WO2006129489A1 - Method of surface treatment - Google Patents

Method of surface treatment Download PDF

Info

Publication number
WO2006129489A1
WO2006129489A1 PCT/JP2006/309918 JP2006309918W WO2006129489A1 WO 2006129489 A1 WO2006129489 A1 WO 2006129489A1 JP 2006309918 W JP2006309918 W JP 2006309918W WO 2006129489 A1 WO2006129489 A1 WO 2006129489A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
treatment
electrolytic
treated
pickling
Prior art date
Application number
PCT/JP2006/309918
Other languages
French (fr)
Japanese (ja)
Inventor
Sakae Inayoshi
Takeru Nomura
Katsunobu Ishizawa
Shinichi Saito
Manami Yamaguchi
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to KR1020077006005A priority Critical patent/KR101116517B1/en
Publication of WO2006129489A1 publication Critical patent/WO2006129489A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/16Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions using inhibitors
    • C23G1/18Organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling

Definitions

  • the present invention relates to a surface treatment method for cleaning the surface of a metal part constituting a vacuum processing apparatus.
  • the present invention solves the above-mentioned conventional problems, and deposits such as chemicals and metals adhering to the surface of members constituting a vacuum processing apparatus such as a vacuum vessel are highly dangerous!
  • the objective is to remove it without using nitric acid or the like and without immersing it.
  • the surface treatment method of the present invention is a surface treatment method in which a metal part constituting a vacuum processing apparatus is an object to be processed as described in claim 1, and the surface of the object to be processed is electrolyzed.
  • the concentration should be 0.5 wt% or more and less than 10 wt% in dilute alkali solution of 0.5 wt% or more and less than 3 wt%.
  • the surface of the object to be treated is washed with an alkaline chelating solution obtained by adding rubonic acid or carboxylate.
  • the surface treatment method according to claim 2 is characterized in that, in the surface treatment method according to claim 1, the temperature of the alkaline chelating solution is 10 to 80 ° C.
  • the surface of an object to be treated can be cleaned with a relatively simple configuration.
  • there is less danger because deposits such as metals on the surface of the object to be treated can be removed without using nitric acid.
  • a vacuum processing apparatus is constituted by the surface-treated member according to the present invention, the gas released can be reduced in a vacuum atmosphere.
  • FIG. 1 is a graph showing a change in gas release rate per unit area in Example 3
  • the present invention is a surface treatment method using a metal part constituting a vacuum processing apparatus as an object to be processed, wherein the surface of the object to be processed is subjected to electrolytic polishing, partial electrolytic treatment, chemical polishing, pickling or electrolysis. After pickling, a carboxylic acid or a carboxylic acid salt is added to a dilute alkaline solution of 0.5 wt% or more and less than 3 wt% so that the concentration becomes 0.5 wt% or more and less than 10 wt%. The surface of the object to be treated is washed with the obtained alkaline chelating solution.
  • the metal parts constituting the vacuum processing apparatus are not particularly limited as long as they are parts placed in a vacuum processing environment.
  • An example is a metal container.
  • the metal include stainless steel, aluminum alloy, titanium alloy, and the like.
  • the treatment medium the material and the shape are not limited as long as a current can flow between the electrodes.
  • a nonwoven fabric can be used.
  • the electropolishing, chemical polishing, pickling or electrolytic acidity are known, and the partial electrolytic treatment is to connect an object to be processed to the anode side of the power source and to be processed to the cathode side.
  • the surface of the object to be treated is electropolished by connecting a treatment medium for contacting the electrolyte to the surface of the object and passing a direct current between the electrodes via the electrolyte.
  • the surface roughness (R) of the object to be treated is 0.1 m by the treatment.
  • concrete max concrete max
  • the electrolytic solution used for the electropolishing or partial electrolytic treatment includes at least one of an inorganic acid, an organic acid, an inorganic acid salt, and an organic acid salt.
  • an inorganic acid an organic acid, an inorganic acid salt, and an organic acid salt.
  • phosphoric acid, sulfuric acid examples thereof include ammonium citrate, ammonium chloride, ammonium dihydrogen phosphate, ammonium sulfate, sodium nitrate, and citrate.
  • a material and a shape are not limited as long as a direct current can be passed between the electrodes.
  • a nonwoven fabric can be used.
  • the electrolytic current density in the electrolytic polishing or the partial electrolytic treatment varies depending on the object to be treated.
  • it is 0.1 to 0.5 AZcm 2 .
  • alkaline chelating solution examples include dilute alkaline aqueous solutions such as sodium hydroxide and citrate. And solutions containing sodium citrate, ammonium oxalate, sodium phthalate, potassium tartrate, sodium dalconate, malic acid, and the like.
  • the alkaline chelating solution is preferably set to 10 ° C to 80 ° C. If the temperature is lower than 10 ° C, the reaction rate is remarkably reduced. If the temperature is higher than 80 ° C, the handleability is poor and there is a risk of alkaline corrosion.
  • the treatment with the alkaline chelating solution is preferably performed by soaking it in a treatment medium such as cloth. This is because the surface treatment can be performed locally even if the workpiece is enlarged.
  • SUS304 300mm X 150mm X 1mm to be processed is subjected to partial electrolytic treatment with sodium dihydrogen phosphate and sodium nitrate neutral salt. The following treatment was performed with the chelating solution.
  • Each chelating solution was heated to 40-50 ° C and included in the cleaning cloth to wipe the entire surface of the object to be treated. After the wiping was completed, high-pressure jet cleaning was performed with pure water heated to 50 ° C., and the chemical solution and alkaline chelating solution used for the electropolishing were removed. And it dried with the liquid nitrogen vaporized as finishing.
  • ion chromatography analysis was performed. In detail, after wiping the entire surface with a cleaning cloth soaked with pure water for the object to be treated before and after cleaning, 100 ml of pure water soaked in the cleaning cloth was extracted, and each surface area per unit area was extracted. The amount of water was calculated.
  • SUS304 300mm x 150mm x lmm
  • SUS304 300mm x 150mm x lmm
  • the following treatments were performed with the following two chelating solutions.
  • the chelating solutions a and b were included in the cleaning cloth, and the entire surface of the workpiece was wiped. After the wiping, in order to confirm the effect of removing the smut, each used cleaning cloth was immersed in 100 ml of pure water, and the elution amount of the metal component in each chelating solution was extracted into pure water. Then, the metal to be analyzed was measured by atomic absorption analysis as Fe, Cr, Ni, which are components of stainless steel alloy.
  • the detected stainless steel component is the smut partial force, and the stainless steel itself is the force.
  • the smut was removed with a 30% by weight nitric acid solution, washed with water, treated with a, and the washing cloth used in the treatment with a was extracted, and this was designated c.
  • a SUS304 (300mm x 150mm x 1mm) workpiece was subjected to partial electrolytic treatment with ammonium dihydrogen phosphate and a neutralized salt of sodium nitrate, and the concentration was adjusted to 1 wt% sodium hydroxide solution.
  • the solution obtained by adding sodium citrate to 3% by weight was soaked into a cleaning cloth and wiped, and the gas release characteristics were evaluated.
  • the gas release characteristics were evaluated by the change in the gas release rate per unit area released while the temperature was raised from room temperature to 500 ° C using the temperature programmed desorption method.
  • Fig. 1 is a graph showing the change in the gas release rate per unit area.
  • 1 is the gas release rate of the sample treated with the chelate solution
  • 2 in the figure is the number of samples not treated. The gas release rate of the sample.
  • the sample treated with the chelating solution showed a lower gas release rate, especially at temperatures above 250 ° C, compared to the sample that had been treated.
  • the source of gas released in this temperature range was removed by treatment with chelating solution.
  • An SUS304 (300mm x 150mm x 1mm) workpiece was electropolished with 70% phosphoric acid and 30% sulfuric acid solution. The following processing was performed.
  • the chelate solution was heated to 40 ° C. to 50 ° C. and included in a clean cloth to wipe the entire surface of the object to be treated. After the wiping was completed, high-pressure jet cleaning using pure water heated to 50 ° C was performed, and the chemical solution used for electropolishing and the alkaline chelate solution were removed. As a finish, it was dried with vaporized liquid nitrogen.
  • ion chromatography analysis was performed. Specifically, for the object to be treated before and after cleaning, after wiping the entire surface with a clean cloth soaked with pure water, 100 ml of pure water soaked in the clean cloth is extracted, and each ion per unit area is extracted. The amount was calculated. The results are shown in the table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

Any matter of chemical liquid, metal, etc. adhering to the surface of a member as a constituent of vacuum treatment apparatus, such as a vacuum vessel, is removed without the use of highly dangerous nitric acid, etc. There is provided a method of surface treatment for a metal part being a constituent of vacuum treatment apparatus as a treatment object, characterized in that the treatment object on its surface is first subjected to electrolytic polishing, partial electrolytic polishing, chemical polishing, pickling or electrolytic pickling and thereafter washed by means of an alkali chelate solution obtained by adding a carboxylic acid or carboxylic salt to a 0.5 to less than 3 wt.% dilute alkali solution up to a concentration of 0.5 to less than 10 wt.%.

Description

表面処理方法  Surface treatment method
技術分野  Technical field
[0001] 本発明は、真空処理装置を構成する金属製部品の表面を清浄化するための表面 処理方法に関するものである。  The present invention relates to a surface treatment method for cleaning the surface of a metal part constituting a vacuum processing apparatus.
背景技術  Background art
[0002] 真空容器等の真空処理装置を構成するステンレス鋼部材は、溶接、機械加工等を して、真空容器の形状にした後、加工過程において付着した潤滑剤や手の脂分等を 除去するために表面処理をするようにして!/ヽる。  [0002] Stainless steel members that make up vacuum processing equipment such as vacuum vessels are welded, machined, etc. to form the shape of the vacuum vessel, and then removes lubricant and oil on the hands in the process. Make a surface treatment to do it! / Speak.
近年真空装置が大型化し、大型化した真空処理装置を構成する部材全体を一度 に処理することが困難になってきたため、本出願人は、特願 2004— 219001におい て部分電解処理を提案した。  In recent years, the size of the vacuum apparatus has increased, and it has become difficult to process all of the members constituting the large-sized vacuum processing apparatus at one time. Therefore, the present applicant proposed partial electrolytic treatment in Japanese Patent Application No. 2004-219001.
この部分電解処理であっても、処理のために使用した薬液を除去するために純水 等による洗浄が必要である。部分電解処理の過程で表面にスマットと呼ばれる金属 性の付着物 (ステンレス鋼の場合は、 Cr, Ni, Fe等の酸化物および塩が不均一に付 着している)は、高圧ジェットを用いた純水洗浄をしても除去することは難しぐ真空雰 囲気下において、前記金属性付着物が空間に放出されたり、その後の成膜時に荷 電粒子に叩かれて空間に放出されたりして、真空装置を汚染する可能性があるという 問題があった。これらの金属性付着物を除去するためには、部分電解処理後に、取 り扱う際の危険性の高い硝酸を使用し洗浄しなければならないという問題があった。 装置の表面処理方法として、上述の部分電解処理の他、従来から行われている電 解研磨、ィ匕学研磨などがあるが、これらの方法いずれも、処理後には、金属表面に 上述のスマットが付着する。スマットをそのまま付着させておくことは、部分電解処理 のときと同様に空間中に放出され真空装置を汚染する可能性があると 、う問題があ つた。また、これらの金属性付着物を除去するためには、部分電解処理後に、取り扱 う際の危険性の高 、硝酸を使用し洗浄しなければならな 、と 、う問題があった。 発明の開示 発明が解決しょうとする課題 Even in this partial electrolytic treatment, cleaning with pure water or the like is necessary to remove the chemical solution used for the treatment. Metal deposits called smuts on the surface during partial electrolytic treatment (in the case of stainless steel, oxides and salts of Cr, Ni, Fe, etc. are unevenly attached) use a high-pressure jet. In a vacuum atmosphere that is difficult to remove even after washing with pure water, the metallic deposits may be released into the space, or may be struck by charged particles during the subsequent film formation. As a result, there was a problem that the vacuum apparatus could be contaminated. In order to remove these metallic deposits, there was a problem that after partial electrolytic treatment, it was necessary to use nitric acid, which is highly dangerous when handled. In addition to the above-mentioned partial electrolytic treatment, there are conventional electropolishing and electrochemical polishing as the surface treatment method of the apparatus. In any of these methods, the above-mentioned smut is applied to the metal surface after the treatment. Adheres. If the smut is left as it is, there is a problem that it may be released into the space and contaminate the vacuum apparatus as in the case of partial electrolytic treatment. In addition, in order to remove these metallic deposits, there is a problem that, after partial electrolytic treatment, there is a high risk of handling, and nitric acid must be used for cleaning. Disclosure of the invention Problems to be solved by the invention
[0003] そこで、本発明は、上記従来の問題を解決するもので、真空容器等の真空処理装 置を構成する部材の表面に付着した薬液や金属等の付着物を、危険性の高!ヽ硝酸 等を使用せず、しかも、浸漬処理することなく除去することを目的とする。  [0003] Therefore, the present invention solves the above-mentioned conventional problems, and deposits such as chemicals and metals adhering to the surface of members constituting a vacuum processing apparatus such as a vacuum vessel are highly dangerous! The objective is to remove it without using nitric acid or the like and without immersing it.
課題を解決するための手段  Means for solving the problem
[0004] 上記課題を解決するために、本発明者等は鋭意検討の結果、硝酸の代わりにアル カリ系キレート液を使用することにより、上記課題を解決することができるという知見に 基づき、下記の通り解決手段を見出した。 [0004] In order to solve the above problems, the present inventors have intensively studied, and based on the knowledge that the above problems can be solved by using an alkaline chelating solution instead of nitric acid, The solution was found as follows.
即ち、本発明の表面処理方法は、請求項 1に記載の通り、真空処理装置を構成す る金属製部品を被処理物とする表面処理方法であって、前記被処理物の表面を電 解研磨、部分電解処理、化学研磨、酸洗又は電解酸洗した後に、 0. 5重量%以上 3 重量%未満の希アルカリ液に、濃度が 0. 5重量%以上 10重量%未満となるように力 ルボン酸又はカルボン酸塩を添カ卩して得られたアルカリ系キレート液により、前記被 処理物の表面を洗浄することを特徴とする。  That is, the surface treatment method of the present invention is a surface treatment method in which a metal part constituting a vacuum processing apparatus is an object to be processed as described in claim 1, and the surface of the object to be processed is electrolyzed. After polishing, partial electrolytic treatment, chemical polishing, pickling or electrolytic pickling, the concentration should be 0.5 wt% or more and less than 10 wt% in dilute alkali solution of 0.5 wt% or more and less than 3 wt%. The surface of the object to be treated is washed with an alkaline chelating solution obtained by adding rubonic acid or carboxylate.
また、請求項 2に記載の表面処理方法は、請求項 1に記載の表面処理方法におい て、前記アルカリ系キレート液の温度を、 10〜80°Cとすることを特徴とする。  The surface treatment method according to claim 2 is characterized in that, in the surface treatment method according to claim 1, the temperature of the alkaline chelating solution is 10 to 80 ° C.
発明の効果  The invention's effect
[0005] 本発明の表面処理方法によれば、比較的簡素な構成で被処理物の表面を洗浄す ることができる。また、被処理物表面の金属等の付着物を、硝酸を使用しなくても除 去することができるので危険性が少ない。更に、本発明により表面処理された部材に より真空処理装置を構成すれば、真空雰囲気下において、放出されるガスを少なく することができる。  [0005] According to the surface treatment method of the present invention, the surface of an object to be treated can be cleaned with a relatively simple configuration. In addition, there is less danger because deposits such as metals on the surface of the object to be treated can be removed without using nitric acid. Furthermore, if a vacuum processing apparatus is constituted by the surface-treated member according to the present invention, the gas released can be reduced in a vacuum atmosphere.
図面の簡単な説明  Brief Description of Drawings
[0006] [図 1]実施例 3の単位面積当たりのガス放出速度の変化を示すグラフ [0006] FIG. 1 is a graph showing a change in gas release rate per unit area in Example 3
符号の説明  Explanation of symbols
[0007] 1 キレート液による処理を行った試料の単位面積当たりのガス放出速度  [0007] 1 Gas release rate per unit area of sample treated with chelating solution
2 キレート液による処理をしな力つた試料の単位面積当たりのガス放出速度 発明を実施するための最良の形態 2 Gas release rate per unit area of a sample that has been treated with a chelating solution BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明は、真空処理装置を構成する金属製部品を被処理物とする表面処理方法 であって、前記被処理物の表面を電解研磨、部分電解処理、化学研磨、酸洗又は 電解酸洗した後に、 0. 5重量%以上 3重量%未満の希アルカリ液に、濃度が 0. 5重 量%以上 10重量%未満となるようにカルボン酸又はカルボン酸塩を添カ卩して得られ たアルカリ系キレート液により、前記被処理物の表面を洗浄することを特徴とするもの である。  [0008] The present invention is a surface treatment method using a metal part constituting a vacuum processing apparatus as an object to be processed, wherein the surface of the object to be processed is subjected to electrolytic polishing, partial electrolytic treatment, chemical polishing, pickling or electrolysis. After pickling, a carboxylic acid or a carboxylic acid salt is added to a dilute alkaline solution of 0.5 wt% or more and less than 3 wt% so that the concentration becomes 0.5 wt% or more and less than 10 wt%. The surface of the object to be treated is washed with the obtained alkaline chelating solution.
前記真空処理装置を構成する金属製部品は、真空処理環境下におかれる部品で あれば特に制限するものではない。一例を挙げると、金属製容器等が挙げられる。尚 、前記金属としては、ステンレス鋼、アルミニウム合金、チタン合金等が挙げられる。 前記処理媒体としては、前記電極間に電流を流すことができれば、材料や形状は 限定されるものではないが、例えば、不織布を使用することができる。  The metal parts constituting the vacuum processing apparatus are not particularly limited as long as they are parts placed in a vacuum processing environment. An example is a metal container. Examples of the metal include stainless steel, aluminum alloy, titanium alloy, and the like. As the treatment medium, the material and the shape are not limited as long as a current can flow between the electrodes. For example, a nonwoven fabric can be used.
[0009] 前記電解研磨、化学研磨、酸洗又は電解酸性は、公知のものであり、また、部分電 解処理とは、被処理物を電源の陽極側に接続するとともに、陰極側に被処理物の表 面に電解液を接触させるための処理媒体を接続し、電極間に、電解液を介して直流 電流を流すことにより、被処理物の表面を電解研磨することをいうものとし、この処理 により、被処理物の表面粗度 (R )を 0. 1 mとすることが更に好ましい。尚、具体 max [0009] The electropolishing, chemical polishing, pickling or electrolytic acidity are known, and the partial electrolytic treatment is to connect an object to be processed to the anode side of the power source and to be processed to the cathode side. This means that the surface of the object to be treated is electropolished by connecting a treatment medium for contacting the electrolyte to the surface of the object and passing a direct current between the electrodes via the electrolyte. More preferably, the surface roughness (R) of the object to be treated is 0.1 m by the treatment. In addition, concrete max
例は、特願 2004— 219001に記載されて!、る。  An example is described in Japanese Patent Application No. 2004-219001!
前記電解研磨又は部分電解処理に使用される電解液としては、無機酸、有機酸、 無機酸塩及び有機酸塩のうちの少なくともいずれかを含むもので、具体的には、リン 酸、硫酸、クェン酸アンモ-ゥム、塩化アンモ-ゥム、リン酸 2水素アンモ-ゥム、硫酸 アンモ-ゥム、硝酸ナトリウム、クェン酸等を挙げることができる。  The electrolytic solution used for the electropolishing or partial electrolytic treatment includes at least one of an inorganic acid, an organic acid, an inorganic acid salt, and an organic acid salt. Specifically, phosphoric acid, sulfuric acid, Examples thereof include ammonium citrate, ammonium chloride, ammonium dihydrogen phosphate, ammonium sulfate, sodium nitrate, and citrate.
また、部分電解処理に使用できる処理媒体としては、前記電極間に直流電流を流 すことができれば、材料や形状は限定されるものではないが、例えば、不織布を使用 することができる。  Further, as a treatment medium that can be used for the partial electrolysis treatment, a material and a shape are not limited as long as a direct current can be passed between the electrodes. For example, a nonwoven fabric can be used.
電解研磨又は部分電解処理における電解電流密度は、被処理物により異なるが、 例えば、ステンレス鋼であれば、 0. 1〜0. 5AZcm2である。 The electrolytic current density in the electrolytic polishing or the partial electrolytic treatment varies depending on the object to be treated. For example, in the case of stainless steel, it is 0.1 to 0.5 AZcm 2 .
[0010] アルカリ系キレート液としては、水酸ィ匕ナトリウム等の希アルカリ水溶液に、クェン酸 、クェン酸ナトリウム、シユウ酸アンモ-ゥム、フタル酸ナトリウム、酒石酸カリウム、ダル コン酸ナトリウム、リンゴ酸等を添加した溶液等を挙げることができる。 [0010] Examples of the alkaline chelating solution include dilute alkaline aqueous solutions such as sodium hydroxide and citrate. And solutions containing sodium citrate, ammonium oxalate, sodium phthalate, potassium tartrate, sodium dalconate, malic acid, and the like.
[0011] 前記アルカリ系キレート液は、 10°C〜80°Cとすることが好ましい。 10°C未満では、 反応速度が著しく低下し、 80°C超えでは取扱性が悪ぐまた、アルカリ腐食のおそれ があるからである。  [0011] The alkaline chelating solution is preferably set to 10 ° C to 80 ° C. If the temperature is lower than 10 ° C, the reaction rate is remarkably reduced. If the temperature is higher than 80 ° C, the handleability is poor and there is a risk of alkaline corrosion.
[0012] また、前記アルカリ系キレート液による処理は、布等の処理媒体に染み込ませて行 うことが好ましい。被処理物が大型化しても局所的に表面処理をすることができるから である。  [0012] The treatment with the alkaline chelating solution is preferably performed by soaking it in a treatment medium such as cloth. This is because the surface treatment can be performed locally even if the workpiece is enlarged.
実施例 1  Example 1
[0013] SUS304 (300mm X 150mm X 1mm)の被処理物にリン酸 2水素ナトリウム、硝酸 ナトリウムの中和塩により部分電解処理を施し、表面に生じた赤色及び青色のスマツ トについて、下記 2種類のキレート液により次の処理を行った。  [0013] SUS304 (300mm X 150mm X 1mm) to be processed is subjected to partial electrolytic treatment with sodium dihydrogen phosphate and sodium nitrate neutral salt. The following treatment was performed with the chelating solution.
a) 1重量0 /0の水酸ィ匕ナトリウム溶液に、濃度が 3重量%となるようにクェン酸ナトリウム を添加した溶液 a) 1 wt 0/0 of Mizusani匕sodium solution, the solution was added sodium Kuen acid to a concentration of 3 wt%
b) 1重量%の水酸ィ匕ナトリウム溶液に、濃度が 3重量%となるようにリンゴ酸を添加し た溶液  b) A solution of malic acid added to a 1 wt% sodium hydroxide solution to a concentration of 3 wt%
各キレート液を 40〜50°Cに加温し、洗浄布に含ませて被処理物の全面のワイピン グを行った。ワイビング終了後、 50°Cに加温した純水により高圧ジェット洗浄を行い、 電解研磨に使用した薬液及びアルカリ系キレート溶液の除去を行った。そして、仕上 げとして気化させた液体窒素により乾燥した。  Each chelating solution was heated to 40-50 ° C and included in the cleaning cloth to wipe the entire surface of the object to be treated. After the wiping was completed, high-pressure jet cleaning was performed with pure water heated to 50 ° C., and the chemical solution and alkaline chelating solution used for the electropolishing were removed. And it dried with the liquid nitrogen vaporized as finishing.
スマット除去の効果を確認するために、イオンクロマト分析を行った。詳細には、洗 浄前後の被処理物を対象として、純水を染み込ませた洗浄布により全面をワイビング した後に、前記洗浄布に染み込んだ純水 100mlを抽出し、単位面積当たりの各ィォ ン量を算出した。  In order to confirm the effect of removing smut, ion chromatography analysis was performed. In detail, after wiping the entire surface with a cleaning cloth soaked with pure water for the object to be treated before and after cleaning, 100 ml of pure water soaked in the cleaning cloth was extracted, and each surface area per unit area was extracted. The amount of water was calculated.
この結果を、 aについては表 1に、 bについては表 2に示す。  The results are shown in Table 1 for a and in Table 2 for b.
[0014] [表 1] (ng- cm2) cation Na+ NH4+ K+ Mg Ca2+ [0014] [Table 1] (ng- cm 2 ) cation Na + NH 4 + K + Mg Ca 2+
NaH2P04 除去前 25.1 26.7 19.6 ND 22.1 NaH 2 P0 4 Before removal 25.1 26.7 19.6 ND 22.1
除去後 1.7 1.8 0.2 ND ND  After removal 1.7 1.8 0.2 ND ND
NaN03 除去前 33.1 35.9 22.7 ND 34.2 NaN0 3 Before removal 33.1 35.9 22.7 ND 34.2
除去後 1.5 0.5 0.1 ND ND  After removal 1.5 0.5 0.1 ND ND
(ng- cm2) anion F— (: N02— Br— N03" P04 3— S04 2" (ng- cm 2 ) anion F— (: N0 2 — Br— N0 3 "P0 4 3 — S0 4 2 "
78.9  78.9
NaH2P04 除去前 39.4 77.2 12.4 682.3 247.2 332.5 除去後 0 1.3 3.7 ND 1.3 4.9 2.6 除去前 77.3 34.1 789.5 22.7 542 324.1 246.1NaH 2 P0 4 Before removal 39.4 77.2 12.4 682.3 247.2 332.5 After removal 0 1.3 3.7 ND 1.3 4.9 2.6 Before removal 77.3 34.1 789.5 22.7 542 324.1 246.1
NaN03 NaN0 3
除去後 1.8 3.7 7.6 ND 5.3 1.9 3.8 After removal 1.8 3.7 7.6 ND 5.3 1.9 3.8
[表 2] [Table 2]
(ng- cm2) cation Na+ NH4+ K+ Mg Ca2+ (ng- cm 2 ) cation Na + NH 4 + K + Mg Ca 2+
NaH2P04 除去前 19.1 18.7 22.6 ND 27.1 NaH 2 P0 4 Before removal 19.1 18.7 22.6 ND 27.1
除去後 2.8 12.2 0.7 ND ND  After removal 2.8 12.2 0.7 ND ND
NaN03 除去前 32.1 21.9 1 1.9 ND 23.1 NaN0 3 Before removal 32.1 21.9 1 1.9 ND 23.1
除去後 1.9 2.8 0.4 ND ND  After removal 1.9 2.8 0.4 ND ND
(ng- cm2) anion F— (: N02— Br— N03" P04 3— S04 2"(ng- cm 2 ) anion F— (: N0 2 — Br— N0 3 "P0 4 3 — S0 4 2 "
NaH2P04 除去前 85.9 33.3 74.2 17.4 789.1 251.6 348 除去後 0 1.9 4.7 ND 1.9 6.9 1.6 NaH 2 P0 4 Before removal 85.9 33.3 74.2 17.4 789.1 251.6 348 After removal 0 1.9 4.7 ND 1.9 6.9 1.6
57.3 19.9 54.7 1 1.6 967.1 104.5 1 27.5 57.3 19.9 54.7 1 1.6 967.1 104.5 1 27.5
NaN03 除去前 Before NaN0 3 removal
除去後 2.1 4.1 5.5 ND 6.3 2.5 1.8  After removal 2.1 4.1 5.5 ND 6.3 2.5 1.8
[0016] 上記表 1及び表 2から、スマット除去後は、除去前に比べて合金成分の付着塩とな るァニ才ンとともに、 Na+の力チ才ンも少なくなつた。  [0016] From Table 1 and Table 2 above, after the removal of the smut, the strength of the Na + was reduced as well as the ani concentration that became an adhesion salt of the alloy component compared to before the removal.
実施例 2  Example 2
[0017] SUS304 (300mm X 150mm X lmm)の被処理物に、リン酸 2水素ナトリウム、硝 酸ナトリウムの中和塩により部分電解処理を施し、表面に生じた赤色及び青色のスマ ットについて、下記 2種類のキレート液により次の処理を行った。  [0017] SUS304 (300mm x 150mm x lmm) to be treated was subjected to partial electrolytic treatment with sodium dihydrogen phosphate and sodium nitrate neutral salt, and red and blue smut generated on the surface. The following treatments were performed with the following two chelating solutions.
a) 40°Cに加温した 1重量%の水酸ィ匕ナトリウム溶液に、濃度が 3重量%となるように クェン酸ナトリウムを添加した溶液  a) A solution of sodium citrate added to a 1% by weight sodium hydroxide sodium hydroxide solution heated to 40 ° C to a concentration of 3% by weight
b) 40°Cに加温した 1重量%の水酸ィ匕ナトリウム溶液に、濃度が 3重量%となるようにリ ンゴ酸を添加した溶液  b) A solution obtained by adding phosphonic acid to a concentration of 3% by weight to a 1% by weight sodium hydroxide sodium hydroxide solution heated to 40 ° C.
a、 bのキレート液について、洗浄布に含ませて被処理物の全面のワイビングを行つ た。ワイビング終了後、スマット除去の効果を確認するために、使用した各洗浄布を 1 00mlの純水に浸漬し、各キレート液への金属成分の溶出量を純水に抽出した。そし て、分析対象となる金属をステンレス合金の成分である Fe, Cr, Niとして、原子吸光 分析により測定した。  The chelating solutions a and b were included in the cleaning cloth, and the entire surface of the workpiece was wiped. After the wiping, in order to confirm the effect of removing the smut, each used cleaning cloth was immersed in 100 ml of pure water, and the elution amount of the metal component in each chelating solution was extracted into pure water. Then, the metal to be analyzed was measured by atomic absorption analysis as Fe, Cr, Ni, which are components of stainless steel alloy.
尚、検出されたステンレス鋼成分がスマット部分力 であり、ステンレス鋼自体力 で はないことを示すために、 30重量%の硝酸溶液によるスマット除去、水洗後、 aにより 処理し、この aによる処理において使用した洗浄布力 抽出したサンプルを作成し、こ れを cとした。 The detected stainless steel component is the smut partial force, and the stainless steel itself is the force. In order to show that there was no smut, the smut was removed with a 30% by weight nitric acid solution, washed with water, treated with a, and the washing cloth used in the treatment with a was extracted, and this was designated c.
この結果を、表 3に示す。  The results are shown in Table 3.
[0018] [表 3]
Figure imgf000008_0001
[0018] [Table 3]
Figure imgf000008_0001
[0019] 上記結果から、 a, bを使用した洗浄布からは、 Fe, Crが検出された。一方、 cでは、 Fe, Cr, Niのステンレス鋼を構成する元素は検出されな力つた。  [0019] From the above results, Fe and Cr were detected from the cleaning cloth using a and b. On the other hand, in c, the elements constituting Fe, Cr and Ni stainless steel were not detected.
この結果から、 a, bでは、被処理物自体に損傷を与えることなぐスマットが除去さ れることがわかった。  From these results, it was found that smut that does not damage the workpiece itself was removed in a and b.
実施例 3  Example 3
[0020] SUS304 (300mm X 150mm X 1mm)の被処理物にリン酸 2水素アンモ-ゥム、 硝酸ナトリウムの中和塩により部分電解処理を施し、 1重量%の水酸化ナトリウム溶液 に、濃度が 3重量%となるようにクェン酸ナトリウムを添加して得られた溶液を洗浄布 に染み込ませてワイビングしたものと、しな 、ものとのガス放出特性を評価した。  [0020] A SUS304 (300mm x 150mm x 1mm) workpiece was subjected to partial electrolytic treatment with ammonium dihydrogen phosphate and a neutralized salt of sodium nitrate, and the concentration was adjusted to 1 wt% sodium hydroxide solution. The solution obtained by adding sodium citrate to 3% by weight was soaked into a cleaning cloth and wiped, and the gas release characteristics were evaluated.
[0021] ガス放出特性は、昇温脱離法を用い、室温から 500°Cまで昇温する間に放出され る単位面積当たりのガス放出速度の変化で評価した。  [0021] The gas release characteristics were evaluated by the change in the gas release rate per unit area released while the temperature was raised from room temperature to 500 ° C using the temperature programmed desorption method.
図 1は、単位面積当たりのガス放出速度の変化を示す図であり、図中 1は、キレート 液による処理を行った試料のガス放出速度であり、図中 2は、処理を行わなカゝつた試 料のガス放出速度である。  Fig. 1 is a graph showing the change in the gas release rate per unit area. In the figure, 1 is the gas release rate of the sample treated with the chelate solution, and 2 in the figure is the number of samples not treated. The gas release rate of the sample.
図 1より、キレート液による処理を行った試料は、処理をしな力つた試料に比べ、特 に 250°C以上の温度でのガス放出速度が少なくなつた。この温度領域で放出される ガスの源がキレート液による処理によって除去された。  From Fig. 1, the sample treated with the chelating solution showed a lower gas release rate, especially at temperatures above 250 ° C, compared to the sample that had been treated. The source of gas released in this temperature range was removed by treatment with chelating solution.
実施例 4  Example 4
[0022] SUS304 (300mm X 150mm X 1mm)の被処理物に 70%リン酸、 30%硫酸溶液 により電解研磨処理を施し、表面に生じたスマットについて、下記 1種類のキレート液 により次の処理を行った。 [0022] An SUS304 (300mm x 150mm x 1mm) workpiece was electropolished with 70% phosphoric acid and 30% sulfuric acid solution. The following processing was performed.
a) 1%の水酸ィ匕ナトリウム溶液に、濃度が 3%となるようにクェン酸ナトリウムを添加し た溶液  a) A solution of sodium citrate added to a 1% sodium hydroxide solution to a concentration of 3%
上記キレート液を 40°C〜50°Cに加温し、清浄布に含ませて被処理物の全面のワイ ビングを行なった。ワイビング終了後、 50°Cに加温した純水を使用した高圧ジェット 洗浄を行ない、電解研磨に使用した薬液及び、アルカリ系キレート溶液の除去を行 なった。仕上げとして気化させた液体窒素により乾燥した。  The chelate solution was heated to 40 ° C. to 50 ° C. and included in a clean cloth to wipe the entire surface of the object to be treated. After the wiping was completed, high-pressure jet cleaning using pure water heated to 50 ° C was performed, and the chemical solution used for electropolishing and the alkaline chelate solution were removed. As a finish, it was dried with vaporized liquid nitrogen.
スマット除去の効果を確認するために、イオンクロマト分析を行った。詳細には、洗 浄前後の被処理物を対象として、純水を染み込ませた清浄布にて全面をワイビング した後に、前記清浄布に染み込んだ純水 100ml抽出し、単位面積当たりの各イオン の量を算出した。結果を表に示す。  In order to confirm the effect of removing smut, ion chromatography analysis was performed. Specifically, for the object to be treated before and after cleaning, after wiping the entire surface with a clean cloth soaked with pure water, 100 ml of pure water soaked in the clean cloth is extracted, and each ion per unit area is extracted. The amount was calculated. The results are shown in the table.
[0023] [表 4] [0023] [Table 4]
Figure imgf000009_0001
Figure imgf000009_0001
(ng-cm2) (ng-cm 2 )
[0024] 上記表から、スマット除去後は、除去前に比べて合金成分の付着塩となるァ-オン とともに、 Na+のカチオンがともに少なくなつたことがわかる。  [0024] From the above table, it can be seen that after removal of the smut, both cations of Na +, as well as arions, which are adhering salts of the alloy components, are reduced after removal of the smut.

Claims

請求の範囲 The scope of the claims
[1] 真空処理装置を構成する金属製部品を被処理物とする表面処理方法であって、前 記被処理物の表面を電解研磨、部分電解処理、化学研磨、酸洗又は電解酸洗した 後に、 0. 5重量%以上 3重量%未満の希アルカリ液に、濃度が 0. 5重量%以上 10 重量%未満となるようにカルボン酸又はカルボン酸塩を添カ卩して得られたアルカリ系 キレート液により、前記被処理物の表面を洗浄することを特徴とする表面処理方法。  [1] A surface treatment method using a metal part constituting a vacuum processing apparatus as an object to be processed, wherein the surface of the object to be processed is subjected to electrolytic polishing, partial electrolytic treatment, chemical polishing, pickling or electrolytic pickling. Subsequently, an alkali obtained by adding a carboxylic acid or a carboxylic acid salt to a dilute alkali solution of 0.5 wt% or more and less than 3 wt% so as to have a concentration of 0.5 wt% or more and less than 10 wt%. A surface treatment method comprising washing the surface of the object to be treated with a chelating solution.
[2] 前記アルカリ系キレート液の温度を、 10〜80°Cとすることを特徴とする請求項 1に 記載の表面処理方法。 [2] The surface treatment method according to [1], wherein the temperature of the alkaline chelating solution is 10 to 80 ° C.
PCT/JP2006/309918 2005-05-30 2006-05-18 Method of surface treatment WO2006129489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077006005A KR101116517B1 (en) 2005-05-30 2006-05-18 Method of surface treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005157554A JP4799908B2 (en) 2005-05-30 2005-05-30 Surface treatment method
JP2005-157554 2005-05-30

Publications (1)

Publication Number Publication Date
WO2006129489A1 true WO2006129489A1 (en) 2006-12-07

Family

ID=37481419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309918 WO2006129489A1 (en) 2005-05-30 2006-05-18 Method of surface treatment

Country Status (5)

Country Link
JP (1) JP4799908B2 (en)
KR (1) KR101116517B1 (en)
CN (2) CN103526276A (en)
TW (1) TWI418656B (en)
WO (1) WO2006129489A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130248A1 (en) * 2008-04-23 2009-10-29 Martin-Nikolaus Meyn Method for chemical deburring

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868319B1 (en) * 2010-10-06 2018-06-15 엔테그리스, 아이엔씨. Composition and process for selectively etching metal nitrides
CN105332044A (en) * 2015-11-24 2016-02-17 苏州盖德精细材料有限公司 Novel chromic anhydride-free stainless steel electrolytic polishing solution and polishing process thereof
CN105970279A (en) * 2016-06-29 2016-09-28 无锡信大气象传感网科技有限公司 Surface treatment method for solar vacuum stainless steel tube
JP7038751B2 (en) * 2020-04-20 2022-03-18 株式会社Ihi How to handle stainless steel parts
CN111501085A (en) * 2020-04-29 2020-08-07 深圳仕上电子科技有限公司 Method for cleaning Mask in vacuum evaporation equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111834A (en) * 1976-03-15 1977-09-19 Halliburton Co Method of treating surface of ironncontaining metal
JPH03180500A (en) * 1989-12-07 1991-08-06 Fujitsu Ltd Method for treating surface of inner wall of stainless-steel vacuum vessel
JPH04187788A (en) * 1990-11-20 1992-07-06 Nippon Parkerizing Co Ltd Method for washing aluminum or aluminum alloy
JPH07113190A (en) * 1993-10-18 1995-05-02 Mitsubishi Heavy Ind Ltd Smut removing liquid
JP2001107300A (en) * 1999-10-08 2001-04-17 Ulvac Japan Ltd Method of electrolytic polishing treatment for aluminum material
JP2001123287A (en) * 1999-10-21 2001-05-08 Asahi Kagaku Kogyo Co Ltd Discoloration preventive composition, discoloration preventive liquid and discoloration preventive method for metal
JP2003129261A (en) * 2001-10-17 2003-05-08 Nippon Steel Corp Water-soluble discoloration inhibitor for pickled steel material and discoloration inhibition method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1216066B (en) * 1963-01-29 1966-05-05 Henkel & Cie Gmbh Process for the treatment of degreased metal surfaces stained with an acidic solution before enamelling
CN1080333A (en) * 1992-10-06 1994-01-05 云南五环工业设计研究所 A kind of electrolytic etching method of metal test-piece
JPH07185939A (en) * 1993-12-27 1995-07-25 Hitachi Zosen Corp Method for electrolytic polishing of member made of alloy steel
CN1480566A (en) * 2002-09-03 2004-03-10 周国桢 Electrochemical grind (polishing) method for stainless steel
JP2005042177A (en) * 2003-07-25 2005-02-17 Tomoko Ujita Electrolytic polishing method for stainless steel increasing its corrosion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111834A (en) * 1976-03-15 1977-09-19 Halliburton Co Method of treating surface of ironncontaining metal
JPH03180500A (en) * 1989-12-07 1991-08-06 Fujitsu Ltd Method for treating surface of inner wall of stainless-steel vacuum vessel
JPH04187788A (en) * 1990-11-20 1992-07-06 Nippon Parkerizing Co Ltd Method for washing aluminum or aluminum alloy
JPH07113190A (en) * 1993-10-18 1995-05-02 Mitsubishi Heavy Ind Ltd Smut removing liquid
JP2001107300A (en) * 1999-10-08 2001-04-17 Ulvac Japan Ltd Method of electrolytic polishing treatment for aluminum material
JP2001123287A (en) * 1999-10-21 2001-05-08 Asahi Kagaku Kogyo Co Ltd Discoloration preventive composition, discoloration preventive liquid and discoloration preventive method for metal
JP2003129261A (en) * 2001-10-17 2003-05-08 Nippon Steel Corp Water-soluble discoloration inhibitor for pickled steel material and discoloration inhibition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130248A1 (en) * 2008-04-23 2009-10-29 Martin-Nikolaus Meyn Method for chemical deburring

Also Published As

Publication number Publication date
CN103526276A (en) 2014-01-22
CN101031672A (en) 2007-09-05
JP2006328516A (en) 2006-12-07
TW200704827A (en) 2007-02-01
KR20070088516A (en) 2007-08-29
JP4799908B2 (en) 2011-10-26
TWI418656B (en) 2013-12-11
KR101116517B1 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
JP5145083B2 (en) Method for electrolytic polishing of titanium
WO2006129489A1 (en) Method of surface treatment
US20110253554A1 (en) Electrolyte for removing titanium-containing coatings and removing method using same
US2705500A (en) Cleaning aluminum
JP6694693B2 (en) How to treat stainless steel parts
JP2007107069A (en) Surface treatment method for aluminum-based substrate
JP5586614B2 (en) Stainless steel surface treatment method
JP5072398B2 (en) Surface treatment method for welded part of metal member
TW201510286A (en) Method for electrolytic descaling of steels and the descaling product thereof
JPS63169391A (en) Metal member for semiconductor producing device
US20090200178A1 (en) Electropolishing method
TW201202480A (en) Process for preparing and treating a substrate
JP4320023B2 (en) Metal surface treatment aqueous solution and metal surface treatment method using the aqueous solution
Höche et al. Surface cleaning and pre-conditioning surface treatments to improve the corrosion resistance of magnesium (Mg) alloys
JPS6356320B2 (en)
CN112301351A (en) Pickling and passivating process for austenitic stainless steel part
JP3229169B2 (en) Method for removing scale containing metal oxide
JP2782023B2 (en) How to clean stainless steel
JP4403227B2 (en) Metal oxide film or rust removal water, Metal oxide film or rust removal method using the oxide film or rust removal water
TWI527938B (en) Rapidly electrolytic rust removal method
JPS5941519B2 (en) Method for surface activation of metal striatum
JP4941447B2 (en) Cleaning method of aluminum alloy
JP2005298919A (en) Cleaning method
JPS63118100A (en) Method for cleaning surface of alloyed steel
JPH07252699A (en) Removal of lead dioxide residue

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020077006005

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680000873.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746603

Country of ref document: EP

Kind code of ref document: A1