KR101067816B1 - Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient - Google Patents

Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient Download PDF

Info

Publication number
KR101067816B1
KR101067816B1 KR1020080111109A KR20080111109A KR101067816B1 KR 101067816 B1 KR101067816 B1 KR 101067816B1 KR 1020080111109 A KR1020080111109 A KR 1020080111109A KR 20080111109 A KR20080111109 A KR 20080111109A KR 101067816 B1 KR101067816 B1 KR 101067816B1
Authority
KR
South Korea
Prior art keywords
aimp2
seq
sirna
rna
traf2
Prior art date
Application number
KR1020080111109A
Other languages
Korean (ko)
Other versions
KR20090048382A (en
Inventor
김성훈
최진우
Original Assignee
(주)네오믹스
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)네오믹스, 재단법인서울대학교산학협력재단 filed Critical (주)네오믹스
Publication of KR20090048382A publication Critical patent/KR20090048382A/en
Application granted granted Critical
Publication of KR101067816B1 publication Critical patent/KR101067816B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

본 발명은 AIMP2-DX2의 억제제를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물에 관한 것으로, 보다 상세하게는 본 발명은 AIMP2-DX2 억제제를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물, AIMP2-DX2의 발현을 억제하는 발현벡터를 포함하는 염증성 질환 예방 및 치료용 조성물 및 AIMP2-DX2의 발현을 억제하는 물질을 스크리닝하는 염증성 질환의 예방 또는 치료용 약제의 스크리닝 방법에 관한 것이다. 본 발명에서는 AIMP2/p38가 TRAF2를 유비퀴틴화하는 것을 촉진하여 TNF-α에 의해 유도되는 세포 사멸을 조절하며, AIMP2/p38의 스플라이싱 변이체인 AIMP2-DX2가 AIMP2와 경쟁적 저해제로 작용하여 TRAF2의 유비퀴틴을 억제하여 TNF-α에 의한 세포 사멸을 억제함으로서 종양생성을 촉진하는 점 및 염증 마커인 Cox-2의 발현을 저해함을 밝혔다. 따라서 AIMP2-DX2 억제제는 염증성 질환의 예방 및 치료의 목적으로 사용될 수 있다. The present invention relates to a composition for preventing and treating inflammatory diseases comprising an inhibitor of AIMP2-DX2 as an active ingredient, and more specifically, to a composition for preventing and treating inflammatory diseases comprising an AIMP2-DX2 inhibitor as an active ingredient, The present invention relates to a composition for preventing and treating inflammatory diseases comprising an expression vector that inhibits the expression of AIMP2-DX2, and a method for screening a medicament for preventing or treating inflammatory diseases for screening a substance that inhibits the expression of AIMP2-DX2. In the present invention, AIMP2 / p38 promotes ubiquitination of TRAF2 to regulate TNF-α-induced cell death, and AIMP2-DX2, a splicing variant of AIMP2 / p38, acts as a competitive inhibitor to AIMP2, Inhibition of cell death by TNF-α by inhibiting ubiquitin has been shown to inhibit tumor expression and Cox-2, an inflammatory marker. Thus, AIMP2-DX2 inhibitors can be used for the purpose of preventing and treating inflammatory diseases.

AIMP2, AIMP2-DX2, TRAF2, TNF-α 시그널링, 염증 AIMP2, AIMP2-DX2, TRAF2, TNF-α signaling, inflammation

Description

AIMP2-DX2의 억제제를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물{Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient} Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient}

본 발명은 AIMP2-DX2의 억제제를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물에 관한 것으로, 보다 상세하게는 본 발명은 AIMP2-DX2 억제제를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물, AIMP2-DX2의 발현을 억제하는 발현벡터를 포함하는 염증성 질환 예방 및 치료용 조성물 및 AIMP2-DX2의 발현을 억제하는 물질을 스크리닝하는 염증성 질환의 예방 또는 치료용 약제의 스크리닝 방법에 관한 것이다.The present invention relates to a composition for preventing and treating inflammatory diseases comprising an inhibitor of AIMP2-DX2 as an active ingredient, and more specifically, to a composition for preventing and treating inflammatory diseases comprising an AIMP2-DX2 inhibitor as an active ingredient, The present invention relates to a composition for preventing and treating inflammatory diseases comprising an expression vector that inhibits the expression of AIMP2-DX2, and a method for screening a medicament for preventing or treating inflammatory diseases for screening a substance that inhibits the expression of AIMP2-DX2.

종양 괴사 인자 α(TNF α)는 활성화된 대식세포 및 단핵구를 포함한 다양한 세포에 의해 생성되는 면역 반응의 세포내 매개인자이다. TNF α에 의해 유발되는 반응들은 2가지의 별개의 TNF α 세포 표면 수용체, 즉 TNFαR1 및 TNFαR2와의 상호작용을 통해 개시된다. TNF α는 이러한 세포 표면 수용체들에 결합하여, 각종 면역 및 염증 반응 유전자의 발현을 조절하는 핵 인자 κB(NFκB)와 같은 전사 인 자의 활성화를 유발한다. TNF α의 결합시, TNF α 수용체는 세포질 도메인을 통해 각종 세포내 시그널 해독 단백질과 상호작용한다. TNF α수용체와 결합하는 것으로 공지된 세포내 시그널 해독 단백질의 일군은 수용체 단백질의 " TRAF" 계열로서 공지된 종양 괴사 인자 수용체 결합 인자이다. TRAF 계열은 공통된 구조적 특징을 공유하고, TNF α 수용체 단백질과 결합하여 TNF α 수용체 단백질 유래의 시그널을 형질도입시키는 다수의 상동성 단백질로 이루어져 있다. TRAF 단백질은 효소 활성의 모티프가 결여된 대신, 수용체를 하류 시그널링 캐스케이드에 결합시키는 어댑터 단백질로서 작용하는 것으로 나타난다. TRAF 계열의 일원인 TRAF2는 다수의 TNF α 수용체 계열 단백질, 예를 들어, TNFαR1, TNFαR2, CD40 및 CD30과 결합한다. TRAF2의 경우, 8개 이상의 세포내 분자의 직접 결합이 확인되었다. TRAF2는 다양한 전사인자, 특히 NFκB 및 C-jun N-말단 키나제(JNK/SAPK)의 TNF α 매개의 활성화에 중요한 역할을 하는 것으로 밝혀져 있으며, 이들 전사 인자는 교대로 면역/염증 반응의 발현을 초래한다. TNF α 결합에 의해 제어되는 조절 경로와 관련된 다양한 질환 상태가 존재한다. 특정 예에서, TNF α 결합은 염증반응을 유발하고, 궁극적으로 질환 상태를 초래한다. 따라서, TNF α 수용체 결합과 관련된 질환을 예방하는 수단의 개발이 요망될 것이다. 특히, TNF α 활성화에 의해 개시될 수도 있는 염증 반응의 활성화를 예방하는 방법을 규명하는 것이 요망될 것이다. Tumor necrosis factor α (TNF α) is an intracellular mediator of immune responses produced by various cells, including activated macrophages and monocytes. Responses induced by TNF α are initiated through interaction with two distinct TNF α cell surface receptors, TNFαR1 and TNFαR2. TNF α binds to these cell surface receptors, leading to the activation of transcription factors such as nuclear factor κB (NFκB), which regulate the expression of various immune and inflammatory response genes. Upon binding of TNF α, the TNF α receptor interacts with various intracellular signal transduction proteins through the cytoplasmic domain. A group of intracellular signal transduction proteins known to bind TNF a receptors is a tumor necrosis factor receptor binding factor known as the "TRAF" family of receptor proteins. The TRAF family consists of a number of homologous proteins that share common structural features and bind to the TNF α receptor protein to transduce signals from the TNF α receptor protein. The TRAF protein appears to act as an adapter protein that binds the receptor to the downstream signaling cascade, instead of lacking the motif of enzymatic activity. TRAF2, a member of the TRAF family, binds to a number of TNF α receptor family proteins such as TNFαR1, TNFαR2, CD40 and CD30. In the case of TRAF2, direct binding of 8 or more intracellular molecules was confirmed. TRAF2 has been shown to play an important role in TNF α mediated activation of various transcription factors, particularly NFκB and C-jun N-terminal kinases (JNK / SAPK), which in turn result in the expression of immune / inflammatory responses. do. There are various disease states associated with regulatory pathways controlled by TNF α binding. In certain instances, TNF α binding causes an inflammatory response and ultimately a disease state. Therefore, it would be desirable to develop means to prevent diseases associated with TNF α receptor binding. In particular, it would be desirable to identify a method for preventing activation of an inflammatory response that may be initiated by TNF α activation.

여러개의 아미노아실-tRNA 합성효소(ARSs)는 ARS-결합 다기능 단백질(ARS-interacting multi-functional proteins, AIMPs)이라 불리우는 보조인자들과 함께 거대한 컴플렉스를 형성한다. 상기 효소들의 많은 구성요소들인 그들의 독특한 메커니즘을 가지는 다양한 신호전달 결로에 관여하고 있음은 이미 보고되고 있다(Lee, S. W., et. al., 2004. J. Cell Sci. 117:3725-3734; Park, S. G., et. al., 2005., Trends Biochem. Sci. 30:569-574). 상기 3개의 AIMPs는 그들의 특이적인 효소적인 countpart 이외에도 서로 결합을 하여 거대한 컴플렉스의 assembly를 촉진하는 것으로 보고되고 있다(Han, J. M., et. al., 2006. J. Biol. Chem., 281:38663-38667). 또한 상기 보조인자들은 다양한 조절 기능을 하는 것으로 보고되고 있다. AIMP1/p43는 혈관신생(Park, S. G., et. al., 2002. J. Biol. Chem. 277:45243-45248), 면역반응(Ko, Y.-G. et. al., 2001, J. Biol. Chem. 276:23028-32303; Park, H., et. al., 2002, J. Leukoc. Biol. 71:223-230) 및 조직 재생(Park, S. G., et. al., 2005. Am. J. Pathol. 166:387-398)을 조절하고, 혈당을 조절하는 호르몬(Park, S. G., et. al., 2006. Proc. Natl. Acad. Sci. U S A 103:14913-14918)의 역할을 한다. 또한 루프스 같은 자가면역 질환을 조절하는 것으로도 제안되고 있다(Han, J. M., et. al., 2007. Am. J. Pathol. 170:2042-2054). AIMP3/p18는 DNA 손상 (Park, B. J., et. al., 2005. Cell 120:209-221) 또는 oncogenic stimuli (Park, B. J., et. al., 2006. Cancer Res., 66:6913-6918.)에 반응하여 암을 억제하는 tumor suppressor라고 알려져 있다.Several aminoacyl-tRNA synthetases (ARSs) form large complexes with cofactors called ARS-interacting multi-functional proteins (AIMPs). Many components of these enzymes have already been reported to be involved in various signaling condensation with their unique mechanisms (Lee, SW, et. Al. , 2004. J. Cell Sci. 117: 3725-3734; Park, SG, et. Al., 2005., Trends Biochem. Sci. 30: 569-574). In addition to their specific enzymatic countparts, the three AIMPs have been reported to bind to each other to facilitate assembly of large complexes (Han, JM, et. Al., 2006. J. Biol. Chem., 281: 38663- 38667). The cofactors have also been reported to have a variety of regulatory functions. AIMP1 / p43 is angiogenesis (Park, SG, et. Al., 2002. J. Biol. Chem. 27 7: 45243-45248), immune response (Ko, Y.-G. et. Al., 2001, J Biol.Chem . 276: 23028-32303; Park, H., et.al. , 2002, J. Leukoc. Biol . 71: 223-230 ) and tissue regeneration (Park, SG, et.al. , 2005. Am. J. Pathol . 166: 387-398) and the role of hormones that regulate blood sugar (Park, SG, et. Al., 2006. Proc. Natl. Acad. Sci. USA 103: 14913-14918) Do it. It has also been suggested to regulate autoimmune diseases such as lupus (Han, JM, et. Al., 2007. Am. J. Pathol. 170: 2042-2054). AIMP3 / p18 is either DNA damaged (Park, BJ, et. Al., 2005. Cell 120: 209-221) or oncogenic stimuli (Park, BJ, et. Al., 2006. Cancer Res. , 66: 6913-6918. It is known as a tumor suppressor that suppresses cancer in response to).

AIMP2/p38는 세포 증식을 조절하는 역할을 한다. 이는 c-Myc의 upstream transcriptional activator인 FUSE-binding protein (FBP)에 결합하고, TGF-β 시 그널에 반응하여 FBP의 유비큐틴화-의존성 분해를 촉진한다(Kim, M. J., et. al., 2003. Nat. Genet. 34:330-336.). 때문에 AIMP2가 결손된 마우스에서 배아 발단동안에 FBP의 높은 수준을 유지하여 c-Myc의 과발현을 야기하고, 폐의 상피세포의 과발현으로 lung이 손상되어 죽게된다. 비록 AIMP2는 TNF-α에 의한 cell death에 관여를 한다는 것이 알려져 있으나 (Ko, H. S., et. al., 2005. J. Neurosci. 25:7968-7978), 이것의 작용 기작이나, 염증과의 연관성에 대하여는 알려진 바가 없다.AIMP2 / p38 plays a role in regulating cell proliferation. It binds to FUSE-binding protein (FBP), an upstream transcriptional activator of c-Myc, and promotes ubiquitination-dependent degradation of FBP in response to TGF-β signals (Kim, MJ, et. Al., 2003 .. Nat Genet 34:.. 330-336). In mice with AIMP2 deficiency, high levels of FBP are maintained during embryonic initiation, resulting in over-expression of c-Myc, and overexpression of lung epithelial cells, resulting in lung injury and death. Although AIMP2 is known to be involved in cell death by TNF-α (Ko, HS, et. Al., 2005. J. Neurosci. 25: 7968-7978), its mechanism of action or its association with inflammation Is unknown.

아울러, 염증 반응은 손상이나 박테리아, 곰팡이, 바이러스 등 외부물질에 의해 자극되어 각종 염증 매개인자 및 면역세포에 의한 효소 활성화, 염증매개물질 분비, 체액 침윤, 세포 이동, 조직 파괴 등 일련의 복합적인 생리적 반응이 일어나는 것을 말하며, 이로 인해 홍반, 부종, 발열, 통증 등과 같은 증상이 수반된다. 염증반응은 외부 감염원을 제거하고 손상된 조직을 재생하여 생명체 기능회복작용을 하지만, 항원이 제거되지 않거나 내부물질이 원인이 되는 등 염증반응이 과도하거나 지속적으로 일어나면 오히려 점막손상, 조직 파괴 등이 일어나고, 암, 염증성 피부질환, 염증성 장질환, 관절염 등의 질환을 초래하기도 한다. In addition, the inflammatory response is stimulated by external substances such as damage, bacteria, fungi, viruses, etc., and a series of complex physiological factors such as enzyme activation by various inflammatory mediators and immune cells, secretion of inflammatory mediators, fluid infiltration, cell migration, and tissue destruction. The reaction occurs, which is accompanied by symptoms such as erythema, edema, fever and pain. Inflammatory reactions restore the function of life by removing external infectious agents and regenerating damaged tissues.However, when inflammatory reactions occur excessively or continuously such as antigens are not removed or internal substances are caused, mucosal damage and tissue destruction occur. It can also lead to diseases such as cancer, inflammatory skin diseases, inflammatory bowel disease, and arthritis.

현재까지는 상기와 같은 염증성 질환의 치료를 위해서 주로 항히스타민제, 비타민 연고, 부신피질호르몬제가 사용되어 왔다. 그러나 이러한 약물은 그 효과가 일시적인 경우가 대부분이고 부작용이 심한 경우도 많아 염증성 질환의 치료 효과 가 있는 새로운 물질의 개발이 요구되고 있다. 그 예로 MERCK에서 개발되고 있는 ML-3000(licofelone)은 COX-1,2와 5-LOX의 발현을 억제하는 이중 저해제(dual inhibitor)로써, 항염증효과, 진통제, 감각과민, 이질통, 해열제, 심근경색증, 골관절염 억제효과, 위장관 부작용을 완화한다는 보고가 있다 (Kulkarni S et al., 2007; 7(3) 251-63, current topics in medicinal chemistry). 여러 식물에 있는 퀘르세틴(quercetin)은 항히스타민 작용 저해, 심장병 암예방, 항염증작용, 암유발 (전립선암, 난소암, 유방암, 위암 등) 감소, 중금속 해독 등 여러 가지 작용을 가지고 있다.Until now, antihistamines, vitamin ointments, and corticosteroids have been mainly used for the treatment of such inflammatory diseases. However, these drugs have a temporary effect and often have severe side effects. Therefore, there is a need for the development of a new substance that has a therapeutic effect on inflammatory diseases. For example, ML-3000 (licofelone), developed by MERCK, is a dual inhibitor that inhibits the expression of COX-1,2 and 5-LOX. It has been reported to alleviate infarction, osteoarthritis and gastrointestinal side effects (Kulkarni S et al., 2007; 7 (3) 251-63, current topics in medicinal chemistry). Quercetin, found in many plants, has several effects, including inhibition of antihistamines, prevention of heart disease, anti-inflammatory effects, reduction of cancer induction (prostate cancer, ovarian cancer, breast cancer, gastric cancer, etc.) and detoxification of heavy metals.

이에 본 발명자들은 TRAF2를 통한 TNF-α 시그널링 조절에 관한 AIMP2/P38과 AIMP2-DX2의 역할을 밝히기 위하여 연구를 거듭한 결과, AIMP2/p38가 TRAF2를 유비퀴틴화하는 것을 촉진하여 TNF-α에 의해 유도되는 세포 사멸을 조절하며, AIMP2/p38의 스플라이싱 변이체인 AIMP2-DX2가 AIMP2와 경쟁적 저해제로 작용하여 TRAF2의 유비퀴틴을 억제하여 TNF-α에 의한 세포 사멸을 억제함으로서 종양생성을 촉진하는 점 및 염증 마커인 Cox-2의 발현을 저해함을 알아내어 본 발명을 완성하였다.Therefore, the present inventors conducted a study to elucidate the role of AIMP2 / P38 and AIMP2-DX2 in the regulation of TNF-α signaling through TRAF2. Regulates cell death and promotes tumor formation by inhibiting TNF-α cell death by inhibiting ubiquitin of TRAF2 by acting as a competitive inhibitor of AIMP2 / p38, a splicing variant of AIMP2 / p38 The present invention was completed by inhibiting the expression of the inflammatory marker Cox-2.

본 발명의 목적은 TRAF2를 통한 TNF-α 시그널링 조절에 관한 AIMP2/P38과 AIMP2-DX2의 용도를 제공하는 것이다. It is an object of the present invention to provide the use of AIMP2 / P38 and AIMP2-DX2 for the regulation of TNF-α signaling via TRAF2.

본 발명의 목적을 달성하기 위하여, 본 발명은 TRAF2를 통한 TNF-α 시그널링 조절에 관한 AIMP2/ P38과 AIMP2-DX2의 용도를 제공한다.In order to achieve the object of the present invention, the present invention provides the use of AIMP2 / P38 and AIMP2-DX2 for regulating TNF-α signaling via TRAF2.

보다 구체적으로 본 발명은 AIMP2-DX2의 억제제를 유효성분으로 포함하는 염증성 질환의 예방 및 치료용 조성물을 제공한다.More specifically, the present invention provides a composition for the prevention and treatment of inflammatory diseases comprising an inhibitor of AIMP2-DX2 as an active ingredient.

본 발명의 다른 목적을 달성하기 위하여, 본 발명은 프로모터 및 이와 작동가능하게 연결된 AIMP2-DX2에 대한 iRNA 또는 안티센스 RNA를 암호화하는 폴리뉴클레오티드를 포함하는 벡터를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물을 제공한다.In order to achieve the other object of the present invention, the present invention is for the prevention and treatment of inflammatory diseases comprising a vector comprising a polynucleotide encoding the iRNA or antisense RNA for the promoter and AIMP2-DX2 operably linked thereto To provide a composition.

본 발명의 또다른 목적을 달성하기 위하여, 본 발명은 In order to achieve another object of the present invention, the present invention

(a) AIMP2-DX2 폴리펩티드를 발현하는 세포를 시험제제와 함께 또는 시험제제 없이 전배양하는 단계;(a) pre-culture of cells expressing AIMP2-DX2 polypeptide with or without a test agent;

(b) 시험제제와 함께 전배양된 세포에서 AIMP2-DX2의 발현 정도를 측정하고 시험제제 없이 전배양된 세포에 대한 발현 정도와 비교하여 상기 시험제제가 AIMP2-DX2의 발현을 억제하는지 여부를 확인하는 단계; 및(b) measuring the expression level of AIMP2-DX2 in the cells pre-cultured with the test agent and comparing the expression level of the cells pre-cultured with the test agent to determine whether the test agent inhibits the expression of AIMP2-DX2. Making; And

(c) 상기 (b) 단계에서 AIMP2-DX2의 발현을 억제하는 것으로 확인된 시험제제를 염증성 질환을 가지고 있는 동물에 투여하여 치료효과를 나타내는지를 검사하는 단계를 포함하는 염증성 질환의 예방 또는 치료용 약제의 스크리닝 방법을 제공한다.(c) administering a test agent identified as inhibiting the expression of AIMP2-DX2 in step (b) to an animal having an inflammatory disease and examining whether it has a therapeutic effect. Provided are methods of screening drugs.

이하 본 발명의 내용을 보다 상세히 설명하기로 한다.Hereinafter, the content of the present invention will be described in more detail.

서열번호 6으로 이루어진 AIMP2 단백질을 암호화하는 유전자(서열번호 5)는 7번 염색체(chromosome 7)에 위치하고 4개의 엑손으로 이루어져 있다(도 1A). 서열 번호 2로 이루어진 AIMP2를 암호화하는 유전자(서열번호 1)도 사용될 수 있다. 상기 AIMP2에서 엑손 2가 결실되어 있는 변이체(AIMP2-DX2)(서열번호 4)를 AIMP2-DX2라고 명명하였다. 본 발명에서는 AIMP2가 TRAF2의 유비퀴틴을 매개하여 TNF-α signaling에 중요한 조절자라는 것을 처음으로 규명하였다(도 5B 및 C). AIMP2는 E3 ubiquitin ligase인 c-IAP1와 TRAF2의 결합을 촉진시키고(도 6B), c-IAP1이 TRAF2에 recruitng하는 것에 의해 ubiquitin을 TRAF2에 delivery하는 것을 촉진하는 것으로 생각된다. 본 발명의 일실시예에서는 E3 ubiquitin ligase의 하나로서 c-IAP1을 사용하였으나 Siah2(Habelhah, H., et. al., 2002., EMBO J. 21:5756-5765.)와 같은 다른 효소도 가능할 것으로 사료된다. TRAF2가 AIMP2에 특이적인 target인지 여부를 결정하기 위하여 TRAF family proteins의 다른 형태인 TRAF6와 AIMP2의 affinity를 조사한 결과, AIMP2가 TRAF6에 높은 affinity를 가지고 있는 것으로 나타났다(결과 미도시).The gene encoding the AIMP2 protein consisting of SEQ ID NO: 6 (SEQ ID NO: 5) is located on chromosome 7 (chromosome 7) and consists of four exons (FIG. 1A). The gene encoding AIMP2 consisting of SEQ ID NO: 2 (SEQ ID NO: 1) can also be used. The variant (AIMP2-DX2) (SEQ ID NO: 4) in which exon 2 was deleted in AIMP2 was named AIMP2-DX2. In the present invention, we have identified for the first time that AIMP2 is an important regulator of TNF-α signaling by mediating the ubiquitin of TRAF2 (FIGS. 5B and C). AIMP2 is thought to promote the binding of the E3 ubiquitin ligase c-IAP1 and TRAF2 (FIG. 6B) and to facilitate the delivery of ubiquitin to TRAF2 by recruiting c-IAP1 to TRAF2. In one embodiment of the invention c-IAP1 was used as one of the E3 ubiquitin ligase, but other enzymes such as Siah2 (Habelhah, H., et. Al., 2002., EMBO J. 21: 5756-5765.) May be possible. It is considered to be. In order to determine whether TRAF2 is a specific target for AIMP2, the affinity of TRAF6 and AIMP2, which are different forms of TRAF family proteins, was investigated, indicating that AIMP2 has a high affinity for TRAF6 (results not shown).

TRAF2를 통한 AIMP2의 전-세포사멸 활성(pro-apoptotic acitvity)에 AIMP2-DX2가 미치는 영향을 조사한 결과 AIMP2-DX2의 발현이 됨에 따라 AIMP2의 전 세포사멸 활성을 감소시키는 것으로 나타났다 (도 2). 상기 변이체는 전체길이(full-length) AIMP2의 TRAF2에 결합하는 능력은 가지고 있으나(도 3A-C), E3 ligase의 일종인 c-IAP1에는 결합하지 못하였다(도 6C-E). 이는 유비퀴틴을 TRAF2에 전달(delivery)하는 역할을 하는 AIMP2에 AIMP2-DX2가 경쟁적 억제제로서 작용하기 때문이라고 생각된다 (도 3F). Investigation of the effect of AIMP2-DX2 on the pro-apoptotic acitvity of AIMP2 via TRAF2 showed that the expression of AIMP2-DX2 decreased the pro-apoptotic activity of AIMP2 (FIG. 2). The variant had the ability to bind to TRAF2 of full-length AIMP2 (FIGS. 3A-C), but failed to bind to c-IAP1, a type of E3 ligase (FIGS. 6C-E). This is thought to be because AIMP2-DX2 acts as a competitive inhibitor in AIMP2, which serves to deliver ubiquitin to TRAF2 (FIG. 3F).

TNF-α는 종양생성(tumorigenesis, 종양발생)을 조절하는데 관여하는 것으로 알려져 있기 때문에, AIMP2-DX2의 발현이 TNF-α에 의해 유도되는 세포사(cell death)를 억제하여 종양생성에 대한 감수성(susceptibility)를 증가할 것으로 생각되었다. 이는 TNF-α가 존재할 때 AIMP2-DX2을 형질감염(transfection) 하면, 콜로니 형성이 증가되는 것으로 나타나 이를 뒷받침할 수 있었다(도 2E). 본 발명에서는 AIMP2가 TRAF2를 매개로 하여 TNF-α의 세포사멸활성(apoptotic activity)을 매개하고, 이 활성은 AIMP2-DX2에 의해 조절된다는 것으로 처음으로 규명하였다. 아울러, AIMP2-DX2는 염증 마커인 Cox-2의 발현에도 영향을 미친다는 점을 규명하였다.(도 7 참조). Since TNF-α is known to be involved in regulating tumorigenesis, the expression of AIMP2-DX2 inhibits cell death induced by TNF-α, thereby susceptibility to tumor formation. Was supposed to increase). This could be supported by transfection of AIMP2-DX2 in the presence of TNF-α, resulting in increased colony formation (FIG. 2E). In the present invention, it was first identified that AIMP2 mediates the apoptotic activity of TNF-α through TRAF2, and this activity is regulated by AIMP2-DX2. In addition, it was confirmed that AIMP2-DX2 also influences the expression of the inflammatory marker Cox-2 (see FIG. 7).

따라서, 본 발명의 조성물은 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2) 폴리펩티드의 억제제를 유효성분으로 포함하며, 염증성 질환의 예방 및 치료의 목적으로 사용할 수 있다.Therefore, the composition of the present invention comprises an inhibitor of the exon 2 lacking AIMP2 variant (AIMP2-DX2) polypeptide as an active ingredient, can be used for the purpose of preventing and treating inflammatory diseases.

본 발명의 AIMP2-DX2 폴리펩티드는 AIMP2의 스플라이싱 변이체로서, AIMP2의 2번째 엑손이 누락된 형태의 폴리펩티드이다. 도 1A에서 보듯이, AIMP2는 4개의 엑손으로 이루어져 있는데, 전체길이의 AIMP2(AIMP2-F)는 이들 엑손간 스플라이싱에 의해 연결된 폴리펩티드인데 비해서, AIMP2-DX2는 2번째 엑손이 누락된 형태의 폴리펩티드이다. 바람직하게 AIMP2-DX2는 서열번호 4 또는 서열번호 147로 이루어진 아미노산 서열을 가질 수 있다.The AIMP2-DX2 polypeptide of the present invention is a splicing variant of AIMP2, a polypeptide missing the second exon of AIMP2. As shown in FIG. 1A, AIMP2 is composed of four exons, while full-length AIMP2 (AIMP2-F) is a polypeptide linked by splicing between these exons, whereas AIMP2-DX2 is missing a second exon. Polypeptide. Preferably, AIMP2-DX2 may have an amino acid sequence consisting of SEQ ID NO: 4 or SEQ ID NO: 147.

한편, 상기 AIMP2-DX2 폴리펩티드는 서열번호 4 또는 서열번호 147로 표시되는 아미노산 서열을 갖는 폴리펩티드에 대해 기능적 동등물일 수 있다. 상기 '기능적 동등물'이란, 아미노산의 부가, 치환 또는 결실의 결과, 서열번호 4로 표시되는 아미노산 서열과 적어도 60%, 바람직하게는 70%, 보다 바람직하게는 80% 이상의 서열 상동성을 갖는 것으로서 본 발명의 AIMP2-DX2 폴리펩티드와 실질적으로 동질의 활성을 나타내는 폴리펩티드를 말한다. 여기서, '실질적으로 동질의 활성'이란 염증 마커인 Cox-2의 발현 유도를 억제하여 염증성 질환에 관여하는 것을 의미한다. 상기 기능적 동등물에는, 예를 들어, 서열번호 4 또는 서열번호 147로 표시되는 아미노산 서열의 아미노산 중 일부가 치환되거나, 결실 또는 부가된 아미노산 서열 변형체가 포함된다. 아미노산의 치환은 바람직하게는 보존적 치환이다. 천연에 존재하는 아미노산의 보존적 치환의 예는 다음과 같다; 지방족 아미노산(Gly, Ala, Pro), 소수성 아미노산(Ile, Leu, Val), 방향족 아미노산(Phe, Tyr, Trp), 산성 아미노산 (Asp, Glu), 염기성 아미노산 (His, Lys, Arg, Gln, Asn) 및 황함유 아미노산(Cys, Met). 아미노산의 결실은 바람직하게는 본 발명의 AIMP2-DX2 폴리펩티드의 활성에 직접 관여하지 않는 부분에 위치한다. 또한 상기 기능적 동등물의 범위에는 AIMP2-DX2 폴리펩티드의 기본 골격 및 이의 생리 활성을 유지하면서 폴리펩티드의 일부 화학 구조가 변형된 폴리펩티드 유도체도 포함된다. 예를 들어, 본 발명의 폴리펩티드의 안정성, 저장성, 휘발성 또는 용해도 등을 변경시키기 위한 구조변경 및 생리활성을 유지하면서 GFP(Green Fluorescent Protein)와 같은 다른 단백질과 융합으로 만들어진 융합단백질 등이 이에 포함된다. On the other hand, the AIMP2-DX2 polypeptide may be a functional equivalent to the polypeptide having an amino acid sequence represented by SEQ ID NO: 4 or SEQ ID NO: 147. The term 'functional equivalent' refers to a sequence homology with at least 60%, preferably 70%, more preferably 80% or more of the amino acid sequence represented by SEQ ID NO: 4 as a result of the addition, substitution, or deletion of amino acids. It refers to a polypeptide that exhibits substantially homogeneous activity with the AIMP2-DX2 polypeptide of the present invention. Here, the term "substantially homogeneous activity" means inhibiting the expression of Cox-2, which is an inflammatory marker, to participate in inflammatory diseases. Such functional equivalents include amino acid sequence variants in which some of the amino acids of the amino acid sequence represented by SEQ ID NO: 4 or SEQ ID NO: 147 are substituted, deleted or added. Substitutions of amino acids are preferably conservative substitutions. Examples of conservative substitutions of amino acids present in nature are as follows; Aliphatic amino acids (Gly, Ala, Pro), hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr, Trp), acidic amino acids (Asp, Glu), basic amino acids (His, Lys, Arg, Gln, Asn ) And sulfur-containing amino acids (Cys, Met). Deletion of amino acids is preferably located at portions not directly involved in the activity of the AIMP2-DX2 polypeptide of the invention. Also within the scope of these functional equivalents are polypeptide derivatives in which some chemical structures of the polypeptide have been modified while maintaining the basic backbone of the AIMP2-DX2 polypeptide and its physiological activity. For example, fusion proteins made by fusion with other proteins, such as Green Fluorescent Protein (GFP), while maintaining structural alterations and physiological activities to alter the stability, shelf life, volatility or solubility of the polypeptides of the present invention. .

본 발명에서 상기 AIMP2-DX2 억제제는 AIMP2-DX2의 활성을 일부 감소시키거나 완전히(실질적으로 완전히) 저해하는 물질을 의미한다. 바람직하게는 상기 AIMP2-DX2 억제제는 AIMP2-DX2의 발현을 억제하는 물질일 수 있다. 발현의 억제는 전사 단계에서의 조절 또는 전사후 단계에서의 조절을 통해 억제될 수 있다. 전사 단계에서의 조절은 당업자에게 공지된 유전자의 발현을 억제하기 위한 방법, 예를 들면 프로모터 또는 유전자 부위의 돌연변이를 유도하여 프로모터 활성 또는 단백질의 기능을 저해하는 방법, 안티센스(antisense) 유전자를 발현시키는 방법, iRNA 또는 마이크로RNA(microRNA) 방법 등에 의해 수행될 수 있다. In the present invention, the AIMP2-DX2 inhibitor means a substance that partially reduces or completely (substantially completely) inhibits the activity of AIMP2-DX2. Preferably, the AIMP2-DX2 inhibitor may be a substance that inhibits the expression of AIMP2-DX2. Inhibition of expression can be inhibited through regulation at the transcriptional stage or regulation at the post-transcriptional stage. Modulation at the transcriptional stage is a method for inhibiting the expression of genes known to those of skill in the art, for example, by inducing mutations in a promoter or gene region, thereby inhibiting promoter activity or protein function, and the expression of antisense genes. Method, “iRNA” or “microRNA” method, or the like.

전사 후 단계에서의 조절은 당업자에게 공지된 단백질 발현을 저해시키기 위한 방법, 예를 들면, 서열번호 4, 서열번호 147 또는 이들에 대한 기능적 동등물을 암호화하는 유전자(예를 들어, 서열번호 3 또는 서열번호 146)를 주형으로 전사된 mRNA의 안정성을 저해하는 방법, 단백질 또는 폴리펩티드의 안정성을 저해하는 방법 또는 단백질 또는 폴리펩티드의 활성을 저해하는 방법에 의해 수행될 수 있다Modulation at the post-transcriptional stage is a method for inhibiting protein expression known to those of skill in the art, eg, a gene encoding SEQ ID NO: 4, SEQ ID NO: 147 or a functional equivalent thereof (eg, SEQ ID NO: 3 or SEQ ID NO: 146) can be carried out by a method of inhibiting the stability of mRNA transcribed into a template, a method of inhibiting the stability of a protein or polypeptide, or a method of inhibiting the activity of a protein or polypeptide.

바람직하게는 본 발명에서 AIMP2-DX2의 발현의 억제는 AIMP2-DX2에 대한 안티센스 RNA 또는 iRNA를 세포내에서 발현시키는 방법에 의해 수행될 수 있다. 이러 한 방법은 각각 당업자에게 공지된 방법을 사용할 수 있으나, 예를 들면, 프로모터에 상기 AIMP2-DX2 폴리뉴클레오티드에 대한 안티센스 또는 iRNA 폴리뉴클레오티드를 연결한 재조합 발현벡터를 제조하여 AIMP2-DX2의 발현을 감소시킬 수 있다. 이 때 상기 서열번호 4의 폴리펩티드 또는 이와 동등물을 암호화하는 폴리뉴클레오티드는 바람직하게 서열번호 3 또는 서열번호 146으로 표시되는 염기서열을 가질 수 있다. Preferably, the inhibition of the expression of AIMP2-DX2 in the present invention may be carried out by a method of intracellularly expressing antisense RNA or iRNA against AIMP2-DX2. Each of these methods may be a method known to those skilled in the art, but for example, a recombinant expression vector linking an antisense or iRNA polynucleotide to the AIMP2-DX2 polynucleotide to a promoter may be used to reduce the expression of AIMP2-DX2. You can. In this case, the polynucleotide encoding the polypeptide of SEQ ID NO: 4 or an equivalent thereof may preferably have a nucleotide sequence represented by SEQ ID NO: 3 or SEQ ID NO: 146.

아울러, 본 발명에서 AIMP2-DX2 폴리뉴클레오티드에 대한 iRNA는 AIMP2-DX2 폴리뉴클레오티드의 발현을 감소시킬 수 있는 것으로 인식하는 것으로, 바람직하게, 상기 감소는 표적 핵산의 전사 후 유전자 침묵 과정, 더 바람직하게는 RNA 간섭에 의해 수행된다. iRNA는 siRNA, shRNA 등 당업계에 공지된 다양한 형태 또는 명칭의 RNA를 포함하며, 바람직하게 서열번호 8 내지 서열번호 145의 염기서열을 가질 수 있으며, 이들에 대한 상보적인 염기서열을 가질 수 있다.In addition, the iRNA for the AIMP2-DX2 polynucleotide in the present invention recognizes that it can reduce the expression of the AIMP2-DX2 polynucleotide, preferably, the reduction is a gene silencing process after transcription of the target nucleic acid, more preferably It is performed by RNA interference. iRNA includes RNA of various forms or names known in the art such as siRNA, shRNA, and may preferably have a nucleotide sequence of SEQ ID NO: 8 to SEQ ID NO: 145, and may have a complementary base sequence for these.

본 발명의 AIMP2-DX2 억제제가 적용되는 염증성 질환은, 이에 제한되지는 않으나, 염증성 피부질환, 크론씨 질환(Crohn's desease) 및 궤양성 대장염과 같은 염증성 장 질환, 복막염, 골수염, 봉소염, 뇌막염, 뇌염, 췌장염, 외상 유발 쇼크, 기관지 천식, 알레르기성 비염, 낭포성 섬유증, 뇌졸중, 급성 기관지염, 만성 기관지염, 급성 세기관지염, 만성 세기관지염, 골관절염, 통풍, 척추관절병증, 강직성 척추염, 라이터 증후군, 건선성 관절병증, 장질환 척추염, 연소자성 관절병증, 연 소자성 강직성 척추염, 반응성 관절병증, 감염성 관절염, 후-감염성 관절염, 임균성 관절염, 결핵성 관절염, 바이러스성 관절염, 진균성 관절염, 매독성 관절염, 라임 병, '혈관염 증후군'과 관련된 관절염, 결절성 다발동맥염, 과민성 혈관염, 루게닉 육아종증, 류마티스성 다발성근육통, 관절 세포 동맥염, 칼슘 결정 침착 관절병증, 가성 통풍, 비-관절 류마티즘, 점액낭염, 건초염, 상과염(테니스 엘보), 신경병증성 관절 질환(charco and joint), 출혈성 관절증(hemarthrosic), 헤노흐-쉔라인 자반병, 비후성 골관절병증, 다중심성 세망조직구종, 수르코일로시스(surcoilosis), 혈색소증, 겸상 적혈구증 및 기타 혈색소병증, 고지단백혈증, 저감마글로불린혈증, 가족성 지중해열, 베하트 병, 전신성 홍반성 루푸스, 재귀열, 건선, 다발성 경화증, 패혈증, 패혈성 쇼크, 다장기 기능장애 증후군, 급성 호흡곤란 증후군, 만성 폐쇄성 폐질환(chronic obstructive pulmonary disease), 류마치스성 관절염(rheumatoid arthritis), 급성 폐손상(acute lung injury) 및 기관지 폐 형성장애(broncho-pulmonary dysplasia) 등을 포함한다.Inflammatory diseases to which the AIMP2-DX2 inhibitor of the present invention is applied include, but are not limited to, inflammatory skin diseases, Crohn's desease, and inflammatory bowel diseases such as ulcerative colitis, peritonitis, osteomyelitis, cellulitis, meningitis, encephalitis, Pancreatitis, trauma-induced shock, bronchial asthma, allergic rhinitis, cystic fibrosis, stroke, acute bronchitis, chronic bronchitis, acute bronchiolitis, chronic bronchiolitis, osteoarthritis, gout, spondyloarthropathy, ankylosing spondylitis, lighter syndrome, psoriatic arthrosis, Enteropathic spondylitis, juvenile arthritis, ductile ankylosing spondylitis, reactive arthritis, infectious arthritis, post-infectious arthritis, gonococcal arthritis, tuberculosis arthritis, viral arthritis, fungal arthritis, syphilis arthritis, Lyme disease, 'vasculitis Syndrome 'associated arthritis, nodular polyarteritis, irritable vasculitis, leuko granulomatosis, rheumatoid polymyositis Pain, joint cell arteritis, calcium crystalline arthritis, pseudogout, non-articular rheumatoid, bursitis, hay salt, epicondylitis (tennis elbow), neuropathic joint disease (charco and joint), hemarthrosic, henoch -Purpura purpura, hypertrophic osteoarthritis, multiple psychotic retinopathy, surcoilosis, hemochromatosis, sickle cell disease and other hemoglobinopathies, hyperlipoproteinemia, hypomagglobulinemia, familial Mediterranean fever, Behart's disease, Systemic lupus erythematosus, recursive fever, psoriasis, multiple sclerosis, sepsis, septic shock, multiple organ dysfunction syndrome, acute respiratory distress syndrome, chronic obstructive pulmonary disease, rheumatoid arthritis, acute lung Acute lung injury and broncho-pulmonary dysplasia.

아울러, 상기 염증성 피부질환은 이에 한정되지는 않으나, 피부 염증, 급·만성 습진, 접촉성 피부염, 아토피성 피부염, 지루성 피부염, 만성단순태선, 간찰진, 박탈 피부염, 구진상 두드러기, 건선, 일광 피부염 및 여드름 등이 포함된다.In addition, the inflammatory skin disease is not limited thereto, but skin inflammation, acute and chronic eczema, contact dermatitis, atopic dermatitis, seborrheic dermatitis, chronic simple thyroid gland, interrogation, deprivation dermatitis, papular urticaria, psoriasis, sun dermatitis And acne and the like.

한편, 본 발명은 프로모터 및 이와 작동가능하게 연결된 AIMP2-DX2에 대한 iRNA 또는 안티센스 RNA를 암호화하는 폴리뉴클레오티드를 포함하는 발현벡터를 유 효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물을 제공한다.On the other hand, the present invention provides a composition for preventing and treating inflammatory diseases comprising as an active ingredient an expression vector comprising a polynucleotide encoding an iRNA or antisense RNA for the promoter and AIMP2-DX2 operably linked thereto.

본 발명의 발현벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 등을 포함할 수 있으며, 목적에 따라 다양하게 제조될 수 있다.Expression vectors of the present invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, and the like. Suitable expression vectors may include expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals and enhancers, and the like, and may be prepared in various ways according to the purpose.

본 발명의 재조합 벡터는 당업계에 공지된 방법을 사용하여 숙주 세포에 도입할 수 있다. 숙주 세포로의 도입방법은 바람직하게는 염화칼슘법, 미세사출법(microprojectile bombardment), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method) 등 공지의 방법를 이용할 수 있다.Recombinant vectors of the invention can be introduced into host cells using methods known in the art. The method of introduction into the host cell is preferably calcium chloride method, microprojectile bombardment, electroporation, PEG-mediated fusion, microinjection, liposome mediation ( known methods such as liposome-mediated method) can be used.

숙주세포로는 대장균(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스(Staphylococcus)와 같은 원핵 숙주 세포, 진균(예를 들어, 아스퍼질러스(Aspergillus)), 효모(예를 들어, 피키아 패스토리스(Pichia pastoris), 사카로마이세스 세르비지애(Saccharomyces cerevisiae), 쉬조사카로마세스(Schizosaccharomyces), 뉴로스포라 크라사(Neurospora crassa) 등과 같은 하등 진핵세포, 곤충 세포, 식물 세포, 포유동물 등을 포함하는 고등 진핵생물 유래의 세포를 숙주세포로 사용할 수 있으나 이에 제한되지는 않으며, 바람직하게는 인간 세포일 수 있다.As the host cell, E. coli (Escherichia coli), Bacillus subtilis (Bacillus subtilis), Streptomyces (Streptomyces), Pseudomonas (Pseudomonas), Proteus Mira Billy's prokaryotic, such as (Proteus mirabilis) or Staphylococcus (Staphylococcus) host cells, fungi (e.g., Aspergillus (Aspergillus)), yeast (e.g., Pichia pass pastoris (Pichia pastoris), Mai processes Sergio non jiae as Saccharomyces (Saccharomyces cerevisiae), a break irradiation car Roman process ( Schizosaccharomyces), Neuro spokes la Klein Inc. (Neurospora crassa) as a lower eukaryotic cell, an insect cell, a plant cell, can use the cells of higher eukaryotic origin, including a mammal such as a host cell, but the same but are not limited to, preferably Preferably a human cell.

한편, 본 발명에서 사용된 표준 재조합 DNA 및 분자 클로닝 기술은 당해 분야에 널리 공지되어 있고, 다음 문헌에 기재되어 있다(Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, NY (1989); by Silhavy, T. J., Bennan, M. L. and Enquist, L. W., Experiments with Gene Fusions, Cold Spring Harbor Laboratory: Cold Spring Harbor, NY (1984); and by Ausubel, F. M. et al., Current Protocols in Molecular Biology, published by Greene Publishing Assoc. and Wiley-lnterscience (1987)).Meanwhile, standard recombinant DNA and molecular cloning techniques used in the present invention are well known in the art and described in the following literature (Sambrook, J., Fritsch, EF and Maniatis, T., Molecular Cloning: A Laboratory Manual) , 2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, NY (1989); by Silhavy, TJ, Bennan, ML and Enquist, LW, Experiments with Gene Fusions, Cold Spring Harbor Laboratory: Cold Spring Harbor, NY (1984) and by Ausubel, FM et al., Current Protocols in Molecular Biology, published by Greene Publishing Assoc. and Wiley-lnterscience (1987)).

아울러, 본 발명에 따른 조성물은 염증성 질환 예방 및 치료용 약학적 조성물일 수 있다.In addition, the composition according to the present invention may be a pharmaceutical composition for preventing and treating inflammatory diseases.

본 발명에 따른 약학적 조성물은 약학적으로 유효한 양의 본 발명의 AIMP2-DX2 억제제 또는 발현벡터를 단독으로 포함하거나 하나 이상의 약학적으로 허용되는 담체를 포함할 수 있다. 상기에서 "약학적으로 유효한 양"이란 음성 대조군에 비해 그 이상의 반응을 나타내는 양을 말하며 바람직하게는 염증성 질환을 치료 또는 예방하기에 충분한 양을 말한다.The pharmaceutical composition according to the present invention may contain a pharmaceutically effective amount of an AIMP2-DX2 inhibitor or expression vector of the present invention alone or may include one or more pharmaceutically acceptable carriers. As used herein, the term “pharmaceutically effective amount” refers to an amount that exhibits a higher response than a negative control, and preferably an amount sufficient to treat or prevent an inflammatory disease.

본 발명에 따른 AIMP2-DX2 억제제 또는 발현벡터의 약학적으로 유효한 양으로는 0.0001 내지 100 mg/day/체중kg, 바람직하게는 0.01 내지 1mg/day/체중kg이다. 그러나, 상기 약학적으로 유효한 양은 질환 및 이의 중증정도, 환자의 연령, 체중, 건강상태, 성별, 투여 경로 및 치료기간 등과 같은 여러 인자에 따라 적절히 변화될 수 있다.The pharmaceutically effective amount of the AIMP2-DX2 inhibitor or the expression vector according to the present invention is 0.0001 to 100 mg / day / kg body weight, preferably 0.01 to 1 mg / day / kg body weight. However, the pharmaceutically effective amount may be appropriately changed depending on various factors such as the disease and its severity, the patient's age, weight, health condition, sex, route of administration and duration of treatment.

상기에서 "약학적으로 허용되는" 이란 생리학적으로 허용되고 인간에게 투여될 때, 활성성분의 작용을 저해하지 않으며 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 비독성의 조성물을 말한다. 상기 담체로는 모든 종류의 용매, 분산매질, 수중유 또는 유중수 에멀젼, 수성 조성물, 리포좀, 마이크로비드 및 마이크로좀이 포함된다. As used herein, "pharmaceutically acceptable" is a non-toxic composition that, when administered physiologically to humans, does not inhibit the action of the active ingredient and typically does not cause an allergic reaction such as gastrointestinal disorders, dizziness, or the like. Say Such carriers include all kinds of solvents, dispersion media, oil-in-water or water-in-oil emulsions, aqueous compositions, liposomes, microbeads and microsomes.

한편, 본 발명에 따른 약학적 조성물은 투여 경로에 따라 적합한 담체와 함께 제형화될 수 있다. 상기 본 발명에 따른 약학적 조성물의 투여 경로로는 이에 한정되지는 않으나 경구적 또는 비경구적으로 투여될 수 있다. 비경구적 투여 경로로는 예를 들면, 경피, 비강, 복강, 근육, 피하 또는 정맥 등의 여러 경로가 포함된다.On the other hand, the pharmaceutical composition according to the present invention can be formulated with a suitable carrier depending on the route of administration. The route of administration of the pharmaceutical composition according to the present invention is not limited thereto, but may be administered orally or parenterally. Parenteral routes of administration include, for example, several routes such as transdermal, nasal, abdominal, muscle, subcutaneous or intravenous.

본 발명의 약학적 조성물을 경구 투여하는 경우 본 발명의 약학적 조성물은 적합한 경구 투여용 담체와 함께 당 업계에 공지된 방법에 따라 분말, 과립, 정제, 환제, 당의정제, 캡슐제, 액제, 겔제, 시럽제, 현탁액, 웨이퍼 등의 형태로 제형화될 수 있다. 적합한 담체의 예로는 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨 및 말티톨 등을 포함하는 당류와 옥수수 전분, 밀 전분, 쌀 전분 및 감자 전분 등을 포함하는 전분류, 셀룰로즈, 메틸 셀룰로즈, 나트륨 카르복시메틸셀룰로오즈 및 하이드록시프로필메틸-셀룰로즈 등을 포함하는 셀룰로즈류, 젤라틴, 폴리비닐피롤리돈 등과 같은 충전제가 포함될 수 있다. 또한, 경우에 따라 가교결합 폴리비닐피롤리돈, 한천, 알긴산 또는 나트륨 알기네이트 등을 붕해제로 첨가할 수 있다. 나아가, 상기 약학적 조성물은 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다.In the case of oral administration of the pharmaceutical composition of the present invention, the pharmaceutical composition of the present invention is prepared in powder, granule, tablet, pill, dragee, capsule, liquid, gel according to a method known in the art together with a suitable oral carrier. , Syrups, suspensions, wafers and the like. Examples of suitable carriers include sugars, including lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol and maltitol and starch, cellulose, starch including corn starch, wheat starch, rice starch and potato starch, and the like. Fillers such as cellulose, gelatin, polyvinylpyrrolidone, and the like, including methyl cellulose, sodium carboxymethylcellulose, hydroxypropylmethyl-cellulose, and the like. In addition, crosslinked polyvinylpyrrolidone, agar, alginic acid or sodium alginate and the like may optionally be added as a disintegrant. Furthermore, the pharmaceutical composition may further include an anticoagulant, a lubricant, a humectant, a perfume, an emulsifier, and a preservative.

또한, 비경구적으로 투여하는 경우 본 발명의 약학적 조성물은 적합한 비경구용 담체와 함께 주사제, 경피 투여제 및 비강 흡입제의 형태로 당 업계에 공지된 방법에 따라 제형화될 수 있다. 상기 주사제의 경우에는 반드시 멸균되어야 하며 박테리아 및 진균과 같은 미생물의 오염으로부터 보호되어야 한다. 주사제의 경우 적합한 담체의 예로는 이에 한정되지는 않으나, 물, 에탄올, 폴리올(예를 들어, 글리세롤, 프로필렌 글리콜 및 액체 폴리에틸렌 글리콜 등), 이들의 혼합물 및/또는 식물유를 포함하는 용매 또는 분산매질일 수 있다. 보다 바람직하게는, 적합한 담체로는 행크스 용액, 링거 용액, 트리에탄올 아민이 함유된 PBS(phosphate buffered saline) 또는 주사용 멸균수, 10% 에탄올, 40% 프로필렌 글리콜 및 5% 덱 스트로즈와 같은 등장 용액 등을 사용할 수 있다. 상기 주사제를 미생물 오염으로부터 보호하기 위해서는 파라벤, 클로로부탄올, 페놀, 소르빈산, 티메로살 등과 같은 다양한 항균제 및 항진균제를 추가로 포함할 수 있다. 또한, 상기 주사제는 대부분의 경우 당 또는 나트륨 클로라이드와 같은 등장화제를 추가로 포함할 수 있다.In addition, when administered parenterally, the pharmaceutical compositions of the present invention may be formulated according to methods known in the art in the form of injections, transdermal and nasal inhalants together with suitable parenteral carriers. Such injections must be sterile and protected from contamination of microorganisms such as bacteria and fungi. Examples of suitable carriers for injections include, but are not limited to, solvents or dispersion media comprising water, ethanol, polyols (e.g., glycerol, propylene glycol and liquid polyethylene glycols, etc.), mixtures thereof and / or vegetable oils Can be. More preferably, suitable carriers include Hanks' solution, Ringer's solution, phosphate buffered saline (PBS) containing triethanol amine or sterile water for injection, 10% ethanol, 40% propylene glycol and 5% dextrose Etc. can be used. In order to protect the injection from microbial contamination, various antibacterial and antifungal agents such as parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like may be further included. In addition, the injection may in most cases further comprise an isotonic agent such as sugar or sodium chloride.

경피 투여제의 경우 연고제, 크림제, 로션제, 겔제, 외용액제, 파스타제, 리니멘트제, 에어롤제 등의 형태가 포함된다. 상기에서 “경피 투여”는 약학적 조성물을 국소적으로 피부에 투여하여 약학적 조성물에 함유된 유효한 양의 활성성분이 피부 내로 전달되는 것을 의미한다. 이들 제형은 제약 화학에 일반적으로 공지된 처방서인 문헌(Remington's Pharmaceutical Science, 15th Edition, 1975, Mack Publishing Company, Easton, Pennsylvania)에 기술되어 있다. In the case of transdermal administrations, ointments, creams, lotions, gels, external preparations, pasta preparations, linen preparations, air rolls and the like are included. As used herein, "transdermal administration" means that the pharmaceutical composition is topically administered to the skin such that an effective amount of the active ingredient contained in the pharmaceutical composition is delivered into the skin. These formulations are described in Remington's Pharmaceutical Science , 15th Edition, 1975, Mack Publishing Company, Easton, Pennsylvania, a prescription generally known in pharmaceutical chemistry.

흡입 투여제의 경우, 본 발명에 따라 사용되는 화합물은 적합한 추진제, 예를 들면, 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로에탄, 이산화탄소 또는 다른 적합한 기체를 사용하여, 가압 팩 또는 연무기로부터 에어로졸 스프레이 형태로 편리하게 전달 할 수 있다. 가압 에어로졸의 경우, 투약 단위는 계량된 양을 전달하는 밸브를 제공하여 결정할 수 있다. 예를 들면, 흡입기 또는 취입기에 사용되는 젤라틴 캡슐 및 카트리지는 화합물, 및 락토즈 또는 전분과 같은 적합한 분말 기제의 분말 혼합물을 함유하도록 제형화할 수 있다. In the case of inhaled dosages, the compounds used according to the invention may be pressurized packs or by means of suitable propellants, for example dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. It can be delivered conveniently from the nebulizer in the form of an aerosol spray. In the case of a pressurized aerosol, the dosage unit can be determined by providing a valve to deliver a metered amount. For example, gelatin capsules and cartridges for use in an inhaler or insufflator may be formulated to contain a compound, and a powder mixture of a suitable powder base such as lactose or starch.

그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 할 수 있다(Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).Other pharmaceutically acceptable carriers can be found in Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, Pa., 1995).

또한, 본 발명에 따른 약학적 조성물은 하나 이상의 완충제(예를 들어, 식염수 또는 PBS), 카보하이트레이트(예를 들어, 글루코스, 만노즈, 슈크로즈 또는 덱스트란), 항산화제, 정균제, 킬레이트화제(예를 들어, EDTA 또는 글루타치온), 아쥬반트(예를 들어, 알루미늄 하이드록사이드), 현탁제, 농후제 및/또는 보존제를 추가로 포함할 수 있다.In addition, the pharmaceutical compositions according to the invention may comprise one or more buffers (e.g. saline or PBS), carbohydrates (e.g. glucose, mannose, sucrose or dextran), antioxidants, bacteriostatic agents, chelating agents (Eg, EDTA or glutathione), adjuvants (eg, aluminum hydroxide), suspending agents, thickening agents, and / or preservatives.

또한, 본 발명의 약학적 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. In addition, the pharmaceutical compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.

또한, 본 발명의 약학적 조성물은 염증성 질환을 예방 또는 치료하는 효과를 가지는 공지의 화합물과 병용하여 투여할 수 있다.In addition, the pharmaceutical composition of the present invention can be administered in combination with a known compound having the effect of preventing or treating an inflammatory disease.

아울러, 본 발명은 In addition,

(a) AIMP2-DX2 폴리펩티드를 발현하는 세포를 시험제제와 함께 또는 시험제 제 없이 전배양하는 단계;(a) pre-culture of cells expressing AIMP2-DX2 polypeptide with or without a test agent;

(b) 시험제제와 함께 전배양된 세포에서 AIMP2-DX2의 발현 정도를 측정하고 시험제제 없이 전배양된 세포에 대한 발현 정도와 비교하여 상기 시험제제가 AIMP2-DX2의 발현을 억제하는지 여부를 확인하는 단계; 및(b) measuring the expression level of AIMP2-DX2 in the cells pre-cultured with the test agent and comparing the expression level of the cells pre-cultured with the test agent to determine whether the test agent inhibits the expression of AIMP2-DX2. Making; And

(c) 상기 (b) 단계에서 AIMP2-DX2의 발현을 억제하는 것으로 확인된 시험제제를 염증성 질환을 가지고 있는 동물에 투여하여 치료효과를 나타내는지를 검사하는 단계를 포함하는 염증성 질환의 예방 또는 치료용 약제의 스크리닝 방법을 제공한다.(c) administering a test agent identified as inhibiting the expression of AIMP2-DX2 in step (b) to an animal having an inflammatory disease and examining whether it has a therapeutic effect. Provided are methods of screening drugs.

상기에서 동물은 인간이 아닌 동물(non-human animal)인 것이 바람직하다. 또한 상기 (d) 단계에서 '치료 효과'란 염증성 질환 및 이의 증상을 완화 또는 개선하는 효과 및 염증성 질환의 진행을 억제하는 효과를 의미한다.In the above, the animal is preferably a non-human animal. In addition, in the step (d), the 'therapeutic effect' means an effect of alleviating or ameliorating an inflammatory disease and its symptoms and an effect of inhibiting the progression of an inflammatory disease.

본 발명에서 ‘제제(agent)’ 또는 ‘시험제제(test agent)’라 함은 임의의 물질(substance), 분자(molecule), 원소(element), 화합물(compound), 실재물(entity) 또는 이들의 조합을 포함한다. 예컨대, 이에 제한되지는 않으나, 단백질, 폴리펩티드, 소 유기 물질(small organic molecule), 다당류(polysaccharide), 폴리뉴클레오티드 등을 포함한다. 또한 자연 산물(natural product), 합성 화합물 또는 화학 화합물 또는 2개 이상의 물질의 조합일 수도 있다. 다르게 지정되지 않는 한, 제제, 물질 및 화합물은 호환성 있게(interchangeably) 사용할 수 있다.In the present invention, the term 'agent' or 'test agent' refers to any substance, molecule, element, compound, entity, or their substance. Combinations. For example, but not limited to, proteins, polypeptides, small organic molecules, polysaccharides, polynucleotides, and the like. It may also be a natural product, synthetic compound or chemical compound or a combination of two or more substances. Unless otherwise specified, agents, materials, and compounds may be used interchangeably.

본 발명의 방법으로 스크리닝되거나 동정될 수 있는 시험제제는, 폴리펩티드, 베타-턴 미메틱(beta-turn mimetics), 다당류, 인지질, 호르몬, 프로스타글란딘, 스테로이드, 방향족 화합물, 헤테로사이클릭 화합물, 벤조디아제핀(benzodiazepines), 올리고머릭 N-치환 글리신(oligomeric N-substituted glycines), 올리고카르바메이트(oligocarbamates), 당류(saccharides), 지방산, 퓨린, 피리미딘 또는 이들의 유도체, 구조적 아날로그 또는 조합을 포함한다. 어떤 시험제제는 합성 물질일 수 있으며, 다른 시험제제는 천연물질일 수 있다. 상기 시험제제는 합성 또는 자연 화합물의 라이브러리를 포함하는 광범위하고 다양한 출처로부터 얻어질 수 있다. 조합(combinatorial) 라이브러리는 스텝-바이-스텝 방식으로합성될 수 있는 여러 종류의 화합물로 생산될 수 있다. 다수의 조합 라이브러리의 화합물들은 ESL(encoded synthetic libraries) 방법(WO 95/12608, WO 93/06121, WO 94/08051, WO 95/395503 및 WO 95/30642)에 의해 제조될 수 있다. 박테리아, 곰팡이, 식물 및 동물 추출물 형태의 자연 화합물의 라이브러리는 상업적인 출처로부터 얻거나 또는 필드(field)에서 수집될 수 있다. 공지된 약리학적(pharmacological) 제제가 구조적 아날로그를 제조하기 위하여 아실화, 알킬화, 에스테르화 반응(esterification), 아미드화 반응(amidification)과 같은 지시되거나(direct) 무작위한 화학적 수식에 적용될 수 있다. 상기 시험 제제는 자연적으로 생성되는 단백질 또는 그의 단편일 수 있다. 이런 시험 제제는 자연 출처(natural source), 예컨대, 세포 또는 조직 용해물로부터 수득될 수 있다. 폴리펩티드 제제 의 라이브러리는 예컨대, 통상적인 방법에 의해 생성되거나 상업적으로 입수할 수 있는 cDNA 라이브러리로부터 수득될 수 있다. 상기 시험 제제는 펩티드, 예컨대, 약 5-30개, 바람직하게는 약5-20개, 보다 바람직하게는 약7-15개의 아미노산을 가지는 펩티드일 수 있다. 상기 펩티드는 자연적으로 생성되는 단백질, 랜덤 펩티드 또는 "바이어스화(biased)" 랜덤 펩티드의 절단물일 수 있다. Test agents that can be screened or identified by the methods of the present invention include polypeptides, beta-turn mimetics, polysaccharides, phospholipids, hormones, prostaglandins, steroids, aromatic compounds, heterocyclic compounds, benzodiazepines ), Oligomeric N-substituted glycines, oligocarbamates, saccharides, fatty acids, purines, pyrimidines or derivatives thereof, structural analogs or combinations thereof. Some test agents may be synthetic, and other test agents may be natural. The test agents can be obtained from a wide variety of sources, including libraries of synthetic or natural compounds. Combinatorial libraries can be produced with a variety of compounds that can be synthesized in a step-by-step fashion. Compounds of many combinatorial libraries can be prepared by encoded synthetic libraries (ESL) methods (WO 95/12608, WO 93/06121, WO 94/08051, WO 95/395503 and WO 95/30642). Libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts can be obtained from commercial sources or collected in the field. Known pharmacological agents can be applied to directed or random chemical formulas such as acylation, alkylation, esterification, amidification to produce structural analogs. The test agent may be a naturally occurring protein or fragment thereof. Such test preparations may be obtained from natural sources such as cell or tissue lysates. Libraries of polypeptide preparations can be obtained, for example, from cDNA libraries produced by conventional methods or commercially available. The test agent may be a peptide such as a peptide having about 5-30, preferably about 5-20, more preferably about 7-15 amino acids. The peptide may be a cleavage of a naturally occurring protein, random peptide or “biased” random peptide.

또한 상기 시험 제제는 "핵산”일 수 있다. 핵산 시험 제제는 자연적으로 생성되는 핵산, 랜덤 핵산, 또는 "바이어스화” 랜덤 핵산일 수 있다. 예컨대, 원핵 또는 진핵 게놈의 절단물을 위에서 기재한 바와 유사하게 사용될 수 있다. The test agent may also be a “nucleic acid.” Nucleic acid The test agent may be a naturally occurring nucleic acid, a random nucleic acid, or a “biased” random nucleic acid. For example, cleavage of the prokaryotic or eukaryotic genome can be used similarly as described above.

또한 상기 시험 제제는 소분자(예: 약 1,000 이하의 분자량을 갖는 분자)일 수 있다. 소분자의 조절 제제를 스크리닝하기 위한 방법에는 바람직하게는 고속 분석 어세이(high throughput assay)가 적용될 수 있다. 위에서 기재한 대로 소분자 시험 제제의 조합 라이브러리가 본 발명의 스크리닝 방법에 용이하게 적용될 수 있다. 많은 어세이가 상기 스크리닝에 유용하다(Shultz, Bioorg. Med. Chem. Lett., 8:2409-2414, 1998; Weller, Mol. Drivers., 3:61-70, 1997; Fernandes, Curr. Opin. Chem. Biol., 2:597-603, 1998; and Sittampalam, Curr. Opin. Chem. Biol., 1:384-91, 1997). The test formulation may also be a small molecule (eg, a molecule having a molecular weight of about 1,000 or less). The method for screening small molecule modulating agents may preferably be subjected to a high throughput assay. Combination libraries of small molecule test formulations can be readily applied to the screening methods of the present invention as described above. Many assays are useful for such screening (Shultz, Bioorg. Med. Chem. Lett., 8: 2409-2414, 1998; Weller, Mol. Drivers., 3: 61-70, 1997; Fernandes, Curr. Opin. Chem. Biol., 2: 597-603, 1998; and Sittampalam, Curr. Opin. Chem. Biol., 1: 384-91, 1997).

한편, 본 발명의 도면은 하기 기재를 참조할 수 있다.Meanwhile, the drawings of the present invention may refer to the following description.

도 1에서는 엑손 2가 결실되어 있는 AIMP2의 스플라이싱 변이체의 조직-특이적인 발현을 나타낸다. (A) 3개의 인트론이 중간에 산재되어 있고 320개의 아미노산(NM_006303)을 암호화하는 4개의 엑손으로 이루어진 p38 구조유전자(서열번호 5). AIMP2의 312 아미노산(서열번호 2)은 U24169도 사용될 수 있다. 2개의 form은 우리 실험에서 대부분 유사하게 나타났다. AIMP2-F(JK12와 JTV5)와 AIMP2-DX2(DX2-S2 and JTV5) 에 사용되는 프라이머의 binding site를 표시하였다. (B) AIMP2-F와 AIMP2-DX2의 발현을 상기에서 표시한 그들의 특이적인 프라이머를 사용하여 RT-PCR에 의해 다른 세포에서 조사하였다. GAPDH는 로딩 대조구이다. (C) 같은 세포에서 AIMP2-F와 AIMP2-DX2를 인식하는 항체를 이용하여 웨스턴 블럿을 한 결과이다. 튜블린은 로딩 대조구이다. (D) 각각의 세포에서 AIMP2-F와 AIMP2-DX2의 과발현 및 knock-down된 것을 확인하여 나타낸 것이가. AIMP2-F와 AIMP2-DX2의 exogeneous forms은 Myc-tagged 단백질로 발현되고 endogeneous 형태보다 조금 위쪽 밴드에서 검출되었다. (E) 다양한 마우스 조직으로부터 추출된 단백질을 항-AIMP2 항체로 immuniglote한 결과이다. AIMP2-F와 AIMP2-DX2 사이에 나타난 밴드는 비특이적 산물인 것으로 나타났다.1 shows tissue-specific expression of splicing variants of AIMP2 that have been deleted exon 2. (A) p38 structural gene (SEQ ID NO: 5) consisting of four exons interspersed with three introns interspersed with 320 amino acids (NM_006303). The 312 amino acid (SEQ ID NO: 2) of AIMP2 may also be used for U24169 . The two forms appeared mostly similar in our experiments. The binding sites of the primers used for AIMP2-F (JK12 and JTV5) and AIMP2-DX2 (DX2-S2 and JTV5) were indicated. (B) Expression of AIMP2-F and AIMP2-DX2 was examined in other cells by RT-PCR using their specific primers indicated above. GAPDH is a loading control. (C) Western blot using antibodies that recognize AIMP2-F and AIMP2-DX2 in the same cell. Tubulin is a loading control. (D) It was confirmed that the overexpression and knock-down of AIMP2-F and AIMP2-DX2 in each cell. The exogeneous forms of AIMP2-F and AIMP2-DX2 were expressed as Myc-tagged proteins and detected in the band slightly above the endogeneous form. (E) Immuniglote protein extracted from various mouse tissues with anti-AIMP2 antibody. The band shown between AIMP2-F and AIMP2-DX2 appeared to be a nonspecific product.

도 2에서는 TNF-α-유도 세포 사멸에 AIMP2-F와 AIMP2-DX2이 antagonistic 효과를 보여준다. (A) A549 세포를 TNF-α가 처리된 AIMP2-F와 AIMP2-DX2으로 형질감염시키고 그 효과를 flow cytometry에서 Annexin V-양성 세포로 모니터한 결과이 다. (B) AIMP2-F와 AIMP2-DX2에 대한 siRNA로 형질감염 시키고 TNF-α에 의해 유도되는 세포사멸에 미치는 효과를 상기와 비교하여 나타낸 결과이다. (C) AIMP2-F와 AIMP2-DX2로 형질감염시킨 293 cells을 TNF-α으로 처리한 다음 세포 사멸을 flow cytometry에서 sub-G1을 측정하여 나타낸 결과이다. (D) siRNAs로 처리된 AIMP2-F와 AIMP2-DX2의 효과를 293 세포에서 측정한 결과이다. (E) Embryonic 12.5d MEFs를 AIMP2-F와 AIMP2-DX2으로 형질감염시키고, TNF-α 있는 것과 없는 것에서 G418과 함께 선택적 압력하에서 일주일 동안 배양하였다. 콜로니 형성을 쿠마시 염색(왼쪽)으로 모니터한 결과이고, 콜로니의 숫자를 그래프(오른쪽)로 나타내었다. (F) TNF-α로 처리한 293 세포를 정해진 시간 동안 배양하고, 핵과 세포질 분획을 수득하여 AIMP2-F와 AIMP2-DX2이 NF-kB의 TNF-α에 유도된 핵의 localization에 미치는 영향을 조사한 결과이다.Figure 2 shows the antagonistic effect of AIMP2-F and AIMP2-DX2 on TNF-α-induced cell death. (A) A549 cells were transfected with TNF-α-treated AIMP2-F and AIMP2-DX2 and their effects were monitored by Annexin V-positive cells on flow cytometry. (B) The results of transfection with siRNA for AIMP2-F and AIMP2-DX2 and the effects on TNF-α induced apoptosis were compared with the above. (C) 293 cells transfected with AIMP2-F and AIMP2-DX2 were treated with TNF-α and cell death was measured by sub-G1 measurement in flow cytometry. (D) The effects of AIMP2-F and AIMP2-DX2 treated with siRNAs were measured in 293 cells. (E) Embryonic 12.5d MEFs were transfected with AIMP2-F and AIMP2-DX2 and incubated for one week under selective pressure with G418, with and without TNF-α. Colony formation was monitored by Coomassie staining (left) and the numbers of colonies were shown graphically (right). (F) 293 cells treated with TNF-α were incubated for a predetermined time, and nuclei and cytoplasmic fractions were obtained to examine the effects of AIMP2-F and AIMP2-DX2 on the localization of nuclei induced by TNF-α of NF- k B. It is the result of investigation.

도 3에서는 AIMP2-F 및 AIMP2-DX2이 TRAF2과 경쟁적 결합관계를 보여준다. (A) TNF-α로 처리한 293 cells에서 AIMP2-F 및 AIMP2-DX2이 TRAF2와 결합 관계를 시간에 따라 공동 면역침적으로 나타낸 것이다. 추출된 단백질을 항-TRAF2 항체와 공동면역 침전시키고 공동 면역침전시킨 AIMP2-F 및 AIMP2-DX2을 항-AIMP2 항체롤 웨스턴 블럿한 결과이다. (B) AIMP2-F 및 AIMP2-DX2을 GST 융합 단백질로 발현시켰다. TRAF2를 in vitro 번역으로 합성하고, GST, GST-AIMP2-F, GST-AIMP2-DX2와 혼합시킨 다음 glutathione-sepharose와 함께 침전시켰다. GST-AIMP2-F와 GST-AIMP2-DX2를 TRAF2 와 공동면역 침전시켰다. (C) AIMP2의 다른 결손 변이체를 B42 융합 단백질로 발현시키고 LexA 융합 단백질로 발현시킨 TRAF2와 결합시키고 yeast two hybrid 방법으로 테스트하였다. 양성 반응은 X-gal을 함유하는 yeat medium에서 푸른색 콜로니을 형성하였다. (D) B42-KRS 및 -TRAF2와 AIMP2-F 및 AIMP2-DX2의 결합을 상기 yeast two hybrid assay를 이용하여 X-gal 플레이트에 푸른색 콜로니를 형성하는 것으로 측정하였다. (E) KRS와 AIMP2-F 및 AIMP2-DX2의 결합을 공동 면역침전 방법으로 측정하였다. Myc-AIMP2-F or -DX2로 형질감염된 293 세포로부터 추출된 단백질 추출물에 대한 이들의 특정 항체로 KRS를 면역침전시켰다. AIMP2-F or -DX2 와 KRS의 공동 면역침전은 항-Myc 항체로 웨스턴 블럿하여 측정하였다. KRS와 Myc-tagged AIMP2의 발현은 전체 세포 용해물(WCL)에서 각각 항-KRS와 -Myc 항체로 웨스턴 블럿팅한 결과를 나타낸 것이다. (F) 293 세포를 Myc-AIMP2-F (1mg)과 정해진 양의 Myc-AIMP2-DX2으로 형질감염시키고, endo-와 exo-AIMP2-F 와 -DX2의 발현을 항-AIMP2 항체(왼쪽)로 전체 세포 융해물(WCL)의 웨스텃 블럿으로 각각 확인하였다. TRAF2는 특이적인 항체로 면역침진시키고, 공동 침전된 exo-AIMP2-F와 -DX2는 항-Myc 항체로 측정하였다.In Figure 3, AIMP2-F and AIMP2-DX2 show a competitive binding relationship with TRAF2. (A) AIMP2-F and AIMP2-DX2 bound to TRAF2 in 293 cells treated with TNF-α, showing co-immunoprecipitation over time. The extracted protein was co-immunoprecipitated with anti-TRAF2 antibody and co-immunoprecipitated AIMP2-F and AIMP2-DX2 were obtained by Western blot with anti-AIMP2 antibody. (B) AIMP2-F and AIMP2-DX2 were expressed with GST fusion protein. TRAF2 was synthesized by in vitro translation, mixed with GST, GST-AIMP2-F and GST-AIMP2-DX2, and then precipitated with glutathione-sepharose. GST-AIMP2-F and GST-AIMP2-DX2 were coimmunoprecipitated with TRAF2. (C) Another deletion variant of AIMP2 was expressed with the B42 fusion protein, combined with TRAF2 expressed with the LexA fusion protein, and tested by the yeast two hybrid method. Positive reactions formed blue colonies in yeat medium containing X-gal. (D) The binding of B42-KRS and -TRAF2 to AIMP2-F and AIMP2-DX2 was determined by forming blue colonies on X-gal plates using the yeast two hybrid assay. (E) The binding of KRS with AIMP2-F and AIMP2-DX2 was measured by co-immunoprecipitation method. KRS was immunoprecipitated with their specific antibodies against protein extracts extracted from 293 cells transfected with Myc-AIMP2-F or -DX2. Co-immunoprecipitation of AIMP2-F or -DX2 and KRS was measured by Western blot with anti-Myc antibody. Expression of KRS and Myc-tagged AIMP2 is shown by Western blotting with anti-KRS and -Myc antibodies in whole cell lysate (WCL), respectively. (F) 293 cells were transfected with Myc-AIMP2-F (1 mg) and a defined amount of Myc-AIMP2-DX2 and expression of endo- and exo-AIMP2-F and -DX2 with anti-AIMP2 antibody (left) Each was identified by a Weschem blot of whole cell lysate (WCL). TRAF2 was immunoprecipitated with specific antibodies and co-precipitated exo-AIMP2-F and -DX2 were measured with anti-Myc antibodies.

도 4에서는는 AIMP2가 TRAF2를 downregulate하는 것을 나타낸다. (A) 293 세포는 Myc-AIMP2-F 또는 -DX2로 형질감염시키고 proteasome 억제제인 MG132와 혼합하여 TNF-α를처리하였다. AIMP2-F 및 AIMP2-DX2의 형질감염에 의한 TRAF2의 수준 변화를 항-TRAF2 항체로 웨스턴 블럿팅하여 측정하였다. 화살표는 Myc-tagged AIMP2-F와 -DX2로 태깅된것을 표시한 것이가. 액틴은 로딩 대조군으로 사용되었다. (B) AIMP2+/+ 과 AIMP2-/- MEFs에서 TNF-α 처리에 따른 TRAF2의 세포내 수준을 TRAF2(IB)와 IKK-b의 기질인 GST-IkB-a (KA)의 인산화의 웨스턴 블럿팅 결과로 나타내었다. (C) TRAF2의 세포내 수준에 미치는 AIMP2의 효과를 pulse-chase 실험으로 측정하였다. 292 세포를 EV, AIMP2-F 또는 -DX2로 형질감염시키고, [35S] methionine 존재하에 1시간 동안 배양하였다. 상기 세포를 fresh 배지에 배양심키고 정해진 시간동안 harvest 하였다. TRAF2를 공동 면역침전키시고, 침전된 TRAF2는 autoradiography로 측정하였다. (D) TRAF2 수준의 변화는 GST-IkB-a 의 인산화로 측정하였다.4 shows that AIMP2 downregulates TRAF2. (A) 293 cells were transfected with Myc-AIMP2-F or -DX2 and mixed with proteasome inhibitor MG132 and treated with TNF-α. Level changes in TRAF2 by transfection of AIMP2-F and AIMP2-DX2 were measured by western blotting with anti-TRAF2 antibody. The arrows indicate that they are tagged Myc-tagged AIMP2-F and -DX2. Actin was used as loading control. (B) Intracellular levels of TRAF2 following TNF-α treatment in AIMP2 + / + and AIMP2 − / − MEFs were measured by Western blot of phosphorylation of GST-I k Ba (KA), a substrate of TRAF2 (IB) and IKK-b. Shown as the result of the routing. (C) The effect of AIMP2 on intracellular levels of TRAF2 was measured by pulse-chase experiments. 292 cells were transfected with EV, AIMP2-F or -DX2 and incubated for 1 hour in the presence of [ 35 S] methionine. The cells were cultured in fresh medium and harvested for a predetermined time. TRAF2 was coimmunoprecipitated and the precipitated TRAF2 was measured by autoradiography. (D) Changes in TRAF2 levels were measured by phosphorylation of GST-I k B-a.

도 5에서는 AIMP2는 TRAF2의 유비퀴틴화를 매개하는 것을 나타낸다. (A) TNF-α 시그널 경로에서 AIMP2의 pro-apoptotic 활성에 대한 TRAF2의 중요성을 보여준다. 리포펙타민 2000 (Invitrogen)을 이용하여 TRAF2+/+와 TRAF2-/- 마우스 섬유아세포로 AIMP2-F와 -DX2를 형질감염시켰다. 형질감염 효율은 GFP 도입에 의해 측정하였다. (B) AIMP2-F 또는 -DX2는 293 세포에 HA-tagged 유비퀴틴과 함께 다른 양으로 발현된다. TRAF2를 면역침전시키고 이것의 유비퀴틴화는 항-HA 항체로 웨스턴 블럿팅으로 측정하였다. (C) AIMP2-F 또는 -DX2를 Flag-tagged ubiquin 변이체, K48R 또는 K63R가 발현되는 293 세포에 도입시키고 면역침전시킨 다음에 Flag-tagged 변이체 ubiquin과 TRAF2의 유비퀴틴화에 AIMP2-F 또는 -DX2이 미치는 영향을 웨스턴 블럿으로 측정하였다.5 shows that AIMP2 mediates ubiquitination of TRAF2. (A) It shows the importance of TRAF2 for the pro-apoptotic activity of AIMP2 in the TNF-α signaling pathway. Lipofectamine 2000 (Invitrogen) was used to transfect AIMP2-F and -DX2 into TRAF2 + / + and TRAF2 − / − mouse fibroblasts. Transfection efficiency was measured by GFP introduction. (B) AIMP2-F or -DX2 is expressed in different amounts with HA-tagged ubiquitin in 293 cells. TRAF2 was immunoprecipitated and its ubiquitination was measured by western blotting with anti-HA antibody. (C) AIMP2-F or -DX2 was introduced into 293 cells expressing Flag-tagged ubiquin variant, K48R or K63R and immunoprecipitated, followed by AIMP2-F or -DX2 for ubiquitination of Flag-tagged variant ubiquin and TRAF2. The effect was measured by Western blot.

도 6에서는 AIMP2는 c-IAP1 및 TRAF2의 결합을 촉진시킴을 나타낸다. (A) AIMP2를 통한 TRAF2의 분해에 c-IAP1의 중요성을 보기 위하여, c-IAP1은 siRNA로 억제시키고 TRAF2 수준에 AIMP2의 효과를 웨스턴 블럿으로 확인하였다. 튜블린은 로딩 대조군으로 사용하였다. (B) Myc-AIMP-F 와 -DX2를 Flag-c-IAP1을 가지는 293 세포로 형질감염시켰다. 세포내 TRAF2을 특정 항체로 면역침전시키고, AIMP2-F 또는 -DX2 및 c-IAP1와 AIMP2-F를 공동면역 침전한 것을 항-Myc 및 -Flag 항체로 각각 웨스턴 블럿팅하였다. (C) Flag-c-IAP1을 Myc-AIMP2-F 또는 -DX2와 함께 293 세포로 형질감염시켰다. Flag-c-IAP1은 항-Flag 항체로 면역침전 시키고, Myc-AIMP2-F 또는 -DX2의 면역침전은 항-Myc 항체로 웨스턴 블럿하여 측정하였다. (D) AIMP2-F 및 -DX2는 [35S] methionine 존재하에 in vitro translation에 의해 제조하고, GST 또는 GST-c-IAP1와 함께 혼합하고 glutathione-sepharose와 함께 침전시켰다. GST 또는 GST-c-IAP1과 함께 침전된 AIMP2 단백질은 autoradiography로 검출하였다. (E) AIMP2-F와 -DX2는 GST fusion proteins로 발현시키고, [35S] methione-labeled c-IAP1과 혼합하고 glutathione-sepharose와 함께 침전시켰다. c-IAP1 공동-침전된 GST 단백질은 autoradiography로 검출하였다. 6 shows that AIMP2 promotes binding of c-IAP1 and TRAF2. (A) To see the importance of c-IAP1 in the degradation of TRAF2 via AIMP2, c-IAP1 was inhibited by siRNA and the effect of AIMP2 on TRAF2 levels was confirmed by Western blot. Tubulin was used as a loading control. (B) Myc-AIMP-F and -DX2 were transfected into 293 cells with Flag-c-IAP1. Intracellular TRAF2 was immunoprecipitated with a specific antibody, and co-immunoprecipitation of AIMP2-F or -DX2 and c-IAP1 and AIMP2-F was Western blotted with anti-Myc and -Flag antibodies, respectively. (C) Flag-c-IAP1 was transfected with 293 cells with Myc-AIMP2-F or -DX2. Flag-c-IAP1 was immunoprecipitated with anti-Flag antibody, and immunoprecipitation of Myc-AIMP2-F or -DX2 was measured by western blot with anti-Myc antibody. (D) AIMP2-F and -DX2 were prepared by in vitro translation in the presence of [ 35 S] methionine, mixed with GST or GST-c-IAP1 and precipitated with glutathione-sepharose. AIMP2 protein precipitated with GST or GST-c-IAP1 was detected by autoradiography. (E) AIMP2-F and -DX2 were expressed as GST fusion proteins, mixed with [ 35 S] methione-labeled c-IAP1 and precipitated with glutathione-sepharose. c-IAP1 co-precipitated GST protein was detected by autoradiography.

도 7에서는 AIMP2-DX2의 억제가 TNF-α에 의해서 유도된 염증 반응을 억제함을 나타낸다. TNF-α를 처리하지 않은 경우 대조군(Si-cont), 전체 길이의 AIMP2에 대한 siRNA 처리군(Si-F, 서열번호 7) 및 AIMP2-DX2에 대한 siRNA 처리군(Si-DX2, 서열번호 8) 모두 Cox-2의 발현이 유도되지 않는다. TNF-α를 처리하는 경우 대조군과 AIMP2에 대한 siRNA 처리군은 Cox-2의 발현이 유도되나, AIMP2-DX2에 대한 siRNA 처리군은 Cox-2의 발현이 유도되지 않는다. 이는 AIMP2-DX2에 대한 siRNA가 염증 반응의 유도를 억제하는 것을 나타낸다. AIMP2-F 및 AIMP2-DX2에 대한 웨스턴 블럿 결과는 siRNA에 의해 AIMP2-F 및 AIMP2-DX2의 저해가 잘 일어났음을 보여준다. 로딩 대조군으로 튜블린을 사용하였다.7 shows that inhibition of AIMP2-DX2 inhibits the inflammatory response induced by TNF-α. If not treated with TNF-α control group (Si-cont), siRNA treatment group for full-length AIMP2 (Si-F, SEQ ID NO: 7) and siRNA treatment group for AIMP2-DX2 (Si-DX2, SEQ ID NO: 8 Neither expression of Cox-2 is induced. When treated with TNF-α, siRNA-treated groups for control and AIMP2 induced Cox-2 expression, but siRNA-treated groups for AIMP2-DX2 did not induce Cox-2 expression. This indicates that siRNA against AIMP2-DX2 inhibits the induction of inflammatory responses. Western blot results for AIMP2-F and AIMP2-DX2 showed that inhibition of AIMP2-F and AIMP2-DX2 occurred well by siRNA. Tubulin was used as the loading control.

도 8에서는 다양한 AIMP2-DX2에 대한 siRNA가 TNF-α에 의해서 유도된 염증 반응을 억제함을 나타낸다. TNF-α를 처리하지 않은 경우(-) 대조군(Si-cont)에서는 AIMP2-DX2의 발현이 이루어지며, 이는 TNF-α를 처리한 경우(+)에도 마찬가지이다. Cox-2의 발현은 TNF-α를 처리한 경우 그 발현이 증진되나, AIMP2-DX2에 대한 siRNA를 처리시 발현이 저해됨을 보여준다. 로딩 대조군으로 비특이 밴드(NS)를 사용하였다.8 shows that siRNAs against various AIMP2-DX2 inhibit inflammatory responses induced by TNF-α. When TNF-α was not treated (-), control (Si-cont) produced AIMP2-DX2 expression, even when TNF-α was treated (+). Expression of Cox-2 is enhanced when TNF-α is treated, but expression is inhibited upon treatment of siRNA against AIMP2-DX2. Non-specific bands (NS) were used as loading controls.

따라서, 본 발명에서는 AIMP2/p38가 TRAF2를 유비퀴틴화하는 것을 촉진하여 TNF-α에 의해 유도되는 세포 사멸을 조절하며, AIMP2/p38의 스플라이싱 변이체인 AIMP2-DX2가 AIMP2와 경쟁적 저해제로 작용하여 TRAF2의 유비퀴틴을 억제하여 TNF-α에 의한 세포 사멸을 억제함으로서 종양생성을 촉진하는 점 및 염증 마커인 Cox- 2의 발현을 저해함을 밝혔다. 따라서 AIMP2-DX2 억제제는 염증성 질환의 예방 및 치료의 목적으로 사용될 수 있다. Therefore, in the present invention, AIMP2 / p38 promotes ubiquitination of TRAF2 to regulate cell death induced by TNF-α, and AIMP2-DX2, a splicing variant of AIMP2 / p38, acts as a competitive inhibitor with AIMP2 Inhibition of ubiquitin of TRAF2 inhibits cell death by TNF-α, thereby promoting tumor formation and inhibiting the expression of Cox-2, an inflammatory marker. Thus, AIMP2-DX2 inhibitors can be used for the purpose of preventing and treating inflammatory diseases.

이하. 본 발명을 실시예에 의해 상세히 설명한다.Below. The present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

<실시예 1>&Lt; Example 1 >

세포배양 및 유전자 도입(Transfection) Cell culture and transfection

인간 배아 신장 세포주인 293세포는 DMEM(Dulbeccos modified Eagles medium, Hyclone, USA)에 10% 우태아혈청(Fetal bovine serum, FBS), 50μg/ml 페니실린/스트랩토마이신을 첨가하여 5% CO2를 공급하여 37℃ 세포 배양기에서 배양하였다. Myc 또는 Flag가 표지된 TRAF2는 한국 이화여대 이수영 교수께서 제공하여 주셨으며, 야생형 및 K48R 또는 K63R 변이 유비퀴틴 클론은 한국 서울대 정진하 교수께서 제공하여 주셨다. 진포터(Geneporter, GTS, USA) 및 리포펙타민 2000(lipofectamine 2000, Invitrogen, USA)은 도입용 시약으로 사용되었으며, TNF-α (originated from human and mouse, Sigma) 및 MG-132 (Calbiochem, USA)는 각각 30ng/ml 및 20μM의 농도로 무혈청 조건하에서 처리하였다.Human embryonic kidney cell line 293 cells were fed 5% CO 2 by adding 10% Fetal bovine serum (FBS), 50 μg / ml penicillin / straptomycin to DMEM (Dulbeccos modified Eagles medium, Hyclone, USA) And cultured in a 37 ℃ cell incubator. TRAF2 labeled with Myc or Flag was provided by Lee Soo-young, Professor of Ewha Womans University, Korea. Wild-type and K48R or K63R variant ubiquitin clones were provided by Professor Jung Jin-ha of Seoul National University. Geneporter, GTS, USA and lipofectamine 2000 (Invitrogen, USA) were used as reagents for introduction, and originated from human and mouse (Sigma) and MG-132 (Calbiochem, USA). ) Were treated under serum-free conditions at concentrations of 30 ng / ml and 20 μM, respectively.

siRNA는 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2) 억제를 위하여 사용되었는데 이들의 서열은 각각 AGAGCUUGCAGAGACAGGUUAGACU(서열번호 7) 및 UCAGCGCCCCGUAAUCCUGCACGUG(서열번호 8)이다(Invitrogen,USA).siRNAs were used for inhibition of wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2), whose sequences are AGAGCUUGCAGAGACAGGUUAGACU (SEQ ID NO: 7) and UCAGCGCCCCGUAAUCCUGCACGUG (SEQ ID NO: 8), respectively (Invitrogen, USA).

<실시예 2><Example 2>

엑손 2가 결여된 AIMP2 스플라이싱 변이체의 조직특이적 발현Tissue Specific Expression of AIMP2 Splicing Variants Lacking Exon 2

엑손 2가 결여된 AIMP2 스플라이싱 변이체(AIMP2-DX2)의 발현을 확인하고자, 본 발명자들은 도 1A에서와 같이 엑손 1 및 3의 접합에 특이적인 프라이머를 제작하고(DX2-S2) 다양한 세포주들로부터 얻은 RNA를 이용하여 역전사 중합효소 연쇄반응(RT-PCR)을 수행하였다.To confirm the expression of the AIMP2 splicing variant lacking exon 2 (AIMP2-DX2), we prepared primers specific for the conjugation of exons 1 and 3 (DX2-S2) and various cell lines as shown in FIG. 1A. Reverse transcription polymerase chain reaction (RT-PCR) was performed using RNA obtained from

우선, 세포를 수득한 후 트리졸 용액(Invitrogen,USA)을 첨가하여 부유시키고 상기 세포추출액은 50% 클로로포름을 첨가하여 실온에 방치한 후, 볼텍싱(vortexing)하여 잘 섞어주었다. 이후 14,000 rpm, 4℃에서 원심분리하고 상층액을 취하여 이에 이소프로판올을 첨가하여 RNA를 침전시킨다. 상기 방법과 동일하게 원심분리하여 상층액을 버리고, 펠렛을 취한 후 이를 70% 에탄올로 세척한다. 다시 원심분리하여 에탄올을 제거하고 증류수에 펠렛을 녹인다. 흡광도를 측정하여 RNA 를 정량하였다. First, cells were obtained and then suspended by the addition of Trizol solution (Invitrogen, USA), and the cell extracts were allowed to stand at room temperature by adding 50% chloroform, followed by vortexing. After centrifugation at 14,000 rpm, 4 ℃ and the supernatant is taken to precipitate the RNA by adding isopropanol thereto. The supernatant is discarded by centrifugation in the same manner as above method, the pellet is taken and washed with 70% ethanol. Centrifuge again to remove ethanol and dissolve the pellet in distilled water. The absorbance was measured to quantify RNA.

그 결과, 비록 엑손 2가 결여된 변이체인 AIMP2-DX2는 대부분의 세포주에서 발견되었지만, 그 발현 정도는 세포주에 따라 상이하였다(도 1B). 상기 변이체의 발현은 분리된 전사체의 염기서열 분석을 통하여 추가적으로 확인하였다.As a result, although a variant lacking exon 2, AIMP2-DX2, was found in most cell lines, the expression level differed depending on the cell lines (FIG. 1B). Expression of the variant was further confirmed through sequencing of the isolated transcript.

상기의 결과와 같이 AIMP2-DX2 발현의 유사한 양상은 AIMP2의 야생형 및 엑손 2가 결연된 변이체를 인지하는 항체를 사용한 웨스턴 블롯을 통하여서도 알 수 있었다(도 1C). 또한, 293 세포주를 이용한 웨스턴 블롯에서도 AIMP2의 야생형 및 엑손 2가 결연된 변이체의 발현을 관찰할 수 있었다(도 1D). 상기 두 가지 형태의 AIMP2를 구별하기 위하여, 본 발명자들은 Myc이 표지된 야생형 AIMP2(Myc-tagged AIMP2-F) 또는 Myc이 표지된 엑손 2가 결여된AIMP2 변이체(Myc-tagged AIMP2-DX2)를 293 세포에 도입하고 이들의 발현을 비교하였다. 이들 외래성 Myc-tagged AIMP2-F 및 Myc-tagged AIMP2-DX2는 세포 내에서 발현되었고 전기영동 상에서 본래의 위치보다 조금 더 높은 위치에 밴드가 나타났다(도 1D 화살표). 야생형 AIMP2 또는 엑손 2가 결여된 변이체 AIMP2-DX2의 발현을 전사체 단계에서 인위적으로 억제하고자 이를 표적으로 하여 siRNA를 이용하였다. 그 결과, 상기 두 AIMP2를 구별할 수 있었다(도 1D).Similar results of AIMP2-DX2 expression as described above were also seen through Western blot using antibodies recognizing the wild type and exon 2 bound variants of AIMP2 (FIG. 1C). In addition, Western blot using 293 cell line was able to observe the expression of wild type and exon 2-associated variants of AIMP2 (FIG. 1D). In order to distinguish between the two forms of AIMP2, the inventors have identified a Myc-labeled wild-type AIMP2 (Myc-tagged AIMP2-F) or Myc-labeled AIMP2 variant (Myc-tagged AIMP2-DX2). The cells were introduced and their expression compared. These exogenous Myc-tagged AIMP2-F and Myc-tagged AIMP2-DX2 were expressed in cells and showed bands at positions slightly higher than the original position on electrophoresis (FIG. 1D arrow). SiRNA was used to target the expression of variant AIMP2-DX2 lacking wild type AIMP2 or exon 2 artificially at the transcript stage. As a result, the two AIMP2 could be distinguished (FIG. 1D).

또한, 본 발명자들은 생쥐의 여러 조직을 이용하여 웨스턴 블롯을 실시하여 AIMP2-DX2의 조직특이적 발현을 확인하였다.In addition, the inventors performed Western blot using various tissues of mice to confirm the tissue specific expression of AIMP2-DX2.

야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체의 조직별 분포를 조사하기 위하여 생쥐의 서로 다른 조직에 1% Triton X-100, 0.1% SDS, 및 프로티에이즈 억제제 칵테일이 포함된 라이시스 버퍼를 첨가하여 호모게나이저로 갈았다. 배양된 세포주는 0.5% Triton X-100와 프로티에이즈 억제제 칵테일이 첨가된 라이시스 버퍼에 용해하였다. 호모게나이저로 갈은 세포로부터의 추출된 단백질은 10% SDS-PAGE로 분리되었다. 핵 분획을 얻기 위해서는 프로테오익스트랙트 키트(ProteoExtract kit, Calbiochem)를 이용하였다. 그 결과, 야생형 AIMP2의 경우에는 모든 조직에서 유사한 발현정도을 보인 반면, 엑손 2가 결여된 변이체는 조직마다 상이한 발현 정도를 보였으며, 이를 통하여 상기 변이체가 특정 조직에 있어서 특정한 역할을 할 것으로 예상할 수 있었다(도 1E). To investigate the tissue-specific distribution of AIMP2 variants lacking wild-type AIMP2 and exon 2, Lice buffer containing 1% Triton X-100, 0.1% SDS, and a protease inhibitor cocktail was added to different tissues of mice. I went to the homogenizer. Cultured cell lines were lysed in Lysis buffer with 0.5% Triton X-100 and Protease Inhibitor Cocktail. Extracted protein from cells ground to homogenizer was isolated by 10% SDS-PAGE. Proteoextract kits (ProteoExtract kit, Calbiochem) were used to obtain the nuclear fraction. As a result, wild-type AIMP2 showed similar expression levels in all tissues, whereas variants lacking exon 2 showed different expression levels in different tissues, and thus, the variants could be expected to play a specific role in specific tissues. (FIG. 1E).

<실시예 3><Example 3>

엑손 2가 결여된 AIMP2 변이체의 야생형 AIMP2 아폽토시스 항진기능(pro-apoptotic activity)을 방해 확인Determining Interfering Wild-type AIMP2 Apoptotic Activity of AIMP2 Variants Lacking Exon 2

본 발명자들은 야생형 AIMP2 및 AIMP2 스플라이싱 변이체가 TNF-α(Tumor Necrosis Factor-α) 시그널링에 있어서 서로 다른 활성을 보이는지를 확인하였다. 우선, 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)를 각각 A549 세 포주에 도입시킨 후, TNF-α 유도성 세포사에 있어서 이들의 효과를 아폽토시스 표지마커인 아넥신 V(Annexin V) 및 유세포 분석기를 이용하여 비교하였다. 유세포 분석을 위하여, 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)를 코딩하는 플라스미드가 도입된 세포들을 TNF-α의 존재 또는 부존재 하에서 배양하였고, 70% 에탄올로 4 ℃ 에서 1시간동안 고정하고 차가운 인산완충 식염수로 2회 세척하였다. 이후, 1x106 개의 세포를 PI (PI 50μg/ml, sodium citrate 0.1%, NP40 0.3% and RNase A 50μg/ml)로 40분간 염색하고 유세포 분석기(FACS Calibur, Beckton-Dickinson)를 통하여 분석하였다. 각각의 샘플당20,000개의 세포를 Cell Quest Pro software 프로그램으로 분석하였고, Annexin V (Invitrogen)염색도 TNF-α 유도성 세포사를 조사하기 위하여 수행되었다.We have identified whether wild-type AIMP2 and AIMP2 splicing variants show different activities in Tumor Necrosis Factor-α (TNF-α) signaling. First, wild-type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) were introduced into three A549 cells, and their effects on TNF-α-induced cell death were examined by Annexin V, an apoptosis marker. And flow cytometry. For flow cytometry, cells incorporating plasmids encoding wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) were incubated in the presence or absence of TNF-α and for 1 hour at 4 ° C. with 70% ethanol. Fixed and washed twice with cold phosphate buffered saline. Thereafter, 1 × 10 6 cells were stained with PI (PI 50 μg / ml, sodium citrate 0.1%, NP40 0.3% and RNase A 50 μg / ml) for 40 minutes and analyzed by flow cytometry (FACS Calibur, Beckton-Dickinson). 20,000 cells per each sample were analyzed by Cell Quest Pro software program, and Annexin V (Invitrogen) staining was also performed to investigate TNF-α induced cell death.

그 결과, 야생형 AIMP2 및 AIMP2 스플라이싱 변이체(AIMP2-DX2)의 도입은 TNF-α를 처리하지 않았을 때에는 세포사에 거의 영향을 주지 않았다(도 2A 좌측). 한편, 세포에 TNF-α 를 처리하였을 때에는 야생형 AIMP2가 도입된 세포에서는 세포사가 확연하게 증가하였고, 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)가 도입된 세포에서는 그렇지 않았다(도 2A 우측). 역으로, 본 발명자들은 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)에 특이적인 siRNA를 이용하여 이들의 TNF-α 의존적인 세포사에 대한 효과를 비교하였다. 다시 말하면, siRNA에 의한 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)의 하향류 조 절(downregulation)은 TNF-α 처리 없이는 세포사에 특별히 영향을 주지 않았다(도 2B 좌측). 그러나, 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)의 넉다운(knock-down)은 세포를 TNF-α 유도성 세포사에 민감하도록 한 반면(도 2B 우측), 야생형 AIMP2는 아폽토시스에 영향을 주지 않았다. 상기의 실험을 293 세포를 이용하여 동일하게 실시하여 유세포 분석기 상에서 서브 G1기의 세포 부분을 분석한 결과, 본 발명자들은 상기의 결과와 유사한 결과를 얻을 수 있었다(도 2C 및 D). 종합해보면, 상기 결과들은 야생형 AIMP2는 TNF-α 유도성으로 세포사를 촉진하는 반면, 엑손 2가 결여된 AIMP 변이체(AIMP2-DX2)는 이러한 야생형 AIMP2의 아폽토시스 항진성을 저해한다고 할 수 있다.As a result, the introduction of wild type AIMP2 and AIMP2 splicing variants (AIMP2-DX2) had little effect on cell death when TNF-α was not treated (FIG. 2A left). On the other hand, cells treated with TNF-α significantly increased cell death in wild-type AIMP2-introduced cells, but not in cells in which AIMP2 variant (AIMP2-DX2) lacking exon 2 was introduced (Figure 2A right). Conversely, we compared their effects on TNF-α dependent cell death using siRNAs specific for wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2). In other words, downregulation of wild type AIMP2 and exon 2 lacking AIMP2 variants (AIMP2-DX2) by siRNA did not particularly affect cell death without TNF-α treatment (FIG. 2B left). However, knock-down of AIMP2 variants lacking exon 2 (AIMP2-DX2) made the cells susceptible to TNF-α induced cell death (Figure 2B right), whereas wild-type AIMP2 did not affect apoptosis. . As a result of analyzing the cell portion of the sub G1 phase on the flow cytometer by performing the same experiment using the 293 cells, the present inventors were able to obtain a result similar to the above result (FIGS. 2C and D). Taken together, the results suggest that wild-type AIMP2 promotes cell death with TNF-α induction, whereas AIMP variants lacking exon 2 (AIMP2-DX2) inhibit the apoptosis hyperactivity of these wild-type AIMP2.

이러한 점을 더 확고히 하기위하여, 본 발명자들은 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)를 수정후 12.5일 된 생쥐배아 섬유아세포(MEF, Mouse Embryonic Fibroblast)에 도입하고 TNF-α 부존재 하에서 콜로니 형성을 비교하였다. TNF-α의 부존재 하에서는 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)를 각각 도입한 세포 양쪽에서 콜로니 수의 차이를 거의 보이지 않았으며, 이는 본 실험에 있어서 유사한 정도의 도입 효율을 증명하여 주었다. 그러나, 세포를 TNF-α 존재 하에서 배양하게 되면 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)는 야생형 또는 공벡터가 도입된 세포에 비하여 더 많은 콜로니를 생성하였으며(도 2E), 이는 성장에 있어서의 차이에 의한 결과라는 가능성을 배제하지 않더라도, 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)가 TNF-α 유도성 세포사를 차단함을 뒷받침해준다. 이후 본 발명자들은 TNF-α에 의해 유도되는 것으로 알려진 NF-kB(p65)의 핵 편중현상에 있어서 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)의 영향을 비교하였다. 그 결과, 야생형 AIMP2는 NF-kB 의 TNF-α 유도성 핵 편중현상이 억제된 반면 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)는 반대의 효과가 나타났다(도 2F, 각각 중앙 및 좌측). 상기의 결과에 근거하여, 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)는 TNF-α 유도성 세포사를 그들의 길항작용을 통하여 조절할 수 있음을 알 수 있었다.To further solidify this, we introduced wild-type AIMP2 and exon 2-deficient AIMP2 variants (AIMP2-DX2) into 12.5 days old mouse embryonic fibroblasts (MEF) and lacked TNF-α. Colony formation was compared below. In the absence of TNF-α, there was little difference in colony counts in both cells introduced wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2), which demonstrated a similar degree of introduction efficiency in this experiment. I gave it. However, when cells were cultured in the presence of TNF-α, the AIMP2 variant lacking exon 2 (AIMP2-DX2) produced more colonies compared to the wild-type or empty vector-introduced cells (FIG. 2E), which showed growth. Without precluding the possibility of a consequence of the difference, AIMP2 variants lacking exon 2 (AIMP2-DX2) support the blocking of TNF-α induced cell death. We then compared the effects of wild-type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) on nuclear bias in NF-kB (p65) known to be induced by TNF-α. As a result, wild-type AIMP2 suppressed TNF-α-induced nuclear bias of NF-kB, whereas the AIMP2 variant lacking exon 2 (AIMP2-DX2) had the opposite effect (FIG. 2F, center and left, respectively). Based on the above results, it was found that wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) can regulate TNF-α-induced cell death through their antagonism.

<실시예 4><Example 4>

야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)의 TRAF2 와의 경쟁적 상호작용Competitive Interaction with TRAF2 of Wild-type AIMP2 and AIMP2 Variants Lacking Exon 2 (AIMP2-DX2)

본 발명자들은 TNF-α 시그널 기작에 있어서 AIMP2의 작용 메커니즘을 조사하였다. AIMP2의 다양한 잠재 표적들 중에서, 본 발명자들은 TNF receptor-associated factor 2 (TRAF2)를 선택하였다. 그 이유는 첫째, TRAF2는 TNF-α 시그널 기작에 있어서 중추적인 역할을 하고있다. 이와 더불어 TNF-α는 TRAF2의 편재성(ubiquitination) 및 AIMP2의 표적 단백질인 FBP의 AIMP2 매개성 편재성을 유도한다. 따라서 본 발명자들은 TRAF2이 편재성을 위한 AIMP2의 표적이 될 수 있는지를 실험하였다. 293 세포를 TNF-α로 처리하고 AIMP2와 TRAF2의 상호작용을 항체침전법(co-immunoprecipitation)을 통하여 조사하였다.We investigated the mechanism of action of AIMP2 in TNF-α signaling mechanisms. Among the various potential targets of AIMP2, we chose TNF receptor-associated factor 2 (TRAF2). This is because, first, TRAF2 plays a pivotal role in the TNF-α signal mechanism. In addition, TNF-α induces ubiquitination of TRAF2 and AIMP2 mediated ubiquity of FBP, a target protein of AIMP2. We therefore tested whether TRAF2 could be the target of AIMP2 for ubiquity. 293 cells were treated with TNF-α and the interaction of AIMP2 with TRAF2 was examined by co-immunoprecipitation.

배양된 세포를 0.5% triton X-100와 프로티에이즈 억제제 칵테일이 포함된 라이시스 버퍼에 용해하고, 용해된 것을 14,000 rpm에서 30분간 원심분리하였다. 이후 SDS-PAGE를 통하여 단백질을 분리하였다. 야생형 AIMP2 또는 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)와 TRAF2의 상호작용을 조사하기 위하여 세포를 IP 라이시스 버퍼 buffer (20mM Tris-HCl, pH 7.4, 150mM NaCl and 0.2% NP40)에서 용해시켰다. 단백질 추출물은 2시간동안 노말(normal) IgG와 단백질 G 아가로즈에서 배양하였고 비특이적 IgG 결합 단백질을 제거하기 위하여 원심분리하였다. 이후, 상층액을 TRAF2 항체(Santa Cruz)와 2시간 동안 4℃에서 교반하며 반응시키고, 단백질 G 아가로즈를 첨가하였다. 차가운 라이시스 버퍼로 3회 세척한 후, 첨전물을 SDS 샘플 버퍼에 녹이고 SDS-PAGE로 분리시켰다. AIMP2를 확인하기 위하여 10% SDS-PAGE를 사용하였다. 단백질을 PVDF 멤브레인으로 이동시키고 항체 침전법은 항-AIMP2 항체를 이용하여 수행하였다.Cultured cells were lysed in Lysis buffer containing 0.5% triton X-100 and Protease Inhibitor Cocktail, and the lysed cells were centrifuged at 14,000 rpm for 30 minutes. Then, the protein was separated through SDS-PAGE. Cells were lysed in IP Lysis buffer buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl and 0.2% NP40) to investigate the interaction of TRAF2 with wild type AIMP2 or AIMP2 variants lacking exon 2 (AIMP2-DX2). . Protein extracts were incubated in normal IgG and protein G agarose for 2 hours and centrifuged to remove nonspecific IgG binding protein. Subsequently, the supernatant was reacted with TRAF2 antibody (Santa Cruz) while stirring at 4 ° C. for 2 hours, and protein G agarose was added. After three washes with cold Lysis buffer, the additives were dissolved in SDS sample buffer and separated by SDS-PAGE. 10% SDS-PAGE was used to identify AIMP2. Proteins were transferred to PVDF membranes and antibody precipitation was performed using anti-AIMP2 antibodies.

그 결과, 세포가 TNF-α로 처리되었을 때에는, TRAF2에 결합된 AIMP2가 시간에 비례하여 증가하였다(도 3A 상부 밴드). 그리고, 엑손 2가 결여된 변이체(AIMP2-DX2)의 경우에도 세포수준은 야생형에 비하여 낮았으나 유사한 결과를 보였다(도 3A 하부 밴드). As a result, when cells were treated with TNF-α, AIMP2 bound to TRAF2 increased in proportion to time (Figure 3A top band). In the case of the variant lacking exon 2 (AIMP2-DX2), the cell level was lower than that of the wild type, but showed similar results (Fig. 3A lower band).

야생형 AIMP2 및 엑손 2가 결여된 변이체(AIMP2-DX2) 모두가 TRAF2와 직접적 으로 결합체를 형성하는지를 알아보기 위하여 본 발명자들은 글구타티온-에스-트렌스퍼레이즈(glutathione-S-transferase, GST)가 표지된 야생형 AIMP2(GST-AIMP2-F) 및 엑손 2가 결여된 AIMP2 변이체 (GST-AIMP2-DX2)를 준비하여 상기 융합 단백질을 in vitro로 합성된 TRAF2와 혼합하였다. TRAF2는 GST-AIMP2-F 및 GST-AIMP2-DX2 모두와 침전하였으나, GST 단독과 혼합한 경우에는 침전하지 않았다(도 3B). 이스트 투 하이브리드 어세이의 결과도 또한 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2) 모두가 TRAF2와 반응할 수 있음을 보여주었고, AIMP2의 84 내지 225 번째 펩티드 부위가 본 상호작용과 연관성이 있음을 보여주었다(도 3C).To determine whether both wild type AIMP2 and variants lacking exon 2 (AIMP2-DX2) form a conjugate directly with TRAF2, the inventors have indicated that glutathione-S-transferase (GST) is a label. Wild type AIMP2 (GST-AIMP2-F) and AIMP2 variant lacking exon 2 (GST-AIMP2-DX2) were prepared and the fusion protein was mixed with TRAF2 synthesized in vitro. TRAF2 precipitated with both GST-AIMP2-F and GST-AIMP2-DX2, but did not precipitate when mixed with GST alone (FIG. 3B). The results of the yeast to hybrid assay also showed that both wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) can react with TRAF2, and the 84-225th peptide site of AIMP2 is associated with this interaction. Showed that (FIG. 3C).

AIMP2는 KRS(lysyl-tRNA synthetase)와 멀티-tRNA 합성효소 복합체에 있어서 강력한 상호작용을 하는 것으로 알려져 있다. 따라서 본 연구자들은 이후 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)가 KRS에 대하여 이스트 투 하이브리드 어세이 및 항체 침전법에 있어서 유사한 친화도를 보이는지를 실험하였다. 비록 AIMP2의 두 형태가 상기와 같이 TRAF2와 유사한 결합을 보였으나, 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)는 야생형 AIMP2에 비하여 결합능력을 상실하였다(도 3D 및 E). 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)가 야생형과 같이 TRAF2와 결합함에도 불구하고 TNF-α 시그널에 있어서는 반대의 효과를 가지고 TNF-α 시그널을 차단하기 때문에, 본 발명자들은 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)가 TRAF2와의 반응에 있어서 야생형과 경쟁적인지를 체크하였다. 우선, 서로 다른 양의 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)를 도입하고 이것이 야생형 AIMP2와 TRAF2의 상호작용에 영향을 끼치는지를 항체침전법을 통하여 체크하였다. 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)의 발현이 증가함에 따라, 야생형 AIMP2와 TRAF2의 상호작용은 증가하였다(도 3F 좌측). 이와 반대의 실험을 수행하였다. 야생형 AIMP2는 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)와 TRAF2의 상호작용을 용량 의존적으로 억제하였다(도 3F 우측). 종합해보면, 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)는 야생형 AIMP2의 아폽토시스 항진작용을 TRAF2와의 경쟁적 상호작용을 통해 차단하는 것으로 나타났다.AIMP2 is known to have a strong interaction in lysyl-tRNA synthetase (KRS) and multi-tRNA synthetase complexes. Therefore, the researchers then examined whether the wild-type AIMP2 and exon 2-deficient AIMP2 variants (AIMP2-DX2) showed similar affinity for the KRS in East-to-hybrid assay and antibody precipitation. Although the two forms of AIMP2 showed similar binding to TRAF2 as described above, the AIMP2 variant lacking exon 2 (AIMP2-DX2) lost the binding ability as compared to wild type AIMP2 (FIGS. 3D and E). Since the AIMP2 variant lacking exon 2 (AIMP2-DX2) binds TRAF2 like the wild type, it blocks the TNF-α signal with the opposite effect on the TNF-α signal, so the present inventors It was checked whether the AIMP2 variant (AIMP2-DX2) was competitive with the wild type in reaction with TRAF2. First, AIMP2 variants lacking different amounts of exon 2 (AIMP2-DX2) were introduced and checked by antibody precipitation to see if they affected the interaction of wild type AIMP2 with TRAF2. As expression of the AIMP2 variant lacking exon 2 (AIMP2-DX2) increased, the interaction of wild type AIMP2 with TRAF2 increased (left of FIG. 3F). The opposite experiment was performed. Wild-type AIMP2 dose-dependently inhibited the interaction of TRAF2 with AIMP2 variant lacking exon 2 (AIMP2-DX2) (FIG. 3F right). Taken together, the AIMP2 variant lacking exon 2 (AIMP2-DX2) has been shown to block apoptosis hyperactivity of wild type AIMP2 through competitive interaction with TRAF2.

<실시예 5>Example 5

AIMP2의 세포내 TRAF2 수준 하향 확인 실험Intracellular TRAF2 Level Down Confirmation Experiment of AIMP2

본 발명자들은 어떻게 야생형 AIMP2 및 엑손 2가 결여된AIMP2 변이체(AIMP2-DX2)가 세포내 TRAF2 수준에 영향을 주는지를 조사하였다. 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)가 TNF-α 처리 부존재 하에서는 TRAF2 수준은 그다지 영향을 받지 않았다(도 4A 좌측). 그러나, 세포가 TNF-α 처리되면, 야생형 AIMP2가 도입된 경우 TRAF2 수준이 감소되었고, 이와는 반대로 공벡터나 엑손 2가 결여된 변이체(AIMP2-DX2)는 그렇지 않았다(도 4A 중앙). 야생형 AIMP2에 의한 TRAF2의 감소는 세포가 프로테아좀 억제제인 MG132로 처리되었을때는 관찰되지 않았으며, 이로써 야생형 AIMP2에 의한 TRAF2의 감소는 프로테아좀에 의해 매개됨을 시사하였다(도 4A 우측). TRAF2 수준에 있어서의 AIMP2 효과는 야생형 및 AIMP2 결 여 생쥐배아 섬유아세포(AIMP2-/- MEF)간에서 비교되었다. TRAF2 수준은 야생형 세포보다 AIMP2 결여 생쥐배아 섬유아세포에서 확연히 높았다(도 4B 상측 페널). 상기 두 종의 세포간의 TRAF2 수준차이가 IKK-β 활성에 의한 것인지를 확인하고자, 그들의 기질인 IkB-α의 인산화를 확인함으로써 IKK-β의 인산화효소(kinase) 활성을 확인하였다.We investigated how wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) influence intracellular TRAF2 levels. The wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) were not significantly affected in the absence of TNF-α treatment (FIG. 4A left). However, when cells were treated with TNF-α, TRAF2 levels were reduced when wild-type AIMP2 was introduced, whereas the variant lacking empty vector or exon 2 (AIMP2-DX2) was not (center of FIG. 4A). Reduction of TRAF2 by wild type AIMP2 was not observed when cells were treated with MG132, a proteasome inhibitor, suggesting that reduction of TRAF2 by wild type AIMP2 was mediated by proteasome (right side of FIG. 4A). AIMP2 effects on TRAF2 levels were compared between wild type and AIMP2 deficient mouse embryo fibroblasts (AIMP2-/-MEF). TRAF2 levels were significantly higher in AIMP2 deficient mouse embryonic fibroblasts than wild type cells (Figure 4B upper panel). In order to confirm whether the difference in TRAF2 levels between the two cells is caused by IKK-β activity, the kinase activity of IKK-β was confirmed by confirming the phosphorylation of their substrate, IkB-α.

293 세포를 라이시스 버퍼(Cell Signal)에 모으고, 내인성 IKK-β는 항 IKK-β 단클론 항체(Cell Signal)로 면역침강 시켰다. 또한 in vitro 카이네이즈 어세이는 [32P] ATP의 존재 하에 GST-IkB-α(Santa Cruz)를 반응 기질로 하여 카이니이즈 버퍼(Cell Signal)에서 수행하였다. 반응하지 않은 ATP를 제거하기 위하여 비드를 세척한 후, 샘플버퍼를 첨가하고 단백질을 비드로부터 떼어내고 12% DS-PAGE를 이용하여 분리하였다. 젤은 쿠마시 블루로 염색하고, 방사선 자가사진법을 이용하여 GST-IkB-α의 인산화를 확인하였다.293 cells were collected in Lysis buffer (Cell Signal), and endogenous IKK-β was immunoprecipitated with anti-IKK-β monoclonal antibody (Cell Signal). In vitro kinase assay was performed in kinase buffer (Cell Signal) using GST-IkB-α (Santa Cruz) as a reaction substrate in the presence of [ 32 P] ATP. After washing the beads to remove unreacted ATP, sample buffer was added and proteins were removed from the beads and separated using 12% DS-PAGE. Gels were stained with Coomassie Blue, and phosphorylation of GST-IkB-α was confirmed using radiographic imaging.

GST-IkB-α의 인산화는 TNF-α의 증가로 인하여 AIMP2가 결여된 세포에서 확연히 증가되었다(도 4B 하측 페널). 이는 TRAF2의 세포내 수준에 있어서 AIMP2의 음성적인 효과를 보여준다. Phosphorylation of GST-IkB-α was significantly increased in cells lacking AIMP2 due to an increase in TNF-α (FIG. 4B lower panel). This shows the negative effect of AIMP2 on the intracellular levels of TRAF2.

본 발명자들은 [35S] 메티오닌을 이용한 펄스-체이스 실험(pulse-chase experiment)을 통하여 TRAF2의 턴오버에 있어서 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)의 영향을 조사하였다. 펄스-체이스 분석법은 [35S] 메티오닌을 이용하여 수행되었다.We investigated the effect of wild-type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) on the turnover of TRAF2 through a pulse-chase experiment with [ 35 S] methionine. Pulse-chase analysis was performed using [ 35 S] methionine.

대장균 Rosetta (DE3) 균주에서 GST-AIMP2 또는 GST을 발현시키고, GST-AIMP2 또는 GST를 포함하는 단백질 추출물을 1% Triton X-100과 0.5% N-라우릴아르코신이 포함된 인산완충 식염수 버퍼에서 글루타티온-세파로즈와 4℃, 2시간 동안 혼합하였다. 인간 TRAF2는 [35S] 메티오닌 존재하에서 pcDNA3.1/V5-His-TOPO-AIMP2 (또는 AIMP2-DX2)를 주형으로 하여 GST 단백질 혼합물을 첨가하여 1% Triton X-100, 0.5% N-라우릴아르코신, 1mM DTT, 2mM EDTA 및 300μM 페닐메틸설포닐 플로라이드(phenylmethylsulfonyl fluoride)를 포함하는 인산완충 식염수 내에서 4 ℃에서 6시간동안 배양한 후, 0.5% Triton X100을 포함하는 동일한 버퍼로 6회 세척하여 인공적으로 합성하였다. 이후 단백질을 세파로즈 비드에서 떼어내고 SDS-PAGE로 분리시킨후 방사선 자동 사진법으로 AIMP2를 확인하였다. GST-AIMP2 or GST was expressed in E. coli Rosetta (DE3) strain, and the protein extract containing GST-AIMP2 or GST was added to glutathione in phosphate buffered saline buffer containing 1% Triton X-100 and 0.5% N-laurylarcosine. Mix with Sepharose at 4 ° C. for 2 hours. Human TRAF2 was prepared by adding a GST protein mixture with pcDNA3.1 / V5-His-TOPO-AIMP2 (or AIMP2-DX2) as the template in the presence of [ 35 S] methionine to 1% Triton X-100, 0.5% N-lauryl After incubation for 6 hours at 4 ° C. in phosphate buffered saline containing arcosine, 1 mM DTT, 2 mM EDTA and 300 μM phenylmethylsulfonyl fluoride, 6 times with the same buffer containing 0.5% Triton X100 Washed and artificially synthesized. Then, proteins were separated from Sepharose beads, separated by SDS-PAGE, and confirmed by AIMP2 by radiograph.

293 세포에 Myc이 표지된 야생형 AIMP2, 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2) 및 대조군으로서 pcDNA3 공벡터를 각각 도입하고 24시간동안 배양하였다. 이후, 세포를 메티오닌이 없는 배지에서 1시간동안, 그리고 [35S] 메티오닌(50μ Ci/ml)이 첨가된 조건에서 1시간 동안 배양하였다. 신선한 배지로 방사성 메티오닌을 제거한 후, TNF-α를 처리하여 배양하였다. TRAF2는 면역침강하였고, 12% SDS-PAGE로 분리하여 BAS (FLA-3000, FujiFilm)를 사용한 방사선 자기 사진법으로 확인하였다. TRAF2는 Multi-gauge program (V3.0, FujiFilm)을 이용하여 정량하였다. 그 결과, 세포에 야생형 AIMP2가 도입되고 TNF-α 처리를 한 경우, 방사성 TRAF2는 공벡터나 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)에 비하여 더 급격하게 감소하였다(도 4C). 본 발명자들은 또한, GST-IkB-α의 인산화를 상기의 방법과 같이 측정하여 TRAF2의 수준 변화를 관찰하였다. IkB의 인산화는 외래성 야생형 AIMP2의 도입으로 감소되었으며, 엑손 2가 결여된 변이체(AIMP2-DX2)에 의해서 증가되었다(도 4D 좌측). 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2) 각각에 특이적인 siRNA에 의한 전사체 억제 실험은 IkB-α의 인산화 결과와 반대의 결과를 보여주어(도 4D 우측) 상기 결과들과 일관된 결과를 보여주었다.Myc-labeled wild type AIMP2, exon 2-deficient AIMP2 variant (AIMP2-DX2) and pcDNA3 empty vector as control were introduced into 293 cells and cultured for 24 hours. Cells were then incubated for one hour in medium without methionine, and for one hour under conditions in which [ 35 S] methionine (50 μ Ci / ml) was added. Radioactive methionine was removed with fresh medium, followed by incubation with TNF-α treatment. TRAF2 was immunoprecipitated and separated by 12% SDS-PAGE and confirmed by radiograph using BAS (FLA-3000, FujiFilm). TRAF2 was quantified using the Multi-gauge program (V3.0, FujiFilm). As a result, when wild-type AIMP2 was introduced into the cells and treated with TNF-α, the radioactive TRAF2 decreased more rapidly than the AIMP2 variant (AIMP2-DX2) lacking an empty vector or exon 2 (FIG. 4C). We also measured the phosphorylation of GST-IkB-α in the same manner as above to observe the level change of TRAF2. Phosphorylation of IkB was reduced with the introduction of exogenous wild type AIMP2 and increased by the variant lacking exon 2 (AIMP2-DX2) (FIG. 4D left). Transcript inhibition experiments with siRNA specific for each of the wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) showed opposite results to the phosphorylation of IkB-α (Fig. 4D right), consistent with the above results. Showed results.

<실시예 6><Example 6>

AIMP2 활성에 있어서 TRAF2의 중요성 및 TRAF2의 편재화에 있어서 야생형AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)의 역할Significance of TRAF2 in AIMP2 Activity and Role of AIMP2 Variants Lacking Wild-type AIMP2 and Exon 2 in Localization of TRAF2 (AIMP2-DX2)

TRAF2가 AIMP2의 아폽토시스 항진 활성에 있어서 필수적인지를 확인하기 위하여 본 발명자들은 TRAF2+/+ 및 TRAF2-/- 생쥐 섬유아세포에서 TNF-α 유도성 세포사에 있어서 AIMP2의 효과를 비교하였다. TNF-α 유도성 세포사는 추후 정상세포에서 엑손 2가 결여된 변이체(AIMP2-DX2)가 아닌 야생형 AIMP2를 도입함으로써 촉 진되었다(도 5A 좌측). TRAF2-/- 세포에서 세포사에 대한 AIMP2의 효과는 TNF-α에 의한 세포사에서조차도 관찰되지 않았다. 그러나, TRAF2가 도입된 TRAF2-/- 세포는 TNF-α에 의한 세포사가 감소되었고 추가적인 AIMP2의 유입으로 부분적으로 세포사 정도가 회복되었다(도 5A 우측). 이러한 모든 결과는 TRAF2가 TNF-α 시그널 기작에서, AIMP2의 아폽토시스 항진에 중요함을 나타낸다.To determine whether TRAF2 is essential for the apoptosis hyperactivity of AIMP2, we compared the effect of AIMP2 on TNF-α induced cell death in TRAF2 + / + and TRAF2-/-mouse fibroblasts. TNF-α-induced cell death was subsequently promoted by introducing wild type AIMP2, but not the variant lacking exon 2 (AIMP2-DX2) in normal cells (Figure 5A left). The effect of AIMP2 on cell death in TRAF2-/-cells was not observed even in cell death by TNF-α. However, TRAF2-/-cells incorporating TRAF2 reduced cell death by TNF-α and partially restored the degree of cell death by the influx of additional AIMP2 (Figure 5A right). All these results indicate that TRAF2 is important for apoptosis hyperactivity of AIMP2 in the TNF-α signal mechanism.

AIMP2에 의한 TRAF2 조절이 TNF-α 유도성 세포사에 결정적임을 알고, 본 발명자들은 AIMP2가 어떻게 세포내 TRAF2 수준을 조절하는지를 조사하였다. TRAF2 수준이 이의 편재화에 의해 조절됨을 알고 AIMP2가 프로티아좀을 통하여 TRAF2의 수준을 감소시킬 수 있음을 보여주었으므로, AIMP2가 TRAF2의 편재화를 중재하는지를 체크하였다(도 4A). AIMP2 의존적인 TRAF2 편재화를 확인하기 위하여 인간 배아 신장 세포주인 293세포에 HA 표지된 유비퀴틴을 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)와 함께 도입하여 24시간 배양하였다. 이후 세포를 MG-132 (40μM)에 4시간동안 처리하여 프로티아좀 활성을 억제하고, 항-TRAF2 항체(C-20, Santa Cruz)와 면역침전시켰다. 침전물은 항-HA 항체와 면역블롯을 실시하였다. 또한 Flag가 표지된 K48R 또는 K63R 변이 유비퀴틴을 도입하고 이들과 TRAF2의 결합을 항-Rlag 항체(Santa Cruz)와의 결합으로 조사하였다. 프로테아좀 활성을 이들의 억제제인 MG132로 차단한 후, 이를 Hark 표지된 유비퀴틴과 함께 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)를 도입하고, TRAF2 및 이의 항체를 이용하여 항체 침전법을 실시하고 항-HA 항체와 면역 블롯을 하여 편재화를 관찰하였 다. 비록 편재화된 TRAF2가 도입된 야생형 AIMP2의 양에 따라 증가하였지만, 이의 스플라이싱 변이체(AIMP2-DX2)는 TRAF2의 편재화에서 미미한 또한 역행적인 결과를 보여주었다(도 5B). Knowing that TRAF2 regulation by AIMP2 is crucial for TNF-α-induced cell death, we examined how AIMP2 regulates intracellular TRAF2 levels. Knowing that TRAF2 levels are regulated by its localization and showing that AIMP2 can reduce the level of TRAF2 through prothiasomes, it was checked whether AIMP2 mediated the localization of TRAF2 (FIG. 4A). In order to confirm AIMP2-dependent TRAF2 localization, HA-labeled ubiquitin was introduced into human embryonic kidney cell line 293 cells along with wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) and cultured for 24 hours. Cells were then treated with MG-132 (40 μM) for 4 hours to inhibit prothiasome activity and immunoprecipitated with anti-TRAF2 antibody (C-20, Santa Cruz). The precipitate was subjected to immunoblot with anti-HA antibody. In addition, Flag-labeled K48R or K63R variant ubiquitin was introduced and the binding of these to TRAF2 was examined by binding to anti-Rlag antibody (Santa Cruz). After blocking proteasome activity with their inhibitor MG132, it was introduced with Hark labeled ubiquitin to introduce wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2), and antibody precipitation using TRAF2 and antibodies thereof. The method was performed and localization was observed by immunoblot with anti-HA antibody. Although ubiquitous TRAF2 increased with the amount of wild-type AIMP2 introduced, its splicing variant (AIMP2-DX2) showed a slight and retrograde result in ubiquity of TRAF2 (FIG. 5B).

유비퀴틴은 표적 단백질의 서로 다른 라이신 산물 위치와 결합할 수 있고 편재화의 산물은 결합 위치에 따라 다양하다. 예를 들면,K48 및 K63은 26S 프로테아좀 매개성 분해와 TNFα 시그널의 활성에 연관되어 있는 것으로 알려져 있다. 라이신 산물이 TRAF2의 AIMP2 의존적 편재화에 사용되는지를 알아보기 위하여 본 발명자들은 세포에 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)를 Flag가 표지되었으며 K48R 또는 K63R 위치가 변이된 유비퀴틴와 함께 도입하였다. 세포는 MG132로 처리되었고, TRAF2 및 이의 항체로 면역침강법을 실시하였으며, TRAF2의 편재화는 항-Flas 항체를 이용한 웨스턴블롯에 의해 관찰하였다. 야생형 AIMP2의 도입은 K48R 위치가 변이된 유비퀴틴을 감소시켰으나, K63R 위치가 변이된 유비퀴틴은 그렇지 않았다(도 5C 좌측 및 우측). 이는 AIMP2가 K63이 아닌 K48과 결합하도록 매개함을 의미한다. 이와는 반대로, 엑손 3가 결여된 변이체는 야생형에 비하여 거의 효과가 없거나 약간의 반대 효과를 나타내었다. K48에서 편재화가 표적 단백질의 분해와 연관되어 있으므로 이들 결과는 또한 AIMP2가 TRAF2를 TNF-α 의존적 편재화를 통하여 감소시킴을 뒷받침해준다.Ubiquitin can bind to different lysine product positions of the target protein and the products of localization vary depending on the binding position. For example, K48 and K63 are known to be involved in 26S proteasome mediated degradation and the activity of TNFα signals. To determine if the lysine product is used for AIMP2-dependent localization of TRAF2, we present an AIMP2 variant (AIMP2-DX2) lacking wild-type AIMP2 and exon 2 in cells with ubiquitin flagged and mutated K48R or K63R positions. Introduced. Cells were treated with MG132, immunoprecipitation with TRAF2 and its antibodies, and localization of TRAF2 was observed by Western blot using anti-Flas antibody. The introduction of wild type AIMP2 reduced ubiquitin mutated K48R position, but not ubiquitin mutated K63R position (FIG. 5C left and right). This means that AIMP2 mediates to associate with K48 rather than K63. In contrast, variants lacking exon 3 showed little or no opposite effects compared to wild type. Since localization at K48 is associated with degradation of target proteins, these results also support that AIMP2 reduces TRAF2 through TNF-α dependent localization.

<실시예 7><Example 7>

AIMP2의 IAP1와 TRAF2 결합 촉진능 확인 시험IMP1 and TRAF2 binding promoter confirmation test of AIMP2

비록 상기의 결과들은 AIMP2가 TRAF2의 편재화를 촉진함을 시사하지만, 어떻게 유비퀴틴이 이동되는지는 알려져 있지 않다. AIMP2 그 자체로는 유비퀴틴 결합 체계에서 결정적인 요소인 E1, E2 및 E3 효소활성을 보이지 않았다. 이에 본 발명자들은 TRAF2의 편재화 및 분해를 매개한다고 알려진 c-IAP1, E3 유비퀴틴 라이게이즈를 모델로 하여 AIMP2가 E3 유비퀴틴 라이게이즈가 이의 표적 단백질과 결합하는 것을 촉진하는지를 체크하였다. 첫번째 단계로서, AIMP2 의존적인 TRAF2의 하향류조절에서 c-IAP1의 중요성을 알아보았다. siRNA 기술을 이용하여, c-IAP1의 발현을 억제하고 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)가 어떻게 세포내 TRAF2 수준에 영향을 주는지 조사하였다. 야생형 AIMP2만을 도입한 대조군 세포에서는 TRAF2가 감소하였고 추후의 TNF-α처리에 의하여 증가하였다(도 6A 좌측). 그러나, siRNA 에 의해 c-IAP1의 발현을 억제하였을 때에는 TRAF2에 대한 AIMP2의 효과는 관찰되지 않았는데(도 6A 우측), 이는 AIMP2 의존적인 TRAF2의 하향류조절에 c-IAP1이 관여함을 뒷받침한다. 본 발명자들은 이후 AIMP2가 c-IAP1와 TRAF2의 결합을 촉진하는지를 조사하였다. Flag가 표지된c-IAP1을 야생형 Myc-AIMP2 또는 엑손 2가 결여된 변이체(AIMP2-DX2)와 함께 293 세포에 도입하였다. 이후 TRAF2를 이에 특이적인 항체와 면역침강시키고, AIMP2 단백질과 항체침전법을 실시하여, c-IAP1의 표적 단백질에 특이적이 항체로서 이를 확인하였다.Although the above results suggest that AIMP2 promotes the localization of TRAF2, it is not known how ubiquitin is transferred. AIMP2 by itself did not show the E1, E2 and E3 enzymatic activities, which are critical factors in the ubiquitin binding system. The inventors then checked whether AIMP2 promotes binding of E3 ubiquitin ligase to its target protein, modeling c-IAP1, E3 ubiquitin ligase, which is known to mediate the localization and degradation of TRAF2. As a first step, we examined the importance of c-IAP1 in the downflow regulation of AIMP2-dependent TRAF2. siRNA technology was used to investigate the expression of AIMP2 variants (AIMP2-DX2) that inhibited the expression of c-IAP1 and lacked wild-type AIMP2 and exon 2 and affected intracellular TRAF2 levels. TRAF2 was decreased in control cells in which only wild-type AIMP2 was introduced and increased by subsequent TNF-α treatment (FIG. 6A left). However, when the expression of c-IAP1 was inhibited by siRNA, the effect of AIMP2 on TRAF2 was not observed (right side of FIG. 6A), which supports the involvement of c-IAP1 in downflow regulation of AIMP2-dependent TRAF2. We then investigated whether AIMP2 promotes the binding of c-IAP1 and TRAF2. Flag-labeled c-IAP1 was introduced into 293 cells with wild type Myc-AIMP2 or variants lacking exon 2 (AIMP2-DX2). TRAF2 was then immunoprecipitated with an antibody specific to it, and antibody precipitation was performed with AIMP2 protein to identify it as an antibody specific for the target protein of c-IAP1.

상기 방법의 의한 c-IAP1의 양은 야생형 AIMP2에 의해서는 증가하였지만 엑손 2가 결여된 변이체(AIMP2-DX2)에 의해서는 그렇지 않았다(도 6B). 이는 c-IAP1과 TRAF2의 결합에 있어서 야생형 AIMP2의 양성적인 역할을 시사한다.The amount of c-IAP1 by this method was increased by wild type AIMP2 but not by variants lacking exon 2 (AIMP2-DX2) (FIG. 6B). This suggests a positive role of wild type AIMP2 in the binding of c-IAP1 and TRAF2.

야생형 AIMP2 및 엑손 2가 결여된AIMP2 변이체(AIMP2-DX2)는 TRAF2와 유사한 친화도로 결합하므로, 본 발명자들은 이들이 c-IAP1과 결합하는지를 확인하였다. Flag가 표지된 IAP1을 야생형 Myc-AIMP2 또는 엑손 2가 결여된 변이체(AIMP2-DX2)와 함께 293 세포에 도입하고, 항-Flag 항체와 면역침강 한 후, 야생형 AIMP2 및 엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2)를 항-Myc 항체를 이용한 웨스턴 블롯으로 확인하였다. 두 단백질 모두가 비슷한 수준으로 발현되었으나, 야생형 AIMP2만이 c-IAP1과 반응하였다(도 6C). 이는 엑손 2가 결여된 변이체(AIMP2-DX2)는 c-IAP1과의 결합능력을 상실하였음을 시사한다. 이러한 가능성은 in vitro 풀다운 어세이(in vitro pull-down assay)를 통하여 다시 확인하였다.Since wild-type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) bind with similar affinity to TRAF2, we identified whether they bind c-IAP1. Flag labeled IAP1 was introduced into 293 cells with wild type Myc-AIMP2 or exon 2 lacking variant (AIMP2-DX2), immunoprecipitated with anti-Flag antibody, and then AIMP2 variant lacking wild type AIMP2 and exon 2 (AIMP2-DX2) was confirmed by Western blot using anti-Myc antibody. Both proteins were expressed at similar levels, but only wild type AIMP2 reacted with c-IAP1 (FIG. 6C). This suggests that the variant lacking exon 2 (AIMP2-DX2) lost its ability to bind c-IAP1. This possibility was again confirmed by an in vitro pull-down assay.

우선, 야생형 AIMP2 및 엑손 2가 결여된AIMP2 변이체(AIMP2-DX2)를 [35S]메티오닌의 존재하에서 인위적으로 합성하였고(in vitro translation), GST 또는 GST가 표지된 c-IAP1과 혼합하였다. GST 단백질은 글루타티온-세파로스 비드로 떨어뜨리고 결합된 단백질들은 방사선 자동사진법을 통하여 확인하였다. 야생형 AIMP2는 GST 표지된 IAP1과 침전하였고, 변이체(AIMP2-DX2)는 그렇지 않았다(도 6D). 역으 로 c-IAP1를 [35S]메티오닌의 존재하에서 인위적으로 합성하였고(in vitro translation), GST 또는 GST가 표지된 야생형 AIMP2 또는 엑손 2가 결여된AIMP2 변이체(AIMP2-DX2)와 혼합하였다. GST 단백질은 글루타티온-세파로스 비드로 떨어뜨리고 결합된 단백질들은 방사선 자동사진법을 통하여 확인하였다. First, wild type AIMP2 and AIMP2 variants lacking exon 2 (AIMP2-DX2) were artificially synthesized in the presence of [ 35 S] methionine and mixed with G- or GST-labeled c-IAP1. GST protein was dropped into glutathione-sepharose beads and bound proteins were confirmed by radiograph. Wild type AIMP2 precipitated with GST labeled IAP1, but not variants (AIMP2-DX2) (FIG. 6D). Conversely, c-IAP1 was artificially synthesized in the presence of [ 35 S] methionine and mixed with GST or GST-labeled wild type AIMP2 or AIMP2 variant lacking exon 2 (AIMP2-DX2). GST protein was dropped into glutathione-sepharose beads and bound proteins were confirmed by radiograph.

상기의 결과와 같이, c-IAP1은 GST 표지된 야생형 AIMP2와 결합된 침전에서만 검출되었고, 변이체(AIMP2-DX2)는 그렇지 않았다(도 6E). 상기의 두 결과로 엑손 2가 결여된 변이체(AIMP2-DX2)는 c-IAP1과의 결합력 부재로 인하여 c-IA1이 TRAF2로 이동하도록 매개하지 못함을 입증한다.As above results, c-IAP1 was only detected in precipitation coupled with GST labeled wild type AIMP2, but not variants (AIMP2-DX2) (FIG. 6E). Both of these results demonstrate that the variant lacking exon 2 (AIMP2-DX2) does not mediate c-IA1 to TRAF2 due to lack of binding to c-IAP1.

<실시예 8><Example 8>

AIMP2-DX2의 Cox-2의 발현에 미치는 영향 확인Identification of the effect of AIMP2-DX2 on Cox-2 expression

상기와 같은 AIMP2/p38 및 AIMP2-DX2의 작용 기작을 바탕으로, AIMP2-DX2의 발현이 염증 마커인 Cox-2의 발현에 미치는 영향을 살펴보았다. 이를 위하여, 35mm 페트리디쉬에 A549 세포를 배양하고, 각각 si-control(si-cont), si-AIMP2-F(Si-F) or si-AIMP2-DX2(si-DX2) (human; 모두 Invitrogen사에 구입) 20nmol 짜리를 10μl을 리포펙타민 2000 5μl와 혼합하여 세포에 처리하였다. 48 시간이 지난 후, 각각의 처리군 중 한쪽에만 TNF-a (20ng/ml)를 처리한 후 6시간 동안 추가로 배양하였 다. 그 뒤 세포를 모은 다음 1% NP-40 , 0.5% 데옥시콜레이트(deoxycholate)가 들어있는 PBS를 이용해 세포를 용해(lysis)하여 시료를 만든 다음 SDS-PAGE를 수행하였다. 이를 대상으로, Cox-2, AIMP2-F, AIMP2-DX2에 대한 항체를 이용하여 각각 웨스턴 블럿을 수행하였다.Based on the mechanism of action of AIMP2 / p38 and AIMP2-DX2 as described above, the effects of the expression of AIMP2-DX2 on the expression of Cox-2, an inflammatory marker, were examined. To this end, A549 cells were cultured in 35 mm Petri dishes, and si-control (si-cont), si-AIMP2-F (Si-F) or si-AIMP2-DX2 (si-DX2) (human; all Invitrogen) 10 μl was mixed with 5 μl of Lipofectamine 2000 and treated with cells. After 48 hours, only one side of each treatment group was treated with TNF-a (20ng / ml) and further incubated for 6 hours. Then, the cells were collected, lysed cells using PBS containing 1% NP-40 and 0.5% deoxycholate to prepare a sample, followed by SDS-PAGE. To this end, Western blots were performed using antibodies against Cox-2, AIMP2-F, and AIMP2-DX2.

그 결과, 도 7에서 보듯이 TNF-α의 처리가 없는 경우 모두 Cox-2의 발현이 유되지 않았으나, TNF-α를 처리하는 경우 대조군(si-cont) 및 si-AIMP2-F 처리군에서는 Cox-2의 발현이 유도됨을 알 수 있었다. 하지만, si-DX2를 처리한 군에서는 TNF-α 신호가 오더라도, Cox-2의 발현이 일어나지 않는 것을 확인하였다. 따라서, AIMP2-DX2의 억제제가 염증 반응을 억제함을 알 수 있었다.As a result, as shown in FIG. 7, there was no expression of Cox-2 in the absence of treatment with TNF-α. It can be seen that the expression of -2 is induced. However, in the group treated with si-DX2, even if the TNF-α signal, it was confirmed that the expression of Cox-2 does not occur. Thus, it was found that inhibitors of AIMP2-DX2 inhibited the inflammatory response.

아울러, 서열번호 8(도 8의 Si-DX2의 레인 1), 서열번호 17(도 8의 Si-DX2의 레인 2), 서열번호 20(도 8의 Si-DX2의 레인 3), 서열번호 21(도 8의 Si-DX2의 레인 4), 서열번호 24(도 8의 Si-DX2의 레인 5), 서열번호 23(도 8의 Si-DX2의 레인 6), 서열번호 106(도 8의 Si-DX2의 레인 7) 및 서열번호 105(도 8의 Si-DX2의 레인 8)의 siRNA를 이용하여 상기에서 기재한 방법과 같이 처리한 결과, 도 8에서 보듯이, 이들 모두 정도의 차이는 있지만, AIMP2-DX2의 발현을 억제하였으며, 그 결과로 Cox-2의 발현을 억제함을 알 수 있었다. 이 때, 레인 2 내지 레인 4는 해당 서열의 안티센스 서열도 동시에 처리하였다.In addition, SEQ ID NO: 8 (lane 1 of Si-DX2 in FIG. 8), SEQ ID NO: 17 (lane 2 of Si-DX2 in FIG. 8), SEQ ID NO: 20 (lane 3 of Si-DX2 in FIG. 8), SEQ ID NO: 21 (Lane 4 of Si-DX2 of FIG. 8), SEQ ID NO: 24 (lane 5 of Si-DX2 of FIG. 8), SEQ ID NO: 23 (lane 6 of Si-DX2 of FIG. 8), SEQ ID NO: 106 (Si of FIG. 8 As a result of the method described above using the siRNA of -DX2 lane 7) and SEQ ID NO: 105 (lane 8 of Si-DX2 of FIG. 8), as shown in FIG. , Inhibiting the expression of AIMP2-DX2, and as a result it was found that inhibiting the expression of Cox-2. At this time, lanes 2 to 4 also treated the antisense sequence of the sequence at the same time.

본 발명에서는 AIMP2/p38가 TRAF2를 유비퀴틴화하는 것을 촉진하여 TNF-α에 의해 유도되는 세포 사멸을 조절하며, AIMP2/p38의 스플라이싱 변이체인 AIMP2-DX2가 AIMP2와 경쟁적 저해제로 작용하여 TRAF2의 유비퀴틴을 억제하여 TNF-α에 의한 세포 사멸을 억제함으로서 종양생성을 촉진하는 점 및 염증 마커인 Cox-2의 발현을 저해함을 밝혔다. 따라서 AIMP2-DX2 억제제는 염증성 질환의 예방 및 치료의 목적으로 사용될 수 있다. In the present invention, AIMP2 / p38 promotes ubiquitination of TRAF2 to regulate TNF-α-induced cell death, and AIMP2-DX2, a splicing variant of AIMP2 / p38, acts as a competitive inhibitor to AIMP2, Inhibition of cell death by TNF-α by inhibiting ubiquitin has been shown to inhibit tumor expression and Cox-2, an inflammatory marker. Thus, AIMP2-DX2 inhibitors can be used for the purpose of preventing and treating inflammatory diseases.

도 1은 엑손 2가 결실된 AIMP2-DX2의 조직특이적인 발현을 나타낸 것이다.Figure 1 shows tissue specific expression of AIMP2-DX2 deleted exon 2.

도 2는 TNF-α에 의해 유도되는 세포 사멸에 AIMP2와 AIMP2-DX2의 antagonostic 효과를 나타낸 것이다.Figure 2 shows the antagonostic effect of AIMP2 and AIMP2-DX2 on cell death induced by TNF-α.

도 3은 AIMP2 및 AIMP2-DX2와 TRAF2이 경쟁적으로 결합하는 것을 나타낸 것이다.3 shows AIMP2 and AIMP2-DX2 and TRAF2 competitively binding.

도 4는 AIMP2가 TRAF2를 downregulate하는 것을 나타낸 것이다.4 shows that AIMP2 downregulates TRAF2.

도 5는 AIMP2가 TRAF2의 유비퀴틴을 매개하는 것을 나타낸 것이다.5 shows that AIMP2 mediates the ubiquitin of TRAF2.

도 6은 AIMP2가 c-IAP1과 TRAF2의 결합을 촉진하는 것을 나타낸 것이다.Figure 6 shows that AIMP2 promotes the binding of c-IAP1 and TRAF2.

도 7은 AIMP2-DX2의 억제가 TNF-α에 의해서 유도된 염증 반응을 억제함을 나타낸 것이다.Figure 7 shows that inhibition of AIMP2-DX2 inhibits the inflammatory response induced by TNF-α.

도 8에서는 다양한 AIMP2-DX2에 대한 siRNA가 TNF-α에 의해서 유도된 염증 반응을 억제함을 나타낸다.8 shows that siRNAs against various AIMP2-DX2 inhibit inflammatory responses induced by TNF-α.

<110> Seoul National University Industry Foundation Neomics Co. LTD <120> Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient <130> NP08-0129 <150> KR10-2007-0114520 <151> 2007-11-09 <160> 147 <170> KopatentIn 1.71 <210> 1 <211> 935 <212> DNA <213> Homo sapiens <400> 1 tgccgatgta ccaggtaaag ccctatcacg ggggcggcgc gcctctccgt gtggagcttc 60 ccacctgcat gtaccggctc cccaacgtgc acggcaggag ctacggccca gcgccgggcg 120 ctggccacgt gcaggaagag tctaacctgt ctctgcaagc tcttgagtcc cgccaagatg 180 atattttaaa acgtctgtat gagttgaaag ctgcagttga tggcctctcc aagatgattc 240 aaacaccaga tgcagacttg gatgtaacca acataatcca agcggatgag cccacgactt 300 taaccaccaa tgcgctggac ttgaattcag tgcttgggaa ggattacggg gcgctgaaag 360 acatcgtgat caacgcaaac ccggcctccc ctcccctctc cctgcttgtg ctgcacaggc 420 tgctctgtga gcacttcagg gtcctgtcca cggtgcacac gcactcctcg gtcaagagcg 480 tgcctgaaaa ccttctcaag tgctttggag aacagaataa aaaacagccc cgccaagact 540 atcagctggg attcacttta atttggaaga atgtgccgaa gacgcagatg aaattcagca 600 tccagacgat gtgccccatc gaaggcgaag ggaacattgc acgtttcttg ttctctctgt 660 ttggccagaa gcataatgct gtcaacgcaa cccttataga tagctgggta gatattgcga 720 tttttcagtt aaaagaggga agcagtaaag aaaaagccgc tgttttccgc tccatgaact 780 ctgctcttgg gaagagccct tggctcgctg ggaatgaact caccgtagca gacgtggtgc 840 tgtggtctgt actccagcag atcggaggct gcagtgtgac agtgccagcc aatgtgcaga 900 ggtggatgag gtcttgtgaa aacctggctc ctttt 935 <210> 2 <211> 312 <212> PRT <213> Homo sapiens <400> 2 Met Pro Met Tyr Gln Val Lys Pro Tyr His Gly Gly Gly Ala Pro Leu 1 5 10 15 Arg Val Glu Leu Pro Thr Cys Met Tyr Arg Leu Pro Asn Val His Gly 20 25 30 Arg Ser Tyr Gly Pro Ala Pro Gly Ala Gly His Val Gln Glu Glu Ser 35 40 45 Asn Leu Ser Leu Gln Ala Leu Glu Ser Arg Gln Asp Asp Ile Leu Lys 50 55 60 Arg Leu Tyr Glu Leu Lys Ala Ala Val Asp Gly Leu Ser Lys Met Ile 65 70 75 80 Gln Thr Pro Asp Ala Asp Leu Asp Val Thr Asn Ile Ile Gln Ala Asp 85 90 95 Glu Pro Thr Thr Leu Thr Thr Asn Ala Leu Asp Leu Asn Ser Val Leu 100 105 110 Gly Lys Asp Tyr Gly Ala Leu Lys Asp Ile Val Ile Asn Ala Asn Pro 115 120 125 Ala Ser Pro Pro Leu Ser Leu Leu Val Leu His Arg Leu Leu Cys Glu 130 135 140 His Phe Arg Val Leu Ser Thr Val His Thr His Ser Ser Val Lys Ser 145 150 155 160 Val Pro Glu Asn Leu Leu Lys Cys Phe Gly Glu Gln Asn Lys Lys Gln 165 170 175 Pro Arg Gln Asp Tyr Gln Leu Gly Phe Thr Leu Ile Trp Lys Asn Val 180 185 190 Pro Lys Thr Gln Met Lys Phe Ser Ile Gln Thr Met Cys Pro Ile Glu 195 200 205 Gly Glu Gly Asn Ile Ala Arg Phe Leu Phe Ser Leu Phe Gly Gln Lys 210 215 220 His Asn Ala Val Asn Ala Thr Leu Ile Asp Ser Trp Val Asp Ile Ala 225 230 235 240 Ile Phe Gln Leu Lys Glu Gly Ser Ser Lys Glu Lys Ala Ala Val Phe 245 250 255 Arg Ser Met Asn Ser Ala Leu Gly Lys Ser Pro Trp Leu Ala Gly Asn 260 265 270 Glu Leu Thr Val Ala Asp Val Val Leu Trp Ser Val Leu Gln Gln Ile 275 280 285 Gly Gly Cys Ser Val Thr Val Pro Ala Asn Val Gln Arg Trp Met Arg 290 295 300 Ser Cys Glu Asn Leu Ala Pro Phe 305 310 <210> 3 <211> 756 <212> DNA <213> Homo sapiens <400> 3 atgccgatgt accaggtaaa gccctatcac gggggcggcg cgcctctccg tgtggagctt 60 cccacctgca tgtaccggct ccccaacgtg cacggcagga gctacggccc agcgccgggc 120 gctggccacg tgcaggatta cggggcgctg aaagacatcg tgatcaacgc aaacccggcc 180 tcccctcccc tctccctgct tgtgctgcac aggctgctct gtgagcactt cagggtcctg 240 tccacggtgc acacgcactc ctcggtcaag agcgtgcctg aaaaccttct caagtgcttt 300 ggagaacaga ataaaaaaca gccccgccaa gactatcagc tgggattcac tttaatttgg 360 aagaatgtgc cgaagacgca gatgaaattc agcatccaga cgatgtgccc catcgaaggc 420 gaagggaaca ttgcacgttt cttgttctct ctgtttggcc agaagcataa tgctgtcaac 480 gcaaccctta tagatagctg ggtagatatt gcgatttttc agttaaaaga gggaagcagt 540 aaagaaaaag ccgctgtttt ccgctccatg aactctgctc ttgggaagag cccttggctc 600 gctgggaatg aactcaccgt agcagacgtg gtgctgtggt ctgtactcca gcagatcgga 660 ggctgcagtg tgacagtgcc agccaatgtg cagaggtgga tgaggtcttg tgaaaacctg 720 gctcctttta acacggccct caagctcctt aagtga 756 <210> 4 <211> 251 <212> PRT <213> Homo sapiens <400> 4 Met Pro Met Tyr Gln Val Lys Pro Tyr His Gly Gly Gly Ala Pro Leu 1 5 10 15 Arg Val Glu Leu Pro Thr Cys Met Tyr Arg Leu Pro Asn Val His Gly 20 25 30 Arg Ser Tyr Gly Pro Ala Pro Gly Ala Gly His Val Gln Asp Tyr Gly 35 40 45 Ala Leu Lys Asp Ile Val Ile Asn Ala Asn Pro Ala Ser Pro Pro Leu 50 55 60 Ser Leu Leu Val Leu His Arg Leu Leu Cys Glu His Phe Arg Val Leu 65 70 75 80 Ser Thr Val His Thr His Ser Ser Val Lys Ser Val Pro Glu Asn Leu 85 90 95 Leu Lys Cys Phe Gly Glu Gln Asn Lys Lys Gln Pro Arg Gln Asp Tyr 100 105 110 Gln Leu Gly Phe Thr Leu Ile Trp Lys Asn Val Pro Lys Thr Gln Met 115 120 125 Lys Phe Ser Ile Gln Thr Met Cys Pro Ile Glu Gly Glu Gly Asn Ile 130 135 140 Ala Arg Phe Leu Phe Ser Leu Phe Gly Gln Lys His Asn Ala Val Asn 145 150 155 160 Ala Thr Leu Ile Asp Ser Trp Val Asp Ile Ala Ile Phe Gln Leu Lys 165 170 175 Glu Gly Ser Ser Lys Glu Lys Ala Ala Val Phe Arg Ser Met Asn Ser 180 185 190 Ala Leu Gly Lys Ser Pro Trp Leu Ala Gly Asn Glu Leu Thr Val Ala 195 200 205 Asp Val Val Leu Trp Ser Val Leu Gln Gln Ile Gly Gly Cys Ser Val 210 215 220 Thr Val Pro Ala Asn Val Gln Arg Trp Met Arg Ser Cys Glu Asn Leu 225 230 235 240 Ala Pro Phe Asn Thr Ala Leu Lys Leu Leu Lys 245 250 <210> 5 <211> 1236 <212> DNA <213> Homo sapiens <400> 5 ccgaacgccc gcagcagggt cagaagggag gtggccggtc tccgtcgtga cctctgacgg 60 tttctgagcg ttggcctttg gcacgcgcta cccccttttg ctttggttct gccatgccga 120 tgtaccaggt aaagccctat cacgggggcg gcgcgcctct ccgtgtggag cttcccacct 180 gcatgtaccg gctccccaac gtgcacggca ggagctacgg cccagcgccg ggcgctggcc 240 acgtgcagga agagtctaac ctgtctctgc aagctcttga gtcccgccaa gatgatattt 300 taaaacgtct gtatgagttg aaagctgcag ttgatggcct ctccaagatg attcaaacac 360 cagatgcaga cttggatgta accaacataa tccaagcgga tgagcccacg actttaacca 420 ccaatgcgct ggacttgaat tcagtgcttg ggaaggatta cggggcgctg aaagacatcg 480 tgatcaacgc aaacccggcc tcccctcccc tctccctgct tgtgctgcac aggctgctct 540 gtgagcactt cagggtcctg tccacggtgc acacgcactc ctcggtcaag agcgtgcctg 600 aaaaccttct caagtgcttt ggagaacaga ataaaaaaca gccccgccaa gactatcagc 660 tgggattcac tttaatttgg aagaatgtgc cgaagacgca gatgaaattc agcatccaga 720 cgatgtgccc catcgaaggc gaagggaaca ttgcacgttt cttgttctct ctgtttggcc 780 agaagcataa tgctgtcaac gcaaccctta tagatagctg ggtagatatt gcgatttttc 840 agttaaaaga gggaagcagt aaagaaaaag ccgctgtttt ccgctccatg aactctgctc 900 ttgggaagag cccttggctc gctgggaatg aactcaccgt agcagacgtg gtgctgtggt 960 ctgtactcca gcagatcgga ggctgcagtg tgacagtgcc agccaatgtg cagaggtgga 1020 tgaggtcttg tgaaaacctg gctcctttta acacggccct caagctcctt aagtgaattg 1080 ccgtaactga ttttaaaggg tttagatttt aagaatggtg ctctttcatg cctattatca 1140 gtaaggggac ttgtattaga gtcagagtct ttttatttag gccagttgtc aagtgtcaat 1200 aaaagcatca tgtaatttaa aaaaaaaaaa aaaaaa 1236 <210> 6 <211> 320 <212> PRT <213> Homo sapiens <400> 6 Met Pro Met Tyr Gln Val Lys Pro Tyr His Gly Gly Gly Ala Pro Leu 1 5 10 15 Arg Val Glu Leu Pro Thr Cys Met Tyr Arg Leu Pro Asn Val His Gly 20 25 30 Arg Ser Tyr Gly Pro Ala Pro Gly Ala Gly His Val Gln Glu Glu Ser 35 40 45 Asn Leu Ser Leu Gln Ala Leu Glu Ser Arg Gln Asp Asp Ile Leu Lys 50 55 60 Arg Leu Tyr Glu Leu Lys Ala Ala Val Asp Gly Leu Ser Lys Met Ile 65 70 75 80 Gln Thr Pro Asp Ala Asp Leu Asp Val Thr Asn Ile Ile Gln Ala Asp 85 90 95 Glu Pro Thr Thr Leu Thr Thr Asn Ala Leu Asp Leu Asn Ser Val Leu 100 105 110 Gly Lys Asp Tyr Gly Ala Leu Lys Asp Ile Val Ile Asn Ala Asn Pro 115 120 125 Ala Ser Pro Pro Leu Ser Leu Leu Val Leu His Arg Leu Leu Cys Glu 130 135 140 His Phe Arg Val Leu Ser Thr Val His Thr His Ser Ser Val Lys Ser 145 150 155 160 Val Pro Glu Asn Leu Leu Lys Cys Phe Gly Glu Gln Asn Lys Lys Gln 165 170 175 Pro Arg Gln Asp Tyr Gln Leu Gly Phe Thr Leu Ile Trp Lys Asn Val 180 185 190 Pro Lys Thr Gln Met Lys Phe Ser Ile Gln Thr Met Cys Pro Ile Glu 195 200 205 Gly Glu Gly Asn Ile Ala Arg Phe Leu Phe Ser Leu Phe Gly Gln Lys 210 215 220 His Asn Ala Val Asn Ala Thr Leu Ile Asp Ser Trp Val Asp Ile Ala 225 230 235 240 Ile Phe Gln Leu Lys Glu Gly Ser Ser Lys Glu Lys Ala Ala Val Phe 245 250 255 Arg Ser Met Asn Ser Ala Leu Gly Lys Ser Pro Trp Leu Ala Gly Asn 260 265 270 Glu Leu Thr Val Ala Asp Val Val Leu Trp Ser Val Leu Gln Gln Ile 275 280 285 Gly Gly Cys Ser Val Thr Val Pro Ala Asn Val Gln Arg Trp Met Arg 290 295 300 Ser Cys Glu Asn Leu Ala Pro Phe Asn Thr Ala Leu Lys Leu Leu Lys 305 310 315 320 <210> 7 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> siRNA for AIMP2 <400> 7 agagcuugca gagacagguu agacu 25 <210> 8 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> siRNA for AIMP2-DX2 <400> 8 ucagcgcccc guaauccugc acgug 25 <210> 9 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 #3 coding nucleic acid sequence 1 <400> 9 tcgaggccac gtgcaggtta cgggagtagg ccgtaatcct gcacgtggcc tttt 54 <210> 10 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 #3 coding nucleic acid sequence 2 <400> 10 ctagaaaagg ccacgtgcag gattacggca gactcccgta atcctgcacg tggcc 55 <210> 11 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 #4 coding nucleic acid sequence 1 <400> 11 tcgagctggc cacgtgcagg attacgagta ctggtaatcc tgcacgtggc cagctttt 58 <210> 12 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 #4 coding nucleic acid sequence 2 <400> 12 ctagaaaagc tggccacgtg caggattacc agtactcgta atcctgcacg tggccagc 58 <210> 13 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 #5 coding nucleic acid sequence 1 <400> 13 tcgacacgtg caggattacg gggcgagtac tggccccgta atcctgcacg tgtttt 56 <210> 14 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 #5 coding nucleic acid sequence 2 <400> 14 ctagaaaaca cgtgcaggat tacggggcca gtactcgccc cgtaatcctg cacgtg 56 <210> 15 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> siRNA of AIMP2-F <400> 15 agucuaaccu gucucugcaa gcucu 25 <210> 16 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> shRNA sequence of AIMP2-DX2 <400> 16 tcgagctggc cacgtgcagg attacgagta ctggtaatcc tgcacgtggc cagctttt 58 <210> 17 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> AIMP2-DX2 siRNA 19mer #1 <400> 17 cuggccacgu gcaggauua 19 <210> 18 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> AIMP2-DX2 siRNA of 19mer #2 <400> 18 uggccacgug caggauuac 19 <210> 19 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> AIMP2-DX2 siRNA of 19mer #3 <400> 19 ggccacgugc aggauuacg 19 <210> 20 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA #4 <400> 20 gccacgugca ggauuacgg 19 <210> 21 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA #5 <400> 21 ccacgugcag gauuacggg 19 <210> 22 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA #6 <400> 22 cacgugcagg auuacgggg 19 <210> 23 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA #7 <400> 23 acgugcagga uuacggggc 19 <210> 24 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA #8 <400> 24 cgugcaggau uacggggcg 19 <210> 25 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA #9 <400> 25 gugcaggauu acggggcgc 19 <210> 26 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA #10 <400> 26 ugcaggauua cggggcgcu 19 <210> 27 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #1 <400> 27 gcuggccacg ugcaggauua 20 <210> 28 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #2 <400> 28 cuggccacgu gcaggauuac 20 <210> 29 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #3 <400> 29 uggccacgug caggauuacg 20 <210> 30 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #4 <400> 30 ggccacgugc aggauuacgg 20 <210> 31 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #5 <400> 31 gccacgugca ggauuacggg 20 <210> 32 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #6 <400> 32 ccacgugcag gauuacgggg 20 <210> 33 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #7 <400> 33 cacgugcagg auuacggggc 20 <210> 34 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #8 <400> 34 acgugcagga uuacggggcg 20 <210> 35 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #9 <400> 35 cgugcaggau uacggggcgc 20 <210> 36 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #10 <400> 36 gugcaggauu acggggcgcu 20 <210> 37 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA #11 <400> 37 ugcaggauua cggggcgcug 20 <210> 38 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #1 <400> 38 cgcuggccac gugcaggauu a 21 <210> 39 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #2 <400> 39 gcuggccacg ugcaggauua c 21 <210> 40 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #3 <400> 40 cuggccacgu gcaggauuac g 21 <210> 41 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #4 <400> 41 uggccacgug caggauuacg g 21 <210> 42 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #5 <400> 42 ggccacgugc aggauuacgg g 21 <210> 43 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #6 <400> 43 gccacgugca ggauuacggg g 21 <210> 44 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #7 <400> 44 ccacgugcag gauuacgggg c 21 <210> 45 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #8 <400> 45 cacgugcagg auuacggggc g 21 <210> 46 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #9 <400> 46 acgugcagga uuacggggcg c 21 <210> 47 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #10 <400> 47 cgugcaggau uacggggcgc u 21 <210> 48 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #11 <400> 48 gugcaggauu acggggcgcu g 21 <210> 49 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA #12 <400> 49 ugcaggauua cggggcgcug a 21 <210> 50 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #1 <400> 50 gcgcuggcca cgugcaggau ua 22 <210> 51 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #2 <400> 51 cgcuggccac gugcaggauu ac 22 <210> 52 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #3 <400> 52 gcuggccacg ugcaggauua cg 22 <210> 53 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #4 <400> 53 cuggccacgu gcaggauuac gg 22 <210> 54 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #5 <400> 54 uggccacgug caggauuacg gg 22 <210> 55 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #6 <400> 55 ggccacgugc aggauuacgg gg 22 <210> 56 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #7 <400> 56 gccacgugca ggauuacggg gc 22 <210> 57 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #8 <400> 57 ccacgugcag gauuacgggg cg 22 <210> 58 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #9 <400> 58 cacgugcagg auuacggggc gc 22 <210> 59 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #10 <400> 59 acgugcagga uuacggggcg cu 22 <210> 60 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #10 <400> 60 acgugcagga uuacggggcg cu 22 <210> 61 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #11 <400> 61 cgugcaggau uacggggcgc ug 22 <210> 62 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #12 <400> 62 gugcaggauu acggggcgcu ga 22 <210> 63 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA #13 <400> 63 ugcaggauua cggggcgcug aa 22 <210> 64 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #1 <400> 64 ggcgcuggcc acgugcagga uua 23 <210> 65 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #2 <400> 65 gcgcuggcca cgugcaggau uac 23 <210> 66 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #3 <400> 66 cgcuggccac gugcaggauu acg 23 <210> 67 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #4 <400> 67 gcuggccacg ugcaggauua cgg 23 <210> 68 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #5 <400> 68 cuggccacgu gcaggauuac ggg 23 <210> 69 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #6 <400> 69 uggccacgug caggauuacg ggg 23 <210> 70 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #7 <400> 70 ggccacgugc aggauuacgg ggc 23 <210> 71 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #8 <400> 71 gccacgugca ggauuacggg gcg 23 <210> 72 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #9 <400> 72 ccacgugcag gauuacgggg cgc 23 <210> 73 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #10 <400> 73 cacgugcagg auuacggggc gcu 23 <210> 74 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #11 <400> 74 acgugcagga uuacggggcg cug 23 <210> 75 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #12 <400> 75 cgugcaggau uacggggcgc uga 23 <210> 76 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #13 <400> 76 gugcaggauu acggggcgcu gaa 23 <210> 77 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA #14 <400> 77 ugcaggauua cggggcgcug aaa 23 <210> 78 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #1 <400> 78 gggcgcuggc cacgugcagg auua 24 <210> 79 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #2 <400> 79 ggcgcuggcc acgugcagga uuac 24 <210> 80 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #3 <400> 80 gcgcuggcca cgugcaggau uacg 24 <210> 81 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #4 <400> 81 cgcuggccac gugcaggauu acgg 24 <210> 82 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #5 <400> 82 gcuggccacg ugcaggauua cggg 24 <210> 83 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #6 <400> 83 cuggccacgu gcaggauuac gggg 24 <210> 84 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #7 <400> 84 uggccacgug caggauuacg gggc 24 <210> 85 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #8 <400> 85 ggccacgugc aggauuacgg ggcg 24 <210> 86 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #9 <400> 86 gccacgugca ggauuacggg gcgc 24 <210> 87 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #10 <400> 87 ccacgugcag gauuacgggg cgcu 24 <210> 88 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #11 <400> 88 cacgugcagg auuacggggc gcug 24 <210> 89 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #12 <400> 89 acgugcagga uuacggggcg cuga 24 <210> 90 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #13 <400> 90 cgugcaggau uacggggcgc ugaa 24 <210> 91 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #14 <400> 91 gugcaggauu acggggcgcu gaaa 24 <210> 92 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA #15 <400> 92 ugcaggauua cggggcgcug aaag 24 <210> 93 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #1 <400> 93 cgggcgcugg ccacgugcag gauua 25 <210> 94 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #2 <400> 94 gggcgcuggc cacgugcagg auuac 25 <210> 95 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #3 <400> 95 ggcgcuggcc acgugcagga uuacg 25 <210> 96 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #4 <400> 96 gcgcuggcca cgugcaggau uacgg 25 <210> 97 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #5 <400> 97 cgcuggccac gugcaggauu acggg 25 <210> 98 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #6 <400> 98 gcuggccacg ugcaggauua cgggg 25 <210> 99 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #7 <400> 99 cuggccacgu gcaggauuac ggggc 25 <210> 100 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #8 <400> 100 uggccacgug caggauuacg gggcg 25 <210> 101 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #9 <400> 101 ggccacgugc aggauuacgg ggcgc 25 <210> 102 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #10 <400> 102 gccacgugca ggauuacggg gcgcu 25 <210> 103 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #11 <400> 103 ccacgugcag gauuacgggg cgcug 25 <210> 104 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #12 <400> 104 cacgugcagg auuacggggc gcuga 25 <210> 105 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #13 <400> 105 acgugcagga uuacggggcg cugaa 25 <210> 106 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #14 <400> 106 cgugcaggau uacggggcgc ugaaa 25 <210> 107 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #15 <400> 107 gugcaggauu acggggcgcu gaaag 25 <210> 108 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA #16 <400> 108 ugcaggauua cggggcgcug aaaga 25 <210> 109 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #1 <400> 109 ccgggcgcug gccacgugca ggauua 26 <210> 110 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #2 <400> 110 cgggcgcugg ccacgugcag gauuac 26 <210> 111 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #3 <400> 111 gggcgcuggc cacgugcagg auuacg 26 <210> 112 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #4 <400> 112 ggcgcuggcc acgugcagga uuacgg 26 <210> 113 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #5 <400> 113 gcgcuggcca cgugcaggau uacggg 26 <210> 114 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #6 <400> 114 cgcuggccac gugcaggauu acgggg 26 <210> 115 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #7 <400> 115 gcuggccacg ugcaggauua cggggc 26 <210> 116 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #8 <400> 116 cuggccacgu gcaggauuac ggggcg 26 <210> 117 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #9 <400> 117 uggccacgug caggauuacg gggcgc 26 <210> 118 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #10 <400> 118 ggccacgugc aggauuacgg ggcgcu 26 <210> 119 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #11 <400> 119 gccacgugca ggauuacggg gcgcug 26 <210> 120 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #12 <400> 120 ccacgugcag gauuacgggg cgcuga 26 <210> 121 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #13 <400> 121 cacgugcagg auuacggggc gcugaa 26 <210> 122 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #14 <400> 122 acgugcagga uuacggggcg cugaaa 26 <210> 123 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #15 <400> 123 cgugcaggau uacggggcgc ugaaag 26 <210> 124 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #16 <400> 124 gugcaggauu acggggcgcu gaaaga 26 <210> 125 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA #17 <400> 125 ugcaggauua cggggcgcug aaagac 26 <210> 126 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #1 <400> 126 gccgggcgcu ggccacgugc aggauua 27 <210> 127 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #2 <400> 127 ccgggcgcug gccacgugca ggauuac 27 <210> 128 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #3 <400> 128 cgggcgcugg ccacgugcag gauuacg 27 <210> 129 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #4 <400> 129 gggcgcuggc cacgugcagg auuacgg 27 <210> 130 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #5 <400> 130 ggcgcuggcc acgugcagga uuacggg 27 <210> 131 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #6 <400> 131 gcgcuggcca cgugcaggau uacgggg 27 <210> 132 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #7 <400> 132 cgcuggccac gugcaggauu acggggc 27 <210> 133 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #8 <400> 133 gcuggccacg ugcaggauua cggggcg 27 <210> 134 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #9 <400> 134 cuggccacgu gcaggauuac ggggcgc 27 <210> 135 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #10 <400> 135 uggccacgug caggauuacg gggcgcu 27 <210> 136 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #11 <400> 136 ggccacgugc aggauuacgg ggcgcug 27 <210> 137 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #12 <400> 137 gccacgugca ggauuacggg gcgcuga 27 <210> 138 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #13 <400> 138 ccacgugcag gauuacgggg cgcugaa 27 <210> 139 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #14 <400> 139 cacgugcagg auuacggggc gcugaaa 27 <210> 140 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #15 <400> 140 acgugcagga uuacggggcg cugaaag 27 <210> 141 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #16 <400> 141 cgugcaggau uacggggcgc ugaaaga 27 <210> 142 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #17 <400> 142 gugcaggauu acggggcgcu gaaagac 27 <210> 143 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA #18 <400> 143 ugcaggauua cggggcgcug aaagaca 27 <210> 144 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> shRNA sequence of mouse AIMP2-DX2 <400> 144 tcgagcgggc cacgtgcagg actattcaag agatagtcct gcacgtggcc cgctttt 57 <210> 145 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> mouse siRNA for AIMP2-DX2 <400> 145 gcgggccacg ugcaggacua uu 22 <210> 146 <211> 729 <212> DNA <213> Homo sapiens <400> 146 atgccgatgt accaggtaaa gccctatcac gggggcggcg cgcctctccg tgtggagctt 60 cccacctgca tgtaccggct ccccaacgtg cacggcagga gctacggccc agcgccgggc 120 gctggccacg tgcaggatta cggggcgctg aaagacatcg tgatcaacgc aaacccggcc 180 tcccctcccc tctccctgct tgtgctgcac aggctgctct gtgagcactt cagggtcctg 240 tccacggtgc acacgcactc ctcggtcaag agcgtgcctg aaaaccttct caagtgcttt 300 ggagaacaga ataaaaaaca gccccgccaa gactatcagc tgggattcac tttaatttgg 360 aagaatgtgc cgaagacgca gatgaaattc agcatccaga cgatgtgccc catcgaaggc 420 gaagggaaca ttgcacgttt cttgttctct ctgtttggcc agaagcataa tgctgtcaac 480 gcaaccctta tagatagctg ggtagatatt gcgatttttc agttaaaaga gggaagcagt 540 aaagaaaaag ccgctgtttt ccgctccatg aactctgctc ttgggaagag cccttggctc 600 gctgggaatg aactcaccgt agcagacgtg gtgctgtggt ctgtactcca gcagatcgga 660 ggctgcagtg tgacagtgcc agccaatgtg cagaggtgga tgaggtcttg tgaaaacctg 720 gctcctttt 729 <210> 147 <211> 243 <212> PRT <213> Homo sapiens <400> 147 Met Pro Met Tyr Gln Val Lys Pro Tyr His Gly Gly Gly Ala Pro Leu 1 5 10 15 Arg Val Glu Leu Pro Thr Cys Met Tyr Arg Leu Pro Asn Val His Gly 20 25 30 Arg Ser Tyr Gly Pro Ala Pro Gly Ala Gly His Val Gln Asp Tyr Gly 35 40 45 Ala Leu Lys Asp Ile Val Ile Asn Ala Asn Pro Ala Ser Pro Pro Leu 50 55 60 Ser Leu Leu Val Leu His Arg Leu Leu Cys Glu His Phe Arg Val Leu 65 70 75 80 Ser Thr Val His Thr His Ser Ser Val Lys Ser Val Pro Glu Asn Leu 85 90 95 Leu Lys Cys Phe Gly Glu Gln Asn Lys Lys Gln Pro Arg Gln Asp Tyr 100 105 110 Gln Leu Gly Phe Thr Leu Ile Trp Lys Asn Val Pro Lys Thr Gln Met 115 120 125 Lys Phe Ser Ile Gln Thr Met Cys Pro Ile Glu Gly Glu Gly Asn Ile 130 135 140 Ala Arg Phe Leu Phe Ser Leu Phe Gly Gln Lys His Asn Ala Val Asn 145 150 155 160 Ala Thr Leu Ile Asp Ser Trp Val Asp Ile Ala Ile Phe Gln Leu Lys 165 170 175 Glu Gly Ser Ser Lys Glu Lys Ala Ala Val Phe Arg Ser Met Asn Ser 180 185 190 Ala Leu Gly Lys Ser Pro Trp Leu Ala Gly Asn Glu Leu Thr Val Ala 195 200 205 Asp Val Val Leu Trp Ser Val Leu Gln Gln Ile Gly Gly Cys Ser Val 210 215 220 Thr Val Pro Ala Asn Val Gln Arg Trp Met Arg Ser Cys Glu Asn Leu 225 230 235 240 Ala Pro Phe <110> Seoul National University Industry Foundation          Neomics Co. LTD <120> Composition for preventing and treating inflammatory diseases          comprising inhibitor of AIMP2-DX2 as an active ingredient <130> NP08-0129 <150> KR10-2007-0114520 <151> 2007-11-09 <160> 147 <170> KopatentIn 1.71 <210> 1 <211> 935 <212> DNA <213> Homo sapiens <400> 1 tgccgatgta ccaggtaaag ccctatcacg ggggcggcgc gcctctccgt gtggagcttc 60 ccacctgcat gtaccggctc cccaacgtgc acggcaggag ctacggccca gcgccgggcg 120 ctggccacgt gcaggaagag tctaacctgt ctctgcaagc tcttgagtcc cgccaagatg 180 atattttaaa acgtctgtat gagttgaaag ctgcagttga tggcctctcc aagatgattc 240 aaacaccaga tgcagacttg gatgtaacca acataatcca agcggatgag cccacgactt 300 taaccaccaa tgcgctggac ttgaattcag tgcttgggaa ggattacggg gcgctgaaag 360 acatcgtgat caacgcaaac ccggcctccc ctcccctctc cctgcttgtg ctgcacaggc 420 tgctctgtga gcacttcagg gtcctgtcca cggtgcacac gcactcctcg gtcaagagcg 480 tgcctgaaaa ccttctcaag tgctttggag aacagaataa aaaacagccc cgccaagact 540 atcagctggg attcacttta atttggaaga atgtgccgaa gacgcagatg aaattcagca 600 tccagacgat gtgccccatc gaaggcgaag ggaacattgc acgtttcttg ttctctctgt 660 ttggccagaa gcataatgct gtcaacgcaa cccttataga tagctgggta gatattgcga 720 tttttcagtt aaaagaggga agcagtaaag aaaaagccgc tgttttccgc tccatgaact 780 ctgctcttgg gaagagccct tggctcgctg ggaatgaact caccgtagca gacgtggtgc 840 tgtggtctgt actccagcag atcggaggct gcagtgtgac agtgccagcc aatgtgcaga 900 ggtggatgag gtcttgtgaa aacctggctc ctttt 935 <210> 2 <211> 312 <212> PRT <213> Homo sapiens <400> 2 Met Pro Met Tyr Gln Val Lys Pro Tyr His Gly Gly Gly Ala Pro Leu   1 5 10 15 Arg Val Glu Leu Pro Thr Cys Met Tyr Arg Leu Pro Asn Val His Gly              20 25 30 Arg Ser Tyr Gly Pro Ala Pro Gly Ala Gly His Val Gln Glu Glu Ser          35 40 45 Asn Leu Ser Leu Gln Ala Leu Glu Ser Arg Gln Asp Asp Ile Leu Lys      50 55 60 Arg Leu Tyr Glu Leu Lys Ala Ala Val Asp Gly Leu Ser Lys Met Ile  65 70 75 80 Gln Thr Pro Asp Ala Asp Leu Asp Val Thr Asn Ile Ile Gln Ala Asp                  85 90 95 Glu Pro Thr Thr Leu Thr Thr Asn Ala Leu Asp Leu Asn Ser Val Leu             100 105 110 Gly Lys Asp Tyr Gly Ala Leu Lys Asp Ile Val Ile Asn Ala Asn Pro         115 120 125 Ala Ser Pro Pro Leu Ser Leu Leu Val Leu His Arg Leu Leu Cys Glu     130 135 140 His Phe Arg Val Leu Ser Thr Val His Thr His Ser Ser Val Lys Ser 145 150 155 160 Val Pro Glu Asn Leu Leu Lys Cys Phe Gly Glu Gln Asn Lys Lys Gln                 165 170 175 Pro Arg Gln Asp Tyr Gln Leu Gly Phe Thr Leu Ile Trp Lys Asn Val             180 185 190 Pro Lys Thr Gln Met Lys Phe Ser Ile Gln Thr Met Cys Pro Ile Glu         195 200 205 Gly Glu Gly Asn Ile Ala Arg Phe Leu Phe Ser Leu Phe Gly Gln Lys     210 215 220 His Asn Ala Val Asn Ala Thr Leu Ile Asp Ser Trp Val Asp Ile Ala 225 230 235 240 Ile Phe Gln Leu Lys Glu Gly Ser Ser Lys Glu Lys Ala Ala Val Phe                 245 250 255 Arg Ser Met Asn Ser Ala Leu Gly Lys Ser Pro Trp Leu Ala Gly Asn             260 265 270 Glu Leu Thr Val Ala Asp Val Val Leu Trp Ser Val Leu Gln Gln Ile         275 280 285 Gly Gly Cys Ser Val Thr Val Pro Ala Asn Val Gln Arg Trp Met Arg     290 295 300 Ser Cys Glu Asn Leu Ala Pro Phe 305 310 <210> 3 <211> 756 <212> DNA <213> Homo sapiens <400> 3 atgccgatgt accaggtaaa gccctatcac gggggcggcg cgcctctccg tgtggagctt 60 cccacctgca tgtaccggct ccccaacgtg cacggcagga gctacggccc agcgccgggc 120 gctggccacg tgcaggatta cggggcgctg aaagacatcg tgatcaacgc aaacccggcc 180 tcccctcccc tctccctgct tgtgctgcac aggctgctct gtgagcactt cagggtcctg 240 tccacggtgc acacgcactc ctcggtcaag agcgtgcctg aaaaccttct caagtgcttt 300 ggagaacaga ataaaaaaca gccccgccaa gactatcagc tgggattcac tttaatttgg 360 aagaatgtgc cgaagacgca gatgaaattc agcatccaga cgatgtgccc catcgaaggc 420 gaagggaaca ttgcacgttt cttgttctct ctgtttggcc agaagcataa tgctgtcaac 480 gcaaccctta tagatagctg ggtagatatt gcgatttttc agttaaaaga gggaagcagt 540 aaagaaaaag ccgctgtttt ccgctccatg aactctgctc ttgggaagag cccttggctc 600 gctgggaatg aactcaccgt agcagacgtg gtgctgtggt ctgtactcca gcagatcgga 660 ggctgcagtg tgacagtgcc agccaatgtg cagaggtgga tgaggtcttg tgaaaacctg 720 gctcctttta acacggccct caagctcctt aagtga 756 <210> 4 <211> 251 <212> PRT <213> Homo sapiens <400> 4 Met Pro Met Tyr Gln Val Lys Pro Tyr His Gly Gly Gly Ala Pro Leu   1 5 10 15 Arg Val Glu Leu Pro Thr Cys Met Tyr Arg Leu Pro Asn Val His Gly              20 25 30 Arg Ser Tyr Gly Pro Ala Pro Gly Ala Gly His Val Gln Asp Tyr Gly          35 40 45 Ala Leu Lys Asp Ile Val Ile Asn Ala Asn Pro Ala Ser Pro Pro Leu      50 55 60 Ser Leu Leu Val Leu His Arg Leu Leu Cys Glu His Phe Arg Val Leu  65 70 75 80 Ser Thr Val His Thr His Ser Ser Val Lys Ser Val Pro Glu Asn Leu                  85 90 95 Leu Lys Cys Phe Gly Glu Gln Asn Lys Lys Gln Pro Arg Gln Asp Tyr             100 105 110 Gln Leu Gly Phe Thr Leu Ile Trp Lys Asn Val Pro Lys Thr Gln Met         115 120 125 Lys Phe Ser Ile Gln Thr Met Cys Pro Ile Glu Gly Glu Gly Asn Ile     130 135 140 Ala Arg Phe Leu Phe Ser Leu Phe Gly Gln Lys His Asn Ala Val Asn 145 150 155 160 Ala Thr Leu Ile Asp Ser Trp Val Asp Ile Ala Ile Phe Gln Leu Lys                 165 170 175 Glu Gly Ser Ser Lys Glu Lys Ala Ala Val Phe Arg Ser Met Asn Ser             180 185 190 Ala Leu Gly Lys Ser Pro Trp Leu Ala Gly Asn Glu Leu Thr Val Ala         195 200 205 Asp Val Val Leu Trp Ser Val Leu Gln Gln Ile Gly Gly Cys Ser Val     210 215 220 Thr Val Pro Ala Asn Val Gln Arg Trp Met Arg Ser Cys Glu Asn Leu 225 230 235 240 Ala Pro Phe Asn Thr Ala Leu Lys Leu Leu Lys                 245 250 <210> 5 <211> 1236 <212> DNA <213> Homo sapiens <400> 5 ccgaacgccc gcagcagggt cagaagggag gtggccggtc tccgtcgtga cctctgacgg 60 tttctgagcg ttggcctttg gcacgcgcta cccccttttg ctttggttct gccatgccga 120 tgtaccaggt aaagccctat cacgggggcg gcgcgcctct ccgtgtggag cttcccacct 180 gcatgtaccg gctccccaac gtgcacggca ggagctacgg cccagcgccg ggcgctggcc 240 acgtgcagga agagtctaac ctgtctctgc aagctcttga gtcccgccaa gatgatattt 300 taaaacgtct gtatgagttg aaagctgcag ttgatggcct ctccaagatg attcaaacac 360 cagatgcaga cttggatgta accaacataa tccaagcgga tgagcccacg actttaacca 420 ccaatgcgct ggacttgaat tcagtgcttg ggaaggatta cggggcgctg aaagacatcg 480 tgatcaacgc aaacccggcc tcccctcccc tctccctgct tgtgctgcac aggctgctct 540 gtgagcactt cagggtcctg tccacggtgc acacgcactc ctcggtcaag agcgtgcctg 600 aaaaccttct caagtgcttt ggagaacaga ataaaaaaca gccccgccaa gactatcagc 660 tgggattcac tttaatttgg aagaatgtgc cgaagacgca gatgaaattc agcatccaga 720 cgatgtgccc catcgaaggc gaagggaaca ttgcacgttt cttgttctct ctgtttggcc 780 agaagcataa tgctgtcaac gcaaccctta tagatagctg ggtagatatt gcgatttttc 840 agttaaaaga gggaagcagt aaagaaaaag ccgctgtttt ccgctccatg aactctgctc 900 ttgggaagag cccttggctc gctgggaatg aactcaccgt agcagacgtg gtgctgtggt 960 ctgtactcca gcagatcgga ggctgcagtg tgacagtgcc agccaatgtg cagaggtgga 1020 tgaggtcttg tgaaaacctg gctcctttta acacggccct caagctcctt aagtgaattg 1080 ccgtaactga ttttaaaggg tttagatttt aagaatggtg ctctttcatg cctattatca 1140 gtaaggggac ttgtattaga gtcagagtct ttttatttag gccagttgtc aagtgtcaat 1200 aaaagcatca tgtaatttaa aaaaaaaaaa aaaaaa 1236 <210> 6 <211> 320 <212> PRT <213> Homo sapiens <400> 6 Met Pro Met Tyr Gln Val Lys Pro Tyr His Gly Gly Gly Ala Pro Leu   1 5 10 15 Arg Val Glu Leu Pro Thr Cys Met Tyr Arg Leu Pro Asn Val His Gly              20 25 30 Arg Ser Tyr Gly Pro Ala Pro Gly Ala Gly His Val Gln Glu Glu Ser          35 40 45 Asn Leu Ser Leu Gln Ala Leu Glu Ser Arg Gln Asp Asp Ile Leu Lys      50 55 60 Arg Leu Tyr Glu Leu Lys Ala Ala Val Asp Gly Leu Ser Lys Met Ile  65 70 75 80 Gln Thr Pro Asp Ala Asp Leu Asp Val Thr Asn Ile Ile Gln Ala Asp                  85 90 95 Glu Pro Thr Thr Leu Thr Thr Asn Ala Leu Asp Leu Asn Ser Val Leu             100 105 110 Gly Lys Asp Tyr Gly Ala Leu Lys Asp Ile Val Ile Asn Ala Asn Pro         115 120 125 Ala Ser Pro Pro Leu Ser Leu Leu Val Leu His Arg Leu Leu Cys Glu     130 135 140 His Phe Arg Val Leu Ser Thr Val His Thr His Ser Ser Val Lys Ser 145 150 155 160 Val Pro Glu Asn Leu Leu Lys Cys Phe Gly Glu Gln Asn Lys Lys Gln                 165 170 175 Pro Arg Gln Asp Tyr Gln Leu Gly Phe Thr Leu Ile Trp Lys Asn Val             180 185 190 Pro Lys Thr Gln Met Lys Phe Ser Ile Gln Thr Met Cys Pro Ile Glu         195 200 205 Gly Glu Gly Asn Ile Ala Arg Phe Leu Phe Ser Leu Phe Gly Gln Lys     210 215 220 His Asn Ala Val Asn Ala Thr Leu Ile Asp Ser Trp Val Asp Ile Ala 225 230 235 240 Ile Phe Gln Leu Lys Glu Gly Ser Ser Lys Glu Lys Ala Ala Val Phe                 245 250 255 Arg Ser Met Asn Ser Ala Leu Gly Lys Ser Pro Trp Leu Ala Gly Asn             260 265 270 Glu Leu Thr Val Ala Asp Val Val Leu Trp Ser Val Leu Gln Gln Ile         275 280 285 Gly Gly Cys Ser Val Thr Val Pro Ala Asn Val Gln Arg Trp Met Arg     290 295 300 Ser Cys Glu Asn Leu Ala Pro Phe Asn Thr Ala Leu Lys Leu Leu Lys 305 310 315 320 <210> 7 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> siRNA for AIMP2 <400> 7 agagcuugca gagacagguu agacu 25 <210> 8 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> siRNA for AIMP2-DX2 <400> 8 ucagcgcccc guaauccugc acgug 25 <210> 9 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 # 3 coding nucleic acid sequence 1 <400> 9 tcgaggccac gtgcaggtta cgggagtagg ccgtaatcct gcacgtggcc tttt 54 <210> 10 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 # 3 coding nucleic acid sequence 2 <400> 10 ctagaaaagg ccacgtgcag gattacggca gactcccgta atcctgcacg tggcc 55 <210> 11 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 # 4 coding nucleic acid sequence 1 <400> 11 tcgagctggc cacgtgcagg attacgagta ctggtaatcc tgcacgtggc cagctttt 58 <210> 12 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 # 4 coding nucleic acid sequence 2 <400> 12 ctagaaaagc tggccacgtg caggattacc agtactcgta atcctgcacg tggccagc 58 <210> 13 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 # 5 coding nucleic acid sequence 1 <400> 13 tcgacacgtg caggattacg gggcgagtac tggccccgta atcctgcacg tgtttt 56 <210> 14 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> si-AIMP2-DX2 # 5 coding nucleic acid sequence 2 <400> 14 ctagaaaaca cgtgcaggat tacggggcca gtactcgccc cgtaatcctg cacgtg 56 <210> 15 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> siRNA of AIMP2-F <400> 15 agucuaaccu gucucugcaa gcucu 25 <210> 16 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> shRNA sequence of AIMP2-DX2 <400> 16 tcgagctggc cacgtgcagg attacgagta ctggtaatcc tgcacgtggc cagctttt 58 <210> 17 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> AIMP2-DX2 siRNA 19mer # 1 <400> 17 cuggccacgu gcaggauua 19 <210> 18 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> AIMP2-DX2 siRNA of 19mer # 2 <400> 18 uggccacgug caggauuac 19 <210> 19 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> AIMP2-DX2 siRNA of 19mer # 3 <400> 19 ggccacgugc aggauuacg 19 <210> 20 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA # 4 <400> 20 gccacgugca ggauuacgg 19 <210> 21 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA # 5 <400> 21 ccacgugcag gauuacggg 19 <210> 22 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA # 6 <400> 22 cacgugcagg auuacgggg 19 <210> 23 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA # 7 <400> 23 acgugcagga uuacggggc 19 <210> 24 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA # 8 <400> 24 cgugcaggau uacggggcg 19 <210> 25 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA # 9 <400> 25 gugcaggauu acggggcgc 19 <210> 26 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> 19mer of AIMP2-DX2 siRNA # 10 <400> 26 ugcaggauua cggggcgcu 19 <210> 27 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 1 <400> 27 gcuggccacg ugcaggauua 20 <210> 28 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 2 <400> 28 cuggccacgu gcaggauuac 20 <210> 29 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 3 <400> 29 uggccacgug caggauuacg 20 <210> 30 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 4 <400> 30 ggccacgugc aggauuacgg 20 <210> 31 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 5 <400> 31 gccacgugca ggauuacggg 20 <210> 32 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 6 <400> 32 ccacgugcag gauuacgggg 20 <210> 33 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 7 <400> 33 cacgugcagg auuacggggc 20 <210> 34 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 8 <400> 34 acgugcagga uuacggggcg 20 <210> 35 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 9 <400> 35 cgugcaggau uacggggcgc 20 <210> 36 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 10 <400> 36 gugcaggauu acggggcgcu 20 <210> 37 <211> 20 <212> RNA <213> Artificial Sequence <220> <223> 20mer of AIMP2-DX2 siRNA # 11 <400> 37 ugcaggauua cggggcgcug 20 <210> 38 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 1 <400> 38 cgcuggccac gugcaggauu a 21 <210> 39 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 2 <400> 39 gcuggccacg ugcaggauua c 21 <210> 40 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 3 <400> 40 cuggccacgu gcaggauuac g 21 <210> 41 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 4 <400> 41 uggccacgug caggauuacg g 21 <210> 42 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 5 <400> 42 ggccacgugc aggauuacgg g 21 <210> 43 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 6 <400> 43 gccacgugca ggauuacggg g 21 <210> 44 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 7 <400> 44 ccacgugcag gauuacgggg c 21 <210> 45 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 8 <400> 45 cacgugcagg auuacggggc g 21 <210> 46 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 9 <400> 46 acgugcagga uuacggggcg c 21 <210> 47 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 10 <400> 47 cgugcaggau uacggggcgc u 21 <210> 48 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 11 <400> 48 gugcaggauu acggggcgcu g 21 <210> 49 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> 21mer of AIMP2-DX2 siRNA # 12 <400> 49 ugcaggauua cggggcgcug a 21 <210> 50 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 1 <400> 50 gcgcuggcca cgugcaggau ua 22 <210> 51 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 2 <400> 51 cgcuggccac gugcaggauu ac 22 <210> 52 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 3 <400> 52 gcuggccacg ugcaggauua cg 22 <210> 53 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 4 <400> 53 cuggccacgu gcaggauuac gg 22 <210> 54 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 5 <400> 54 uggccacgug caggauuacg gg 22 <210> 55 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 6 <400> 55 ggccacgugc aggauuacgg gg 22 <210> 56 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 7 <400> 56 gccacgugca ggauuacggg gc 22 <210> 57 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 8 <400> 57 ccacgugcag gauuacgggg cg 22 <210> 58 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 9 <400> 58 cacgugcagg auuacggggc gc 22 <210> 59 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 10 <400> 59 acgugcagga uuacggggcg cu 22 <210> 60 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 10 <400> 60 acgugcagga uuacggggcg cu 22 <210> 61 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 11 <400> 61 cgugcaggau uacggggcgc ug 22 <210> 62 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 12 <400> 62 gugcaggauu acggggcgcu ga 22 <210> 63 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> 22mer of AIMP2-DX2 siRNA # 13 <400> 63 ugcaggauua cggggcgcug aa 22 <210> 64 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 1 <400> 64 ggcgcuggcc acgugcagga uua 23 <210> 65 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 2 <400> 65 gcgcuggcca cgugcaggau uac 23 <210> 66 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 3 <400> 66 cgcuggccac gugcaggauu acg 23 <210> 67 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 4 <400> 67 gcuggccacg ugcaggauua cgg 23 <210> 68 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 5 <400> 68 cuggccacgu gcaggauuac ggg 23 <210> 69 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 6 <400> 69 uggccacgug caggauuacg ggg 23 <210> 70 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 7 <400> 70 ggccacgugc aggauuacgg ggc 23 <210> 71 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 8 <400> 71 gccacgugca ggauuacggg gcg 23 <210> 72 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 9 <400> 72 ccacgugcag gauuacgggg cgc 23 <210> 73 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 10 <400> 73 cacgugcagg auuacggggc gcu 23 <210> 74 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 11 <400> 74 acgugcagga uuacggggcg cug 23 <210> 75 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 12 <400> 75 cgugcaggau uacggggcgc uga 23 <210> 76 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 13 <400> 76 gugcaggauu acggggcgcu gaa 23 <210> 77 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> 23mer of AIMP2-DX2 siRNA # 14 <400> 77 ugcaggauua cggggcgcug aaa 23 <210> 78 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 1 <400> 78 gggcgcuggc cacgugcagg auua 24 <210> 79 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 2 <400> 79 ggcgcuggcc acgugcagga uuac 24 <210> 80 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 3 <400> 80 gcgcuggcca cgugcaggau uacg 24 <210> 81 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 4 <400> 81 cgcuggccac gugcaggauu acgg 24 <210> 82 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 5 <400> 82 gcuggccacg ugcaggauua cggg 24 <210> 83 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 6 <400> 83 cuggccacgu gcaggauuac gggg 24 <210> 84 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 7 <400> 84 uggccacgug caggauuacg gggc 24 <210> 85 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 8 <400> 85 ggccacgugc aggauuacgg ggcg 24 <210> 86 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 9 <400> 86 gccacgugca ggauuacggg gcgc 24 <210> 87 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 10 <400> 87 ccacgugcag gauuacgggg cgcu 24 <210> 88 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 11 <400> 88 cacgugcagg auuacggggc gcug 24 <210> 89 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 12 <400> 89 acgugcagga uuacggggcg cuga 24 <210> 90 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 13 <400> 90 cgugcaggau uacggggcgc ugaa 24 <210> 91 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 14 <400> 91 gugcaggauu acggggcgcu gaaa 24 <210> 92 <211> 24 <212> RNA <213> Artificial Sequence <220> <223> 24mer of AIMP2-DX2 siRNA # 15 <400> 92 ugcaggauua cggggcgcug aaag 24 <210> 93 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 1 <400> 93 cgggcgcugg ccacgugcag gauua 25 <210> 94 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 2 <400> 94 gggcgcuggc cacgugcagg auuac 25 <210> 95 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 3 <400> 95 ggcgcuggcc acgugcagga uuacg 25 <210> 96 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 4 <400> 96 gcgcuggcca cgugcaggau uacgg 25 <210> 97 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 5 <400> 97 cgcuggccac gugcaggauu acggg 25 <210> 98 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 6 <400> 98 gcuggccacg ugcaggauua cgggg 25 <210> 99 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 7 <400> 99 cuggccacgu gcaggauuac ggggc 25 <210> 100 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 8 <400> 100 uggccacgug caggauuacg gggcg 25 <210> 101 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 9 <400> 101 ggccacgugc aggauuacgg ggcgc 25 <210> 102 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 10 <400> 102 gccacgugca ggauuacggg gcgcu 25 <210> 103 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 11 <400> 103 ccacgugcag gauuacgggg cgcug 25 <210> 104 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 12 <400> 104 cacgugcagg auuacggggc gcuga 25 <210> 105 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 13 <400> 105 acgugcagga uuacggggcg cugaa 25 <210> 106 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 14 <400> 106 cgugcaggau uacggggcgc ugaaa 25 <210> 107 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 15 <400> 107 gugcaggauu acggggcgcu gaaag 25 <210> 108 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> 25mer of AIMP2-DX2 siRNA # 16 <400> 108 ugcaggauua cggggcgcug aaaga 25 <210> 109 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 1 <400> 109 ccgggcgcug gccacgugca ggauua 26 <210> 110 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 2 <400> 110 cgggcgcugg ccacgugcag gauuac 26 <210> 111 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 3 <400> 111 gggcgcuggc cacgugcagg auuacg 26 <210> 112 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 4 <400> 112 ggcgcuggcc acgugcagga uuacgg 26 <210> 113 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 5 <400> 113 gcgcuggcca cgugcaggau uacggg 26 <210> 114 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 6 <400> 114 cgcuggccac gugcaggauu acgggg 26 <210> 115 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 7 <400> 115 gcuggccacg ugcaggauua cggggc 26 <210> 116 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 8 <400> 116 cuggccacgu gcaggauuac ggggcg 26 <210> 117 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 9 <400> 117 uggccacgug caggauuacg gggcgc 26 <210> 118 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 10 <400> 118 ggccacgugc aggauuacgg ggcgcu 26 <210> 119 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 11 <400> 119 gccacgugca ggauuacggg gcgcug 26 <210> 120 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 12 <400> 120 ccacgugcag gauuacgggg cgcuga 26 <210> 121 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 13 <400> 121 cacgugcagg auuacggggc gcugaa 26 <210> 122 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 14 <400> 122 acgugcagga uuacggggcg cugaaa 26 <210> 123 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 15 <400> 123 cgugcaggau uacggggcgc ugaaag 26 <210> 124 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 16 <400> 124 gugcaggauu acggggcgcu gaaaga 26 <210> 125 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> 26mer of AIMP2-DX2 siRNA # 17 <400> 125 ugcaggauua cggggcgcug aaagac 26 <210> 126 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 1 <400> 126 gccgggcgcu ggccacgugc aggauua 27 <210> 127 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 2 <400> 127 ccgggcgcug gccacgugca ggauuac 27 <210> 128 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 3 <400> 128 cgggcgcugg ccacgugcag gauuacg 27 <210> 129 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 4 <400> 129 gggcgcuggc cacgugcagg auuacgg 27 <210> 130 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 5 <400> 130 ggcgcuggcc acgugcagga uuacggg 27 <210> 131 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 6 <400> 131 gcgcuggcca cgugcaggau uacgggg 27 <210> 132 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 7 <400> 132 cgcuggccac gugcaggauu acggggc 27 <210> 133 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 8 <133> 133 gcuggccacg ugcaggauua cggggcg 27 <210> 134 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 9 <400> 134 cuggccacgu gcaggauuac ggggcgc 27 <210> 135 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 10 <400> 135 uggccacgug caggauuacg gggcgcu 27 <210> 136 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 11 <400> 136 ggccacgugc aggauuacgg ggcgcug 27 <210> 137 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 12 <400> 137 gccacgugca ggauuacggg gcgcuga 27 <210> 138 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 13 <400> 138 ccacgugcag gauuacgggg cgcugaa 27 <139> <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 14 <400> 139 cacgugcagg auuacggggc gcugaaa 27 <210> 140 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 15 <400> 140 acgugcagga uuacggggcg cugaaag 27 <210> 141 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 16 <400> 141 cgugcaggau uacggggcgc ugaaaga 27 <210> 142 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 17 <400> 142 gugcaggauu acggggcgcu gaaagac 27 <210> 143 <211> 27 <212> RNA <213> Artificial Sequence <220> <223> 27mer of AIMP2-DX2 siRNA # 18 <400> 143 ugcaggauua cggggcgcug aaagaca 27 <210> 144 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> shRNA sequence of mouse AIMP2-DX2 <400> 144 tcgagcgggc cacgtgcagg actattcaag agatagtcct gcacgtggcc cgctttt 57 <210> 145 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> mouse siRNA for AIMP2-DX2 <400> 145 gcgggccacg ugcaggacua uu 22 <210> 146 <211> 729 <212> DNA <213> Homo sapiens <400> 146 atgccgatgt accaggtaaa gccctatcac gggggcggcg cgcctctccg tgtggagctt 60 cccacctgca tgtaccggct ccccaacgtg cacggcagga gctacggccc agcgccgggc 120 gctggccacg tgcaggatta cggggcgctg aaagacatcg tgatcaacgc aaacccggcc 180 tcccctcccc tctccctgct tgtgctgcac aggctgctct gtgagcactt cagggtcctg 240 tccacggtgc acacgcactc ctcggtcaag agcgtgcctg aaaaccttct caagtgcttt 300 ggagaacaga ataaaaaaca gccccgccaa gactatcagc tgggattcac tttaatttgg 360 aagaatgtgc cgaagacgca gatgaaattc agcatccaga cgatgtgccc catcgaaggc 420 gaagggaaca ttgcacgttt cttgttctct ctgtttggcc agaagcataa tgctgtcaac 480 gcaaccctta tagatagctg ggtagatatt gcgatttttc agttaaaaga gggaagcagt 540 aaagaaaaag ccgctgtttt ccgctccatg aactctgctc ttgggaagag cccttggctc 600 gctgggaatg aactcaccgt agcagacgtg gtgctgtggt ctgtactcca gcagatcgga 660 ggctgcagtg tgacagtgcc agccaatgtg cagaggtgga tgaggtcttg tgaaaacctg 720 gctcctttt 729 <210> 147 <211> 243 <212> PRT <213> Homo sapiens <400> 147 Met Pro Met Tyr Gln Val Lys Pro Tyr His Gly Gly Gly Ala Pro Leu   1 5 10 15 Arg Val Glu Leu Pro Thr Cys Met Tyr Arg Leu Pro Asn Val His Gly              20 25 30 Arg Ser Tyr Gly Pro Ala Pro Gly Ala Gly His Val Gln Asp Tyr Gly          35 40 45 Ala Leu Lys Asp Ile Val Ile Asn Ala Asn Pro Ala Ser Pro Pro Leu      50 55 60 Ser Leu Leu Val Leu His Arg Leu Leu Cys Glu His Phe Arg Val Leu  65 70 75 80 Ser Thr Val His Thr His Ser Ser Val Lys Ser Val Pro Glu Asn Leu                  85 90 95 Leu Lys Cys Phe Gly Glu Gln Asn Lys Lys Gln Pro Arg Gln Asp Tyr             100 105 110 Gln Leu Gly Phe Thr Leu Ile Trp Lys Asn Val Pro Lys Thr Gln Met         115 120 125 Lys Phe Ser Ile Gln Thr Met Cys Pro Ile Glu Gly Glu Gly Asn Ile     130 135 140 Ala Arg Phe Leu Phe Ser Leu Phe Gly Gln Lys His Asn Ala Val Asn 145 150 155 160 Ala Thr Leu Ile Asp Ser Trp Val Asp Ile Ala Ile Phe Gln Leu Lys                 165 170 175 Glu Gly Ser Ser Lys Glu Lys Ala Ala Val Phe Arg Ser Met Asn Ser             180 185 190 Ala Leu Gly Lys Ser Pro Trp Leu Ala Gly Asn Glu Leu Thr Val Ala         195 200 205 Asp Val Val Leu Trp Ser Val Leu Gln Gln Ile Gly Gly Cys Ser Val     210 215 220 Thr Val Pro Ala Asn Val Gln Arg Trp Met Arg Ser Cys Glu Asn Leu 225 230 235 240 Ala Pro Phe              

Claims (8)

엑손 2가 결여된 AIMP2 변이체(AIMP2-DX2) 폴리펩티드를 암호화하는 폴리뉴클레오티드에 대한 서열번호 8, 서열번호 17, 서열번호 20, 서열번호 21, 서열번호 23, 서열번호 24, 서열번호 105 및 서열번호 106으로 이루어진 군에서 선택된 것으로 표시되는 염기서열을 가지는 것을 특징으로 하는 iRNA인 AIMP2-DX2 폴리펩티드의 억제제를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물.SEQ ID NO: 8, SEQ ID NO: 17, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 105, and SEQ ID NO: for a polynucleotide encoding an AIMP2 variant (AIMP2-DX2) polypeptide lacking exon 2 Inflammatory disease prevention and treatment composition comprising as an active ingredient an inhibitor of the AIMP2-DX2 polypeptide, iRNA, characterized in that it has a nucleotide sequence represented as selected from the group consisting of 106. 제1항에 있어서, 상기 AIMP2-DX2는 서열번호 4 또는 서열번호 147로 표시되는 아미노산 서열을 가지는 것을 특징으로 하는 조성물.The composition of claim 1, wherein the AIMP2-DX2 has an amino acid sequence represented by SEQ ID NO: 4 or SEQ ID NO: 147. 삭제delete 삭제delete 제1항에 있어서, 상기 염증성 질환은 염증성 피부질환, 크론씨 질환(Crohn's desease), 궤양성 대장염, 복막염, 골수염, 봉소염, 뇌막염, 뇌염, 췌장염, 외상 유발 쇼크, 기관지 천식, 알레르기성 비염, 낭포성 섬유증, 뇌졸중, 급성 기관지염, 만성 기관지염, 급성 세기관지염, 만성 세기관지염, 골관절염, 통풍, 척추관절병증, 강직성 척추염, 라이터 증후군, 건선성 관절병증, 장질환 척추염, 연소자성 관절병증, 연소자성 강직성 척추염, 반응성 관절병증, 감염성 관절염, 후-감염성 관절염, 임균성 관절염, 결핵성 관절염, 바이러스성 관절염, 진균성 관절염, 매독성 관절염, 라임 병, '혈관염 증후군'과 관련된 관절염, 결절성 다발동맥염, 과민성 혈관염, 루게닉 육아종증, 류마티스성 다발성근육통, 관절 세포 동맥염, 칼슘 결정 침착 관절병증, 가성 통풍, 비-관절 류마티즘, 점액낭염, 건초염, 상과염(테니스 엘보), 신경병증성 관절 질환(charco and joint), 출혈성 관절증(hemarthrosic), 헤노흐-쉔라인 자반병, 비후성 골관절병증, 다중심성 세망조직구종, 수르코일로시스(surcoilosis), 혈색소증, 겸상 적혈구증 및 기타 혈색소병증, 고지단백혈증, 저감마글로불린혈증, 가족성 지중해열, 베하트 병, 전신성 홍반성 루푸스, 재귀열, 건선, 다발성 경화증, 패혈증, 패혈성 쇼크, 다장기 기능장애 증후군, 급성 호흡곤란 증후군, 만성 폐쇄성 폐질환(chronic obstructive pulmonary disease), 류마치스성 관절염(rheumatoid arthritis), 급성 폐손상(acute lung injury) 및 기관지 폐 형성장애(broncho-pulmonary dysplasia)로 이루어진 군에서 선택되는 것을 특징으로 하는 조성물.The method of claim 1, wherein the inflammatory disease is an inflammatory skin disease, Crohn's desease, ulcerative colitis, peritonitis, osteomyelitis, cellulitis, meningitis, encephalitis, pancreatitis, traumatic shock, bronchial asthma, allergic rhinitis, cystic Fibrosis, stroke, acute bronchitis, chronic bronchitis, acute bronchiolitis, chronic bronchiolitis, osteoarthritis, gout, spondyloarthropathies, ankylosing spondylitis, lighter syndrome, psoriatic arthrosis, enteropathic spondylitis, juvenile arthrosis, juvenile ankylosing spondylitis, reactivity Arthritis, Infectious Arthritis, Post-Infectious Arthritis, Gonococcal Arthritis, Tuberculosis Arthritis, Viral Arthritis, Fungal Arthritis, Syphilis Arthritis, Lyme Disease, Arthritis Associated with 'Bellitis Syndrome', Nodular Polyarthritis, Irritable Vasculitis, Rugenic Granulation Myopathy, rheumatic polymyalgia, arterial cell arteritis, calcium crystalline arthrosis, pseudogout, non-tubules Rheumatism, bursitis, hay fever, epicondylitis (tennis elbow), neuropathic joints (charco and joint), hemarthrosic, henoch-schorine purpura, hypertrophic osteoarthritis, multiple cardiac reticulocytoma, surcoilosis (surcoilosis), hemochromatosis, sickle cell disease and other hemoglobinopathies, hyperlipoproteinemia, hypomagglobulinemia, familial Mediterranean fever, Behatt's disease, systemic lupus erythematosus, recursive fever, psoriasis, multiple sclerosis, sepsis, septic shock, Multiple organ dysfunction syndrome, acute respiratory distress syndrome, chronic obstructive pulmonary disease, rheumatoid arthritis, acute lung injury and broncho-pulmonary dysplasia Compositions selected from the group consisting of. 제5항에 있어서, 상기 염증성 피부질환은 피부 염증, 급·만성 습진, 접촉성 피부염, 아토피성 피부염, 지루성 피부염, 만성단순태선, 간찰진, 박탈 피부염, 구진상 두드러기, 건선, 일광 피부염 및 여드름으로 이루어진 군에서 선택된 것임을 특징으로 하는 조성물.The method of claim 5, wherein the inflammatory skin disease is skin inflammation, acute and chronic eczema, contact dermatitis, atopic dermatitis, seborrheic dermatitis, chronic simple mammary glands, interrogation, deprived dermatitis, papular urticaria, psoriasis, sun dermatitis and acne Compositions characterized in that selected from the group consisting of. 프로모터 및 이와 작동가능하게 연결된 서열번호 8, 서열번호 17, 서열번호 20, 서열번호 21, 서열번호 23, 서열번호 24, 서열번호 105 및 서열번호 106으로 이루어진 군에서 선택한 것으로 표시되는 염기서열을 가지는 것을 특징으로 하는 AIMP2-DX2에 대한 iRNA를 암호화하는 폴리뉴클레오티드를 포함하는 발현벡터를 유효성분으로 포함하는 염증성 질환 예방 및 치료용 조성물.Promoter and a nucleotide sequence represented as selected from the group consisting of SEQ ID NO: 8, SEQ ID NO: 17, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 105, and SEQ ID NO: 106 operably linked thereto; Inflammatory disease prevention and treatment composition comprising an expression vector comprising a polynucleotide encoding an iRNA for AIMP2-DX2 as an active ingredient. (a) AIMP2-DX2 폴리펩티드를 발현하는 세포를 시험제제와 함께 또는 시험제제 없이 전배양하는 단계;(a) pre-culture of cells expressing AIMP2-DX2 polypeptide with or without a test agent; (b) 시험제제와 함께 전배양된 세포에서 AIMP2-DX2의 발현 정도를 측정하고 시험제제 없이 전배양된 세포에 대한 발현 정도와 비교하여 상기 시험제제가 AIMP2-DX2의 발현을 억제하는지 여부를 확인하는 단계; 및(b) measuring the expression level of AIMP2-DX2 in the cells pre-cultured with the test agent and comparing the expression level of the cells pre-cultured with the test agent to determine whether the test agent inhibits the expression of AIMP2-DX2. Making; And (c) 상기 (b) 단계에서 AIMP2-DX2의 발현을 억제하는 것으로 확인된 시험제제를 염증성 질환을 가지고 있는 동물에 투여하여 치료효과를 나타내는지를 검사하는 단계를 포함하는 염증성 질환의 예방 또는 치료용 약제의 스크리닝 방법.(c) administering a test agent identified as inhibiting the expression of AIMP2-DX2 in step (b) to an animal having an inflammatory disease and examining whether it has a therapeutic effect. Method of screening drugs.
KR1020080111109A 2007-11-09 2008-11-10 Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient KR101067816B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070114520 2007-11-09
KR1020070114520 2007-11-09

Publications (2)

Publication Number Publication Date
KR20090048382A KR20090048382A (en) 2009-05-13
KR101067816B1 true KR101067816B1 (en) 2011-09-27

Family

ID=40857513

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080111109A KR101067816B1 (en) 2007-11-09 2008-11-10 Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient

Country Status (1)

Country Link
KR (1) KR101067816B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835387B2 (en) 2012-02-16 2014-09-16 Atyr Pharma, Inc. Histidyl-tRNA synthetases for treating autoimmune and inflammatory diseases
US9422539B2 (en) 2010-07-12 2016-08-23 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of histidyl-tRNA synthetases
US9587235B2 (en) 2013-03-15 2017-03-07 Atyr Pharma, Inc. Histidyl-tRNA synthetase-Fc conjugates
KR101749138B1 (en) * 2015-10-07 2017-06-20 원광대학교산학협력단 Pharmaceutical composition comprising AIMP2-DX2 for preventing or treating neuronal diseases and use thereof
US10716866B2 (en) 2018-03-29 2020-07-21 Generoath Co., Ltd Pharmaceutical composition comprising AIMP2-DX2 for preventing or treating neuronal diseases and use thereof
WO2020204548A1 (en) 2019-03-29 2020-10-08 재단법인 의약바이오컨버젼스연구단 Novel compound having anticancer activity, and method for producing same
WO2022025455A1 (en) 2020-07-31 2022-02-03 서울대학교병원 Composition for preventing or treating inflammatory diseases, and use thereof
US11767520B2 (en) 2017-04-20 2023-09-26 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509799B (en) * 2012-06-18 2016-03-23 深圳华大基因股份有限公司 Hypertrophic osteoarthropathy,primary Disease-causing gene
KR101464360B1 (en) * 2012-11-09 2014-11-21 주식회사 대웅 Adenovirus Containing Ribozyme and shRNA, and Therapeutic Composition Comprising Thereof
KR101410904B1 (en) * 2013-05-09 2014-07-02 재단법인 의약바이오컨버젼스연구단 Method for screening of anti-cancer agent and inflammatory disease agent
KR101762433B1 (en) 2013-06-05 2017-07-28 재단법인 의약바이오컨버젼스연구단 Novel Maleic acid derivatives, preparation method thereof, and anti-cancer compositions containing them
KR101514320B1 (en) 2013-06-14 2015-04-22 재단법인 의약바이오컨버젼스연구단 Novel pharmaceutical composition for preventing or treating cancer
KR102297505B1 (en) * 2016-03-07 2021-09-01 재단법인 의약바이오컨버젼스연구단 Methods for screening anti-cancer drugs inhibiting interactions between AIMP2-DX2 and HSP70
KR102248420B1 (en) * 2019-03-15 2021-05-06 주식회사 제너로스 Recombinant vector containing target sequence for miR-142-3p

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110397A1 (en) * 2004-11-24 2006-05-25 Sunghoon Kim AIMP2-DX2 and its uses
KR20070113926A (en) * 2006-05-26 2007-11-29 재단법인서울대학교산학협력재단 Use of aimp2dx2 for the diagnosis and treatment of cancer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110397A1 (en) * 2004-11-24 2006-05-25 Sunghoon Kim AIMP2-DX2 and its uses
KR100762995B1 (en) * 2004-11-24 2007-10-04 재단법인서울대학교산학협력재단 22 Use of AIMP2DX2 for the diagnosis and treatment of cancer
KR20070113926A (en) * 2006-05-26 2007-11-29 재단법인서울대학교산학협력재단 Use of aimp2dx2 for the diagnosis and treatment of cancer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10196628B2 (en) 2010-07-12 2019-02-05 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of histidyl-tRNA synthetases
US9422539B2 (en) 2010-07-12 2016-08-23 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of histidyl-tRNA synthetases
US10669533B2 (en) 2010-07-12 2020-06-02 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Histidyl-tRNA synthetases
US9637730B2 (en) 2010-07-12 2017-05-02 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of histidyl-tRNA synthetases
US9273302B2 (en) 2012-02-16 2016-03-01 Atyr Pharma, Inc. Histidyl-tRNA synthetases for treating autoimmune and inflammatory diseases
US8835387B2 (en) 2012-02-16 2014-09-16 Atyr Pharma, Inc. Histidyl-tRNA synthetases for treating autoimmune and inflammatory diseases
US10472618B2 (en) 2013-03-15 2019-11-12 Atyr Pharma, Inc. Histidyl-tRNA synthetase-Fc conjugates
US10093915B2 (en) 2013-03-15 2018-10-09 Atyr Pharma Inc. Histidyl-tRNA synthetase-Fc conjugates
US9587235B2 (en) 2013-03-15 2017-03-07 Atyr Pharma, Inc. Histidyl-tRNA synthetase-Fc conjugates
US10711260B2 (en) 2013-03-15 2020-07-14 Atyr Pharma, Inc. Histidyl-tRNA synthetase-Fc conjugates
US11072787B2 (en) 2013-03-15 2021-07-27 Atyr Pharma Inc. Histidyl-tRNA synthetase-Fc conjugates
KR101749138B1 (en) * 2015-10-07 2017-06-20 원광대학교산학협력단 Pharmaceutical composition comprising AIMP2-DX2 for preventing or treating neuronal diseases and use thereof
US11767520B2 (en) 2017-04-20 2023-09-26 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
US10716866B2 (en) 2018-03-29 2020-07-21 Generoath Co., Ltd Pharmaceutical composition comprising AIMP2-DX2 for preventing or treating neuronal diseases and use thereof
WO2020204548A1 (en) 2019-03-29 2020-10-08 재단법인 의약바이오컨버젼스연구단 Novel compound having anticancer activity, and method for producing same
WO2022025455A1 (en) 2020-07-31 2022-02-03 서울대학교병원 Composition for preventing or treating inflammatory diseases, and use thereof
KR20220015638A (en) 2020-07-31 2022-02-08 서울대학교병원 A composition for preventing or treating inflammatory diseases and uses thereof

Also Published As

Publication number Publication date
KR20090048382A (en) 2009-05-13

Similar Documents

Publication Publication Date Title
KR101067816B1 (en) Composition for preventing and treating inflammatory diseases comprising inhibitor of AIMP2-DX2 as an active ingredient
Liu et al. Extracellular vesicles derived from melatonin‐preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2
Colussi et al. Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy
KR20070118986A (en) Method to enhance the bone formation activity of bmp by runx2 acetylation
KR20110090842A (en) Pharmaceutical composition for inhibiting abnormal cell proliferation
Laedermann et al. Ubiquitylation of voltage-gated sodium channels
Romano et al. Ribosomal RACK1 promotes proliferation of neuroblastoma cells independently of global translation upregulation
Yan et al. The antimicrobial peptide YD attenuates inflammation via miR-155 targeting CASP12 during liver fibrosis
JP2003532423A (en) Sphingosine kinase and its use
Lu et al. Targeting WWP1 ameliorates cardiac ischemic injury by suppressing KLF15-ubiquitination mediated myocardial inflammation
EP1506784A1 (en) Identification of novel factors that block programmed cell death or apoptosis by targeting JNK
Schaffner-Reckinger et al. The actin-bundling protein L-plastin—A double-edged sword: Beneficial for the immune response, maleficent in cancer
CA2452123A1 (en) Blocking peptide for inflammatory cell secretion
JP2008546721A (en) Regulation of sphingosine kinase signaling
CN112088163A (en) Micropeptides and uses thereof
KR101419999B1 (en) Use of Hades as a negative regulator of Akt
US20090047259A1 (en) Methods of Using the Calcineurin A Variant CnA-beta 1
US20110288035A1 (en) Pimap39 modulates inflammatory response
JP2008546393A (en) Regulation of sphingosine kinase signaling
WO2006132248A1 (en) Method for ubiquitination of runx
JP2010195684A (en) REGULATION OF HIF-1 BY MTI-MMP, iFIH AND FIH-1
JP2008206398A (en) Method for ubiquitination of runx
WO2024036044A1 (en) Compositions and methods for treating and preventing metabolic disorders
KR100912069B1 (en) Method of Inhibition for TSC-22 mediated apoptosis by fortilin
KR101885252B1 (en) Use of CypB protein for treatment of GSK-3beta related disease

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140921

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151016

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160824

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181018

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190919

Year of fee payment: 9