WO2006126269A1 - Receiver apparatus and message symbol detecting method - Google Patents

Receiver apparatus and message symbol detecting method Download PDF

Info

Publication number
WO2006126269A1
WO2006126269A1 PCT/JP2005/009663 JP2005009663W WO2006126269A1 WO 2006126269 A1 WO2006126269 A1 WO 2006126269A1 JP 2005009663 W JP2005009663 W JP 2005009663W WO 2006126269 A1 WO2006126269 A1 WO 2006126269A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
separated
received pulse
delay
received
Prior art date
Application number
PCT/JP2005/009663
Other languages
French (fr)
Japanese (ja)
Inventor
Soo Eng Yew
Zhan Yu
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2005/009663 priority Critical patent/WO2006126269A1/en
Publication of WO2006126269A1 publication Critical patent/WO2006126269A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6908Spread spectrum techniques using time hopping

Definitions

  • the present invention relates to a receiving apparatus and a message symbol detection method used particularly for impulse radio (hereinafter referred to as “IR”).
  • IR impulse radio
  • IR transmitters and receivers use amplitude modulation, phase modulation, frequency modulation, pulse position modulation (PPM) (also known as time shift modulation or pulse interval modulation) and many data modulation and demodulation technologies with these M-ray versions Can be used.
  • PPM pulse position modulation
  • an IR receiver is a direct conversion receiver having a cross-correlator front end that coherently converts an electromagnetic pulse train into a single stage baseband signal.
  • Some impulse radio systems require precise time synchronization between transmitter and receiver. They must also remain synchronized over time. In the execution of a synchronous receiver, for example, the synchronization must be accurate within the fraction of pulse duration.
  • the high-precision oscillator makes a correlator to capture the pulse energy in the correct time and multiplies the captured energy by the width-controlled template pulse energy. . Since the pulse duration is very short, the synchronization parameter is very strict and often requires a long acquisition period.
  • a transmission reference (TR) method is known as another conventional implementation of data modulation for radio pulses (eg, Patent Document 1).
  • TR method pulses are transmitted in pairs, of which the first pulse is not modulated and the second pulse is modulated by data.
  • An unmodulated pulse is often referred to as a reference pulse. Separate or delay the pair of nozzles from each other by a time interval or delay known to the recipient.
  • the receiver restores the communication data without requiring acquisition time by delaying the first pulse and correlating it with the second pulse based on a known delay in a finite interval. Therefore, since the pulse pairs are reconstructed by the receiver and correlated with each other, data modulation pulse detection is performed. As a result, TR reception does not require synchronization for individual pulses. Since pulse pairs are transmitted through the same channel, no explicit channel estimation is necessary.
  • FIG. 1 is a block diagram showing a configuration of a conventional receiving apparatus 10.
  • the receiving device 10 has one integrator 18 for receiving the TR pulse train.
  • the receiver 10 includes a receiving antenna 11, a correlator 12, and an output unit 13.
  • Correlator 12 splits the incoming TR pulse into travel path 14 and delay path 15.
  • the delay path 15 has a delay circuit 16 that delays the incoming TR pulse by a time delay D.
  • Multiplier 17 performs multiplication of delayed and non-delayed pulses.
  • the correlator 12 inputs the output of the multiplier 17 to an integrator 18 that executes an integration process over one symbol frame period Tf. Further, the correlator 12 causes the output of the integrator 18 to be input to a threshold comparator 19 that compares it with a predetermined threshold value. Further, the correlator 12 inputs the output of the threshold comparator 19 to the output unit 13.
  • the integration process is performed over the entire symbol frame period, and only one integration result is output from the integrator 18.
  • Patent Document 1 US Patent Application Publication No. 2001Z0053175
  • the conventional apparatus captures noise over the pulse interval even in the TR system, and a higher SN ratio (SNR) is required compared to the conventional PPM technology.
  • SNR SN ratio
  • This is related to the noise contribution in the received reference pulse multiplied by the noise contribution in the data modulation pulse. Due to excessive noise. Therefore, it is necessary to improve the reception of TR-IR pulses in noisy environments.
  • the time-separated reference pulse and data pulse communicated with the transmission reference pulse train have a problem that the SN ratio is reduced by the value obtained by multiplying the noise contribution in the received reference pulse by the noise contribution in the data modulation pulse.
  • the noise X-integral term integrated over the time frame is increased, and the bit error rate (BER) characteristics are degraded.
  • An object of the present invention is to provide a receiving apparatus and a message symbol detection method capable of obtaining a higher SN ratio and improving the bit error rate characteristics by introducing a noise suppression effect. It is to be.
  • the receiving device of the present invention includes a first delay means for delaying one reception pulse of the reception pulses separated into two systems for a predetermined time, the other reception pulse of the reception pulses separated into the two systems, and the A multiplying means for multiplying the received pulse delayed by the first delay means, and a second for delaying one received pulse of the received pulses after being multiplied by the multiplying means and separated into two systems for a predetermined time.
  • the delay means and the other received pulse of the received pulse that has been multiplied by the multiplying means and separated into two systems, and one symbol frame of the received pulse delayed by the second delay means are set at regular time intervals.
  • Integration processing means for time-division integration processing at each time interval, and the integration of the one received pulse separated after multiplication based on a comparison result between the amplitude of the integration processing result and a threshold value Processing result And a message symbol is detected from a selection means for selecting one of the integration processing results of the received pulse delayed by the second delay means, and the integration processing result selected by the selection means. And an output means for outputting.
  • the message symbol detection method of the present invention includes a step of delaying one reception pulse of reception pulses separated into two systems by a first delay time, and the other reception pulse of the reception pulses separated into the two systems.
  • a step of multiplying the delayed received pulse a step of delaying one of the received pulses that have been multiplied and separated into two systems by a second delay time; and
  • One symbol frame of the other received pulse separated from the separated received pulse and the received pulse delayed by the second delay time Time-divided into predetermined time intervals and integrating each time interval, and based on a comparison result between the amplitude of the integration processing result and a threshold value, the one of the received pulses separated after the multiplication Selecting one of the integration processing result and the integration processing result of the received pulse delayed by the second delay time; detecting and outputting a message symbol from the selected integration processing result; and It was made to comprise.
  • FIG. 1 is a block diagram showing a configuration of a conventional receiving apparatus
  • FIG. 2 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a TR pulse train according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a TR pulse train according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing the operation of the receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing the operation of the parallel integrator according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing received TR pulse, noise, and parallel integrator output according to Embodiment 1 of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 2 of the present invention.
  • FIG. 2 is a block diagram showing a configuration of receiving apparatus 100 according to the first embodiment.
  • the delay circuit 102, the multiplier 103, the integrator 104, the delay circuit 105, the integrator 106, and the comparator and selector unit 107 constitute a correlator 113.
  • the receiving apparatus 100 includes two parallel integrators 104 and 106 for receiving the TR pulse train.
  • the receiving apparatus 100 is different from the conventional one in that a delay circuit 105, two integrators 104 and 106, and a comparator and selector unit 107 are added.
  • the antenna 101 receives a signal and outputs the signal to the multiplier 103 in the traveling path 109 and the delay circuit 102 in the delay path 110.
  • the delay circuit 102 as the first delay means delays the signal input from the antenna 101.
  • the multiplier 103 multiplies the non-delayed pulse signal input from the antenna 101 by the delayed pulse signal input from the delay circuit 102 to multiply the multiplier 104 and the delay path 11 of the traveling path 111.
  • An integrator 104 as an integration processing means divides the signal input from the multiplier 103 into N intervals, and performs integration processing over one symbol frame in which each interval has an equal time length. Execute. The integrator 104 outputs the integration result to the comparator and selector unit 107.
  • the delay circuit 105 which is the second delay means, converts the signal input from the multiplier 103 into a time delay D
  • the integrator 106 which is an integration processing means, divides the signal input from the delay circuit 105 into M intervals and performs integration processing over one symbol frame in which each interval has an equal time length. Execute. The integrator 106 outputs the integration result to the comparator / selector unit 107.
  • the comparator / selector unit 107 as selection means compares the integration results from both integrators 104 and 106, selects the one with the larger integration result, and outputs it to the output unit 108.
  • the output unit 108 serving as an output unit detects and outputs a message symbol from the integration result input from the comparator and selector unit 107.
  • the reception timing can be detected by detecting the message symbol.
  • FIG. 3 shows a typical TR pulse train 300 of 1 bit per symbol communicated between the TR impulse radio transmitter and the receiving device 100.
  • T the TR impulse radio transmitter
  • the R pulse train 300 includes TR pulse pairs (301, 302). Each TR pulse pair is time delayed
  • the reference pulse 301 is a force having a fixed polarity.
  • the data pulse 302 has a modulation polarity based on the input message symbol.
  • Data pulse 3 with the same polarity as reference pulse 301 By modulating 02, bit “0” is transmitted in symbol frame # 303.
  • Bit “1” is transmitted in frame # 304 by modulating a data pulse 302 having a polarity relative to reference pulse 301.
  • the two pulse pairs in symbol frames # 303 and # 304 are each separated by a pulse pair interval D2.
  • the pulse-to-interval D2 can be fixed or varied. The change in pulse-to-interval D2 can occur between symbol frames, or within one time frame if more than one pulse pair is present, or both.
  • the data delay time delay D1 can also be fixed or changed by a specific code.
  • the change of Nols vs. interval D2, time delay D1, and the pulse polarity of data pulse 302 by a specific code can also reduce the comb-like line of the force spectrum and achieve channelization.
  • the amplitudes of the reference pulse 301 and the data pulse 302 vary based on a force that matches the predetermined value A shown in FIG. 3 or a certain predetermined amplitude ratio.
  • FIG. 4 shows a typical TR pulse train 400 having 2 bits per symbol.
  • the first bit is to modulate the time delay of the data pulse, where “0” and “1” indicate D3 and D4, respectively.
  • the second bit is to modulate the polarity of the data pulse, where “0” and “1” indicate “same polarity” and “opposite polarity”, respectively.
  • Only one pulse pair per symbol frame can have multiple pulse pairs to represent the force one symbol shown in FIG.
  • the data pulse The time delay is fixed and the pulse-to-interval is changed by a fixed force, or a specific code.
  • the modulation technique for multiple bits per symbol is not limited to the embodiment of FIG.
  • FIG. 5 is a typical flowchart of the operation in the comparator and selector unit 107.
  • the comparator and selector unit 107 saves the output from both the integrator 104 and the integrator 106.
  • the comparator and selector unit 107 compares the stored result from the integrator 104 (step ST501) with a predetermined threshold (step ST502). Greater than threshold! /, Only results are selected and restored and saved (step ST503), and finally all remaining results are summed together to produce output ⁇ (step ST504).
  • the storage result from the integrator 106 (step ST505) is compared with a predetermined threshold value (step ST506).
  • step ST507 Only results greater than the threshold are selected, restored and saved (step ST507), and finally all remaining results are summed together to produce output B (step ST508).
  • Output A and output B are compared (step ST509), and the larger value is sent to output section 108 (step ST510), and a message symbol can be detected.
  • step ST502 and step ST506 if the storage result is not greater than the threshold value, it is discarded without being selected.
  • FIG. 6 illustrates the operation of two parallel integrators within one symbol frame Tf.
  • the symbol frame Tf is divided into N equal intervals, and each interval has an equal duration TfZN. Integrator 104 performs integration of signal 601 within each interval and provides the value of integration to comparator and selector unit 107 at the end of each interval. Similarly, in integrator 106, symbol frame T f is divided into M equal internals with equal duration TfZM. The integrator 106 performs integration of the signal 602 from the delay circuit 105, and sends the integration result to the comparator and selector unit 107. The values of N and M are predetermined and can be adjusted according to channel conditions. Time delay D5 is introduced to have a starting time offset in integrator 106. The time delay D5 can be adjusted within the range (0, TfZN).
  • Figure 7 shows typical received TR pulses and noise captured within one symbol frame Tf. And the output of two parallel integrators.
  • Signal A has a reference pulse 301, a data pulse 302, and noise 701.
  • Signal B represents the delayed version of signal A.
  • Signal C represents the result of multiplication by multiplying signal A by signal B of multiplier 103.
  • the signal portion 702 is the result of multiplying the signal B data pulse 302 by the signal B reference pulse 301.
  • Signal D represents the result of integration in integrator 104. Integration is performed every TfZN, and each output is sampled and sent to the comparator and selector unit 107.
  • Signal E represents the result of integration in integrator 106 with time delay D5.
  • the integration period is TfZM, and M is equal to N in Fig.7.
  • Signal D indicates that the integration is performed within the time required for signal portion 702. In this way, the signal power is separated into two adjacent intervals and is therefore separated into two adjacent integration results 704 and 706. It is possible that messages whose amplitudes 704 and 706 are less than the comparator and selector unit 107 threshold will be lost.
  • the time delay D5 introduces a time offset before the integrator 106.
  • signal E has the strongest signal result 708 including full signal power. As a result, the probability of being detected in signal result 708 is much greater than in signal D integration results 704 and 706.
  • the noise 701 is also separated into multiple intervals. Therefore, the noise power in integrating the integration results 704, 706 and signal result 708 is much less than the conventional means in which integration is performed over the full symbol frame Tf. Further, if the integration result 704, 706 or the signal result 708 is detected, the timing position of the signal portion can be found. This shows that the correlator with two parallel integrators can operate for TR pulse synchronization.
  • the signal F indicates the integration result 710 in the integrator 18 of the conventional receiver 10 for comparison with the integration results 704 and 706 and the signal result 708. Conventionally, since the integration process is performed over the entire symbol frame period, only a single integration result 710 is obtained.
  • a time interval obtained by equally dividing one symbol frame period By performing integration processing at the interpal, the noise is separated into a large number of internal noises, so that the noise level can be sufficiently reduced, a higher SN ratio can be obtained, and the bit error rate characteristics can be improved. Can be made. Further, according to the first embodiment, since the two signals of the non-delayed signal and the delayed signal are respectively integrated, even when the integration result of one of the signals is separated into different intervals, either It is highly possible that the integration result of the other signal is not separated into different intervals. In this case, the signal result can be reliably detected, and the timing position can be reliably detected.
  • FIG. 8 is a block diagram showing a configuration of receiving apparatus 800 according to Embodiment 2 of the present invention.
  • Multiplier 103, integrator 104, delay circuit 105, integrator 106, comparator and selector unit 107, addition junction 801, delay circuit 802, delay circuit 803, and gain stage 804 constitute correlator 807.
  • the feedback path includes an addition junction 801, a delay circuit 803, and a gain stage 804.
  • the receiving apparatus 800 according to the second embodiment is the same as the receiving apparatus 100 according to the first embodiment shown in FIG. 1, except for the delay circuit 102, as shown in FIG. 802, a delay circuit 803, and a gain stage 804 are added.
  • FIG. 8 parts having the same configuration as in FIG.
  • the antenna 101 receives the signal and outputs the signal to the multiplier 103 in the traveling path 805 and the addition junction 801 in the delay path 806.
  • Addition junction 801 adds the signal input from antenna 101 and the signal input from gain stage 804 and outputs the sum to delay circuit 802.
  • the delay circuit 802 delays the incoming TR pulse input from the addition junction 801 by the time delay D 1 and outputs the delayed TR pulse to the delay circuit 803 and the multiplier 103.
  • the delay circuit 803 as the third delay means delays the incoming TR pulse input from the delay circuit 802 by the time delay D 6 and outputs it to the gain stage 804.
  • the delay circuit 803 selects the time delay D6 so as to satisfy the constraint that the time between the time delay D6 and the time delay D1 is equal to the time between two consecutive reference pulses in the TR pulse train.
  • the gain stage 804 as gain control means increases the amplitude of the incoming TR pulse input from the delay circuit 803 by a predetermined gain G, and outputs it to the addition junction 801.
  • Multiplier 103 multiplies the non-delayed pulse signal input from antenna 101 by the delayed pulse signal input from delay circuit 802 and outputs the result to multiplier 104 in traveling path 111 and delay circuit 105 in delayed path 112. To do.
  • the operation in the comparator and selector unit 107 is the same as that in FIG.
  • the noise is separated into a large number of inverters by performing the integration process in the time interval obtained by equally dividing one symbol frame period. Can be made sufficiently small, a higher signal-to-noise ratio can be obtained, and the bit error rate characteristics can be improved. Further, according to the second embodiment, since the two signals of the non-delayed signal and the delayed signal are respectively integrated, even when the integration result of one of the signals is separated into different intervals, either It is highly possible that the integration result of the other signal is not separated into different intervals. In this case, the signal result can be reliably detected, and the timing position can be reliably detected.
  • the receiving apparatus and the message symbol detection method according to the present invention are suitable for use in impulse radio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A receiver apparatus wherein a noise suppression effect is introduced to achieve a higher S/N ratio, while improving the characteristic of bit error rate. In this apparatus, an integrator (104) divides a signal received from a multiplier (103) into a number N of intervals to execute an integration process over a symbol frame having a time length in which those intervals are equal to each other. A delay circuit (105) delays, by a time delay (D5), a signal received from the multiplier (103). An integrator (106) divides the signal received from the delay circuit (105) into a number M of intervals to execute an integration process over a symbol frame having a time length in which those intervals are equal to each other. A comparator and selector unit (107) compares the integration results of the integrators (104,106) with each other to select the larger integration result.

Description

明 細 書  Specification
受信装置及びメッセージシンボル検出方法  Reception device and message symbol detection method
技術分野  Technical field
[0001] 本発明は、特にインパルス無線 (impulse radio :以下「IR」と記載する)に用いられる 受信装置及びメッセージシンボル検出方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a receiving apparatus and a message symbol detection method used particularly for impulse radio (hereinafter referred to as “IR”).
背景技術  Background art
[0002] 通信技術の最近の進歩は、非常に短!、所要時間比率周波数 (RF)パルスのシー ケンスを伝送及び受信することを可能にし、また通常 1ナノ秒未満である所要時間を 可能にした。これは、 IRといわれる。個々のパルスのエネルギーは、通常は低い。従 つて、パルス化波形のデューティーサイクルが低いことから、非常に低い平均電力と なる。 IRシグナルに対し、多様な従来の受信機及び伝送器が実用化されている。 IR 伝送器及び受信機は、振幅変調、位相変調、周波数変調、パルス位置変調 (PPM) (タイムシフト変調またはパルス間隔変調ともいう)及びこれらの M— rayバージョンを 有する多数のデータ変調及び復調技術を用いることができる。  [0002] Recent advances in communications technology are very short! Enables the transmission and reception of time-ratio frequency (RF) pulse sequences, and allows for time durations that are typically less than 1 nanosecond. did. This is called IR. The energy of individual pulses is usually low. Therefore, the low duty cycle of the pulsed waveform results in a very low average power. Various conventional receivers and transmitters have been put into practical use for IR signals. IR transmitters and receivers use amplitude modulation, phase modulation, frequency modulation, pulse position modulation (PPM) (also known as time shift modulation or pulse interval modulation) and many data modulation and demodulation technologies with these M-ray versions Can be used.
[0003] 通常、 IR受信機は、電磁パルス列を単一ステージのベースバンド信号にコヒーレン ス的に変換する相互相関器のフロントエンドを有する直接変換受信機である。インパ ルス無線システムは、伝送器及び受信機間で正確な時間同期を必要とするものもあ る。それらは、また、長期間にわたり同期を維持しなければならない。同期受信機の 実行において、たとえば、同期はパルス所要時間のフラクション内で正確でなければ ならない。同期受信機の実行におけるデータの復元のため、高精度オシレータは相 関器をして、正確な時間でパルスエネルギーを捕らえるようにしむけ、幅が制御され たテンプレートパルスエネルギーを捕獲されたエネルギーに乗じる。パルス所要時間 が非常に短いので、同期パラメータ一は非常に厳密であり、たびたび長い取得期間 を必要とする。さらに、このプロセスは別々のポイントで波形の断面をサンプリングす るため、受信機は効率よくマルチパスエネルギーを捕らえない。マルチパスエネルギ 一を捕獲するために、多重相関器レイク受信機を用いることもできる。しかし、この受 信機は複雑かつ高価である。 [0004] 無線パルスに対するデータ変調への従来の他の実行としては、伝送参照 (TR)方 式が知られている(例えば、特許文献 1)。 TR方式においては、パルスはペアで伝送 され、そのうち第 1パルスは変調されず、第 2パルスはデータによって変調される。変 調されていないパルスは、しばしば参照パルスと称される。受信者が知っている時間 間隔または遅れにより、ノ ルス対を互いに分離するか、または遅らせる。受信機は、 第 1パルスを遅らせ、それを、有限区間における既知の遅れに基づき第 2パルスに相 関させることにより、取得時間を必要とせずに通信データを復元する。したがって、パ ルス対が受信機によって復元されまた互いに相関されているため、データ変調パル スの検出が実行される。その結果、 TR受信では、個々のパルスに対する同期の必要 がない。パルス対が同じチャネルを通って伝送されるので、明確なチャネルの推定は 必要でない。 [0003] Typically, an IR receiver is a direct conversion receiver having a cross-correlator front end that coherently converts an electromagnetic pulse train into a single stage baseband signal. Some impulse radio systems require precise time synchronization between transmitter and receiver. They must also remain synchronized over time. In the execution of a synchronous receiver, for example, the synchronization must be accurate within the fraction of pulse duration. In order to recover the data in the execution of the synchronous receiver, the high-precision oscillator makes a correlator to capture the pulse energy in the correct time and multiplies the captured energy by the width-controlled template pulse energy. . Since the pulse duration is very short, the synchronization parameter is very strict and often requires a long acquisition period. In addition, the process samples the waveform cross-section at different points, so the receiver does not capture multipath energy efficiently. Multiple correlator rake receivers can also be used to capture multipath energy. However, this receiver is complex and expensive. [0004] A transmission reference (TR) method is known as another conventional implementation of data modulation for radio pulses (eg, Patent Document 1). In the TR method, pulses are transmitted in pairs, of which the first pulse is not modulated and the second pulse is modulated by data. An unmodulated pulse is often referred to as a reference pulse. Separate or delay the pair of nozzles from each other by a time interval or delay known to the recipient. The receiver restores the communication data without requiring acquisition time by delaying the first pulse and correlating it with the second pulse based on a known delay in a finite interval. Therefore, since the pulse pairs are reconstructed by the receiver and correlated with each other, data modulation pulse detection is performed. As a result, TR reception does not require synchronization for individual pulses. Since pulse pairs are transmitted through the same channel, no explicit channel estimation is necessary.
[0005] 図 1は、従来の受信装置 10の構成を示すブロック図である。受信装置 10は、 TRパ ルス列を受信するための 1つの積分器 18を有する。受信機 10は、受信アンテナ 11、 相関器 12及び出力部 13を備える。相関器 12は、着信 TRパルスを進行経路 14と遅 れ経路 15に分割する。遅れ経路 15は、時間遅延 Dによって着信 TRパルスを遅らせ る遅延回路 16を有する。乗算器 17は、遅延及び非遅延パルスの乗算を実行する。  FIG. 1 is a block diagram showing a configuration of a conventional receiving apparatus 10. The receiving device 10 has one integrator 18 for receiving the TR pulse train. The receiver 10 includes a receiving antenna 11, a correlator 12, and an output unit 13. Correlator 12 splits the incoming TR pulse into travel path 14 and delay path 15. The delay path 15 has a delay circuit 16 that delays the incoming TR pulse by a time delay D. Multiplier 17 performs multiplication of delayed and non-delayed pulses.
[0006] 相関器 12は、乗算器 17の出力を、 1シンボルフレーム期間 Tfにわたり積分処理を 実行する積分器 18に入力させる。また、相関器 12は、積分器 18の出力を、所定閾 値と比較する閾値コンパレータ 19に入力させる。さらに、相関器 12は、閾値コンパレ ータ 19の出力を出力部 13に入力させる。このように、従来は、積分処理がシンボル フレーム期間全体にわたって実行され、一の積分結果のみが積分器 18から出力さ れる。  [0006] The correlator 12 inputs the output of the multiplier 17 to an integrator 18 that executes an integration process over one symbol frame period Tf. Further, the correlator 12 causes the output of the integrator 18 to be input to a threshold comparator 19 that compares it with a predetermined threshold value. Further, the correlator 12 inputs the output of the threshold comparator 19 to the output unit 13. Thus, conventionally, the integration process is performed over the entire symbol frame period, and only one integration result is output from the integrator 18.
特許文献 1 :米国特許出願公開第 2001Z0053175号明細書  Patent Document 1: US Patent Application Publication No. 2001Z0053175
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しカゝしながら、従来の装置は、 TR方式でも、パルス間隔にわたってノイズを捕捉し てしまい、従来の PPM技術と比べてより高い SN比(SNR)が要求される。これは、受 信参照パルス中のノイズ寄与にデータ変調パルス中のノイズ寄与を乗じた値に関連 した過剰ノイズによるものである。したがって、ノイズの多い環境では TR— IRパルス の受信を改良する必要がある。即ち、伝送参照パルス列で通信する時間分離参照パ ルス及びデータパルスには、受信参照パルス中のノイズ寄与にデータ変調パルス中 のノイズ寄与を乗じた値による SN比の低下が生じるという問題がある。これにより、時 間フレームにわたって積分したノイズ Xノイズの項が大きくなり、ビットエラー率(BER )の特性を低下させるという問題がある。 However, the conventional apparatus captures noise over the pulse interval even in the TR system, and a higher SN ratio (SNR) is required compared to the conventional PPM technology. This is related to the noise contribution in the received reference pulse multiplied by the noise contribution in the data modulation pulse. Due to excessive noise. Therefore, it is necessary to improve the reception of TR-IR pulses in noisy environments. In other words, the time-separated reference pulse and data pulse communicated with the transmission reference pulse train have a problem that the SN ratio is reduced by the value obtained by multiplying the noise contribution in the received reference pulse by the noise contribution in the data modulation pulse. As a result, the noise X-integral term integrated over the time frame is increased, and the bit error rate (BER) characteristics are degraded.
[0008] 本発明の目的は、ノイズ抑止効果を導入することにより、より高い SN比を得ることが できるとともに、ビットエラー率の特性を向上させることができる受信装置及びメッセ一 ジシンボル検出方法を提供することである。 An object of the present invention is to provide a receiving apparatus and a message symbol detection method capable of obtaining a higher SN ratio and improving the bit error rate characteristics by introducing a noise suppression effect. It is to be.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の受信装置は、 2系統に分離された受信パルスの一方の受信パルスを所定 時間遅延させる第一遅延手段と、前記 2系統に分離された受信パルスの他方の受信 パルスと前記第一遅延手段にて遅延された受信パルスとを乗算する乗算手段と、前 記乗算手段にて乗算された後に 2つの系統に分離された受信パルスの一方の受信 パルスを所定時間遅延させる第二遅延手段と、前記乗算手段にて乗算された後に 2 つの系統に分離された受信パルスの他方の受信パルス及び前記第二遅延手段にて 遅延された受信パルスの 1シンボルフレームを一定の時間間隔に時分割して前記時 間間隔毎に積分処理する積分処理手段と、前記積分処理結果の振幅と閾値との比 較結果に基づ 、て、乗算後に分離された前記一方の受信パルスの前記積分処理結 果及び前記第二遅延手段にて遅延された受信パルスの前記積分処理結果の内の 何れか一方を選択する選択手段と、前記選択手段にて選択された前記積分処理結 果よりメッセージシンボルを検出して出力する出力手段と、を具備する構成を採る。  [0009] The receiving device of the present invention includes a first delay means for delaying one reception pulse of the reception pulses separated into two systems for a predetermined time, the other reception pulse of the reception pulses separated into the two systems, and the A multiplying means for multiplying the received pulse delayed by the first delay means, and a second for delaying one received pulse of the received pulses after being multiplied by the multiplying means and separated into two systems for a predetermined time. The delay means and the other received pulse of the received pulse that has been multiplied by the multiplying means and separated into two systems, and one symbol frame of the received pulse delayed by the second delay means are set at regular time intervals. Integration processing means for time-division integration processing at each time interval, and the integration of the one received pulse separated after multiplication based on a comparison result between the amplitude of the integration processing result and a threshold value Processing result And a message symbol is detected from a selection means for selecting one of the integration processing results of the received pulse delayed by the second delay means, and the integration processing result selected by the selection means. And an output means for outputting.
[0010] 本発明のメッセージシンボル検出方法は、 2系統に分離された受信パルスの一方 の受信パルスを第一遅延時間遅延させるステップと、前記 2系統に分離された受信 パルスの他方の受信パルスと遅延された前記受信パルスとを乗算するステップと、乗 算された後に 2つの系統に分離された受信パルスの一方の受信パルスを第二遅延 時間遅延させるステップと、乗算された後に 2つの系統に分離された受信パルスの他 方の受信パルス及び前記第二遅延時間遅延された受信パルスの 1シンボルフレーム を一定の時間間隔に時分割して前記時間間隔毎に積分処理するステップと、前記積 分処理結果の振幅と閾値との比較結果に基づいて、乗算後に分離された前記一方 の受信パルスの前記積分処理結果及び前記第二遅延時間遅延された受信パルス の前記積分処理結果の内の何れか一方を選択するステップと、選択された前記積分 処理結果よりメッセージシンボルを検出して出力するステップと、を具備するようにし た。 [0010] The message symbol detection method of the present invention includes a step of delaying one reception pulse of reception pulses separated into two systems by a first delay time, and the other reception pulse of the reception pulses separated into the two systems. A step of multiplying the delayed received pulse, a step of delaying one of the received pulses that have been multiplied and separated into two systems by a second delay time; and One symbol frame of the other received pulse separated from the separated received pulse and the received pulse delayed by the second delay time Time-divided into predetermined time intervals and integrating each time interval, and based on a comparison result between the amplitude of the integration processing result and a threshold value, the one of the received pulses separated after the multiplication Selecting one of the integration processing result and the integration processing result of the received pulse delayed by the second delay time; detecting and outputting a message symbol from the selected integration processing result; and It was made to comprise.
発明の効果  The invention's effect
[0011] 本発明によれば、ノイズ抑止効果を導入することにより、より高い SN比を得ることが できるとともに、ビットエラー率の特性を向上させることができる。  [0011] According to the present invention, by introducing a noise suppression effect, a higher SN ratio can be obtained, and the bit error rate characteristics can be improved.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]従来の受信装置の構成を示すブロック図 FIG. 1 is a block diagram showing a configuration of a conventional receiving apparatus
[図 2]本発明の実施の形態 1に係る受信装置の構成を示すブロック図  FIG. 2 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1 of the present invention.
[図 3]本発明の実施の形態 1に係る TRパルス列を示す図  FIG. 3 is a diagram showing a TR pulse train according to the first embodiment of the present invention.
[図 4]本発明の実施の形態 1に係る TRパルス列を示す図  FIG. 4 is a diagram showing a TR pulse train according to the first embodiment of the present invention.
[図 5]本発明の実施の形態 1に係る受信装置の動作を示すフロー図  FIG. 5 is a flowchart showing the operation of the receiving apparatus according to Embodiment 1 of the present invention.
[図 6]本発明の実施の形態 1に係る並列積分器の動作を示す図  FIG. 6 is a diagram showing the operation of the parallel integrator according to Embodiment 1 of the present invention.
[図 7]本発明の実施の形態 1に係る受信 TRパルス、ノイズ及び並列積分器の出力を 示す図  FIG. 7 is a diagram showing received TR pulse, noise, and parallel integrator output according to Embodiment 1 of the present invention.
[図 8]本発明の実施の形態 2に係る受信装置の構成を示すブロック図  FIG. 8 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 2 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014] (実施の形態 1)  [0014] (Embodiment 1)
図 2は、本実施の形態 1に係る受信装置 100の構成を示すブロック図である。遅延 回路 102、乗算器 103、積分器 104、遅延回路 105、積分器 106及びコンパレータ 及びセレクタユニット 107は、相関器 113を構成する。また、受信装置 100は、 TRパ ルス列を受信するための 2つの並列の積分器 104、 106を有する。また、受信装置 1 00において、遅延回路 105、二つの積分器 104、 106及びコンパレータ及びセレク タユニット 107を追加している点が従来と相違する。 [0015] アンテナ 101は、信号を受信して進行経路 109の乗算器 103及び遅れ経路 110の 遅延回路 102へ出力する。 FIG. 2 is a block diagram showing a configuration of receiving apparatus 100 according to the first embodiment. The delay circuit 102, the multiplier 103, the integrator 104, the delay circuit 105, the integrator 106, and the comparator and selector unit 107 constitute a correlator 113. The receiving apparatus 100 includes two parallel integrators 104 and 106 for receiving the TR pulse train. In addition, the receiving apparatus 100 is different from the conventional one in that a delay circuit 105, two integrators 104 and 106, and a comparator and selector unit 107 are added. The antenna 101 receives a signal and outputs the signal to the multiplier 103 in the traveling path 109 and the delay circuit 102 in the delay path 110.
[0016] 第一遅延手段である遅延回路 102は、アンテナ 101から入力した信号を時間遅延[0016] The delay circuit 102 as the first delay means delays the signal input from the antenna 101.
D (第一遅延時間)によって遅らせて乗算器 103へ出力する。 Delayed by D (first delay time) and output to multiplier 103.
[0017] 乗算器 103は、アンテナ 101から入力した非遅延パルス信号と遅延回路 102から 入力した遅延パルス信号とを乗算して進行経路 111の乗算器 104及び遅れ経路 11The multiplier 103 multiplies the non-delayed pulse signal input from the antenna 101 by the delayed pulse signal input from the delay circuit 102 to multiply the multiplier 104 and the delay path 11 of the traveling path 111.
2の遅延回路 105へ出力する。 Output to 2 delay circuit 105.
[0018] 積分処理手段である積分器 104は、乗算器 103から入力した信号を N数のインタ 一バルに分割して、各々のインターバルが等しい時間長を有した 1シンボルフレーム にわたつて積分処理を実行する。そして、積分器 104は、積分結果をコンパレータ及 びセレクタユニット 107へ出力する。 [0018] An integrator 104 as an integration processing means divides the signal input from the multiplier 103 into N intervals, and performs integration processing over one symbol frame in which each interval has an equal time length. Execute. The integrator 104 outputs the integration result to the comparator and selector unit 107.
[0019] 第二遅延手段である遅延回路 105は、乗算器 103から入力した信号を時間遅延 D[0019] The delay circuit 105, which is the second delay means, converts the signal input from the multiplier 103 into a time delay D
5 (第二遅延時間)によって遅らせて積分器 106へ出力する。 Delayed by 5 (second delay time) and output to integrator 106.
[0020] 積分処理手段である積分器 106は、遅延回路 105から入力した信号を M数のイン ターバルに分割して、各々のインターバルが等しい時間長を有した 1シンボルフレー ムにわたつて積分処理を実行する。そして、積分器 106は、積分結果をコンパレータ 及びセレクタユニット 107へ出力する。 [0020] The integrator 106, which is an integration processing means, divides the signal input from the delay circuit 105 into M intervals and performs integration processing over one symbol frame in which each interval has an equal time length. Execute. The integrator 106 outputs the integration result to the comparator / selector unit 107.
[0021] 選択手段であるコンパレータ及びセレクタユニット 107は、両積分器 104、 106から の積分結果を比較し、積分結果が大きい方を選択して出力部 108へ出力する。 The comparator / selector unit 107 as selection means compares the integration results from both integrators 104 and 106, selects the one with the larger integration result, and outputs it to the output unit 108.
[0022] 出力手段である出力部 108は、コンパレータ及びセレクタユニット 107から入力した 積分結果より、メッセージシンボルを検出して出力する。メッセージシンボルを検出す ることにより、受信タイミングを検出することができる。 The output unit 108 serving as an output unit detects and outputs a message symbol from the integration result input from the comparator and selector unit 107. The reception timing can be detected by detecting the message symbol.
[0023] 図 3は、 TRインパルス無線伝送器と受信装置 100との間で通信される、シンボル当 たり 1ビットの典型的な TRパルス列 300を示す。 1つの典型的な具体例において、 TFIG. 3 shows a typical TR pulse train 300 of 1 bit per symbol communicated between the TR impulse radio transmitter and the receiving device 100. In one typical embodiment, T
Rパルス列 300は、 TRパルス対(301、 302)を備える。各 TRパルス対は、時間遅延The R pulse train 300 includes TR pulse pairs (301, 302). Each TR pulse pair is time delayed
D1によって分離された 1つの参照パルス 301と 1つのデータパルス 302を含んでいるContains one reference pulse 301 and one data pulse 302 separated by D1
。参照パルス 301は固定極性を有する力 データパルス 302は入力メッセージシンポ ルに基づく変調極性を有する。参照パルス 301と同様な極性を有するデータパルス 3 02を変調することによって、ビット「0」は、シンボルフレーム # 303に伝送される。参 照パルス 301と相対する極性を有するデータパルス 302を変調することによって、ビ ット「1」は、フレーム # 304に伝送される。 . The reference pulse 301 is a force having a fixed polarity. The data pulse 302 has a modulation polarity based on the input message symbol. Data pulse 3 with the same polarity as reference pulse 301 By modulating 02, bit “0” is transmitted in symbol frame # 303. Bit “1” is transmitted in frame # 304 by modulating a data pulse 302 having a polarity relative to reference pulse 301.
[0024] 各シンボルフレーム所要時間 Tfは、所定のシンボルレート Rsによって、 Rs= lZTf と固定される。シンボルフレーム # 303及び # 304における 2つのパルス対は、それ ぞれ、パルス対インターバル D2だけ離されている。特定のコード、たとえばタイム-ホ ッビングコードによって、パルス対インターバル D2を固定し、または変化させることが できる。パルス対インターバル D2の変化は、シンボルフレーム間で、または、 2以上 のパルス対が存在するならば 1つの時間フレーム内で、またはそれらの両方で発生 する。 Each symbol frame required time Tf is fixed as Rs = lZTf by a predetermined symbol rate Rs. The two pulse pairs in symbol frames # 303 and # 304 are each separated by a pulse pair interval D2. Depending on the particular code, eg time-hobbing code, the pulse-to-interval D2 can be fixed or varied. The change in pulse-to-interval D2 can occur between symbol frames, or within one time frame if more than one pulse pair is present, or both.
[0025] さらに、データノ ルスの時間遅延 D1も、特定コードによって固定し、または変えるこ とができる。ノ ルス対インターバル D2、時間遅延 D1の変化や、さらに特定コードによ るデータパルス 302のパルス極性も力 スペクトルの櫛状の線を減らし、チヤネライゼ イシヨンを達成することができる。参照パルス 301及びデータパルス 302の振幅は、 図 3で示される所定値 Aに一致する力 またはある所定の振幅比に基づいて異なりう る。  [0025] Furthermore, the data delay time delay D1 can also be fixed or changed by a specific code. The change of Nols vs. interval D2, time delay D1, and the pulse polarity of data pulse 302 by a specific code can also reduce the comb-like line of the force spectrum and achieve channelization. The amplitudes of the reference pulse 301 and the data pulse 302 vary based on a force that matches the predetermined value A shown in FIG. 3 or a certain predetermined amplitude ratio.
[0026] 図 3では、シンボル当たり 1メッセージビットのみが伝送される。し力し、データパルス 302の極性及び振幅や、またはデータパルス 302の極性及び時間遅延、またはデー タパルス 302の振幅及び時間遅延、またはデータパルス 302の極性、振幅及び時間 遅延を同時に変調することによって、シンボル当たり 2以上のビットを維持することが 可能である。  [0026] In FIG. 3, only one message bit is transmitted per symbol. By simultaneously modulating the polarity and amplitude of the data pulse 302, or the polarity and time delay of the data pulse 302, or the amplitude and time delay of the data pulse 302, or the polarity, amplitude and time delay of the data pulse 302 It is possible to maintain more than 2 bits per symbol.
[0027] 同時にデータパルスの極性及び時間遅延を変調することによって、図 4は、シンポ ル当たり 2ビットを有する典型的な TRパルス列 400を示す。シンボルの中で、第 1ビッ トは、データパルスの時間遅延を変調することであり、そこでは「0」及び「1」がそれぞ れ D3及び D4を示す。そして、第 2ビットはデータパルスの極性を変調することであり 、そこでは、「0」及び「1」がそれぞれ「同極性」及び「反対の極性」を示す。シンボルフ レーム当たり 1パルス対のみが図 4に示されている力 1シンボルを示すために多重 パルス対を有することも可能である。多数のパルス対を用いる場合、データパルスの 時間遅延は固定され、そしてパルス対インターバルは固定される力、または特定コー ドによって変えられる。シンボル当たりの多重ビットに関する変調技術は、図 4の実施 例のみに限定されない。 [0027] By simultaneously modulating the polarity and time delay of the data pulses, FIG. 4 shows a typical TR pulse train 400 having 2 bits per symbol. Within the symbol, the first bit is to modulate the time delay of the data pulse, where “0” and “1” indicate D3 and D4, respectively. The second bit is to modulate the polarity of the data pulse, where “0” and “1” indicate “same polarity” and “opposite polarity”, respectively. Only one pulse pair per symbol frame can have multiple pulse pairs to represent the force one symbol shown in FIG. When using multiple pulse pairs, the data pulse The time delay is fixed and the pulse-to-interval is changed by a fixed force, or a specific code. The modulation technique for multiple bits per symbol is not limited to the embodiment of FIG.
[0028] 図 5は、コンパレータ及びセレクタユニット 107における動作の典型的なフロー図で ある。スタートアップ後、コンパレータ及びセレクタユニット 107は積分器 104及び積 分器 106の両方からの出力を保存する。そして、コンパレータ及びセレクタユニット 1 07は、積分器 104からの保存結果を (ステップ ST501)、所定閾値と比較する (ステ ップ ST502)。閾値より大き!/、結果のみが選択されて復元されて保管され (ステップ S T503)、最終的に、残りの全ての結果が一緒に合計され、出力 Αを生成する (ステツ プ ST504)。同様に、積分器 106からの保存結果を (ステップ ST505)、所定閾値と 比較する (ステップ ST506)。閾値より大きい結果のみが選択されて復元されて保管 され (ステップ ST507)、最終的に、残りの全ての結果が一緒に合計され、出力 Bを 生成する (ステップ ST508)。出力 A及び出力 Bは比較され (ステップ ST509)、大き い方の値が出力部 108に送られ (ステップ ST510)、メッセージシンボルを検出する ことができる。なお、ステップ ST502及びステップ ST506において、保存結果が閾値 より大きくない場合には、選択されずに廃棄される。  FIG. 5 is a typical flowchart of the operation in the comparator and selector unit 107. After startup, the comparator and selector unit 107 saves the output from both the integrator 104 and the integrator 106. The comparator and selector unit 107 then compares the stored result from the integrator 104 (step ST501) with a predetermined threshold (step ST502). Greater than threshold! /, Only results are selected and restored and saved (step ST503), and finally all remaining results are summed together to produce output 出力 (step ST504). Similarly, the storage result from the integrator 106 (step ST505) is compared with a predetermined threshold value (step ST506). Only results greater than the threshold are selected, restored and saved (step ST507), and finally all remaining results are summed together to produce output B (step ST508). Output A and output B are compared (step ST509), and the larger value is sent to output section 108 (step ST510), and a message symbol can be detected. In step ST502 and step ST506, if the storage result is not greater than the threshold value, it is discarded without being selected.
[0029] 図 6は、 1のシンボルフレーム Tf内における 2つの並列積分器の動作を例示する。  [0029] FIG. 6 illustrates the operation of two parallel integrators within one symbol frame Tf.
積分器 104では、記号フレーム Tfは、 N個の等しいインターバルに分割され、各イン ターバルは、等しい所要時間 TfZNを有している。積分器 104は、各インターバル内 でのシグナル 601の積分を実行し、各インターバルの終わりで、コンパレータ及びセ レクタユニット 107に積分の値を提供する。同様に、積分器 106では、記号フレーム T fは、等しい所要時間 TfZMで M個の等しいインターノ レに分割される。積分器 106 は、遅延回路 105からのシグナル 602の積分を実行し、コンパレータ及びセレクタュ ニット 107に、積分の結果を送る。 N及び Mの値は、予め定められており、チャネル条 件により調整することができる。時間遅延 D5は、積分器 106において始点の時間ォ フセットを有するために導入される。時間遅延 D5は、範囲 (0, TfZN)の中で調整す ることがでさる。  In the integrator 104, the symbol frame Tf is divided into N equal intervals, and each interval has an equal duration TfZN. Integrator 104 performs integration of signal 601 within each interval and provides the value of integration to comparator and selector unit 107 at the end of each interval. Similarly, in integrator 106, symbol frame T f is divided into M equal internals with equal duration TfZM. The integrator 106 performs integration of the signal 602 from the delay circuit 105, and sends the integration result to the comparator and selector unit 107. The values of N and M are predetermined and can be adjusted according to channel conditions. Time delay D5 is introduced to have a starting time offset in integrator 106. The time delay D5 can be adjusted within the range (0, TfZN).
[0030] 図 7は、 1つの記号フレーム Tf内で捕らえられる典型的な受信 TRパルス及びノイズ と、 2つの並列積分器の出力とを例示する。シグナル Aは、参照パルス 301、データ パルス 302及びノイズ 701を有している。シグナル Bは、シグナル Aの遅延したものを 表す。 [0030] Figure 7 shows typical received TR pulses and noise captured within one symbol frame Tf. And the output of two parallel integrators. Signal A has a reference pulse 301, a data pulse 302, and noise 701. Signal B represents the delayed version of signal A.
[0031] シグナル Cは、乗算器 103のシグナル Bをシグナル Aに乗じた乗算の結果を表す。  [0031] Signal C represents the result of multiplication by multiplying signal A by signal B of multiplier 103.
シグナル部分 702は、シグナル Bの参照パルス 301をシグナル Aのデータパルス 30 2に乗じた結果である。  The signal portion 702 is the result of multiplying the signal B data pulse 302 by the signal B reference pulse 301.
[0032] シグナル Dは、積分器 104での積分の結果を表す。積分は TfZN毎に遂行され、 各出力はサンプリングされコンパレータ及びセレクタユニット 107に送られる。  [0032] Signal D represents the result of integration in integrator 104. Integration is performed every TfZN, and each output is sampled and sent to the comparator and selector unit 107.
[0033] シグナル Eは、積分器 106における時間遅延 D5での積分の結果を表す。積分期 間は TfZMであり、 Mは図 7中の Nと等しい。シグナル Dは、積分がちょうどシグナル 部分 702の所要時間内に遂行されることを示す。このように、信号電力は 2つの隣接 したインターバルに分離され、それゆえ、 2つの隣接した積分結果 704及び 706に分 離される。振幅 704及び 706がコンパレータ及びセレクタユニット 107の閾値より小さ ぐメッセージが失われるということはあり得る。し力しながら、時間遅延 D5は、積分器 106の前に時間オフセットを導入する。したがって、シグナル Eに、フル信号電力を含 む最も強いシグナル結果 708が存在する。この結果、シグナル結果 708で検出され る可能性は、シグナル Dの積分結果 704及び 706においてよりも非常に大きい。  [0033] Signal E represents the result of integration in integrator 106 with time delay D5. The integration period is TfZM, and M is equal to N in Fig.7. Signal D indicates that the integration is performed within the time required for signal portion 702. In this way, the signal power is separated into two adjacent intervals and is therefore separated into two adjacent integration results 704 and 706. It is possible that messages whose amplitudes 704 and 706 are less than the comparator and selector unit 107 threshold will be lost. However, the time delay D5 introduces a time offset before the integrator 106. Thus, signal E has the strongest signal result 708 including full signal power. As a result, the probability of being detected in signal result 708 is much greater than in signal D integration results 704 and 706.
[0034] 記号フレーム Tfを多数のインターバルに分割することによって、ノイズ 701はまた多 数のインターバルに分離される。したがって、積分結果 704、 706及びシグナル結果 708の積分における雑音電力は、フルシンボルフレーム Tfにわたつて積分が遂行さ れる従来の手段より非常に少ない。さらに、積分結果 704、 706またはシグナル結果 708が検出されれば、シグナル部分のタイミング位置を見出すことができる。これは、 2つの並列積分器による相関器は、 TRパルスの同期に対して動作することができる ことを示している。なお、シグナル Fは、積分結果 704、 706及びシグナル結果 708と の比較のために、従来の受信装置 10の積分器 18における積分結果 710を示すもの である。従来は、積分処理がシンボルフレーム期間全体にわたって実行されることか ら、単一の積分結果 710のみになる。  [0034] By dividing the symbol frame Tf into multiple intervals, the noise 701 is also separated into multiple intervals. Therefore, the noise power in integrating the integration results 704, 706 and signal result 708 is much less than the conventional means in which integration is performed over the full symbol frame Tf. Further, if the integration result 704, 706 or the signal result 708 is detected, the timing position of the signal portion can be found. This shows that the correlator with two parallel integrators can operate for TR pulse synchronization. The signal F indicates the integration result 710 in the integrator 18 of the conventional receiver 10 for comparison with the integration results 704 and 706 and the signal result 708. Conventionally, since the integration process is performed over the entire symbol frame period, only a single integration result 710 is obtained.
[0035] このように、本実施の形態 1によれば、 1シンボルフレーム期間を等分割した時間ィ ンターパルにおいて積分処理を行うことにより、ノイズが多数のインターノ レに分離さ れるので、ノイズレベルを充分小さくすることができ、より高い SN比を得ることができる とともに、ビットエラー率の特性を向上させることができる。また、本実施の形態 1によ れば、遅延しない信号と遅延した信号の 2つの信号を各々積分処理するので、何れ か一方の信号の積分結果が異なるインターバルに分離される場合でも、何れか他方 の信号の積分結果は異なるインターバルに分離されない可能性が高ぐこの場合に は確実にシグナル結果を検出することができ、タイミング位置を確実に検出すること ができる。 [0035] Thus, according to the first embodiment, a time interval obtained by equally dividing one symbol frame period. By performing integration processing at the interpal, the noise is separated into a large number of internal noises, so that the noise level can be sufficiently reduced, a higher SN ratio can be obtained, and the bit error rate characteristics can be improved. Can be made. Further, according to the first embodiment, since the two signals of the non-delayed signal and the delayed signal are respectively integrated, even when the integration result of one of the signals is separated into different intervals, either It is highly possible that the integration result of the other signal is not separated into different intervals. In this case, the signal result can be reliably detected, and the timing position can be reliably detected.
[0036] (実施の形態 2)  [0036] (Embodiment 2)
図 8は、本発明の実施の形態 2に係る受信装置 800の構成を示すブロック図である 。乗算器 103、積分器 104、遅延回路 105、積分器 106、コンパレータ及びセレクタ ユニット 107、加算接合部 801、遅延回路 802、遅延回路 803及びゲインステージ 8 04は、相関器 807を構成する。また、フィードバックパスは、加算接合部 801、遅延 回路 803及びゲインステージ 804を含んで!/、る。  FIG. 8 is a block diagram showing a configuration of receiving apparatus 800 according to Embodiment 2 of the present invention. Multiplier 103, integrator 104, delay circuit 105, integrator 106, comparator and selector unit 107, addition junction 801, delay circuit 802, delay circuit 803, and gain stage 804 constitute correlator 807. The feedback path includes an addition junction 801, a delay circuit 803, and a gain stage 804.
[0037] 本実施の形態 2に係る受信装置 800は、図 1に示す実施の形態 1に係る受信装置 100において、図 8に示すように、遅延回路 102を除き、加算接合部 801、遅延回路 802、遅延回路 803及びゲインステージ 804を追加する。なお、図 8においては、図 1と同一構成である部分には同一の符号を付してその説明は省略する。  [0037] The receiving apparatus 800 according to the second embodiment is the same as the receiving apparatus 100 according to the first embodiment shown in FIG. 1, except for the delay circuit 102, as shown in FIG. 802, a delay circuit 803, and a gain stage 804 are added. In FIG. 8, parts having the same configuration as in FIG.
[0038] アンテナ 101は、信号を受信して進行経路 805の乗算器 103及び遅れ経路 806の 加算接合部 801へ出力する。  The antenna 101 receives the signal and outputs the signal to the multiplier 103 in the traveling path 805 and the addition junction 801 in the delay path 806.
[0039] 加算接合部 801は、アンテナ 101から入力した信号とゲインステージ 804から入力 した信号を合計して遅延回路 802へ出力する。  Addition junction 801 adds the signal input from antenna 101 and the signal input from gain stage 804 and outputs the sum to delay circuit 802.
[0040] 遅延回路 802は、加算接合部 801から入力した着信 TRパルスを、時間遅延 D1〖こ よって遅らせて遅延回路 803及び乗算器 103へ出力する。  The delay circuit 802 delays the incoming TR pulse input from the addition junction 801 by the time delay D 1 and outputs the delayed TR pulse to the delay circuit 803 and the multiplier 103.
[0041] 第三遅延手段である遅延回路 803は、遅延回路 802から入力した着信 TRパルス を、時間遅延 D6によって遅らせてゲインステージ 804へ出力する。遅延回路 803は 、時間遅延 D6と時間遅延 D1との和力 TRパルス列中の連続する 2つの参照パルス 間の時間と等しいという制約を満足させるように時間遅延 D6を選択する。 [0042] 利得制御手段であるゲインステージ 804は、所定ゲイン Gにより、遅延回路 803から 入力した着信 TRパルスの振幅を増加させて加算接合部 801へ出力する。 The delay circuit 803 as the third delay means delays the incoming TR pulse input from the delay circuit 802 by the time delay D 6 and outputs it to the gain stage 804. The delay circuit 803 selects the time delay D6 so as to satisfy the constraint that the time between the time delay D6 and the time delay D1 is equal to the time between two consecutive reference pulses in the TR pulse train. The gain stage 804 as gain control means increases the amplitude of the incoming TR pulse input from the delay circuit 803 by a predetermined gain G, and outputs it to the addition junction 801.
[0043] 乗算器 103は、アンテナ 101から入力した非遅延パルス信号と遅延回路 802から 入力した遅延パルス信号とを乗算して進行経路 111の乗算器 104及び遅れ経路 11 2の遅延回路 105へ出力する。なお、コンパレータ及びセレクタユニット 107における 動作は図 6と同一であるので、その説明は省略する。  Multiplier 103 multiplies the non-delayed pulse signal input from antenna 101 by the delayed pulse signal input from delay circuit 802 and outputs the result to multiplier 104 in traveling path 111 and delay circuit 105 in delayed path 112. To do. The operation in the comparator and selector unit 107 is the same as that in FIG.
[0044] このように、本実施の形態 2によれば、 1シンボルフレーム期間を等分割した時間ィ ンターパルにおいて積分処理を行うことにより、ノイズが多数のインターノ レに分離さ れるので、ノイズレベルを充分小さくすることができ、より高い SN比を得ることができる とともに、ビットエラー率の特性を向上させることができる。また、本実施の形態 2によ れば、遅延しない信号と遅延した信号の 2つの信号を各々積分処理するので、何れ か一方の信号の積分結果が異なるインターバルに分離される場合でも、何れか他方 の信号の積分結果は異なるインターバルに分離されない可能性が高ぐこの場合に は確実にシグナル結果を検出することができ、タイミング位置を確実に検出すること ができる。  As described above, according to the second embodiment, the noise is separated into a large number of inverters by performing the integration process in the time interval obtained by equally dividing one symbol frame period. Can be made sufficiently small, a higher signal-to-noise ratio can be obtained, and the bit error rate characteristics can be improved. Further, according to the second embodiment, since the two signals of the non-delayed signal and the delayed signal are respectively integrated, even when the integration result of one of the signals is separated into different intervals, either It is highly possible that the integration result of the other signal is not separated into different intervals. In this case, the signal result can be reliably detected, and the timing position can be reliably detected.
産業上の利用可能性  Industrial applicability
[0045] 本発明に力かる受信装置及びメッセージシンボル検出方法は、インパルス無線に 用いて好適である。 [0045] The receiving apparatus and the message symbol detection method according to the present invention are suitable for use in impulse radio.

Claims

請求の範囲 The scope of the claims
[1] 2系統に分離された受信パルスの一方の受信パルスを所定時間遅延させる第一遅 延手段と、  [1] First delay means for delaying one of the received pulses separated into two systems for a predetermined time;
前記 2系統に分離された受信パルスの他方の受信パルスと前記第一遅延手段にて 遅延された受信パルスとを乗算する乗算手段と、  Multiplying means for multiplying the other received pulse of the received pulses separated into the two systems by the received pulse delayed by the first delay means;
前記乗算手段にて乗算された後に 2つの系統に分離された受信パルスの一方の受 信パルスを所定時間遅延させる第二遅延手段と、  Second delay means for delaying one received pulse of the received pulses separated by two systems after being multiplied by the multiplying means for a predetermined time;
前記乗算手段にて乗算された後に 2つの系統に分離された受信パルスの他方の受 信パルス及び前記第二遅延手段にて遅延された受信パルスの: Lシンボルフレームを 一定の時間間隔に時分割して前記時間間隔毎に積分処理する積分処理手段と、 前記積分処理結果の振幅と閾値との比較結果に基づいて、乗算後に分離された 前記一方の受信パルスの前記積分処理結果及び前記第二遅延手段にて遅延され た受信パルスの前記積分処理結果の内の何れか一方を選択する選択手段と、 前記選択手段にて選択された前記積分処理結果よりメッセージシンボルを検出し て出力する出力手段と、  L symbol frames of the received pulse that has been multiplied by the multiplying means and then separated into two systems and separated by the second delay means and the received pulse delayed by the second delay means are time-divided into fixed time intervals. Integration processing means for performing integration processing at each time interval, and based on a comparison result between the amplitude of the integration processing result and a threshold value, the integration processing result of the one received pulse separated after multiplication and the second Selection means for selecting one of the integration processing results of the received pulse delayed by the delay means, and output means for detecting and outputting a message symbol from the integration processing result selected by the selection means When,
を具備する受信装置。  A receiving apparatus comprising:
[2] 前記第一遅延手段にて遅延された後に 2つの系統に分離された受信パルスの一 方の受信パルスを遅延させる第三遅延手段と、  [2] Third delay means for delaying one of the received pulses separated into two systems after being delayed by the first delay means;
前記第三遅延手段にて遅延された受信パルスの利得を制御する利得制御手段と、 前記第一遅延手段にて遅延される前の前記一方の受信パルスと前記利得制御手 段にて利得を制御された受信パルスとを加算する加算接合手段とを具備し、 前記第一遅延手段は、前記加算接合手段にて加算された受信パルスを所定時間 遅延させ、  Gain control means for controlling the gain of the received pulse delayed by the third delay means; Gain control by the one received pulse before being delayed by the first delay means and the gain control means And an addition junction means for adding the received pulses, wherein the first delay means delays the reception pulses added by the addition junction means for a predetermined time,
前記乗算手段は、 2系統に分離された受信パルスの他方の受信パルスと前記第一 遅延手段にて遅延された後に 2つの系統に分離された受信パルスの他方の受信パ ルスとを乗算する請求項 1記載の受信装置。  The multiplying means multiplies the other received pulse of the received pulses separated into two systems by the other received pulse of the received pulse separated into two systems after being delayed by the first delay means. Item 1. The receiving device according to item 1.
[3] 前記選択手段は、乗算後に分離された前記一方の受信パルスの前記積分処理結 果の振幅の内で前記閾値以上の振幅を合計するとともに、前記第二遅延手段にて 遅延された受信パルスの前記積分処理結果の振幅の内で前記閾値以上の振幅を 合計し、前記振幅の合計が大き!、方を選択する請求項 1記載の受信装置。 [3] The selecting means sums up amplitudes not less than the threshold value among amplitudes of the integration processing results of the one received pulse separated after multiplication, and the second delay means 2. The receiving apparatus according to claim 1, wherein amplitudes equal to or greater than the threshold value are summed out of the amplitudes of the delayed reception pulses, and the sum of the amplitudes is selected.
2系統に分離された受信パルスの一方の受信パルスを第一遅延時間遅延させるス テツプと、  A step of delaying one of the received pulses separated into two systems by a first delay time;
前記 2系統に分離された受信パルスの他方の受信パルスと遅延された前記受信パ ルスとを乗算するステップと、  Multiplying the other received pulse of the received pulses separated into the two systems by the delayed received pulse;
乗算された後に 2つの系統に分離された受信パルスの一方の受信パルスを第二遅 延時間遅延させるステップと、  Delaying one received pulse of the received pulses after being multiplied and separated into two systems by a second delay time;
乗算された後に 2つの系統に分離された受信パルスの他方の受信パルス及び前記 第二遅延時間遅延された受信パルスの 1シンボルフレームを一定の時間間隔に時分 割して前記時間間隔毎に積分処理するステップと、  One symbol frame of the other received pulse that has been multiplied and then separated into two systems and the received pulse delayed by the second delay time is divided into time intervals and integrated at each time interval. Processing steps;
前記積分処理結果の振幅と閾値との比較結果に基づいて、乗算後に分離された 前記一方の受信パルスの前記積分処理結果及び前記第二遅延時間遅延された受 信パルスの前記積分処理結果の内の何れか一方を選択するステップと、  Based on the comparison result between the amplitude of the integration processing result and the threshold value, the integration processing result of the one received pulse separated after multiplication and the integration processing result of the received pulse delayed by the second delay time are included. Selecting either one of the following:
選択された前記積分処理結果よりメッセージシンボルを検出して出力するステップ と、  Detecting and outputting a message symbol from the selected integration processing result; and
を具備するメッセージシンボル検出方法。  A message symbol detection method comprising:
PCT/JP2005/009663 2005-05-26 2005-05-26 Receiver apparatus and message symbol detecting method WO2006126269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009663 WO2006126269A1 (en) 2005-05-26 2005-05-26 Receiver apparatus and message symbol detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009663 WO2006126269A1 (en) 2005-05-26 2005-05-26 Receiver apparatus and message symbol detecting method

Publications (1)

Publication Number Publication Date
WO2006126269A1 true WO2006126269A1 (en) 2006-11-30

Family

ID=37451704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009663 WO2006126269A1 (en) 2005-05-26 2005-05-26 Receiver apparatus and message symbol detecting method

Country Status (1)

Country Link
WO (1) WO2006126269A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053175A1 (en) * 2000-01-04 2001-12-20 Hoctor Ralph Thomas Ultra-wideband communications system
JP2005124140A (en) * 2003-07-14 2005-05-12 Mitsubishi Electric Research Laboratories Inc Apparatus and method for detecting transmitted data symbol in ultra-wide-band communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053175A1 (en) * 2000-01-04 2001-12-20 Hoctor Ralph Thomas Ultra-wideband communications system
JP2005124140A (en) * 2003-07-14 2005-05-12 Mitsubishi Electric Research Laboratories Inc Apparatus and method for detecting transmitted data symbol in ultra-wide-band communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOCTOR R. AND TOMLINSON H.: "Delay-Hopped Transmitted-Reference RF Communications", IEEE CONFERENCE ON ULTRA WIDEBAND SYSTEMS AND TECHNOLOGIES 2002. DIGEST OF PAPERS, 21 May 2002 (2002-05-21) - 23 May 2002 (2002-05-23), pages 265 - 269, XP002338580 *

Similar Documents

Publication Publication Date Title
EP2259438B1 (en) Selective noise cancellation of a spread spectrum signal
EP1618696B1 (en) Frequency synchronization apparatus and frequency synchronization method
US7881400B2 (en) Pulse modulation type transmitter apparatus and pulse modulation type receiver apparatus
US20060285578A1 (en) Robust non-coherent receiver for pam-ppm signals
JP4388943B2 (en) Correlator
US8213545B2 (en) Radio receiving apparatus and radio receiving method
JPH08256094A (en) Synchronism both in symbol and frame of time split plural connection system and code split plural connection system
CN109756968B (en) Precise synchronization timing method and device for single carrier spread spectrum system
EP1928119B1 (en) Method of acquiring initial synchronization in impulse wireless communication and receiver
US8351483B1 (en) Architecture for ultra-wideband radio
US7342972B1 (en) Timing synchronization using dirty templates in ultra wideband (UWB) communications
JP3768108B2 (en) OFDM receiver
US20080043862A1 (en) Receiving Apparatus and Receiving Method
WO2006126269A1 (en) Receiver apparatus and message symbol detecting method
JP4791307B2 (en) Sampling clock control method for receiving apparatus and relay apparatus
RU2491570C1 (en) Quadrature pulsed noise compensator
JPH10190619A (en) Synchronizing device
JP2005151396A (en) Reception apparatus and reception control method
CN113162713B (en) Variable symbol rate timing recovery method and system based on Gardner algorithm
Otte et al. Slot synchronization by reducing the ppm pulsewidth in wireless optical systems
JP2012129866A (en) Radio communication device and radio communication method
US20090232227A1 (en) Pulse communication device, pulse transmitting device, pulse receiving device, pulse transmitting/receiving device, electronic apparatus, and pulse communication method
List Effect of group delay variation on time tracking for frequency hopped satellite systems
KR100655569B1 (en) Method for feedforward symbol timing error estimation
KR101658933B1 (en) Impulse carrier recovery and uwb receiver included the recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05743826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP