WO2006129857A1 - Walking robot and method of controlling the same - Google Patents

Walking robot and method of controlling the same Download PDF

Info

Publication number
WO2006129857A1
WO2006129857A1 PCT/JP2006/311360 JP2006311360W WO2006129857A1 WO 2006129857 A1 WO2006129857 A1 WO 2006129857A1 JP 2006311360 W JP2006311360 W JP 2006311360W WO 2006129857 A1 WO2006129857 A1 WO 2006129857A1
Authority
WO
WIPO (PCT)
Prior art keywords
limb
arm
integrated
leg
ceiling
Prior art date
Application number
PCT/JP2006/311360
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohito Takubo
Tatsuo Arai
Kenji Inoue
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Priority to JP2007519107A priority Critical patent/JPWO2006129857A1/en
Publication of WO2006129857A1 publication Critical patent/WO2006129857A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the present invention relates to a mouth bot that walks with a plurality of arm and leg integrated limbs protruding from a robot body, and in particular, it is possible to walk on the floor using these arm and leg integrated limbs, and a ceiling. This refers to walking robots that can walk along the road. Background art
  • the load sensor includes a diaphragm (109) to which a strain gauge (107) is attached, a driver (104) that presses the diaphragm (109), and a pressure from the ground.
  • the operating body (105) that receives and presses the driving body (104), the panel (106) interposed between the driving body (104) and the dedicated body (105), and the cylindrical portion (101) that accommodates these members ) And a lid (102), and a flange (108) protruding from the operation body (105) is sandwiched between the case body (100) and the diaphragm (109). Operation body The reciprocation of (105) is restricted within a certain range.
  • the operating body (105) is displaced upward in FIG. 16 by the force applied to the sole of the robot when walking, and the panel (106) contracts accordingly, and the spring (10
  • the driving body (104) is driven by the elastic repulsive force of 6), and the driving body (104) presses and deforms the diaphragm (10).
  • strain is generated in the strain gauge (107), and the force applied to the bottom of the robot is detected by a bridge circuit (not shown) connected to the strain gauge (107).
  • a spring (106) is interposed in series between the drive body (104) and the operating body (105), and the spring (106) is within a range where it is elastically deformed. Therefore, it is necessary to select the elastic constant of the spring (106) according to the magnitude of the external force received by the operating body (105). For example, when the panel (106) having a small elasticity constant is adopted when the external force received by the operating body (105) is large, the panel (106) is completely contracted by the action of the external force, and is no longer the panel (106). The function of detecting the external force using the elastic repulsive force of the sensor is impaired. Therefore, conversely, if a panel (106) with a large elastic constant is adopted, the amount of deformation of the panel (106) according to the magnitude of the external force will be reduced, which will reduce the sensitivity of the strain gauge (107). Become.
  • a first object of the present invention is to provide a robot capable of walking along the ceiling. And a control method thereof.
  • a second object of the present invention is a robot having a plurality of arm and leg integrated limbs protruding from the robot body, and at least one of the plurality of arm and leg integrated limbs is integrated.
  • a robot that uses the limbs as arms and walks with at least the remaining three arms and legs integrated limbs, especially when using the arms and legs integrated limbs as arms, a wide range of forces acting on the arms and legs integrated limbs are applied. It is to provide a walking robot that can be detected with a simple configuration. Disclosure of the invention
  • the walking robot according to the present invention is configured by projecting four or more arm / limb integrated limbs (2) on the robot body (1).
  • a shaft body (5) projects from the distal end of each arm / leg integrated limb (2), and the distal end of the shaft body (5) has a radius around the axis of the shaft body (5).
  • the outer limb tip piece (3) is extended outward from the shaft body (5) in the direction, and it is possible to walk on the floor using at least three arm-limb integrated limbs (2).
  • the leg tip piece (3) has a hemispherical shape having a diameter larger than the outer diameter of the shaft body (5) and bulging toward the distal end side. Therefore, it is easy to move the limb tip piece (3) of the arm-limb integrated limb (2) to the ceiling lattice (6) and to move the limb tip piece (3) away from the lattice (6). It is possible to achieve both.
  • the walking robot according to the present invention in the process of walking on the ceiling, at least three arm-leg integrated limbs (2) with their limb tips (3) hooked on the ceiling grid (6), these three arms A force in a direction to approach each other or a force to separate from each other is generated in the leg integration limb (2).
  • the robot arm main body (1) falls off the lattice (6) because the three arm / leg integrated limbs (2) are securely hooked on the lattice (6).
  • the walking robot according to the present invention has six arms and legs integrated limbs (2) projecting radially on the robot body (1), and performs control for walking along the ceiling.
  • the three limbs (2) having a phase difference of 120 degrees are the supporting legs (2a), and the limb tips (3) of these supporting legs (2a) are the lattice of the ceiling.
  • ⁇ arm / limb integrated limb (2) as the free leg (2b) and the limb tip piece (3) of these free leg (2b) as the ceiling grid
  • the action of pulling the limb tip (3) of the three free legs (2b) on the ceiling grid (6), the three support legs (2a) and the three free legs (2 b) To walk Te.
  • a walking robot according to the present invention has a plurality of arm and leg integrated limbs (2) protruding from a robot body (1), and the plurality of arm legs.
  • the limb is walked by the integrated limb (2), and each arm-leg integrated limb (2) is provided with a limb tip mechanism (20) at the tip.
  • the limb tip mechanism (20) includes a frame (50) fixed to the distal end portion of the arm-leg integrated limb (2), and a shaft attached to the frame (50) so as to be capable of reciprocating in the axial direction.
  • a spring (7) that is interposed between the frame (50) and the shaft body (5) and biases the shaft body (5) toward the pressure sensor (9).
  • the reciprocation of the shaft (5) relative to the frame (50) is restricted within a predetermined range And a stopper device.
  • the stopper device includes a first stopper (52) and a second stopper (53) fixed to the shaft body (5), and a frame (50) facing both the stoppers (52) (53). ) Provided with a first stopper receiving portion and a second stopper receiving portion, and the shaft body (5) has a contracted position where the first stopper (52) contacts the first stopper receiving portion, and a first stopper receiving portion.
  • the two stoppers (53) can reciprocate between the extended positions in contact with the second stopper receiving portion, and at the neutral position where no external force acts on the limb tip piece (3), the first stopper (52) and The second stopper (53) is spaced apart from the first stopper receiving portion and the second stopper receiving portion.
  • the spring (7) is interposed between the frame (50) and the shaft body (5) to urge the shaft body (5) toward the pressure sensor (9), As a result, a constant preload is applied to the pressure sensor (9).
  • the shaft body (5) In the process of increasing the pressing force acting on the limb tip piece (3), the shaft body (5) is displaced toward the pressure sensor (9) side. As a result, the first stopper (52) For pressure sensor (9) Immediately before the pressing force reaches the limit value, it contacts the first stopper receiving part. As a result, the pressing force acting on the pressure sensor (9) is prevented from exceeding the limit value and becoming excessive, thereby protecting the pressure sensor (9).
  • the shaft body (5) is displaced away from the pressure sensor-(9), and as a result, the second stopper (53) Contact the second stopper receiving part. As a result, the shaft body (5) is prevented from coming off, thereby protecting the limb tip mechanism (20).
  • the shaft body (5) projects from the front end surface of the frame (50) by a predetermined length at the neutral position, and the limb tip piece (3) extends from the front end surface of the frame (50). It has a shape that expands in the radial direction from the tip of the protruding shaft body (5).
  • various work can be performed by hooking the limb tip piece (3) to the object.
  • the tensile force acting on the limb tip piece (3) is detected by the pressure sensor (9), and the operation of the arm / limb integrated limb (2) is controlled based on the detected bow I tension force.
  • At least one arm-leg integrated limb is used as an arm among a plurality of arm-leg integrated limbs while the remaining at least three arm-leg integrated limbs are used as legs.
  • walking it is possible to detect a wide range of forces acting on the arm-limb integrated limb, which is the arm, with a simple configuration.
  • FIG. 1 is a perspective view of a walking robot according to the present invention having six arms and legs integrated limbs.
  • FIG. 2 is a perspective view showing a working state of the walking robot.
  • FIG. 3 is a perspective view of the walking robot looking up from above at the ceiling.
  • FIG. 4 is a perspective view of the walking robot as it looks down on the ceiling from above.
  • FIG. 5 (a) and FIG. 5 (b) are perspective views of the shape of the limb tip piece of the arm-leg integrated limb as seen from two different directions.
  • Fig. 6 (a) and Fig. 6 (b) respectively show a part of the limb tip piece hooked on the lattice. It is a fracture front view.
  • FIG. 7 is a diagram illustrating the first step in the control for walking on the ceiling.
  • FIG. 8 is a diagram illustrating a second step in the control for walking on the ceiling.
  • FIG. 9 is a diagram illustrating a third step in the control for walking on the ceiling.
  • FIG. 10 is a diagram illustrating the fourth step in the control for walking on the ceiling.
  • FIG. 11 is a diagram for explaining the fifth step in the control for walking on the ceiling.
  • FIG. 12 is a diagram for explaining the sixth step in the control for walking on the ceiling.
  • FIG. 13 is a perspective view of a limb tip mechanism deployed in the walking robot of the present invention.
  • FIG. 14 is a perspective view of the limb tip mechanism as seen from another angle.
  • FIG. 15 (a), FIG. 15 (b) and FIG. 15 (c) are a series of partially broken side views illustrating the operation of the limb tip mechanism.
  • FIG. 16 is a cross-sectional view showing a conventional load sensor of a robot.
  • Figures 17 (a) and 17 (b) show a back view of a walking robot with six arm and leg integrated limbs, with the arm and leg integrated limbs extended, and bending these arm and leg integrated limbs upward.
  • FIG. 17 (a) and 17 (b) show a back view of a walking robot with six arm and leg integrated limbs, with the arm and leg integrated limbs extended, and bending these arm and leg integrated limbs upward.
  • FIG. 18 (a) and 18 (b) show a plan view of a walking robot with five arm and leg integrated limbs, with the arm and leg integrated limbs extended, and these arm and leg integrated limbs facing downward. It is a perspective view of the state bent.
  • 19 (a) and 19 (b) show a plan view of a walking robot equipped with four arm and leg integrated limbs, with the arm and leg integrated limbs extended, and these arm and leg integrated limbs facing downward. It is a perspective view of the state bent.
  • a walking robot has a robot main body (1) having six peripheral walls having a hexagonal plan shape, and an outer peripheral surface of the robot main body (1) with a phase difference of 60 degrees from each other. It consists of six arm and leg integrated limbs (2) projecting in a projectile shape, and these six arm and leg integrated limbs (2) can be used for walking and working.
  • the arm-leg integrated limb (2) is composed of a first limb (21), a second limb (22), a third limb (23), and a fourth limb (24) as shown in the figure.
  • the one limb (21) can rotate around the axis A 1 extending horizontally from the horizontal robot body (1), and the second limb (22) has an axis A 2 extending in the lead straight direction.
  • the third limb (23) is rotatable about an axis A3 orthogonal to the axes A1 and A2, and the fourth limb (24) is an axis A parallel to the axis A3. Can be rotated around 4.
  • Each joint of the arm and leg integrated limb (2) has a first motor (41), a second motor (42), and a second motor (42) for rotationally driving the four limbs (21) to (24).
  • the third morning (43) and the fourth morning (44) are connected.
  • the robot body (1) has a built-in control device (not shown) for controlling these modules (41) to (44).
  • a frame (50) is fixed to the tip of each arm and leg integrated limb (2), the shaft (5) passes through the frame (50), and the limb is inserted into the tip of the shaft (5). It has a tip (3).
  • the limb tip piece (3) has an outer diameter larger than the outer diameter of the shaft body (5) and is positioned at the shaft center of the shaft body (5). It consists of a metal disc (31) fixed in a vertical position with respect to it and a synthetic resin hemisphere (32) fixed to the surface of the disc (31).
  • the two arms and legs integrated limbs (2) are used to hold an object.
  • Various operations such as transportation can be performed.
  • the walking robot according to the present invention When the walking robot according to the present invention is walked along the ceiling, the following control is executed. First, as shown in FIGS. 7 (a) and 7 (b), with the three support legs (2a) hooked on the grid (6), the three free legs (2b) are removed from the grid (6). Extract.
  • the center of gravity G of the robot is set to the inner side of the triangle whose apex is the locking point of the three support legs (2 a) with respect to the lattice (6), preferably about the center.
  • the three free legs (2b) are inserted into the openings of the lattice (6), and each leg tip is raised to a position higher than the lattice (6)
  • the robot body is moved closer to the grid (6) so that the free leg (2b) can be inserted in a wide working range. After that, return the robot body to the standard height position. As the robot moves closer to the grid (6), The center of gravity G rises slightly.
  • the three arms and legs integrated limb (2) which had been the swing leg (2 b) until now, was used as the support leg (2 a).
  • the two arms and legs, which were the legs (2a) are used as the free leg (2b), and the support leg (2a) and the free leg (2b) are switched.
  • the robot body is supported on the grid (6) by three new support legs (2a), and the triangle with the engagement point of the three support legs (2a) with respect to the grid (6) as a vertex.
  • the center of gravity G of the robot is set to the inside, preferably approximately the center.
  • the walking robot can be walked along the ceiling with a stable posture, the field of activity of the walking robot in indoor and outdoor work has been dramatically expanded. The usefulness is extremely high.
  • the limb provided with the frame (50) integrated with the fourth limb (24) at the tip of the arm / limb integrated limb (2). It is possible to deploy the previous mechanism (20).
  • the frame (50) includes a distal end portion of the fourth limb (24), a pair of arm portions (24a) (24a) projecting from the distal end portion, and the arm portions (24a) (24a) And a cylindrical member (84) (83) respectively attached to the front plate portion (81) and the rear plate portion (82) of the frame (8). Yes.
  • the shaft (5) passes through the frame (8), and the shaft (5) is supported by the cylindrical members (84) and (83) so as to be reciprocally movable in the axial direction.
  • a metal disc (31) having a larger outer diameter than the shaft (5) and a synthetic resin hemisphere ( The limb tip (3) consisting of 32) is fixed.
  • a pressure sensor (9) is installed at the distal end of the fourth limb (24) so as to face the end surface on the proximal end side of the shaft body (5), thereby constituting a single-axis load cell. .
  • a disc-shaped spring receiving member (51) is fixed to the shaft body (5) at a position inside the frame body (8) and away from the rear plate portion (82). 8)
  • a coiled spring (7) is interposed between the front plate part (81) and the spring receiving member (51), and the shaft (5) is attached to the pressure sensor (9). It is fast.
  • the vehicle body (5) has a predetermined distance from the rear plate (82) to the cylindrical member (83) between the spring receiving member (51) and the rear plate (82) of the frame (8).
  • the disc-shaped first stopper (52) is fixed, and the disc-shaped second stopper (53) is fixed so as to face the inner surface of the front plate portion (81). .
  • the first stopper (52) and the second stopper (53) are in the unloaded state where no external force acts on the limb tip piece (3).
  • the shaft (5) and the cylindrical members (83) and (84) are separated from each other, and the shaft (5) can move back and forth in the axial direction within a certain range.
  • the shaft body (5) is urged by the spring (7) with a constant force toward the pressure sensor (9), and thereby the pressure sensor (9) has a constant force. Preload is applied. Therefore, the pressure sensor (9) detects the force in the positive direction and the negative direction with this state as an equilibrium point.
  • the second strainer (53) is brought into contact with the front plate (81) of the frame (8) before the end surface of the shaft (sa) is completely separated from the pressure sensor (9). It is also possible to adopt a configuration in which the second stopper (53) is brought into contact with the front plate (81) of the frame (8) after the end surface of the shaft (5) is separated from the pressure sensor (9).
  • the work using the limb tip piece (3) can be continued regardless of the maximum value of the tensile force that can be measured by the pressure sensor (9).
  • the force acting on the limb tip piece (3) does not go through the spring (7) but directly through the shaft (5).
  • sensor (9) the elastic constant of the spring (7) allows the preload to the pressure sensor (9) to be appropriately sized regardless of the magnitude of the force acting on the limb tip (3). Can be designed to a certain value.
  • the arm-leg integrated limb (2) and the arm-limb integrated limb (2) are interchanged during the walking process.
  • the gait is controlled appropriately, and at the same time, the force detection by the limb tip mechanism (20) of the arm-limb integrated limb (2) becomes an arm. Based on this, it is possible to appropriately control work such as object gripping.
  • the tensile force acting on the limb tip piece (3) is pressure.
  • the movement of the arm / limb integrated limb (2) can be controlled based on the detected tensile force detected by the sensor (9).
  • a pressure sensor (9) and a mechanism (end effector) for transmitting the force acting on the limb tip piece (3) to the pressure sensor (9) are: Since the structure is different without being integrated with each other, the walking robot of the present invention can be operated in a new environment in which the range of the force acting on the limb tip (3) is different. Replacing only the pressure sensor (9) or replacing the spring (7) makes it possible to easily cope with this. However, it is easy to change the design and maintenance of the limb tip mechanism (20).
  • the six arm-limb integrated limbs (2) projecting radially about the central axis of the robot body (1) are provided.
  • Fig. 17 (b) it is possible to bend upward on a plane perpendicular to the central axis, and of these, walk along the ceiling using at least three arms and legs integrated limb (2). It is possible to make it.
  • the number of arms and legs integrated limbs (2) is not limited to six, and may be five as shown in FIGS. 18 (a) and 18 (b).
  • the number may be four, but in either configuration, the multiple arms / legs integrated limb (2) has the central axis of the robot body (1) as the center axis. As the center, the projections are radially projected toward the direction orthogonal to the central axis with the same angular difference. With such a configuration, the robot work range is ensured evenly in all directions.
  • the configuration in which the plurality of arm / limb integrated limbs (2) can be bent to both sides of the plane around the plane orthogonal to the central axis at least three arm / leg integrated limbs (2) are connected to the plane. It is possible to bend on the floor and walk on the floor, and bend at least three arms and legs integrated limb (2) to the upper side of the plane without inverting the robot body (1) This makes it possible to walk along the ceiling.

Abstract

A walking robot, comprising six radially projected arm/leg integrated limbs (2) on a robot body (1). In walking on a ceiling, the limb tip pieces (3) of three arm/leg integrated limbs (2) with a phase difference of 120° used as support legs are hooked to the lattice (6) of the ceiling and the remaining three arm/leg integrated limbs (2) used as loose legs are moved in the advancing direction in such a state that the limb tip pieces (3) of the loose legs are extracted from the lattice (6) of the ceiling and, at the same time, and after the gravity center of the robot body (1) is moved in the advancing direction by driving the three support legs, the limb tip pieces (3) of the three loose legs are hooked to the lattice (6) of the ceiling. These operations are performed while alternately replacing the three support legs with the three loose legs.

Description

明 細 書 歩行ロボヅト及びその制御方法 技術分野 '  Description Walking robot and its control method Technical Field ''
本発明は、 ロボット本体に突設された複数本の腕脚統合肢によって歩行する口 ボットに関し、 特に、 これらの腕脚統合肢を用いて床面上を歩行することが可能 であると共に、 天井に沿って歩行することが可能な歩行ロボヅトに関するもので める。 背景技術  The present invention relates to a mouth bot that walks with a plurality of arm and leg integrated limbs protruding from a robot body, and in particular, it is possible to walk on the floor using these arm and leg integrated limbs, and a ceiling. This refers to walking robots that can walk along the road. Background art
従来、 床面上を歩行するロボットとして、 2足歩行ロボットゃ 4足歩行ロボッ ト等、 種々の歩行ロボヅトが提案されている(日本国公開特許公報 2003-71 752号、 2003— 266337号、 2004— 202676号、 2004— 2989 & 3号、 2004— 3142 16号、 2005— 749 1号、 2005 -34984号、 2005-52896号参照 )。 又、 ロボヅト本体に対し、 腕と 脚の両方の機能を有する腕脚統合肢を突設してなる歩行ロボヅトが閧発されてい る(日本国ロボット学会誌 22卷 3号第 411頁〜 421頁参照)。  Conventionally, various walking robots such as biped robots and quadruped robots have been proposed as robots to walk on the floor (JP-A-2003-71752, 2003-266337, 2004). — See 202676, 2004—2989 & 3, 2004—3142 16, 2005—749 1, 2005-34984, 2005-52896). In addition, a walking robot has been developed by projecting an arm and leg integrated limb that functions as both an arm and a leg to the robot body (Journal of the Robotics Society of Japan, 22-3, pages 411-421). reference).
また、 2足直立歩行を行なうロボットにおいて、 足底に図 16に示す荷重セン サ一を具えたロボットが提案されている(日本国公開特許公報 2004-2990 45号参照)。 該ロボヅトにおいて、 荷重センサ一は、 図 16の如く、 歪みゲージ (107)が貼り付けられたダイヤフラム(109)と、 該ダイヤフラム(109)を押圧する駆 動体 (104)と、 地面からの圧力を受けて駆動体 (104)を押圧する操作体 (105)と、 駆 動体 (104)と捧作体 (105)の間に介在するパネ(106)と、 これらの部材を収容する筒 部(101)及び蓋部(102)からなるケース体 (100)とを具えており、 操作体 (105)に突 設された鍔部 (108)がケース体 (100)とダイヤフラム(109)の間に挟まれて、 操作体 ( 105)の往復移動が一定範囲内に規制されている。 In addition, a robot that has two legs standing upright has been proposed (see Japanese Patent Publication No. 2004-299045) having a load sensor as shown in FIG. In the robot, as shown in FIG. 16, the load sensor includes a diaphragm (109) to which a strain gauge (107) is attached, a driver (104) that presses the diaphragm (109), and a pressure from the ground. The operating body (105) that receives and presses the driving body (104), the panel (106) interposed between the driving body (104) and the dedicated body (105), and the cylindrical portion (101) that accommodates these members ) And a lid (102), and a flange (108) protruding from the operation body (105) is sandwiched between the case body (100) and the diaphragm (109). Operation body The reciprocation of (105) is restricted within a certain range.
上記荷重センサ一においては、 ロボッ卜の歩行時に足底が受ける力によって操 作体 ( 105 )が図 1 6の上方へ変位し、 これに伴ってパネ(106 )が収縮し、 該バネ(10 6 )の弾性反発力によつて駆動体 ( 104)が駆動され、 該駆動体 ( 104)がダイャフラム ( 10 )を押圧して変形させる。 これによつて歪みゲージ(107)に歪みが生じ、 該歪 みゲ一ジ( 107 )に接続されているブリヅジ回路 (図示省略)によって、 ロボットの足 底が受ける力が検出される。  In the load sensor 1, the operating body (105) is displaced upward in FIG. 16 by the force applied to the sole of the robot when walking, and the panel (106) contracts accordingly, and the spring (10 The driving body (104) is driven by the elastic repulsive force of 6), and the driving body (104) presses and deforms the diaphragm (10). As a result, strain is generated in the strain gauge (107), and the force applied to the bottom of the robot is detected by a bridge circuit (not shown) connected to the strain gauge (107).
ところで、 歩行ロボットを種々の作業に利用する場合、 ロボットを天井に沿つ て歩行させることが出来れば、 その有用性は極めて高いものとなる。 しかしなが ら、 これまでに天井に沿って歩行するロボットは知られていない。  By the way, when a walking robot is used for various tasks, if the robot can be walked along the ceiling, its usefulness is extremely high. However, so far no robot has been known to walk along the ceiling.
また、 図 1 6の荷重センサ一においては、 駆動体 ( 104)と操作体 ( 105 )の間にバ ネ(106 )が直列に介在しており、 該バネ(106 )が弾性変形する範囲内で力の検出を 行なう必要があるため、 操作体 ( 105 )が受ける外力の大きさに応じてバネ(106 )の 弾性定数を選ぶ必要があった。 例えば操作体 ( 105 )が受ける外力が大きい場合に弾 性定数の小さなパネ(106 )を採用すると、 該外力の作用によってパネ(106 )が完全 'に収縮してしまって、 最早パネ(106)の弾性反発力を利用した外力検出の機能が損 なわれてしまう。 そこで、 逆に弾性定数の大きなパネ(106 )を採用すると、 外力の 大きさに応じたパネ(106 )の変形量が小さくなり、 これによつて歪みゲージ(107) の感度が低下することになる。  Further, in the load sensor 1 shown in FIG. 16, a spring (106) is interposed in series between the drive body (104) and the operating body (105), and the spring (106) is within a range where it is elastically deformed. Therefore, it is necessary to select the elastic constant of the spring (106) according to the magnitude of the external force received by the operating body (105). For example, when the panel (106) having a small elasticity constant is adopted when the external force received by the operating body (105) is large, the panel (106) is completely contracted by the action of the external force, and is no longer the panel (106). The function of detecting the external force using the elastic repulsive force of the sensor is impaired. Therefore, conversely, if a panel (106) with a large elastic constant is adopted, the amount of deformation of the panel (106) according to the magnitude of the external force will be reduced, which will reduce the sensitivity of the strain gauge (107). Become.
この様に従来の荷重センサ一を具えたロボットにおいては、 歩行時に足底が受 ける力の大きさに応じたバネ仕様を採らざるを得ず、 加重センサ一の検出値を単 なる歩行制御に利用する場合は大きな問題とはならないが、 例えば複数本の足の 内、 何本かを腕として種々の作業に利用するロボットにおいては、 検出すべき外 力の大きさの範囲が極めて広くなるため、 この様なロボヅトの制御に好適な荷重 センサーを構成することが、 極めて困難である問題があった。  In this way, in a robot equipped with a conventional load sensor, it is necessary to adopt a spring specification according to the magnitude of the force received by the sole during walking, and the detection value of the weight sensor is used for simple walking control. This is not a big problem when used, but for example, in a robot that uses several of its legs as arms for various tasks, the range of magnitude of external force to be detected is extremely wide. There is a problem that it is extremely difficult to construct a load sensor suitable for controlling such a robot.
そこで本発明の第 1の目的は、 天井に沿って歩行させることが可能なロボット とその制御方法を提供することである。 Accordingly, a first object of the present invention is to provide a robot capable of walking along the ceiling. And a control method thereof.
また、 本発明の第 2の目的は、 ロボット本体に複数本の腕脚統合肢を突設して なるロボットであって、 これら複数本の腕脚統合肢の内、 少なくとも 1本の腕脚 統合肢を腕として利用しつつ残りの少なくとも 3本の腕脚統合肢を脚として歩行 するロボットにおいて、 特に腕脚統合肢を腕として利用する場合に該腕脚統合肢 に作用する広い範囲の力を簡易な構成によって検出することが出来る歩行ロボッ トを提供することである。 発明の開示  A second object of the present invention is a robot having a plurality of arm and leg integrated limbs protruding from the robot body, and at least one of the plurality of arm and leg integrated limbs is integrated. In a robot that uses the limbs as arms and walks with at least the remaining three arms and legs integrated limbs, especially when using the arms and legs integrated limbs as arms, a wide range of forces acting on the arms and legs integrated limbs are applied. It is to provide a walking robot that can be detected with a simple configuration. Disclosure of the invention
上記本発明の第 1の目的を達成するべく、 本発明に係る歩行ロボットは、 ロボ ット本体( 1 )に 4本以上の腕脚統合肢( 2 )を突設して構成されている。 各腕脚統 合肢( 2 )の先端部には軸体( 5 )が突設されると共に、 該軸体( 5 )の先端部には、 軸体( 5 )の軸心を中心として半径方向へ軸体( 5 )よりも外側に拡大した外形の肢 先片(3 )が設けられており、 少なくとも 3本の腕脚統合肢(2 )を用いて床面上を 歩行することが可能であると共に、 少なくとも 3本の腕脚統合肢( 2 )の肢先片 ' ( 3 )を天井に設置された格子( 6 )に引っ掛けて天井に沿って歩行することが可能 である。  In order to achieve the first object of the present invention, the walking robot according to the present invention is configured by projecting four or more arm / limb integrated limbs (2) on the robot body (1). A shaft body (5) projects from the distal end of each arm / leg integrated limb (2), and the distal end of the shaft body (5) has a radius around the axis of the shaft body (5). The outer limb tip piece (3) is extended outward from the shaft body (5) in the direction, and it is possible to walk on the floor using at least three arm-limb integrated limbs (2). In addition, it is possible to walk along the ceiling by hooking the limb pieces (3) of at least three arms and legs integrated limb (2) on the grid (6) installed on the ceiling.
具体的構成において、 肢先片(3 )は、 軸体(5 )の外径よりも大きな直径を有し て先端側に膨らんだ半球状を呈している。 従って、 天井の格子(6 )に腕脚統合肢 ( 2 )の肢先片( 3 )を引っ掛ける動作の容易性と、.肢先片( 3 )を格子( 6 )から離脱 させる動作の容易性とを両立させることが可能である。  In a specific configuration, the leg tip piece (3) has a hemispherical shape having a diameter larger than the outer diameter of the shaft body (5) and bulging toward the distal end side. Therefore, it is easy to move the limb tip piece (3) of the arm-limb integrated limb (2) to the ceiling lattice (6) and to move the limb tip piece (3) away from the lattice (6). It is possible to achieve both.
本発明に係る歩行ロボットは、 天井歩行の過程で、 少なくとも 3本の腕脚統合 肢( 2 )の肢先片( 3 )を天井の格子( 6 )に引っ掛けた状態で、 これら 3本の腕脚統 合肢(2 )に、 互いに接近させる方向の力、 或いは互いに離間させる方向の力を発 生させる。 これによつて、 前記 3本の腕脚統合肢(2 )が格子(6 )に確実に引っ掛 かって、 ロボヅト本体( 1 )が格子( 6 )から脱落する虞はない。 より具体的には、 本発明に係る歩行ロボットは、 ロボット本体( 1 )に放射状に 突設された 6本の腕脚統合肢( 2 )を具え、 天井に沿って歩行するための制御にお いては、 1 2 0度の位相差を有する 3本の腕脚統合肢(2 )を支持脚(2 a )として、 これらの支持脚( 2 a )の肢先片( 3 )を天井の格子( 6 )に引っ掛けると共に、 残り の:^本の腕脚統合肢(2 )を遊脚(2 b )として、 これらの遊脚(2 b )の肢先片(3 ) を天井の格子( 6 )から抜き出した状態で、 3本の遊脚( 2 b )を進行方向へ移動さ せると同時に、 3本の支持脚(2 a )の駆動によってロボヅト本体( 1 )の重心を進 行方向へ移動させた後、 3本の遊脚( 2 b )の肢先片( 3 )を天井の格子( 6 )に引つ 掛ける動作を、 3本の支持脚( 2 a )と 3本の遊脚( 2 b )とを交互に入れ替えなが らヽ 天井に沿って歩行させる。 In the walking robot according to the present invention, in the process of walking on the ceiling, at least three arm-leg integrated limbs (2) with their limb tips (3) hooked on the ceiling grid (6), these three arms A force in a direction to approach each other or a force to separate from each other is generated in the leg integration limb (2). Thus, there is no possibility that the robot arm main body (1) falls off the lattice (6) because the three arm / leg integrated limbs (2) are securely hooked on the lattice (6). More specifically, the walking robot according to the present invention has six arms and legs integrated limbs (2) projecting radially on the robot body (1), and performs control for walking along the ceiling. The three limbs (2) having a phase difference of 120 degrees are the supporting legs (2a), and the limb tips (3) of these supporting legs (2a) are the lattice of the ceiling. (6) and the remaining: ^ arm / limb integrated limb (2) as the free leg (2b), and the limb tip piece (3) of these free leg (2b) as the ceiling grid (6 3) Move the three free legs (2b) in the direction of travel while they are pulled out from), and at the same time drive the three support legs (2a) to move the center of gravity of the robot body (1) in the forward direction. After the movement, the action of pulling the limb tip (3) of the three free legs (2b) on the ceiling grid (6), the three support legs (2a) and the three free legs (2 b) To walk Te.
上記本発明の歩行ロボットの制御方法によれば、 3本の支持脚( 2 a )と 3本の 遊脚( 2 b )とを交互に入れ替えながら天井に沿って歩行する過程で、 3本の支持 脚( 2 a )の肢先片( 3 )が格子( 6 )に引っ掛かった状態で、 ロボット本体( 1 )の重 心移動を行ない、 3本の支持脚( 2 a )の肢先片( 3 )によって形成される 3角形の 内側に重心位置を維持することが出来るので、 安定した姿勢での天井歩行が実現 'される。  According to the walking robot control method of the present invention described above, in the process of walking along the ceiling while alternately switching the three support legs (2 a) and the three free legs (2 b), With the limb tip piece (3) of the support leg (2 a) hooked on the grid (6), move the robot body (1) and move the limb tip piece of the three support legs (2 a) ( Since the center of gravity can be maintained inside the triangle formed by 3), ceiling walking with a stable posture is realized.
上記本発明の第 2の目的を達成するべく、 本発明に係る歩行ロボットは、 ロボ ット本体( 1 )に複数本の腕脚統合肢( 2 )を突設し、 これら複数本の腕脚統合肢 ( 2 )によって'歩行するものであって、 各腕脚統合肢( 2 )は先端部に肢先機構 (20) を具えている。  In order to achieve the second object of the present invention described above, a walking robot according to the present invention has a plurality of arm and leg integrated limbs (2) protruding from a robot body (1), and the plurality of arm legs. The limb is walked by the integrated limb (2), and each arm-leg integrated limb (2) is provided with a limb tip mechanism (20) at the tip.
ここで、 前記肢先機構 (20)は、 腕脚統合肢(2 )の先端部に固定されたフレーム ( 50)と、 該フレーム(50)に軸方向の往復移動が可能に取り付けられた軸体( 5 )と、 該軸体( 5 )の先端部に設けられた肢先片( 3 )と、 該軸体( 5 )の基端側の端面に対 向して前記フレーム(50)上に設置された圧力センサー( 9 )と、 前記フレーム(50) と軸体( 5 )の間に介在して軸体( 5 )を圧力センサ一( 9 )へ向けて付勢するスプリ ング( 7 )と、 前記フレーム(50)に対する軸体( 5 )の往復移動を所定範囲内に規制 するストッパ一装置とを具えている。 Here, the limb tip mechanism (20) includes a frame (50) fixed to the distal end portion of the arm-leg integrated limb (2), and a shaft attached to the frame (50) so as to be capable of reciprocating in the axial direction. A body (5), a limb tip piece (3) provided at the distal end of the shaft body (5), and the frame (50) facing the base end face of the shaft body (5) And a spring (7) that is interposed between the frame (50) and the shaft body (5) and biases the shaft body (5) toward the pressure sensor (9). ) And the reciprocation of the shaft (5) relative to the frame (50) is restricted within a predetermined range And a stopper device.
具体的には、 上記ストッパー装置は、 軸体( 5)に固定された第 1ストヅパー (5 2)及び第 2ストッパー(53)と、 両ストッパー(52)(53)に対向してフレーム(50)に 設けられた第 1ストッパー受け部及び第 2ストッパー受け部とから構成され、 軸 体 (5 )は、 第 1ストヅパ一 (52)が第 1ストヅパー受け部に当接した収縮位置と、 第 2ストヅパ一 (53)が第 2ストッパー受け部に当接した伸張位置の間で往復移動 可能であり、 肢先片(3)に外力が作用しない中立位置にて、 第 1ストッパー(52) 及び第 2ストッパー(53)はそれそれ第 1ストッパー受け部及び第 2ストッパー受 け部から離間している。  Specifically, the stopper device includes a first stopper (52) and a second stopper (53) fixed to the shaft body (5), and a frame (50) facing both the stoppers (52) (53). ) Provided with a first stopper receiving portion and a second stopper receiving portion, and the shaft body (5) has a contracted position where the first stopper (52) contacts the first stopper receiving portion, and a first stopper receiving portion. The two stoppers (53) can reciprocate between the extended positions in contact with the second stopper receiving portion, and at the neutral position where no external force acts on the limb tip piece (3), the first stopper (52) and The second stopper (53) is spaced apart from the first stopper receiving portion and the second stopper receiving portion.
上記本発明のロボットにおいては、 フレーム(50)と軸体( 5)の間にスプリング ( 7 )が介在して軸体( 5 )を圧力センサ一( 9 )へ向けて付勢しており、 これによつ て圧力センサー(9)に対して一定の予圧を負荷している。  In the robot of the present invention, the spring (7) is interposed between the frame (50) and the shaft body (5) to urge the shaft body (5) toward the pressure sensor (9), As a result, a constant preload is applied to the pressure sensor (9).
この状態で、 肢先片(3)に押圧方向の外力 (押圧力)が作用すると、 該押圧力は、 軸体(5)を介して直接に圧力センサー(9)に伝わる。 ここで、 スプリング(7)の 弾性反発力と肢先片( 3 )に作用する押圧力とは、 互いに並列の関係で圧力センサ 一(9)に作用し、 その合力が圧力センサ一(9)によって検出されることになる。 従って、 圧力センサー( 9)の検出値からスプリング( 7)の弾性反発力を減算する ことによって、 肢先片(3)に作用する押圧力を得ることが出来る。  In this state, when an external force (pressing force) in the pressing direction acts on the limb tip piece (3), the pressing force is directly transmitted to the pressure sensor (9) through the shaft body (5). Here, the elastic repulsive force of the spring (7) and the pressing force acting on the limb tip piece (3) act on the pressure sensor (9) in a parallel relationship, and the resultant force is the pressure sensor (9). Will be detected. Therefore, the pressing force acting on the limb tip piece (3) can be obtained by subtracting the elastic repulsion force of the spring (7) from the detected value of the pressure sensor (9).
一方、 肢 片(3)に引張り方向の外力(引張り力)が作用すると、 該弓 I張り力は、 スプリング( 7 )の弾性反発力によって圧力センサ一( 9 )が受ける押圧力と相殺さ れて、 圧力センサ一(9)には、 弾性反発力から引張り力を差し引いた力が作用し、 その力が圧力センサ一(9)によって検出されることになる。 従って、 スプリング (7)の弾性反発力から圧力センサ一( 9)の検出値を減算することによって、 肢先 片(3)に作用する引張り力を得ることが出来る。  On the other hand, when an external force (tensile force) in the pulling direction acts on the limb piece (3), the bow I tension force is offset by the pressing force received by the pressure sensor (9) by the elastic repulsive force of the spring (7). Thus, a force obtained by subtracting the tensile force from the elastic repulsion force acts on the pressure sensor (9), and the force is detected by the pressure sensor (9). Therefore, the tensile force acting on the limb tip piece (3) can be obtained by subtracting the detection value of the pressure sensor (9) from the elastic repulsion force of the spring (7).
肢先片( 3 )に作用する押圧力が増大する過程で、 軸体( 5 )は圧力センサー( 9 ) 側へ変位し、 この結果、 第 1ストッパー(52)は、 軸体(5)の圧力センサー(9)に 対する押圧力が限界値に達する直前に第 1ストッパー受け部に当接する。 この結 果、 圧力センサー( 9 )に作用する押圧力が限界値を超えて過大となることが阻止 され、 これによつて圧力センサー(9 )の保護が図られる。 In the process of increasing the pressing force acting on the limb tip piece (3), the shaft body (5) is displaced toward the pressure sensor (9) side. As a result, the first stopper (52) For pressure sensor (9) Immediately before the pressing force reaches the limit value, it contacts the first stopper receiving part. As a result, the pressing force acting on the pressure sensor (9) is prevented from exceeding the limit value and becoming excessive, thereby protecting the pressure sensor (9).
又、 肢先片(3 )に作用する引張り力が増大する過程で、 軸体( 5 )は圧力センサ —( 9 )から離間する方向に変位し、 この結果、 第 2ストヅパ一(53)は第 2ストヅ パ一受け部に当接する。 この結果、 軸体(5 )に抜け止めが施され、 これによつて 肢先機構 (20)の保護が図られる。  Also, in the process of increasing the tensile force acting on the limb tip piece (3), the shaft body (5) is displaced away from the pressure sensor-(9), and as a result, the second stopper (53) Contact the second stopper receiving part. As a result, the shaft body (5) is prevented from coming off, thereby protecting the limb tip mechanism (20).
又、 具体的構成において、 軸体(5 )は、 前記中立位置にて所定長さだけフレー ム(50)の先端面から突出し、 肢先片(3 )は、 フレーム(50)の先端面から突出する 軸体( 5 )の先端から径方向へ拡大する形状を有している。 該具体的構成によれば、 肢先片( 3 )を対象物に引っ掛けることにより種々の作業が可能となる。 この際、 肢先片(3 )に作用する引張り力が圧力センサ一( 9 )により検出され、 検出された 弓 I張り力に基づいて、 腕脚統合肢( 2 )の動作が制御される。  In a specific configuration, the shaft body (5) projects from the front end surface of the frame (50) by a predetermined length at the neutral position, and the limb tip piece (3) extends from the front end surface of the frame (50). It has a shape that expands in the radial direction from the tip of the protruding shaft body (5). According to this specific configuration, various work can be performed by hooking the limb tip piece (3) to the object. At this time, the tensile force acting on the limb tip piece (3) is detected by the pressure sensor (9), and the operation of the arm / limb integrated limb (2) is controlled based on the detected bow I tension force.
上記本発明の歩行ロボヅトによれば、 複数本の腕脚統合肢の内、 少なくとも 1 本の腕脚統合肢を腕として利用しつつ残りの少なくとも 3本の腕脚統合肢を脚と 'して歩行する場合に、 腕となる腕脚統合肢に作用する広い範囲の力を簡易な構成 によって検出することが出来る。 図面の簡単な'説明  According to the walking robot of the present invention, at least one arm-leg integrated limb is used as an arm among a plurality of arm-leg integrated limbs while the remaining at least three arm-leg integrated limbs are used as legs. When walking, it is possible to detect a wide range of forces acting on the arm-limb integrated limb, which is the arm, with a simple configuration. Brief description of the drawings
図 1は、 6本の腕脚統合肢を具えた本発明に係る歩行ロボットの斜視図である。 図 2は、 該歩行ロボットの作業状態を示す斜視図であ ¾。  FIG. 1 is a perspective view of a walking robot according to the present invention having six arms and legs integrated limbs. FIG. 2 is a perspective view showing a working state of the walking robot.
.図 3は、 該歩行ロボットの天井歩行状態を下から見上げた斜視図である。  FIG. 3 is a perspective view of the walking robot looking up from above at the ceiling.
図 4は、 該歩行ロボットの天井歩行状態を上から見下ろした斜視図である。  FIG. 4 is a perspective view of the walking robot as it looks down on the ceiling from above.
図 5 ( a )及び図 5 ( b )は、 腕脚統合肢の肢先片の形状を 2つの異なる方向から 見た斜視図である。  FIG. 5 (a) and FIG. 5 (b) are perspective views of the shape of the limb tip piece of the arm-leg integrated limb as seen from two different directions.
図 6 ( a )及び図 6 ( b )はそれぞれ、 .肢先片を格子に引っ掛けた状態を示す一部 破断正面図である。 Fig. 6 (a) and Fig. 6 (b) respectively show a part of the limb tip piece hooked on the lattice. It is a fracture front view.
図 7は、 天井歩行のための制御における第 1ステップを説明する図である。 図 8は、 天井歩行のための制御における第 2ステップを説明する図である。 図 9は、 天井歩行のための制御における第 3ステップを説明する図である。 図 10は、 天井歩行のための制御における第 4ステップを説明する図である。 図 1 1は、 天井歩行のための制御における第 5ステップを説明する図である。 図 12は、 天井歩行のための制御における第 6ステップを説明する図である。 図 13は、 本発明の歩行ロボットに配備される肢先機構の斜視図である。  FIG. 7 is a diagram illustrating the first step in the control for walking on the ceiling. FIG. 8 is a diagram illustrating a second step in the control for walking on the ceiling. FIG. 9 is a diagram illustrating a third step in the control for walking on the ceiling. FIG. 10 is a diagram illustrating the fourth step in the control for walking on the ceiling. FIG. 11 is a diagram for explaining the fifth step in the control for walking on the ceiling. FIG. 12 is a diagram for explaining the sixth step in the control for walking on the ceiling. FIG. 13 is a perspective view of a limb tip mechanism deployed in the walking robot of the present invention.
図 14は、 該肢先機構を別の角度から見た斜視図である。  FIG. 14 is a perspective view of the limb tip mechanism as seen from another angle.
図 15 ( a )、 図 15 ( b )及び図 15 ( c )は、 該肢先機構の動作を説明する一連 の一部破断側面図である。  FIG. 15 (a), FIG. 15 (b) and FIG. 15 (c) are a series of partially broken side views illustrating the operation of the limb tip mechanism.
図 16は、 従来のロボットの荷重センサ一を示す断面図である。  FIG. 16 is a cross-sectional view showing a conventional load sensor of a robot.
図 17(a)及び図 17(b)は、 6本の腕脚統合肢を具えた歩行ロボヅトが腕脚 統合肢を伸ばした状態の裏面図と、 これらの腕脚統合肢を上側に屈曲させた状態 の斜視図である。  Figures 17 (a) and 17 (b) show a back view of a walking robot with six arm and leg integrated limbs, with the arm and leg integrated limbs extended, and bending these arm and leg integrated limbs upward. FIG.
' 図 18(a)及び図 18(b)は、 5本の腕脚統合肢を具えた歩行ロボットが腕脚 統合肢を伸ばした状態の平面図と、 これらの腕脚統合肢を下側に屈曲させた状態 の斜視図である。  '' Fig. 18 (a) and 18 (b) show a plan view of a walking robot with five arm and leg integrated limbs, with the arm and leg integrated limbs extended, and these arm and leg integrated limbs facing downward. It is a perspective view of the state bent.
図 19(a)及び図 19(b)は、 4本の腕脚統合肢を具えた歩行ロボヅトが腕脚 '統合肢を伸ばした状態の平面図と、 これらの腕脚統合肢を下側に屈曲させた状態 の斜視図である。 発明を実施するための最良の形態  19 (a) and 19 (b) show a plan view of a walking robot equipped with four arm and leg integrated limbs, with the arm and leg integrated limbs extended, and these arm and leg integrated limbs facing downward. It is a perspective view of the state bent. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態につき、 図面に沿って具体的に説明する。 本発明に 係る歩行ロボットは、 図 1に示す如く、 平面形状が六角形の 6つの周壁を有する ロボヅト本体( 1)と、 該ロボヅト本体( 1)の外周面に互いに 60度の位相差で放 射状に突設された 6本の腕脚統合肢( 2 )とから構成され、 これら 6本の腕脚統合 肢(2)を用いて、 歩行や作業が可能となっている。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. As shown in FIG. 1, a walking robot according to the present invention has a robot main body (1) having six peripheral walls having a hexagonal plan shape, and an outer peripheral surface of the robot main body (1) with a phase difference of 60 degrees from each other. It consists of six arm and leg integrated limbs (2) projecting in a projectile shape, and these six arm and leg integrated limbs (2) can be used for walking and working.
腕脚統合肢(2)は、 図示の如く、 第 1肢部 (21)、 第 2肢部 (22)、 第 3肢部 (23)、 及び第 4肢部 (24)から構成され、 第 1肢部 (21)は、 水平姿勢のロボット本体( 1) から水平方向に伸びる軸 A 1を中心として回転可能であり、 第 2肢部(22)は、 鉛 直方向に伸びる軸 A 2を中心として回転可能であり、 第 3肢部 (23)は、 軸 A1及 び A2と直交する軸 A3を中心として回転可能であり、 第 4肢部 (24)は、 軸 A3 と平行な軸 A 4を中心として回転可能である。  The arm-leg integrated limb (2) is composed of a first limb (21), a second limb (22), a third limb (23), and a fourth limb (24) as shown in the figure. The one limb (21) can rotate around the axis A 1 extending horizontally from the horizontal robot body (1), and the second limb (22) has an axis A 2 extending in the lead straight direction. The third limb (23) is rotatable about an axis A3 orthogonal to the axes A1 and A2, and the fourth limb (24) is an axis A parallel to the axis A3. Can be rotated around 4.
そして、 腕脚統合肢(2)の各関節には、 4つの肢部 (21)〜(24)を回転駆動する ための第 1モ一夕(41)、 第 2モー夕(42)、 第 3モー夕(43)及び第 4モー夕(44)が 連結されている。 又、 ロボット本体( 1)には、 これらのモ一夕(41)〜(44)を制御 するための制御装置(図示省略)が内蔵されている。  Each joint of the arm and leg integrated limb (2) has a first motor (41), a second motor (42), and a second motor (42) for rotationally driving the four limbs (21) to (24). The third morning (43) and the fourth morning (44) are connected. The robot body (1) has a built-in control device (not shown) for controlling these modules (41) to (44).
各腕脚統合肢( 2 )の先端部にはフレーム(50)が固定されており、 該フレーム(5 0)を軸体(5)が貫通し、 該軸体(5)の先端部に肢先片(3)を具えている。 肢先片 (3)は、 図 5(a)及び図 5(b)に示す如く、 軸体( 5 )の外径よりも大きな外径を '有して軸体( 5)の軸心に対して垂直の姿勢に固定された金属製の円板 (31)と、 該 円板 ( 31 )の表面に固定された合成樹脂製の半球体 ( 32 )とから構成されている。  A frame (50) is fixed to the tip of each arm and leg integrated limb (2), the shaft (5) passes through the frame (50), and the limb is inserted into the tip of the shaft (5). It has a tip (3). As shown in FIGS. 5 (a) and 5 (b), the limb tip piece (3) has an outer diameter larger than the outer diameter of the shaft body (5) and is positioned at the shaft center of the shaft body (5). It consists of a metal disc (31) fixed in a vertical position with respect to it and a synthetic resin hemisphere (32) fixed to the surface of the disc (31).
上記歩行ロボヅトにおいては、 例えば図 2に示す如く、 4本の腕脚統合肢(2) を脚として利用して歩行しつつ、 2本の腕脚統合肢( 2 )を用いて物体の把持や運 搬など、 種々の作業を行なうことが出来る。 又、 図 3及び図 4に示す如く、 天井 に設置された格子( 6 )に対し少なくとも 3本の腕脚統合肢( 2 )の肢先片( 3 )を引 っ挂トけて、 天井に沿って歩行することも可能である。  In the above walking robot, for example, as shown in FIG. 2, while walking using the four arms and legs integrated limbs (2) as legs, the two arms and legs integrated limbs (2) are used to hold an object. Various operations such as transportation can be performed. In addition, as shown in Fig. 3 and Fig. 4, draw at least three limb tips (3) of the arm / limb integrated limb (2) against the grid (6) installed on the ceiling, and place it on the ceiling. It is also possible to walk along.
. 天井歩行においては、 例えば図 7〜図 12に示す如く、 互いに 120度の位相 差を有する 3本の腕脚統合肢( 2 )を支持脚( 2 a)として、 これらの支持脚( 2 a) の肢先片(3 )を天井の格子( 6 )に引っ掛けると共に、 残りの 3本の腕脚統合肢 ( 2 )を遊脚( 2 b )として、 これらの遊脚( 2 b )の肢先片( 3 )を天井の格子( 6 )か ら抜き出した状態で、 3本の遊脚(2b)を進行方向へ移動させると同時に、 ロボ ット本体( 1 )の重心を進行方向へ移動させた後、 3本の遊脚( 2 b)の肢先片( 3 ) を天井の格子( 6 )に引っ掛ける動作を、 3本の支持脚( 2 a)と 3本の遊脚( 2b) とを交互に入れ替えながら、 天井に沿って歩行する。 When walking on the ceiling, for example, as shown in FIGS. 7 to 12, three arm-limb integrated limbs (2) having a phase difference of 120 degrees from each other are used as support legs (2a), and these support legs (2a ) And the remaining three arm-leg integrated limbs (2) as the free legs (2 b), and the limbs of these free legs (2 b) The tip piece (3) or ceiling grid (6) The three free legs (2b) are moved in the direction of travel while being removed, and the center of gravity of the robot body (1) is moved in the direction of travel. Walk along the ceiling while alternating the three support legs (2a) and the three free legs (2b) with the action of hooking the limb tip piece (3) on the ceiling grid (6) .
又、 3本の支持脚(2 a)を格子(6)に引っ掛けた状態では、 これら 3本の支持 脚(2 a)に対し、 図 6(a)の如く互いに接近させる方向の力 F 1を発生させ、 或 いは図 6(b)の如く互いに離間させる方向の力 F 2を発生させる。 これによつて、 3本の支持脚(2 a)が格子(6)の棒材 (61)に確実に引っ掛かって、 歩行ロボット が格子(6)から脱落することはない。  In addition, when the three support legs (2a) are hooked on the lattice (6), the force F 1 in the direction in which these three support legs (2a) are brought closer to each other as shown in FIG. 6 (a). Or force F 2 in the direction of separating from each other as shown in FIG. 6 (b). As a result, the three support legs (2a) are securely hooked on the bar (61) of the grid (6), and the walking robot does not fall off the grid (6).
本発明に係る歩行ロボットを天井に沿って歩行させる場合には、 次の制御が実 行される。 先ず図 7(a)(b)に示す如く、 3本の支持脚(2 a)を格子(6)に引つ 掛けた状態で、 3本の遊脚(2 b)を格子(6)から抜き出す。 ここで、 ロボットの 重心 Gは、 3本の支持脚( 2 a)の格子( 6 )に対する係止点を頂点とする三角形の 内側、 望ましくは略中央に設定されている。 尚、 3本の遊脚(2b)を格子(6)か ら抜き出す際、 ロボヅ ト本体を一旦格子(6)に近付けた後、 ロボット本体を基準 'の高さ位置に戻しつつ、 遊脚(2b)を格子(6)から抜き出すことによって、 遊脚 ( 2 b)の広い作業範囲での抜き出し動作を実現している。 ロボヅ ト本体を基準の 高さ位置に戻す動作に伴って、 重心 Gは僅かに降下する。  When the walking robot according to the present invention is walked along the ceiling, the following control is executed. First, as shown in FIGS. 7 (a) and 7 (b), with the three support legs (2a) hooked on the grid (6), the three free legs (2b) are removed from the grid (6). Extract. Here, the center of gravity G of the robot is set to the inner side of the triangle whose apex is the locking point of the three support legs (2 a) with respect to the lattice (6), preferably about the center. When pulling out the three free legs (2b) from the grid (6), move the robot body close to the grid (6) and then return the robot body to the standard 'height position, By pulling 2b) out of the grid (6), the free leg (2b) can be pulled out over a wide working range. As the robot body returns to the reference height, the center of gravity G slightly drops.
次に、 図 8(a)(b)に示す如く、 3本の遊脚(2 b)を進行方向へ移動させると 同時に、 3本の支持脚(2 a)を進行方向とは逆方向へ駆動することによってロボ ヅトの重心 Gを進行方向へ移動させる。  Next, as shown in FIGS. 8 (a) and 8 (b), when the three free legs (2b) are moved in the traveling direction, the three supporting legs (2a) are moved in the direction opposite to the traveling direction. By driving, the center of gravity G of the robot is moved in the direction of travel.
次に、 図 9(a)(b)に示す如く、 3本の遊脚(2b)を格子(6)の開口部へ挿入 し、 各肢先片を格子(6)よりも高い位置まで上昇させる。 尚、 3本の遊脚(2b) を格子(6)の開口部へ挿入する際、 ロボヅト本体を一旦格子(6)に近付けること によって、 遊脚(2b)の広い作業範囲での挿入動作を実現し、 その後、 ロボット 本体を基準の高さ位置に戻す。 ロボット本体を格子(6)に近付ける動作に伴って、 重心 Gは僅かに上昇する。 Next, as shown in Figs. 9 (a) and 9 (b), the three free legs (2b) are inserted into the openings of the lattice (6), and each leg tip is raised to a position higher than the lattice (6) Let When inserting the three free legs (2b) into the openings of the grid (6), the robot body is moved closer to the grid (6) so that the free leg (2b) can be inserted in a wide working range. After that, return the robot body to the standard height position. As the robot moves closer to the grid (6), The center of gravity G rises slightly.
続いて、 図 10(a)(b)に示す如く、 3本の遊脚(2b)を互いに接近する方向 に駆動し、 各肢先片を格子(6)の棒材に引っ掛ける。 これによつて少なくとも 1 本の遊脚( 2 b)の肢先片は 2本の棒材の交差部に引っ掛かることになる。  Subsequently, as shown in FIGS. 10 (a) and 10 (b), the three free legs (2b) are driven in a direction approaching each other, and each limb tip piece is hooked on the bar of the lattice (6). As a result, the limb tip of at least one free leg (2b) is caught at the intersection of the two bars.
そして、 図 1 l(a)(b)に示す如く、 それまでは遊脚(2 b)であった 3本の腕 脚統合肢( 2 )を支持脚( 2 a)とし、 それまでは支持脚( 2 a)であった 2本の腕脚 統合肢( 2 )を遊脚( 2 b )として、 支持脚( 2 a )と遊脚( 2 b )の入れ替えを行なう。 この結果、 新たな 3本の支持脚(2 a)によってロボット本体が格子(6)に支持さ れ、 これら 3本の支持脚( 2 a)の格子( 6 )に対する係合点を頂点とする三角形の 内側、 望ましくは略中央にロボットの重心 Gが設定されることになる。  Then, as shown in Fig. 1 l (a) (b), the three arms and legs integrated limb (2), which had been the swing leg (2 b) until now, was used as the support leg (2 a). The two arms and legs, which were the legs (2a), are used as the free leg (2b), and the support leg (2a) and the free leg (2b) are switched. As a result, the robot body is supported on the grid (6) by three new support legs (2a), and the triangle with the engagement point of the three support legs (2a) with respect to the grid (6) as a vertex. The center of gravity G of the robot is set to the inside, preferably approximately the center.
,その後、 図 12(a)(b)に示す如く、 新たな 3本の遊脚(2 b)を互いに離間す る方向へ移動させて、 肢先片を格子(6)から離脱させ、 遊脚(2b)の格子(6)か らの抜き出し動作を可能とする。 以後は上記のステップと同様にして、 3本の支 持脚( 2 a)と 3本の遊脚(2 b)とを交互に入れ替えながら、 ロボヅトの重心を進 行方向へ徐々に移動させつつ、 天井に懸垂した状態での歩行を進めるのである。 ' 尚、 天井歩行における 6本の腕脚統合肢( 2 )の上記動作は、 図 1に示す各腕脚 統合肢(2)に装備された 4個のモー夕(41)〜(44)の内、 少なくとも 3つのモ一夕 を駆動制御して、 少なくとも 3つの関節を動作させることによって容易に実現す ることが出来る。  Then, as shown in FIGS. 12 (a) and 12 (b), the new three free legs (2b) are moved away from each other, the limb tips are detached from the lattice (6), The leg (2b) can be extracted from the grid (6). After that, in the same way as the above step, while gradually replacing the three support legs (2a) and the three free legs (2b), gradually moving the robot's center of gravity in the advancing direction The walking in the state suspended from the ceiling is advanced. 'Note that the above-mentioned movements of the six arm / limb integrated limbs (2) in the ceiling walk are the same as those of the four motors (41) to (44) installed in each arm / leg integrated limb (2) shown in Fig. 1. It can be easily realized by driving and controlling at least three of the motors and operating at least three joints.
上述の如く、 本発明によれば、 安定した姿勢で歩行ロボットを天井に沿って歩 行させることが出来るので、 屋内や屋外での作業における歩行ロボットの活躍の 場が飛躍的に拡大し、 その有用性は極めて高 、ものとなる。  As described above, according to the present invention, since the walking robot can be walked along the ceiling with a stable posture, the field of activity of the walking robot in indoor and outdoor work has been dramatically expanded. The usefulness is extremely high.
また、 本発明に係る歩行ロボットにおいては、 図 13及び図 14に示す如く、 腕脚統合肢(2)の先端部に、 第 4肢部 (24)と一体のフレーム(50)を具えた肢先機 構 (20)を配備することが可能である。 該フレーム(50)は、 第 4肢部 (24)の先端部 と、 該先端部に突設された一対のァ ム部 (24a)(24a)と、 該アーム部 (24a)(24a) に固定された枠体( 8 )と、 該枠体( 8 )の前板部 (81)と後板部 (82)にそれぞれ取り 付けられた円筒部材 (84)(83)とから構成されている。 枠体( 8 )には軸体( 5 )が貫 通し、 該軸体(5)は、 前記円筒部材 (84)(83)によって軸方向へ往復移動可能に支 持されている。 In the walking robot according to the present invention, as shown in FIG. 13 and FIG. 14, the limb provided with the frame (50) integrated with the fourth limb (24) at the tip of the arm / limb integrated limb (2). It is possible to deploy the previous mechanism (20). The frame (50) includes a distal end portion of the fourth limb (24), a pair of arm portions (24a) (24a) projecting from the distal end portion, and the arm portions (24a) (24a) And a cylindrical member (84) (83) respectively attached to the front plate portion (81) and the rear plate portion (82) of the frame (8). Yes. The shaft (5) passes through the frame (8), and the shaft (5) is supported by the cylindrical members (84) and (83) so as to be reciprocally movable in the axial direction.
^体( 8 )から突出する軸体( 5 )の先端部には、 軸体( 5 )の外径よりも大きな外 径を有する金属製の円板 (31)と合成樹脂製の半球体 (32)からなる肢先片( 3)が固 定されている。 又、 第 4肢部 (24)の先端部には、 軸体(5)の基端側の端面と対向 して、 圧力センサ一(9)が設置され、 1軸のロードセルが構成されている。  ^ At the tip of the shaft (5) protruding from the body (8), a metal disc (31) having a larger outer diameter than the shaft (5) and a synthetic resin hemisphere ( The limb tip (3) consisting of 32) is fixed. In addition, a pressure sensor (9) is installed at the distal end of the fourth limb (24) so as to face the end surface on the proximal end side of the shaft body (5), thereby constituting a single-axis load cell. .
軸体(5)には、. 枠体(8)の内側であって後板部 (82)から離れた位置に、 円板状 のスプリング受け部材 (51)が固定されており、 枠体( 8 )の前板部 (81)とスプリン グ受け部材 (51)との間には、 コイル状のスプリング(7)が介在し、 軸体(5)を圧 力センサー(9)に向けて付勢している。 又、 車由体( 5)には、 スプリング受け部材 (51)と枠体(8)の後板部 (82)との間に、 後板部 (82)め円筒部材 (83)から所定距離 だけ離して、 円板状の第 1ストッパー (52)が固定されると共に、 前板部 (81)の内 面に対向させて、 円板状の第 2ストヅパ一 (53)が固定されている。  A disc-shaped spring receiving member (51) is fixed to the shaft body (5) at a position inside the frame body (8) and away from the rear plate portion (82). 8) A coiled spring (7) is interposed between the front plate part (81) and the spring receiving member (51), and the shaft (5) is attached to the pressure sensor (9). It is fast. Further, the vehicle body (5) has a predetermined distance from the rear plate (82) to the cylindrical member (83) between the spring receiving member (51) and the rear plate (82) of the frame (8). The disc-shaped first stopper (52) is fixed, and the disc-shaped second stopper (53) is fixed so as to face the inner surface of the front plate portion (81). .
' 上記肢先機構 (20)においては、 図 15(a)に示す如く肢先片(3)に外力が作用 しない無負荷状態で、 第 1ストヅパ一 (52)及び第 2ストヅパー (53)は枠体( 8 )及 ぴ円筒部材 (83)(84)から離間しており、 軸体( 5)は、 一定の範囲内で軸方向の往 復移動が可能 ¾中立位置にある。 この状態で、 軸体(5)はスプリング(7)によつ て圧力センサ一( 9)側へ一定の力で付勢されており、 これによつて圧力センサ一 (9)には一定の予圧が負荷されている。従って、 圧力センサ一(9)は、 この状態 を平衡点として正方向及び負方向の力検出を行なうことになる。  '' In the above limb tip mechanism (20), as shown in FIG. 15 (a), the first stopper (52) and the second stopper (53) are in the unloaded state where no external force acts on the limb tip piece (3). The shaft (5) and the cylindrical members (83) and (84) are separated from each other, and the shaft (5) can move back and forth in the axial direction within a certain range. In this state, the shaft body (5) is urged by the spring (7) with a constant force toward the pressure sensor (9), and thereby the pressure sensor (9) has a constant force. Preload is applied. Therefore, the pressure sensor (9) detects the force in the positive direction and the negative direction with this state as an equilibrium point.
図 15 (b)の如く肢先片(3)に押圧力 F 1が作用すると、 該押圧力 F 1は軸体 (5)を介して直接に圧力センサ一(9)へ伝わる。 ここで、 スプリング(7)の弾性 反発力と肢先片( 3)に作用する押圧力とは、 互いに並列の関係で圧力センサー (9)に作用し、 その合力が圧力センサ一(9)によって検出されることになる。 従 つて、 圧力センサー( 9)の検出値からスプリング( 7)の弾性反発力を減算するこ とによって、 肢先片(3)に作用する押圧力 F 1を得ることが出来る。 When the pressing force F 1 acts on the limb tip piece (3) as shown in FIG. 15 (b), the pressing force F 1 is directly transmitted to the pressure sensor (9) through the shaft body (5). Here, the elastic repulsive force of the spring (7) and the pressing force acting on the limb tip piece (3) act on the pressure sensor (9) in parallel with each other, and the resultant force is applied by the pressure sensor (9). Will be detected. Obedience Thus, by subtracting the elastic repulsion force of the spring (7) from the detected value of the pressure sensor (9), the pressing force F1 acting on the limb tip piece (3) can be obtained.
肢先片( 3 )に作用する押圧力 F 1が増大する過程で、 軸体( 5 )は圧力センサ一 (9)側へ変位し、 その押圧力 F 1が過大となると、 図 15(b)の如く第 1ストヅ パー (52)は枠体(8)の後板部 (82)の円筒部材 (83)に当接する。 この結果、 圧力セ ンサ一( 9 )に作用する押圧力が限界値 (最大歪み許容値)を超えて過大となること が阻止され、 これによつて圧力センサ一( 9 )の保護が図られる。  In the process of increasing the pressing force F 1 acting on the limb tip piece (3), the shaft (5) is displaced toward the pressure sensor (9) side, and if the pressing force F 1 becomes excessive, Fig. 15 (b ), The first stopper (52) contacts the cylindrical member (83) of the rear plate (82) of the frame (8). As a result, it is possible to prevent the pressing force acting on the pressure sensor (9) from exceeding the limit value (maximum strain allowable value) and to protect the pressure sensor (9). .
図 15(c)の如く肢先片(3)に引張り F2が作用すると、 該引張り力 F2は、 スプリング( 7 )の弾性反発力によって圧力センサ一( 9 )が受ける押圧力と相殺さ れて、 圧力センサ一(9)には、 弾性反発力から引張り力を差し引いた力が作用し、 その力が圧力センサ一( 9 )によって検出されることになる。 従って、 スプリング ( 7)の弾性反発力から圧力センサー( 9)の検出値を減算することによって、 肢先 片(3)に作用する引張り力 F 2を得ることが出来る。  When tension F2 acts on the limb tip piece (3) as shown in FIG. 15 (c), the tension force F2 is offset by the pressing force received by the pressure sensor (9) by the elastic repulsion force of the spring (7). A force obtained by subtracting the tensile force from the elastic repulsion force acts on the pressure sensor (9), and the force is detected by the pressure sensor (9). Therefore, by subtracting the detected value of the pressure sensor (9) from the elastic repulsive force of the spring (7), the tensile force F2 acting on the limb tip piece (3) can be obtained.
肢先片( 3 )に作用する引張り力: F 2が増大する過程で、 軸体( 5 )は庄カセンサ —( 9)から離間する方向に変位し、 その引張り力 F 2が過大になると、 図 15 (c)の如く第 2ストヅパ一 (53)は枠体(8)の前板部 (81)の内面に当接する。 この 結果、 軸体(5)に抜け止めが施され、 これによつて肢先機構 (20)の分解が阻止さ れる ο  Tensile force acting on the limb tip (3): In the process of increasing F 2, the shaft body (5) is displaced away from the shoal sensor — (9), and if the tensile force F 2 becomes excessive, As shown in FIG. 15 (c), the second stopper (53) contacts the inner surface of the front plate portion (81) of the frame (8). As a result, the shaft body (5) is prevented from coming off, which prevents disassembly of the limb tip mechanism (20).
尚、 軸体(さ)の端面が圧力センサ一( 9 )から完全に離間する前に第 2ストヅノ —(53)を枠体( 8 )の前板部(81)に当接させる構成に限らず、 軸体( 5 )の端面が圧 力センサ一( 9 )から離間した後に第 2ストッパ一 (53)を枠体( 8 )の前板部 (81)に 当接させる構成も採用可能であって、 該構成によれば、 圧力センサ一(9)によつ て計測し得る引張り力の最大値に拘わらず、 該肢先片( 3 )を用いた作業を継続す ることが出来る。  It should be noted that the second strainer (53) is brought into contact with the front plate (81) of the frame (8) before the end surface of the shaft (sa) is completely separated from the pressure sensor (9). It is also possible to adopt a configuration in which the second stopper (53) is brought into contact with the front plate (81) of the frame (8) after the end surface of the shaft (5) is separated from the pressure sensor (9). Thus, according to the configuration, the work using the limb tip piece (3) can be continued regardless of the maximum value of the tensile force that can be measured by the pressure sensor (9).
上記肢先機構 (20)を具えた歩行ロボッ卜においては、 肢先片( 3 )に作用する力 はスプリング( 7 )を経由することな.く、 軸体( 5 )を介して直接に圧力センサー ( 9 )に伝わるので、 スプリング(7 )の弾性定数は、 肢先片(3 )に作用する力の大 小に拘わらず、 圧力センサ一( 9 )に対する予圧を適切な大きさとすることの出来 る値に設計することが出来る。 In a walking robot equipped with the above-mentioned limb tip mechanism (20), the force acting on the limb tip piece (3) does not go through the spring (7) but directly through the shaft (5). sensor (9), the elastic constant of the spring (7) allows the preload to the pressure sensor (9) to be appropriately sized regardless of the magnitude of the force acting on the limb tip (3). Can be designed to a certain value.
従って、 6本の腕脚統合肢(2 )の内、 少なくとも 3本の腕脚統合肢(2 )を脚と して'歩行しつつ、 任意の 1本以上の腕脚統合肢( 2 )を腕として利用して作業を行 なう場合、 脚となる腕脚統合肢( 2 )と腕となる腕脚統合肢( 2 )が歩行の過程で入 れ替わったとしても、 脚となつた腕脚統合肢( 2 )の肢先機構 ( 20 )による力検出に 基づいて歩行の制御を適切に行なうと同時に、 腕となった腕脚統合肢( 2 )の肢先 機構 (20)による力検出に基づいて物体把持等の作業の制御を適切に行なうことが 可能である。  Therefore, out of the six arms / limbs integrated limb (2), at least three arms / limbs integrated limb (2) is used as a leg and one or more arms / limbs integrated limb (2) is When working with the arm, the arm-leg integrated limb (2) and the arm-limb integrated limb (2) are interchanged during the walking process. Based on the force detection by the limb tip mechanism (20) of the leg integrated limb (2), the gait is controlled appropriately, and at the same time, the force detection by the limb tip mechanism (20) of the arm-limb integrated limb (2) becomes an arm. Based on this, it is possible to appropriately control work such as object gripping.
特に、 1或いは複数本の腕脚統合肢( 2 )の肢先片( 3 )を対象物に引っ掛けて 種々の作業を行なう場合には、 該肢先片(3 )に作用する引張り力が圧力センサ一 ( 9 )により検出され、 検出された引張り力に基づいて、 腕脚統合肢(2 )の動作を 制御することが出来る。  In particular, when various work is performed by hooking the limb tip piece (3) of one or a plurality of arm-limb integrated limbs (2) to the object, the tensile force acting on the limb tip piece (3) is pressure. The movement of the arm / limb integrated limb (2) can be controlled based on the detected tensile force detected by the sensor (9).
又、 上記肢先機構 (20)においては、 圧力センサ一(9 )と、 肢先片(3 )に作用す る力を圧力センサ一( 9 )に伝えるための機構(ェンドエフエクタ一)とが、 互いに 一体ィ匕されることなく、 別構成となっているので、 肢先片(3 )に作用する力の範 囲が異なることとなる新たな環境で本発明の歩行ロボットを動作させる場合にも、 圧力センサ一 ( 9 )のみを交換し、 或いはスプリング( 7 )を交換することによって 容易に対応することが出来る。 然も、 肢先機構 (20)の設計変更やメンテナンスを 行なうことも容易である。  In the limb tip mechanism (20), a pressure sensor (9) and a mechanism (end effector) for transmitting the force acting on the limb tip piece (3) to the pressure sensor (9) are: Since the structure is different without being integrated with each other, the walking robot of the present invention can be operated in a new environment in which the range of the force acting on the limb tip (3) is different. Replacing only the pressure sensor (9) or replacing the spring (7) makes it possible to easily cope with this. However, it is easy to change the design and maintenance of the limb tip mechanism (20).
更に、 本発明に係る歩行ロボットにおいては、 図 1 7 ( a )に示す様にロボット 本体( 1 )の中心軸を中心として放射状に突設された 6本の腕脚統合肢(2 )を、 図 1 7 ( b )に示す様に前記中心軸と直交する平面の上側へ屈曲させることが可能で あり、 この内、 少なくとも 3本の腕脚統合肢(2 )を用いて天井に沿って歩行させ ることが可能である。 . 尚、 本発明に係る歩行ロボヅ トにおいて、 腕脚統合肢(2)の本数は、 6本に限 らず、 図 18(a)及び図 18(b)に示す如く 5本であっても、 図 19(a)及び図 19(b)に示す如く 4本であってもよいが、 何れの構成においても、 複数本の腕 脚統合肢( 2 )は、 ロボヅト本体( 1 )の中心軸を中心として、 互いに等しい角度差 をもって、 前記中心軸に直交する方向へ向けて放射状に突設されている。 この様 な構成によって、 ロボヅトの作業範囲が全方向へ均等に確保されることになる。 又、 複数本の腕脚統合肢( 2 )が前記中心軸と直交する平面を中心として該平面 の両側へ屈曲可能な構成によれば、 少なくとも 3本の腕脚統合肢( 2 )を前記平面 の下側へ屈曲させて床面上を歩行することが可能であると共に、 ロボット本体 ( 1 )を反転させることなく少なくとも 3本の腕脚統合肢( 2 )を前記平面の上側へ 屈曲させることにより、 天井に沿って歩行することが可能となる。 Further, in the walking robot according to the present invention, as shown in FIG. 17 (a), the six arm-limb integrated limbs (2) projecting radially about the central axis of the robot body (1) are provided. As shown in Fig. 17 (b), it is possible to bend upward on a plane perpendicular to the central axis, and of these, walk along the ceiling using at least three arms and legs integrated limb (2). It is possible to make it. . In the walking robot according to the present invention, the number of arms and legs integrated limbs (2) is not limited to six, and may be five as shown in FIGS. 18 (a) and 18 (b). As shown in FIG. 19 (a) and FIG. 19 (b), the number may be four, but in either configuration, the multiple arms / legs integrated limb (2) has the central axis of the robot body (1) as the center axis. As the center, the projections are radially projected toward the direction orthogonal to the central axis with the same angular difference. With such a configuration, the robot work range is ensured evenly in all directions. According to the configuration in which the plurality of arm / limb integrated limbs (2) can be bent to both sides of the plane around the plane orthogonal to the central axis, at least three arm / leg integrated limbs (2) are connected to the plane. It is possible to bend on the floor and walk on the floor, and bend at least three arms and legs integrated limb (2) to the upper side of the plane without inverting the robot body (1) This makes it possible to walk along the ceiling.

Claims

請 求 の 範 囲 The scope of the claims
1 . ロボヅ ト本体( 1 )に 4本以上の腕脚統合肢(2 )が突設され、 各腕脚統合肢 ( 2 )の先端部には軸体(5 )が突設されると共に、 該軸体(5 )の先端部には、 軸体 5 ( 5 )の軸心を中心として半径方向へ軸体( 5 )よりも外側に拡大した外形の肢先片 ( 3 )が設けられ、 少なくとも 3本の腕脚統合肢( 2 )を用いて床面上を歩行するこ とが可能であると共に、 少なくとも 3本の腕脚統合肢( 2 )の肢先片( 3 )を天井に 設置された格子( 6 )に引っ掛けて天井に沿って歩行することが可能である歩行口 ボット。 1. Four or more arm / limb integrated limbs (2) project from the robot body (1), and a shaft (5) projects from the tip of each arm / leg integrated limb (2). The distal end portion of the shaft body (5) is provided with a limb tip piece (3) having an outer shape that is radially outward from the shaft body (5) about the axis of the shaft body 5 (5). It is possible to walk on the floor using at least three arm and leg integrated limbs (2), and at least three arm and leg integrated limbs (2) limb tips (3) are installed on the ceiling A walking mouth bot that is able to walk along the ceiling by hooking it on the grid (6).
10 2 . ロボット本体( 1 )に 4本以上の腕脚統合肢( 2 )が突設され、 各腕脚統合肢 ( 2 )の先端部には肢先片(3 )が設けられ、 前記 4本以上の腕脚統合肢(2 )は、 口 ボット本体( 1 )の中心軸を中心として、 互いに等しい角度差をもって、 前記中心 軸に直交する方向へ向けて放射状に突設され、 各腕脚統合肢( 2 )は複数の関節を. 有して、 前記中心軸と直交する平面を中心として該平面の両側へ屈曲可能であり、 10 2. Four or more arm / limb integrated limbs (2) project from the robot body (1), and a tip of each arm / leg integrated limb (2) is provided with a limb tip piece (3). The arm and leg integrated limbs (2) or more are projected radially from the central axis of the mouth bot body (1) in the direction perpendicular to the central axis with the same angular difference. The integrated limb (2) has a plurality of joints, and can be bent to both sides of the plane around a plane perpendicular to the central axis.
15 . 少なくとも 3本の腕脚統合肢( 2 )を前記平面の下側へ屈曲させて床面上を歩行す 'ることが可能であると共に、 少なくとも 3本の腕脚統合肢( 2 )を前記平面の上側 へ屈曲させて、 肢先片( 3 )を天井に設置された格子( 6 )に引っ掛けることにより、 天井に沿って歩行することが可能である歩行ロボヅト。 15. It is possible to walk on the floor by bending at least three arm / limb integrated limbs (2) to the lower side of the plane and at least three arm / limb integrated limbs (2). A walking robot capable of walking along the ceiling by bending the upper side of the plane and hooking the limb tip piece (3) on a grid (6) installed on the ceiling.
3 . 肢先片(3 )は、 軸体(5 )の外径よりも大きな直径を有して先端側に膨らんだ 20 半球状を呈している請求の範囲第 1項又は第 2項に記載の歩行ロボット。  3. The limb tip piece (3) has a diameter larger than the outer diameter of the shaft body (5) and has a 20 hemispherical shape swelled toward the distal end side. Walking robot.
4 . 天井歩行の過程で、 少なくとも 3本の腕脚統合肢(2 )の肢先片(3 )を天井の 格子( 6 )に引っ掛けた状態で、 これら 3本の腕脚統合肢( 2 )に互いに接近させる 方向の力を発生させる請求の範囲第 1項乃至第 3項の何れかに記載の歩行ロボッ  4. In the process of walking on the ceiling, with the limb tip pieces (3) of at least three arms and legs integrated limb (2) hooked on the grid (6) of the ceiling, these three arms and legs integrated limb (2) The walking robot according to any one of claims 1 to 3, wherein force is generated in a direction in which the robots approach each other.
25 5 . 天井歩行の過程で、 少なくとも 3本の腕脚統合肢( 2 )の肢先片( 3 )を天井の 格子( 6 )に引っ掛けた状態で、 これら 3本の腕脚統合肢( 2 )に互いに離間させる 方向の力を発生させる請求の範囲第 1項乃至第 3項の何れかに記載の歩行ロボッ 25 5. In the process of walking on the ceiling, with the limb tip pieces (3) of at least three arm and leg integrated limbs (2) hooked on the grid (6) of the ceiling, these three arm and leg integrated limbs (2 ) The walking robot according to any one of claims 1 to 3, wherein a directional force is generated.
6. ロボット本体( 1 )には 6本の腕脚統合肢( 2 )が 60度の位相差で放射状に突 設され、 天井歩行の過程で、 互いに 120度の位相差を有する 3本の腕脚統合肢 5 (2)を支持脚(2 a)として、 これらの支持脚(2 a)の肢先片(3)を天井の格子 (6)に引っ掛けると共に、 残りの 3本の腕脚統合肢(2)を遊脚(2 b)として、 こ れらの遊脚( 2 b )の肢先片( 3 )を天井の格子( 6 )から抜き出した状態で、 3本の 遊脚( 2 b)を進行方向へ移動させると同時に、 ロボット本体( 1 )の重心を進行方 向へ移動させた後、 3本の遊脚( 2 b)の肢先片( 3 )を天井の格子( 6 )に引っ掛け 10 る動作を、 3本の支持脚(2 a)と 3本の遊脚(2b)とを交互に入れ替えながら、 天井に沿って歩行する請求の範囲第 1項乃至第 5項の何れかに記載の歩行ロボッ 6. The robot arm (1) has six arms and legs integrated limbs (2) projecting radially with a phase difference of 60 degrees, and three arms having a phase difference of 120 degrees with each other in the process of walking on the ceiling. The leg integration limb 5 (2) is the support leg (2 a), and the limb tip pieces (3) of these support legs (2 a) are hooked on the ceiling grid (6) and the remaining three arm legs are integrated. With the limb (2) as the free leg (2b), the limb tip piece (3) of these free legs (2b) is extracted from the ceiling grid (6), and the three free legs (2 b) is moved in the direction of travel, and at the same time, the center of gravity of the robot body (1) is moved in the direction of travel, and then the limb tips (3) of the three free legs (2b) are moved to the ceiling grid (6 10) The movement of 10) is carried out by walking along the ceiling while alternately switching the three support legs (2a) and the three free legs (2b). The walking robot described in any
7. ロボット本体( 1)に 6本の腕脚統合肢(2)が 60度の位相差で放射状に突設 され、 各腕脚統合肢(2)の先端部には軸体(5)が突設されると共に、 該軸体(5)7. Six arm and leg integrated limbs (2) project radially from the robot body (1) with a phase difference of 60 degrees, and a shaft (5) is attached to the tip of each arm and leg integrated limb (2). The shaft body (5)
15. の先端部には、 軸体( 5 )の軸心を中心として半径方向へ軸体( 5 )よりも外側に拡 '大した外形の肢先片( 3 )が設けられ、 少なくとも 3本の腕脚統合肢( 2 )を用いて 床面上を歩行することが可能であると共に、 少なくとも 3本の腕脚統合肢( 2 )の 肢先片( 3 )を天井に設置された格子( 6 )に引っ掛けて天井に沿って歩行すること が可能な歩行'ロボヅトにおいて、 15. The tip of 15 is provided with a limb tip piece (3) having an outer shape extending radially outward from the shaft body (5) in the radial direction around the axis of the shaft body (5). It is possible to walk on the floor using the arm and leg integrated limb (2), and at least three arm and leg integrated limbs (2) with the limb tip pieces (3) installed on the ceiling ( 6) In a walking robot that can be hooked and walk along the ceiling,
20 120度の位相差を有する 3本の腕脚統合肢(2)を支持脚(2 a)として、 これ らの支持脚の肢先片( 3 )を天井の格子( 6 )に引っ掛けると共に、 残りの 3本の腕 脚統合肢( 2 )を遊脚( 2 b )として、 これらの遊脚( 2 b )の肢先片( 3 )を天井の格 子( 6)から抜き出した状態で、 3本の遊脚(2 b)を進行方向へ移動させると同時 に、 3本の支持脚( 2 a)の駆動によってロボット本体( 1 )の重心を進行方向へ移 20 Using the three arm / limb integrated limbs (2) with a phase difference of 120 degrees as the support legs (2 a), hook the limb tip pieces (3) of these support legs onto the ceiling lattice (6), With the remaining three arms and legs integrated limb (2) as the free leg (2b), the limb tip piece (3) of these free leg (2b) is extracted from the ceiling case (6), While moving the three free legs (2b) in the direction of travel, the center of gravity of the robot body (1) is moved in the direction of travel by driving the three support legs (2a).
25 動させた後、 3本の遊脚(2 b)の肢先片(3)を天井の格子(6)に引っ掛ける動作 を、 3本の支持脚(2 a)と 3本の遊脚(2 b)とを交互に入れ替えながら、 天井に 沿って歩行させることを特徴とする歩行ロボヅトの制御方法。 25 After moving, the action of hooking the limb tip piece (3) of the three free legs (2 b) on the ceiling grid (6) is done with the three support legs (2 a) and the three free legs ( 2 While alternating between b) and the ceiling A walking robot control method characterized by walking along a robot.
8 . 3本の支持脚( 2 a )の肢先片( 3 )の格子( 6 )に対する係止点を頂点とする三 角形の内側にロボヅト本体( 1 )の重心位置を保持しつつ、 3本の遊脚( 2 b )の格 子( 6 )に対する係脱動作を行なう請求の範囲第 7項に記載の歩行ロボットの制御 ¾法。  8. While maintaining the position of the center of gravity of the robot body (1) inside the triangle with the point of engagement with the lattice (6) of the limb tip piece (3) of the three support legs (2 a) The method for controlling a walking robot according to claim 7, wherein the engaging / disengaging operation of the swing leg (2b) of the book with respect to the scale (6) is performed.
9 . ロボヅト本体( 1 )に複数本の腕脚統合肢( 2 )が突設され、 これら複数本の腕 -脚統合肢(2 )によって歩行するロボヅトであって、 各腕脚統合肢(2 )は先端部に 肢先機構 (20)を具え、 該肢先機構 (20)は、 腕脚統合肢(2 )の先端部に固定された フレーム(50)と、 該フレーム(50)に軸方向の往復移動が可能に取り付けられた軸 体( 5 )と、 該軸体( 5 )の先端部に設けられた肢先片( 3 )と、 該軸体( 5 )の基端側 の端面に対向して前記フレーム(50)上に設置された圧力センサー( 9 )と、 前記フ レーム(50)と軸体( 5 )の間に介在して軸体( 5 )を圧力センサ一( 9 )へ向けて付勢 するスプリング( 7 )と、 前記フレーム(50)に対する軸体( 5 )の往復移動を所定範 囲内に規制するストッパー装置とを具えている歩行ロボット。  9. The robot body (1) has a plurality of arm-leg integrated limbs (2) protruding from the robot arm and walks with these arm-leg integrated limbs (2). ) Has a limb tip mechanism (20) at the tip, and the limb tip mechanism (20) has a frame (50) fixed to the tip of the arm-leg integrated limb (2), and an axis on the frame (50). A shaft body (5) attached so as to be capable of reciprocating in the direction, a limb tip piece (3) provided at the distal end portion of the shaft body (5), and an end face on the proximal end side of the shaft body (5) A pressure sensor (9) installed on the frame (50) opposite to the frame (50), and the shaft body (5) interposed between the frame (50) and the shaft body (5). ) And a stopper that restricts the reciprocation of the shaft body (5) relative to the frame (50) within a predetermined range.
1 0 . ストヅパー装置は、 軸体(5 )に固定された第 1ストッパー(52)及び第 2ス ' トヅパ一(53)と、 両ストヅパ一(52) ( 53)に対向してフレーム(50)に設けられた第 1ストヅパ一受け部及び第 2ス トヅパ一受け部とから構成され、 軸体(5 )は、 第 1ス トヅパ一(52)が第 1ス トヅパ一受け部に当接した収縮位置と、 第 2ストヅパ 一 (53)が第 2ストヅパー受け部に当接した伸張位置の間で往復移動可能であり、 肢先片(3 )に外力が作用しない中立位置にて、 第 1ス トッパー ( 52)及び第 2ス ト ヅパ一 (53)はそれぞれ第 1ストッパ一受け部及び第 2ストッパー受け部から離間 している請求の範囲第 9項に記載の歩行ロボヅト。  10. The stopper device includes a first stopper (52) and a second stopper (53) fixed to the shaft body (5), and a frame (50) facing both the stoppers (52) (53). ) Provided with a first stopper receiving portion and a second stopper receiving portion, and the shaft body (5) has the first stopper (52) in contact with the first stopper receiving portion. In the neutral position where the external force does not act on the limb tip piece (3), and the second stopper (53) can reciprocate between the extended position where the second stopper (53) contacts the second stopper receiving portion. The walking robot according to claim 9, wherein the first stopper (52) and the second stopper (53) are spaced apart from the first stopper receiving part and the second stopper receiving part, respectively.
1 1 . 第 1ストッパー (52)は、 軸体( 5 )の圧力センサ一(9 )に対する押圧力が所 定の限界値に達する直前に第 1ストッパ一受け部に当接する請求の範囲第 1 0項 に記載の歩行ロボヅ ト。  1 1. The first stopper (52) is in contact with the first stopper receiving portion immediately before the pressing force of the shaft (5) against the pressure sensor (9) reaches a predetermined limit value. The walking robot according to item 0.
1 2 . 第 2ストッパー (53)は、 軸体(5 )の端面が圧力センサ一(9 )から離間する と同時に若しくはその前後に、 第 2ストッパー受け部に当接する請求の範囲第 1 0項に言己載の歩行ロボット。 1 2. The second stopper (53) has the end face of the shaft (5) separated from the pressure sensor (9). The walking robot according to claim 10, wherein the walking robot is in contact with the second stopper receiving portion at the same time or before and after.
1 3 . 軸体(5 )は、 前記中立位置にて所定長さだけ前記フレーム(50)の先端面か ら突出し、 肢先片(3 )は、 フレーム(50)の先端面から突出する軸体(5 )の先端か ら径方向へ拡大する形状を有している請求の範囲第 9項乃至第 1 2項の何れかに 記載の歩行ロボッ卜。  1 3. The shaft body (5) projects from the front end surface of the frame (50) by a predetermined length at the neutral position, and the limb tip piece (3) projects from the front end surface of the frame (50). The walking robot according to any one of claims 9 to 12, which has a shape that expands in a radial direction from a tip of the body (5).
1 4 . 前記複数本の腕脚統合肢( 2 )はロボット本体( 1 )の外周面から放射状に突 出し、 各腕脚統合肢(2 )は複数の関節を有して、 少なくとも 1本の腕脚統合肢 ( 2 )を腕として利用しつつ、 残りの少なくとも 3本の腕脚統合肢( 2 )を脚として 歩行する請求の範囲第 9項乃至第 1 3項の何れかに記載の歩行ロボット。  14. The plurality of arm-leg integrated limbs (2) project radially from the outer peripheral surface of the robot body (1), and each arm-leg integrated limb (2) has a plurality of joints, and at least one The walking according to any one of claims 9 to 13, wherein the arm / limb integrated limb (2) is used as an arm and the remaining three arms / limbs integrated limb (2) is used as a leg. robot.
PCT/JP2006/311360 2005-06-03 2006-05-31 Walking robot and method of controlling the same WO2006129857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007519107A JPWO2006129857A1 (en) 2005-06-03 2006-05-31 Walking robot and control method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-163445 2005-06-03
JP2005163444 2005-06-03
JP2005163445 2005-06-03
JP2005-163444 2005-06-03

Publications (1)

Publication Number Publication Date
WO2006129857A1 true WO2006129857A1 (en) 2006-12-07

Family

ID=37481768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311360 WO2006129857A1 (en) 2005-06-03 2006-05-31 Walking robot and method of controlling the same

Country Status (2)

Country Link
JP (1) JPWO2006129857A1 (en)
WO (1) WO2006129857A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009702A (en) * 2010-11-19 2011-04-13 三一重工股份有限公司 Engineering machinery and crawler type running system thereof
ITTO20100007A1 (en) * 2010-01-11 2011-07-12 Zona Engineering & Design S A S Di Zona Mauro & C VEHICLE WITH CONVERTIBLE DEVELOPMENT AGENCIES BETWEEN A ZAMPA CONFIGURATION AND A WHEEL CONFIGURATION
CN102689659A (en) * 2011-03-21 2012-09-26 洪浛檩 Gait of precise positioning of three-steering engine hexapod robot
CN102837752A (en) * 2012-09-20 2012-12-26 吉林大学 Six-foot obstacle crossing robot with limb self-cutting function and control system thereof
KR101279090B1 (en) 2011-07-29 2013-06-26 금오공과대학교 산학협력단 Walking robot having six legs, and method for controlling thereof
CN103693124A (en) * 2013-05-24 2014-04-02 北京航空航天大学 Transformable spherical robot
CN106184458A (en) * 2016-07-08 2016-12-07 上海大学 A kind of Hexapod Robot driven by parallel connecting rod
CN107310654A (en) * 2016-04-26 2017-11-03 广西大学 The foot of one kind six climbs the dual-purpose climbing robot of wall pole-climbing
CN108944302A (en) * 2018-05-23 2018-12-07 上海交通大学 A kind of microminiature quadrotor bionic 6-leg Fei Pa robot
JP2019520229A (en) * 2016-04-21 2019-07-18 孫天斉 Six-legged general purpose robot and its body structure
CN110962956A (en) * 2019-11-28 2020-04-07 北京理工大学 Reconfigurable wheel-foot robot based on parallel modular structure
CN111547153A (en) * 2020-05-11 2020-08-18 北京工商大学 Rope-driven bionic six-foot wall-climbing robot
CN112326072A (en) * 2021-01-04 2021-02-05 成都威尔森科技发展有限责任公司 Stress detection device
CN112792819A (en) * 2021-02-04 2021-05-14 上海电气集团股份有限公司 Crawling robot and control method
EP4261111A1 (en) * 2022-04-13 2023-10-18 Siemens Energy Global GmbH & Co. KG Robotic inspection tool for use in confined spaces

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105752195B (en) * 2016-03-31 2018-09-21 重庆交通大学 Bridge machinery robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100774A (en) * 1993-09-30 1995-04-18 Agency Of Ind Science & Technol Multiped working robot equipped with leg which can be used as arm
JPH07100775A (en) * 1993-09-30 1995-04-18 Agency Of Ind Science & Technol Leg mechanism which can be used as arm for walking robot
JP2004001138A (en) * 2002-05-31 2004-01-08 Koichi Hiratsuka Walking robot
JP2004299045A (en) * 2003-03-14 2004-10-28 Sony Corp Robot device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997864A (en) * 1982-11-29 1984-06-05 三菱重工業株式会社 Intermittent shifter for work
JPS60165273U (en) * 1984-04-13 1985-11-01 三菱重工業株式会社 traveling device
JPS60219170A (en) * 1984-04-14 1985-11-01 Toshiba Corp Active body
JPS61253271A (en) * 1985-05-02 1986-11-11 Mitsubishi Heavy Ind Ltd Wall surface shifting device
JPH03287388A (en) * 1990-04-02 1991-12-18 Mitsubishi Heavy Ind Ltd Transportation machine of uneven ground traveling type
JPH04152075A (en) * 1990-10-17 1992-05-26 Hitachi Ltd Walk machine
JP2535568Y2 (en) * 1990-11-28 1997-05-14 三菱重工業株式会社 Rough Terrain Walking Machine
JPH0592656U (en) * 1992-05-22 1993-12-17 エヌオーケー株式会社 load cell
JP3400377B2 (en) * 1999-03-10 2003-04-28 富士通株式会社 Foot sensor and humanoid robot having the same
JP2001281074A (en) * 2000-03-30 2001-10-10 Yamaha Motor Co Ltd Load detecting device
JP2002139373A (en) * 2000-10-31 2002-05-17 Matsushita Electric Ind Co Ltd Weight sensor
JP2002337076A (en) * 2001-05-15 2002-11-26 Sony Corp Detector for leg type locomotive robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100774A (en) * 1993-09-30 1995-04-18 Agency Of Ind Science & Technol Multiped working robot equipped with leg which can be used as arm
JPH07100775A (en) * 1993-09-30 1995-04-18 Agency Of Ind Science & Technol Leg mechanism which can be used as arm for walking robot
JP2004001138A (en) * 2002-05-31 2004-01-08 Koichi Hiratsuka Walking robot
JP2004299045A (en) * 2003-03-14 2004-10-28 Sony Corp Robot device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20100007A1 (en) * 2010-01-11 2011-07-12 Zona Engineering & Design S A S Di Zona Mauro & C VEHICLE WITH CONVERTIBLE DEVELOPMENT AGENCIES BETWEEN A ZAMPA CONFIGURATION AND A WHEEL CONFIGURATION
CN102009702A (en) * 2010-11-19 2011-04-13 三一重工股份有限公司 Engineering machinery and crawler type running system thereof
CN102689659A (en) * 2011-03-21 2012-09-26 洪浛檩 Gait of precise positioning of three-steering engine hexapod robot
KR101279090B1 (en) 2011-07-29 2013-06-26 금오공과대학교 산학협력단 Walking robot having six legs, and method for controlling thereof
CN102837752A (en) * 2012-09-20 2012-12-26 吉林大学 Six-foot obstacle crossing robot with limb self-cutting function and control system thereof
CN102837752B (en) * 2012-09-20 2014-11-05 吉林大学 Six-foot obstacle crossing robot with limb self-cutting function and control system thereof
CN103693124A (en) * 2013-05-24 2014-04-02 北京航空航天大学 Transformable spherical robot
CN103693124B (en) * 2013-05-24 2016-01-20 北京航空航天大学 A kind of Transformable spherical robot
JP2019520229A (en) * 2016-04-21 2019-07-18 孫天斉 Six-legged general purpose robot and its body structure
CN107310654A (en) * 2016-04-26 2017-11-03 广西大学 The foot of one kind six climbs the dual-purpose climbing robot of wall pole-climbing
CN106184458A (en) * 2016-07-08 2016-12-07 上海大学 A kind of Hexapod Robot driven by parallel connecting rod
CN108944302A (en) * 2018-05-23 2018-12-07 上海交通大学 A kind of microminiature quadrotor bionic 6-leg Fei Pa robot
CN110962956A (en) * 2019-11-28 2020-04-07 北京理工大学 Reconfigurable wheel-foot robot based on parallel modular structure
CN110962956B (en) * 2019-11-28 2020-10-20 北京理工大学 Reconfigurable wheel-foot robot based on parallel modular structure
CN111547153A (en) * 2020-05-11 2020-08-18 北京工商大学 Rope-driven bionic six-foot wall-climbing robot
CN111547153B (en) * 2020-05-11 2021-11-19 北京工商大学 Rope-driven bionic six-foot wall-climbing robot
CN112326072A (en) * 2021-01-04 2021-02-05 成都威尔森科技发展有限责任公司 Stress detection device
CN112792819A (en) * 2021-02-04 2021-05-14 上海电气集团股份有限公司 Crawling robot and control method
EP4261111A1 (en) * 2022-04-13 2023-10-18 Siemens Energy Global GmbH & Co. KG Robotic inspection tool for use in confined spaces
WO2023198470A1 (en) * 2022-04-13 2023-10-19 Siemens Energy Global GmbH & Co. KG Robotic inspection tool for use in confined spaces and method of inspection

Also Published As

Publication number Publication date
JPWO2006129857A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2006129857A1 (en) Walking robot and method of controlling the same
US20090200090A1 (en) Multiple-point grounding type foot portion supporting mechanism, biped walking robot equipped with the same, and control structrure therefor
US9616564B2 (en) Event-based redundancy angle configuration for articulated-arm robots
EP1340478B1 (en) Parallel linkage and artificial joint device using the same
JP2008545545A (en) Regenerative drive in motion control
JP5249176B2 (en) Hydraulic driving actuator, hydraulic driving actuator unit incorporating the same, and hydraulic driving robot incorporating them
US20100057253A1 (en) Robot and method of controlling safety thereof
Contreras et al. First steps of a millimeter-scale walking silicon robot
KR101565945B1 (en) Platform of stairs climbing
US9486919B1 (en) Dual-axis robotic joint
CN101372096A (en) Multiple-joint service robot arm capable of implementing translational decoupling at Z direction
CN109454645A (en) A kind of hard and soft hybrid rescue robot
JP2006315095A (en) Robot and control method for it
CN116252327A (en) Dielectric elastomer driven humanoid hip joint
US9833903B1 (en) Controlling extendable legs of a robotic device for use of a mechanical gripper
CN210761039U (en) Multi-degree-of-freedom foot device with single driving force and capable of adapting to terrain
US20200290209A1 (en) Control device for robot
JP2017064835A (en) Multi-leg robot and method for correcting inversion attitude thereof
KR20180136602A (en) Skin structure for robotic arm
CN110831725A (en) Robot control device, control method, and control program
JP7126181B2 (en) FOOT STRUCTURE OF LEGED MOBILE ROBOT, AND LEGED MOBILE ROBOT
JP2008093822A (en) Multi-point ground-contact type leg part support mechanism, two-foot walking robot provided with it and its control structure
JP2002337076A (en) Detector for leg type locomotive robot
WO2021079848A1 (en) Foot structure of leg-type mobile robot and leg-type mobile robot
Lauzier et al. 2 DOF cartesian force limiting device for safe physical human-robot interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007519107

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06747196

Country of ref document: EP

Kind code of ref document: A1