WO2006132047A1 - Optical element and optical apparatus with the same - Google Patents

Optical element and optical apparatus with the same Download PDF

Info

Publication number
WO2006132047A1
WO2006132047A1 PCT/JP2006/309394 JP2006309394W WO2006132047A1 WO 2006132047 A1 WO2006132047 A1 WO 2006132047A1 JP 2006309394 W JP2006309394 W JP 2006309394W WO 2006132047 A1 WO2006132047 A1 WO 2006132047A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
optical
prism
light
fitting hole
Prior art date
Application number
PCT/JP2006/309394
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Onoda
Yoshiyuki Shimizu
Tomokazu Tokunaga
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006132047A1 publication Critical patent/WO2006132047A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • G02B13/007Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror the beam folding prism having at least one curved surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/1805Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems

Definitions

  • the present invention relates to an optical element and an optical device including the same.
  • prisms have been widely used as means for refracting the optical axis (for example, Patent Document 1).
  • Patent Document 1 For example, in the case of a triangular prism, in order to attach and fix with high positional accuracy, it is usually attached so that the three surfaces come into contact with the folder member of the optical device (ie, are supported at three points).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 57-185401 —Problem to be Solved— When a prismatic prism is loaded and fixed in an optical device so that the three surfaces are in contact with the folder member, the three surfaces of the prism are fixed. As the prism contacts the folder member, the position of the prism is automatically determined, and the prism cannot be displaced or rotated after the prism is inserted. That is, it is difficult to adjust the position and angle of the prism after the prism is inserted, and the positioning accuracy of the prism is determined solely by the shape accuracy of the prism and the shape accuracy of the folder member.
  • the folder member is usually made of resin, and it is difficult to manufacture it with high shape accuracy that can realize high optical performance.
  • manufacturing costs will increase if folder members are made with high shape accuracy.
  • it is difficult to mount the conventional prism with high positional accuracy it is difficult to obtain an optical device having high optical performance easily and inexpensively by using the conventional prism! /, There is a problem.
  • the present invention has been made in view of such a point, and an object thereof is to provide an optical element that can be easily attached to an optical device with high positional accuracy. .
  • an optical element according to the present invention is a polygonal columnar optical element that is attached so that an upper surface and a lower surface are in contact with an optical device, and the upper surface and the lower surface are cylindrical peripheral surfaces. It is formed so as to constitute a part of!
  • the optical device according to the present invention can be inserted into a polygonal columnar optical element formed such that the upper surface and the lower surface constitute a part of the circumferential surface of the cylinder, and the upper surface and A folder member having a fitting hole into which the optical element is fitted and inserted so that the lower surface is in contact is provided.
  • FIG. 1 is a diagram illustrating an optical configuration of an imaging apparatus 10.
  • FIG. 2 is a perspective view of the optical element 1.
  • FIG. 3 is a perspective view of a folder member 11 to which an optical element 1 is attached.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of a portion cut out along a cutting line V—V in FIG.
  • FIG. 6 is a diagram illustrating an optical configuration of an imaging apparatus according to a modification.
  • the optical apparatus that implements the present invention will be described by taking the imaging apparatus 10 as an example.
  • the optical apparatus is not limited to the imaging apparatus, for example, an image projection apparatus, a light irradiation It may be a device or the like.
  • FIG. 1 is a diagram illustrating an optical configuration of an imaging apparatus 10 according to the present embodiment.
  • the imaging device 10 includes a first lens group 13, a second lens group 14, a third lens group 15, and an imaging element 16 arranged on the optical axis AX in this order from the image side.
  • the lens groups 13 to 15 are lens groups for forming an image on the image sensor 16.
  • the image sensor 16 is composed of, for example, ⁇ , CCD (charge coupled device), OMS (complementary metal-oxide semiconductor), and the like, and functions to convert an optical image formed by the lens groups 13 to 15 into electrical data.
  • Have Data converted into electrical data by the image sensor 16 The data is recorded on a recording medium (memory or the like) (not shown) or output to another device (not shown) according to the setting.
  • the imaging device 10 in which three lens groups 13 to 15 are arranged on the optical axis AX will be described as an example.
  • the lens group for forming an image on the imaging device 16 is described. May be one or two or more than four.
  • at least one of the lens groups for forming an image on the image sensor 16 is provided so as to be displaceable on the optical axis AX, and may be configured to be in focus and Z or variable in magnification.
  • an optical element 1 for refracting the optical axis AX between the first lens group 13 and the second lens group 14, and a lens positioned on the image side of the optical element 1 12 and V are arranged.
  • the thickness in the direction of the optical axis AX can be suppressed, and a relatively small imaging device 10 can be realized.
  • the optical element 1 and the lens 12 are attached to a folder member 11 made of, for example, a resin.
  • a folder member 11 made of, for example, a resin.
  • FIG. 2 is a perspective view of the optical element 1.
  • FIG. 3 is a perspective view of the folder member 11 to which the optical element 1 is attached.
  • FIG. 4 is a cross-sectional view of the portion taken along the section line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of a portion cut out along the cut line VV in FIG.
  • the optical element 1 is a prism having a prism shape (specifically, a triangular prism shape) in which the first side surface 2, the second side surface 3, and the third side surface 4 are optical function surfaces (light transmission surface or light reflection surface). is there.
  • the second side surface 3 and the first side surface 2 are configured as a light transmitting surface (light incident surface or light emitting surface)
  • the third side surface 4 is configured as a light reflecting surface. The light incident from the second side surface 3 is reflected by the third side surface 4 and is emitted from the first side surface 2.
  • each of the first side surface 2, the second side surface 3, and the third side surface 4 has an optical power that may be a surface that does not have optical power (for example, a plane). It may be a surface (a refracting surface such as a spherical surface, an aspherical surface, a free-form surface, or a diffractive surface). In particular, it is preferable that at least one of the first side surface 2 and the second side surface 3 which are light transmitting surfaces is a surface having optical power. According to this configuration, the optical element 1 is imaged in addition to the function of refracting the optical axis AX. Functions and the like can be further provided. Therefore, the number of constituent lenses can be reduced.
  • the imaging device 10 can be further reduced in size.
  • the first side surface 2 is a concave aspherical surface
  • the second side surface 3 and the third side surface 4 are flat surfaces.
  • the upper surface 5 and the lower surface 6 of the optical element 1 are cylindrical (specifically, the axis A (see FIG. 2) extending in the normal direction on the optical axis AX of the first side surface 2 is the center.
  • the optical element 1 is attached to the folder member 11 so that the upper surface 5 and the lower surface 6 thereof are in contact with each other.
  • the folder member 11 is a member for supporting and fixing the optical element 1, and is constituted by a plate-like body 11a and a rib.
  • Each of the plate-like bodies 11a and 1 lb has a recess, and the plate-like bodies 1 la and 1 lb are arranged so that the recesses face each other.
  • the plate-like body 11a and the concave portion of the rib ib form a fitting hole 11c into which the above-described upper surface 5 and lower surface 6 constitute a portion (hereinafter referred to as the column C). ing. Then, the optical element 1 is fitted and inserted and fixed in the fitting hole 11c so that the upper surface 5 and the lower surface 6 are in contact with the folder member 11. Therefore, the optical element 1 as described below can be attached with high positional accuracy. As a result, the imaging device 10 having high optical performance can be realized.
  • the upper surface 5 and the lower surface 6 are formed so as to constitute a part of the cylinder C, and the fitting hole 1 lc into which the cylindrical member can be inserted (fitted) into the folder member 11. Is formed. For this reason, in a state where the optical element 1 is fitted and inserted into the fitting hole 11c, the optical element 1 can rotate about the axis A. Therefore, the tilt adjustment of the second side surface 3 and the third side surface 4 with respect to the Y-axis and Z-axis (see Fig. 3) of the optical element 1 with the optical element 1 fitted in the fitting hole 11c (see FIG.
  • the optical element 1 can be fixed to the folder member 11 after the tilt adjustment is performed on a very small order (for example, 1 'order). Therefore, regardless of the shape accuracy of the folder member 11, the optical element 1 can be easily attached to the imaging device 10 with high positional accuracy. As a result, the imaging device 10 having high optical performance can be realized.
  • optical element 1 and other members of the imaging device 10 over time due to heat, external stress, or the like.
  • the optical element 1 is fixed to the folder member 11 during manufacturing or maintenance.
  • the law is not limited at all.
  • the optical element 1 and the folder member 11 may be fixed using a force shim adhesive or an energy curing resin (for example, an ultraviolet curing resin, a thermosetting resin, etc.).
  • the upper surface 5 and the lower surface 6 are formed so as to constitute a part of a cylinder whose central axis is the axis A extending in the direction of the central force normal to the first side surface 2!
  • the present invention is not limited to this configuration.
  • the upper surface 5 and the lower surface 6 may be formed so as to constitute a part of a circumferential surface of a cylinder whose central axis is an axis extending in the normal direction of the third side surface 4.
  • the material of the optical element 1 is not particularly limited.
  • the optical element 1 is, for example, a material that substantially has a glass force or a material that is substantially made of resin. May be. Among them, glass is excellent in homogeneity, light transmission, durability, weather resistance, etc., and is easy to process with relatively high precision, so the optical element 1 is also substantially glassy. It is preferable.
  • the optical element 1 made of glass is preferably formed by force press molding (specifically heat press molding) that can be produced by, for example, polishing. According to the press molding, the optical element 1 can be produced easily and inexpensively with high work efficiency.
  • the optical element 1 may have a quadrangular prism shape, a pentagonal prism shape, a hexagonal prism shape, or the like.
  • the corners and ridges may be chamfered or rounded.
  • the force optical element 1 described by taking the case where the optical element 1 is a prism as an example has the third side surface 4 as a light reflecting surface as shown in FIG. 6, for example. It may be a configured mirror. Even in this case, since the upper surface 5 and the lower surface 6 are formed so as to constitute a part of the circumferential surface of the cylinder, the optical axis AX of the third side surface 4 as the light reflecting surface after the optical element 1 is inserted.
  • the optical element 1 can be attached with high positional accuracy. As a result, a high-quality imaging device can be realized.
  • the present invention is useful for optical devices such as an imaging device (digital still camera (DSC), digital video camera (DVC), etc.) and a light emitting device.
  • an imaging device digital still camera (DSC), digital video camera (DVC), etc.
  • DVC digital video camera
  • DVC digital video camera

Abstract

An optical element that can be easily installed at high positional accuracy in an optical apparatus. The optical element (1) is constructed such that its upper surface (5) and lower surface (6) form parts of the circumferential surface of a circular cylinder. The optical element (1) is fitted into and fixed to a holder member (11), in which a fitting hole (11c) into which the circular cylinder can be inserted is formed, such that the upper surface (5) and the lower surface (6) are in contact with the fitting hole (11c). In a state where the optical element (1) is fitted in the fitting hole (11c), the optical element (1) is rotatable about an axis A. This enables the optical element (1) to be fixed to the holder member (11) after tilt adjustment of a second side surface (3) and a third side surface (4) is performed in a very small order of magnitude.

Description

明 細 書  Specification
光学素子、それを備えた光学装置  Optical element and optical device provided with the same
技術分野  Technical field
[0001] 本発明は、光学素子、それを備えた光学装置に関する。  [0001] The present invention relates to an optical element and an optical device including the same.
背景技術  Background art
[0002] 従来、プリズムは光軸を屈折させる手段として幅広く用いられている(例えば特許文 献 1等)。例えば、三角柱状プリズムの場合、高い位置精度で取り付け固定するため に、通常、 3面が光学装置のフォルダ部材に当接するように (すなわち三点支持され るように)取り付けられる。  Conventionally, prisms have been widely used as means for refracting the optical axis (for example, Patent Document 1). For example, in the case of a triangular prism, in order to attach and fix with high positional accuracy, it is usually attached so that the three surfaces come into contact with the folder member of the optical device (ie, are supported at three points).
特許文献 1 :特開昭 57— 185401号公報 —解決課題— し力しながら、三角柱 状プリズムを 3面がフォルダ部材に当接するように光学装置に装入して固定する場合 、プリズムの 3面がフォルダ部材に当接することによって自動的にプリズムの位置が確 定し、プリズム装入後はプリズムを変位、回動させることができなくなる。すなわち、プ リズム装入後にお 、てプリズムの位置やアングルを調整することは難しく、プリズムの 位置決め精度は、専らプリズムの形状精度及びフォルダ部材の形状精度によって決 まることとなる。従って、プリズムを高い位置精度で取り付けるためには、プリズムのみ ならずプリズムを固定するためのフォルダ部材も高い形状精度で作製する必要があ る。しかしながら、製造コストや製造容易性等の観点から、フォルダ部材は通常榭脂 製であり、高い光学性能を実現できるような高い形状精度で作製することは困難であ る。また、高い形状精度でフォルダ部材を作製しょうとすると製造コストが上昇してしま う。すなわち、従来のプリズムは高い位置精度で取り付けることが困難であるため、従 来のプリズムを用いたのでは容易且つ安価に高い光学性能を有する光学装置を得 ることができな 、と!/、う問題がある。  Patent Document 1: Japanese Patent Application Laid-Open No. 57-185401 —Problem to be Solved— When a prismatic prism is loaded and fixed in an optical device so that the three surfaces are in contact with the folder member, the three surfaces of the prism are fixed. As the prism contacts the folder member, the position of the prism is automatically determined, and the prism cannot be displaced or rotated after the prism is inserted. That is, it is difficult to adjust the position and angle of the prism after the prism is inserted, and the positioning accuracy of the prism is determined solely by the shape accuracy of the prism and the shape accuracy of the folder member. Therefore, in order to attach the prism with high positional accuracy, it is necessary to produce not only the prism but also a folder member for fixing the prism with high shape accuracy. However, from the viewpoint of manufacturing cost, ease of manufacturing, etc., the folder member is usually made of resin, and it is difficult to manufacture it with high shape accuracy that can realize high optical performance. In addition, manufacturing costs will increase if folder members are made with high shape accuracy. In other words, since it is difficult to mount the conventional prism with high positional accuracy, it is difficult to obtain an optical device having high optical performance easily and inexpensively by using the conventional prism! /, There is a problem.
[0003] 本発明は、斯カる点に鑑みてなされたものであり、その目的とするところは、光学装 置に対して高い位置精度で容易に取り付け可能な光学素子を提供することにある。  [0003] The present invention has been made in view of such a point, and an object thereof is to provide an optical element that can be easily attached to an optical device with high positional accuracy. .
[0004] 尚、本発明が解決しょうとする課題及び本発明の目的についてプリズムを例に挙げ て説明したが、上記課題及び目的は、例えば、レンズやミラー等の他の光学素子全 般に共通するものである。 [0004] While the problem to be solved by the present invention and the object of the present invention have been described by taking a prism as an example, the above problem and object are not limited to other optical elements such as lenses and mirrors. In general, it is common.
発明の開示  Disclosure of the invention
[0005] 上記目的を達成するために、本発明に係る光学素子は、光学装置に上面及び下 面が当接するように取り付けられる多角柱状の光学素子であって、上面及び下面が 円柱の周面の一部を構成するように形成されて!ヽることを特徴とする。  In order to achieve the above object, an optical element according to the present invention is a polygonal columnar optical element that is attached so that an upper surface and a lower surface are in contact with an optical device, and the upper surface and the lower surface are cylindrical peripheral surfaces. It is formed so as to constitute a part of!
[0006] また、本発明に係る光学装置は、上面及び下面が円柱の周面の一部を構成するよ うに形成されている多角柱状の光学素子と、上記円柱が挿入可能であり、上面及び 下面が当接するように光学素子が嵌合装入された嵌合孔が形成されたフォルダ部材 とを備免て ヽることを特徴とする。  [0006] Further, the optical device according to the present invention can be inserted into a polygonal columnar optical element formed such that the upper surface and the lower surface constitute a part of the circumferential surface of the cylinder, and the upper surface and A folder member having a fitting hole into which the optical element is fitted and inserted so that the lower surface is in contact is provided.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]撮像装置 10の光学構成を表す図である。 1 is a diagram illustrating an optical configuration of an imaging apparatus 10. FIG.
[図 2]光学素子 1の斜視図である。  FIG. 2 is a perspective view of the optical element 1.
[図 3]光学素子 1が取り付けられたフォルダ部材 11の斜視図である。  FIG. 3 is a perspective view of a folder member 11 to which an optical element 1 is attached.
[図 4]図 3中切り出し線 IV— IVで切り出した部分の断面図である。  FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
[図 5]図 3中切り出し線 V— Vで切り出した部分の断面図である。  FIG. 5 is a cross-sectional view of a portion cut out along a cutting line V—V in FIG.
[図 6]変形例に係る撮像装置の光学構成を表す図である。  FIG. 6 is a diagram illustrating an optical configuration of an imaging apparatus according to a modification.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。尚、ここ では、撮像装置 10を例に挙げて本発明を実施した光学装置について説明するが、 本発明において、光学装置は撮像装置に限定されるものではなぐ例えば、画像投 影装置、光照射装置等であってもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that, here, an optical apparatus that implements the present invention will be described by taking the imaging apparatus 10 as an example. However, in the present invention, the optical apparatus is not limited to the imaging apparatus, for example, an image projection apparatus, a light irradiation It may be a device or the like.
[0009] 図 1は本実施形態に係る撮像装置 10の光学構成を表す図である。 FIG. 1 is a diagram illustrating an optical configuration of an imaging apparatus 10 according to the present embodiment.
[0010] 撮像装置 10は、像側からこの順で光軸 AX上に配列された、第 1のレンズ群 13と、 第 2のレンズ群 14と、第 3のレンズ群 15と、撮像素子 16とを備えている。レンズ群 13 〜15は像を撮像素子 16に結像させるためのレンズ群である。撮像素子 16は、例え ί 、 CCD (charge coupled device)、し OMS (complementary metal— oxide semiconductor)等により構成され、レンズ群 13〜 15により結像された光学像を電 気的データに変換する機能を有する。撮像素子 16により電気データに変換されたデ ータは、設定に応じて図示しない記録媒体 (メモリ等)に記録されたり、図示しない他 の装置へ出力されるように構成されて 、る。 The imaging device 10 includes a first lens group 13, a second lens group 14, a third lens group 15, and an imaging element 16 arranged on the optical axis AX in this order from the image side. And. The lens groups 13 to 15 are lens groups for forming an image on the image sensor 16. The image sensor 16 is composed of, for example, ί, CCD (charge coupled device), OMS (complementary metal-oxide semiconductor), and the like, and functions to convert an optical image formed by the lens groups 13 to 15 into electrical data. Have Data converted into electrical data by the image sensor 16 The data is recorded on a recording medium (memory or the like) (not shown) or output to another device (not shown) according to the setting.
[0011] 尚、本実施形態では、光軸 AX上に 3つのレンズ群 13〜15が配置されている撮像 装置 10を例に挙げて説明するが、撮像素子 16へ結像するためのレンズ群は 1つ又 は 2つでもよぐ 4つ以上であってもよい。また、撮像素子 16へ結像するためのレンズ 群の少なくとも一つが光軸 AX上を変位可能に設けられており、合焦及び Z又は変 倍可能に構成されて 、てもよ 、。  In this embodiment, the imaging device 10 in which three lens groups 13 to 15 are arranged on the optical axis AX will be described as an example. However, the lens group for forming an image on the imaging device 16 is described. May be one or two or more than four. Further, at least one of the lens groups for forming an image on the image sensor 16 is provided so as to be displaceable on the optical axis AX, and may be configured to be in focus and Z or variable in magnification.
[0012] 本実施形態では、第 1のレンズ群 13と第 2のレンズ群 14との間に光軸 AXを屈折さ せるための光学素子 1と、光学素子 1よりも像側に位置するレンズ 12とが配置されて V、る。このように光学素子 1を設けて光軸 AXを屈折させることによって光軸 AX方向 の厚みを抑制することができ、比較的小型な撮像装置 10を実現することができる。  In the present embodiment, an optical element 1 for refracting the optical axis AX between the first lens group 13 and the second lens group 14, and a lens positioned on the image side of the optical element 1 12 and V are arranged. Thus, by providing the optical element 1 and refracting the optical axis AX, the thickness in the direction of the optical axis AX can be suppressed, and a relatively small imaging device 10 can be realized.
[0013] 光学素子 1及びレンズ 12は、例えば榭脂製のフォルダ部材 11に取り付けられてい る。以下、本実施形態における光学素子 1及び光学素子 1を固定するフォルダ部材 1 1の構成について、図 2〜図 5を参照しながら詳細に説明する。  The optical element 1 and the lens 12 are attached to a folder member 11 made of, for example, a resin. Hereinafter, the configuration of the optical element 1 and the folder member 11 that fixes the optical element 1 in the present embodiment will be described in detail with reference to FIGS.
[0014] 図 2は光学素子 1の斜視図である。図 3は光学素子 1が取り付けられたフォルダ部 材 11の斜視図である。図 4は図 3中切り出し線 IV— IVで切り出した部分の断面図で ある。図 5は図 3中切り出し線 V—Vで切り出した部分の断面図である。  FIG. 2 is a perspective view of the optical element 1. FIG. 3 is a perspective view of the folder member 11 to which the optical element 1 is attached. FIG. 4 is a cross-sectional view of the portion taken along the section line IV-IV in FIG. FIG. 5 is a cross-sectional view of a portion cut out along the cut line VV in FIG.
[0015] まず、図 2を参照しながら光学素子 1の形状について説明する。光学素子 1は、第 1 の側面 2、第 2の側面 3及び第 3の側面 4が光学機能面 (光透過面又は光反射面)で ある多角柱状 (具体的には三角柱状)のプリズムである。詳細には、第 2の側面 3及び 第 1の側面 2が光透過面 (光入射面又は光出射面)に構成されており、第 3の側面 4 が光反射面に構成されている。そして、第 2の側面 3から入射した光は第 3の側面 4に よって反射されて第 1の側面 2から出射されるように構成されている。  First, the shape of the optical element 1 will be described with reference to FIG. The optical element 1 is a prism having a prism shape (specifically, a triangular prism shape) in which the first side surface 2, the second side surface 3, and the third side surface 4 are optical function surfaces (light transmission surface or light reflection surface). is there. Specifically, the second side surface 3 and the first side surface 2 are configured as a light transmitting surface (light incident surface or light emitting surface), and the third side surface 4 is configured as a light reflecting surface. The light incident from the second side surface 3 is reflected by the third side surface 4 and is emitted from the first side surface 2.
[0016] ここで、第 1の側面 2、第 2の側面 3及び第 3の側面 4のそれぞれは光学的パワーを 有さない面 (例えば、平面)であってもよぐ光学的パワーを有する面 (球面、非球面、 自由曲面等の屈折面や回折面など)であってもよい。特に、光透過面である第 1の側 面 2及び第 2の側面 3のうちの少なくとも一方が光学的パワーを有する面であることが 好ましい。この構成によれば、光学素子 1に光軸 AXを屈折させる機能に加えて結像 機能等をさらに付与することができる。従って、構成レンズの枚数を減らすことができHere, each of the first side surface 2, the second side surface 3, and the third side surface 4 has an optical power that may be a surface that does not have optical power (for example, a plane). It may be a surface (a refracting surface such as a spherical surface, an aspherical surface, a free-form surface, or a diffractive surface). In particular, it is preferable that at least one of the first side surface 2 and the second side surface 3 which are light transmitting surfaces is a surface having optical power. According to this configuration, the optical element 1 is imaged in addition to the function of refracting the optical axis AX. Functions and the like can be further provided. Therefore, the number of constituent lenses can be reduced.
、撮像装置 10をさらに小型化することができる。例えば、図 5に示すように、第 1の側 面 2を凹状の非球面とし、第 2の側面 3及び第 3の側面 4を平面としてもょ 、。 Thus, the imaging device 10 can be further reduced in size. For example, as shown in FIG. 5, the first side surface 2 is a concave aspherical surface, and the second side surface 3 and the third side surface 4 are flat surfaces.
[0017] 本実施形態において、光学素子 1の上面 5及び下面 6は円柱 (詳細には、第 1の側 面 2の光軸 AX上における法線方向に延びる軸 A (図 2参照)を中心とする円柱)の一 部を構成するように形成されており、光学素子 1はその上面 5及び下面 6が当接する ようにフォルダ部材 11に取り付けられて 、る。フォルダ部材 11は光学素子 1を支持固 定するための部材であり、板状体 11a及び l ibにより構成されている。板状体 11a及 び 1 lbのそれぞれには凹部が形成されており、板状体 1 la及び 1 lbはその凹部同士 が対面するように配置されている。そして、その板状体 11a及び l ibの凹部によって 上述した上面 5及び下面 6がー部を構成する円柱 (以下、円柱 Cと称呼する)が嵌合 装入可能な嵌合孔 11cが構成されている。そして、この嵌合孔 11cに、上面 5及び下 面 6がフォルダ部材 11に当接するように光学素子 1が嵌合挿入されて固定されて!ヽ る。従って、下記の如ぐ光学素子 1を高い位置精度で取り付けることができる。その 結果、高い光学性能を有する撮像装置 10を実現することができる。  In the present embodiment, the upper surface 5 and the lower surface 6 of the optical element 1 are cylindrical (specifically, the axis A (see FIG. 2) extending in the normal direction on the optical axis AX of the first side surface 2 is the center. The optical element 1 is attached to the folder member 11 so that the upper surface 5 and the lower surface 6 thereof are in contact with each other. The folder member 11 is a member for supporting and fixing the optical element 1, and is constituted by a plate-like body 11a and a rib. Each of the plate-like bodies 11a and 1 lb has a recess, and the plate-like bodies 1 la and 1 lb are arranged so that the recesses face each other. The plate-like body 11a and the concave portion of the rib ib form a fitting hole 11c into which the above-described upper surface 5 and lower surface 6 constitute a portion (hereinafter referred to as the column C). ing. Then, the optical element 1 is fitted and inserted and fixed in the fitting hole 11c so that the upper surface 5 and the lower surface 6 are in contact with the folder member 11. Therefore, the optical element 1 as described below can be attached with high positional accuracy. As a result, the imaging device 10 having high optical performance can be realized.
[0018] すなわち、上述の通り上面 5及び下面 6は円柱 Cの一部を構成するように形成され ており、且つフォルダ部材 11には円柱じが (嵌合)挿入可能な嵌合孔 1 lcが形成さ れている。このため、光学素子 1を嵌合孔 11cに嵌合挿入した状態では、光学素子 1 は軸 Aを中心として回動可能である。よって、光学素子 1を嵌合孔 11cに嵌合装入し た状態で光学素子 1の Y軸、 Z軸(図 3参照)に対する第 2の側面 3、第 3の側面 4の傾 き調整 (ティルト調整)を非常に小さなオーダー (例えば 1 'オーダー)で行った後に光 学素子 1をフォルダ部材 11に固定することができる。従って、フォルダ部材 11の形状 精度に関わらず、光学素子 1を高い位置精度で容易に撮像装置 10に取り付けること ができる。その結果、高い光学性能を有する撮像装置 10を実現することができる。  That is, as described above, the upper surface 5 and the lower surface 6 are formed so as to constitute a part of the cylinder C, and the fitting hole 1 lc into which the cylindrical member can be inserted (fitted) into the folder member 11. Is formed. For this reason, in a state where the optical element 1 is fitted and inserted into the fitting hole 11c, the optical element 1 can rotate about the axis A. Therefore, the tilt adjustment of the second side surface 3 and the third side surface 4 with respect to the Y-axis and Z-axis (see Fig. 3) of the optical element 1 with the optical element 1 fitted in the fitting hole 11c (see FIG. 3) The optical element 1 can be fixed to the folder member 11 after the tilt adjustment is performed on a very small order (for example, 1 'order). Therefore, regardless of the shape accuracy of the folder member 11, the optical element 1 can be easily attached to the imaging device 10 with high positional accuracy. As a result, the imaging device 10 having high optical performance can be realized.
[0019] また、熱や外部応力等によって経時的に光学素子 1と撮像装置 10のその他の部材  [0019] Further, the optical element 1 and other members of the imaging device 10 over time due to heat, external stress, or the like.
(例えばレンズ 12等)との位置関係に狂いが生じた場合であっても、容易にメンテナ ンスすることが可能である。  Even if the positional relationship with the lens (eg, the lens 12) is out of order, it can be easily maintained.
[0020] 尚、製造時やメンテナンス時において、光学素子 1をフォルダ部材 11に固定する方 法は何ら限定されない。例えば、力シメゃ接着剤、エネルギー硬化榭脂(例えば、紫 外線硬化榭脂、熱硬化榭脂等)を用いて光学素子 1とフォルダ部材 11とを固定して ちょい。 [0020] It should be noted that the optical element 1 is fixed to the folder member 11 during manufacturing or maintenance. The law is not limited at all. For example, the optical element 1 and the folder member 11 may be fixed using a force shim adhesive or an energy curing resin (for example, an ultraviolet curing resin, a thermosetting resin, etc.).
[0021] また、本実施形態では、上面 5及び下面 6が第 1の側面 2の中心力 法線方向に延 びる軸 Aを中心軸とする円柱の一部分を構成するように形成されて!ヽるが、本発明は この構成に限定されない。例えば、上面 5及び下面 6が第 3の側面 4の法線方向に延 びる軸を中心軸とする円柱の周面の一部分を構成するように形成されて 、てもよ 、。  In the present embodiment, the upper surface 5 and the lower surface 6 are formed so as to constitute a part of a cylinder whose central axis is the axis A extending in the direction of the central force normal to the first side surface 2! However, the present invention is not limited to this configuration. For example, the upper surface 5 and the lower surface 6 may be formed so as to constitute a part of a circumferential surface of a cylinder whose central axis is an axis extending in the normal direction of the third side surface 4.
[0022] また、本実施形態 1において、光学素子 1の材質は特に限定されるものではなぐ 光学素子 1は、例えば、実質的にガラス力もなるもの、又は実質的に榭脂からなるも のであってもよい。その中でも、ガラスは均質性、光透過性、耐久性、耐候性等に優 れ、且つ比較的高精度に加工しやすいものであるため、光学素子 1は実質的にガラ スカもなるものであることが好ましい。ガラス製の光学素子 1は、例えば研磨等によつ ても作製可能である力 プレス成形 (詳細にはヒートプレス成形)により形成することが 好ましい。プレス成形によれば高い作業効率で容易且つ安価に光学素子 1を作製す ることがでさる。  In the first embodiment, the material of the optical element 1 is not particularly limited. The optical element 1 is, for example, a material that substantially has a glass force or a material that is substantially made of resin. May be. Among them, glass is excellent in homogeneity, light transmission, durability, weather resistance, etc., and is easy to process with relatively high precision, so the optical element 1 is also substantially glassy. It is preferable. The optical element 1 made of glass is preferably formed by force press molding (specifically heat press molding) that can be produced by, for example, polishing. According to the press molding, the optical element 1 can be produced easily and inexpensively with high work efficiency.
[0023] また、本実施形態では光学素子 1が三角柱状である例について説明したが、光学 素子 1は四角柱状、五角柱状、六角柱状等であっても構わない。さらに、角部や稜線 部が面取りや R面取りされて 、てもよ 、。  In the present embodiment, the example in which the optical element 1 has a triangular prism shape has been described. However, the optical element 1 may have a quadrangular prism shape, a pentagonal prism shape, a hexagonal prism shape, or the like. In addition, the corners and ridges may be chamfered or rounded.
[0024] また、上記実施形態では、光学素子 1がプリズムである場合を例に挙げて説明した 力 光学素子 1は、例えば、図 6に示すように、第 3の側面 4が光反射面に構成された ミラーであってもよい。この場合においても、上面 5及び下面 6が円柱の周面の一部 を構成するように形成されているため、光学素子 1を装入した後に光反射面たる第 3 の側面 4の光軸 AXに対する角度を調整することができ、高い位置精度で光学素子 1 を取り付けることができる。その結果、高品位な撮像装置を実現することができる。  In the above-described embodiment, the force optical element 1 described by taking the case where the optical element 1 is a prism as an example has the third side surface 4 as a light reflecting surface as shown in FIG. 6, for example. It may be a configured mirror. Even in this case, since the upper surface 5 and the lower surface 6 are formed so as to constitute a part of the circumferential surface of the cylinder, the optical axis AX of the third side surface 4 as the light reflecting surface after the optical element 1 is inserted. The optical element 1 can be attached with high positional accuracy. As a result, a high-quality imaging device can be realized.
[0025] 以上、本発明につ 、て好ま 、実施形態を例に挙げて説明してきた力 技術の熟 練によって開示した発明が幾多の方法で修正され、そして上記具体例以外の多くの 実施形態をとることは明らかである。従って、添付の請求項は本発明の真の精神及 び視野に属するすべての実施形態をカバーするものである。 産業上の利用可能性 [0025] As described above, the present invention is preferred, and the disclosed invention has been modified in a number of ways by the cultivating skill that has been described by taking the embodiment as an example. It is clear to take Accordingly, the appended claims are intended to cover all embodiments that fall within the true spirit and scope of the invention. Industrial applicability
以上説明したように、本発明は、撮像装置 (デジタルスチルカメラ (DSC)、デジタル ビデオカメラ (DVC)等)や光出射装置等の光学装置につ!、て有用である。  As described above, the present invention is useful for optical devices such as an imaging device (digital still camera (DSC), digital video camera (DVC), etc.) and a light emitting device.

Claims

請求の範囲 The scope of the claims
光学装置に上面及び下面が当接するように取り付けられる多角柱状の光学素子で あって、  A polygonal columnar optical element attached so that the upper surface and the lower surface are in contact with the optical device,
上記上面及び下面が円柱の周面の一部を構成するように形成されている光学素子 請求項 1に記載された光学素子にお!、て、  The optical element in which the upper surface and the lower surface are formed so as to constitute a part of a circumferential surface of a cylinder. In the optical element according to claim 1,
ひとつの側面が光反射面に構成されているミラー、又は 3つの側面のうちの 2面が 光透過面に構成されていると共に他の 1面が該光透過面の一方力 入射した光が他 方から出射するように該入射光を反射する光反射面に構成されて ヽるプリズムである 光学素子。  A mirror whose one side is configured as a light reflecting surface, or two of the three side surfaces are configured as a light transmitting surface and the other surface is one of the light transmitting surfaces. An optical element which is a prism configured on a light reflecting surface that reflects the incident light so as to be emitted from one side.
請求項 2に記載された光学素子において、  The optical element according to claim 2,
上記光透過面の少なくとも一方は光学的パワーを有する光学素子。  An optical element in which at least one of the light transmission surfaces has optical power.
請求項 1に記載された光学素子にお!、て、  In the optical element according to claim 1,
上記一対の側面の少なくとも一方は平面に形成されている光学素子。  An optical element in which at least one of the pair of side surfaces is formed in a plane.
上面及び下面が円柱の周面の一部を構成するように形成されて!ヽる多角柱状の光 学素子と、  The upper and lower surfaces are formed to form part of the cylindrical surface! A polygonal column of optical elements
上記円柱が挿入可能であり、上記上面及び下面が当接するように上記光学素子が 嵌合装入された嵌合孔が形成されたフォルダ部材と、  A folder member formed with a fitting hole into which the cylinder can be inserted and the optical element is fitted and inserted so that the upper surface and the lower surface are in contact with each other;
を備えた光学装置。 An optical device.
PCT/JP2006/309394 2005-06-07 2006-05-10 Optical element and optical apparatus with the same WO2006132047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005166639 2005-06-07
JP2005-166639 2005-06-07

Publications (1)

Publication Number Publication Date
WO2006132047A1 true WO2006132047A1 (en) 2006-12-14

Family

ID=37498254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309394 WO2006132047A1 (en) 2005-06-07 2006-05-10 Optical element and optical apparatus with the same

Country Status (1)

Country Link
WO (1) WO2006132047A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4134719A1 (en) * 2021-08-13 2023-02-15 Largan Precision Co. Ltd. Optical lens module and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160401U (en) * 1988-04-22 1989-11-07
JPH0829161A (en) * 1994-07-15 1996-02-02 Keyence Corp Light direction converter and photoelectric switch using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160401U (en) * 1988-04-22 1989-11-07
JPH0829161A (en) * 1994-07-15 1996-02-02 Keyence Corp Light direction converter and photoelectric switch using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4134719A1 (en) * 2021-08-13 2023-02-15 Largan Precision Co. Ltd. Optical lens module and electronic device

Similar Documents

Publication Publication Date Title
JP4312596B2 (en) Lens system optically coupled to an image capture device
JP4612764B2 (en) Lens barrel and optical equipment
JP2008529089A (en) Passively adjusted optical elements
US20090251800A1 (en) Camera Module
JP2009508344A (en) Optical element unit
JP5143432B2 (en) Lens holding structure, lens barrel and camera
JP2005173413A5 (en)
JP2006301291A (en) Lens barrel
JP2007279136A (en) Optical element, optical element module having the same, optical device equipped with the module, and method for manufacturing optical element
JPH10301013A (en) Lens driving mechanism
WO2006132047A1 (en) Optical element and optical apparatus with the same
CN112255817B (en) Imaging correction unit and imaging module
JP2014202843A (en) Optical element unit and image pickup apparatus
JP2008191606A (en) Imaging device
JP2008185832A (en) Optical element and method for assembling optical unit
JP2000019374A (en) Focusing unit and image forming device
US20210181602A1 (en) Camera module
JPH1114906A (en) Optical device, holding jig and image pickup device using the optical device
CN109756656B (en) Handheld electronic equipment and camera device thereof
JP2017161650A (en) Lens holding structure and imaging apparatus including the same
JP2006058830A (en) Optical unit of camera mounted on portable telephone
JP7245685B2 (en) lens unit
JP4140235B2 (en) Lens device
JPH0736335Y2 (en) Condenser lens barrel and solid-state imaging device including the same
TWI386747B (en) Lens and camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06746208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP