WO2006126343A1 - Route information display device, route information display method, route information display program, and computer readable recording medium - Google Patents

Route information display device, route information display method, route information display program, and computer readable recording medium Download PDF

Info

Publication number
WO2006126343A1
WO2006126343A1 PCT/JP2006/308038 JP2006308038W WO2006126343A1 WO 2006126343 A1 WO2006126343 A1 WO 2006126343A1 JP 2006308038 W JP2006308038 W JP 2006308038W WO 2006126343 A1 WO2006126343 A1 WO 2006126343A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
section
information display
fatigue
route information
Prior art date
Application number
PCT/JP2006/308038
Other languages
French (fr)
Japanese (ja)
Inventor
Fumihiko Horigome
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007517741A priority Critical patent/JP4578526B2/en
Publication of WO2006126343A1 publication Critical patent/WO2006126343A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3641Personalized guidance, e.g. limited guidance on previously travelled routes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map

Definitions

  • Route information display device route information display method, route information display program, and computer-readable recording medium
  • the present invention relates to a route information display device, a route information display method, a route information display program, and a computer-readable recording medium that display the degree of fatigue in a route constituted by a plurality of sections.
  • use of the present invention is not limited to the above-described route information display device, route information display method, route information display program, and computer-readable recording medium.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-28896
  • Patent Document 2 JP-A-1996-247777
  • the route information display device provides a section information of one section of a plurality of sections constituting a predetermined route based on a gradient and an altitude difference at both ends of the section. Calculating means for calculating the degree of fatigue, and accumulation means for calculating the degree of fatigue of the route by accumulating the section fatigue degree of each section obtained by the calculating means for the entire route. And
  • the route information display method according to the invention of claim 8 relates to a section of the section based on the gradient and altitude difference between the ends of the section of a plurality of sections constituting the predetermined route.
  • a route information display program causes a computer to execute the route information display method according to claim 8.
  • a computer-readable recording medium according to the invention of claim 10 records the route information display program according to claim 9.
  • FIG. 1 is a block diagram showing a functional configuration of a route information display device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing processing of the route information display method according to the embodiment of the present invention.
  • FIG. 3 is a block diagram showing a functional configuration of the route information display device according to this embodiment.
  • FIG. 4 is an explanatory diagram for explaining the relationship between the current position and height for each route.
  • FIG. 5 is a graph illustrating the magnitude of the load and the degree of fatigue when the load continues.
  • FIG. 6 is an explanatory diagram for explaining data indicating a state in each route.
  • Figure 7 is a graph showing the difference in altitude and cumulative fatigue at each position.
  • FIG. 1 is a block diagram showing a functional configuration of a route information display device according to an embodiment of the present invention.
  • the route information display device of this embodiment includes a calculation unit 101, an accumulation unit 102, a display unit 103, and an acquisition unit 104.
  • the calculation unit 101 obtains a section fatigue level of one section of a plurality of sections constituting a predetermined route based on the gradient and altitude difference between both ends of the section.
  • the section fatigue is obtained based on the gradient and altitude difference at both ends of the section.
  • the product of the gradient at both ends and the square of the height difference can also be used to determine the interval fatigue.
  • the calculation unit 101 sets the product of the gradient at both ends of the section and the square of the altitude difference as the section fatigue level when a predetermined distance or time elapses due to movement of the section where a predetermined load is applied. Is possible.
  • the calculation unit 101 calculates the section recovery degree by the down section for the down section.
  • the accumulating unit 102 calculates the fatigue degree of the route by accumulating the section fatigue degree of each section obtained by the calculating unit 101 for the entire route.
  • the accumulating unit 102 accumulates the section fatigue degree calculated by the calculating unit 101, and when the route includes a downward section, the accumulating unit 102 subtracts the section recovery degree calculated by the calculating unit 101 to thereby calculate the route fatigue degree. Can be calculated.
  • the display unit 103 displays information indicating a plurality of routes having the same start point and end point, together with the fatigue level of each route calculated by the accumulating unit 102.
  • the display unit 103 can also display information indicating a plurality of routes in the order of the fatigue levels of the respective routes calculated by the accumulating unit 102.
  • the acquisition unit 104 obtains the altitude difference change information of the route.
  • the elevation difference change information obtained by the acquisition unit 104 can be displayed by the display unit 103 together with information indicating a plurality of routes.
  • FIG. 2 is a flowchart showing the processing of the route information display method according to the embodiment of the present invention.
  • the calculation unit 101 obtains the section fatigue level of one section among a plurality of sections constituting the predetermined route (step S201).
  • the section fatigue is obtained based on the gradient and altitude difference at both ends of the section.
  • the calculation unit 101 can also obtain the section fatigue level from the product of the gradient at both ends of the section and the square of the height difference.
  • the calculation unit 101 may calculate the product of the gradient at both ends of the section and the square of the altitude difference as the section fatigue level when a predetermined distance or time elapses due to movement of the section where a predetermined load is applied. it can.
  • the calculation unit 101 can also calculate the degree of section recovery for the downlink section.
  • step S202 it is determined whether or not the section fatigue level has been obtained for all sections.
  • step S202 If not obtained (step S202: No), the process returns to step S201, and the section fatigue degree is obtained for V which has not been obtained and another section. If asked (Step S202: Yes), The accumulating unit 102 accumulates the section fatigue degree of each section obtained by the calculating unit 101 for the entire route (step S203). Thereby, the fatigue degree of the route is calculated. Note that the accumulating unit 102 can also subtract the section recovery degree calculated by the calculating unit 101 from the fatigue degree of the route when the route includes a downward section.
  • the acquiring unit 104 acquires the altitude difference change information of the route (step S204). Next, it is determined whether or not all routes of a plurality of routes having the same start point and end point have been obtained (step S205). If not obtained for all routes (step S205: No), the process returns to step S201 to obtain other routes.
  • the display unit 103 displays the information indicating a plurality of routes having the same start point and end point as the fatigue of each route calculated by the accumulation unit 102. Display with degree (step S206).
  • the display unit 103 displays information indicating a plurality of routes in the order of the fatigue levels of the respective routes calculated by the accumulating unit 102.
  • the display unit 103 can also display information indicating a plurality of routes together with the elevation difference change information obtained by the acquisition unit 104.
  • the degree of fatigue taking into account the accumulation of gradients, and thus, for example, the difference in altitude and the moving distance force can be calculated only continuously. It is possible to calculate a fatigue level that is close to the actual level, reflecting the cumulative fatigue level, such as continuing to climb the slope.
  • FIG. 3 is a block diagram showing an example of a functional configuration of the route information display device according to the embodiment of the present invention.
  • the route information display device includes a navigation control unit 300, an operation unit 301, a display unit 302, a GPS receiver 303, a moving speed sensor 304, an angular velocity sensor 305, an inclination sensor 306, an acceleration sensor 307, a point search unit 308, and a route search unit. 309 and a route guidance unit 310.
  • the navigation control unit 300, the GPS receiver 303, the point search unit 308, the route search unit 309, and the route guide unit 310 are, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, and various control programs ROM (Read Only Me mory) and a microcomputer (RAM) that functions as a CPU work area.
  • a CPU Central Processing Unit
  • ROM Read Only Me mory
  • RAM microcomputer
  • the navigation control unit 300 controls the entire route information display device.
  • the operation unit 301 includes an operation button, a remote control, a touch panel, and the like.
  • the display unit 302 includes a liquid crystal display, an organic EL display, and the like.
  • the GPS receiver 303 receives the radio wave from the GPS satellite and acquires the vehicle position information.
  • the vehicle position information is obtained by receiving the radio wave of GPS satellite force and obtaining the geometric position with respect to the GPS satellite, and can be measured anywhere on the earth.
  • Radio waves are generated using a L1 radio wave with a CZA (Coarse and Access) code and navigation message on a carrier wave of 1.57542 MHz. This detects the current vehicle position (latitude and longitude).
  • information collected by various sensors such as a moving speed sensor 304 and an angular speed sensor 305 described later may be taken into consideration.
  • the navigation control unit 300 sends the display unit 302 on the map. Outputs which position is driving! /.
  • the movement speed sensor 304 detects the movement speed of the apparatus main body. When the main body is a vehicle, it is detected from the output shaft of the transmission.
  • the angular velocity sensor 305 detects the angular velocity when the host vehicle is rotating, and outputs angular velocity data, relative azimuth data, and data indicating the azimuth change amount.
  • the inclination sensor 306 detects the inclination angle of the road surface and outputs inclination angle data.
  • the acceleration sensor 307 is a sensor that detects acceleration.
  • the output of the acceleration sensor 307 is 0-5V, and the output when not accelerating is 2.5V.
  • the output of the accelerometer 307 increases with 2.6V, 2.7V, etc. every time the vehicle accelerates, and conversely decreases with 2.4V, 2.3V, ..., every time the vehicle decelerates. And ask.
  • the point search unit 308 searches for an arbitrary point based on the information input from the operation unit 301 and outputs it to the display unit 302. Further, the route search unit 309 calculates an optimum route to the point based on the point information obtained by the point search unit 308.
  • FIG. 4 is an explanatory diagram for explaining the relationship between the current position and the height for each route.
  • Each route shown in Fig. 4 has A / Rate, B route, C route, and D route.
  • the start point starts at position 0 and the end point ends at position 18.
  • the height is 0 at both the start point and the end point, and the starting point force starts to rise in each route, and rises and falls depending on the route. Eventually, you will reach the end point where the height is zero by going down the path.
  • Route A is shown in Figure 4 (a). First, continue up the road until you reach position 4. In this position 4, the height is 2. Then the slope changes at position 4 and continues up to position 9. At position 9, the height is 3. So far, the height is +3 from the starting point. Then it continues down from position 9 to position 14, where the height is 2 again. Furthermore, the downward slope changes and continues down from position 14 to position 18. Position 18 is the end point and the height is zero. Here, it is 3 for the apex of height 9 at position 9.
  • the B route will be described.
  • the route B is shown in Fig. 4 (b).
  • the height is 4. So far, the height is +4 from the starting point. Then it continues down from position 6 to position 10, where the height becomes 1 again. So far, it becomes -3 from the point where the height of position 6 becomes 4. Then continue ascending until position 14 is reached. In this position 14, the height is 3. So far, it is +2 from the apex of position 10 at height 1. And it continues down from position 14 to position 18.
  • Position 18 is the end point and the height is 0. Here, it is 3 for the vertex at height 14 at position 14.
  • the D route will be described.
  • the D route is shown in Figure 4 (d).
  • the height is 2. So far, the height is +2 from the starting point. Then it continues down from position 5 to position 7, where the height is 1 again. So far, it is -1 from the point where the height of position 5 is 2. Then continue up until position 9 is reached. In this position 9, the height is 2. So far, it is +1 from the point where the height of position 7 is 1.
  • the position 9 force, the position 11, and the force continues to descend, where the height becomes 1 again. So far, it is -1 from the point where the height of position 9 is 2. Then continue up until position 14 is reached. In this position 14, the height is 2. So far, it is +1 from the point where the height of position 11 is 1. And continue down to position 14 force position 18.
  • Position 18 is the end point and the height is zero. Here, it is 1 for the height 2 vertex at position 14.
  • “Distance” is the total actual distance between points. The distance between the starting point at height 0 and position 3 at height 4 can be calculated as 5. The total distance between these points can be calculated as the distance. “Average slope” is the mean value of the slope. “Maximum slope” is the maximum value of the slope. “Gradient cumulative value” is a cumulative value of the gradient between points. “Altitude difference accumulated value” is the accumulated value of altitude difference. When climbing to a point of height 3 and returning to a point of height 3, the altitude difference 3 is climbed and the altitude difference 3 is lowered, so the accumulated altitude difference is 6. If you go up and down repeatedly, all the height differences above and below are added.
  • TotalAscent and “TotalDescent” can be used.
  • Altitude difference cumulative value is the sum of both upward and downward altitude values, but if the altitude at the start and end points is the same, the value will only be half of the cumulative altitude difference value for both ascending and descending. Equivalent value.
  • TotalAscent is the total value of the uplink
  • TotalDescent is the total value of the downlink.
  • FIG. 5 is a graph illustrating the magnitude of the load and the degree of fatigue when the load continues.
  • the load is 10%
  • the fatigue level gradually increases for about 1 hour when the load is applied, but the fatigue level does not increase much even if the time is long.
  • the load is 30%
  • the fatigue level increases for about 4 hours after the load is applied, and the subsequent increase in fatigue level is moderate.
  • the fatigue level increases for about 7 hours after the load is applied, and the subsequent increase in the fatigue level is moderate, but gradually increases.
  • the load is 80%, the fatigue level increases for about 12 hours after the load is applied, and the subsequent increase in fatigue level is relatively slow, but the fatigue level increases correspondingly over time. If the load is 100%, the fatigue level will continue to rise even after a certain amount of time has passed since the beginning.
  • FIG. 6 is an explanatory diagram for explaining data indicating a state in each route.
  • a / Rate the total distance of each section is 19.08, the cumulative slope value is 1.40, the altitude difference cumulative value is 6.0, TotalAscent is 3.0, and Toughness is 13 0.
  • B route the total distance of each section is 21.88, the slope cumulative value is 3.33, the altitude difference cumulative value is 12.0, TotalAscent is 6.0, and the Toughness force is 20.0.
  • the total distance of each section is 19.74
  • the slope cumulative value is 2.17
  • the height difference cumulative value is 8.0
  • TotalAscent is 4.0
  • Toughness is 14.0.
  • the total distance of each section is 19.74
  • the cumulative slope value is 3.17
  • the altitude difference cumulative value is 8.0
  • TotalAscent is 4.0
  • the Toughness force S10.0. is there.
  • route C The difference between route C and route D is the difference between points 3 and 11.
  • Route C has to worry about 50% (tan 0) ascending 4.472 (eg 4.472km).
  • route D if the climb of the same 50% (tan ⁇ ) is increased by 2.236km in half, it decreases by 2.236km, and when the fatigue power is recovered, it increases again by 2.236km.
  • C-norate and D-norate give completely different results when fatigue is taken into account.
  • FIG. 7 is a graph showing a comparison between the difference in altitude and the cumulative fatigue level at each position.
  • the upper altitude difference display graph superimposes the relationship between altitude and each position of A route to D route shown in Fig. 4.
  • the graph showing the cumulative fatigue level below shows the transition of the cumulative fatigue level at each position of each route. Up to position 4, the highest increase in A / rate is the largest, so the cumulative fatigue is also the largest. From position 4 onwards, the slope becomes gentler, so the cumulative fatigue level rises more slowly. The cumulative fatigue level does not change.
  • the slope increases after position 3, and the cumulative fatigue level near position 7 exceeds that of the A route. After that, because of descending and moderate ascending, the cumulative fatigue will eventually be greater than the force A / rate similar to the A route.
  • the first ascending is gentler than other routes. After that, only going down and gradual going up and down will eventually lead to a smaller increase in cumulative fatigue compared to other routes.
  • the accumulation of “altitude difference” is used as one of the weights of each route as an index indicating the tightness of the uphill.
  • attention is paid to the accumulation of fatigue due to “gradient” X time in each section.
  • a value indicating the difficulty of the route is obtained by accumulating the time integral in the “gradient”.
  • the value obtained here is expressed by the index “Toughness”. In this way, a value indicating the degree of fatigue can be obtained by using the horizontal distance and the vertical distance instead of time.
  • the fatigue level of each route is used as one element of route search.
  • the fatigue level can include the accumulation of fatigue due to an uphill “gradient” and the recovery of fatigue due to a downhill “gradient”.
  • the fatigue level is finally evaluated by its accumulated value “Toughne SS ”. It also compares the “To ughness”, displays it on the screen, and provides information to the user.
  • the display method can be realized by comparison of lists by tables and map display by 2DZ3D.
  • Information that determines the degree of difficulty (ease of driving) and excitement (joy of driving).
  • the driver can know in advance how much the route has an elevation change. Specifically, it is possible to know whether it is a road that is very difficult or a road that can be enjoyed for winding.
  • “gradient” X “(altitude difference) 2 ” was used as the cumulative value of the integral of the “gradient” in the ascending section, but the “gradient” X “(Vertical altitude difference) 2 ”, “Slope” X “(Horizontal altitude difference) 2 ”, “Slope” X “Expected time 2 ” may be used. Of course, it is even better to subtract the fatigue recovery during that time in the descending section.
  • the calculation of the fatigue level described above can be applied not only to general roads but also to off-road and mountain trails, and is also effective for climbers, mountain road athletes, and bicycle users. In addition, it can be applied to pedestrian bridges and stairs, and is useful information for users other than automobiles. In addition, by displaying this “Toughness” force curve in 2D or 3D, it becomes easier to distribute the root of the route. It is also possible to make the judgment easier by displaying a list of each item shown in FIG. In addition, by incorporating the accumulation of “fatigue” in the up section and the recovery of “fatigue” in the down section, it is possible to realize a more accurate display of the fatigue level.
  • the above navigation system can use various maps for pedestrians, portables, climbers, bicycles, and streets.
  • This navigation system can also provide search and guidance information using map information on the Internet.
  • This navigation system is effective for training tools (treadmills, bike training, and Polar (no tread motor + altitude sensor etc.) graphic display).
  • the route information display method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, flexible disk, CD-ROM, MO, or DVD.
  • the recording medium force is also read by the computer and executed.
  • the program may be a transmission medium that can be distributed through a network such as the Internet.

Abstract

A route information display device is a device for displaying a fatigue level in a route composed of sections. First, a calculation section (101) obtains a sectional fatigue level for one section out of the sections forming a predetermined route, where the sectional fatigue level is based on the gradient and the difference in altitude between both ends of the one section. Then, an accumulation section (102) calculates a fatigue level of the route by accumulating, for the entire route, fatigue levels of the individual sections obtained by the calculation section (101).

Description

明 細 書  Specification
経路情報表示装置、経路情報表示方法、経路情報表示プログラムおよび コンピュータに読み取り可能な記録媒体  Route information display device, route information display method, route information display program, and computer-readable recording medium
技術分野  Technical field
[0001] この発明は、複数の区間によって構成される経路における疲労の度合いを表示す る経路情報表示装置、経路情報表示方法、経路情報表示プログラムおよびコンビュ ータに読み取り可能な記録媒体に関する。ただし、この発明の利用は、上述の経路 情報表示装置、経路情報表示方法、経路情報表示プログラムおよびコンピュータに 読み取り可能な記録媒体に限らない。  The present invention relates to a route information display device, a route information display method, a route information display program, and a computer-readable recording medium that display the degree of fatigue in a route constituted by a plurality of sections. However, use of the present invention is not limited to the above-described route information display device, route information display method, route information display program, and computer-readable recording medium.
背景技術  Background art
[0002] 従来のナビゲーシヨンシステムには、道路状況 (幅員、勾配、車線数、道路の状態) の他に、「勾配累積値」、「高度差累積値」を用いて、道路コストの重み付けをしている ものがあった (たとえば、特許文献 1参照。 ) oまた、ルート検索をする時、走行距離と 高度データを用いてルートの難易度 (運転がどの程度、楽か大変か)を示すものがあ つた。ここで、この高度データは、経路の平均勾配、最大勾配から取得するものがあ つた (たとえば、特許文献 2参照。 )0 [0002] In the conventional navigation system, in addition to road conditions (width, slope, number of lanes, road conditions), "gradient cumulative value" and "altitude difference cumulative value" are used to weight road costs. (For example, see Patent Document 1.) Also, when searching for a route, use the mileage and altitude data to indicate the difficulty of the route (how much driving is easy or difficult) There was something. Here, the altitude data, the average gradient of the route, is obtained from the maximum slope Monogaa ivy (e.g., see Patent Document 2.) 0
[0003] 特許文献 1 :特開 2004— 28896号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2004-28896
特許文献 2:特開 1996— 247777号公報  Patent Document 2: JP-A-1996-247777
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、「勾配累積値」、「高度差累積値」を用いて、道路コストの重み付けを しても (たとえば、特許文献 1参照。)、「勾配累積値」は、上りも下りも関係なく高度差 の絶対値の累積値にすぎない。また、「高度差累積値」も、より実際のきっさの指標に 近い「勾配」の積分の累積 =「勾配」 X「(高度差)2」に対して差が大きい。したがって[0004] However, even if the road cost is weighted using the "gradient accumulated value" and the "altitude difference accumulated value" (see, for example, Patent Document 1), the "gradient accumulated value" Regardless of the cumulative value of the absolute value of the altitude difference. “Altitude difference cumulative value” is also larger than “gradient” integral accumulation = “gradient” X “(altitude difference) 2 ”, which is closer to the actual tightness index. Therefore
、「勾配累積値」、「高度差累積値」を使用して疲労度を求めようとしても、本当の経路 の難易度を表して 、るとは 、えな 、と 、う問題が一例として挙げられる。 Even if you try to find the degree of fatigue using `` cumulative gradient value '' or `` cumulative difference accumulated value '', the problem is expressed as an example of the true difficulty of the route. .
[0005] また、走行距離と高度データ力も経路の難易度を求めた場合でも (たとえば、特許 文献 2参照。)、それだけでは本当の経路の難易度を表しているとはいえない。この データからでは、実際にどのルートにおいて峠越えが少ないか、平坦な道路か、運 転は大変か、 t 、う判断が難 、と 、う問題が一例として挙げられる。 [0005] In addition, even when the distance traveled and altitude data power are calculated as difficulty of the route (for example, patent See reference 2. ), That alone does not represent the true difficulty of the route. From this data, there are examples of problems such as which route is not often overrun, whether it is a flat road, whether driving is difficult, or difficult to judge.
課題を解決するための手段  Means for solving the problem
[0006] 請求項 1の発明にかかる経路情報表示装置は、所定の経路を構成する複数の区 間のうち 1つの区間について、該区間の両端の勾配と高度差に基づいて該区間の区 間疲労度を求める算出手段と、前記算出手段によって求められた各区間の区間疲 労度を、前記経路全体について累積することにより前記経路の疲労度を算出する累 積手段と、を備えることを特徴とする。  [0006] The route information display device according to the first aspect of the present invention provides a section information of one section of a plurality of sections constituting a predetermined route based on a gradient and an altitude difference at both ends of the section. Calculating means for calculating the degree of fatigue, and accumulation means for calculating the degree of fatigue of the route by accumulating the section fatigue degree of each section obtained by the calculating means for the entire route. And
[0007] また、請求項 8の発明にかかる経路情報表示方法は、所定の経路を構成する複数 の区間のうち 1つの区間について、該区間の両端の勾配と高度差に基づいて該区間 の区間疲労度を求める算出工程と、前記算出工程によって求められた各区間の区 間疲労度を、前記経路全体について累積することにより前記経路の疲労度を算出す る累積工程と、を含むことを特徴とする。  [0007] Further, the route information display method according to the invention of claim 8 relates to a section of the section based on the gradient and altitude difference between the ends of the section of a plurality of sections constituting the predetermined route. A calculation step for calculating the fatigue level, and an accumulation step for calculating the fatigue level of the route by accumulating the interval fatigue level of each section obtained by the calculation step for the entire route. And
[0008] また、請求項 9の発明に力かる経路情報表示プログラムは、請求項 8に記載の経路 情報表示方法をコンピュータに実行させることを特徴とする。  [0008] A route information display program according to claim 9 causes a computer to execute the route information display method according to claim 8.
[0009] また、請求項 10の発明にかかるコンピュータに読み取り可能な記録媒体は、請求 項 9に記載の経路情報表示プログラムを記録したことを特徴とする。  [0009] Further, a computer-readable recording medium according to the invention of claim 10 records the route information display program according to claim 9.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は、この発明の実施の形態にかかる経路情報表示装置の機能的構成を示 すブロック図である。  FIG. 1 is a block diagram showing a functional configuration of a route information display device according to an embodiment of the present invention.
[図 2]図 2は、この発明の実施の形態にかかる経路情報表示方法の処理を示すフロ 一チャートである。  FIG. 2 is a flowchart showing processing of the route information display method according to the embodiment of the present invention.
[図 3]図 3は、この実施例にかかる経路情報表示装置の機能的構成を示すブロック図 である。  FIG. 3 is a block diagram showing a functional configuration of the route information display device according to this embodiment.
[図 4]図 4は、経路別の現在位置と高さの関係を説明する説明図である。  FIG. 4 is an explanatory diagram for explaining the relationship between the current position and height for each route.
[図 5]図 5は、負荷の大きさと、その負荷が継続する場合の疲労度を説明するグラフで ある。 O [FIG. 5] FIG. 5 is a graph illustrating the magnitude of the load and the degree of fatigue when the load continues. O
[図 6]図 6は、各ルートにおける状態を示すデータについて説明する説明図である。  FIG. 6 is an explanatory diagram for explaining data indicating a state in each route.
[図1—  [Figure 1-
〇 7]図 7は、各位置における高度差と累積疲労度を比較して示したグラフである。 ○ 7] Figure 7 is a graph showing the difference in altitude and cumulative fatigue at each position.
1—  1—
符号の説明  Explanation of symbols
算出部  Calculation unit
102 累積部  102 Cumulative part
103 表示部  103 Display
104 取得部  104 Acquisition Department
300 ナビゲーシヨン制御部  300 Navigation control unit
301 操作部  301 Operation unit
302 表示部  302 Display
303 GPSレシーバ  303 GPS receiver
304 移動速度センサ  304 Movement speed sensor
305 角速度センサ  305 Angular velocity sensor
306 傾斜センサ  306 Tilt sensor
307 加速度センサ  307 acceleration sensor
308 地点検索部  308 point search part
309 経路探索部  309 Route search unit
310 経路誘導部  310 Route guide
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下に添付図面を参照して、この発明にかかる経路情報表示装置、経路情報表示 方法、経路情報表示プログラムおよびコンピュータに読み取り可能な記録媒体の好 適な実施の形態を詳細に説明する。  Hereinafter, preferred embodiments of a route information display device, a route information display method, a route information display program, and a computer-readable recording medium according to the present invention will be described in detail with reference to the accompanying drawings. .
[0013] 図 1は、この発明の実施の形態にかかる経路情報表示装置の機能的構成を示すブ ロック図である。この実施の形態の経路情報表示装置は、算出部 101、累積部 102、 表示部 103、取得部 104により構成されている。  FIG. 1 is a block diagram showing a functional configuration of a route information display device according to an embodiment of the present invention. The route information display device of this embodiment includes a calculation unit 101, an accumulation unit 102, a display unit 103, and an acquisition unit 104.
[0014] 算出部 101は、所定の経路を構成する複数の区間のうち 1つの区間について、該 区間の両端の勾配と高度差に基づいて該区間の区間疲労度を求める。ここで、区間 疲労度は、区間の両端の勾配と高度差に基づいて求める。なお、算出部 101は、区 間の両端の勾配と高度差の 2乗との積力も区間疲労度を求めることができる。また、 算出部 101は、所定の負荷が力かる区間の移動で所定の距離または時間が経過し た場合に、区間の両端の勾配と高度差の 2乗との積を区間疲労度とすることができる 。また、算出部 101は、下り区間についてはこの下り区間による区間回復度を算出す ることちでさる。 [0014] The calculation unit 101 obtains a section fatigue level of one section of a plurality of sections constituting a predetermined route based on the gradient and altitude difference between both ends of the section. Here, the section fatigue is obtained based on the gradient and altitude difference at both ends of the section. Note that the calculation unit 101 The product of the gradient at both ends and the square of the height difference can also be used to determine the interval fatigue. In addition, the calculation unit 101 sets the product of the gradient at both ends of the section and the square of the altitude difference as the section fatigue level when a predetermined distance or time elapses due to movement of the section where a predetermined load is applied. Is possible. In addition, the calculation unit 101 calculates the section recovery degree by the down section for the down section.
[0015] 累積部 102は、算出部 101によって求められた各区間の区間疲労度を、経路全体 について累積することにより経路の疲労度を算出する。なお、累積部 102は、算出部 101によって算出された区間疲労度を累積するとともに、経路が下り区間を含む場合 は、算出部 101によって算出された区間回復度を差し引くことにより、経路の疲労度 を算出することちできる。  [0015] The accumulating unit 102 calculates the fatigue degree of the route by accumulating the section fatigue degree of each section obtained by the calculating unit 101 for the entire route. The accumulating unit 102 accumulates the section fatigue degree calculated by the calculating unit 101, and when the route includes a downward section, the accumulating unit 102 subtracts the section recovery degree calculated by the calculating unit 101 to thereby calculate the route fatigue degree. Can be calculated.
[0016] 表示部 103は、始点と終点が同一の複数の経路を示す情報を、累積部 102によつ て算出されたそれぞれの経路の疲労度とともに表示する。なお、表示部 103は、複数 の経路を示す情報を、累積部 102によって算出されたそれぞれの経路の疲労度の 順に、並べて表示することもできる。取得部 104は、経路の標高差変化情報を求める 。取得部 104によって求められた標高差変化情報は、複数の経路を示す情報をとと もに、表示部 103によって表示することもできる。  The display unit 103 displays information indicating a plurality of routes having the same start point and end point, together with the fatigue level of each route calculated by the accumulating unit 102. The display unit 103 can also display information indicating a plurality of routes in the order of the fatigue levels of the respective routes calculated by the accumulating unit 102. The acquisition unit 104 obtains the altitude difference change information of the route. The elevation difference change information obtained by the acquisition unit 104 can be displayed by the display unit 103 together with information indicating a plurality of routes.
[0017] 図 2は、この発明の実施の形態に力かる経路情報表示方法の処理を示すフローチ ヤートである。算出部 101は、所定の経路を構成する複数の区間のうち 1つの区間に ついて、この区間の区間疲労度を求める (ステップ S201)。ここで、区間疲労度は、 区間の両端の勾配と高度差に基づいて求める。なお、算出部 101は、区間の両端の 勾配と高度差の 2乗との積力も区間疲労度を求めることができる。また、算出部 101 は、所定の負荷が力かる区間の移動で所定の距離または時間が経過した場合に、 区間の両端の勾配と高度差の 2乗との積を区間疲労度とすることができる。また、算 出部 101は、下り区間についてはこの下り区間による区間回復度を算出することもで きる。  [0017] FIG. 2 is a flowchart showing the processing of the route information display method according to the embodiment of the present invention. The calculation unit 101 obtains the section fatigue level of one section among a plurality of sections constituting the predetermined route (step S201). Here, the section fatigue is obtained based on the gradient and altitude difference at both ends of the section. Note that the calculation unit 101 can also obtain the section fatigue level from the product of the gradient at both ends of the section and the square of the height difference. In addition, the calculation unit 101 may calculate the product of the gradient at both ends of the section and the square of the altitude difference as the section fatigue level when a predetermined distance or time elapses due to movement of the section where a predetermined load is applied. it can. In addition, the calculation unit 101 can also calculate the degree of section recovery for the downlink section.
[0018] ここで、全区間について区間疲労度を求めたか否かを判定する (ステップ S202)。  Here, it is determined whether or not the section fatigue level has been obtained for all sections (step S202).
求められていない場合 (ステップ S202 :No)、ステップ S201に戻り、求められていな V、別の区間につ 、て区間疲労度を求める。求められた場合 (ステップ S202: Yes)、 累積部 102は、算出部 101によって求められた各区間の区間疲労度を、経路全体に ついて累積する (ステップ S203)。これにより経路の疲労度を算出する。なお、累積 部 102は、経路が下り区間を含む場合は、経路の疲労度から、算出部 101によって 算出された区間回復度を差し引くこともできる。 If not obtained (step S202: No), the process returns to step S201, and the section fatigue degree is obtained for V which has not been obtained and another section. If asked (Step S202: Yes), The accumulating unit 102 accumulates the section fatigue degree of each section obtained by the calculating unit 101 for the entire route (step S203). Thereby, the fatigue degree of the route is calculated. Note that the accumulating unit 102 can also subtract the section recovery degree calculated by the calculating unit 101 from the fatigue degree of the route when the route includes a downward section.
[0019] 次に、取得部 104は、経路の標高差変化情報を取得する (ステップ S204)。次に、 始点と終点が同じ複数の経路の、全経路について求めたか否かを判定する (ステツ プ S205)。全経路について求められていない場合 (ステップ S205 : No)、ステップ S 201に戻り、他の経路について求める。  Next, the acquiring unit 104 acquires the altitude difference change information of the route (step S204). Next, it is determined whether or not all routes of a plurality of routes having the same start point and end point have been obtained (step S205). If not obtained for all routes (step S205: No), the process returns to step S201 to obtain other routes.
[0020] 全経路について求められた場合 (ステップ S 205 : Yes)、表示部 103は、始点と終 点が同一の複数の経路を示す情報を、累積部 102によって算出されたそれぞれの 経路の疲労度とともに表示する (ステップ S 206)。なお、表示部 103は、複数の経路 を示す情報を、累積部 102によって算出されたそれぞれの経路の疲労度の順に、並 ベて表示する。また、表示部 103は、複数の経路を示す情報を、取得部 104によって 求められた標高差変化情報とともに表示することもできる。  [0020] When all the routes are obtained (step S205: Yes), the display unit 103 displays the information indicating a plurality of routes having the same start point and end point as the fatigue of each route calculated by the accumulation unit 102. Display with degree (step S206). The display unit 103 displays information indicating a plurality of routes in the order of the fatigue levels of the respective routes calculated by the accumulating unit 102. The display unit 103 can also display information indicating a plurality of routes together with the elevation difference change information obtained by the acquisition unit 104.
[0021] 以上説明した実施の形態により、勾配の累積を考慮に入れて疲労度を算出するこ とができ、それにより高度差や移動距離力 求められるに過ぎない値ではなぐたとえ ば継続して傾斜を上り続けるなどの累積による疲労度を反映した実際に近い疲労度 の算出を実現することができる。  [0021] According to the embodiment described above, it is possible to calculate the degree of fatigue taking into account the accumulation of gradients, and thus, for example, the difference in altitude and the moving distance force can be calculated only continuously. It is possible to calculate a fatigue level that is close to the actual level, reflecting the cumulative fatigue level, such as continuing to climb the slope.
実施例  Example
[0022] (機能的構成)  [0022] (Functional configuration)
図 3は、この発明の実施例にかかる経路情報表示装置の機能的構成の一例を示す ブロック図である。経路情報表示装置は、ナビゲーシヨン制御部 300、操作部 301、 表示部 302、 GPSレシーバ 303、移動速度センサ 304、角速度センサ 305、傾斜セ ンサ 306、加速度センサ 307、地点検索部 308、経路探索部 309、経路誘導部 310 によって構成される。  FIG. 3 is a block diagram showing an example of a functional configuration of the route information display device according to the embodiment of the present invention. The route information display device includes a navigation control unit 300, an operation unit 301, a display unit 302, a GPS receiver 303, a moving speed sensor 304, an angular velocity sensor 305, an inclination sensor 306, an acceleration sensor 307, a point search unit 308, and a route search unit. 309 and a route guidance unit 310.
[0023] なお、ナビゲーシヨン制御部 300、 GPSレシーバ 303、地点検索部 308、経路探索 部 309および経路誘導部 310は、たとえば所定の演算処理を実行する CPU (Centr al Processing Unit)、各種制御プログラムを格納する ROM (Read Only Me mory)および CPUのワークエリアとして機能する RAM (Random Access Memo ry)などによって構成されるマイクロコンピュータなどによって実現することができる。 [0023] Note that the navigation control unit 300, the GPS receiver 303, the point search unit 308, the route search unit 309, and the route guide unit 310 are, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, and various control programs ROM (Read Only Me mory) and a microcomputer (RAM) that functions as a CPU work area.
[0024] ナビゲーシヨン制御部 300は、経路情報表示装置全体を制御する。また、操作部 3 01は、操作ボタン、リモコン、タツチパネルなどを含む。また、表示部 302は、液晶デ イスプレイや有機 ELディスプレイなどを含む。  [0024] The navigation control unit 300 controls the entire route information display device. The operation unit 301 includes an operation button, a remote control, a touch panel, and the like. The display unit 302 includes a liquid crystal display, an organic EL display, and the like.
[0025] GPSレシーバ 303は、 GPS衛星からの電波を受信して自車位置情報を取得する。  [0025] The GPS receiver 303 receives the radio wave from the GPS satellite and acquires the vehicle position information.
ここで自車位置情報は、 GPS衛星力 の電波を受信し、 GPS衛星との幾何学的位 置を求めるものであり、地球上どこでも計測可能である。電波としては、 1. 57542M Hzの搬送波で、 CZA (Coarse and Access)コードおよび航法メッセージが乗つ ている L1電波を用いておこなわれる。これによつて、現在の車両の位置 (緯度および 経度)を検知する。さらに、後述する移動速度センサ 304や角速度センサ 305などの 各種センサによって収集された情報を加味してもよい。  Here, the vehicle position information is obtained by receiving the radio wave of GPS satellite force and obtaining the geometric position with respect to the GPS satellite, and can be measured anywhere on the earth. Radio waves are generated using a L1 radio wave with a CZA (Coarse and Access) code and navigation message on a carrier wave of 1.57542 MHz. This detects the current vehicle position (latitude and longitude). Furthermore, information collected by various sensors such as a moving speed sensor 304 and an angular speed sensor 305 described later may be taken into consideration.
[0026] そして、 GPSレシーバ 303から取得した自車位置情報と、あら力じめ記憶して!/、る 地図 DB情報とに基づいて、ナビゲーシヨン制御部 300は、表示部 302へ地図上の どの位置を走行して!/、るかを出力する。  [0026] Then, based on the vehicle position information acquired from the GPS receiver 303 and the map DB information that has been memorized, the navigation control unit 300 sends the display unit 302 on the map. Outputs which position is driving! /.
[0027] 移動速度センサ 304は、装置本体の移動速度を検出する。装置本体が車両である 場合、トランスミッションの出力側シャフトから検出する。角速度センサ 305は、自車の 回転時の角速度を検出し、角速度データ、相対方位データ、方位変化量を示すデ ータを出力する。傾斜センサ 306は、路面の傾斜角度を検出し、傾斜角データを出 力する。  [0027] The movement speed sensor 304 detects the movement speed of the apparatus main body. When the main body is a vehicle, it is detected from the output shaft of the transmission. The angular velocity sensor 305 detects the angular velocity when the host vehicle is rotating, and outputs angular velocity data, relative azimuth data, and data indicating the azimuth change amount. The inclination sensor 306 detects the inclination angle of the road surface and outputs inclination angle data.
[0028] 加速度センサ 307は、加速度を検出するセンサである。加速度センサ 307の出力 は 0〜5Vであり、加速していない時の出力は 2. 5Vである。加速度センサ 307の出 力は、車両が加速する毎に 2. 6V、 2. 7V、 · · ·と増加し、逆に車両が減速する毎に 2 . 4V、 2. 3V、 · · ·と減少して ヽく。  The acceleration sensor 307 is a sensor that detects acceleration. The output of the acceleration sensor 307 is 0-5V, and the output when not accelerating is 2.5V. The output of the accelerometer 307 increases with 2.6V, 2.7V, etc. every time the vehicle accelerates, and conversely decreases with 2.4V, 2.3V, ..., every time the vehicle decelerates. And ask.
[0029] 地点検索部 308は、操作部 301から入力された情報に基づいて、任意の地点を検 索し、これを表示部 302へ出力する。また、経路探索部 309は、地点検索部 308によ つて得られた地点情報に基づいて、当該地点までの最適な経路を算出する。  The point search unit 308 searches for an arbitrary point based on the information input from the operation unit 301 and outputs it to the display unit 302. Further, the route search unit 309 calculates an optimum route to the point based on the point information obtained by the point search unit 308.
[0030] また、経路誘導部 310は、経路探索部 309によって得られた情報と自車位置情報 に基づ!/、て、リアルタイムな経路誘導情報の生成をおこなう。 [0030] In addition, the route guidance unit 310 and the information obtained by the route search unit 309 and the vehicle position information Based on the above, real-time route guidance information is generated.
[0031] 図 4は、経路別の現在位置と高さの関係を説明する説明図である。図 4に示す各経 路には、 A/レート、 Bルート、 Cルート、 Dルートがそれぞれ用意されている。いずれの 経路においても、始点は 0の位置から開始し、終点は 18の位置で終了する。始点と 終点のいずれにおいても高さは 0であり、各経路において始点力 上り始め、経路に よって上ったり下ったりする。最終的には経路を下ることにより高さが 0になる終点に 到達する。  FIG. 4 is an explanatory diagram for explaining the relationship between the current position and the height for each route. Each route shown in Fig. 4 has A / Rate, B route, C route, and D route. In any route, the start point starts at position 0 and the end point ends at position 18. The height is 0 at both the start point and the end point, and the starting point force starts to rise in each route, and rises and falls depending on the route. Eventually, you will reach the end point where the height is zero by going down the path.
[0032] A/レートについて説明する。 Aルートは図 4 (a)に示す。まず、経路に沿って位置 4 に達するまで上り続ける。この位置 4において、高さは 2である。そして、位置 4におい て傾斜が変わり、位置 9まで引き続き上り続ける。位置 9において、高さは 3である。こ こまで、始点より高さは + 3となる。そして、位置 9から位置 14まで下り続け、ここで高 さは再び 2となる。さらに下がりの傾斜が変わり、位置 14から位置 18にかけて下り続 ける。位置 18は終点であり、高さは 0である。ここで、位置 9の高さ 3となる頂点に対し て 3となる。  [0032] The A / rate will be described. Route A is shown in Figure 4 (a). First, continue up the road until you reach position 4. In this position 4, the height is 2. Then the slope changes at position 4 and continues up to position 9. At position 9, the height is 3. So far, the height is +3 from the starting point. Then it continues down from position 9 to position 14, where the height is 2 again. Furthermore, the downward slope changes and continues down from position 14 to position 18. Position 18 is the end point and the height is zero. Here, it is 3 for the apex of height 9 at position 9.
[0033] Bルートについて説明する。 Bルートは図 4 (b)に示す。まず、経路に沿って位置 3 に達するまで上り続ける。この位置 3において、高さは 1である。そして、位置 3におい て傾斜が変わり、位置 6まで引き続き上り続ける。位置 6において、高さは 4である。こ こまで始点より高さは +4となる。そして、位置 6から位置 10まで下り続け、ここで高さ は再び 1となる。ここまで位置 6の高さ 4となる点から— 3となる。次に、位置 14に達す るまで上り続ける。この位置 14において、高さは 3である。ここまで位置 10の高さ 1と なる頂点から + 2となる。そして、位置 14から位置 18にかけて下り続ける。位置 18は 終点であり、高さは 0である。ここで、位置 14の高さ 3となる頂点に対して 3となる。  [0033] The B route will be described. The route B is shown in Fig. 4 (b). First, keep going up to position 3 along the route. In this position 3, the height is 1. Then the slope changes at position 3 and continues up to position 6. At position 6, the height is 4. So far, the height is +4 from the starting point. Then it continues down from position 6 to position 10, where the height becomes 1 again. So far, it becomes -3 from the point where the height of position 6 becomes 4. Then continue ascending until position 14 is reached. In this position 14, the height is 3. So far, it is +2 from the apex of position 10 at height 1. And it continues down from position 14 to position 18. Position 18 is the end point and the height is 0. Here, it is 3 for the vertex at height 14 at position 14.
[0034] Cルートについて説明する。 Cルートは図 4 (c)に示す。まず、経路に沿って位置 3 に達するまで上り続ける。この位置 3において、高さは 1である。そして、位置 3におい て傾斜が変わり、位置 7まで引き続き上り続ける。位置 7において、高さは 3である。こ こまで始点より高さは + 3となる。そして、位置 7から位置 11まで下り続け、ここで高さ は再び 1となる。ここまで位置 7の高さ 3となる点から— 2となる。次に、位置 14に達す るまで上り続ける。この位置 14において、高さは 2である。ここまで位置 11の高さ 1と なる点から + 1となる。そして、位置 14から位置 18にかけて下り続ける。位置 18は終 点であり、高さは 0である。ここで、位置 14の高さ 2となる頂点に対して、 2となる。 [0034] The C route will be described. The C route is shown in Figure 4 (c). First, keep going up to position 3 along the route. In this position 3, the height is 1. The slope changes at position 3 and continues up to position 7. At position 7, the height is 3. So far, the height is +3 from the starting point. Then it continues down from position 7 to position 11, where the height is 1 again. So far, it is -2 from the point where the height of position 7 is 3. Then continue ascending until position 14 is reached. In this position 14, the height is 2. So far at position 11 with height 1 and From this point, it becomes +1. And it continues down from position 14 to position 18. Position 18 is the end point and the height is zero. Here, for a vertex at height 14 at position 14, it is 2.
[0035] Dルートについて説明する。 Dルートは図 4 (d)に示す。まず、経路に沿って位置 3 に達するまで上り続ける。この位置 3において、高さは 1である。そして、位置 3におい て傾斜が変わり、位置 5まで引き続き上り続ける。位置 5において、高さは 2である。こ こまで始点より高さは + 2となる。そして、位置 5から位置 7まで下り続け、ここで高さは 再び 1となる。ここまで位置 5の高さ 2となる点から— 1となる。次に、位置 9に達するま で上り続ける。この位置 9において、高さは 2である。ここまで位置 7の高さ 1となる点か ら + 1となる。 [0035] The D route will be described. The D route is shown in Figure 4 (d). First, keep going up to position 3 along the route. In this position 3, the height is 1. Then the slope changes at position 3 and continues up to position 5. At position 5, the height is 2. So far, the height is +2 from the starting point. Then it continues down from position 5 to position 7, where the height is 1 again. So far, it is -1 from the point where the height of position 5 is 2. Then continue up until position 9 is reached. In this position 9, the height is 2. So far, it is +1 from the point where the height of position 7 is 1.
[0036] そして、位置 9力 位置 11〖こ力けて下り続け、ここで高さは再び 1となる。ここまで位 置 9の高さ 2となる点から— 1となる。次に、位置 14に達するまで上り続ける。この位置 14において、高さは 2である。ここまで位置 11の高さ 1となる点から + 1となる。そして 、位置 14力 位置 18にかけて下り続ける。位置 18は終点であり、高さは 0である。こ こで、位置 14の高さ 2となる頂点に対して一 2となる。  [0036] Then, the position 9 force, the position 11, and the force continues to descend, where the height becomes 1 again. So far, it is -1 from the point where the height of position 9 is 2. Then continue up until position 14 is reached. In this position 14, the height is 2. So far, it is +1 from the point where the height of position 11 is 1. And continue down to position 14 force position 18. Position 18 is the end point and the height is zero. Here, it is 1 for the height 2 vertex at position 14.
[0037] 以上の A Dルートのそれぞれの難易度を考えた場合、「距離」「平均勾配」「最大 勾配」、「勾配累積値」、「高度差累積値」等の情報を用いて求めることができる。「距 離」は、各地点間の実際の距離の合計である。高さ 0の始点と高さ 4の位置 3の間の 距離は 5と求めることができる。この各地点間の距離の合計を距離として求めることが できる。「平均勾配」は、勾配の平均値である。「最大勾配」は、勾配の最大値である。 「勾配累積値」は、各地点間の勾配の累積した値である。「高度差累積値」は、高度 差の累積値である。高さ 3の地点まで上り、高さ 3の地点まで戻った場合、高度差 3を 上り、高度差 3を下るので、高度差累積値は 6となる。上ったり下ったりを繰り返した場 合、この上下の高度差がすべて加算される。  [0037] When considering the degree of difficulty of each of the above AD routes, it can be obtained using information such as "distance", "average gradient", "maximum gradient", "gradient accumulated value", "altitude difference accumulated value", etc. it can. “Distance” is the total actual distance between points. The distance between the starting point at height 0 and position 3 at height 4 can be calculated as 5. The total distance between these points can be calculated as the distance. “Average slope” is the mean value of the slope. “Maximum slope” is the maximum value of the slope. “Gradient cumulative value” is a cumulative value of the gradient between points. “Altitude difference accumulated value” is the accumulated value of altitude difference. When climbing to a point of height 3 and returning to a point of height 3, the altitude difference 3 is climbed and the altitude difference 3 is lowered, so the accumulated altitude difference is 6. If you go up and down repeatedly, all the height differences above and below are added.
[0038] これにカロえ、さらに、「TotalAscent (上りの合計)」「TotalDescent (下りの合計)」 を用いることができる。高度差累積値は上りと下りの両方の値を加算したが、始点と終 点の高度が同じ場合、上りだけ、下りだけでも値が高度差累積値の半分になるだけ で、実質的には同等の値となる。「TotalAscent (上りの合計)」は、このうち上りの合 計値であり、「TotalDescent (下りの合計)」はこのうち下りの合計値である。 [0039] さらに、「Toughness (上りのきっさ程度 =疲労度)」を用いることもできる。「Tough nessjの算出は上り区間の各「勾配」の積分の累積値を基に行われて 、る。各区間ご とに、各地点間の高度差 (Al— A2) >0の場合だけ、「勾配」 X「(高度差)2」を算出 し、累計していく。これにより、実際の人間または自動車等の疲労度に近いものとして 抽出できる。 In addition to this, “TotalAscent” and “TotalDescent” can be used. Altitude difference cumulative value is the sum of both upward and downward altitude values, but if the altitude at the start and end points is the same, the value will only be half of the cumulative altitude difference value for both ascending and descending. Equivalent value. “TotalAscent” is the total value of the uplink, and “TotalDescent” is the total value of the downlink. [0039] Furthermore, "Toughness (uphill tightness = fatigue level)" can also be used. “Toughnessj is calculated based on the cumulative value of the integral of each“ gradient ”in the upstream section. For each section, “slope” X “(altitude difference) 2 ” is calculated and accumulated only when the altitude difference between each point (Al—A2)> 0. As a result, it can be extracted as being close to the fatigue level of an actual human or automobile.
[0040] 図 5は、負荷の大きさと、その負荷が継続する場合の疲労度を説明するグラフであ る。負荷が 10%の場合、負荷をかけて 1時間程度は徐々に疲労度が上がるが、かけ る時間が長い場合でも、疲労度はあまり上昇しない。負荷が 30%の場合、負荷をか けて 4時間程度は疲労度が上がり、その後の疲労度の上昇は緩やかになる。  FIG. 5 is a graph illustrating the magnitude of the load and the degree of fatigue when the load continues. When the load is 10%, the fatigue level gradually increases for about 1 hour when the load is applied, but the fatigue level does not increase much even if the time is long. When the load is 30%, the fatigue level increases for about 4 hours after the load is applied, and the subsequent increase in fatigue level is moderate.
[0041] 負荷が 50%の場合、負荷をかけて 7時間程度は疲労度が上がり、その後の疲労度 の上昇は緩やかにはなるが、徐々に上昇する。負荷が 80%の場合、負荷をかけて 1 2時間程度は疲労度が上がり、その後の疲労度の上昇は比較的緩やかにはなるが、 時間の経過につれて相応に疲労度が上昇する。負荷が 100%の場合、最初からある 程度の時間経過後でも一貫して疲労度が上昇し続ける。  [0041] When the load is 50%, the fatigue level increases for about 7 hours after the load is applied, and the subsequent increase in the fatigue level is moderate, but gradually increases. When the load is 80%, the fatigue level increases for about 12 hours after the load is applied, and the subsequent increase in fatigue level is relatively slow, but the fatigue level increases correspondingly over time. If the load is 100%, the fatigue level will continue to rise even after a certain amount of time has passed since the beginning.
[0042] この人間における負荷の強度と時間 Z疲労度と同じ考え方を、「ToughneSS」の考 え方として使用することができる。この「Toughness」を付加することにより、より精度 の高いルートの重み付けができると考えられる。 [0042] The same idea as the load intensity and time Z fatigue level in humans can be used as an idea of "Toughne SS ". By adding this “Toughness”, more accurate route weighting can be considered.
[0043] 図 6は、各ルートにおける状態を示すデータについて説明する説明図である。 A/レ ートにおいては、各区間の距離(distance)の合計値が 19. 08、勾配累積値が 1. 4 0、高度差累積値が 6. 0、 TotalAscentが 3. 0、 Toughnessが 13. 0である。 Bルー トにおいては、各区間の距離の合計値が 21. 88、勾配累積値が 3. 33、高度差累積 値が 12. 0、 TotalAscentが 6. 0、 Toughness力 20. 0である。  FIG. 6 is an explanatory diagram for explaining data indicating a state in each route. In A / Rate, the total distance of each section is 19.08, the cumulative slope value is 1.40, the altitude difference cumulative value is 6.0, TotalAscent is 3.0, and Toughness is 13 0. In the B route, the total distance of each section is 21.88, the slope cumulative value is 3.33, the altitude difference cumulative value is 12.0, TotalAscent is 6.0, and the Toughness force is 20.0.
[0044] Cルートにおいては、各区間の距離の合計値が 19. 74、勾配累積値が 2. 17、高 度差累積値が 8. 0、 TotalAscentが 4. 0、 Toughnessが 14. 0である Dルートにお いては、各区間の距離の合計値が 19. 74、勾配累積値が 3. 17、高度差累積値が 8 . 0、 TotalAscentが 4. 0、 Toughness力 S 10. 0である。  [0044] In the C route, the total distance of each section is 19.74, the slope cumulative value is 2.17, the height difference cumulative value is 8.0, TotalAscent is 4.0, and Toughness is 14.0. For a certain D route, the total distance of each section is 19.74, the cumulative slope value is 3.17, the altitude difference cumulative value is 8.0, TotalAscent is 4.0, and the Toughness force S10.0. is there.
[0045] A— Dルートをそれぞれ比較した場合、ルートのきっさでは「Bルート」が一番である ことはどの情報からも明らかである。次にきついルートを考えた場合、「勾配累積値」 と「高度差累積値」の道路コストを算出した場合は、「Dルート」となる。一方、実際のき つさ、疲労度、燃費、効率等を考慮した場合は、単なる累積値ではなぐその負荷の 続く時間 Z距離 (疲労の蓄積)が重要になってくる。上り区間を継続した場合、疲労を 回復することができないので疲労が累積する。したがって、上り区間が継続する場合 、その継続区間の大きさをルートのきっさに反映させる必要がある。 [0045] When comparing the A—D routes, it is clear from any information that the “B route” is the best route. Next, when considering a tight route, the “gradient cumulative value” When the road cost of “altitude difference accumulated value” is calculated, it becomes “D route”. On the other hand, when considering the actual tightness, fatigue level, fuel consumption, efficiency, etc., the time Z distance (accumulation of fatigue) that the load lasts rather than just the cumulative value becomes important. If the ascending section is continued, fatigue cannot be recovered, so fatigue accumulates. Therefore, when the up section continues, it is necessary to reflect the size of the continued section in the route.
[0046] この「Toughness」の算出は上り区間の「勾配」 X「(高度差)2」 (=「勾配」の積分の 累積値)を基に行われている。これは、同じ負荷でも距離が 2倍なら疲労度は 4倍、時 間が 2倍なら疲労度は 4倍との考え方による。すなわち、 y=a X xを積分した値である 、各地点における(ax2Z2)の合計を「Toughness」とする。ここで、(a=傾き =「勾配 」、 x=水平距離、 y=垂直距離)となる。また、ある負荷が力かる区間において、ある 距離 Z時間を越えたら「勾配」 X「(高度差)2」になると考えることもできる。この「Toug hness」は、ルート探索時の算出コストとして、また、ユーザーへの道路情報として、デ イスプレイの文字表示、または 2次元 Z3次元グラフィック表示すると有効である。 This “Toughness” is calculated on the basis of “gradient” X “(altitude difference) 2 ” (= cumulative value of “gradient” integral) in the upstream section. This is based on the idea that fatigue is 4 times longer if the distance is doubled and fatigue is 4 times longer if the time is doubled. That is, the total of (ax 2 Z2) at each point, which is a value obtained by integrating y = a X x, is “Toughness”. Here, (a = gradient = “gradient”, x = horizontal distance, y = vertical distance). It can also be considered that “slope” X “(altitude difference) 2 ” when a certain distance Z time is exceeded in a section where a certain load is applied. This “Toug hness” is effective as a display cost display or 2D Z3D graphic display as a calculation cost for route search and as road information to the user.
[0047] Cルートと Dルートの違いは、地点 3—地点 11の間での違いである。ルート Cは 50 % (tan 0 )の上りを 4. 472 (例えば 4. 472km)—気に上らなければならない。これ に対して、ルート Dの場合は同じ 50% (tan Θ )の上りを半分ずつ 2. 236km上ったら 、 2. 236km下って、疲労力 S回復したらまた 2. 236km上る。つまり Cノレートと Dノレート では疲労度を考慮した場合、全く違う結果となる。  [0047] The difference between route C and route D is the difference between points 3 and 11. Route C has to worry about 50% (tan 0) ascending 4.472 (eg 4.472km). On the other hand, in the case of route D, if the climb of the same 50% (tan Θ) is increased by 2.236km in half, it decreases by 2.236km, and when the fatigue power is recovered, it increases again by 2.236km. In other words, C-norate and D-norate give completely different results when fatigue is taken into account.
[0048] これは各区間での「勾配」による疲労が蓄積されていくことを意味し、数学的には「 勾配」を水平距離 (または時間)で積分し累積して 、つたことになる。一定の傾き「勾 配」 =aとすると、 y=ax (または y=at)、これの不定積分は y=a X x2Z2になり、「勾 配」 X「(高度差)2」に比例する。 [0048] This means that fatigue due to "gradient" in each section is accumulated, and mathematically, "gradient" is integrated and accumulated by horizontal distance (or time). If the slope is `` gradient '' = a, y = ax (or y = at), the indefinite integral of this will be y = a X x 2 Z2, and `` gradient '' X `` (altitude difference) 2 '' Proportional.
[0049] 図 7は、各位置における高度差と累積疲労度を比較して示したグラフである。上方 の高度差表示のグラフは、図 4に示した Aルート〜 Dルートの各位置と高度の関係を 重ね合わせたものである。下方の累積疲労度表示のグラフは、各ルートのそれぞれ の位置における累積疲労度の推移を示している。位置 4までは A/レートにおいて高 度の上昇が最も大きいので、累積疲労度の上昇も最も大きい。位置 4以降は勾配が 緩やかになるので累積疲労度の上昇も緩やかになり、位置 9以降は下りなので、以 降、累積疲労度は変わらない。 FIG. 7 is a graph showing a comparison between the difference in altitude and the cumulative fatigue level at each position. The upper altitude difference display graph superimposes the relationship between altitude and each position of A route to D route shown in Fig. 4. The graph showing the cumulative fatigue level below shows the transition of the cumulative fatigue level at each position of each route. Up to position 4, the highest increase in A / rate is the largest, so the cumulative fatigue is also the largest. From position 4 onwards, the slope becomes gentler, so the cumulative fatigue level rises more slowly. The cumulative fatigue level does not change.
[0050] 一方、位置 3以降、 Bルートにおいて高度の上昇が大きくなるので、 Bルートにおい て累積疲労度の上昇が大きくなり、位置 5〜8において、 Bルートの累積疲労度が最 も大きくなる。 Bルートでは、その後位置 10まで下りなので累積疲労度は上昇しない 1S その後、位置 14まで上るので累積疲労度は上昇し、最終的に最も累積疲労度が 大きいルートとなる。 [0050] On the other hand, since the increase in altitude in the B route becomes large after the position 3, the increase in the cumulative fatigue degree in the B route becomes large, and the cumulative fatigue degree in the B route becomes the largest in the positions 5 to 8. . On route B, the cumulative fatigue level does not increase because it goes down to position 10 after that. 1S After that, the cumulative fatigue level rises because it goes up to position 14, and finally the route with the highest cumulative fatigue level is reached.
[0051] Cルートでは、位置 3以降勾配が大きくなり、位置 7付近で累積疲労度が Aルートの 場合を越す。その後は、下りおよび緩やかな上りなので、最終的に累積疲労度は A ルートと同様となる力 A/レートより大きくなる。 Dルートでは、他のルートに比べて最 初の上りが緩やかである。その後も下り、緩やかな上り、を繰り返すに過ぎないので、 最終的に、累積疲労度の上昇は他のルートに比べて小さいものとなる。  [0051] In the C route, the slope increases after position 3, and the cumulative fatigue level near position 7 exceeds that of the A route. After that, because of descending and moderate ascending, the cumulative fatigue will eventually be greater than the force A / rate similar to the A route. On the D route, the first ascending is gentler than other routes. After that, only going down and gradual going up and down will eventually lead to a smaller increase in cumulative fatigue compared to other routes.
[0052] 従来は、上り坂のきっさを現す指標として、各ルートの重み付けのひとつに「高度差 」の累積を用いていた。これに対し、この実施例では、各区間の「勾配」 X時間による 疲労が蓄積することに着目している。そして、「勾配」に時間積分を累積させることに よりルートの困難さを示す値を求めている。ここで求めた値を「Toughness」という指 標で表現する。このように、時間の代わりに水平距離と垂直距離を用いて疲労度を示 す値を得ることができる。  Conventionally, the accumulation of “altitude difference” is used as one of the weights of each route as an index indicating the tightness of the uphill. In contrast, in this embodiment, attention is paid to the accumulation of fatigue due to “gradient” X time in each section. Then, a value indicating the difficulty of the route is obtained by accumulating the time integral in the “gradient”. The value obtained here is expressed by the index “Toughness”. In this way, a value indicating the degree of fatigue can be obtained by using the horizontal distance and the vertical distance instead of time.
[0053] 具体的は、ルート探索のひとつの要素として、各ルートの疲労度を用いる。その疲 労度とは上り「勾配」による疲労の蓄積と、下り「勾配」による疲労の回復を含めること ができる。疲労度は、最終的にその累積値「ToughneSS」で評価する。またその「To ughness」の比較を行い、ディスプレイ表示し、ユーザーに情報を提供する。その表 示方法は、表による一覧表比較、 2DZ3Dによる地図表示により実現することができ る。 Specifically, the fatigue level of each route is used as one element of route search. The fatigue level can include the accumulation of fatigue due to an uphill "gradient" and the recovery of fatigue due to a downhill "gradient". The fatigue level is finally evaluated by its accumulated value “Toughne SS ”. It also compares the “To ughness”, displays it on the screen, and provides information to the user. The display method can be realized by comparison of lists by tables and map display by 2DZ3D.
[0054] そして、複数選択されたそれぞれの経路にお!、て、始点から終点までの標高差変 化情報(どのくらい標高の変化がある力を表す情報)として、平均勾配'最大勾配に カロえて、上りの合計 (Ascent)と下りの合計 (Descent)を用いる。その標高差変化情 報を画面に表示する。すなわち、 Ascent=xxm、 Descent =yymと表示する。さら に水平移動距離 VS垂直移動距離、移動距離 VS垂直移動距離を、 2Dまたは 3Dの 地図に表示する。または、その情報をルートを選択する(自動 Zまたは運転者の意思[0054] Then, on each of the plurality of selected routes! As the elevation difference change information from the start point to the end point (information indicating how much the altitude changes), the average gradient 'the maximum gradient is changed. , Use the sum of ascent and the sum of descending (Descent). The altitude difference change information is displayed on the screen. That is, Ascent = xxm and Descent = yym are displayed. Furthermore, the horizontal movement distance VS vertical movement distance, movement distance VS vertical movement distance, 2D or 3D Display on the map. Or select the route with that information (automatic Z or driver ’s intention
)時の難易度 (運転のし易さ)、わくわく度 (運転する楽しさ)を判定する情報 (input) とする。 ) Information (input) that determines the degree of difficulty (ease of driving) and excitement (joy of driving).
[0055] この AscentZDescent情報を用いた標高差変化情報により、運転者は事前にど のくらい標高の変化がある経路なのかを知ることができる。具体的には、安全な道路 力 大変苦労する道路なのか、または峠 ·坂道 'ワインデイングを楽しめる道路なのか を知ることができる。  [0055] From the elevation difference change information using the AscentZDescent information, the driver can know in advance how much the route has an elevation change. Specifically, it is possible to know whether it is a road that is very difficult or a road that can be enjoyed for winding.
[0056] 以上のように、疲労度を算出するのに、上り区間における「勾配」の積分の累積値と して「勾配」 X「(高度差)2」を用いたが、「勾配」 X「(垂直高度差)2」、「勾配」 X「(水 平高度差)2」、「勾配」 X「予想される時間2」を用いても良い。また、下り区間において は、その時間における疲労の回復分を引いても勿論さらに良い。 [0056] As described above, “gradient” X “(altitude difference) 2 ” was used as the cumulative value of the integral of the “gradient” in the ascending section, but the “gradient” X “(Vertical altitude difference) 2 ”, “Slope” X “(Horizontal altitude difference) 2 ”, “Slope” X “Expected time 2 ” may be used. Of course, it is even better to subtract the fatigue recovery during that time in the descending section.
[0057] 以上の疲労度の算出は、一般道路に限らず、オフロード、登山道にも応用でき、登 山者、山岳路アスリート、自転車利用者にも有効である。さらに、歩道橋、階段にも応 用でき、自動車以外の利用者に有意義な情報である。また、この「Toughness」の力 ーブを 2Dまたは 3Dでグラフィック表示することにより、ルートのきっさが分力りやすく なる。また、図 6に示した各項目を一覧表示することにより、より判断しやすくすること もできる。また、上り区間における「疲労」の蓄積と、下り区間による「疲労」の回復をも 盛り込むことにより、さらに精度の高い疲労度の表示を実現することもできる。  The calculation of the fatigue level described above can be applied not only to general roads but also to off-road and mountain trails, and is also effective for climbers, mountain road athletes, and bicycle users. In addition, it can be applied to pedestrian bridges and stairs, and is useful information for users other than automobiles. In addition, by displaying this “Toughness” force curve in 2D or 3D, it becomes easier to distribute the root of the route. It is also possible to make the judgment easier by displaying a list of each item shown in FIG. In addition, by incorporating the accumulation of “fatigue” in the up section and the recovery of “fatigue” in the down section, it is possible to realize a more accurate display of the fatigue level.
[0058] 以上のナビゲーシヨンシステムは、歩行者用、携帯用、登山者用、自転車用、ストリ ート用などの、さまざまな地図を使ったものとすることができる。また、このナビゲーショ ンシステムにより、インターネットにおける地図情報を使った検索、案内情報を提供す ることができる。このナビゲーシヨンシステムは、トレーニングツール(トレッドミル、バイ クトレーニング、 Polar (ノヽ一トレートモ-タ +高度センサ等)のグラフィック表示する場 合)に有効である。  [0058] The above navigation system can use various maps for pedestrians, portables, climbers, bicycles, and streets. This navigation system can also provide search and guidance information using map information on the Internet. This navigation system is effective for training tools (treadmills, bike training, and Polar (no tread motor + altitude sensor etc.) graphic display).
[0059] なお、本実施の形態で説明した経路情報表示方法は、予め用意されたプログラム をパーソナルコンピュータやワークステーションなどのコンピュータで実行することによ り実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、 C D— ROM、 MO、 DVDなどのコンピュータで読み取り可能な記録媒体に記録され、 コンピュータによって記録媒体力も読み出されることによって実行される。またこのプ ログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体 であってもよい。 Note that the route information display method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, flexible disk, CD-ROM, MO, or DVD. The recording medium force is also read by the computer and executed. The program may be a transmission medium that can be distributed through a network such as the Internet.

Claims

請求の範囲 The scope of the claims
[1] 所定の経路を構成する複数の区間のうち 1つの区間について、該区間の両端の勾 配と高度差に基づいて該区間の区間疲労度を求める算出手段と、  [1] A calculating means for obtaining a section fatigue level of one section of a plurality of sections constituting a predetermined route based on a gradient and an altitude difference at both ends of the section;
前記算出手段によって求められた各区間の区間疲労度を、前記経路全体につい て累積することにより前記経路の疲労度を算出する累積手段と、  Accumulating means for calculating the fatigue degree of the path by accumulating the section fatigue degree of each section obtained by the calculating means for the entire path;
を備えることを特徴とする経路情報表示装置。  A route information display device comprising:
[2] 前記算出手段は、該区間の両端の勾配と高度差の 2乗との積力 前記区間疲労度 を求めることを特徴とする請求項 1に記載の経路情報表示装置。  2. The path information display device according to claim 1, wherein the calculation means obtains a product force of the slope of both ends of the section and the square of the height difference, the section fatigue degree.
[3] 前記算出手段は、所定の負荷が力かる区間の移動で所定の距離または時間が経 過した場合に、前記区間の両端の勾配と高度差の 2乗との積を区間疲労度とすること を特徴とする請求項 1に記載の経路情報表示装置。 [3] The calculation means calculates the product of the slope of both ends of the section and the square of the altitude difference as the section fatigue degree when a predetermined distance or time has passed due to movement of the section where a predetermined load is applied. The route information display device according to claim 1, wherein:
[4] 前記算出手段は、下り区間については該下り区間による区間回復度を算出し、 前記累積手段は、前記算出手段によって算出された区間疲労度を累積するととも に、前記経路が下り区間を含む場合は、前記算出手段によって算出された区間回復 度を差し引くことにより、前記経路の疲労度を算出することを特徴とする請求項 1に記 載の経路情報表示装置。 [4] The calculating means calculates a section recovery degree by the down section for the down section, and the accumulating means accumulates the section fatigue degree calculated by the calculating means, and the route includes the down section. 2. The route information display device according to claim 1, wherein if included, the degree of fatigue of the route is calculated by subtracting the interval recovery degree calculated by the calculation unit.
[5] 始点と終点が同一の複数の経路を示す情報を、前記累積手段によって算出された それぞれの経路の疲労度とともに表示する表示手段を備えることを特徴とする請求 項 1に記載の経路情報表示装置。 5. The route information according to claim 1, further comprising display means for displaying information indicating a plurality of routes having the same starting point and ending point together with the fatigue level of each route calculated by the accumulating means. Display device.
[6] 前記表示手段は、前記複数の経路を示す情報を、前記累積手段によって算出され たそれぞれの経路の疲労度の順に、並べて表示することを特徴とする請求項 1に記 載の経路情報表示装置。 [6] The route information according to claim 1, wherein the display unit displays information indicating the plurality of routes side by side in the order of the fatigue degree of each route calculated by the accumulation unit. Display device.
[7] 前記経路の標高差変化情報を求める取得手段を備え、 [7] An acquisition means for obtaining elevation difference change information of the route is provided,
前記表示手段は、前記複数の経路を示す情報を、前記取得手段によって求められ た標高差変化情報とともに表示することを特徴とする請求項 1〜6のいずれか一つに 記載の経路情報表示装置。  The route information display device according to any one of claims 1 to 6, wherein the display unit displays information indicating the plurality of routes together with elevation difference change information obtained by the acquisition unit. .
[8] 所定の経路を構成する複数の区間のうち 1つの区間について、該区間の両端の勾 配と高度差に基づいて該区間の区間疲労度を求める算出工程と、 前記算出工程によって求められた各区間の区間疲労度を、前記経路全体につい て累積することにより前記経路の疲労度を算出する累積工程と、 [8] A calculation step of obtaining a section fatigue level of one section among a plurality of sections constituting a predetermined route based on a gradient and an altitude difference at both ends of the section; An accumulating step of calculating the fatigue degree of the route by accumulating the section fatigue degree of each interval obtained by the calculating step for the entire route;
を含むことを特徴とする経路情報表示方法。  A route information display method comprising:
[9] 請求項 8に記載の経路情報表示方法をコンピュータに実行させることを特徴とする 経路情報表示プログラム。  [9] A route information display program causing a computer to execute the route information display method according to claim 8.
[10] 請求項 9に記載の経路情報表示プログラムを記録したことを特徴とするコンピュータ に読み取り可能な記録媒体。 [10] A computer-readable recording medium on which the route information display program according to claim 9 is recorded.
PCT/JP2006/308038 2005-05-26 2006-04-17 Route information display device, route information display method, route information display program, and computer readable recording medium WO2006126343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517741A JP4578526B2 (en) 2005-05-26 2006-04-17 Route information display device, route information display method, route information display program, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005154248 2005-05-26
JP2005-154248 2005-05-26

Publications (1)

Publication Number Publication Date
WO2006126343A1 true WO2006126343A1 (en) 2006-11-30

Family

ID=37451772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308038 WO2006126343A1 (en) 2005-05-26 2006-04-17 Route information display device, route information display method, route information display program, and computer readable recording medium

Country Status (2)

Country Link
JP (1) JP4578526B2 (en)
WO (1) WO2006126343A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111145A1 (en) * 2010-03-08 2011-09-15 三菱電機株式会社 Path search device
JP2012113477A (en) * 2010-11-24 2012-06-14 Denso Corp Driving fatigue degree determination device
CN102869953A (en) * 2011-01-28 2013-01-09 乐天株式会社 Device for providing route information, method for providing route information, program and information recording medium
JP2014013195A (en) * 2012-07-04 2014-01-23 Navitime Japan Co Ltd Information processing system, information processing apparatus, information processing method, and information processing program
JP2018155635A (en) * 2017-03-17 2018-10-04 カシオ計算機株式会社 Position estimation device, method for position estimation, and program
JP2020067858A (en) * 2018-10-25 2020-04-30 株式会社Jvcケンウッド Driving support device, driving support method, and program
CN115376349A (en) * 2022-08-22 2022-11-22 南京林业大学 Method for selecting vehicle running path integrating comfort, safety, time and distance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026932A (en) * 1996-07-10 1998-01-27 Omron Corp Optimum route searching device and device therefor
JPH11271086A (en) * 1998-03-20 1999-10-05 Fujitsu Ltd Navigation device for mountain climbing
JP2001227965A (en) * 2000-02-14 2001-08-24 Fujitsu Ten Ltd Navigation device
JP2004028896A (en) * 2002-06-27 2004-01-29 Aisin Aw Co Ltd Navigation system, navigation device, and program for searched information output method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026932A (en) * 1996-07-10 1998-01-27 Omron Corp Optimum route searching device and device therefor
JPH11271086A (en) * 1998-03-20 1999-10-05 Fujitsu Ltd Navigation device for mountain climbing
JP2001227965A (en) * 2000-02-14 2001-08-24 Fujitsu Ten Ltd Navigation device
JP2004028896A (en) * 2002-06-27 2004-01-29 Aisin Aw Co Ltd Navigation system, navigation device, and program for searched information output method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111145A1 (en) * 2010-03-08 2011-09-15 三菱電機株式会社 Path search device
JP5312677B2 (en) * 2010-03-08 2013-10-09 三菱電機株式会社 Route search device
US9074905B2 (en) 2010-03-08 2015-07-07 Mitsubishi Electric Corporation Route search device
JP2012113477A (en) * 2010-11-24 2012-06-14 Denso Corp Driving fatigue degree determination device
CN102869953A (en) * 2011-01-28 2013-01-09 乐天株式会社 Device for providing route information, method for providing route information, program and information recording medium
CN102869953B (en) * 2011-01-28 2014-07-02 乐天株式会社 Device for providing route information, method for providing route information
JP2014013195A (en) * 2012-07-04 2014-01-23 Navitime Japan Co Ltd Information processing system, information processing apparatus, information processing method, and information processing program
JP2018155635A (en) * 2017-03-17 2018-10-04 カシオ計算機株式会社 Position estimation device, method for position estimation, and program
US10746883B2 (en) 2017-03-17 2020-08-18 Casio Computer Co., Ltd. Position estimation apparatus
JP2020067858A (en) * 2018-10-25 2020-04-30 株式会社Jvcケンウッド Driving support device, driving support method, and program
CN115376349A (en) * 2022-08-22 2022-11-22 南京林业大学 Method for selecting vehicle running path integrating comfort, safety, time and distance

Also Published As

Publication number Publication date
JPWO2006126343A1 (en) 2008-12-25
JP4578526B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4578526B2 (en) Route information display device, route information display method, route information display program, and computer-readable recording medium
EP1659367B1 (en) Vehicle navigation with integrated curve warning using clothoid models
KR102117647B1 (en) A method and apparatus for creating cost data for use in generating a route across an electronic map
EP1596162B1 (en) Navigation system performing route guidance for vehicle
US9239243B2 (en) Vehicle navigation system
US20040046692A1 (en) Physical training system
US20120150429A1 (en) Method and arrangement relating to navigation
JP3552528B2 (en) Mountaineering navigation device
EP2032944A1 (en) Navigation device and method for providing warnings for a speed trap
JP2007033331A (en) Route-searching device and method, navigation device and system providing the route-searching device, and route-searching computer program
JP2007303989A (en) Moving body terminal device, control method of moving body terminal device, control program of moving body terminal device, and recording medium for recording control program of moving body terminal device
US11536580B2 (en) System and method for providing a travel route
CN103162694B (en) Data maintenance and driving supporting system, absolute altitude reliability judge system and method
CN105571602A (en) Path selection method and path selection device
JPWO2007142066A1 (en) Information providing apparatus, information providing method, and information providing program
EP2732241A1 (en) Graphical user interface
JP6440431B2 (en) In-vehicle device
CN106274862A (en) Automatic Pilot method, device and the vehicle of a kind of face of slope
JP7106206B2 (en) Failure information providing system, information processing device, failure information providing method
JP6257923B2 (en) Battery degradation prediction system and route search system
JP2010190648A (en) Navigation apparatus and navigating method
JP4074598B2 (en) Navigation device and current position calculation method
KR101740089B1 (en) Apparatus and method for searching bycle path
JP2017072926A (en) Level difference detection device
JP4525169B2 (en) Navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007517741

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731967

Country of ref document: EP

Kind code of ref document: A1