NEDD4 creates a vector in which a reporter gene is linked instead of the polynucleotide downstream of the promoter region of the polynucleotide encoding NEDD4, It may be an experimental system using a cell that has been cleaved, such as a eukaryotic cell. In such an experimental system, the expression level of the reporter gene when the cells are treated with the test compound is compared with the expression level of the reporter gene when the cells are not treated with the test compound. If the expression level of the reporter gene in the cell treated with the test compound is not treated with the test compound and decreases or disappears compared to the expression level of the reporter gene in the cell, the test compound is NEDD4 Can be determined to inhibit the expression of. On the other hand, if the expression level of the reporter gene in the cell treated with the test compound increases without comparison with the expression level of the reporter gene in the cell without treatment with the test compound, the test sample The compound can be determined to promote the expression of NEDD4. As a reporter gene, a gene generally used in reporter assembly can be used, and for example, a gene having an enzyme activity such as luciferase, j8-galactosidase, or chloramphee-cholase transferase can be used. The expression of the reporter gene can be detected by detecting the activity of the gene product, for example, the enzyme activity in the case of the reporter gene.
[0288] 被検化合物として、例えばィ匕学ライブラリーや天然物由来の化合物、または NEDD 4および RUNXの一次構造や立体構造に基づいてドラッグデザインして得られたィ匕 合物等を使用できる。あるいは、 NEDD4と RUNXの結合部位のアミノ酸配列からな るポリペプチドの構造に基づいてドラッグデザインして得られた化合物等も被検化合 物として好適である。 [0289] また本発明の一態様は、骨形成を促進させ得る化合物の同定方法に関する。本発 明に係る骨形成を促進させ得る化合物の同定方法は、被検化合物が NEDD4の発 現および Zまたは機能を阻害する力否かを測定することを特徴とする。 [0288] As a test compound, for example, a chemical library, a compound derived from a natural product, or a compound obtained by drug design based on the primary structure or three-dimensional structure of NEDD 4 and RUNX can be used. . Alternatively, a compound obtained by drug design based on the structure of a polypeptide consisting of the amino acid sequence of the binding site of NEDD4 and RUNX is also suitable as the test compound. [0289] Another embodiment of the present invention relates to a method for identifying a compound capable of promoting bone formation. The method for identifying a compound capable of promoting bone formation according to the present invention is characterized by measuring whether a test compound is capable of inhibiting the expression and Z or function of NEDD4.
[0290] 本発明において、 NEDD4の発現および Zまたは機能を阻害することにより、 BMP  [0290] In the present invention, BMP is inhibited by inhibiting the expression and Z or function of NEDD4.
2で刺激した骨形成モデル細胞にぉ 、て、骨形成の指標であるアルカリホスファタ ーゼ活性 (実施例 10および 11参照)が上昇することを見出した。上述のように短鎖型 NEDD4と RUNX2が結合することから、 NEDD4の発現および Zまたは機能の阻 害は、 BMP— 2刺激による骨形成シグナルに関与する RUNX2の NEDD4によるュ ビキチンィ匕の阻害を引き起こし、その結果、 RUNX2の安定化とそれによる該骨形成 シグナルの促進を引き起こしたと考えることができる。そして、骨形成シグナルが促進 された結果、骨形成モデル細胞の骨分化が促進され、そのアルカリホスファターゼ活 性が上昇したと考えることができる。  It was found that the alkaline phosphatase activity (see Examples 10 and 11), which is an index of bone formation, was increased in the osteogenic model cells stimulated in 2. Since the short-chain NEDD4 and RUNX2 bind as described above, inhibition of NEDD4 expression and Z or function causes inhibition of ubiquitin に よ る by RUNX2 NEDD4, which is involved in bone formation signals induced by BMP-2 stimulation. As a result, it can be considered that RUNX2 was stabilized and the bone formation signal was thereby promoted. As a result of the promotion of the bone formation signal, it can be considered that the bone differentiation of the bone formation model cell is promoted and its alkaline phosphatase activity is increased.
[0291] すなわち、 NEDD4の発現および Zまたは機能を阻害する化合物は、 RUNX2の NEDD4によるュビキチン化の阻害を引き起こし、その結果、 RUNX2の安定化とそ れによる該骨形成シグナルを促進すると考えることができる。そして、このような化合 物は、骨形成シグナルを促進することにより、骨分化および骨形成を促進すると考え ることがでさる。  [0291] That is, a compound that inhibits the expression and Z or function of NEDD4 may cause inhibition of RUNX2's ubiquitination by NEDD4, thereby promoting RUNX2's stabilization and the resulting osteogenic signal. it can. Such compounds can be thought to promote bone differentiation and bone formation by promoting bone formation signals.
[0292] 被検化合物が NEDD4の発現を阻害する力否かを測定することを特徴とする、骨 形成を促進させ得る化合物の同定方法は、上記の NEDD4の発現を阻害する化合 物の同定方法を利用して実施できる。被検化合物により NEDD4の発現が阻害され た場合、該被検化合物は、骨形成を促進させ得ると判定できる。  [0292] A method for identifying a compound capable of promoting bone formation, characterized by measuring whether a test compound inhibits NEDD4 expression, is a method for identifying a compound that inhibits the above-mentioned NEDD4 expression. Can be implemented. When the test compound inhibits the expression of NEDD4, it can be determined that the test compound can promote bone formation.
[0293] NEDD4の機能は、例えば、その E3リガーゼ活性や RUNXとの結合能の測定によ り評価できる。 NEDD4の E3リガーゼ活性は、例えば基質として RUNXまたは NED D4を使用して、 RUNXのュビキチンィ匕または自己ュビキチンィ匕を検出することにより 測定できる。好ましくは、 RUNXを基質としてそのュビキチンィ匕活性を検出することが 適当である。  [0293] The function of NEDD4 can be evaluated, for example, by measuring its E3 ligase activity and its ability to bind to RUNX. The E3 ligase activity of NEDD4 can be measured, for example, by detecting RUNX or self-ubiquitin using RUNX or NED D4 as a substrate. Preferably, the ubiquitin activity is detected using RUNX as a substrate.
[0294] したがって、被検化合物が NEDD4の機能を阻害する力否力を測定することを特徴 とする、骨形成を促進させ得る化合物の同定方法は、例えば、上記の NEDD4によ る RUNXのュビキチンィ匕を阻害する化合物の同定方法を利用して実施できる。また 、 RUNXの代わりに NEDD4自身を基質として用い、 NEDD4による自己ュビキチン 化を阻害する化合物を同定することにより実施できる。被検化合物により、 NEDD4 による RUNXのュビキチンィ匕または自己ュビキチンィ匕が阻害された場合、該被検化 合物は、骨形成を促進させ得ると判定できる。 [0294] Therefore, a method for identifying a compound capable of promoting bone formation, characterized by measuring the power of the test compound to inhibit the function of NEDD4, is described, for example, by NEDD4. It can be carried out using a method for identifying a compound that inhibits RUNX ubiquitin. In addition, NEDD4 itself can be used as a substrate instead of RUNX, and a compound that inhibits self-ubiquitination by NEDD4 can be identified. When the test compound inhibits RUNX ubiquitin or auto-ubiquitin caused by NEDD4, it can be determined that the test compound can promote bone formation.
[0295] また、被検化合物が NEDD4の機能を阻害する力否力を測定することを特徴とする 、骨形成を促進させ得る化合物の同定方法は、例えば、上記の NEDD4と RUNXの 結合を阻害する化合物の同定方法を利用して実施できる。被検化合物により NEDD 4と RUNXの結合が阻害された場合、該被検化合物は、骨形成を促進させ得ると判 定できる。 [0295] In addition, the method for identifying a compound capable of promoting bone formation is characterized in that the test compound measures the force or inability to inhibit the function of NEDD4. For example, the above-mentioned binding method of NEDD4 and RUNX is inhibited. It can carry out using the identification method of the compound to do. When the test compound inhibits the binding of NEDD 4 and RUNX, it can be determined that the test compound can promote bone formation.
[0296] RUNXファミリー蛋白質のうち、 RUNX2が骨形成に重要な役割を果たすことが知 られて 、ることから、被検化合物が NEDD4の機能を阻害するか否力を測定すること を特徴とする、骨形成を促進させ得る化合物の同定方法では、 RUNX2を使用する ことが好ましい。  [0296] Among the RUNX family proteins, RUNX2 is known to play an important role in bone formation, and therefore it is characterized by measuring whether or not a test compound inhibits the function of NEDD4. In the method for identifying a compound that can promote bone formation, RUNX2 is preferably used.
[0297] 本発明に係る骨形成を促進させ得る化合物の同定方法は、さらに、上記同定方法 により NEDD4の発現および Zまたは機能を阻害することが明らかになった被検化 合物が、骨形成を促進させ得る力否力を測定する工程をさらに含む同定方法であり 得る。  [0297] In the method for identifying a compound capable of promoting bone formation according to the present invention, the test compound that has been shown to inhibit NEDD4 expression and Z or function by the above-described identification method is further used. It may be an identification method that further includes a step of measuring force dynamism capable of promoting the above.
[0298] 骨形成の促進を測定できる実験系として、例えば、骨形成モデル細胞を使用した 実験系を使用できる。骨形成モデル細胞として、例えばマウス C2C12細胞を使用で きる。マウス C2C12細胞は、筋芽細胞であり、骨芽細胞や軟骨細胞と同じ間葉系幹 細胞に由来する。 C2C12細胞は BMP— 2刺激により典型的な骨芽細胞のフエノタイ プ、例えばアルカリホスファターゼ活性の上昇ゃォステオカルシンの産生等を示すこ とから、 BMP— 2シグナルに依存した骨分ィ匕および骨形成のモデル細胞として利用 されている(カタギリ(Katagiri T. )ら、「ザ ジャーナル ォブ セル バイオロジー( The Journal of Cell Biology)」、 1994年、第 127卷、 p. 1755— 1766)。  [0298] As an experimental system that can measure the promotion of bone formation, for example, an experimental system using osteogenic model cells can be used. For example, mouse C2C12 cells can be used as osteogenesis model cells. Mouse C2C12 cells are myoblasts and are derived from the same mesenchymal stem cells as osteoblasts and chondrocytes. C2C12 cells show typical osteoblastic phenotypes upon stimulation with BMP-2, such as increased alkaline phosphatase activity and osteocalcin production. It has been used as a model cell (Katagiri T. et al., “The Journal of Cell Biology”, 1994, 127, p. 1755—1766).
[0299] 具体的には、骨形成モデル細胞を使用した実験系にお ヽて、骨形成を促進するサ イト力イン存在下で該細胞を培養した後、該細胞の中の骨形成マーカーを測定する ことにより、該細胞の骨形成の促進を測定できる。サイト力イン存在下で細胞を培養し たとき、サイト力イン非存在下で細胞を培養したときと比較して、骨形成マーカーが増 加する場合、該細胞の骨分ィ匕および骨形成が促進されたと判定できる。 [0299] Specifically, in an experimental system using osteogenesis model cells, after culturing the cells in the presence of site force-in that promotes osteogenesis, bone formation markers in the cells are added. taking measurement Thus, the promotion of bone formation of the cells can be measured. When cells are cultured in the presence of cytoforce in, when osteogenesis markers are increased compared to when cells are cultured in the absence of site force in, the cell's bone function and bone formation are reduced. It can be judged that it was promoted.
[0300] 骨形成を促進するサイト力インとして、例えば、 BMP— 2が好ましく使用できる。また 、骨形成マーカーとして、例えば、アルカリホスファターゼゃォステオカルシンを使用 できる。骨形成を促進するサイト力インや骨形成マーカーは、これらに限定されず、 一般的に骨形成の評価に使用されるサイト力インやマーカーをいずれも使用できる。 骨形成マーカーの測定は、一般的に使用されている骨形成マーカーの測定方法に より実施できる。  [0300] For example, BMP-2 can be preferably used as a site force-in that promotes bone formation. Moreover, as a bone formation marker, for example, alkaline phosphatase or osteocalcin can be used. The site force-in and the bone formation marker that promote bone formation are not limited to these, and any site force-in or marker that is generally used for evaluation of bone formation can be used. The bone formation marker can be measured by a generally used method for measuring a bone formation marker.
[0301] このような骨形成モデル細胞を使用した実験系にお 、て、該細胞を被検化合物で 処理することにより、骨形成を促進させ得る被検化合物を同定できる。被検化合物で 処理した細胞における骨形成マーカーが、被検化合物で処理して 、な 、細胞に該 骨形成マーカーと比較して増加した場合、該細胞の骨分化および骨形成が促進され たと判定できる。  [0301] In an experimental system using such bone formation model cells, a test compound that can promote bone formation can be identified by treating the cells with the test compound. When the bone formation marker in the cell treated with the test compound increases with respect to the cell compared with the bone formation marker when treated with the test compound, it is judged that the bone differentiation and bone formation of the cell are promoted. it can.
[0302] また本発明の一態様は、腫瘍増殖を抑制させ得る化合物の同定方法に関する。本 発明に係る腫瘍増殖を抑制させ得る化合物の同定方法は、被検化合物が NEDD4 の発現および Zまたは機能を阻害する力否力を測定することを特徴とする。  [0302] One embodiment of the present invention also relates to a method for identifying a compound capable of suppressing tumor growth. The method for identifying a compound capable of suppressing tumor growth according to the present invention is characterized in that the test compound measures the power and inability to inhibit the expression and Z or function of NEDD4.
[0303] 本発明にお 、て、 NEDD4は RUNX3と結合し、 RUNX3をュビキチン化すること を見出した (実施例 2、 3)。また NEDD4の発現を阻害することにより、ヒト癌細胞腫 瘍株の増殖が抑制されることを見出した (実施例 12参照)。  [0303] In the present invention, it was found that NEDD4 binds to RUNX3 and ubiquitinates RUNX3 (Examples 2 and 3). It was also found that inhibition of NEDD4 expression suppresses the growth of human cancer cell tumor lines (see Example 12).
[0304] すなわち、 NEDD4の発現および Zまたは機能を阻害する化合物は、 RUNX3の NEDD4によるュビキチン化の阻害を引き起こし、その結果、 RUNX3の安定化とそ れによる腫瘍増殖抑制を示すと考えられる。  [0304] That is, a compound that inhibits the expression and Z or function of NEDD4 is thought to cause inhibition of RUNX3 ubiquitination by NEDD4, resulting in stabilization of RUNX3 and thereby suppression of tumor growth.
[0305] 被検化合物が NEDD4の発現を阻害するか否かを測定することを特徴とする、腫 瘍増殖を抑制させ得る化合物の同定方法は、上記の NEDD4の発現を阻害するィ匕 合物の同定方法を利用して実施できる。被検化合物により NEDD4の発現が阻害さ れた場合、該被検化合物は、腫瘍増殖を抑制させ得ると判定できる。  [0305] A method for identifying a compound capable of suppressing tumor growth, characterized by measuring whether a test compound inhibits the expression of NEDD4, is a compound that inhibits the expression of NEDD4 as described above. The identification method can be used. When NEDD4 expression is inhibited by the test compound, it can be determined that the test compound can suppress tumor growth.
[0306] NEDD4の機能は、例えば、その E3リガーゼ活性や RUNXとの結合能の測定によ り評価できる。 NEDD4のリガーゼ活性は、例えば基質として RUNXまたは NEDD4 を使用して、 RUNXのュビキチン化または自己ュビキチンィ匕を検出することにより測 定できる。好ましくは、 RUNXを基質としてそのュビキチンィ匕活性を検出することが適 当である。 [0306] NEDD4 functions by, for example, measuring its E3 ligase activity and its ability to bind to RUNX. Can be evaluated. The ligase activity of NEDD4 can be measured, for example, by detecting RUNX ubiquitination or self-ubiquitination using RUNX or NEDD4 as a substrate. Preferably, the ubiquitin activity is detected using RUNX as a substrate.
[0307] したがって、被検化合物が NEDD4の機能を阻害する力否力を測定することを特徴 とする、腫瘍増殖を抑制させ得る化合物の同定方法は、例えば、上記の NEDD4に よる RUNXのュビキチン化を阻害する化合物の同定方法を利用して実施できる。ま た、 RUNXの代わりに NEDD4自身を基質として用い、 NEDD4による自己ュビキチ ン化を阻害する化合物を同定することにより実施できる。被検化合物により、 NEDD 4による RUNXのュビキチンィ匕または自己ュビキチンィ匕が阻害された場合、該被検 化合物は、腫瘍増殖を抑制させ得ると判定できる。  [0307] Therefore, a method for identifying a compound capable of suppressing tumor growth, characterized by measuring the power of the test compound to inhibit NEDD4 function, is, for example, RUNX ubiquitination by NEDD4. It can be carried out by using a method for identifying a compound that inhibits the above. In addition, NEDD4 itself can be used as a substrate instead of RUNX, and it can be carried out by identifying compounds that inhibit self-ubiquitination by NEDD4. When the test compound inhibits RUNX ubiquitin or self-ubiquitin caused by NEDD 4, it can be determined that the test compound can suppress tumor growth.
[0308] また NEDD4と RUNXの結合能は一般的に結合阻害剤のスクリーニングで用いら れて 、るプロテインバインディングアツセィを利用して実施できる。  [0308] The binding ability of NEDD4 and RUNX is generally used in screening for binding inhibitors, and can be performed using the protein binding assay.
[0309] したがって、被検化合物が NEDD4の機能を阻害する力否力を測定することを特徴 とする、腫瘍増殖を抑制させ得る化合物の同定方法は、例えば、上記の NEDD4と R UNXの結合を阻害する化合物の同定方法を利用して実施できる。被検化合物によ り、 NEDD4と RUNXの結合が阻害された場合、該被検化合物は、腫瘍増殖を抑制 させ得ると判定できる。  [0309] Therefore, a method for identifying a compound capable of suppressing tumor growth, characterized by measuring the power of the test compound to inhibit the function of NEDD4, includes, for example, the above-mentioned binding of NEDD4 and RUNX. This can be carried out using a method for identifying a compound to be inhibited. When the test compound inhibits the binding of NEDD4 and RUNX, it can be determined that the test compound can suppress tumor growth.
[0310] RUNXファミリー蛋白質のうち、 RUNX3が腫瘍増殖抑制に重要な役割を果たすこ とが知られて 、ることから、被検化合物が NEDD4の機能を阻害する力否力を測定 することを特徴とする、腫瘍増殖を抑制させ得る化合物の同定方法では RUNXとし て RUNX3を使用することが好まし!/、。  [0310] Among the RUNX family proteins, RUNX3 is known to play an important role in tumor growth suppression. Therefore, it is characterized by measuring the power of the test compound to inhibit the function of NEDD4. It is preferable to use RUNX3 as RUNX in the method for identifying compounds that can suppress tumor growth! /.
[0311] 本発明に係る腫瘍増殖を抑制させ得る化合物の同定方法は、さらに上記同定方法 により NEDD4の発現および Zまたは機能を阻害することが明らかになった被検化 合物が、腫瘍増殖を抑制させ得る力否力を測定する工程をさらに含む同定方法であ り得る。  [0311] In the method for identifying a compound capable of suppressing tumor growth according to the present invention, the test compound that has been shown to inhibit the expression and Z or function of NEDD4 by the above-described identification method is further used. The identification method may further include a step of measuring a force force that can be suppressed.
[0312] 腫瘍増殖の抑制を測定できる実験系として、例えばヒト癌細胞株を使用した実験系 を使用できる。このような実験系において、癌細胞を被検化合物で処理することにより 、被検化合物で処理していない癌細胞と比べ、癌細胞の増殖が抑制された場合には 、被検化合物は腫瘍増殖を抑制させ得ると判定できる。 [0312] As an experimental system capable of measuring suppression of tumor growth, for example, an experimental system using a human cancer cell line can be used. In such an experimental system, by treating cancer cells with a test compound, When the growth of cancer cells is suppressed as compared with cancer cells not treated with the test compound, it can be determined that the test compound can suppress tumor growth.
[0313] (試薬キット)  [0313] (Reagent kit)
本発明の一態様は、試薬キットに関する。本試薬キットは、 NEDD4、 NEDD4をコ ードするポリヌクレオチド、該ポリヌクレオチドを含有する組換えベクターおよび該組 換えベクターを含有する形質転換体のうち少なくともいずれか 1つと、 RUNX、 RUN Xをコードするポリヌクレオチド、該ポリヌクレオチドを含有する組換えベクターおよび 該組換えベクターを含有する形質転換体のうち少なくともいずれか 1つとを含んでな る試薬キットであり得る。本試薬キットはさらに、ュビキチン、ュビキチンをコードする ポリヌクレオチド、該ポリヌクレオチドを含有する組換えベクターおよび該組換えべク ターを含有する形質転換体のうち少なくともいずれか 1つを含んでなる試薬キットであ り得る。本試薬キットは、例えば本発明に係る化合物の同定方法に使用できる。  One embodiment of the present invention relates to a reagent kit. This reagent kit encodes at least one of NEDD4, a polynucleotide encoding NEDD4, a recombinant vector containing the polynucleotide, and a transformant containing the recombinant vector, and RUNX and RUN X. A reagent kit comprising at least one of a polynucleotide containing the polynucleotide, a recombinant vector containing the polynucleotide, and a transformant containing the recombinant vector. The reagent kit further comprises at least one of ubiquitin, a polynucleotide encoding ubiquitin, a recombinant vector containing the polynucleotide, and a transformant containing the recombinant vector. It can be. This reagent kit can be used, for example, in the method for identifying a compound according to the present invention.
[0314] 本発明に係る試薬キットは、上記同定方法において使用するシグナルおよび Zま たはマーカー、緩衝液、並びに塩等、必要とされる物質を含むことができる。さらに、 安定化剤および Zまたは防腐剤等の物質を含んでいてもよい。製剤化にあたっては 、使用する各物質それぞれに応じた製剤化手段を導入すればょ 、。  [0314] The reagent kit according to the present invention may contain a required substance such as a signal and Z or a marker, a buffer, and a salt used in the identification method. In addition, stabilizers and substances such as Z or preservatives may be included. When formulating, it is advisable to introduce formulation methods for each substance to be used.
[0315] (NEDD4、 RUNXおよびュビキチンの取得)  [0315] (Acquisition of NEDD4, RUNX and ubiquitin)
[0316] NEDD4、 RUNXおよびュビキチンはヒト由来の蛋白質であることが好ましいが、該 ヒト由来の蛋白質と同質の機能を有し、かつ構造的相同性を有する哺乳動物由来の 蛋白質、例えばマウス、ゥマ、ヒッジ、ゥシ、ィヌ、サル、ネコ、クマ、ラットまたはゥサギ 等の蛋白質であることができる。また、 NEDD4、 RUNXおよびュビキチンをそれぞ れコードするポリヌクレオチドは、ヒト由来のポリヌクレオチドであることが好ましいが、 該ヒト由来の蛋白質と同質の機能を有しかつ構造的相同性を有する哺乳動物由来 の蛋白質をコードするポリヌクレオチドであれば、例えばマウス、ゥマ、ヒッジ、ゥシ、ィ ヌ、サル、ネコ、クマ、ラットまたはゥサギ等に由来するポリヌクレオチドであることがで きる。 NEDD4、 RUNXおよびュビキチンの性質や機能は、例えば、 NEDD4と RU NXの結合、 NEDD4による RUNXへのュビキチンの結合(ュビキチン化)、 NEDD 4のリガーゼ活性等である。 [0317] NEDD4、 RUNXおよびュビキチンは、これらを遺伝子工学的手法で発現させた 細胞や生体試料力も調製したもの、無細胞系合成産物または化学合成産物であつ てよぐあるいはこれらからさらに精製されたものであってもよい。また、 NEDD4、 RU NXおよびュビキチンのうち少なくとも 1を遺伝子工学的手法で発現させた細胞を使 用することもできる。 NEDD4、 RUNXおよびュビキチンは、その性質や機能に影響 力 い限りにおいて、 N末端側や C末端側に別の蛋白質やポリペプチドを、直接的 にまたはリンカ一ペプチド等を介して間接的に、遺伝子工学的手法等を使用して付 カロしてもよい。別の蛋白質やポリペプチドとして、例えば、ダルタチオン S—トランス フェラーゼ(GST)、 β—ガラタトシダーゼ、ホースラディッシュペルォキシダーゼ(HR Ρ)またはアルカリホスファターゼ(ALP)等の酵素類、 His— tag、 Myc— tag、あるい は HA - tag, FLAG - tagまたは Xpress - tag等のタグペプチド類を使用できる。 [0316] NEDD4, RUNX and ubiquitin are preferably human-derived proteins. However, mammalian-derived proteins having the same functions and structural homology as the human-derived proteins, such as mice, It can be a protein such as mah, hidge, ushi, nu, monkey, cat, bear, rat or rabbit. The polynucleotides encoding NEDD4, RUNX and ubiquitin are preferably human-derived polynucleotides, but mammals having the same functions and structural homology as the human-derived proteins. As long as it is a polynucleotide encoding a protein derived from, it can be a polynucleotide derived from, for example, mouse, horse, hidge, ushi, dog, monkey, cat, bear, rat, or rabbit. The properties and functions of NEDD4, RUNX and ubiquitin include, for example, the binding of NEDD4 and RU NX, the binding of ubiquitin to RUNX by NEDD4 (ubiquitination), and the ligase activity of NEDD 4. [0317] NEDD4, RUNX and ubiquitin were either expressed in genetically engineered cells or biological samples prepared, cell-free or chemically synthesized products, or further purified from them It may be a thing. In addition, cells in which at least one of NEDD4, RU NX and ubiquitin is expressed by a genetic engineering technique can also be used. NEDD4, RUNX, and ubiquitin are genetically linked to other proteins or polypeptides on the N-terminal side or C-terminal side, either directly or indirectly through linker peptides, as long as their properties and functions are affected. It may be attached using engineering techniques. Other proteins and polypeptides include, for example, enzymes such as dartathione S-transferase (GST), β-galatatosidase, horseradish peroxidase (HR Ρ) or alkaline phosphatase (ALP), His-tag, Myc-tag Tag peptides such as HA-tag, FLAG-tag or Xpress-tag can be used.
[0318] 遺伝子工学的手法として、公知の方法がいずれも使用できる。例えば、成書に記 載の方法(サムブルック(Sambrook)ら編、「モレキュラークローユング,ァ ラボラトリ 一マニュアル 第 2版」、 1989年、コールドスプリングハーバーラボラトリー;村松正實 編、「ラボマ-ユアル遺伝子工学」、 1988年、丸善株式会社;ウルマー(Ulmer, K. M. ) , 「サイエンス(Science)」、 1983年、第 219卷、 p. 666— 671;エールリツヒ(E hrlich, H. A. )編、「PCRテクノロジー, DNA増幅の原理と応用」、 1989年、ストツ タトンプレス等を参照)を使用できる。  [0318] Any known method can be used as a genetic engineering technique. For example, the method described in the book (edited by Sambrook et al., “Molecular Cloning, Laboratory Manual, Second Edition”, 1989, Cold Spring Harbor Laboratory; edited by Masami Muramatsu, “Laboratory-Genetic Engineering” 1988, Maruzen Co., Ltd .; Ulmer, KM, Science, 1983, 219th, p. 666-671; edited by Ehrlich, HA, PCR Technology, DNA Amplification Principles and Applications ”(see 1989, Stotton Press etc.) can be used.
[0319] NEDD4、 RUNXおよびュビキチンをそれぞれコードするポリヌクレオチドは、例え ば、各ポリヌクレオチドの発現が認められる適当な起源から、 自体公知のクローニン グ方法等を使用して容易に取得できる。これらポリヌクレオチドの起源として、該ポリヌ クレオチドの発現が確認されている各種の細胞や組織、またはこれらに由来する培 養細胞等を使用できる。 NEDD4をコードするポリヌクレオチドの起源として、例えば 、ヒトの筋肉由来の細胞や筋肉組織を使用できる。 RUNXをコードするポリヌクレオチ ドの起源として、例えば、各種癌細胞株を使用できる。ュビキチンをコードするポリヌ クレオチドの起源として、例えば、ヒトの脳由来の細胞や脳組織を使用できる。  [0319] Polynucleotides encoding NEDD4, RUNX, and ubiquitin can be easily obtained from, for example, appropriate sources in which the expression of each polynucleotide is observed using a cloning method known per se. As the origin of these polynucleotides, various cells and tissues in which the expression of the polynucleotide has been confirmed, or cultured cells derived therefrom can be used. As a source of a polynucleotide encoding NEDD4, for example, cells derived from human muscle or muscle tissue can be used. As the origin of the polynucleotide encoding RUNX, for example, various cancer cell lines can be used. As the origin of the polynucleotide encoding ubiquitin, for example, cells derived from human brain and brain tissue can be used.
[0320] 起源からの全 RNAの分離、 mRNAの分離や精製、 cDNAの取得とそのクロー- ング等はいずれも常法に従って実施できる。また、市販されている cDNAライブラリー を使用することもできる。所望のクローンを cDNAライブラリ一力も選択する方法も特 に制限されず、慣用の方法を使用できる。例えば、 目的の DNA配列に選択的に結 合するプローブを使用したプラークハイブリダィゼーシヨン法、コロニーハイブリダィゼ ーシヨン法等やこれらを組合せた方法等を使用できる。ここで使用するプローブとし て、 NEDD4、 RUNXおよびュビキチンをそれぞれコードするポリヌクレオチドの塩基 配列に関する情報に基づいて化学合成された DNA等が一般的に使用できる。また 、該ポリヌクレオチドの塩基配列情報に基づき設計したセンスプライマー、アンチセン スプライマーをこのようなプローブとして使用できる。 cDNAライブラリーからの目的ク ローンの選択は、例えば公知の蛋白質発現系を利用して各クローンについて発現蛋 白質の確認を行い、その生物学的機能を指標にして実施できる。 [0320] Isolation of total RNA from origin, isolation and purification of mRNA, acquisition of cDNA and its cloning, etc. can all be performed according to conventional methods. In addition, commercially available cDNA libraries Can also be used. The method for selecting a desired clone as well as the cDNA library is not particularly limited, and a conventional method can be used. For example, a plaque hybridization method using a probe that selectively binds to a target DNA sequence, a colony hybridization method, or a combination of these methods can be used. As a probe used here, DNA chemically synthesized based on information on the nucleotide sequences of polynucleotides encoding NEDD4, RUNX and ubiquitin, respectively, can be generally used. In addition, sense primers and antisense primers designed based on the nucleotide sequence information of the polynucleotide can be used as such probes. Selection of the target clone from the cDNA library can be performed, for example, by confirming the expressed protein for each clone using a known protein expression system and using the biological function as an index.
[0321] 遺伝子工学的手法としてその他、 PCR (ウルマー(Ulmer, K. M. )、「サイエンス( Science)」、 1983年、第 219卷、 p. 666— 671;エールリツヒ(Ehrlich, H. A.;)編 、 「PCRテクノロジー, DNA増幅の原理と応用」、 1989年、ストックトンプレス;サイキ (Saiki R. K.;)ら、「サイエンス(Science)」、 1985年、第 230卷、 p. 1350—1354 ) )による DNAZRNA増幅法が好適に利用できる。 cDNAライブラリ一力も全長の c DNAが得られ難いような場合には、 RACE法(「実験医学」、 1994年、第 12卷、第 6 号、 p. 35—)、特に 5'—RACE法(フローマン(Frohman M. A. )ら、「プロシー ディングス ォブ ザ ナショナル アカデミー ォブ サイェンシズ ォブ ザ ュナイ テッド ステーッ ォブ アメリカ (Proceedings of The National Academy of Sciences of The United States of America)」、 1988年、第 85卷、第 2 3号、 p. 8998— 9002)等の採用が好適である。 PCRに使用するプライマーは、 DN Aの塩基配列情報に基づいて適宜設計でき、常法に従って合成により取得できる。 増幅させた DNAZRNA断片の単離精製は、常法により実施できる。例えばゲル電 気泳動法等により DNAZRNA断片の単離精製を実施できる。  [0321] Other genetic engineering methods include PCR (Ulmer, KM, "Science", 1983, 219th, p. 666-671; edited by Ehrlich, HA; "PCR Technology, Principles and Applications of DNA Amplification ”, 1989, Stockton Press; Saiki RK; et al.,“ Science ”, 1985, No. 230, p. 1350-1354)) Can be suitably used. If it is difficult to obtain a full-length cDNA library, the RACE method ("Experimental Medicine", 1994, No. 12, IV, p. 35-), especially the 5'-RACE method ( Frohman MA et al., “Proceedings of the National Academy of Sciences of The United States of America”, 1988, 85th, Proceedings of the National Academy of Sciences of the United States of America. Adopting S., No. 23, p. 8998-9002) is suitable. Primers used for PCR can be appropriately designed based on the DNA sequence information of DNA, and can be obtained by synthesis according to conventional methods. Isolation and purification of the amplified DNAZRNA fragment can be performed by a conventional method. For example, DNAZRNA fragments can be isolated and purified by gel electrophoresis or the like.
[0322] ポリヌクレオチドは、その機能、例えばコードする蛋白質の発現や、発現された蛋白 質の機能が阻害されない限りにおいて、 5'末端側や^末端側に、例えば GST、 β ガラクトシダーゼ、 HRPまたは ALP等の酵素類、 His— tag、 Myc— tag、あるいは HA -tag, FLAG— tagまたは Xpress— tag等のタグペプチド類等をコードするポリ ヌクレオチドが、 1つまたは 2つ以上付加されたポリヌクレオチドであることができる。こ れらポリヌクレオチドの付カ卩は、慣用の遺伝子工学的手法により実施できる。 [0322] As long as the function of the encoded protein, for example, the expression of the encoded protein or the function of the expressed protein is not inhibited, the polynucleotide may be, for example, GST, β-galactosidase, HRP or ALP. Enzymes such as His-tag, Myc-tag, or HA-tag, FLAG-tag or Xpress-tag etc. The nucleotide can be one or more added polynucleotides. The attachment of these polynucleotides can be performed by conventional genetic engineering techniques.
[0323] NEDD4、 RUNXおよびュビキチンをそれぞれコードするポリヌクレオチドを含む組 換えベクターを構築し、該組換えベクターを使用して適当な宿主細胞で該ポリヌクレ ォチドを発現させることにより、 NEDD4、 RUNXおよびュビキチンのうち少なくとも 1 を発現する細胞を取得できる。また、該細胞から、公知の方法で NEDD4、 RUNXお よびュビキチンを調製するとができる。  [0323] By constructing a recombinant vector containing a polynucleotide encoding NEDD4, RUNX and ubiquitin, respectively, and expressing the polynucleotide in an appropriate host cell using the recombinant vector, NEDD4, RUNX and ubiquitin are used. Among them, cells expressing at least 1 can be obtained. Moreover, NEDD4, RUNX and ubiquitin can be prepared from the cells by a known method.
[0324] ベクター DNAは宿主中で複製可能なものであれば特に限定されず、宿主の種類 および使用目的により適宜選択される。ベクター DNAは、天然に存在するものを抽 出したもののほか、複製に必要な部分以外の DNAの部分が一部欠落して 、るもの でもよい。代表的なベクター DNAは、例えば、プラスミド、バタテリオファージおよびゥ ィルス由来のベクター DNAである。プラスミド DNAとして、例えば、大腸菌由来のプ ラスミド、枯草菌由来のプラスミド、酵母由来のプラスミドを使用できる。パクテリオファ ージ DNAとして、例えば、 λファージを使用できる。ウィルス由来のベクター DNAと して、例えば、レトロウイルス、ワクシニアウィルス、アデノウイルス、パポバウィルス、 S V40、鶏痘ウィルス、および仮性狂犬病ウィルス等の動物ウィルス由来のベクター、 あるいはバキュロウィルス等の昆虫ウィルス由来のベクターを使用できる。その他、ト ランスポゾン由来、挿入エレメント由来、酵母染色体エレメント由来のベクター DNA 等を使用できる。あるいは、これらを組合せて作成したベクター DNA、例えば、ブラ スミドおよびバタテリオファージの遺伝学的エレメントを組合せて作成したベクター D NA (コスミドゃファージミド等)を使用できる。また、所望により、発現ベクターやクロー ユングベクターのいずれも使用できる。  [0324] The vector DNA is not particularly limited as long as it can replicate in the host, and is appropriately selected depending on the type of host and intended use. The vector DNA may be one obtained by extracting a naturally occurring one, or a part of the DNA other than that required for replication. Representative vector DNAs are, for example, vector DNAs derived from plasmids, butteriophages and viruses. As plasmid DNA, for example, a plasmid derived from E. coli, a plasmid derived from Bacillus subtilis, or a plasmid derived from yeast can be used. For example, λ phage can be used as the pacteriophage DNA. Examples of virus-derived vector DNA include vectors derived from animal viruses such as retrovirus, vaccinia virus, adenovirus, papovavirus, SV40, fowlpox virus, and pseudorabies virus, or insect viruses such as baculovirus. You can use vectors. In addition, vector DNA derived from a transposon, an insertion element, or a yeast chromosomal element can be used. Alternatively, a vector DNA prepared by combining them, for example, a vector DNA (such as cosmid phage phagemid) prepared by combining genetic elements of plasmid and butteriophage can be used. Moreover, either an expression vector or a cloning vector can be used as desired.
[0325] ベクター DNAには、 目的遺伝子の機能が発揮されるように遺伝子を組込むことが 必要であり、少なくとも目的遺伝子配列とプロモーターとをその構成要素とする。これ ら要素に加えて、所望によりさらに、複製そして制御に関する情報を担持した遺伝子 配列、例えば、リボソーム結合配列、ターミネータ一、シグナル配列、ェンハンサ一等 のシスエレメント、スプライシングシグナル、および選択マーカー等から選択した 1つ または複数の遺伝子配列を自体公知の方法により組合せてベクター DNAに組込む ことができる。選択マーカーとして、例えば、ジヒドロ葉酸還元酵素遺伝子、アンピシリ ン耐性遺伝子、ネオマイシン耐性遺伝子を使用できる。 [0325] It is necessary to incorporate the gene into the vector DNA so that the function of the target gene is exerted, and at least the target gene sequence and the promoter are constituent elements. In addition to these elements, a gene sequence carrying information regarding replication and control, for example, a ribosome binding sequence, a terminator, a signal sequence, a cis-element such as an enhancer, a splicing signal, and a selectable marker may be selected as desired. Combine one or more gene sequences into a vector DNA by a method known per se be able to. As a selection marker, for example, a dihydrofolate reductase gene, an ampicillin resistance gene, or a neomycin resistance gene can be used.
[0326] ベクター DNAに目的遺伝子配列を組込む方法は、自体公知の方法を適用できる 。例えば、 目的遺伝子配列を適当な制限酵素により処理して特定部位で切断し、次 V、で同様に処理したベクター DNAと混合し、リガーゼによって再結合する方法が使 用される。あるいは、 目的遺伝子配列に適当なリンカ一をライゲーシヨンし、これを目 的に適したベクターのマルチクローユングサイトへ挿入することによつても、所望の組 換えベクターが得られる。  [0326] As a method for incorporating the target gene sequence into the vector DNA, a method known per se can be applied. For example, the target gene sequence is treated with an appropriate restriction enzyme, cleaved at a specific site, mixed with vector DNA treated in the same manner in V, and religated by ligase. Alternatively, the desired recombinant vector can also be obtained by ligating an appropriate linker to the target gene sequence and inserting it into the multicloning site of the appropriate vector.
[0327] NEDD4、 RUNXおよびュビキチンをそれぞれコードするポリヌクレオチドを含む組 換えベクターを宿主にトランスフエクシヨンすることにより、形質転換体が得られる。ベ クタ一 DNAとして発現ベクターを使用すれば、これらポリヌクレオチドのうち少なくとも 1を発現する細胞を取得でき、さらに該細胞使用して公知の方法により NEDD4、 R UNXまたはュビキチンを製造できる。該形質転換体には、 NEDD4、 RUNXおよび ュビキチンをそれぞれコードするポリヌクレオチド以外の所望のポリヌクレオチドを糸且 込んだベクター DNAの 1つまたは 2つ以上をさらにトランスフエクシヨンすることもでき る。  [0327] A transformant can be obtained by transfecting a recombinant vector containing polynucleotides encoding NEDD4, RUNX and ubiquitin, respectively, into a host. If an expression vector is used as the vector DNA, cells expressing at least one of these polynucleotides can be obtained, and NEDD4, RUNX or ubiquitin can be produced by using the cells by a known method. The transformant can be further transfected with one or more vector DNAs containing a desired polynucleotide other than polynucleotides encoding NEDD4, RUNX and ubiquitin, respectively.
[0328] 宿主として、原核生物および真核生物の!/ヽずれも使用できる。原核生物として、例 えば、腸菌(ェシエリヒアコリ(Escherichia coli) )等のェシエリヒア属、枯草菌等の バシラス属、シユードモナスプチダ(Pseudomonas putida)等のシユードモナス属 、リゾビゥムメリロティ(Rhizobium meliloti)等のリゾビゥム属に属する細菌を使用 できる。真核生物として、サッカロミセス ·セレビシェ (Saccharomyces cerevisiae) 、シゾサッカロミセスボンべ(Schizosaccharomyces pombe)等の酵母、 Sf9や Sf 21等の昆虫細胞、あるいはサル腎由来細胞(COS細胞、 Vero細胞)、チャイニーズ ハムスター卵巣細胞(CHO細胞)、マウス L細胞、ラット GH3細胞、ヒト HEK293T細 胞等の動物細胞を使用できる。好ましくは動物細胞を使用する。  [0328] Prokaryotic and eukaryotic! / Slack can also be used as hosts. Prokaryotes include, for example, the genus Escherichia such as Escherichia coli, the Bacillus genus such as Bacillus subtilis, the Syudomonas genus such as Pseudomonas putida, and the Rhizobium meriroti (Rhizobium). Bacteria belonging to the genus Rhizobium such as meliloti) can be used. As eukaryotes, yeasts such as Saccharomyces cerevisiae and Schizosaccharomyces pombe, insect cells such as Sf9 and Sf21, monkey kidney-derived cells (COS cells, Vero cells), Chinese hamsters Animal cells such as ovary cells (CHO cells), mouse L cells, rat GH3 cells, and human HEK293T cells can be used. Preferably animal cells are used.
[0329] ベクター DNAの宿主細胞へのトランスフエクシヨンは、自体公知の手段が応用でき 、例えば成書に記載されている標準的な方法 (サムブルック(Sambrook)ら編、「モ レキユラ一クロー-ング,ァ ラボラトリーマ-ユアル 第 2版」、 1989年、コールドスプ リングノヽーバーラボラトリー)により実施できる。より好ましい方法として、遺伝子の安 定性を考慮するならば染色体内へのインテグレート法を使用できる。簡便には核外 遺伝子を利用した自律複製系を使用できる。具体的な方法は、例えば、リン酸カルシ ゥムトランスフエクシヨン、 DEAE—デキストラン媒介トランスフエクシヨン、マイクロイン ジェクシヨン、陽イオン脂質媒介トランスフエクシヨン、エレクト口ポレーシヨン、形質導 入、スクレープ負荷 (scrape loading)、 ノ リスティック 入 (ballistic introductio n)および感染等である。 [0329] Transfection of vector DNA into a host cell can be carried out by a method known per se. For example, a standard method described in a book (Sambrook et al. Ng, Laboratories-Second Edition ", 1989, Cold Sp It can be implemented by the Ringnober Laboratory. As a more preferable method, an integration method into a chromosome can be used in consideration of gene stability. For convenience, an autonomous replication system using extranuclear genes can be used. Specific methods include, for example, calcium phosphate transfer, DEAE-dextran mediated transfer, microinjection, cationic lipid mediated transfer, electoral position, transduction, scrape loading. ), Ballistic introduction and infection.
[0330] NEDD4、 RUNXおよびュビキチンは、 NEDD4、 RUNXおよびュビキチンをそれ ぞれコードするポリヌクレオチドを遺伝子工学的手法で発現させた細胞や生体試料 力 調製したもの、無細胞系合成産物または化学合成産物であってよぐあるいはこ れらからさらに精製されたものであってもよい。また、これら蛋白質は、該蛋白質をコ ードするポリヌクレオチドを含む細胞にぉ 、て発現して 、るものであり得る。該細胞は 、 RUNXおよびュビキチンをそれぞれコードするポリヌクレオチドを含むベクターをト ランスフヱクシヨンして得られた形質転換体であり得る。 [0330] NEDD4, RUNX, and ubiquitin are cells, biological samples, or cell-free or chemically synthesized products that express genetically engineered polynucleotides encoding NEDD4, RUNX, and ubiquitin, respectively. However, it may be purified or further purified from these. In addition, these proteins can be expressed in cells containing a polynucleotide encoding the protein. The cell may be a transformant obtained by transfecting a vector containing a polynucleotide encoding RUNX and ubiquitin, respectively.
[0331] NEDD4、 RUNXおよびュビキチンはさらに、その構成アミノ基またはカルボキシ ル基等を、例えばアミド化修飾する等、機能の著しい変更を伴わない限りにおいて改 変できる。また、 N末端側や C末端側に別の蛋白質等を、直接的にまたはリンカ一べ プチド等を介して間接的に遺伝子工学的手法等を使用して付加することにより標識 化したものであってもよい。好ましくは、本蛋白質の基本的な性質が阻害されないよう な標識ィ匕が望ましい。付加する蛋白質等として、例えば、 GST、 β—ガラタトシダー ゼ、 HRPまたは ALP等の酵素類、 His— tag、 Myc— tag、 HA -tag, FLAG -tag または Xpress—tag等のタグペプチド類、フルォレセインイソチオシァネート(fluore scein isothiocyanate)またはフィコエリスリン(phycoerythrin)等の蛍光色素類、 マルトース結合蛋白質、免疫グロブリンの Fc断片あるいはピオチンを使用できるが、 これらに限定されない。また、放射性同位元素により標識することもできる。標識化に 使用する物質は、 1つまたは 2つ以上を組合せて付加できる。これら標識化に使用し た物質自体、またはその機能を測定することにより、本蛋白質を容易に検出または精 製でき、また、例えば本蛋白質と他の蛋白質との相互作用を検出できる。 [0332] 具体的には例えば、 NEDD4、 RUNXまたはュビキチンを含むベクター DNAをト ランスフエクシヨンした形質転換体を培養し、次いで得られる培養物から目的とする蛋 白質を回収することによりこれら蛋白質を製造できる。形質転換体の培養は、各々の 宿主に最適な自体公知の培養条件および培養方法で実施できる。培養は、形質転 換体により発現される本蛋白質自体またはその機能を指標にして実施できる。ある 、 は、宿主中または宿主外に産生された本蛋白質自体またはその蛋白質量を指標に して培養してもよく、培地中の形質転換体量を指標にして継代培養またはバッチ培 養を行ってもよい。 [0331] NEDD4, RUNX, and ubiquitin can be further modified without significant changes in function, such as modification of its constituent amino groups or carboxyl groups, for example, by amidation. In addition, it is labeled by adding another protein or the like to the N-terminal side or C-terminal side directly or indirectly using a genetic engineering method through a linker peptide or the like. May be. Preferably, a label that does not inhibit the basic properties of the protein is desirable. Examples of proteins to be added include enzymes such as GST, β-galatatosidase, HRP or ALP, tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag, fluoro Fluorescent dyes such as fluorescein isothiocyanate or phycoerythrin, maltose binding protein, Fc fragment of immunoglobulin or piotin can be used, but not limited thereto. It can also be labeled with a radioisotope. One or a combination of two or more substances can be added for labeling. By measuring the substance itself used for labeling or its function, this protein can be easily detected or purified, and for example, the interaction between this protein and other proteins can be detected. [0332] Specifically, for example, these proteins are obtained by culturing a transformant obtained by transfecting a vector DNA containing NEDD4, RUNX or ubiquitin, and then recovering the target protein from the obtained culture. Can be manufactured. The transformant can be cultured using culture conditions and culture methods known per se optimal for each host. Culturing can be performed using the present protein expressed by the transformant itself or its function as an index. Some may be cultured using the present protein itself or the amount of the protein produced in or outside the host as an index, and subculture or batch culture may be performed using the amount of transformant in the medium as an index. You may go.
[0333] 目的とする蛋白質が形質転換体の細胞内あるいは細胞膜上に発現する場合には 、形質転換体を破砕して目的とする蛋白質を抽出する。また、目的とする蛋白質が形 質転換体外に分泌される場合には、培養液をそのまま使用するか、遠心分離処理等 により形質転換体を除去した培養液を使用する。  [0333] When the target protein is expressed in the cell or on the cell membrane of the transformant, the target protein is extracted by crushing the transformant. When the target protein is secreted outside the transformant, use the culture solution as it is, or use a culture solution from which the transformant has been removed by centrifugation or the like.
[0334] NEDD4、 RUNXまたはュビキチンはまた、一般的な化学合成法により製造できる 。例えば、成書(「ペプチド合成」、丸善株式会社、 1975年および「ペプチド シンテ シス(Peptide Synthesis)」、インターサイエンス (Interscience)、ニューヨーク(N ew York) , 1996年)に記載の方法が使用される力 これらに限らず公知の方法が 広く利用できる。蛋白質の化学合成方法として、固相合成方法や液相合成方法等が 知られているがいずれを使用することもできる。このような蛋白質合成法は、より詳しく は、アミノ酸配列情報に基づいて、各アミノ酸を 1個ずつ逐次結合させて鎖を延長さ せて 、く 、わゆるステップワイズェロンゲーシヨン法と、アミノ酸数個力もなるフラグメン トを予め合成し、次いで各フラグメントをカップリング反応させるフラグメントコンデンセ ーシヨン法とを包含し、本蛋白質の合成は、そのいずれによっても実施できる。上記 蛋白質合成において使用される縮合法も、常法に従うことができ、例えば、アジド法、 混合酸無水物法、 DCC法、活性エステル法、酸化還元法、 DPPA (ジフヱニルホス ホリルアジド)法、 DCC +添カ卩物(1—ヒドロキシベンゾトリァゾール、 Ν—ヒドロキシサ クシンアミド、 Ν—ヒドロキシ一 5—ノルボルネン一 2, 3—ジカルボキシイミド等)法、ゥ ッドワード法等を使用できる。また、市販のアミノ酸合成装置を使用してこれら蛋白質 を製造できる。 [0335] NEDD4、 RUNXまたはュビキチンに、変異が導入されたものも本発明にお ヽて使 用できる。蛋白質、ポリペプチドおよびポリペプチドに変異を導入する手段は自体公 知であり、例えばウルマーの技術(ウルマー(K. M. Ulmer)、「サイエンス(Science )」、 1983年、第 219卷、 p. 666— 671)を利用して実施できる。このような変異の導 入において、当該の基本的な性質 (物性、機能または免疫学的活性等)を変化させ ないという観点から、例えば、同族アミノ酸 (極性アミノ酸、非極性アミノ酸、疎水性ァ ミノ酸、親水性アミノ酸、陽性荷電アミノ酸、陰性荷電アミノ酸および芳香族アミノ酸等 )の間での相互の置換は容易に想定される。さらに、これら利用できるポリペプチドは 、その構成アミノ基またはカルボキシル基等を、例えばアミドィ匕修飾する等、機能の 著 、変更を伴わな 、程度に改変できる。 [0334] NEDD4, RUNX or ubiquitin can also be produced by common chemical synthesis methods. For example, the methods described in the book (“Peptide Synthesis”, Maruzen Co., Ltd., 1975 and “Peptide Synthesis”, Interscience, New York, 1996) are used. Not limited to these, known methods can be widely used. Known methods for chemically synthesizing proteins include solid-phase synthesis methods and liquid-phase synthesis methods. Any of these methods can be used. More specifically, such a protein synthesis method is based on amino acid sequence information, in which each amino acid is sequentially linked one by one to extend the chain, and the so-called stepwise longong method, This includes a fragment condensation method in which several fragments having several strengths are synthesized in advance and then each fragment is subjected to a coupling reaction, and the protein can be synthesized by any of them. The condensation methods used in the above protein synthesis can also follow conventional methods, for example, azide method, mixed acid anhydride method, DCC method, active ester method, redox method, DPPA (diphenylphosphoryl azide) method, DCC + The methods such as potassium (1-hydroxybenzotriazole, Ν-hydroxysuccinamide, Ν-hydroxy-5-norbornene-1,2,3-dicarboximide), and the Wordword method can be used. Moreover, these proteins can be produced using a commercially available amino acid synthesizer. [0335] NEDD4, RUNX or ubiquitin having a mutation introduced therein can also be used in the present invention. Proteins, polypeptides and means for introducing mutations into polypeptides are known per se, such as Ulmer's technology (KM Ulmer, Science), 1983, 219, p. 666-671. ). From the viewpoint of not changing the basic properties (physical properties, functions, immunological activity, etc.) in introducing such mutations, for example, homologous amino acids (polar amino acids, nonpolar amino acids, hydrophobic amino acids). Mutual substitution between acids, hydrophilic amino acids, positively charged amino acids, negatively charged amino acids, aromatic amino acids, etc.) is readily envisioned. Furthermore, these usable polypeptides can be altered to a degree without significant or altered functions, such as modification of their constituent amino groups or carboxyl groups, for example by amido.
[0336] NEDD4、 RUNXまたはュビキチンは、所望により、その物理的性質、化学的性質 等を利用した各種分離操作方法により精製および Zまたは分離できる。分離および Zまたは精製は、本蛋白質の機能を指標にして実施できる。分離操作方法として、 例えば硫酸アンモニゥム沈殿、限外ろ過、ゲルクロマトグラフィー、イオン交換クロマト グラフィー、ァフィユティークロマトグラフィー、高速液体クロマトグラフィー、透析法等 を単独でまたは適宜組合せて使用できる。好ましくは、本蛋白質のアミノ酸配列情報 に基づき、これらに対する特異的抗体を作成し、該抗体を使用して特異的に吸着す る方法、例えば該抗体を結合させたカラムを利用するァフィ-ティクロマトグラフィー を使用することが推奨される。  [0336] NEDD4, RUNX or ubiquitin can be purified and / or separated by various separation methods utilizing its physical properties, chemical properties, etc., if desired. Separation and Z or purification can be performed using the function of the protein as an indicator. As the separation operation method, for example, ammonium sulfate precipitation, ultrafiltration, gel chromatography, ion exchange chromatography, affinity chromatography, high performance liquid chromatography, dialysis method and the like can be used alone or in appropriate combination. Preferably, based on the amino acid sequence information of the present protein, a specific antibody against them is prepared and specifically adsorbed using the antibody, for example, affinity chromatography using a column to which the antibody is bound. It is recommended to use graphy.
[0337] 以下、本発明を実施例に基づき具体的に説明するが、本発明は下記の実施例に 限定されない。  [0337] Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
実施例 1  Example 1
[0338] (RUNX3と相互作用する機能を有する蛋白質のインシリコでの探索)  [0338] (In silico search for proteins that interact with RUNX3)
RUNX3と相互作用する機能を有する蛋白質の予測を、国際公開第 WO01Z672 99号パンフレットに記載のインシリコでの予測方法に従って次のように実施した:(i) RUNX3のアミノ酸配列をある長さのオリゴペプチドに分解し、 (ii)各オリゴペプチド のアミノ酸配列あるいはそのアミノ酸配列と相同なアミノ酸配列を持った蛋白質をデ ータベース中で検索し、(iii)得られた蛋白質と RUNX3との間でローカルァライメント を行い、(iv)ローカルァライメントのスコアの高いものを RUNX3と相互作用する蛋白 質であると予測する。 Prediction of a protein having a function of interacting with RUNX3 was carried out as follows according to the in silico prediction method described in International Publication No. WO01Z67299: (i) Oligopeptide having a certain length of amino acid sequence of RUNX3 (Ii) search the database for proteins having the amino acid sequence of each oligopeptide or an amino acid sequence homologous to the amino acid sequence, and (iii) local alignment between the obtained protein and RUNX3. (Iv) Predict that a protein with a high local alignment score interacts with RUNX3.
[0339] 解析の結果 (図 1)、RUNX3と相互作用する機能を有すると予測される蛋白質とし て NEDD4を見出した。 RUNX3の部分アミノ酸配列からなるオリゴペプチド FPYSA T (配列番号 13)、 AELRNA (配列番号 15)および LSVAGM (配列番号 17)とそれ ぞれ相同なオリゴペプチド FEYSAT (配列番号 14)、 AEELNA (配列番号 16)およ び GRVAGM (配列番号 18)が NEDD4のアミノ酸配列中に認められた。  [0339] As a result of the analysis (Fig. 1), NEDD4 was found as a protein predicted to have a function of interacting with RUNX3. Oligopeptides consisting of partial amino acid sequences of RUNX3 FPYSA T (SEQ ID NO: 13), AELRNA (SEQ ID NO: 15) and LSVAGM (SEQ ID NO: 17), homologous oligopeptides FEYSAT (SEQ ID NO: 14), AEELNA (SEQ ID NO: 16) ) And GRVAGM (SEQ ID NO: 18) were found in the amino acid sequence of NEDD4.
実施例 2  Example 2
[0340] (RUNX3と NEDD4の結合解析)  [0340] (Combination analysis of RUNX3 and NEDD4)
ヒト RUNX3とヒト NEDD4の結合を、ヒト培養細胞における一過性共発現系を使用 して免疫沈降法により検討した。  The binding of human RUNX3 and human NEDD4 was examined by immunoprecipitation using a transient co-expression system in cultured human cells.
[0341] <材料と方法 >  [0341] <Materials and methods>
ヒト RUNX3発現プラスミドを以下に述べるように構築した。ヒト RUNX3 cDNAは Open Biosystems社より購入した(クローン番号 MHS1011— 74936)。購入し たヒト RUNX3 cDNAを铸型とし、 EcoRIおよび Xholサイトを付カ卩したプライマーを 使用して PCRにより ORFを増幅し、シーケンスにより塩基配列を確認した。その後、 獲得した ORF領域を、 N末端 FLAG— tag結合蛋白質を発現させるための動物細 胞用発現プラスミド pCMV— Tag2 (STRATAGENE社製)に EcoRlZXhoIサイト で組み込み、ヒト RUNX3発現プラスミドを構築した。本ヒト RUNX3発現プラスミド〖こ より、 N末端 FLAG— tag結合ヒトRUNX3 (以下、 FLAG—RUNX3と称する)が発 現する。なお、クローユングしたヒト RUNX3 cDNAによりコードされる推定アミノ酸 配列は NCBIプロテインデータベースのァクセッションナンバー NP— 004341 (登録 遺伝子名は RUNX3)に公開されたものと同一であった。  A human RUNX3 expression plasmid was constructed as described below. Human RUNX3 cDNA was purchased from Open Biosystems (clone number MHS1011-74936). The ORF was amplified by PCR using the purchased human RUNX3 cDNA in a cage, primers with EcoRI and Xhol sites attached, and the nucleotide sequence was confirmed by sequencing. Subsequently, the obtained ORF region was incorporated into an animal cell expression plasmid pCMV-Tag2 (STRATAGENE) for expressing an N-terminal FLAG-tag binding protein at the EcoRlZXhoI site to construct a human RUNX3 expression plasmid. From this human RUNX3 expression plasmid, N-terminal FLAG-tag binding human RUNX3 (hereinafter referred to as FLAG-RUNX3) is expressed. The deduced amino acid sequence encoded by the cloned human RUNX3 cDNA was the same as that published in the NCBI protein database accession number NP-004341 (registered gene name is RUNX3).
[0342] ヒト NEDD4発現プラスミドを以下に述べるように構築した。ヒト NEDD4 cDNAは 、 KIAA0093クローンの塩基配列(NCBIァクセッションナンバー D42055)に基づ いて調製した。 KIAA0093クローンの塩基配列は、ゲノム配列と比較して^末端側 の 218bpが欠失していると考えられた。そこで、ゲノム配列を参考に、 KIAA0093ク ローンの塩基配列の^末端側にさらに 218bp延長した cDNAを調製した。延長部 分の 218bpはヒト骨格筋由来 cDNA(QUICK— clone cDNAゝ Clontech社製)か ら PCRによって獲得し、シーケンスにより塩基配列を確認した。獲得したヒト NEDD4 cDNAは、 5'末端に Myc— tagコード配列を付加した後に、動物細胞用発現ブラ スミド PCI (Promega社製)に組み込み、ヒト NEDD4発現プラスミドを構築した。本ヒト NEDD4発現プラスミドにより、 N末端 Myc— tag結合ヒト NEDD4 (以下、 Myc— N EDD4と称する)が発現する。なお、クローユングしたヒト NEDD4 cDNAによりコー ドされる推定アミノ酸配列は Swiss— Protデータベースのァクセッションナンバー P4 6934 (登録遺伝子名は NEDD4)に公開されたものと同一であった。 [0342] A human NEDD4 expression plasmid was constructed as described below. Human NEDD4 cDNA was prepared based on the nucleotide sequence of the KIAA0093 clone (NCBI accession number D42055). The base sequence of the KIAA0093 clone was considered to have a deletion of 218 bp on the end side compared to the genomic sequence. In view of this, cDNA was prepared by further extending 218 bp to the ^ -terminal side of the base sequence of the KIAA0093 clone with reference to the genome sequence. Extension 218 bp per minute was obtained from human skeletal muscle-derived cDNA (QUICK-clone cDNA 製 Clontech) by PCR, and the nucleotide sequence was confirmed by sequencing. Acquired human NEDD4 cDNA, after adding the Myc-tag coding sequence at the 5 'end was incorporated into the expression for animal cell bra plasmid P CI (Promega Corp.) to construct a human NEDD4 expression plasmid. This human NEDD4 expression plasmid expresses N-terminal Myc-tag-linked human NEDD4 (hereinafter referred to as Myc-NEDD4). The deduced amino acid sequence encoded by the cloned human NEDD4 cDNA was the same as that published in Swiss-Prot database accession number P4 6934 (registered gene name is NEDD4).
免疫沈降実験は以下に述べるように実施した。細胞数 1. O X 106の HEK293T細 胞を 6cm ディッシュに播種し、 10% 牛胎仔血清(FBS)含有 DMEM培地中で 37 °Cにて 5% CO /95 エアの条件下でー晚培養後、ヒト NEDD4発現プラスミド Immunoprecipitation experiments were performed as described below. Number of cells 1. Seed OX 10 6 HEK293T cells in a 6cm dish, and after sputum culture in DMEM medium containing 10% fetal bovine serum (FBS) at 37 ° C under 5% CO / 95 air , Human NEDD4 expression plasmid
2 %  2%
1. 75 gをヒト RUNX3発現プラスミド 0. 25 μ gと共にフュージーン 6 (FuGENE6 、 Roche diagnostics社製)を使用して細胞にトランスフエクシヨンした。ヒト RUNX3 発現プラスミドの代わりに、ヒト RUNX3遺伝子を組み込んで!/、な!/、pCMV— Tag2 ベクター(以下、空ベクターと称する)を、同様の方法でトランスフエクシヨンした細胞を 調製してコントロールとして使用した。 2日間培養後、細胞をリン酸緩衝生理食塩水( 以下、 PBSと略称する)で洗浄し、セルスクレーパーを使用して回収した。回収した 細胞に、プロテアーゼ阻害剤カクテル Complete, Mini (Roche diagnostics社 製)を含むリシスバッファー(20mM Tris-HCl (pH8. 0) /150mM NaCl/0. 5% TritonX- 100/5mM NaF/5mM Na VO )を 500 L加え、ピベッティ  1. 75 g was transfected into cells using FUGENE6 (Roche diagnostics) with 0.25 μg of human RUNX3 expression plasmid. Instead of the human RUNX3 expression plasmid, the human RUNX3 gene is incorporated! /, Na! /, PCMV—Tag2 vector (hereinafter referred to as empty vector) is transfected in the same way as a control. used. After culturing for 2 days, the cells were washed with phosphate buffered saline (hereinafter abbreviated as PBS) and collected using a cell scraper. Recovered cells containing protease inhibitor cocktail Complete, Mini (Roche diagnostics) (20 mM Tris-HCl (pH 8.0) / 150 mM NaCl / 0.5% TritonX-100 / 5 mM NaF / 5 mM Na VO) ) And add 500 L
3 4  3 4
ングにて細胞をけん濁し、氷上で 20分間静置して細胞を溶解させた。その後、 15, 0 OOrpmで 15分間、 4°Cにて遠心処理して上清を回収し、セルライセートとして使用し た。次いで、セルライセートにプロテイン G セファロース 4 ファストフロー(protein G sepharose 4 FastFlow、 Amersham Biosciences社製)の 50% スフリ ~~ を 40 /z Lカ卩え、 4°Cで 1時間転倒混和した。その後、 10, OOOrpmで 15秒間、 4°Cに て遠心処理し、回収した上清に抗 FLAG M2抗体(Sigma社製) 0. 5 Lを加え、 4 °Cにて 2時間転倒混和した後、新たに protein G sepharose 4 FastFlow 50 %スラリーを 40 /z L加え、再度 4°Cにて 2時間転倒混和した。 Protein G sepharos e 4 FastFlowを遠心処理により回収し、リシスバッファーで 3回洗浄後、 20 /z Lの 2 X SDS サンプルバッファーをカ卩え、 100°Cで 5分間加熱処理したものを SDS— PA GE試料として使用した。試料は 5— 20% SDS— PAGEにより分離した後、ウェス タンブロッテイングにより、ペルォキシダーゼ標識抗 c— Myc抗体 (ナカライテスタ社 製)で Myc— NEDD4を、ペルォキシダーゼ標識抗 FLAG M2抗体(Sigma社製) で FLAG—RUNX3をそれぞれ検出した。検出はィーシ一エル ウェスタンブロッテ イング ティテクシヨン キット (ECL western blotting detection kit、 Amersh am Biosciences社製)を使用して実施した。 The cells were suspended in the suspension and allowed to stand for 20 minutes on ice to lyse the cells. Thereafter, the supernatant was collected by centrifugation at 15, 0 OOrpm for 15 minutes at 4 ° C and used as a cell lysate. Subsequently, 50% of ~ 50% of protein G sepharose 4 FastFlow (manufactured by Amersham Biosciences) was added to the cell lysate and mixed by inversion at 4 ° C for 1 hour. After centrifugation at 10, OOOrpm for 15 seconds at 4 ° C, add 0.5 L of anti-FLAG M2 antibody (Sigma) to the collected supernatant, and mix by inverting at 4 ° C for 2 hours. 40 / zL of protein G sepharose 4 FastFlow 50% slurry was newly added, and the mixture was mixed again by inversion at 4 ° C for 2 hours. Protein G sepharos e 4 FastFlow was collected by centrifugation, washed 3 times with lysis buffer, and then 20 / zL of 2X SDS sample buffer was prepared and heat-treated at 100 ° C for 5 minutes as an SDS-PAGE sample. used. Samples were separated by 5-20% SDS-PAGE, and then Western blotting was performed using peroxidase-labeled anti-c-Myc antibody (Nacalai Testa) Myc-NEDD4 and peroxidase-labeled anti-FLAG M2 antibody (Sigma) Detected FLAG-RUNX3. Detection was performed using an ECL western blotting detection kit (manufactured by Amersh am Biosciences).
[0344] <結果 > [0344] <Result>
図 2のパネル Aに示すように、 Myc— NEDD4とFLAG—RUNX3とを共発現させ た細胞力 調製した試料でのみ、抗 FLAG M2抗体を使用した免疫沈降(図中 IPと 記載)により Myc— NEDD4と FLAG—RUNX3の共沈が認められた。これに対し、 FLAG— RUNX3非発現細胞から調製した試料では、抗 FLAG M2抗体を使用し た免疫沈降による Myc— NEDD4の共沈が認められなかった。このことから、抗 FLA G M2抗体を使用した免疫沈降により認められた Myc— NEDD4の共沈降は Myc — NEDD4のァガロースビーズへの非特異的吸着によるものではなぐ Myc -NED D4と FLAG—RUNX3の結合を示すものと判断した。両試料における Myc— NED D4の発現は同程度であった(図 2のパネル Aにおいてセルライセートと記載したレー ン参照)。また、細胞で発現した FLAG— RUNX3が抗 FLAG M2抗体により回収 されて!/、ることが確認された(図 2のパネル B)。  As shown in panel A of Fig. 2, Myc- NEDD4 and FLAG-RUNX3 co-expressed cell force Only in the prepared sample, immunoprecipitation using anti-FLAG M2 antibody (denoted as IP in the figure) Myc- Co-precipitation of NEDD4 and FLAG—RUNX3 was observed. In contrast, in the sample prepared from cells not expressing FLAG-RUNX3, coprecipitation of Myc-NEDD4 by immunoprecipitation using anti-FLAG M2 antibody was not observed. This indicates that the coprecipitation of Myc-NEDD4 observed by immunoprecipitation using anti-FLA G M2 antibody is not due to nonspecific adsorption of Myc-NEDD4 to agarose beads. Binding of Myc-NED D4 to FLAG-RUNX3 It was judged that it shows. The expression of Myc-NED D4 was similar in both samples (see the lane labeled as cell lysate in panel A in Figure 2). It was also confirmed that FLAG-RUNX3 expressed in cells was recovered by anti-FLAG M2 antibody! / (Figure 2 panel B).
[0345] 上記結果から、ヒト NEDD4とヒト RUNX3が細胞内で結合することが明らかになつ た。 [0345] From the above results, it was revealed that human NEDD4 and human RUNX3 bind intracellularly.
実施例 3  Example 3
[0346] (NEDD4による RUNX3の in vivoュビキチン化)  [0346] (In vivo ubiquitination of RUNX3 by NEDD4)
NEDD4による RUNX3の in vivoュビキチン化を、ヒト RUNX3、ヒト NEDD4およ びヒトュビキチンを一過性共発現させたヒト培養細胞を使用して免疫沈降法により検 討した。また、変異の導入によりその E3リガーゼ活性が不活性ィ匕されたヒト NEDD4 変異体 (以下、 E3リガーゼ不活性型ヒト NEDD4と称することがある)を使用して同様 の検討を行った。 In vivo ubiquitination of RUNX3 by NEDD4 was examined by immunoprecipitation using human cultured cells in which human RUNX3, human NEDD4 and human ubiquitin were transiently co-expressed. In addition, using a human NEDD4 mutant whose E3 ligase activity was inactivated by the introduction of the mutation (hereinafter sometimes referred to as E3 ligase inactive human NEDD4) Was examined.
[0347] <材料と方法 >  [0347] <Materials and methods>
ヒト RUNX3発現プラスミドは、実施例 2で作製した発現プラスミドを使用した。本ヒト RUNX3発現プラスミドにより、 FLAG— RUNX3が発現する。  The expression plasmid prepared in Example 2 was used as the human RUNX3 expression plasmid. This human RUNX3 expression plasmid expresses FLAG-RUNX3.
[0348] ヒト NEDD4発現プラスミドは、実施例 2で作製した発現プラスミドを使用した。本ヒト NEDD4発現プラスミドにより、 Myc— NEDD4が発現する。  [0348] The expression plasmid prepared in Example 2 was used as the human NEDD4 expression plasmid. Myc-NEDD4 is expressed by this human NEDD4 expression plasmid.
[0349] ヒト NEDD4変異体として、 HECTドメインに変異が導入されたヒト NEDD4変異体 であるヒト NEDD4 (C967A)を使用した。ヒト NEDD4 (C967A)は、ヒト NEDD4の アミノ酸配列において第 967番目のシスティン残基がァラニン残基に置換され、それ により E3リガーゼ活性が不活ィ匕されたヒト NEDD4変異体である。  [0349] Human NEDD4 (C967A), which is a human NEDD4 mutant in which a mutation was introduced into the HECT domain, was used as a human NEDD4 mutant. Human NEDD4 (C967A) is a human NEDD4 mutant in which the 967th cysteine residue is substituted with an alanine residue in the amino acid sequence of human NEDD4, thereby inactivating the E3 ligase activity.
[0350] ヒト NEDD4 (C967A)発現プラスミドは、ヒト NEDD4発現プラスミド(実施例 2参 照)を铸型とし、ヒト NEDD4の第 967番目のシスティン残基のァラニン残基への置換 を導入し得るプライマーを設計および合成して使用し、クイックチェンジサイトダイレク アイツド^ュ一タンェ不シスゃット (QuikChange Site— Directed Mutagenesis k it、 STRATAGENE社製)により構築した。構築した発現プラスミドのシーケンスを行 い、該発現プラスミドに変異が導入されていることを確認した。本ヒト NEDD4 (C967 A)発現プラスミドにより、 N末端 Myc— tag結合ヒト NEDD4 (C967A) (以下、 Myc -NEDD4 (C967A)と称する)が発現する。  [0350] The human NEDD4 (C967A) expression plasmid is a human NEDD4 expression plasmid (see Example 2), and is a primer that can introduce a substitution of the 967th cysteine residue of human NEDD4 to an alanine residue. Was designed and synthesized, and was constructed using the Quick Change Site—Directed Mutagenesis kit, manufactured by STRATAGENE. The constructed expression plasmid was sequenced to confirm that the mutation was introduced into the expression plasmid. This human NEDD4 (C967 A) expression plasmid expresses N-terminal Myc-tag binding human NEDD4 (C967A) (hereinafter referred to as Myc-NEDD4 (C967A)).
[0351] ヒトュビキチン (Ub)発現プラスミドを以下に述べるように構築した。ヒト Ub cDNA はヒト脳由来 cDNA (QUICK— clone cDNAゝ Clontech社製)から PCRにより獲 得し、シーケンスにより塩基配列を確認した。その後、ヒト Ub cDNAを、 N末端 HA tag結合蛋白質を発現させるための動物細胞用発現プラスミド pCMV— HA (Clo ntech社製)に組み込むことにより、 Ub発現プラスミドを構築した。本 Ub発現プラスミ ドにより、 N末端 HA— tag結合 Ub (以下、 HA— Ubと称する)が発現する。なお、クロ 一ユングした Ub cDNAによりコードされる推定アミノ酸配列は NCBIプロテインデー タベースのァクセッションナンバー NP— 066289 (登録遺伝子名は UBC)に公開さ れたものと同一であった。  [0351] A human ubiquitin (Ub) expression plasmid was constructed as described below. Human Ub cDNA was obtained by PCR from human brain-derived cDNA (QUICK-clone cDNA ゝ Clontech), and the nucleotide sequence was confirmed by sequencing. Subsequently, the Ub expression plasmid was constructed by incorporating human Ub cDNA into an animal cell expression plasmid pCMV-HA (Clontech) for expressing the N-terminal HA tag binding protein. This Ub expression plasmid expresses N-terminal HA-tag binding Ub (hereinafter referred to as HA-Ub). The deduced amino acid sequence encoded by the cloned Ub cDNA was identical to that published in NCBI protein database accession number NP-0666289 (registered gene name is UBC).
[0352] In vivoュビキチン化実験は以下に述べるように実施した。細胞数 1. O X 106の H EK293T細胞を 6cm ディッシュに播種し、 10%FBS含有 DMEM培地中で 37°C にて 5% CO /95% エアの条件下でー晚培養後、ヒト RUNX3発現プラスミド 0 [0352] In vivo ubiquitination experiments were performed as described below. Number of cells 1. OX 10 6 H Seed EK293T cells in a 6cm dish, and cultured in 10% FBS-containing DMEM medium at 37 ° C under 5% CO / 95% air.
2  2
. 1 g、ヒト NEDD4発現プラスミド 2. 0 g、およびヒト Ub発現プラスミド 0. 25 μ gを FuGENE6 (Roche diagnostics社製)を使用して細胞にトランスフエクシヨンし た。また、ヒト NEDD4発現プラスミドの代わりに、ヒト NEDD4 (C967A)発現プラスミ ドを同様の方法でトランスフエクシヨンした細胞を調製した。さらに、ヒト RUNX3発現 プラスミドのみをトランスフ クシヨンした細胞、およびヒト RUNX3発現プラスミドとヒト Ub発現プラスミドとをトランスフエクシヨンした細胞を同様の方法で調製し、コントロー ルとして使用した。総 DNA導入量は空ベクターにより補正した。トランスフエクシヨン 後 2日間培養した細胞を実施例 2と同様の方法で処理してセルライセートを調製した 。次 ヽで、セノレフ セート【こ protein G sepharose 4 FastFlow (Amersham B iosciences社製) 50%スラリーを 40 μ Lカ卩え、 4°Cにて 1時間転倒混和した。その後 、 10, OOOrpmで 15秒間、 4°Cにて遠心処理し、回収した上清に抗 FLAG M2抗体 (Sigma社製) 0. を加え 4°C〖こて 2. 5時間転倒混和した後、新たに protein G sepharose 4 FastFlow 50%スラリーを 40 Lカロえ、再度、 4。Cにて 2時間転 倒混和した。 Protein G sepharose 4 FastFlowを遠心処理により回収し、リシ スバッファー(実施例 2のものと同一組成)で 3回洗浄後、 20 μ Lの 2 X SDSサンプル バッファーを加え、 100°Cで 5分間加熱処理したものを SDS— PAGE試料として使用 した。試料は 5— 20% SDS— PAGEにより分離した後、ウェスタンブロッテイングに より、ペルォキシダーゼ標識抗 c - Myc抗体 (ナカライテスタ社製)で Myc - NEDD 4および Myc— NEDD4 (C967A)を、ペルォキシダーゼ標識抗 FLAG M2抗体( Sigma社製)で FLAG— RUNX3を、ペルォキシダーゼ標識抗 HA抗体 (Roche di agnostics社製)で HA— Ubをそれぞれ検出した。検出は ECL western blottin g detection kit (Amersham Biosciences社製) 使用し飞実施し 7こ。  1 g, human NEDD4 expression plasmid 2.0 g, and human Ub expression plasmid 0.25 μg were transfected into cells using FuGENE6 (Roche diagnostics). In addition, instead of the human NEDD4 expression plasmid, cells transfected with human NEDD4 (C967A) expression plasmid were prepared in the same manner. Furthermore, cells transfected with only the human RUNX3 expression plasmid and cells transfected with the human RUNX3 expression plasmid and the human Ub expression plasmid were prepared in the same manner and used as controls. The total amount of DNA introduced was corrected with an empty vector. Cells cultured for 2 days after transfection were treated in the same manner as in Example 2 to prepare cell lysate. Next, 40 μL of 50% slurry of senolevate [This protein G sepharose 4 FastFlow (Amersham Biosciences)] was added and mixed by inversion at 4 ° C for 1 hour. After that, centrifuge at 10, OOOrpm for 15 seconds at 4 ° C, add anti-FLAG M2 antibody (manufactured by Sigma) 0. to the collected supernatant, and mix by inverting at 4 ° C for 2.5 hours. 4. Add 40 L of protein G sepharose 4 FastFlow 50% slurry again, and 4 again. Inverted at C for 2 hours. Protein G sepharose 4 FastFlow is collected by centrifugation, washed 3 times with a lysis buffer (same composition as in Example 2), 20 μL of 2 X SDS sample buffer is added, and heated at 100 ° C for 5 minutes The treated sample was used as an SDS-PAGE sample. Samples were separated by 5-20% SDS-PAGE, and then Western blotting was performed using peroxidase-labeled anti-c-Myc antibody (manufactured by Nacalai Testa) for Myc-NEDD 4 and Myc-NEDD4 (C967A). FLAG-RUNX3 was detected with a FLAG M2 antibody (manufactured by Sigma), and HA-Ub was detected with a peroxidase-labeled anti-HA antibody (manufactured by Roche di agnostics). Detection was performed using 7 ECL western blotting detection kits (Amersham Biosciences).
<結果 > <Result>
図 3のパネル Aに示すように、 FLAG— RUNX3、 Myc— NEDD4および HA— U bを共発現させた細胞カゝら調製した試料において、 FLAG— RUNX3より高い分子 量を有する複数の蛋白質が抗 FLAG M2抗体を使用した免疫沈降により検出され た。一方、 Myc— NEDD4の代わりに E3リガーゼ活性が不活化された Myc— NED D4 (C967A)を共発現させた細胞から調製した試料にぉ 、ても、 FLAG—RUNX3 より高 ヽ分子量を有する蛋白質が検出されたがその量は Myc— NEDD4を発現させ た細胞から調製した試料のものに比べ少なかった。 FLAG—RUNX3、 Myc— NE DD4および HA—Ubを共発現させた細胞における Myc— NEDD4の発現、および Myc— NEDD4の代わりに Myc— NEDD4 (C967A)を共発現させた細胞における Myc-NEDD4 (C967A)の発現は同程度であった(図 3のパネル C)。 As shown in panel A of Figure 3, in the samples prepared by co-expression of FLAG—RUNX3, Myc—NEDD4 and HA—Ub, multiple proteins with higher molecular weight than FLAG—RUNX3 Detected by immunoprecipitation using FLAG M2 antibody It was. On the other hand, a sample prepared from a cell co-expressed with Myc-NED D4 (C967A) in which E3 ligase activity was inactivated instead of Myc-NEDD4, however, had a protein with a higher molecular weight than FLAG-RUNX3. Although detected, the amount was less than that of samples prepared from cells expressing Myc-NEDD4. Myc—NEDD4 expression in cells co-expressed with FLAG—RUNX3, Myc—NE DD4 and HA—Ub, and Myc-NEDD4 (C967A) instead of Myc—NEDD4 ) Expression was similar (Panel C in Figure 3).
[0354] 図 3のパネル Bに示すように、 FLAG—RUNX3、 Myc— NEDD4および HA—Ub を共発現させた細胞カゝら調製した試料では、抗 FLAG M2抗体を使用した免疫沈 降および抗 HA抗体を使用したィムノブロットにより検出された蛋白質力 Myc— NE DD4を発現させな力つた細胞力も調製した試料と比較して顕著に増加した。検出さ れた蛋白質は、 HA—Ubが付加された FLAG— RUNX3である。すなわち、 FLAG — RUNX3、 Myc— NEDD4および HA— Ubを共発現させた細胞から調製した試 料では、 HA—Ubが付カ卩された FLAG— RUNX3の増加が認められた。一方、 Myc — NEDD4の代わりに Myc— NEDD4 (C967A)を共発現させた細胞から調製した 試料でも、 HA—Ubが付加された FLAG— RUNX3が検出されたが、その量および ュビキチンィ匕の程度は Myc— NEDD4を発現させた細胞力も調製した試料のものと 比べ、著しく低いものであった。  [0354] As shown in Panel B of Figure 3, samples prepared from cells co-expressing FLAG—RUNX3, Myc—NEDD4, and HA—Ub were used for immunoprecipitation and anti-antibody using anti-FLAG M2 antibody. The protein strength detected by immunoblotting using HA antibody Myc—NE DD4 was also increased. The cell strength was also significantly increased compared to the prepared sample. The detected protein is FLAG-RUNX3 with HA-Ub added. That is, in samples prepared from cells co-expressing FLAG-RUNX3, Myc-NEDD4 and HA-Ub, an increase in FLAG-RUNX3 with HA-Ub attached was observed. On the other hand, FLAG-RUNX3 with HA-Ub added was detected in the sample prepared from cells co-expressed with Myc-NEDD4 (C967A) instead of Myc-NEDD4. Myc—NEDD4 expressing cell strength was also significantly lower than that of the prepared sample.
[0355] これら結果から、ヒト RUNX3がヒト NEDD4により細胞内においてュビキチン化さ れること(図 3のパネル B)、また、それによりヒト RUNX3が高分子化することが明らか になった(図 3のパネル A)。さらに、ヒト NEDD4によるヒト RUNX3のュビキチン化お よび高分子化には、ヒト NEDD4の E3リガーゼ活性が重要であることが判明した。 実施例 4  [0355] From these results, it was clarified that human RUNX3 is ubiquitinated in human cells by human NEDD4 (Panel B in Fig. 3), and that human RUNX3 is polymerized (Fig. 3). Panel A). Furthermore, it was found that E3 ligase activity of human NEDD4 is important for ubiquitination and macromolecularization of human RUNX3 by human NEDD4. Example 4
[0356] (RUNX3の安定性に対する NEDD4の影響)  [0356] (Effect of NEDD4 on the stability of RUNX3)
RUNX3の安定性に対する NEDD4の影響を、ヒト RUNX3およびヒト NEDD4を 一過性性共発現させたヒト培養細胞を使用し、ウェスタンブロッテイングにより検討し た。  The effect of NEDD4 on the stability of RUNX3 was examined by Western blotting using human cultured cells in which human RUNX3 and human NEDD4 were transiently co-expressed.
[0357] <材料と方法 > ヒト RUNX3発現プラスミドは、実施例 2で作製した発現プラスミドを使用した。本ヒト RUNX3発現プラスミドにより、 FLAG— RUNX3が発現する。 [0357] <Materials and methods> The expression plasmid prepared in Example 2 was used as the human RUNX3 expression plasmid. This human RUNX3 expression plasmid expresses FLAG-RUNX3.
[0358] ヒト NEDD4発現プラスミドおよびヒト NEDD4 (C967A)発現プラスミドは、実施例 2 および 3で作製した発現プラスミドを使用した。本ヒト NEDD4発現プラスミドにより、 Myc— NEDD4が発現する。また、本ヒト NEDD4 (C967A)発現プラスミドにより、 Myc— NEDD4 (C967A)が発現する。  [0358] The expression plasmids prepared in Examples 2 and 3 were used as the human NEDD4 expression plasmid and the human NEDD4 (C967A) expression plasmid. Myc-NEDD4 is expressed by this human NEDD4 expression plasmid. In addition, Myc—NEDD4 (C967A) is expressed by this human NEDD4 (C967A) expression plasmid.
[0359] 細胞内安定性実験は以下に述べるように実施した。細胞数 2. 5 X 105の HEK293 T細胞を 6ゥエルプレートの各ゥエルに播種し、 10%FBS含有 DMEM培地中で 37 °Cにて 5% CO /95% エアの条件下でー晚培養後、ヒト RUNX3発現プラスミド [0359] Intracellular stability experiments were performed as described below. Inoculate 2.5 x 10 5 HEK293 T cells into each well of a 6-well plate and in 10% FBS-containing DMEM medium at 37 ° C under conditions of 5% CO / 95% air After culture, human RUNX3 expression plasmid
2  2
0. l ;z gをヒト NEDD4発現プラスミド 1. 0〜2. O /z gと共に FuGENE6 (Roche di agnostics社製)を使用して細胞にトランスフエクシヨンした。また、ヒト NEDD4発現プ ラスミドの代わりに、ヒト NEDD4 (C967A)発現プラスミド 2. 0 gを同様の方法でト ランスフエクシヨンした細胞を調製した。さらに、ヒト RUNX3発現プラスミドのみをトラ ンスフエクシヨンした細胞を同様の方法で調製し、コントロールとして使用した。総 DN A導入量は空ベクターにより補正した。トランスフエクシヨンの翌日に、細胞を PBSで 洗浄し、トリプシン Zエチレンジァミン四酢酸 (EDTA)溶液を使用して回収した。回 収した細胞は、リシスバッファー(Cell Signaling社製) 60 μ Lをカ卩えてピぺッティン グにてけん濁後、氷上で 5分間静置することにより溶解させた。その後、 15, OOOrpm で 10分間、 4°Cにて遠心処理して上清を回収し、セルライセートとして使用した。次い で、セルライセートに等量の 2 X SDS サンプルバッファーをカ卩え、 100°Cで 5分間カロ 熱処理したものを SDS— PAGE試料として使用した。同一蛋白質量の試料を、 5- 2 0% SDS - PAGEで分離し、抗 FLAG M2抗体(Sigma社製)、抗 c - Myc抗体( Santa Cruz Biotechnology社製)および抗ァクチン(Actin)抗体(Santa Cruz Biotechnology社製)を使用したウェスタンブロッテイングを実施した。検出は蛍光 標識された 2次抗体を使用し、ォディッセィ (Odyssey)イメージングシステム (Aloka 社製)により行なった。  0. l; z g was transfected into cells using FuGENE6 (Roche di agnostics) with human NEDD4 expression plasmid 1.0-2. In addition, cells were prepared by transfecting 2.0 g of a human NEDD4 (C967A) expression plasmid in the same manner instead of the human NEDD4 expression plasmid. Furthermore, cells transfected with only the human RUNX3 expression plasmid were prepared in the same manner and used as a control. The total amount of DNA introduced was corrected with an empty vector. The day after transfection, cells were washed with PBS and harvested using trypsin Z ethylenediaminetetraacetic acid (EDTA) solution. The collected cells were lysed by adding 60 μL of lysis buffer (Cell Signaling), suspending with pipetting, and then allowing to stand on ice for 5 minutes. Thereafter, the supernatant was collected by centrifugation at 15, OOOrpm for 10 minutes at 4 ° C and used as cell lysate. Next, an equal volume of 2 X SDS sample buffer was added to the cell lysate and calcined at 100 ° C for 5 minutes and used as an SDS-PAGE sample. Samples of the same protein mass are separated by 5- 20% SDS-PAGE, and anti-FLAG M2 antibody (manufactured by Sigma), anti-c-Myc antibody (manufactured by Santa Cruz Biotechnology) and anti-actin (Actin) antibody (Santa Western blotting using Cruz Biotechnology) was performed. Detection was carried out using a fluorescently labeled secondary antibody with an Odyssey imaging system (Aloka).
[0360] <結果 > [0360] <Result>
図 4のパネル Aに示すようにヒト NEDD4発現プラスミドの導入量に依存して、 FLA G— RUNX3の減少が認められた。一方、ヒト NEDD4 (C967A)発現プラスミドをトラ ンスフエクシヨンした細胞から調製した試料では、 FLAG—RUNX3の減少は認めら れなかった。 Myc— NEDD4がヒト NEDD4発現プラスミドの導入量に依存して発現 されて!/ヽること、また Myc— NEDD4 (C967A)力 Sヒト NEDD4 (C967A)発現プラス ミドにより発現されていることは、図 4のパネル Bに示すように確認された。また、コント ロールであるァクチンの発現量は 、ずれの試料にお!、ても同程度であった(図 4のパ ネル C)。 Depending on the amount of human NEDD4 expression plasmid introduced as shown in panel A of Figure 4, FLA G— A decrease in RUNX3 was observed. On the other hand, no decrease in FLAG-RUNX3 was observed in samples prepared from cells transfected with the human NEDD4 (C967A) expression plasmid. Myc—NEDD4 is expressed depending on the amount of human NEDD4 expression plasmid introduced! This was confirmed as shown in Panel B of 4. In addition, the expression level of actin, which is a control, was almost the same in the sample of the deviation (panel C in Fig. 4).
[0361] これら結果から、ヒト NEDD4がヒト RUNX3の細胞内での安定性を低下させること が明らかになった。また、ヒト NEDD4によるヒト RUNX3安定性の低下には、ヒト NE DD4の E3リガーゼ活性が関与することが判明した。  [0361] These results revealed that human NEDD4 decreased the intracellular stability of human RUNX3. It was also found that the decrease in human RUNX3 stability by human NEDD4 is related to the E3 ligase activity of human NE DD4.
実施例 5  Example 5
[0362] (NEDD4と RUNX1の結合および NEDD4による RUNX1の in vivoュビキチン化 )  [0362] (Binding of NEDD4 and RUNX1 and in vivo ubiquitination of RUNX1 by NEDD4)
NEDD4と RUNX1の結合および NEDD4による RUNX1の in vivo ュビキチン 化を、ヒト RUNX1、ヒト NEDD4およびヒトュビキチンを一過性共発現させたヒト培養 細胞を使用して免疫沈降法により検討した。また、 E3リガーゼ不活性型ヒト NEDD4 を使用して同様の検討を行った。  The binding of NEDD4 and RUNX1 and the in vivo ubiquitination of RUNX1 by NEDD4 were examined by immunoprecipitation using human cultured cells transiently co-expressing human RUNX1, human NEDD4 and human ubiquitin. A similar study was conducted using E3 ligase inactive human NEDD4.
[0363] <材料と方法 > [0363] <Materials and methods>
ヒト RUNX1発現プラスミドは以下に述べるように構築した。ヒト RUNX1 cDNAは ヒト腎臓由来 cDNA(QUCIK— clone cDNA Clontech社製)から、 EcoRIサイト および Xholサイトを付加したプライマーを使用して PCRにより獲得し、シーケンスに より塩基配列を確認した。獲得した cDNAは、 N末端 FLAG— tag結合蛋白質を発 現させるための動物細胞用発現プラスミド pCMV—Tag2 (STRATAGENE社製) に EcoRl/XhoIサイトで組み込み、ヒト RUNX1発現プラスミドを構築した。本ヒト RU NX1発現プラスミドにより、 N末端 FLAG— tag結合ヒトRUNXl (以下、 FLAG—R UNX1と称する)が発現する。なお、クローユングしたヒト RUNX1 cDNAによりコー ドされる推定アミノ酸配列は NCBIプロテインデータベースのァクセッションナンバー NP— 001745 (登録遺伝子 RUNX1)に公開されたものと同一であった。 [0364] ヒト NEDD4発現プラスミドおよびヒト NEDD4 (C967A)発現プラスミドは、それぞ れ実施例 2および 3で作製した発現プラスミドを使用した。本ヒト NEDD4発現プラスミ ドにより、 Myc— NEDD4が発現する。また、本ヒト NEDD4 (C967A)発現プラスミド により、 Myc— NEDD4 (C967A)が発現する。 The human RUNX1 expression plasmid was constructed as described below. Human RUNX1 cDNA was obtained from human kidney-derived cDNA (QUCIK-clone cDNA Clontech) by PCR using primers with EcoRI and Xhol sites added, and the nucleotide sequence was confirmed by sequencing. The obtained cDNA was incorporated at the EcoRl / XhoI site into an animal cell expression plasmid pCMV-Tag2 (STRATAGENE) for expressing an N-terminal FLAG-tag binding protein to construct a human RUNX1 expression plasmid. This human RU NX1 expression plasmid expresses N-terminal FLAG-tag binding human RUNXl (hereinafter referred to as FLAG-RUNX1). The deduced amino acid sequence encoded by the cloned human RUNX1 cDNA was the same as that published in the NCBI protein database accession number NP-001745 (registered gene RUNX1). [0364] The expression plasmids prepared in Examples 2 and 3 were used as the human NEDD4 expression plasmid and the human NEDD4 (C967A) expression plasmid, respectively. This human NEDD4 expression plasmid expresses Myc—NEDD4. In addition, Myc—NEDD4 (C967A) is expressed by this human NEDD4 (C967A) expression plasmid.
[0365] ヒトュビキチン (Ub)発現プラスミドは、実施例 3で作製した発現プラスミドを使用した 。本ヒト Ub発現プラスミドにより、 HA—Ubが発現する。  [0365] The expression plasmid prepared in Example 3 was used as the human ubiquitin (Ub) expression plasmid. This human Ub expression plasmid expresses HA-Ub.
[0366] In vivoュビキチン化実験は以下に述べるように実施した。細胞数 1. O X 106の H EK293T細胞を 6cm ディッシュに播種し、 10%FBS含有 DMEM培地中で 37°C にて 5% CO /95% エアの条件下でー晚培養後、ヒト RUNX1発現プラスミド 0 [0366] In vivo ubiquitination experiments were performed as described below. Number of cells 1. Seed EK 10 6 EK293T cells in 6cm dish, 10% FBS-containing DMEM medium at 37 ° C under 5% CO / 95% air condition-after sputum culture, human RUNX1 expression Plasmid 0
2  2
. 1 g、ヒト NEDD4発現プラスミド 2. 0 g、およびヒト Ub発現プラスミド 0. 25 μ gを FuGENE6 (Roche diagnostics社製)を使用して細胞にトランスフエクシヨンし た。また、ヒト NEDD4発現プラスミドの代わりに、ヒト NEDD4 (C967A)発現プラスミ ドを同様の方法でトランスフエクシヨンした細胞を調製した。さらに、ヒト RUNX1発現 プラスミドとヒト Ub発現プラスミドとをトランスフエクシヨンした細胞を同様の方法で調製 し、コントロールとして使用した。総 DNA導入量は空ベクターにより補正した。トランス フエクシヨン後 2日間培養した細胞を実施例 2と同様の方法で処理してセルライセート を調製した。次いで、セルライセートに protein G sepharose 4 FastFlow(Am ersham Biosciences社製) 50%スラリーを 40 μ Lカロえ、 4°Cにて 1時間転倒混和し た。その後、 10, OOOrpmで 15秒間、 4°Cにて遠心処理し、回収した上清に抗 FLA G M2抗体 (Sigma社製) 0. 5 Lをカ卩ぇ 4°Cにて 2. 5時間転倒混和した後、新たに protein G sepharose 4 FastFlow 50%スラリーを 40 L加え、再度、 4°Cに て 2時間転倒混和した。 Protein G sepharose 4 FastFlowを遠心処理により回 収し、リシスバッファー(実施例 2のものと同一組成)で 3回洗浄後、 20 /z L 2 X SDS サンプルバッファーをカ卩え、 100°Cで5分間加熱処理したものをSDS— PAGE試料 として使用した。試料は 5— 20% SDS— PAGEにより分離し、ウェスタンブロッティ ングにより、ペルォキシダーゼ標識抗 c - Myc抗体 (ナカライテスタ社製)で Myc— N EDD4および Myc— NEDD4 (C967A)を、ペルォキシダーゼ標識抗 FLAG M2 抗体(Sigma社製)で FLAG— RUNX1を、ペルォキシダーゼ標識抗 HA抗体 (Roc he diagnostics社製)で HA— Ubをそれぞれ検出した。検出は ECL western bl otting detection Kit (.Amersham Biosciences社製)を使用し飞実 ¾fiし 7こ。 .1 g, human NEDD4 expression plasmid 2.0 g, and human Ub expression plasmid 0.25 μg were transfected into cells using FuGENE6 (Roche diagnostics). In addition, instead of the human NEDD4 expression plasmid, cells transfected with human NEDD4 (C967A) expression plasmid were prepared in the same manner. Furthermore, cells transfected with human RUNX1 expression plasmid and human Ub expression plasmid were prepared in the same manner and used as a control. The total amount of DNA introduced was corrected with an empty vector. Cells cultured for 2 days after transfection were treated in the same manner as in Example 2 to prepare cell lysates. Next, 40 μL of 50% slurry of protein G sepharose 4 FastFlow (manufactured by Amersham Biosciences) was added to the cell lysate and mixed by inverting at 4 ° C. for 1 hour. Then, centrifuge at 10, OOOrpm for 15 seconds at 4 ° C, and add 0.5 L of anti-FLA G M2 antibody (manufactured by Sigma) to the collected supernatant for 2.5 hours at 4 ° C. After mixing by inversion, 40 L of protein G sepharose 4 FastFlow 50% slurry was newly added and mixed again by inversion at 4 ° C for 2 hours. Protein G sepharose 4 FastFlow is collected by centrifugation, washed 3 times with lysis buffer (same composition as in Example 2), then 20 / z L 2 X SDS sample buffer is prepared, and 5 ° C at 100 ° C. What was heat-processed for minutes was used as a SDS-PAGE sample. Samples were separated by 5-20% SDS-PAGE, and Western blotting was performed using peroxidase-labeled anti-c-Myc antibody (manufactured by Nacalai Testa) for Myc-NEDD4 and Myc-NEDD4 (C967A), and peroxidase-labeled anti-FLAG. M2 antibody (manufactured by Sigma) and FLAG—RUNX1 and peroxidase-labeled anti-HA antibody (Roc he diagnostics) and HA-Ub were detected. Detection was carried out using an ECL western blotting detection kit (Amersham Biosciences).
[0367] <結果 > [0367] <Result>
図 5のパネル Aに示すように、 FLAG—RUNX1、 Myc— NEDD4および HA—U bを共発現させた細胞カゝら調製した試料において、抗 FLAG M2抗体を使用した免 疫沈降により Myc— NEDD4と FLAG— RUNX1の共沈が認められた。また、 Myc -NEDD4 (C967A)、 FLAG— RUNX1および HA— Ubを共発現させた細胞から 調製した試料において、 Myc— NEDD4 (C967A)と FLAG—RUNX1の共沈が認 められた。  As shown in panel A of Figure 5, samples prepared from cells co-expressing FLAG-RUNX1, Myc-NEDD4 and HA-Ub were subjected to immunoprecipitation using anti-FLAG M2 antibody to Myc-NEDD4. And FLAG—RUNX1 coprecipitation was observed. In addition, coprecipitation of Myc-NEDD4 (C967A) and FLAG-RUNX1 was observed in samples prepared from cells co-expressed with Myc-NEDD4 (C967A), FLAG-RUNX1 and HA-Ub.
[0368] 図 5のパネル Bに示すように、 FLAG—RUNX1、 Myc— NEDD4ぉょびHA—Ub を共発現させた細胞カゝら調製した試料において、 FLAG— RUNX1より高い分子量 を有する複数の蛋白質力 抗 FLAG M2抗体を使用した免疫沈降により検出され た。一方、 Myc— NEDD4の代わりに E3リガーゼ活性が不活化された Myc— NED D4 (C967A)を共発現させた細胞力も調製した試料において、高分子量の蛋白質 はほとんど検出されなかった。 FLAG—RUNX1、 Myc— NEDD4ぉょびHA— Ub を共発現させた細胞における Myc— NEDD4の発現、および Myc— NEDD4の代 わりに Myc - NEDD4 (C967A)を共発現させた細胞における Myc - NEDD4 (C9 67A)の発現は同程度であった(図 5のパネル D)。  [0368] As shown in Panel B of Figure 5, in the sample prepared by co-expression of FLAG—RUNX1, Myc—NEDD4 and HA-Ub, multiple samples with higher molecular weight than FLAG—RUNX1 Protein power was detected by immunoprecipitation using anti-FLAG M2 antibody. On the other hand, almost no high molecular weight protein was detected in the sample prepared with cell force co-expressed with Myc-NED D4 (C967A) in which E3 ligase activity was inactivated instead of Myc-NEDD4. Myc—NEDD4 expression in cells co-expressed with FLAG—RUNX1, Myc—NEDD4 and HA—Ub, and Myc—NEDD4 (C967A) instead of Myc—NEDD4 Myc—NEDD4 ( The expression of C9 67A) was similar (Panel D in Figure 5).
[0369] 図 5のパネル Cに示すように、 FLAG—RUNX1、 Myc— NEDD4および HA— U bを共発現させた細胞カゝら調製した試料では、抗 FLAG M2抗体を使用した免疫沈 降および抗 HA抗体を使用したィムノブロットにより検出された蛋白質力 Myc-NE DD4を発現させな力つた細胞力も調製した試料と比較して顕著に増加した。検出さ れた蛋白質は、 HA— Ubが付加された FLAG— RUNX1である。すなわち、 FLAG —RUNX1、 Myc— NEDD4および HA— Ubを共発現させた細胞から調製した試 料では、 HA— Ubが付カ卩された FLAG— RUNX1の増加が認められた。一方、 Myc — NEDD4の代わりに Myc— NEDD4 (C967A)を共発現させた細胞から調製した 試料でも、 HA—Ubが付加された FLAG—RUNX1が検出されたが、その量および ュビキチンィ匕の程度は Myc— NEDD4を発現させた細胞力も調製した試料のものと 比べ、低いものであった。 [0369] As shown in panel C of FIG. 5, samples prepared from cells co-expressing FLAG—RUNX1, Myc—NEDD4 and HA—Ub showed immunoprecipitation using anti-FLAG M2 antibody and The protein strength detected by immunoblotting using anti-HA antibody Myc-NE DD4 was also significantly increased compared to the prepared sample. The detected protein is FLAG-RUNX1 with HA-Ub added. That is, in samples prepared from cells co-expressing FLAG-RUNX1, Myc-NEDD4 and HA-Ub, an increase in FLAG-RUNX1 with HA-Ub attached was observed. On the other hand, FLAG-RUNX1 with HA-Ub added was also detected in samples prepared from cells co-expressed with Myc-NEDD4 (C967A) instead of Myc-NEDD4. Myc—Needs also prepared for cell force expressing NEDD4 It was low compared.
[0370] これら結果から、ヒト NEDD4およびヒト NEDD4 (C967A)は!、ずれも、ヒト RUNX 1と細胞内で結合することが明らかになった(図 5のパネル A)。また、ヒト RUNX1がヒ ト NEDD4により細胞内においてュビキチン化されること(図 5のパネル C)、それによ りヒト RUNX1が高分子化することが明らかになった(図 5のパネル B)。さらに、ヒト NE DD4によるヒト RUNX1のュビキチン化および高分子化には、ヒト NEDD4の E3リガ ーゼ活性が重要であることが判明した。 [0370] From these results, it was revealed that human NEDD4 and human NEDD4 (C967A)! Bind to human RUNX 1 in cells (panel A in Fig. 5). It was also revealed that human RUNX1 is ubiquitinated in human cells by human NEDD4 (Fig. 5, panel C), and that human RUNX1 is polymerized (Fig. 5, panel B). Furthermore, it was found that E3 ligase activity of human NEDD4 is important for ubiquitination and macromolecularization of human RUNX1 by human NE DD4.
実施例 6  Example 6
[0371] (RUNX1の安定性に対する NEDD4の影響)  [0371] (Effect of NEDD4 on RUNX1 stability)
RUNX1の安定性に対する NEDD4の影響を、ヒト RUNX1およびヒト NEDD4を 一過性性共発現させたヒト培養細胞を使用し、ウェスタンブロッテイングにより検討し た。  The effect of NEDD4 on the stability of RUNX1 was examined by Western blotting using human cultured cells in which human RUNX1 and human NEDD4 were transiently co-expressed.
[0372] <材料と方法 >  [0372] <Materials and methods>
ヒト RUNX1発現プラスミドは、実施例 5で作製した発現プラスミドを使用した。本ヒト RUNX1発現プラスミドにより、 FLAG—RUNX1が発現する。  The expression plasmid prepared in Example 5 was used as the human RUNX1 expression plasmid. This human RUNX1 expression plasmid expresses FLAG-RUNX1.
[0373] ヒト NEDD4発現プラスミドおよびヒト NEDD4 (C967A)発現プラスミドは、それぞ れ実施例 2および 3で作製した発現プラスミドを使用した。本ヒト NEDD4発現プラスミ ドにより、 Myc— NEDD4が発現する。また、本ヒト NEDD4 (C967A)発現プラスミド により、 Myc— NEDD4 (C967A)が発現する。  [0373] The expression plasmids prepared in Examples 2 and 3 were used as the human NEDD4 expression plasmid and the human NEDD4 (C967A) expression plasmid, respectively. With this human NEDD4 expression plasmid, Myc—NEDD4 is expressed. In addition, Myc—NEDD4 (C967A) is expressed by this human NEDD4 (C967A) expression plasmid.
[0374] 細胞内安定性実験は以下に述べるように実施した。 HEK293T細胞に、ヒト RUN XI発現プラスミド 0. 1 gおよびヒト NEDD4発現プラスミド 1. 0〜2. 0 gを実施 例 4に記載の方法と同様の方法でトランスフエクシヨンした。また、ヒト NEDD4発現プ ラスミドの代わりに、ヒト NEDD4 (C967A)発現プラスミド 2. 0 gを同様の方法でト ランスフエクシヨンした細胞を調製した。さらに、ヒト RUNX1発現プラスミドのみをトラ ンスフエクシヨンした細胞を同様の方法で調製し、コントロールとして使用した。総 DN A導入量は空ベクターにより補正した。トランスフエクシヨンの翌日に、実施例 4に記載 の方法と同様の方法で細胞を回収してセルライセートを調製した。次いで、セルライ セートに等量の 2 X SDSサンプルバッファーをカ卩え、 100°Cで 5分間加熱処理したも のを SDS— PAGE試料として使用した。同一蛋白量の試料を 5— 20% SDS— PA GEで分離し、抗 FLAG M2抗体(Sigma社製)、抗 c— Myc抗体 ZA— 14 (Santa Cruz Biotechnology社製)および饥 actin饥体/ c— 11 (Santa Cruz Biotec hnology社製)を使用したウェスタンブロッテイングを実施した。検出は蛍光標識され た 2次抗体を使用し、 Odysseyイメージングシステム (Aloka社製)により行なった。 [0374] Intracellular stability experiments were performed as described below. HEK293T cells were transfected with 0.1 g of human RUN XI expression plasmid and 1.0 to 2.0 g of human NEDD4 expression plasmid in the same manner as described in Example 4. In addition, instead of human NEDD4 expression plasmid, cells were prepared by transfecting 2.0 g of human NEDD4 (C967A) expression plasmid in the same manner. Furthermore, cells transfected with only the human RUNX1 expression plasmid were prepared in the same manner and used as a control. The total amount of DNA introduced was corrected with an empty vector. On the day after the transfer, cells were collected by the same method as described in Example 4 to prepare cell lysate. Next, an equal volume of 2X SDS sample buffer was added to the cell lysate and heat-treated at 100 ° C for 5 minutes. Were used as SDS-PAGE samples. Samples of the same protein amount were separated with 5-20% SDS-PAGE, anti-FLAG M2 antibody (Sigma), anti-c-Myc antibody ZA-14 (Santa Cruz Biotechnology) and 饥 actin rod / c — Western blotting using 11 (Santa Cruz Biotec hnology) was performed. Detection was performed with an Odyssey Imaging System (Aloka) using a fluorescently labeled secondary antibody.
[0375] <結果 > [0375] <Result>
図 6のパネル Aに示すように、ヒト NEDD4発現プラスミドの導入量に依存して、 FL AG— RUNX1の減少が認められた。一方、ヒト NEDD4 (C967A)発現プラスミドを トランスフエクシヨンした細胞から調製した試料では、 FLAG— RUNX1の減少は認 められなかった。 Myc— NEDD4力ヒト NEDD4発現プラスミドの導入量に依存して 発現されて ヽること、また Myc— NEDD4 (C967A)力ヒト NEDD4 (C967A)発現プ ラスミドにより発現されていることは、図 6のパネル Bに示すように確認された。また、コ ントロールであるァクチンの発現量は 、ずれの試料にぉ 、ても同程度であった(図 6 のパネル C)。  As shown in panel A of FIG. 6, a decrease in FL AG-RUNX1 was observed depending on the amount of human NEDD4 expression plasmid introduced. On the other hand, a decrease in FLAG-RUNX1 was not observed in samples prepared from cells transfected with the human NEDD4 (C967A) expression plasmid. Figure 6 shows that Myc—NEDD4 force human NEDD4 expression plasmid is expressed depending on the amount of plasmid introduced, and that Myc—NEDD4 (C967A) force human NEDD4 (C967A) expression plasmid is expressed. It was confirmed as shown in B. In addition, the expression level of actin, which is a control, was almost the same as that of the misaligned sample (panel C in FIG. 6).
[0376] これら結果から、ヒト NEDD4がヒト RUNX1の細胞内での安定性を低下させること が明らかになった。また、ヒト NEDD4によるヒト RUNX1安定性の低下は、ヒト NEDD 4の E3リガーゼ活性が関与することが判明した。  [0376] These results revealed that human NEDD4 decreased the intracellular stability of human RUNX1. It was also found that the decrease in human RUNX1 stability by human NEDD4 is related to the E3 ligase activity of human NEDD 4.
実施例 7  Example 7
[0377] (内因性 NEDD4との比較) [0377] (Comparison with endogenous NEDD4)
ヒト癌細胞株で検出される内因性 NEDD4の大きさを、ヒト培養細胞株で一過性発 現させたヒト NEDD4および短鎖型ヒト NEDD4の大きさとウェスタンブロッテイングに より比較した。  The size of endogenous NEDD4 detected in human cancer cell lines was compared with the size of human NEDD4 transiently expressed in cultured human cell lines and the size of short human NEDD4 by Western blotting.
[0378] <材料と方法 > [0378] <Materials and methods>
ヒト NEDD4発現プラスミドは、実施例 2で作製した発現プラスミドを使用した。本ヒト The expression plasmid prepared in Example 2 was used as the human NEDD4 expression plasmid. This human
NEDD4発現プラスミドにより、 Myc— NEDD4が発現する。 Myc—NEDD4 is expressed by the NEDD4 expression plasmid.
[0379] 短鎖型ヒト NEDD4として、ヒト NEDD4 (配列番号 2)の N末端側第 1番目力も第 10[0379] As the short-chain human NEDD4, the first force on the N-terminal side of human NEDD4 (SEQ ID NO: 2) is also 10th.
0番目の 100個のアミノ酸残基が欠失した蛋白質を使用した。 A protein lacking the 0th 100 amino acid residues was used.
[0380] また、変異の導入によりその E3リガーゼ活性が不活性ィ匕された短鎖型ヒト NEDD4 変異体を使用した。短鎖型ヒト NEDD4変異体として、 HECTドメインに変異が導入 された短鎖型ヒト NEDD4変異体である短鎖型ヒト NEDD4 (C867A)を作製した。 短鎖型ヒト NEDD4 (C867A)は、短鎖型ヒト NEDD4のアミノ酸配列において第 867 番目のシスティン残基がァラニン残基に置換され、それにより E3リガーゼ活性が不 活ィ匕された短鎖型ヒト NEDD4変異体である。短鎖型ヒト NEDD4における第 867番 目のシスティン残基はヒト NEDD4の第 967番目のシスティン残基に相当する。 [0380] Short-chain human NEDD4 whose E3 ligase activity was inactivated by mutation Mutants were used. As a short-chain human NEDD4 mutant, a short-chain human NEDD4 (C867A), which is a short-chain human NEDD4 mutant with a mutation introduced in the HECT domain, was prepared. Short-chain human NEDD4 (C867A) is a short-chain human in which the 867th cysteine residue was replaced with an alanine residue in the amino acid sequence of short-chain human NEDD4, thereby inactivating E3 ligase activity. NEDD4 mutant. The 867th cysteine residue in short-chain human NEDD4 corresponds to the 967th cysteine residue in human NEDD4.
[0381] 短鎖型ヒト NEDD4発現プラスミドは以下に述べるように構築した。ヒト NEDD4遺 伝子の ORF領域のうち、ヒト NEDD4の第 101番目〜第 1000番目のアミノ酸配列を コードする領域(以下、短鎖型ヒト NEDD4 cDNAと称する)を PCRにより増幅し、シ 一ケンスにより塩基配列を確認した。 PCRは、実施例 2で作製したヒト NEDD4発現 プラスミドを铸型とし、 EcoRIサイトおよび Xholサイトを付加したプライマーを使用して 実施した。獲得した短鎖型ヒト NEDD4 cDNAは、動物細胞用発現プラスミド pCI ( Promega社製)に組み込み、短鎖型ヒト NEDD4発現プラスミドを構築した。なお、ク ローニングした短鎖型ヒト NEDD4 cDNAによりコードされる推定アミノ酸配列は N CBIデータベースにァクセッションナンバー NP— 006145 (KIAA0093)に公開さ れたアミノ酸配列と同一であり、また、 Swiss— Protデータベースのァクセッションナ ンバー P46934 (登録遺伝子名は NEDD4)に公開されたアミノ酸配列の第 101番 目〜第 1000番目のアミノ酸配列と一致した。  [0381] A short human NEDD4 expression plasmid was constructed as described below. Of the ORF region of the human NEDD4 gene, a region encoding the 101st to 1000th amino acid sequences of human NEDD4 (hereinafter referred to as short human NEDD4 cDNA) is amplified by PCR and sequenced. The base sequence was confirmed. PCR was performed using the human NEDD4 expression plasmid prepared in Example 2 as a saddle and primers added with EcoRI site and Xhol site. The acquired short human NEDD4 cDNA was incorporated into an animal cell expression plasmid pCI (Promega) to construct a short human NEDD4 expression plasmid. The deduced amino acid sequence encoded by the cloned short-chain human NEDD4 cDNA is identical to the amino acid sequence published in the N CBI database under the accession number NP-006145 (KIAA0093), and Swiss-Prot It matched the amino acid sequence from the 101st to the 1000th amino acid sequence published in the database accession number P46934 (registered gene name is NEDD4).
[0382] 短鎖型ヒト NEDD4 (C867A)発現プラスミドは、短鎖型ヒト NEDD4発現プラスミド を铸型とし、短鎖型ヒト NEDD4の第 867番目のシスティン残基のァラニン残基への 置換を導入し得るプライマーを設計および合成して使用し、 QuikChange Site— D irected Mutagenesis kit (STRATAGENE社製)により構築した。構築した発現 プラスミドのシーケンスを行 ヽ、該発現プラスミドに変異が導入されて ヽることを確認し た。  [0382] The short-chain human NEDD4 (C867A) expression plasmid is a short-chain human NEDD4 expression plasmid, and the substitution of the 867th cysteine residue of a short-chain human NEDD4 with an alanine residue is introduced. The primers obtained were designed and synthesized and used to construct the QuikChange Site—Directed Mutagenesis kit (manufactured by STRATAGENE). The sequence of the constructed expression plasmid was performed, and it was confirmed that a mutation was introduced into the expression plasmid.
[0383] 遺伝子発現およびィムノブロットは以下に述べるように実施した。細胞数 1. 0 X 106 の HEK293T細胞を 6cm ディッシュに播種し、 10%FBS含有 DMEM培地中で 3 7°Cにて 5% CO /95% エアの条件下でー晚培養後、ヒト NEDD4発現プラスミド [0383] Gene expression and immunoblotting were performed as described below. HEK293T cells with 1.0 x 10 6 cells are seeded in 6cm dishes and cultured in spear culture at 37 ° C under 5% CO / 95% air in DMEM medium containing 10% FBS. Expression plasmid
2  2
、短鎖型ヒト NEDD4発現プラスミドおよび短鎖型ヒト NEDD4 (C867A)発現プラスミ ドのうち 、ずれか 1の発現プラスミド 1. 0 gを FuGENE6 (Roche diagnostics社 製)を使用して細胞にトランスフエクシヨンした。トランスフエクシヨン後 2日間培養した 細胞を使用して、実施例 4に記載の方法と同様の方法で細胞を回収してセルライセ ートを調製した。 , Short human NEDD4 expression plasmid and short human NEDD4 (C867A) expression plasmid One of the plasmids, 1.0 g, was transfected into cells using FuGENE6 (Roche diagnostics). Using cells cultured for 2 days after transfection, cells were collected by the same method as described in Example 4 to prepare cell lysate.
[0384] ヒト癌細胞株で発現されている内因性 NEDD4の検出は、乳癌由来細胞株 (T— 4 7D細胞、 MDA— MB— 468細胞および BT— 20細胞)、大腸癌細胞株(SW480細 胞)、肺癌細胞株 (A549細胞)、骨髄性白血病細胞株 (K562細胞および HL— 60 細胞)、リンパ性白血病細胞 (MOLT— 4細胞)、胃癌細胞株 (MKN28細胞および MKN74細胞)のセルライセートを使用して実施した。 MKN28細胞および MKN74 細胞以外の癌細胞株のセルライセートは SantaCruz社より購入した。 MKN28細胞 および MKN74細胞は、プロテアーゼ阻害剤カクテル Complete Mini (Roche di agnostics社)を含む RIPA buffer (50mM Tris-HCl(pH8. 0) /150mM N aCl/1% Triton X- 100/0. 1% SDS/0. 1% DOC)で溶解しセルライセ ートを調製した。  [0384] Endogenous NEDD4 expressed in human cancer cell lines was detected in breast cancer-derived cell lines (T-4 7D cells, MDA-MB-468 cells and BT-20 cells), colon cancer cell lines (SW480 cells). Cell lysates), lung cancer cell lines (A549 cells), myeloid leukemia cell lines (K562 cells and HL-60 cells), lymphoid leukemia cells (MOLT-4 cells), gastric cancer cell lines (MKN28 cells and MKN74 cells) Was carried out. Cell lysates of cancer cell lines other than MKN28 and MKN74 cells were purchased from SantaCruz. MKN28 cells and MKN74 cells are treated with RIPA buffer (50 mM Tris-HCl (pH 8.0) / 150 mM NaCl / 1% Triton X-100 / 0.1% SDS) containing the protease inhibitor cocktail Complete Mini (Roche di agnostics). / 0. 1% DOC) to prepare a cell lysate.
[0385] 上記セルライセートに等量の 2 X SDSサンプルバッファーをカ卩え、 100°Cで 5分間 加熱処理したものを SDS— PAGE試料として使用した。これら試料は 5— 20% SD S— PAGEにより分離し、抗 NEDD4抗体(H— 135、 SantaCruz社製)を使用した ウェスタンブロッテイングにより、 NEDD4を検出した。検出は ECL western blotti ng detection kit (Amersham Biosciences社製)を使用して 施した。  [0385] An equivalent amount of 2 X SDS sample buffer was added to the above cell lysate and heat-treated at 100 ° C for 5 minutes, and used as an SDS-PAGE sample. These samples were separated by 5-20% SDS-PAGE, and NEDD4 was detected by Western blotting using an anti-NEDD4 antibody (H-135, manufactured by SantaCruz). Detection was performed using an ECL western blotting detection kit (Amersham Biosciences).
[0386] <結果 >  [0386] <Result>
短鎖型ヒト NEDD4発現プラスミドをトランスフエクシヨンした HEK293細胞において 、短鎖型ヒト NEDD4が検出された(図 7のパネル A、レーン 1)。また、短鎖型ヒト NE DD4 (C867A)発現プラスミドをトランスフエクシヨンした HEK293細胞において、短 鎖型ヒト NEDD4 (C867A)が検出された(図 7のパネル A、レーン 2)。  Short-chain human NEDD4 was detected in HEK293 cells transfected with a short-chain human NEDD4 expression plasmid (Panel A in FIG. 7, lane 1). Short-chain human NEDD4 (C867A) was detected in HEK293 cells transfected with a short-chain human NE DD4 (C867A) expression plasmid (Panel A in FIG. 7, lane 2).
[0387] 一方、ヒト NEDD4発現プラスミドをトランスフエクシヨンした HEK293細胞を使用し た解析では、ヒト NEDD4のバンドの他に、短鎖型ヒト NEDD4および短鎖型ヒト NE DD4 (C867A)の位置(図 7のパネル A、レーン 1および 2参照)にバンドが認められ た(図 7のパネル A、レーン 3)。このことから、 HEK293細胞においては、内因性と考 えられる短鎖型ヒト NEDD4が発現して 、ると考える。 [0387] On the other hand, in the analysis using HEK293 cells transfected with a human NEDD4 expression plasmid, the positions of short human NEDD4 and short human NE DD4 (C867A) in addition to the human NEDD4 band (Fig. A band was observed in panel A, lanes 1 and 2 (Fig. 7, panel A, lane 3). This suggests that HEK293 cells are endogenous. The resulting short-chain human NEDD4 is expressed.
[0388] T 47D細胞を使用した解析では、ヒト NEDD4のバンドは認められず、短鎖型ヒト NEDD4および短鎖型ヒト NEDD4 (C867A)の位置(図 7のパネル A、レーン 1およ び 2参照)にバンドが認められた(図 7のパネル A、レーン 4)。このことから、 T—47D 細胞においては、ヒト NEDD4はほとんど発現しておらず、短鎖型ヒト NEDD4が発 現していると考える。 [0388] In the analysis using T 47D cells, no human NEDD4 band was observed, and the positions of short human NEDD4 and short human NEDD4 (C867A) (Panel A, lanes 1 and 2 in Figure 7). (See Fig. 7 panel A, lane 4). This suggests that human NEDD4 is hardly expressed in T-47D cells, and that short-chain human NEDD4 is expressed.
[0389] T—47D細胞以外の癌細胞株を使用した解析では、 T— 47D細胞を使用した解析 で認められたバンドの位置にバンドが認められた(図 7のパネル B)。このこと力ら、 T 47D細胞以外の癌細胞株において、 T 47D細胞と同様、短鎖型ヒト NEDD4が 発現していると考える。  [0389] In the analysis using cancer cell lines other than T-47D cells, a band was observed at the band position observed in the analysis using T-47D cells (Panel B in Fig. 7). Based on this, it is considered that short-chain human NEDD4 is expressed in cancer cell lines other than T47D cells, as in T47D cells.
[0390] これら結果から、癌細胞株で主に発現している NEDD4は短鎖型 NEDD4であると 考える。  [0390] From these results, NEDD4 expressed mainly in cancer cell lines is considered to be short-chain NEDD4.
実施例 8  Example 8
[0391] (短鎖型 NEDD4と RUNX1または RUNX3との結合、並びに短鎖型 NEDD4による RUNX1または RUNX3の in vivoュビキチン化)  [0391] (Binding of short-chain NEDD4 to RUNX1 or RUNX3, and in vivo ubiquitination of RUNX1 or RUNX3 by short-chain NEDD4)
短鎖型 NEDD4と RUNX1または RUNX3との結合、並びに短鎖型 NEDD4によ る RUNX1または RUNX3の in vivoュビキチン化の検討を、ヒト RUNX1またはヒト RUNX3を、短鎖型ヒト NEDD4およびュビキチンと共に一過性共発現させたヒト培 養細胞を使用して免疫沈降法により実施した。また、 E3リガーゼが不活化された短 鎖型ヒト NEDD4 (C867A)を使用して同様の検討を行った。  We investigated the binding of short-chain NEDD4 to RUNX1 or RUNX3 and the in vivo ubiquitination of RUNX1 or RUNX3 by short-chain NEDD4. It was carried out by immunoprecipitation using human cultured cells co-expressed. A similar study was performed using short-chain human NEDD4 (C867A) in which E3 ligase was inactivated.
[0392] <材料と方法 >  [0392] <Materials and methods>
ヒト RUNX1発現プラスミドは、実施例 5で作製した発現プラスミドを使用した。本ヒト RUNX1発現プラスミドにより、 FLAG—RUNX1が発現する。  The expression plasmid prepared in Example 5 was used as the human RUNX1 expression plasmid. This human RUNX1 expression plasmid expresses FLAG-RUNX1.
[0393] ヒト RUNX3発現プラスミドは、実施例 2で作製した発現プラスミドを使用した。本ヒト RUNX3発現プラスミドにより、 FLAG— RUNX3が発現する。  [0393] The expression plasmid prepared in Example 2 was used as the human RUNX3 expression plasmid. This human RUNX3 expression plasmid expresses FLAG-RUNX3.
[0394] Myc— tag結合短鎖型ヒト NEDD4発現プラスミドは以下に述べるように構築した。  [0394] A Myc-tag binding short human NEDD4 expression plasmid was constructed as described below.
短鎖型ヒト NEDD4 cDNA (実施例 7参照)を、その^末端に Myc— tagコード配列 を付加した後に、動物細胞用発現プラスミド pC Promega社製)に組み込み、 Myc tag結合短鎖型ヒト NEDD4発現プラスミド(以下、 Myc 短鎖型ヒト NEDD4発現 プラスミドと称する)を構築した。本 Myc 短鎖型ヒト NEDD4発現プラスミドにより、 Myc 短鎖型ヒト NEDD4 (以下、 Myc 短鎖型 NEDD4と称する)が発現する。 Short-chain human NEDD4 cDNA (see Example 7) was added to the ^ -end with a Myc-tag coding sequence, and then incorporated into an animal cell expression plasmid pC Promega). A tag-binding short human NEDD4 expression plasmid (hereinafter referred to as Myc short human NEDD4 expression plasmid) was constructed. This Myc short-chain human NEDD4 expression plasmid expresses Myc short-chain human NEDD4 (hereinafter referred to as Myc short-chain NEDD4).
[0395] Myc— tag結合短鎖型ヒト NEDD4 (C867A)発現プラスミドは以下に述べるように 構築した。短鎖型ヒト NEDD4 (C867A) cDNA (実施例 7参照)を、その 5'末端に Myc— tagコード配列を付カ卩した後に、動物細胞用発現プラスミド pCI (Promega社 製)に組み込み、 Myc— tag結合短鎖型ヒト NEDD4 (C867A)発現プラスミド(以下 、 Myc 短鎖型ヒト NEDD4 (C867A)発現プラスミドと称する)を構築した。本 Myc -短鎖型ヒト NEDD4 (C867A)発現プラスミドにより、 Myc -短鎖型ヒト NEDD4 (C 867A) (以下、 Myc 短鎖型 NEDD4 (C867A)と称する)が発現する。  [0395] A Myc-tag binding short human NEDD4 (C867A) expression plasmid was constructed as described below. Short-chain human NEDD4 (C867A) cDNA (see Example 7) was added with a Myc-tag coding sequence at its 5 'end, and then incorporated into an animal cell expression plasmid pCI (manufactured by Promega). A tag-binding short human NEDD4 (C867A) expression plasmid (hereinafter referred to as Myc short human NEDD4 (C867A) expression plasmid) was constructed. The Myc-short human NEDD4 (C867A) expression plasmid expresses Myc-short human NEDD4 (C867A) (hereinafter referred to as Myc short-chain NEDD4 (C867A)).
[0396] ヒトュビキチン (Ub)発現プラスミドは、実施例 3で作製した発現プラスミドを使用した 。本ヒト Ub発現プラスミドにより、 N末端 HA— tag結合ヒト Ub (以下、 HA— Ubと称す る)が発現する。  [0396] The expression plasmid prepared in Example 3 was used as the human ubiquitin (Ub) expression plasmid. This human Ub expression plasmid expresses N-terminal HA-tag-linked human Ub (hereinafter referred to as HA-Ub).
[0397] In vivoュビキチン化実験は以下に述べるように実施した。 HEK293T細胞に、ヒ ト RUNX1発現プラスミドまたはヒト RUNX3発現プラスミド 0. 1 gを、 Myc 短鎖 型ヒト NEDD4発現プラスミド 2. 0 gおよびヒト Ub発現プラスミド 0. 25 μ gと共に 実施例 4に記載の方法と同様の方法でトランスフエクシヨンした。また、 Myc 短鎖型 ヒト NEDD4発現プラスミドの代わりに、 Myc 短鎖型ヒト NEDD4 (C867A)発現プ ラスミド 2. O /z gを同様の方法でトランスフエクシヨンした細胞を調製した。さらに、ヒト RUNX1発現プラスミドまたはヒト RUNX3発現プラスミドをヒト Ub発現プラスミドと共 に同様の方法でトランスフエクシヨンした細胞を調製し、コントロールとして使用した。 総 DNA導入量は空ベクターにより補正した。トランスフエクシヨン後 2日間培養した細 胞を実施例 2と同様の方法で処理してセルライセートを調製した。次いで、セルライセ ~~トに protein G sepnarose 4 FastFlow (Amersham Biosciences社:^) 50 %スラリーを 40 L加え、 4°Cにて 1時間転倒混和した。その後、 10, OOOrpmで 15 秒間、 4°Cにて遠心処理し、回収した上清に抗 FLAG M2抗体 (Sigma社製) 0. 5 Lを加えて 4°C〖こて 2. 5時間転倒混和した後、新たに protein G sepharose 4 FastFlow 50%スラリーを 40 μ Lカロえ、再度、 4°Cにて 2時間転倒混和した。 Prot ein G sepharose 4 FastFlowを遠心処理により回収し、リシスバッファー(実施 例 2に記載のものと同一組成)で 3回洗浄後、 20 μ Lの 2 X SDSサンプルバッファー を加え、 100°Cで 5分間加熱処理したものを SDS— PAGE試料として使用した。試 料は 5— 20% SDS— PAGEにより分離し、ウェスタンブロッテイングにより、ペルォ キシダーゼ標識抗 c Myc抗体 (ナカライテスタ社製)を使用して Myc 短鎖型 NE DD4および Myc 短鎖型 NEDD4 (C867A)を、ペルォキシダーゼ標識抗 FLAG M2抗体(Sigma社製)を使用して FLAG— RUNX1および FLAG— RUNX3を、 ペルォキシダーゼ標識抗 HAZ3F10抗体 (Roche diagnostics社製)を使用して HA— Ubをそれぞれ検出した。検出は ECL western blotting detection kit ( Amersham Biosciences社製)を使用して実施した。 [0397] In vivo ubiquitination experiments were performed as described below. In HEK293T cells, human RUNX1 expression plasmid or human RUNX3 expression plasmid 0.1 g together with Myc short human NEDD4 expression plasmid 2.0 g and human Ub expression plasmid 0.25 μg, the method described in Example 4 Transfection was carried out in the same way. In addition, instead of the Myc short-chain human NEDD4 expression plasmid, cells transfected with Myc short-chain human NEDD4 (C867A) expression plasmid 2. O / zg were prepared in the same manner. Furthermore, cells transfected with human RUNX1 expression plasmid or human RUNX3 expression plasmid in the same manner as human Ub expression plasmid were prepared and used as controls. The total amount of DNA introduced was corrected with an empty vector. Cells cultured for 2 days after transfection were treated in the same manner as in Example 2 to prepare cell lysate. Subsequently, 40 L of a 50% slurry of protein G sepnarose 4 FastFlow (Amersham Biosciences: ^) was added to the cell lysate and mixed by inverting at 4 ° C for 1 hour. Then, centrifuge at 10, OOOrpm for 15 seconds at 4 ° C, add 0.5 L of anti-FLAG M2 antibody (Sigma) to the collected supernatant, and invert 4 ° C for 2.5 hours After mixing, 40 μL of protein G sepharose 4 FastFlow 50% slurry was freshly added and mixed again by inversion at 4 ° C for 2 hours. Prot Recover ein G sepharose 4 FastFlow by centrifugation, wash 3 times with lysis buffer (same composition as described in Example 2), add 20 μL of 2 X SDS sample buffer, and then at 100 ° C for 5 minutes. The heat-treated sample was used as an SDS-PAGE sample. Samples were separated by 5-20% SDS-PAGE, and Myc short-chain NE DD4 and Myc short-chain NEDD4 (C867A) using peroxidase-labeled anti-c Myc antibody (Nacalai Testa) by Western blotting. ), FLAG-RUNX1 and FLAG-RUNX3 were detected using a peroxidase-labeled anti-FLAG M2 antibody (Sigma), and HA-Ub was detected using a peroxidase-labeled anti-HAZ3F10 antibody (Roche diagnostics). Detection was performed using an ECL western blotting detection kit (Amersham Biosciences).
[0398] <結果 > [0398] <Result>
図 8のパネル Aに示すように、 FLAG-RUNX1, Myc 短鎖型 NEDD4および H A—Ubを共発現させた細胞カゝら調製した試料において、抗 FLAG M2抗体を使用 した免疫沈降により Myc 短鎖型 NEDD4と FLAG— RUNX1の共沈が認められた 。また、 Myc 短鎖型 NEDD4 (C867A)、 FLAG— RUNX1および HA— Ubを共 発現させた細胞力も調製した試料において、 Myc 短鎖型 NEDD4 (C867A)と FL AG— RUNX1の共沈が認められた。  As shown in Panel A of Figure 8, Myc short chain was obtained by immunoprecipitation using anti-FLAG M2 antibody in a sample prepared by co-expression of FLAG-RUNX1, Myc short chain type NEDD4 and HA-Ub. Co-precipitation of type NEDD4 and FLAG—RUNX1 was observed. In addition, coprecipitation of Myc short chain type NEDD4 (C867A) and FL AG— RUNX1 was observed in samples prepared with cell force co-expressing Myc short chain type NEDD4 (C867A), FLAG—RUNX1 and HA—Ub. .
[0399] 図 8のパネル Bに示すように、 FLAG— RUNX1、 Myc 短鎖型 NEDD4および H A— Ubを共発現させた細胞から調製した試料において、 FLAG— RUNX1より高い 分子量を有する複数の蛋白質が、抗 FLAG M2抗体を使用した免疫沈降により検 出された。一方、 Myc 短鎖型 NEDD4の代わりに E3リガーゼ活性が不活ィ匕された Myc 短鎖型 NEDD4 (C867A)を共発現させた細胞力も調製した試料にぉ 、て、 このような高分子量の蛋白質はほとんど検出されなかった。 FLAG—RUNX1、 Myc 短鎖型 NEDD4および HA— Ubを共発現させた細胞における Myc 短鎖型 NE DD4の発現、および Myc -短鎖型 NEDD4の代わりに Myc -短鎖型 NEDD4 (C8 67A)を共発現させた細胞における Myc 短鎖型 NEDD4 (C867A)の発現は同程 度であった(図 8のパネル D)。  [0399] As shown in panel B of Figure 8, in samples prepared from cells co-expressing FLAG—RUNX1, Myc short chain type NEDD4 and HA—Ub, multiple proteins with higher molecular weight than FLAG—RUNX1 It was detected by immunoprecipitation using an anti-FLAG M2 antibody. On the other hand, in addition to the Myc short chain type NEDD4, a sample of the cell force prepared by co-expressing Myc short chain type NEDD4 (C867A) in which the E3 ligase activity was inactivated was used. Was hardly detected. FLAG—RUNX1, Myc short chain NEDD4 and HA— Ub co-expressed Myc short chain NE DD4 expression, and Myc -short chain NEDD4 instead of Myc -short chain NEDD4 (C8 67A) Expression of Myc short-chain NEDD4 (C867A) in co-expressed cells was similar (Panel D in Figure 8).
[0400] 図 8のパネル Cに示すように、 FLAG—RUNX1、 Myc 短鎖型 NEDD4および H A— Ubを共発現させた細胞カゝら調製した試料では、抗 FLAG M2抗体を使用した 免疫沈降および抗 HA抗体を使用したィムノブロットにより検出された蛋白質が、 My c—短鎖型 NEDD4を発現させな力つた細胞力も調製した試料と比較して顕著に増 カロした。検出された蛋白質は、 HA—Ubが付加された FLAG—RUNX1である。す なわち、 FLAG— RUNX1、 Myc 短鎖型 NEDD4および HA— Ubを共発現させ た細胞から調製した試料では、 HA—Ubが付加された FLAG— RUNX1の増加が 認められた。一方、 Myc 短鎖型 NEDD4の代わりに Myc 短鎖型 NEDD4 (C86 7A)を共発現させた細胞カゝら調製した試料でも、 HA—Ubが付加された FLAG— R UNX1が検出されたが、その量およびュビキチン化の程度は Myc 短鎖型 NEDD 4を発現させた細胞力 調製した試料のものに比べ、著しく低いものであった。 [0400] FLAG—RUNX1, Myc short chain NEDD4 and H, as shown in Panel C of Figure 8 In samples prepared from cells co-expressed with A—Ub, the protein detected by immunoprecipitation using anti-FLAG M2 antibody and immunoblotting using anti-HA antibody expressed My c—short-chain NEDD4 Compared with the prepared sample, the increased cell force was significantly increased. The detected protein is FLAG-RUNX1 with HA-Ub added. In other words, samples prepared from cells coexpressed with FLAG-RUNX1, Myc short-chain NEDD4 and HA-Ub showed an increase in FLAG-RUNX1 with HA-Ub added. On the other hand, FLAG-RUNX1 with HA-Ub added was also detected in a sample prepared by co-expression of Myc short-chain NEDD4 (C86 7A) instead of Myc short-chain NEDD4. The amount and the degree of ubiquitination were significantly lower than those of the cell-force-prepared samples expressing Myc short-chain NEDD4.
[0401] 図 9のパネル Aに示すように、 FLAG-RUNX3, Myc 短鎖型 NEDD4および H A—Ubを共発現させた細胞カゝら調製した試料において、抗 FLAG M2抗体を使用 した免疫沈降により Myc 短鎖型 NEDD4と FLAG— RUNX3の共沈が認められた 。また、 Myc 短鎖型 NEDD4 (C867A)、 FLAG— RUNX3および HA— Ubを共 発現させた細胞力も調製した試料において、 Myc 短鎖型 NEDD4 (C867A)と FL AG— RUNX3の共沈が認められた。  [0401] As shown in Figure 9 panel A, immunoprecipitation using anti-FLAG M2 antibody was performed on samples prepared from cells co-expressing FLAG-RUNX3, Myc short chain type NEDD4 and HA-Ub. Myc short-chain NEDD4 and FLAG—RUNX3 were co-precipitated. In addition, coprecipitation of Myc short chain type NEDD4 (C867A) and FL AG— RUNX3 was observed in samples prepared with cell force co-expressing Myc short chain type NEDD4 (C867A), FLAG-RUNX3 and HA-Ub. .
[0402] 図 9のパネル Bに示すように、 FLAG-RUNX3, Myc 短鎖型 NEDD4および H A— Ubを共発現させた細胞から調製した試料において、 FLAG— RUNX3より高い 分子量を有する複数の蛋白質が、抗 FLAG M2抗体を使用した免疫沈降により検 出された。一方、 Myc 短鎖型 NEDD4の代わりに E3リガーゼ活性が不活ィ匕された Myc 短鎖型 NEDD4 (C867A)を共発現させた細胞力も調製した試料にぉ 、て、 このような高分子量の蛋白質はほとんど検出されなかった。 FLAG—RUNX3、 Myc 短鎖型 NEDD4および HA— Ubを共発現させた細胞における Myc 短鎖型 NE DD4の発現、および Myc -短鎖型 NEDD4の代わりに Myc -短鎖型 NEDD4 (C8 67A)を共発現させた細胞における Myc 短鎖型 NEDD4 (C867A)の発現は、同 程度であった(図 9のパネル D)。  [0402] As shown in panel B of Figure 9, in samples prepared from cells co-expressing FLAG-RUNX3, Myc short chain type NEDD4 and HA-Ub, multiple proteins with higher molecular weight than FLAG-RUNX3 It was detected by immunoprecipitation using an anti-FLAG M2 antibody. On the other hand, in addition to the Myc short chain type NEDD4, a sample of the cell force prepared by co-expressing Myc short chain type NEDD4 (C867A) in which the E3 ligase activity was inactivated was used. Was hardly detected. FLAG—RUNX3, Myc short chain NEDD4 and HA— Ub co-expressed Myc short chain NE DD4 expression, and Myc -short chain NEDD4 instead of Myc -short chain NEDD4 (C8 67A) Expression of Myc short-chain NEDD4 (C867A) in co-expressed cells was similar (Panel D in Figure 9).
[0403] 図 9のパネル Cに示すように、 FLAG-RUNX3, Myc 短鎖型 NEDD4および H A—Ubを共発現させた細胞カゝら調製した試料では、抗 FLAG M2抗体を使用した 免疫沈降および抗 HA抗体を使用したィムノブロットにより検出された蛋白質が、 My c—短鎖型 NEDD4を発現させな力つた細胞力も調製した試料と比較して顕著に増 カロした。検出された蛋白質は、 HA—Ubが付加された FLAG—RUNX3である。す なわち、 FLAG— RUNX3、 Myc—短鎖型 NEDD4および HA— Ubを共発現させ た細胞から調製した試料では、 HA—Ubが付加された FLAG— RUNX3の増加が 認められた。一方、 Myc—短鎖型 NEDD4の代わりに Myc—短鎖型 NEDD4 (C86 7A)を共発現させた細胞カゝら調製した試料でも、 HA—Ubが付加された FLAG— R UNX3が検出されたが、その量およびュビキチン化の程度は Myc—短鎖型 NEDD 4を発現させた細胞力 調製した試料のものに比べ、著しく低いものであった。 [0403] As shown in panel C of Figure 9, anti-FLAG M2 antibody was used in samples prepared by co-expression of FLAG-RUNX3, Myc short chain type NEDD4 and HA-Ub. Proteins detected by immunoprecipitation and immunoblotting using anti-HA antibody increased significantly compared to samples prepared with strong cell strength that did not express Myc-short chain type NEDD4. The detected protein is FLAG-RUNX3 with HA-Ub added. In other words, samples prepared from cells co-expressed with FLAG—RUNX3, Myc—short-chain NEDD4, and HA—Ub showed an increase in FLAG—RUNX3 with HA-Ub added. On the other hand, FLAG-RUNX3 with HA-Ub added was also detected in a sample prepared by co-expression of Myc-short chain type NEDD4 (C86 7A) instead of Myc-short chain type NEDD4 However, the amount and degree of ubiquitination were significantly lower than those of the cell-force prepared samples expressing Myc-short chain type NEDD 4.
[0404] これら結果から、短鎖型ヒト NEDD4および短鎖型ヒト NEDD4 (C867A)は!、ずれ も、ヒト RUNX1と細胞内で結合することが明らかになった(図 8のパネル A)。また、ヒ ト RUNX1が短鎖型ヒト NEDD4により細胞内においてュビキチン化されること(図 8 のパネル C)、それによりヒト RUNX1が高分子化すること(図 8のパネル B)が明らか になった。さらに、短鎖型ヒト NEDD4によるヒト RUNX1のュビキチン化および高分 子化には、短鎖型ヒト NEDD4の E3リガーゼ活性が重要であることが判明した。  [0404] These results showed that short-chain human NEDD4 and short-chain human NEDD4 (C867A) bind to human RUNX1 intracellularly (Panel A in Fig. 8). It was also revealed that human RUNX1 is ubiquitinated in cells by short-chain human NEDD4 (Panel C in Fig. 8), and that human RUNX1 is polymerized (Panel B in Fig. 8). . Furthermore, it was found that E3 ligase activity of short human NEDD4 is important for ubiquitination and higher molecularization of human RUNX1 by short human NEDD4.
[0405] また、短鎖型ヒト NEDD4および短鎖型ヒト NEDD4 (C867A)は!、ずれも、ヒト RU NX3と細胞内で結合することが明らかになった(図 9のパネル A)。また、ヒト RUNX3 が短鎖型ヒト NEDD4により細胞内においてュビキチン化されること(図 9のパネル C) 、それによりヒト RUNX3が高分子化すること(図 9のパネル B)が明らかになった。さら に、短鎖型ヒト NEDD4によるヒト RUNX3のュビキチン化および高分子化には、短 鎖型ヒト NEDD4の E3リガーゼ活性が重要であることが判明した。  [0405] Furthermore, it was revealed that short-chain human NEDD4 and short-chain human NEDD4 (C867A) bind to human RU NX3 intracellularly (Panel A in Fig. 9). It was also revealed that human RUNX3 is ubiquitinated in cells by short-chain human NEDD4 (Panel C in Figure 9), and that human RUNX3 is polymerized (Panel B in Figure 9). Furthermore, it was found that E3 ligase activity of short-chain human NEDD4 is important for ubiquitination and high molecularization of human RUNX3 by short-chain human NEDD4.
実施例 9  Example 9
[0406] (短鎖型 NEDD4と RUNX2の結合、および短鎖型 NEDD4による RUNX2の in vi voュビキチン化) [0406] (the binding of short-chain NEDD4 and RUNX2, and in vi v o Yubikichin of RUNX2 due to the short-chain type NEDD4)
短鎖型 NEDD4と RUNX2の結合、および短鎖型 NEDD4による RUNX2の in vi voュビキチン化を、ヒト RUNX2、ヒト短鎖型ヒト NEDD4およびヒトュビキチンを一過 性共発現させたヒト培養細胞を使用して免疫沈降法により検討した。また、 E3リガ一 ゼが不活ィ匕された短鎖型ヒト NEDD4 (C867A)を使用して同様の検討を行った。 [0407] <材料と方法 > Binding of Short Chain NEDD4 and RUNX2, and in vi v o Yubikichin of RUNX2 by short chain type NEDD4, human RUNX2, using human short form human NEDD4 and human cultured cells were transiently co-expressing Hitoyubikichin The immunoprecipitation method was used. A similar study was performed using short-chain human NEDD4 (C867A) in which the E3 ligase was inactivated. [0407] <Materials and methods>
ヒト RUNX2発現プラスミドは以下に述べるように構築した。ヒト RUNX2の cDNAは ヒト骨髄由来 cDNA(QUCIK— clone cDNAゝ Clontech社製)から、 EcoRVサイ トおよび Xholサイトを付加したプライマーを使用して PCRにより獲得し、シーケンスに より塩基配列を確認した。獲得した cDNAは、 N末端 FLAG— tag結合蛋白質を発 現させるための動物細胞用発現プラスミド pCMV—Tag2 (STRATAGENE社製) に EcoRVZXhoIサイトで組み込み、ヒト RUNX2発現プラスミドを構築した。本ヒト R UNX2発現プラスミドにより、 N末端 FLAG— tag結合ヒトRUNX2 (以下、 FLAG— RUNX2と称する)が発現する。なお、クローユングしたヒト RUNX2 cDNAによりコ ードされる推定アミノ酸配列は NCBIプロテインデータベースのァクセッションナンパ 一 NP— 004339 (登録遺伝子 RUNX2)に開示されたものと同一であった。  The human RUNX2 expression plasmid was constructed as described below. Human RUNX2 cDNA was obtained from human bone marrow-derived cDNA (QUCIK—clone cDNA ゝ Clontech) by PCR using primers with EcoRV site and Xhol site added, and the nucleotide sequence was confirmed by sequencing. The obtained cDNA was incorporated at the EcoRVZXhoI site into an animal cell expression plasmid pCMV-Tag2 (STRATAGENE) for expressing an N-terminal FLAG-tag binding protein to construct a human RUNX2 expression plasmid. The human RUNX2 expression plasmid expresses N-terminal FLAG-tag-linked human RUNX2 (hereinafter referred to as FLAG-RUNX2). The deduced amino acid sequence encoded by the cloned human RUNX2 cDNA was identical to that disclosed in the NCBI protein database accession number NP-004339 (registered gene RUNX2).
[0408] Myc 短鎖型ヒト NEDD4発現プラスミドおよび Myc 短鎖型ヒト NEDD4 (C867 A)発現プラスミドは、いずれも実施例 8で作製した発現プラスミドを使用した。本 Myc 短鎖型ヒト NEDD4発現プラスミドにより、 Myc 短鎖型ヒト NEDD4が発現する。 本 Myc 短鎖型ヒト NEDD4 (C867A)発現プラスミドにより、 Myc 短鎖型ヒト NE DD4 (C867A)が発現する。  [0408] As the Myc short-chain human NEDD4 expression plasmid and the Myc short-chain human NEDD4 (C867 A) expression plasmid, the expression plasmid prepared in Example 8 was used. This Myc short human NEDD4 expression plasmid expresses Myc short human NEDD4. This Myc short human NEDD4 (C867A) expression plasmid expresses Myc short human NE DD4 (C867A).
[0409] ヒトュビキチン (Ub)発現プラスミドは、実施例 3で作製した発現プラスミドを使用した 。本ヒト Ub発現プラスミドにより、 HA—Ubが発現する。  [0409] The expression plasmid prepared in Example 3 was used as the human ubiquitin (Ub) expression plasmid. This human Ub expression plasmid expresses HA-Ub.
[0410] In vivoュビキチン化実験は以下に述べるように実施した。 HEK293T細胞に、ヒ ト RUNX2発現プラスミド 0. 1 8、 Myc—短鎖型ヒト NEDD4発現プラスミド 2. 0 g、およびヒト Ub発現プラスミド 0. 25 gを実施例 4に記載の方法と同様の方法 でトランスフエクシヨンした。また、 Myc 短鎖型ヒト NEDD4発現プラスミドの代わりに 、 Myc 短鎖型ヒト NEDD4 (C867A)発現プラスミド 2. 0 gを同様の方法でトラ ンスフエクシヨンした細胞を調製した。さらに、ヒト RUNX2発現プラスミドとヒト Ub発現 プラスミドを同様の方法でトランスフエクシヨンした細胞を調製し、コントロールとして使 用した。総 DNA導入量は空ベクターにより補正した。トランスフエクシヨン後 2日間培 養した細胞を実施例 2と同様の方法で処理してセルライセートを調製した。次いで、 セノレフイセ ~~ト【こ protein G sepharose 4 FastFlow (Amersham Bioscienc es社製) 50%スラリーを 40 /z Lカロえ、 4°Cにて 1時間転倒混和した。その後、 10, 00 Orpmで 15秒間、 4°Cにて遠心処理し、採取した上清に抗 FLAG M2抗体(Sigma 社製) 0. を加え 4°Cにて 2. 5時間転倒混和した後、新たに protein G sepha rose 4 FastFlow 50%スラリーを 40 L加え、再度、 4°Cにて 2時間転倒混和し た。 Protein G sepharose 4 FastFlowを遠心処理により回収し、リシスバッファ 一(実施例 2に記載のものと同一組成)で 3回洗浄後、 20 μ Lの 2 X SDSサンプルバ ッファーをカ卩え、 100°Cで 5分間加熱処理したものを SDS— PAGE試料として使用し た。試料は 5— 20% SDS— PAGEにより分離し、ウェスタンブロッテイングにより、 ペルォキシダーゼ標識抗 c Myc抗体 (ナカライテスタ社製)を使用して Myc 短鎖 型 NEDD4および Myc 短鎖型 NEDD4 (C867A)を、ペルォキシダーゼ標識抗 F LAG M2抗体(Sigma社製)を使用して FLAG—RUNX2を、ペルォキシダーゼ標 識抗 HAZ3F10抗体 (Roche diagnostics社製)を使用して HA—Ubをそれぞれ 恢出した。恢出 i¾ECL western blotting detection kit (Amersham Biosci ences社製)を使用して実施した [0410] In vivo ubiquitination experiments were performed as described below. In HEK293T cells, human RUNX2 expression plasmid 0. 1 8, Myc-in short form human NEDD4 expression plasmid 2. 0 g, and a method similar to that described for human Ub expression plasmid 0. 25 g in Example 4 Transfusion. In addition, instead of the Myc short-chain human NEDD4 expression plasmid, cells were prepared by transfecting 2.0 g of Myc short-chain human NEDD4 (C867A) expression plasmid in the same manner. Furthermore, cells transfected with human RUNX2 expression plasmid and human Ub expression plasmid were prepared in the same manner and used as controls. The total amount of DNA introduced was corrected with an empty vector. Cell lysate was prepared by treating cells cultured for 2 days after transfection in the same manner as in Example 2. Next, Senolehuise ~~ Tokoko protein G sepharose 4 FastFlow (Amersham Bioscienc es) 50% slurry was mixed at 40 / z L and mixed by inversion at 4 ° C for 1 hour. Then, centrifuge at 1,00 Orpm for 15 seconds at 4 ° C, add anti-FLAG M2 antibody (Sigma) 0. to the collected supernatant, and mix by inverting for 2.5 hours at 4 ° C. 40 L of protein G sepha rose 4 FastFlow 50% slurry was newly added, and the mixture was mixed again by inversion at 4 ° C for 2 hours. Protein G sepharose 4 FastFlow is collected by centrifugation, washed 3 times with lysis buffer (same composition as described in Example 2), and then 20 μL of 2 X SDS sample buffer is added, and 100 ° A sample heat-treated for 5 minutes at C was used as an SDS-PAGE sample. Samples were separated by 5-20% SDS-PAGE, and Myc short chain type NEDD4 and Myc short chain type NEDD4 (C867A) were analyzed by Western blotting using peroxidase-labeled anti-c Myc antibody (manufactured by Nacalai Testa). FLAG-RUNX2 was detected using a peroxidase-labeled anti-F LAG M2 antibody (manufactured by Sigma), and HA-Ub was detected using a peroxidase-labeled anti-HAZ3F10 antibody (manufactured by Roche diagnostics). Performed using i¾ECL western blotting detection kit (Amersham Biosciences)
[0411] <結果> [0411] <Result>
図 10のパネル Aに示すように、 FLAG-RUNX2, Myc 短鎖型 NEDD4および HA— Ubを共発現させた細胞カゝら調製した試料において、抗 FLAG M2抗体を使 用した免疫沈降により Myc -短鎖型 NEDD4と FLAG - RUNX2の共沈が認めら れた。また、 Myc 短鎖型 NEDD4 (C867A)、 FLAG— RUNX2および HA— Ub を共発現させた細胞力 調製した試料にぉ 、て、 Myc 短鎖型 NEDD4 (C867A) と FLAG—RUNX2の共沈が認められた。  As shown in panel A of Figure 10, samples prepared from cells co-expressing FLAG-RUNX2, Myc short-chain NEDD4 and HA-Ub were subjected to Myc-by immunoprecipitation using anti-FLAG M2 antibody. Short-chain NEDD4 and FLAG-RUNX2 were co-precipitated. In addition, coprecipitation of Myc short-chain NEDD4 (C867A) and FLAG-RUNX2 was observed in cells prepared using cell force co-expressed Myc short-chain NEDD4 (C867A), FLAG-RUNX2 and HA-Ub. It was.
[0412] 図 10のパネル Bに示すように、 FLAG-RUNX2, Myc 短鎖型 NEDD4および HA— Ubを共発現させた細胞から調製した試料において、 FLAG— RUNX2より高 い分子量を有する複数の蛋白質が、抗 FLAG M2抗体を使用した免疫沈降により 検出された。一方、 Myc 短鎖型 NEDD4の代わりに E3リガーゼ活性が不活ィ匕され た Myc 短鎖型 NEDD4 (C867A)を共発現させた細胞カゝら調製した試料では、こ のような高分子量の蛋白質はほとんど検出されなかった。 FLAG— RUNX2、 Myc 短鎖型 NEDD4および HA— Ubを共発現させた細胞における Myc 短鎖型 NE DD4の発現、および Myc -短鎖型 NEDD4の代わりに Myc -短鎖型 NEDD4 (C8 67A)を共発現させた細胞における Myc—短鎖型 NEDD4 (C867A)の発現は、同 程度であった(図 10のパネル D)。 [0412] As shown in Panel B of Figure 10, multiple samples with higher molecular weight than FLAG-RUNX2 in samples prepared from cells co-expressing FLAG-RUNX2, Myc short-chain NEDD4 and HA-Ub Was detected by immunoprecipitation using anti-FLAG M2 antibody. On the other hand, in the sample prepared by the cell co-expressing Myc short chain type NEDD4 (C867A) in which E3 ligase activity was inactivated instead of Myc short chain type NEDD4, such high molecular weight protein Was hardly detected. FLAG— RUNX2, Myc short chain NEDD4 and HA— Myc short chain NE in cells co-expressed with Ub Expression of DD4 and Myc-short chain NEDD4 (C867A) in cells co-expressed with Myc-short chain NEDD4 (C867A) instead of Myc-short chain NEDD4 were comparable ( Panel D in Figure 10).
[0413] 図 10のパネル Cに示すように、 FLAG— RUNX2、 Myc—短鎖型 NEDD4および HA— Ubを共発現させた細胞カゝら調製した試料では、抗 FLAG M2抗体を使用し た免疫沈降および抗 HA抗体を使用したィムノブロットにより検出された蛋白質が、 M yc—短鎖型 NEDD4を発現させな力つた細胞力も調製した試料と比較して顕著に増 カロした。検出された蛋白質は、 HA—Ubが付加された FLAG—RUNX2である。す なわち、 FLAG— RUNX2、 Myc—短鎖型 NEDD4および HA— Ubを共発現させ た細胞から調製した試料では、 HA—Ubが付加された FLAG— RUNX2の増加が 認められた。一方、 Myc—短鎖型 NEDD4の代わりに Myc—短鎖型 NEDD4 (C86 7A)を共発現させた細胞から調製した試料では、 1¾八ー1^が付加された 1^^}ー1^ UNX2を示すバンドは検出されなかった。  [0413] As shown in panel C of Figure 10, FLAG-RUNX2, Myc-short-chain NEDD4 and HA-Ub co-expressed samples were immunized with anti-FLAG M2 antibody. Proteins detected by immunoblotting using sedimentation and anti-HA antibody increased significantly compared to samples prepared with strong cell strength that did not express Myc-short chain type NEDD4. The detected protein is FLAG-RUNX2 with HA-Ub added. In other words, samples prepared from cells co-expressing FLAG—RUNX2, Myc—short-chain NEDD4, and HA—Ub showed an increase in FLAG—RUNX2 with HA-Ub added. On the other hand, in samples prepared from cells co-expressed with Myc—short chain type NEDD4 (C86 7A) instead of Myc—short chain type NEDD4, 1 ^^}-1 ^ UNX2 No band was detected.
[0414] これら結果から、短鎖型ヒト NEDD4および短鎖型ヒト NEDD4 (C867A)は!、ずれ も、ヒト RUNX2と細胞内で結合することが明らかになった(図 10のパネル A)。また、 ヒト RUNX2が短鎖型ヒト NEDD4により細胞内においてュビキチン化されること(図 1 0のパネル C)、それによりヒト RUNX2が高分子化すること(図 10のパネル B)が明ら 力になった。さらに、短鎖型ヒト NEDD4によるヒト RUNX2のュビキチン化および高 分子化には、短鎖型ヒト NEDD4の E3リガーゼ活性が重要であることが判明した。 実施例 10  [0414] These results revealed that short-chain human NEDD4 and short-chain human NEDD4 (C867A) were bound to human RUNX2 in cells (panel A in Fig. 10). In addition, human RUNX2 is ubiquitinated by short-chain human NEDD4 in cells (Panel C in Fig. 10), and human RUNX2 is polymerized (Panel B in Fig. 10). became. Furthermore, it was found that the E3 ligase activity of short human NEDD4 is important for the ubiquitination and molecularization of human RUNX2 by short human NEDD4. Example 10
[0415] (BMP— 2の骨分ィ匕作用に対する不活性型 NEDD4の影響)  [0415] (Effect of inactive NEDD4 on BMP-2 bone function)
BMP— 2の骨分化作用に対する、 NEDD4の E3リガーゼ活性の影響を検討する ため、マウス培養細胞に E3リガーゼ不活性型ヒト NEDD4を一過性発現させ、骨形 成マーカーであるアルカリフォスファターゼ(以下、 ALPと略称する)活性を測定した  To examine the effect of NEDD4's E3 ligase activity on BMP-2 bone differentiation, E3 ligase-inactive human NEDD4 was transiently expressed in cultured mouse cells, and alkaline phosphatase (hereinafter referred to as bone formation marker) (Abbreviated as ALP) activity was measured
[0416] 骨分化の検討は、マウス培養細胞 C2C 12細胞を使用して行った。 C2C12細胞は 、マウス筋芽細胞であり、骨芽細胞や軟骨細胞と同じ間葉系幹細胞に由来する。 C2 C12細胞は BMP— 2刺激により典型的な骨芽細胞のフエノタイプ、例えば ALP活性 の上昇ゃォステオカルシンの産生等を示すことから、 BMP— 2シグナルに依存した 骨形成のモデル細胞として利用されている (カタギリ (Katagiri T. )ら、「ザ ジャー ナル ォブ セル バイオロジー(The Journal of Cell Biology)」、 1994年、第 127卷、 p. 1755— 1766)。 [0416] Bone differentiation was examined using mouse cultured cell C2C12 cells. C2C12 cells are mouse myoblasts and are derived from the same mesenchymal stem cells as osteoblasts and chondrocytes. C2 C12 cells are stimulated by BMP-2 stimulation and are typically osteoblastic phenotypes such as ALP activity. It has been used as a model cell for osteogenesis depending on BMP-2 signal (Katagiri T. et al., “The Journal of Cell Biology (The Journal of Cell Biology), 1994, 127, p. 1755—1766).
[0417] BMPは生体内で未分化間葉系幹細胞を軟骨細胞、骨芽細胞に分化、増殖させ骨 組織を誘導するサイト力インである。 BMP— 2は骨折治癒過程の初期に発現すること が確認されており、骨修復における一連のカスケードの進行に関与している。  [0417] BMP is a site force-in that induces bone tissue by differentiating and proliferating undifferentiated mesenchymal stem cells into chondrocytes and osteoblasts in vivo. BMP-2 has been shown to be expressed early in the fracture healing process and is involved in the progression of a series of cascades in bone repair.
[0418] <材料と方法 >  [0418] <Materials and methods>
E3リガーゼ不活性型ヒト NEDD4として、短鎖型ヒト NEDD4 (C867A)を使用した 。 Myc— tag結合短鎖型ヒト NEDD4 (C867A)発現プラスミドは、短鎖型ヒト NEDD 4の第 867番目のシスティン残基のァラニン残基への置換を導入し得るプライマーを 設計および合成して使用し、クイックチェンジサイトダイレクティッドミュータジエネシス キット(QuikChange Site - Directed Mutagenesis kitゝ STRATAGENE社 製)により構築した。構築した発現プラスミドのシーケンスを行い、該発現プラスミドに 変異が導入されていることを確認した。本 Myc 短鎖型ヒト NEDD4 (C867A)発現 プラスミドにより、 N末端 Myc— tag結合短鎖型ヒト NEDD4 (C867A) (以下、 Myc —短鎖型 NEDD4 (C867A)と称する)が発現する。  Short-chain human NEDD4 (C867A) was used as E3 ligase inactive human NEDD4. The Myc-tag-linked short human NEDD4 (C867A) expression plasmid is designed and synthesized using primers that can introduce substitution of the 867th cysteine residue of a short human NEDD 4 to an alanine residue. It was constructed using a Quick Change Site Directed Mutagenesis Kit (manufactured by STRATAGENE). The constructed expression plasmid was sequenced to confirm that the mutation was introduced into the expression plasmid. The Myc short-chain human NEDD4 (C867A) expression plasmid expresses N-terminal Myc-tag-linked short-chain human NEDD4 (C867A) (hereinafter referred to as Myc-short chain NEDD4 (C867A)).
[0419] Myc— tag結合短鎖型ヒト NEDD4発現プラスミドは実施例 8で作製した発現プラス ミドを使用した。本 Myc 短鎖型ヒト NEDD4発現プラスミドにより、 N末端 Myc— ta g結合短鎖型ヒト NEDD4 (以下、 Myc 短鎖型 NEDD4と称する)が発現する。  [0419] The expression plasmid prepared in Example 8 was used as the Myc-tag binding short-chain human NEDD4 expression plasmid. This Myc short-chain human NEDD4 expression plasmid expresses N-terminal Myc-tag binding short-chain human NEDD4 (hereinafter referred to as Myc short-chain NEDD4).
[0420] BMP 2の骨分化作用に対する E3リガーゼ不活性型ヒト NEDD4の影響の検討 は、以下に述べるように実施した。マウス筋芽細胞の C2C12細胞を、 10%FBS含有 DMEM培地中で 37°Cにて 5% CO /95% エアの条件下で 2日間培養後、細胞  [0420] The effect of E3 ligase inactive human NEDD4 on the bone differentiation effect of BMP 2 was examined as described below. Mouse myoblast C2C12 cells were cultured in DMEM medium containing 10% FBS at 37 ° C for 2 days under conditions of 5% CO / 95% air.
2  2
をトリプシン ZEDTAにて処理'回収し、ヌクレオフエクタ一(Nucleofector、 Amaxa 社製)を使用して、 Myc -短鎖型ヒト NEDD4 (C867A)発現プラスミド 2 μ gをエレク トロポレーシヨンにより細胞にトランスフエクシヨンした。また、 Myc 短鎖型ヒト NEDD 4 (C867A)発現プラスミドの代わりに、 Myc 短鎖型ヒト NEDD4発現プラスミドを同 様の方法でトランスフエクシヨンした細胞を調製した。さらに、これら発現プラスミドの 代わりに空ベクター(動物細胞用発現プラスミド pCI)を同様の方法でトランスフエクシ ヨンした細胞を調製し、コントロールとして使用した。次いで、細胞数 1. 6 X 105の細 胞を 6ゥエルプレートの各ゥエルに播種しー晚培養後、培養培地を、フエノールレッド 無添カ卩 DMEMZ5%チヤコールーデキストラン処理 FCS (Hyclone社)に BMP— 2 (R&D Systems社製)を最終濃度 300ngZmlとなるように添加した培地と交換し た。 BMP— 2存在下で 3日間培養した後、細胞を回収し、リシスバッファー(20mM Tris (pH8. 0) /0. 1% Triton X— 100)にて細胞溶解液を調製した。細胞溶解 液の蛋白質濃度を測定後、各 20 gの蛋白質中の ALP活性 (Ab595nmZminZg )の測定を、 BluPhos Microwell Phosphatase Substrate System (KPL社 製)を使用して実施した。 Was collected with trypsin ZEDTA and collected, and 2 μg of Myc-short human NEDD4 (C867A) expression plasmid was transfected into cells by electroporation using Nucleofector (Amaxa). In addition, instead of the Myc short-chain human NEDD 4 (C867A) expression plasmid, cells transfected with the Myc short-chain human NEDD4 expression plasmid were prepared in the same manner. In addition, these expression plasmids Instead, cells transfected with an empty vector (animal cell expression plasmid pCI) were prepared in the same manner and used as a control. Next, 1.6 × 10 5 cells were seeded on each well of the 6-well plate, and after culturing, the culture medium was treated with phenol red-free DMEMZ 5% Thiacol-dextran-treated FCS (Hyclone The medium was replaced with a medium supplemented with BMP-2 (R & D Systems) to a final concentration of 300 ngZml. After culturing for 3 days in the presence of BMP-2, the cells were collected, and a cell lysate was prepared with a lysis buffer (20 mM Tris (pH 8.0) /0.1% Triton X-100). After measuring the protein concentration of the cell lysate, ALP activity (Ab595nmZminZg) in each 20 g protein was measured using BluPhos Microwell Phosphatase Substrate System (KPL).
[0421] BMP— 2無処理の空ベクター導入細胞力 調製した細胞溶解液の ALP活性に対 し、 Myc 短鎖型ヒト NEDD4 (C867A)発現プラスミドまたは Myc 短鎖型ヒト NE DD4発現プラスミドをトランスフエクシヨンした細胞力 調製した細胞溶解液の ALP活 性の相対値を算出し、得られた相対値により BMP— 2の骨分ィ匕作用に対する短鎖 型ヒト NEDD4または短鎖型ヒト NEDD4 (C867A)の影響を評価した。得られたデ ータについて統計処理を行った。各処理群の ALP活性データの分散については F 検定を、平均値の差についてはスチューデントの t検定(student' s t— test)または ウエルチの t検定(Welch' s t— test)を行なった。  [0421] Cell force of BMP-2 untreated empty vector introduction For the ALP activity of the prepared cell lysate, transfer Myc short human NEDD4 (C867A) expression plasmid or Myc short human NE DD4 expression plasmid. Calculate the relative value of ALP activity of the prepared cell lysate, and use the obtained relative value to calculate short-chain human NEDD4 or short-chain human NEDD4 (C867A) The impact of. Statistical processing was performed on the obtained data. F-test was performed for the variance of ALP activity data of each treatment group, and Student's t test (Welch's t-test) or Welch's t test (Welch's t-test) was performed for the difference between the mean values.
[0422] <結果 >  [0422] <Result>
BMP— 2刺激下にお!/、て、短鎖型ヒト NEDD4発現細胞の ALP活性と空ベクター 導入細胞の ALP活性には有意な差はみられなカゝつた。これに対し、 BMP— 2で刺 激した短鎖型ヒト NEDD4 (C867A)発現細胞では、空ベクター導入細胞の ALP活 性と比較して約 1. 4倍の ALP活性の増加が確認された(図 11)。短鎖型ヒト NEDD4 (C867A)は E3リガーゼ不活性型短鎖型ヒト NEDD4である。  Under BMP-2 stimulation, there was no significant difference between the ALP activity of cells expressing short-chain human NEDD4 and the ALP activity of cells transfected with empty vectors. In contrast, short-chain human NEDD4 (C867A) -expressing cells stimulated with BMP-2 showed an ALP activity increase of about 1.4 times that of empty vector-introduced cells ( (Figure 11). Short human NEDD4 (C867A) is E3 ligase inactive short human NEDD4.
[0423] 本結果より、 NEDD4の E3リガーゼ活性力 BMP— 2誘発骨分ィ匕の亢進に寄与す ることが明らかになった。 [0423] These results revealed that NEDD4 contributes to the enhancement of BMP-2-induced bone dysfunction of E3 ligase.
実施例 11  Example 11
[0424] (BMP 2の骨分化作用に対する NEDD4ノックダウンの影響) BMP 2の骨分化作用に対する内因性 NEDD4の影響を検討するため、マウス培 養細胞において siRNAをトランスフエクシヨンすることによりマウス NEDD4をノックダ ゥンし、骨形成マーカーである ALP活性を測定した。 [0424] (Effect of NEDD4 knockdown on bone differentiation of BMP 2) In order to examine the effect of endogenous NEDD4 on the bone differentiation effect of BMP 2, mouse NEDD4 was knocked down by transfecting siRNA in mouse cultured cells, and ALP activity as a bone formation marker was measured.
[0425] <材料と方法 > [0425] <Materials and methods>
マウス NEDD4 (NCBIデータベースにァクセッションナンバー NM— 010890で公 開されて!、る)の siRNAは Invitrogen社より購入した NM— 010890— stealth— 3 60を使用した。また、コントロール siRNAは、 QIAGEN社のネガティブコントロール siRNAを使用した。  NM-010890-stealth-360 purchased from Invitrogen was used as the siRNA for mouse NEDD4 (published in NCBI database with accession number NM-010890!). As a control siRNA, a negative control siRNA manufactured by QIAGEN was used.
[0426] マウス NEDD4 (以下、 Nedd4と称する)の siRNAを構成するセンス RNAおよびァ ンチセンス RNAの塩基配列を以下に示す。  [0426] The nucleotide sequences of sense RNA and antisense RNA constituting siRNA of mouse NEDD4 (hereinafter referred to as Nedd4) are shown below.
センス RNA: 5'— GGAGUUGAAUCCGAAUUCCCUGGAA— 3' (配列番号 19)  Sense RNA: 5'— GGAGUUGAAUCCGAAUUCCCUGGAA— 3 ′ (SEQ ID NO: 19)
アンチセンス RNA: 5' -UUCCAGGGAAUUCGGAUUCAACUCC- 3' (配 列番号 20)  Antisense RNA: 5 '-UUCCAGGGAAUUCGGAUUCAACUCC-3' (SEQ ID NO: 20)
[0427] 細胞への siRNAの導入は以下に述べるように行った。細胞数 4 X 105のマウス筋芽 細胞 C2C12細胞を 6cm dishに播種し、 10%FBS含有 DMEM培地中で 37°Cに て 5% CO /95% エアの条件下でー晚培養した。一方、 500 1の OPTI— ME [0427] siRNA was introduced into cells as described below. Mouse myoblast C2C12 cells with 4 × 10 5 cells were seeded in a 6 cm dish and cultured in a DMEM medium containing 10% FBS at 37 ° C. under conditions of 5% CO 2/95% air. On the other hand, 500 1 OPTI—ME
2  2
M培地に 10 μ 1のリポフエク卜ァミン 2000 (Lipofectamione 2000、 Invitrogen社 製)を添カ卩し、室温にて 5分間インキュベーションした。その後、 500 1の OPTI— M EM培地〖こ 250pmolの Nedd4 siRNAまたはネガティブコントロール siRNAを添 加した溶液と混和し (計 lml)、さらに 20分間室温でインキュベーションし、 siRNA/1 ipof ectamine2000混合液を調製した。上記細胞の培養培地を 3mlの OPTI— ME Mに交換し、 siRNAZlipofectamine2000混合液を添カ卩した。  10 μl of Lipofectamione 2000 (Lipofectamione 2000, manufactured by Invitrogen) was added to the M medium and incubated at room temperature for 5 minutes. Then mix with 500 1 OPTI-MEM medium supplemented with 250 pmol Nedd4 siRNA or negative control siRNA (total lml) and incubate for additional 20 min at room temperature to prepare siRNA / 1 ipof ectamine2000 mixture did. The culture medium for the above cells was replaced with 3 ml of OPTI-MEM, and siRNAZlipofectamine 2000 mixture was added.
[0428] BMP— 2の骨分化作用に対する Nedd4 siRNA影響を、以下に述べるように検討 した。 siRNAを細胞に導入して 6時間培養後、培養培地を、フエノールレッド無添カロ DMEMZ5%チヤコールーデキストラン処理 FCS (Hyclone社)に BMP— 2 (R&D Systems社製)を最終濃度 600ngZmlとなるように添加した培地と交換した。 BM P— 2存在下で 3日間培養した後、細胞を回収し、リシスバッファー(20mM Tris (p H8. 0) /0. 1% Triton X— 100)にて細胞溶解液を調製した。細胞溶解液の蛋 白質濃度を測定後、各 20 μ gの蛋白質中の ALP活性 (Ab595nmZminZg)を Blu Phos Microwell Phosphatase Substrate System (KPL社)を使用して測定 した。 [0428] The effect of Nedd4 siRNA on bone differentiation of BMP-2 was examined as described below. After siRNA is introduced into the cells and cultured for 6 hours, the culture medium is treated with phenol red-free Caro DMEMZ 5% Thiacol-dextran treated FCS (Hyclone) and BMP-2 (R & D Systems) to a final concentration of 600 ngZml. The medium was replaced with After culturing for 3 days in the presence of BMP-2, the cells were collected and lysis buffer (20 mM Tris (p A cell lysate was prepared with H8.0) /0.1% Triton X-100). After measuring the protein concentration in the cell lysate, the ALP activity (Ab595nmZminZg) in each 20 μg protein was measured using Blu Phos Microwell Phosphatase Substrate System (KPL).
[0429] BMP— 2無添加条件下のネガティブコントロール siRNAを導入した細胞から調 製した細胞溶解液の ALP活性に対し、 Nedd4 siRNAを導入した細胞カゝら調製し た細胞溶解液の ALP活性の相対値を算出し、得られた相対値により BMP— 2の骨 分化作用に対する Nedd4 siRNAの影響を評価した。得られたデータについて統 計処理を行った。各処理群の ALP活性データの分散については F検定を、平均値 の差についてはスチューデントの t検定またはウエルチの t検定を行なった。  [0429] ALP activity of cell lysate prepared from cells transfected with Nedd4 siRNA compared to ALP activity of cell lysate prepared from cells transfected with negative control siRNA under no addition of BMP-2 The relative value was calculated, and the effect of Nedd4 siRNA on the bone differentiation effect of BMP-2 was evaluated based on the obtained relative value. Statistical processing was performed on the obtained data. For the variance of ALP activity data of each treatment group, F test was performed, and for difference in mean value, Student's t test or Welch's t test was performed.
[0430] Nedd4 siRNAによる細胞内 Nedd4ノックダウンの確認をウェスタンブロッテイング により実施した。上記で作製した細胞溶解液の一部に 5 X SDS サンプルバッファー を添カ卩し、 100°Cで 5分間加熱したものを SDS— PAGE試料として使用した。試料を 5- 20% gelにより分離し、抗 NEDD4抗体 H— 135 (Santa Cruz Biotechnolo gy社製)および抗ァクチン抗体 C - 11 (Santa Cruz Biotechnology社製)を使 用したウェスタンブロッテイングを実施した。蛋白質バンドの検出および定量は、蛍光 標識した 2次抗体を使用し、 Odysseyイメージングシステム (Aloka社製)により行な つた。 BMP— 2無処理のネガティブコントロール siRNA導入細胞において検出さ れた Nedd4のバンドの濃度に対する、各細胞にお 、て検出された Nedd4のバンドの 濃度の相対値を算出した。相対値を算出するとき、各細胞において検出された Nedd 4のバンドの濃度は、ァクチン (Actin)のバンドの濃度により補正した。  [0430] Confirmation of intracellular Nedd4 knockdown by Nedd4 siRNA was performed by Western blotting. A portion of the cell lysate prepared above was supplemented with 5 X SDS sample buffer and heated at 100 ° C for 5 minutes to use as an SDS-PAGE sample. Samples were separated by 5-20% gel, and Western blotting using anti-NEDD4 antibody H-135 (Santa Cruz Biotechnology) and anti-actin antibody C-11 (Santa Cruz Biotechnology) was performed. The detection and quantification of the protein band was performed with an Odyssey imaging system (Aloka) using a fluorescently labeled secondary antibody. The relative value of the concentration of Nedd4 band detected in each cell relative to the concentration of Nedd4 band detected in BMP-2 untreated negative control siRNA-introduced cells was calculated. When calculating the relative value, the concentration of the Nedd 4 band detected in each cell was corrected by the concentration of the actin band.
[0431] <結果 >  [0431] <Result>
Nedd4 siRNA処理細胞では、ネガティブコントロール siRNA処理細胞と比較し て、 BMP— 2刺激による ALP活性が約 2倍増加した(図 12のパネル A)。  In Nedd4 siRNA-treated cells, ALP activity by BMP-2 stimulation was increased approximately 2-fold compared to negative control siRNA-treated cells (Panel A in Fig. 12).
[0432] Nedd4 siRNA処理細胞では、 Nedd4の発現が著しく阻害された(図 12のパネル B)。 Nedd4 siRNAによる Nedd4のノックダウン率は 50%以上であった。  [0432] Nedd4 expression was markedly inhibited in Nedd4 siRNA-treated cells (panel B in Figure 12). Nedd4 knockdown rate by Nedd4 siRNA was more than 50%.
[0433] 以上の結果から、 NEDD4の発現を阻害することで BMP— 2刺激による骨分ィ匕作 用は増強することが判明した。 実施例 12 [0433] From the above results, it was found that inhibition of NEDD4 expression enhances bone mineralization by BMP-2 stimulation. Example 12
[0434] (ヒト癌細胞株の増殖に対する NEDD4ノックダウンの影響)  [0434] (Effect of NEDD4 knockdown on proliferation of human cancer cell lines)
ヒト癌細胞株の増殖に対する内因性 NEDD4の影響を検討するため、ヒト癌細胞株 において NEDD4の siRNAをトランスフエクシヨンすることにより内因性 NEDD4をノ ックダウンし、該癌細胞株の増殖を測定した。  In order to examine the effects of endogenous NEDD4 on the growth of human cancer cell lines, endogenous NEDD4 was knocked down by transfection of NEDD4 siRNA in human cancer cell lines, and the proliferation of the cancer cell lines was measured.
[0435] <材料と方法 > [0435] <Materials and methods>
[0436] ヒト癌細胞株は、ヒト子宫頸部癌細胞株 HeLaおよびヒト胃癌細胞株 NCI— N87を 用いた。  [0436] Human eclampsia cancer cell line HeLa and human gastric cancer cell line NCI-N87 were used as human cancer cell lines.
[0437] ヒト NEDD4 (NCBIデータベースにァクセッションナンバー NM— 006154で公開 されている)の siRNAは Invitrogen社より購入した D42055— stealth— 757、 D42 055— stealth— 1053および D42055— stealth— 1376を使用した。また、コント口 ール siRNAは、 QIAGEN社のネガティブコントロール siRNAを使用した。  [0437] siRNA of human NEDD4 (published in NCBI database with accession number NM—006154) was purchased from Invitrogen using D42055—stealth—757, D42 055—stealth—1053 and D42055—stealth—1376 did. In addition, QIAGEN's negative control siRNA was used as the control siRNA.
[0438] ヒト NEDD4 siRNAを構成するセンス RNAおよびアンチセンス RNAの塩基酉己列 を以下に示す。  [0438] The base sequence of sense RNA and antisense RNA constituting human NEDD4 siRNA is shown below.
[0439] D42055— stealth— 757  [0439] D42055— stealth— 757
センス RNA: 5,— GGACAACCUAACAGAUGCUGAGAAU— 3, (配列番号 2 1)  Sense RNA: 5, — GGACAACCUAACAGAUGCUGAGAAU— 3, (SEQ ID NO: 2 1)
アンチセンス RNA: 5'— AUUCUCAGCAUCUGUUAGGUUGUCC— 3' (配 列番号 22)  Antisense RNA: 5'— AUUCUCAGCAUCUGUUAGGUUGUCC— 3 '(SEQ ID NO: 22)
[0440] D42055— stealth— 1053 [0440] D42055— stealth— 1053
センス RNA: 5'— GCAGAAGAGGCAGCUUACAAGCCUA— 3' (配列番号 2 3)  Sense RNA: 5'— GCAGAAGAGGCAGCUUACAAGCCUA— 3 ′ (SEQ ID NO: 2 3)
アンチセンス RNA: 5' - UAGGCUUGUAAGCUGCCUCUUCUGC - 3' (配 列番号 24)  Antisense RNA: 5 '-UAGGCUUGUAAGCUGCCUCUUCUGC-3' (SEQ ID NO: 24)
[0441] D42055— stealth— 1376 [0441] D42055— stealth— 1376
センス RNA: 5'— GCACCAAAUGGGAGGCCUUUCUUUA— 3' (配列番号 25)  Sense RNA: 5'—GCACCAAAUGGGAGGCCUUUCUUUA—3 '(SEQ ID NO: 25)
アンチセンス RNA: 5' - U AAAG AAAGGCCUCCC AUUUGGUGC - 3 ' (配 列番号 26) Antisense RNA: 5 '-U AAAG AAAGGCCUCCC AUUUGGUGC-3' (Column number 26)
[0442] 細胞への siRNAのトランスフエクシヨンは以下に述べるように行った。 HeLa細胞は 24ゥエルプレートに細胞数 2. 5 X 104/wellで播種し、 10%FBS含有 DMEM培地 中で 37°Cにて 5% CO /95% エアの条件下でー晚培養した後、トランスフエクシ [0442] Transfection of siRNA into cells was performed as described below. HeLa cells were seeded on a 24-well plate at 2.5 × 10 4 / well and cultured in DMEM medium containing 10% FBS at 37 ° C under conditions of 5% CO / 95% air. After, Transfuxi
2  2
ヨンに使用した。トランスフエクシヨン用の siRNAZリポフエクトァミン 2000混合溶液は 次に示すように作製した。 200 iu lのOPTI— MEM I培地に 4 1のリポフエクトァミン 2000 (Invitrogen社製)を添カ卩し、室温にて 5分間インキュベーションした。その後、 各 siRNA 80pmolを添加した 200 1 Opti—MEM I培地と混和し(計 400 1)、 室温でさらに 20分間インキュベーションした。作製した siRNA/リポフエクトァミン 20 00混合液 100 μ 1を各ゥエル(各群 η=4)の培地に添カ卩し(siRNA導入量は 20pm olZweU相当)、細胞に 5時間暴露させた後、培地交換した。一方、 NCI— N87細胞 は、 24ゥエルプレートに細胞数 5 X 104Zwellで播種し、 10%FBS含有 RPMI164 0培地中で 37°C、5% CO /95% エアの条件下で 2日間培養した後、トランスフ Used for Yeon. A siRNAZ lipofectamine 2000 mixed solution for transfection was prepared as follows. 200 i (manufactured by Invitrogen) 4 1 lipoic Hue transfected § Min 2000 in OPTI MEM I medium ul was添Ka卩was incubated for 5 minutes at room temperature. Then, it was mixed with 200 1 Opti-MEM I medium supplemented with 80 pmol of each siRNA (total 400 1) and incubated at room temperature for another 20 minutes. After adding 100 µ 1 of the prepared siRNA / lipofectamine 200 00 mixture to the culture medium of each well (each group η = 4) (siRNA introduction amount is equivalent to 20 pm olZweU) and exposing to cells for 5 hours The medium was changed. On the other hand, NCI-N87 cells were seeded on a 24 well plate at 5 X 10 4 Zwell, and in 10% FBS-containing RPMI164 0 medium at 37 ° C, 5% CO / 95% air for 2 days. After incubation, transfer
2  2
ェクシヨンに使用した。トランスフエクシヨン用の siRNA/リポフエクトァミン 2000混合 溶液は上記と同様に作製し、培地に添カロして(siRNA導入量は2 OpmolZwell相当 )、細胞に 6. 5時間暴露させた後、培地交換した。 Used for excision. A siRNA / lipofectamine 2000 mixed solution for transfection is prepared in the same manner as above, and added to the medium (siRNA introduction amount is equivalent to 2 OpmolZwell) and exposed to cells for 6.5 hours. Exchanged.
[0443] ヒト癌細胞株の増殖に対するヒト NEDD4 siRNAの影響を、以下に述べるように 検討した。 siRNAを細胞に導入後、 HeLa細胞および NCI— N87細胞はそれぞれ 3 日間および 4日間培養した。その後、テトラゾリゥム塩 WST— 8試薬 (生細胞数測定 試薬 SF、ナカライテスタ社製)含有培地と交換し、一定時間インキュベーション後、培 地の一部を採取し、 450nmの吸光度を測定することにより細胞増殖を測定した。各 NEDD4 siRNA処理群の増殖率は、ネガティブコントロール siRNA処理群に対 する各 NEDD4 siRNA処理群の増殖の割合(%)で算出した。  [0443] The effects of human NEDD4 siRNA on the growth of human cancer cell lines were examined as described below. After introducing siRNA into cells, HeLa cells and NCI-N87 cells were cultured for 3 days and 4 days, respectively. Thereafter, the medium is replaced with a medium containing tetrazolium salt WST-8 reagent (viable cell count reagent SF, manufactured by Nacalai Testa). After incubation for a certain period of time, a portion of the medium is collected and the absorbance is measured at 450 nm. Proliferation was measured. The growth rate of each NEDD4 siRNA treatment group was calculated by the ratio (%) of the growth of each NEDD4 siRNA treatment group to the negative control siRNA treatment group.
[0444] 得られたデータについて統計処理を行った。各 siRNA処理群の増殖率の分散に つ!ヽては F検定を、平均値の差につ!、ては studentの t検定もしくは Welchの t検定 を実施した。  [0444] Statistical processing was performed on the obtained data. Dispersion of growth rate of each siRNA treatment group! In the meantime, we performed the F test, the difference between the mean values, and the student t test or Welch t test.
[0445] ヒト NEDD4 siRNAによる細胞内 NEDD4ノックダウンの確認をウェスタンブロッテ イングにより以下に示すように実施した。細胞増殖を WST— 8で測定した後、各ゥェ ルの細胞をトリプシン ZEDTAで回収して一つに合し、 RIPAバッファー(150mM NaCl/50mM Tris— HC1 pH8. 0/1% NP-40/0. 5% デォキシコール 酸ナトリウム塩(deoxycholate sodium salt) /0. 1% SDS)にて細胞を溶解し て細胞溶解液 (セルライセート)を作製した。これに 2 X SDS サンプルバッファーを 添加し、 100°Cで 5分間加熱したものを SDS— PAGE試料として使用した。本試料を 5- 20% アクリルアミドゲルにより分離し、 1次抗体に抗 NEDD4抗体 H— 135およ び抗ベータ—チューブリン抗体 H— 235 (Santa Cruz Biotechnology社製)を、 2次抗体に蛍光標識ャギ抗ゥサギ IgG抗体 (Alexa Fluor 680, goat anti— rab bit IgG, Molecular Probe社製)を使用したウェスタンブロッテイングを実施した。 蛋白質バンドの検出および定量は Odysseyイメージングシステム (Aloka社製)によ り行なった。 siRNAによる NEDD4のノックダウン効果は、ネガティブコントロール si RNA処理群において検出された NEDD4蛋白質バンドの濃度に対する、各 NEDD 4 siRNA処理群にぉ 、て検出された蛋白質バンドの濃度の割合より評価した。 [0445] Confirmation of intracellular NEDD4 knockdown by human NEDD4 siRNA was performed by Western blotting as shown below. After measuring cell proliferation with WST-8, Cells were collected with trypsin ZEDTA and combined, and RIPA buffer (150 mM NaCl / 50 mM Tris—HC1 pH 8.0 / 1% NP-40 / 0.5% deoxycholate sodium salt / Cells were lysed with 0.1% SDS) to prepare a cell lysate (cell lysate). To this, 2 X SDS sample buffer was added and heated at 100 ° C for 5 minutes, and used as an SDS-PAGE sample. This sample was separated on a 5-20% acrylamide gel, and the primary antibody was labeled with anti-NEDD4 antibody H-135 and anti-beta-tubulin antibody H-235 (Santa Cruz Biotechnology). Western blotting using a goat anti-rabbit IgG antibody (Alexa Fluor 680, goat anti-rab bit IgG, manufactured by Molecular Probe) was performed. The detection and quantification of the protein band was performed by an Odyssey imaging system (Aloka). The knockdown effect of NEDD4 by siRNA was evaluated based on the ratio of the concentration of protein band detected in each NEDD 4 siRNA treatment group to the concentration of NEDD4 protein band detected in the negative control siRNA treatment group.
[0446] <結果 > [0446] <Result>
HeLa細胞では、 NEDD4 siRNA (D42055— stealth— 757または D42055— stealth— 1053)によるノックダウンにより、約 30〜40%程度増殖が抑制された(図 1 3のパネル A)。また、本条件下での NEDD4のノックダウン率は 80%以上であった( 図 13のパネル: B)。  In HeLa cells, growth was suppressed by about 30-40% by knockdown with NEDD4 siRNA (D42055—stealth—757 or D42055—stealth—1053) (panel A in FIG. 13). The knockdown rate of NEDD4 under these conditions was 80% or more (Panel in Fig. 13: B).
[0447] NCI— N87細胞においても、 NEDD4 siRNA(D42055— stealth— 757、 D42 055一 stealth一 1053、または D42055一 stealth一 1376)によるノックダウンにより 、約 30%程度増殖が抑制された(図 14のパネル A)。また、本条件下での NEDD4 のノックダウン率は 70%程度であった(図 14のパネル B)。  [0447] In NCI-N87 cells, proliferation was suppressed by about 30% by knockdown with NEDD4 siRNA (D42055- stealth-757, D42 055-stealth-one 1053, or D42055-stealth-one 1376) (Fig. 14). Panel A). The knockdown rate of NEDD4 under this condition was about 70% (Panel B in Fig. 14).
[0448] 以上の結果から、 NEDD4をノックダウンすることで HeLa細胞と NCI— N87細胞に おいて増殖が抑制されることが判明した。  [0448] From the above results, it was found that knocking down NEDD4 suppresses proliferation in HeLa cells and NCI-N87 cells.
産業上の利用可能性  Industrial applicability
[0449] 本発明によれば、 NEDD4または短鎖型 NEDD4を使用して RUNXをュビキチン 化する方法を提供できる。本方法を利用して、 NEDD4または短鎖型 NEDD4による RUNXのュビキチンィ匕を阻害する化合物または該ュビキチンィ匕を促進する化合物 の同定方法を提供できる。 NEDD4、あるいは NEDD4または短鎖型 NEDD4による RUNXのュビキチン化を促進する化合物を使用して、 NEDD4または短鎖型 NED D4による RUNXのュビキチン化を促進することができ、それにより、 RUNXの分解を 促進できる。また、不活性型 NEDD4、 NEDD4の発現を阻害する二重鎖ポリヌクレ ォチドあるいは NEDD4または短鎖型 NEDD4による RUNXのュビキチン化を阻害 する化合物を使用して、 NEDD4または短鎖型 NEDD4による RUNXのュビキチン 化を阻害することができ、それにより、 RUNXの分解を阻害できる。 [0449] According to the present invention, a method for ubiquitinating RUNX using NEDD4 or short-chain NEDD4 can be provided. Compounds that inhibit RUNX ubiquitin 匕 by NEDD4 or short-chain NEDD4 using this method, or compounds that promote ubiquitin ュ The identification method can be provided. NEDD4, or a compound that promotes RUNX ubiquitination by NEDD4 or short-chain NEDD4 can be used to promote RUNX ubiquitination by NEDD4 or short-chain NED D4, thereby promoting RUNX degradation it can. RUNX ubiquitination with NEDD4 or short-chain NEDD4 using inactive NEDD4, a double-stranded polynucleotide that inhibits the expression of NEDD4, or a compound that inhibits RUNX ubiquitination with NEDD4 or short-chain NEDD4 Can be inhibited, thereby inhibiting the degradation of RUNX.
[0450] このように、 RUNXのュビキチンィ匕およびそれによる分解を調節することにより、 RU NXの異常に起因する疾患の予防および Zまたは治療が可能である。 RUNXが腫 瘍形成および癌疾患の増悪に関与していると考えられることから、本発明により多様 な癌疾患の予防および Zまたは治療が可能である。また、 RUNX2が骨形成に関与 していると考えられることから、本発明により骨損失疾患等の予防および Zまたは治 療が可能である。 [0450] Thus, by regulating RUNX ubiquitin and its degradation, it is possible to prevent and Z or treat diseases caused by RU NX abnormalities. Since RUNX is considered to be involved in tumor formation and exacerbation of cancer diseases, various cancer diseases can be prevented and / or treated according to the present invention. Further, since RUNX2 is considered to be involved in bone formation, the present invention can prevent and Z or treat bone loss diseases.
[0451] また本発明によれば、 NEDD4または短鎖型 NEDD4の発現ある 、は機能を阻害 する化合物を同定することを特徴とする、骨形成を促進させ得る化合物の同定方法 を提供できる。本同定方法により得られたィ匕合物は、骨形成を促進させ得る化合物 であるため、骨損失疾患等、例えば骨粗しょう症の予防および Zまたは治療剤の有 効成分として利用できる。  [0451] Further, according to the present invention, it is possible to provide a method for identifying a compound capable of promoting bone formation, characterized by identifying a compound that inhibits the function of NEDD4 or short-chain NEDD4. Since the compound obtained by this identification method is a compound capable of promoting bone formation, it can be used as an effective component for prevention and Z or treatment of osteoporosis such as bone loss disease.
[0452] 本発明は、 RUNXの分解のメカニズム、 RUNXが関与する転写のメカニズムおよ び RUNXの異常に起因する疾患等に関する基礎的研究や医薬品開発等に有用で ある。さらに本発明は、 RUNXの異常に起因する疾患、例えば癌疾患の予防および Zまたは治療に利用できる。また、本発明は、骨損失疾患等、例えば骨粗しょう症の 予防および Zまたは治療剤の開発に有用である。  [0452] The present invention is useful for basic research and drug development regarding RUNX degradation mechanism, transcription mechanism involving RUNX, and diseases caused by RUNX abnormality. Furthermore, the present invention can be used for the prevention and Z or treatment of diseases caused by abnormalities in RUNX, such as cancer diseases. In addition, the present invention is useful for the prevention of bone loss diseases such as osteoporosis and the development of Z or therapeutic agents.
配列表フリーテキスト  Sequence listing free text
[0453] 配列番号 1:ヒト NEDD4 (配列番号 2)をコードするポリヌクレオチド。  [0453] SEQ ID NO: 1: Polynucleotide encoding human NEDD4 (SEQ ID NO: 2).
配列番号 2:ヒト NEDD4。  SEQ ID NO: 2: human NEDD4.
配列番号 3:ヒト NEDD4 (配列番号 2)の N末端側第 1番目力も第 100番目の 100個 のアミノ酸残基が欠失した蛋白質 (配列番号 4)をコードするポリヌクレオチド。 配列番号 4:ヒト NEDD4 (配列番号 2)の N末端側第 1番目力も第 100番目の 100個 のアミノ酸残基が欠失した蛋白質。 SEQ ID NO: 3: A polynucleotide encoding a protein (SEQ ID NO: 4) in which the 100th amino acid residue at the N-terminal side of human NEDD4 (SEQ ID NO: 2) has also been deleted. SEQ ID NO: 4: A protein from which the 100th amino acid residue at the N-terminal side of human NEDD4 (SEQ ID NO: 2) has also been deleted.
配列番号 5:ヒト RUNX1 (配列番号 6)をコードするポリヌクレオチド。 SEQ ID NO: 5: Polynucleotide encoding human RUNX1 (SEQ ID NO: 6).
配列番号 6:ヒト RUNX1。 SEQ ID NO: 6: human RUNX1.
配列番号 7:ヒト RUNX2 (配列番号 8)をコードするポリヌクレオチド。 SEQ ID NO: 7: Polynucleotide encoding human RUNX2 (SEQ ID NO: 8).
配列番号 8:ヒト RUNX2。 SEQ ID NO: 8: human RUNX2.
配列番号 9:ヒト RUNX3 (配列番号 10)をコードするポリヌクレオチド。 SEQ ID NO: 9: Polynucleotide encoding human RUNX3 (SEQ ID NO: 10).
配列番号 10:ヒト RUNX3。 SEQ ID NO: 10: human RUNX3.
配列番号 11:ヒト NEDD4 (配列番号 2)の不活性型変異体。 SEQ ID NO: 11: Inactive mutant of human NEDD4 (SEQ ID NO: 2).
配列番号 12:ヒト NEDD4 (配列番号 2)の N末端側第 1番目力も第 100番目の 100 個のアミノ酸残基が欠失した蛋白質 (配列番号 4)の不活性型変異体。 SEQ ID NO: 12: Inactive mutant of a protein (SEQ ID NO: 4) in which the 100th amino acid residue in the N-terminal side of human NEDD4 (SEQ ID NO: 2) is deleted in the 100th amino acid.
配列番号 13:ヒト NEDD4 (配列番号 2)の部分配列と高!、相同性を有する、ヒト RUSEQ ID NO: 13: Human RU having high homology with a partial sequence of human NEDD4 (SEQ ID NO: 2)
NX3 (配列番号 10)の部分配列。 A partial sequence of NX3 (SEQ ID NO: 10).
配列番号 14:ヒト RUNX3 (配列番号 10)の部分配列と高!、相同性を有する、ヒト NE DD4 (配列番号 2)の部分配列。 SEQ ID NO: 14: Partial sequence of human NE DD4 (SEQ ID NO: 2) having high homology with the partial sequence of human RUNX3 (SEQ ID NO: 10).
配列番号 15:ヒト NEDD4 (配列番号 2)の部分配列と高!、相同性を有する、ヒト RU NX3 (配列番号 10)の部分配列。 SEQ ID NO: 15: Partial sequence of human RU NX3 (SEQ ID NO: 10) having high homology with the partial sequence of human NEDD4 (SEQ ID NO: 2).
配列番号 16:ヒト RUNX3 (配列番号 10)の部分配列と高い相同性を有する、ヒト NE DD4 (配列番号 2)の部分配列。 SEQ ID NO: 16: Partial sequence of human NE DD4 (SEQ ID NO: 2) having high homology with the partial sequence of human RUNX3 (SEQ ID NO: 10).
配列番号 17:ヒト NEDD4 (配列番号 2)の部分配列と高!、相同性を有する、ヒト RU NX3 (配列番号 10)の部分配列。 SEQ ID NO: 17: Partial sequence of human RU NX3 (SEQ ID NO: 10) having high homology with the partial sequence of human NEDD4 (SEQ ID NO: 2).
配列番号 18:ヒト RUNX3 (配列番号 10)の部分配列と高い相同性を有する、ヒト NE DD4 (配列番号 2)の部分配列。 SEQ ID NO: 18: Partial sequence of human NE DD4 (SEQ ID NO: 2) having high homology with the partial sequence of human RUNX3 (SEQ ID NO: 10).
配列番号 19:マウス Nedd4に対する siRNAを構成するセンス RNA。 SEQ ID NO: 19: sense RNA constituting siRNA for mouse Nedd4
配列番号 20:マウス Nedd4に対する siRNAを構成するアンチセンス RNA。 SEQ ID NO: 20: Antisense RNA constituting siRNA against mouse Nedd4
配列番号 21:ヒト NEDD4に対する siRNAを構成するセンス RNA。 SEQ ID NO: 21: sense RNA constituting siRNA against human NEDD4
配列番号 22:ヒト NEDD4に対する siRNAを構成するアンチセンス RNA。 Sequence number 22: Antisense RNA which comprises siRNA with respect to human NEDD4.
配列番号 23:ヒト NEDD4に対する siRNAを構成するセンス RNA。 配列番号 24:ヒト NEDD4に対する siRNAを構成するアンチセンス RNA< 配列番号 25:ヒト NEDD4に対する siRNAを構成するセンス RNA。 Sequence number 23: The sense RNA which comprises siRNA with respect to human NEDD4. SEQ ID NO: 24: antisense RNA constituting siRNA against human NEDD4 <SEQ ID NO: 25: sense RNA constituting siRNA against human NEDD4
配列番号 26:ヒト NEDD4に対する siRNAを構成するアンチセンス RNA< SEQ ID NO: 26: antisense RNA constituting siRNA against human NEDD4

Claims

請求の範囲 The scope of the claims
[1」 RUNX (Runt— related transcription factor と NEDD4 (Neural precursor cell Expressed, developmentally down― regulated 4)とを共存 せること を特徴とする RUNXのュビキチンィ匕方法。  [1] RUNX (Runt—related transcription factor and NEDD4 (Neural precursor cell Expressed, developmentally down—regulated 4)).
[2] RUNXが、ヒト RUNX1、ヒト RUNX2およびヒト RUNX3から選ばれるいずれか 1で ある請求項 1に記載の RUNXのュビキチン化方法。 [2] The RUNX ubiquitination method according to claim 1, wherein RUNX is any one selected from human RUNX1, human RUNX2 and human RUNX3.
[3] NEDD4を含んでなる RUNXのュビキチン化剤。 [3] A RUNX ubiquitinizing agent comprising NEDD4.
[4] RUNXが、ヒト RUNX1、ヒト RUNX2およびヒト RUNX3から選らばれるいずれか 1で ある請求項 3に記載の RUNXのュビキチン化剤。  [4] The RUNX ubiquitinating agent according to claim 3, wherein RUNX is any one selected from human RUNX1, human RUNX2 and human RUNX3.
[5] 請求項 1または 2に記載の RUNXのュビキチンィ匕方法を使用することを特徴とする R[5] The RUNX ubiquitin method according to claim 1 or 2 is used.
UNXの分解方法。 UNX disassembly method.
[6] 請求項 3または 4に記載の RUNXのュビキチン化剤を用いて RUNXを処理すること を特徴とする RUNXの分解方法。  [6] A method for decomposing RUNX, characterized in that RUNX is treated using the RUNX ubiquitinating agent according to claim 3 or 4.
[7] NEDD4を含んでなる RUNXの分解剤。 [7] A RUNX decomposer comprising NEDD4.
[8] RUNXと NEDD4の結合を阻害することを特徴とする RUNXのュビキチン化阻害方 法。  [8] A method for inhibiting RUNX ubiquitination characterized by inhibiting the binding of RUNX and NEDD4.
[9] 配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質および Zまたは配列 番号 12に記載のアミノ酸配列で表される蛋白質を使用することを特徴とする請求項 8 に記載の RUNXのュビキチン化阻害方法。  [9] The RUNX according to claim 8, wherein a protein represented by the amino acid sequence represented by SEQ ID NO: 11 in the sequence listing and a protein represented by the amino acid sequence represented by Z or SEQ ID NO: 12 are used. Method for inhibiting ubiquitination.
[10] NEDD4の酵素活性を阻害することを特徴とする RUNXのュビキチンィ匕阻害方法。 [10] A method for inhibiting RUNX ubiquitin 匕, which comprises inhibiting the enzyme activity of NEDD4.
[11] NEDD4の発現を阻害することを特徴とする RUNXのュビキチンィ匕阻害方法。 [11] A method for inhibiting RUNX ubiquitin 匕, which comprises inhibiting the expression of NEDD4.
[12] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを使用することを特徴とする RU[12] RU characterized by using a double-stranded polynucleotide capable of inhibiting the expression of NEDD4
NXのュビキチン化阻害方法。 NX ubiquitination inhibition method.
[13] 下記の群より選択されるいずれ力 1つの二重鎖ポリヌクレオチドを使用することを特徴 とする RUNXのュビキチン化阻害方法: [13] A method for inhibiting RUNX ubiquitination, characterized by using one double-stranded polynucleotide selected from the following group:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、  (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および(ii) the polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and the sequence described in SEQ ID NO: 24 A double-stranded polynucleotide comprising a polynucleotide represented by the nucleotide sequence of:
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[14] RUNXが、ヒト RUNX1、ヒト RUNX2およびヒト RUNX3から選ばれるいずれか 1で ある請求項 8から 13のいずれ力 1項に記載の RUNXのュビキチン化阻害方法。  14. The method for inhibiting RUNX ubiquitination according to any one of claims 8 to 13, wherein RUNX is any one selected from human RUNX1, human RUNX2 and human RUNX3.
[15] NEDD4をコードするポリヌクレオチドの部分塩基配列であって、配列番号 21から 26 に記載の塩基配列より選択されるいずれか 1つの塩基配列力 なるポリヌクレオチド。  [15] A polynucleotide having a nucleotide sequence ability selected from the nucleotide sequences set forth in SEQ ID NOs: 21 to 26, which is a partial nucleotide sequence of a polynucleotide encoding NEDD4.
[16] NEDD4をコードするポリヌクレオチドの部分塩基配列力 なるポリヌクレオチドと、該 部分塩基配列の相補的塩基配列力 なるポリヌクレオチドとからなる二重鎖ポリヌクレ ォチドであって、下記の群より選択されるいずれ力 1つの二重鎖ポリヌクレオチド: [16] A double-stranded polynucleotide comprising a polynucleotide having a partial base sequence ability of a polynucleotide encoding NEDD4 and a polynucleotide having a complementary base sequence ability of the partial base sequence, and selected from the following group: One force double-stranded polynucleotide:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、 (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[17] 配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質および Zまたは配列 番号 12に記載のアミノ酸配列で表される蛋白質を含んでなる RUNXのュビキチンィ匕 阻害剤。  [17] A RUNX ubiquitin 匕 inhibitor comprising a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12.
[18] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを含んでなる RUNXのュビキチ ン化阻害剤。  [18] A RUNX ubiquitination inhibitor comprising a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
[19] 下記の群より選択されるいずれ力 1つの二重鎖ポリヌクレオチドを含んでなる RUNX のュビキチンィ匕阻害剤:  [19] RUNX ubiquitin inhibitor comprising one double-stranded polynucleotide, optionally selected from the group:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、  (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) the polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and the sequence described in SEQ ID NO: 26 A double-stranded polynucleotide comprising a polynucleotide represented by the nucleotide sequence:
[20] RUNXが、ヒト RUNX1、ヒト RUNX2およびヒト RUNX3から選らばれるいずれか 1で ある請求項 17から 19のいずれか 1項に記載の RUNXのュビキチン化阻害剤。 20. The RUNX ubiquitination inhibitor according to any one of claims 17 to 19, wherein RUNX is any one selected from human RUNX1, human RUNX2 and human RUNX3.
[21] 請求項 8から 14のいずれか 1項に記載の RUNXのュビキチンィ匕阻害方法を使用す ることを特徴とする RUNXの分解阻害方法。 [21] A method for inhibiting RUNX degradation, comprising using the method for inhibiting RUNX ubiquitin according to any one of claims 8 to 14.
[22] 請求項 17から 20のいずれ力 1項に記載の RUNXのュビキチンィ匕阻害剤を使用する ことを特徴とする RUNXの分解阻害方法。 [22] A method for inhibiting degradation of RUNX, characterized by using the RUNX ubiquitin inhibitor according to any one of claims 17 to 20.
[23] 配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質および Zまたは配列 番号 12に記載のアミノ酸配列で表される蛋白質を含んでなる RUNXの分解阻害剤 [23] A RUNX degradation inhibitor comprising a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12.
[24] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを含んでなる RUNXの分解阻 害剤。 [24] A RUNX degradation inhibitor comprising a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
[25] 下記の群より選択されるいずれ力 1つの二重鎖ポリヌクレオチドを含んでなる RUNX の分解阻害剤:  [25] RUNX degradation inhibitor comprising a single double-stranded polynucleotide, optionally selected from the group:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、  (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[26] NEDD4の発現および Zまたは機能を阻害することを特徴とする骨形成促進方法。  [26] A method for promoting osteogenesis characterized by inhibiting the expression and Z or function of NEDD4.
[27] 配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質および Zまたは配列 番号 12に記載のアミノ酸配列で表される蛋白質を使用することを特徴とする骨形成 促進方法。 [27] A method for promoting osteogenesis, comprising using a protein represented by the amino acid sequence represented by SEQ ID NO: 11 in the sequence listing and a protein represented by Z or the amino acid sequence represented by SEQ ID NO: 12.
[28] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを使用することを特徴とする骨 形成促進方法。  [28] A method for promoting osteogenesis, comprising using a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
[29] 下記の群より選択されるいずれ力 1つの二重鎖ポリヌクレオチドを使用することを特徴 とする骨形成促進方法: (i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、 [29] A method for promoting osteogenesis characterized by using one double-stranded polynucleotide selected from the following group: (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[30] 配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質および Zまたは配列 番号 12に記載のアミノ酸配列で表される蛋白質を含んでなる骨形成促進剤。  [30] An osteogenesis promoter comprising a protein represented by the amino acid sequence represented by SEQ ID NO: 11 in the sequence listing and a protein represented by Z or the amino acid sequence represented by SEQ ID NO: 12.
[31] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを含んでなる骨形成促進剤。 [31] An osteogenesis promoter comprising a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
[32] 下記の群より選択されるいずれ力 1つの二重鎖ポリヌクレオチドを含んでなる骨形成 促進剤: [32] A bone formation promoter comprising any one single-strand polynucleotide selected from the following group:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、  (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[33] NEDD4の発現および Zまたは機能を阻害することを特徴とする腫瘍増殖抑制方法  [33] A method for suppressing tumor growth, comprising inhibiting the expression and Z or function of NEDD4
[34] 配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質および Zまたは配列 番号 12に記載のアミノ酸配列で表される蛋白質を使用することを特徴とする腫瘍増 殖抑制方法。 [34] A method for inhibiting tumor growth, comprising using a protein represented by the amino acid sequence represented by SEQ ID NO: 11 in the sequence listing and a protein represented by Z or the amino acid sequence represented by SEQ ID NO: 12.
[35] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを使用することを特徴とする腫 瘍増殖抑制方法。  [35] A method for suppressing tumor growth, comprising using a double-stranded polynucleotide capable of inhibiting the expression of NEDD4.
[36] 下記の群より選択されるいずれ力 1つの二重鎖ポリヌクレオチドを使用することを特徴 とする腫瘍増殖抑制方法:  [36] A method for inhibiting tumor growth, which comprises using one double-stranded polynucleotide that is selected from the following group:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、 (ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および(i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22, (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[37] 配列表の配列番号 11に記載のアミノ酸配列で表される蛋白質および Zまたは配列 番号 12に記載のアミノ酸配列で表される蛋白質を含んでなる腫瘍増殖抑制剤。  [37] A tumor growth inhibitor comprising a protein represented by the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing and a protein represented by Z or the amino acid sequence set forth in SEQ ID NO: 12.
[38] NEDD4の発現を阻害し得る二重鎖ポリヌクレオチドを含んでなる腫瘍増殖抑制剤。 [38] A tumor growth inhibitor comprising a double-stranded polynucleotide capable of inhibiting NEDD4 expression.
[39] 下記の群より選択されるいずれ力 1つの二重鎖ポリヌクレオチドを含んでなる腫瘍増 殖抑制剤: [39] A tumor growth inhibitor comprising any one single-stranded polynucleotide selected from the following group:
(i)配列番号 21に記載の塩基配列で表されるポリヌクレオチドと配列番号 22に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、  (i) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 21 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 22,
(ii)配列番号 23に記載の塩基配列で表されるポリヌクレオチドと配列番号 24に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド、および (ii) a double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 23 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 24, and
(iii)配列番号 25に記載の塩基配列で表されるポリヌクレオチドと配列番号 26に記載 の塩基配列で表されるポリヌクレオチドからなる二重鎖ポリヌクレオチド。 (iii) A double-stranded polynucleotide comprising a polynucleotide represented by the base sequence set forth in SEQ ID NO: 25 and a polynucleotide represented by the base sequence set forth in SEQ ID NO: 26.
[40] NEDD4による RUNXのュビキチン化を阻害する化合物または促進する化合物の 同定方法であって、 NEDD4および Zまたは RUNXとある化合物 (被検化合物)とを 接触させ、 NEDD4による RUNXのュビキチン化を検出するシグナルおよび Zまた はマーカーを使用する系を用い、このシグナルおよび Zまたはマーカーの存在また は不存在または変化を検出することにより、被検化合物が NEDD4による RUNXの ュビキチンィ匕を阻害するか否力または促進するか否かを決定する工程を含む同定方 法。  [40] A method for identifying compounds that inhibit or promote RUNX ubiquitination by NEDD4, and contact NEDD4 and Z or RUNX with a compound (test compound) to detect RUNX ubiquitination by NEDD4 The ability of the test compound to inhibit RUNX ubiquitin by NEDD4 by detecting the presence or absence or change of this signal and Z or marker. Or an identification method that includes the step of deciding whether or not to promote.
[41] NEDD4と RUNXの結合を阻害する化合物または促進する化合物の同定方法であ つて、 NEDD4および Zまたは RUNXとある化合物とを接触させ、次いで、 NEDD4 と RUNXの結合により生じるシグナルおよび Zまたはマーカーを使用する系を用い て、該シグナルおよび Zまたはマーカーの存在若しくは不存在または変化を検出す ることにより、該化合物が NEDD4と RUNXの結合を阻害する力否力または促進する か否かを決定する工程を含む同定方法。 [41] A method for identifying a compound that inhibits or promotes the binding of NEDD4 and RUNX, wherein NEDD4 and Z or RUNX are contacted with a compound, and then the signal and Z or marker generated by the binding of NEDD4 and RUNX. Determine whether the compound inhibits or promotes the binding of NEDD4 to RUNX by detecting the presence or absence or change of the signal and Z or marker using a system using The identification method including the process to do.
[42] 骨形成を促進させ得る化合物の同定方法であって、ある化合物 (被検化合物)が NE DD4の発現および Zまたは機能を阻害する力否力を測定する工程を含む同定方法 [42] A method for identifying a compound capable of promoting bone formation, the method comprising a step of measuring the power / inability of a compound (test compound) to inhibit NE DD4 expression and Z or function.
[43] 被検化合物が NEDD4の発現および Zまたは機能を阻害する力否かを測定するェ 程力 下記の群より選択されるいずれか 1の工程である、請求項 42に記載の同定方 法: [43] The determination method according to claim 42, wherein the test compound is a process for determining whether the test compound is capable of inhibiting the expression and Z or function of NEDD4. :
(D NEDD4をコードするポリヌクレオチドと被検化合物とを接触させ、次いで、 NED D4を測定することにより、該被検化合物が NEDD4の発現を阻害する力否かを決定 する工程、  (D. The step of determining whether or not the test compound is capable of inhibiting the expression of NEDD4 by contacting the test compound with a polynucleotide encoding D NEDD4 and then measuring NED D4,
(2) NEDD4および Zまたは RUNXと被検化合物とを接触させ、 NEDD4による NE DD4および Zまたは RUNXのュビキチン化を検出するシグナルおよび Zまたはマ 一力一を使用する系を用いて、該シグナルおよび Zまたはマーカーの存在若しくは 不存在または変化を検出することにより、該被検化合物が NEDD4による NEDD4お よび Zまたは RUNXのュビキチンィ匕を阻害するか否かを決定する工程、  (2) Using NEDD4 and Z or RUNX in contact with a test compound, a signal that detects ubiquitination of NEDD4 and Z or RUNX by NEDD4 and a system that uses Z or single force, Determining whether the test compound inhibits NEDD4 and Z or RUNX ubiquitin by NEDD4 by detecting the presence or absence or change of Z or a marker;
および  and
(3) NEDD4および Zまたは RUNXと被検化合物とを接触させ、次いで、 NEDD4と RUNXの結合により生じるシグナルおよび Zまたはマーカーを使用する系を用いて 、該シグナルおよび Zまたはマーカーの存在若しくは不存在または変化を検出する ことにより、該被検化合物が NEDD4と RUNXの結合を阻害する力否かを決定する 工程。  (3) NEDD4 and Z or RUNX is brought into contact with the test compound, and then the presence or absence of the signal and Z or the marker using a system using the signal and Z or marker generated by the binding of NEDD4 and RUNX Alternatively, a step of determining whether or not the test compound is capable of inhibiting the binding of NEDD4 and RUNX by detecting a change.
[44] NEDD4の発現および Zまたは機能を阻害することが明らかになった被検化合物が 、骨形成を促進させ得るか否かを測定する工程をさらに含む、請求項 42または 43〖こ 記載の同定方法。  [44] The method according to claim 42 or 43, further comprising the step of determining whether a test compound that has been shown to inhibit the expression and Z or function of NEDD4 can promote bone formation. Identification method.
[45] 腫瘍増殖を抑制させ得る化合物の同定方法であって、ある化合物 (被検化合物)が NEDD4の発現および Zまたは機能を阻害する力否かを測定する工程を含む同定 方法。  [45] A method for identifying a compound capable of suppressing tumor growth, comprising a step of measuring whether a compound (test compound) inhibits NEDD4 expression and Z or function.
[46] 被検化合物が NEDD4の発現および Zまたは機能を阻害する力否かを測定するェ 程力 下記の群より選択されるいずれか 1の工程である、請求項 45に記載の同定方 法: [46] The process of determining whether the test compound has the ability to inhibit the expression and Z or function of NEDD4. Law:
(1) NEDD4をコードするポリヌクレオチドと被検化合物とを接触させ、次いで、 NED D4を測定することにより、該被検化合物が NEDD4の発現を阻害する力否かを決定 する工程、  (1) contacting a polynucleotide encoding NEDD4 with a test compound and then measuring NED D4 to determine whether the test compound is capable of inhibiting the expression of NEDD4;
(2) NEDD4および Zまたは RUNXと被検化合物とを接触させ、 NEDD4による NE DD4および Zまたは RUNXのュビキチン化を検出するシグナルおよび Zまたはマ 一力一を使用する系を用いて、該シグナルおよび Zまたはマーカーの存在若しくは 不存在または変化を検出することにより、該被検化合物が NEDD4による NEDD4お よび Zまたは RUNXのュビキチンィ匕を阻害するか否かを決定する工程、  (2) Using NEDD4 and Z or RUNX in contact with a test compound, a signal that detects ubiquitination of NEDD4 and Z or RUNX by NEDD4 and a system that uses Z or single force, Determining whether the test compound inhibits NEDD4 and Z or RUNX ubiquitin by NEDD4 by detecting the presence or absence or change of Z or a marker;
および  and
(3) NEDD4および Zまたは RUNXと被検化合物とを接触させ、次いで、 NEDD4と RUNXの結合により生じるシグナルおよび Zまたはマーカーを使用する系を用いて 、該シグナルおよび Zまたはマーカーの存在若しくは不存在または変化を検出する ことにより、該被検化合物が NEDD4と RUNXの結合を阻害する力否かを決定する 工程。  (3) NEDD4 and Z or RUNX is brought into contact with the test compound, and then the presence or absence of the signal and Z or the marker using a system using the signal and Z or marker generated by the binding of NEDD4 and RUNX Alternatively, a step of determining whether or not the test compound is capable of inhibiting the binding of NEDD4 and RUNX by detecting a change.
[47] NEDD4の発現および Zまたは機能を阻害することが明らかになった被検化合物が 腫瘍増殖を抑制させ得る力否力を測定する工程をさらに含む、請求項 45または 46 に記載の同定方法。  [47] The identification method according to claim 45 or 46, further comprising the step of measuring the force / potency of a test compound that has been shown to inhibit the expression and Z or function of NEDD4 to suppress tumor growth. .
[48] NEDD4、 NEDD4をコードするポリヌクレオチド、該ポリヌクレオチドを含有する組換 えベクターおよび該組換えベクターを含有する形質転換体のうち少なくともいずれか  [48] at least one of NEDD4, a polynucleotide encoding NEDD4, a recombinant vector containing the polynucleotide, and a transformant containing the recombinant vector
1つ、および RUNX、 RUNXをコードするポリヌクレオチド、該ポリヌクレオチドを含有 する組換えベクターおよび該組換えベクターを含有する形質転換体のうち少なくとも いずれか 1つを含有してなる試薬キット。 A reagent kit comprising one and at least one of RUNX, a polynucleotide encoding RUNX, a recombinant vector containing the polynucleotide, and a transformant containing the recombinant vector.
[49] 請求項 3に記載の RUNXのュビキチン化剤および Zまたは請求項 7に記載の RUN[49] RUNX ubiquitinating agent according to claim 3 and Z or RUN according to claim 7.
Xの分解剤を有効量含んでなる、 RUNXの機能および Zまたは発現の亢進に起因 する疾患の予防および Zまたは治療剤。 A preventive and Z or therapeutic agent for diseases caused by increased RUNX function and Z or expression, comprising an effective amount of an X degrading agent.
[50] 請求項 17から 20のいずれ力 1項に記載の RUNXのュビキチン化阻害剤および Zま たは請求項 23から 25のいずれか 1項に記載の RUNXの分解阻害剤を有効量含ん でなる、 RUNXの機能および Zまたは発現の低下に起因する疾患の予防および Z または治療剤。 [50] The RUNX ubiquitination inhibitor according to any one of claims 17 to 20 and an RUNX degradation inhibitor according to any one of Z or 23 to 25. A preventive and Z or therapeutic agent for diseases caused by decreased RUNX function and Z or expression.
[51] 請求項 1または 2に記載の RUNXのュビキチン化方法、請求項 3に記載の RUNXの ュビキチン化剤、請求項 5または 6に記載の RUNXの分解方法、および請求項 7〖こ 記載の RUNXの分解剤のうち少なくともいずれか 1の方法または剤を使用することを 特徴とする RUNXの機能および Zまたは発現の亢進に起因する疾患の予防および Zまたは治療方法。  [51] RUNX ubiquitination method according to claim 1 or 2, RUNX ubiquitination agent according to claim 3, RUNX degradation method according to claim 5 or 6, and claim 7 A method for preventing and / or treating a disease caused by increased RUNX function and Z or expression, characterized by using at least one method or agent among RUNX degradation agents.
[52] 請求項 8から 14に記載の RUNXのュビキチンィ匕阻害方法、請求項 17から 20に記載 の RUNXのュビキチン化阻害剤、請求項 21および 22に記載の RUNXの分解阻害 方法、並びに請求項 23から 25に記載の RUNXの分解阻害剤のうち少なくともいず れカ 1の方法または剤を使用することを特徴とする RUNXの機能および Zまたは発 現の低下に起因する疾患の予防および Zまたは治療方法。  [52] The method for inhibiting RUNX ubiquitination according to claims 8 to 14, the RUNX ubiquitination inhibitor according to claims 17 to 20, the method for inhibiting RUNX degradation according to claims 21 and 22, and the claim Use of at least one method or agent of RUNX degradation inhibitors described in 23 to 25, prevention of disease caused by reduced RUNX function and / or expression and / or Z or Method of treatment.
[53] 請求項 30から 32のいずれ力 1項に記載の骨形成促進剤を有効量含んでなる、骨損 失を伴う疾患の予防および Zまたは治療剤。 [53] A preventive and Z or therapeutic agent for diseases accompanied by bone loss, comprising an effective amount of the osteogenesis promoter according to any one of claims 30 to 32.
[54] 請求項 30から 32に記載の骨形成促進剤並びに請求項 26から 29に記載の骨形成 促進方法のうち少なくともいずれか 1の剤または方法を使用することを特徴とする骨 損失を伴う疾患の予防および Zまたは治療方法。 [54] Accompanied by bone loss, characterized by using at least one agent or method of the osteogenesis promoting agent according to claims 30 to 32 and the osteogenesis promoting method according to claim 26 to 29. Disease prevention and Z or treatment methods.
[55] 請求項 37から 39の 、ずれ力 1項に記載の腫瘍増殖抑制剤を有効量含んでなる癌 疾患の予防および Zまたは治療剤。 [55] A prophylactic and Z or therapeutic agent for cancer diseases, comprising an effective amount of the tumor growth inhibitor of claim 37 to 39 according to claim 1.
[56] 請求項 37から 39に記載の腫瘍増殖抑制剤および請求項 33から 36に記載の腫瘍 増殖抑制方法のうち少なくともいずれか 1の剤または方法を使用することを特徴とす る癌疾患の予防および Zまたは治療方法。 [56] A cancer disease characterized by using at least one agent or method of the tumor growth inhibitor according to claims 37 to 39 and the tumor growth inhibitory method according to claims 33 to 36. Prevention and Z or treatment methods.
PCT/JP2006/311333 2005-06-07 2006-06-06 Method for ubiquitination of runx WO2006132248A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005167197 2005-06-07
JP2005-167197 2005-06-07
JP2006-024521 2006-02-01
JP2006024521A JP2008206398A (en) 2005-06-07 2006-02-01 Method for ubiquitination of runx

Publications (1)

Publication Number Publication Date
WO2006132248A1 true WO2006132248A1 (en) 2006-12-14

Family

ID=37498449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311333 WO2006132248A1 (en) 2005-06-07 2006-06-06 Method for ubiquitination of runx

Country Status (1)

Country Link
WO (1) WO2006132248A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153814A2 (en) * 2007-05-29 2008-12-18 President And Fellows Of Harvard College Molecules involved in regulation of osteoblast activity and osteoclast activity, and methods of use thereof
US9745589B2 (en) 2010-01-14 2017-08-29 Cornell University Methods for modulating skeletal remodeling and patterning by modulating SHN2 activity, SHN3 activity, or SHN2 and SHN3 activity in combination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022110A2 (en) * 1998-10-09 2000-04-20 President And Fellows Of Harvard College Targeted proteolysis by recruitment to ubiquitin protein ligases
WO2002090549A2 (en) * 2001-03-12 2002-11-14 Proteologics Inc. Compositions and methods for the modulation of viral maturation
JP2004529619A (en) * 2001-01-29 2004-09-30 スク−チュル バエ RUNX3 gene showing anticancer activity and method of using the same
JP2005204557A (en) * 2004-01-22 2005-08-04 Teijin Pharma Ltd Osteoarthritis-related gene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022110A2 (en) * 1998-10-09 2000-04-20 President And Fellows Of Harvard College Targeted proteolysis by recruitment to ubiquitin protein ligases
JP2004529619A (en) * 2001-01-29 2004-09-30 スク−チュル バエ RUNX3 gene showing anticancer activity and method of using the same
WO2002090549A2 (en) * 2001-03-12 2002-11-14 Proteologics Inc. Compositions and methods for the modulation of viral maturation
JP2005204557A (en) * 2004-01-22 2005-08-04 Teijin Pharma Ltd Osteoarthritis-related gene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153814A2 (en) * 2007-05-29 2008-12-18 President And Fellows Of Harvard College Molecules involved in regulation of osteoblast activity and osteoclast activity, and methods of use thereof
WO2008153814A3 (en) * 2007-05-29 2009-02-05 Harvard College Molecules involved in regulation of osteoblast activity and osteoclast activity, and methods of use thereof
US8357637B2 (en) 2007-05-29 2013-01-22 Cornell University Molecules involved in regulation of osteoblast activity and osteoclast activity, and methods of use thereof
US9745589B2 (en) 2010-01-14 2017-08-29 Cornell University Methods for modulating skeletal remodeling and patterning by modulating SHN2 activity, SHN3 activity, or SHN2 and SHN3 activity in combination

Similar Documents

Publication Publication Date Title
Pollmann et al. Human EML4, a novel member of the EMAP family, is essential for microtubule formation
EP2334791B1 (en) Method for controlling cancer metastasis or cancer cell migration by modulating the cellular level of lysyl trna synthetase
KR101067816B1 (en) Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient
Zhang et al. GABARAPL1 negatively regulates Wnt/β-catenin signaling by mediating Dvl2 degradation through the autophagy pathway
US20080131370A1 (en) Screening Method
US20040166543A1 (en) Regulation of cell growth by MUC1
Satow et al. β-catenin inhibits promyelocytic leukemia protein tumor suppressor function in colorectal cancer cells
JP2009505633A (en) Screening targeting CDCA1-KNTC2 complex and method for treating NSCLC
EP2229946B1 (en) Use of the growth-stimulating protein KIAA1524
Yang et al. TRIM9 overexpression promotes uterine leiomyoma cell proliferation and inhibits cell apoptosis via NF-κB signaling pathway
Weiss et al. Survivin inhibition by an interacting recombinant peptide, derived from the human ferritin heavy chain, impedes tumor cell growth
Ma et al. Knockdown of peroxiredoxin 5 inhibits the growth of osteoarthritic chondrocytes via upregulating Wnt/β-catenin signaling
WO2006132248A1 (en) Method for ubiquitination of runx
KR101966246B1 (en) Composition for regulating cell division comprising FCHo1 regulator and method for regulating cell division using the same
Zschemisch et al. Expression of a cyclin E1 isoform in mice is correlated with the quiescent cell cycle status of hepatocytes in vivo
JP2008206398A (en) Method for ubiquitination of runx
JP2007282628A (en) Method for screening anti-cancer agent
Dowell et al. Expression of a mutant p193/CUL7 molecule confers resistance to MG132-and etoposide-induced apoptosis independent of p53 or Parc binding
EP1739186B1 (en) Method of screening compound capable of accelerating or inhibiting apoptosis, apoptosis accelerator and apoptosis inhibitor
US20090087423A1 (en) Novel protein complex and use thereof
US20070275888A1 (en) Preventive/Remedy for Cancer
KR102079546B1 (en) Method of Screening Ciliogenesis Regulator based on oncoprotein CIP2A Expression and Use Thereof
JP2007267660A (en) Method for screening anti-cancer agent
WO2006070804A1 (en) Method of inhibiting telomerase activity and inhibitor
US20210052598A1 (en) Compositions and methods for treating cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP