WO2006126073A1 - Electric clutch actuator shifted inertia brake - Google Patents

Electric clutch actuator shifted inertia brake Download PDF

Info

Publication number
WO2006126073A1
WO2006126073A1 PCT/IB2006/001363 IB2006001363W WO2006126073A1 WO 2006126073 A1 WO2006126073 A1 WO 2006126073A1 IB 2006001363 W IB2006001363 W IB 2006001363W WO 2006126073 A1 WO2006126073 A1 WO 2006126073A1
Authority
WO
WIPO (PCT)
Prior art keywords
input shaft
clutch
release bearing
engage
brake
Prior art date
Application number
PCT/IB2006/001363
Other languages
French (fr)
Inventor
Daniel A. Monette
Robert J. Bailey
Alan C. Stine
Original Assignee
Eaton Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Corporation filed Critical Eaton Corporation
Publication of WO2006126073A1 publication Critical patent/WO2006126073A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D67/00Combinations of couplings and brakes; Combinations of clutches and brakes
    • F16D67/02Clutch-brake combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic

Definitions

  • the present invention relates to an inertia brake that is actuated by an electric clutch actuator that engages and disengages a release bearing.
  • Transmission research and development is directed to developing transmissions that meet performance standards relating to durability, shifting performance, and providing effective torque transfer.
  • Other objectives may include reducing manufacturing and operational costs.
  • Digital controls for transmissions are being developed that improve shift performance to a point at which computer controlled shifting may be superior to shift performance of an experienced driver yet can be executed by the most inexperienced drivers.
  • Digital controls may be used with electric clutches to shift the transmission by shifting the release bearing to engage and disengage the clutch.
  • Electric clutch actuators generally incorporate a solenoid that is selectively actuated by connection to a power source to shift the release bearing.
  • Input shaft braking can improve transmission performance by increasing the speed of up shifting through available gear ratios. Input shaft braking is particularly important in lower gear ratios when operating a heavy vehicle on steep inclines at low speeds. Input shaft brakes have been developed that are shifted by a hydraulic or pneumatic control system to improve shift performance. One potential problem with fluid controlled input shaft brakes is that over time air leaks or oil leaks may develop. Generally, fluid controlled input shaft brakes do not lend themselves to operation with electric clutch actuators because they require extensive independent control systems that must be integrated with the electric clutch actuator system. There is a need for an electric clutch actuator that can be integrally controlled and used to actuate an inertia brake. There is a particular need for such a system that can reduce the cost of an inertia brake system by utilizing electric clutch actuator components to operate the inertia brake.
  • a transmission system that includes a plurality of selectable gear sets that may be engaged to provide different gear ratios.
  • the transmission system comprises an input shaft that supplies torque to the transmission system.
  • a clutch selectively transfers torque to the input shaft.
  • a release bearing is received on the input shaft and is axially moved relative to the input shaft to selectively release and engage the clutch.
  • An electric actuator engages the release bearing to move the release bearing axially on the input shaft.
  • An input shaft brake is disposed on the input shaft and has brake plates that selectively engage a rotor that rotates with the input shaft to apply a braking force to the input shaft.
  • the release bearing is shifted by an electric clutch actuator in one axial direction to engage the clutch and in the opposite axial direction to both disengage the clutch and engage the input shaft brake after the clutch is disengaged to facilitate shifting between selectable gear sets.
  • a combination of a clutch and input shaft brake for a multiple speed transmission system.
  • the input shaft is intended to be selectively connected to a source of torque by a clutch.
  • a release bearing is received by and axially moved on the input shaft to selectively release and engage the clutch.
  • a clutch actuator engages the release bearing to move the release bearing axially on the input shaft.
  • At least one reaction plate is provided that is non-rotatably mounted adjacent to a rotor that rotates with the input shaft to apply a braking force to the input shaft.
  • the release bearing is shifted by the clutch actuator in one axial direction to engage the clutch and in the opposite axial direction to both disengage the clutch and engage the reaction plate.
  • the clutch actuator may have a cross shaft that moves the actuator axially so that the cross shaft may operate both the clutch and the input shaft brake.
  • the release bearing is coaxially received on the input shaft.
  • the electric clutch actuator is moved in a first direction to cause the release bearing to engage the clutch.
  • the electric clutch actuator is moved in a second direction to disengage the clutch and engage the input shaft brake.
  • the input shaft brake may comprise more than one reaction plate with each of the reaction plates being non-rotatably grounded to the clutch housing.
  • Two reaction plates may be disposed on opposite sides of the rotor that are relatively axially movable to a limited extent.
  • the release bearing applies an axial force to the first reaction plate that is driven into contact with the rotor.
  • the rotor is axially shifted to engage the second reaction plate when the braking force is applied.
  • a spring may operatively engage the first and second reaction plates to bias the reaction plates out of engagement with the rotor when the release bearing is not applying an axial force to the first reaction plate.
  • the inertia brake may be a low capacity dry clutch type of inertia brake.
  • FIGURE 1 is a cross-sectional view of a clutch assembly having an electric clutch actuator and input shaft brake made in accordance with one embodiment of the present invention
  • FIGURE 2 is a diagrammatic half-section view of the clutch assembly showing the clutch engaged
  • FIGURE 3 is a diagrammatic half-section view of the clutch assembly at the release bearing touch point
  • FIGURE 4 is a diagrammatic half-section view of the clutch assembly at the clutch touch point
  • FIGURE 5 is a diagrammatic half-section view of the clutch assembly with the clutch fully open and the release bearing initially contacting the input shaft brake;
  • FIGURE 6 is a diagrammatic half-section view of the clutch assembly showing the clutch disengaged and the inertia brake fully engaged.
  • a clutch is generally indicated by reference numeral 10.
  • the clutch assembly 10 is at least partially enclosed within a clutch housing 12.
  • a clutch 14 of conventional design is partially disposed within the clutch housing 12.
  • a release bearing 16 have a sealed anti-friction bearing is provided on an input shaft 18.
  • An electric clutch actuator 20 is coaxially received on the input shaft 18.
  • a transmission housing 24 is partially illustrated in Figure 1 and the clutch assembly 10 is attached to the transmission housing 24.
  • An input gear 26 is shown secured to the input shaft 18 within the transmission housing 24.
  • An input shaft inertia brake assembly is generally referred to by reference numeral 30.
  • the input shaft inertia brake may be a low capacity dry clutch type of brake.
  • Input shaft inertia brake assembly 30 includes a first reaction plate 32 and a second reaction plate 34.
  • the reaction plates 32, 34 are non-rotatably assembled to the clutch housing 12.
  • the second reaction plate could be formed as a portion of a release bearing cap.
  • a rotor 36 is disposed between the first and second reaction plates 32 and 34.
  • the rotor 36 is secured by splines 38 to the input shaft 18 to permit limited axial movement of the rotor 36.
  • a layer of friction material 40 is provided on each of the reaction plates 32 and 34.
  • the layer of friction material 40 could also be provided by permeating the reaction plates 32 and 34 with friction material as they are formed, for example, by means of a sintering process.
  • the first and second reaction plates 32 and 34 are biased against engagement with the rotor 36 by a reaction spring 42.
  • the reaction spring 42 is received on a reaction bushing 44 that is retained by bolts 46.
  • Bolts 46 extend through the reaction bushing 44 and also may be used as shown to secure the clutch housing 12 to the transmission housing 24.
  • a bearing cap 48 is provided on the side of the clutch housing 12 that is secured to the transmission housing 24.
  • the bearing cap 48 is provided with an annular seal member 50 that provides a seal around the periphery of the bearing cap 48.
  • the release bearing 16 includes an actuating plate 52 that is adapted to engage the first reaction plate 32 when the electric clutch actuator 20 is shifted to engage the input shaft inertia brake assembly 30.
  • the clutch assembly 10 of the present invention is schematically represented.
  • the clutch assembly 10 includes the clutch 14, release bearing 16, and input shaft inertia brake assembly 30.
  • the release bearing 16 is coaxially received on the input shaft 18. It should be noted that only the upper half of the clutch assembly is shown.
  • the electric clutch actuator 20 is provided with a cross shaft 56 that contacts the release bearing 16.
  • the cross shaft 56 axially shifts the release bearing 16 relative to the input shaft 18.
  • the release bearing is shown in the clutch engaged position in which the clutch springs 58 bias a plurality of levers 60 to engage the clutch 14. This is the position of the clutch when the transmission is engaged.
  • the input shaft brake 30 is shown with the reaction spring 34 biasing the reaction plates 32 and 34 out of engagement with the rotor 36.
  • the electric clutch actuator 20 is shown at the release bearing touch point (the electric clutch actuator 20 causes the cross shaft 56 to initially touch the release bearing 16 or actuating plate 52 that is connected to the release bearing 16).
  • a solenoid (not shown) may be incorporated in the electric clutch actuator 20. At this point the clutch is still fully engaged and the input shaft inertia brake assembly 30 is not engaged.
  • the electric clutch actuator 20 is shown further rotated to cause the cross shaft 56 to shift the release bearing 16 toward input shaft brake assembly 30. Movement of the electric clutch actuator 20 also causes the levers 60 to move out of engagement with the clutch 14. The electric clutch actuator 20 is shown prior to engaging the first reaction plate 32.
  • the clutch assembly 10 is shown with the electric clutch actuator 20 further rotated to fully release the clutch 14 and with the actuator 20 engaging the first reaction plate 32 of the input shaft inertia brake assembly 30.
  • the first reaction plate 32 is shifted axially by the actuating plate 52 into engagement with the rotor 36.
  • the clutch assembly 10 is shown with the input shaft inertia brake assembly 30 fully engaged.
  • the levers 60 hi this position do not exert any substantial pressure on the clutch 14 and the release bearing 16 is shifted against the clutch springs 58.
  • the release bearing 16 and actuating plate 52 shift the first reaction plate 32 and rotor 36 into engagement with the second reaction plate 34 against the biasing force of the reaction spring 42.
  • the rotor 36 shifts axially on its splined connection to the input shaft 18.
  • the input shaft inertia brake assembly 30 applies its full braking force to the input shaft 18. This slows the input shaft 18 and permits more rapid upshifting through available gear ratios.

Abstract

A clutch assembly (10) having a clutch (10), release bearing (16), and input shaft inertia brake assembly (36) is disclosed. An electric clutch actuator shifts the release bearing (16) axially along an input shaft (18) of a transmission system to either engage the clutch (10) or engage the input shaft inertia brake (30).

Description

ELECTRIC CLUTCH ACTUATOR SHIFTED INERTIA BRAKE
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an inertia brake that is actuated by an electric clutch actuator that engages and disengages a release bearing.
2. Background Art
Transmission research and development is directed to developing transmissions that meet performance standards relating to durability, shifting performance, and providing effective torque transfer. Other objectives may include reducing manufacturing and operational costs.
Digital controls for transmissions are being developed that improve shift performance to a point at which computer controlled shifting may be superior to shift performance of an experienced driver yet can be executed by the most inexperienced drivers. Digital controls may be used with electric clutches to shift the transmission by shifting the release bearing to engage and disengage the clutch. Electric clutch actuators generally incorporate a solenoid that is selectively actuated by connection to a power source to shift the release bearing.
Input shaft braking can improve transmission performance by increasing the speed of up shifting through available gear ratios. Input shaft braking is particularly important in lower gear ratios when operating a heavy vehicle on steep inclines at low speeds. Input shaft brakes have been developed that are shifted by a hydraulic or pneumatic control system to improve shift performance. One potential problem with fluid controlled input shaft brakes is that over time air leaks or oil leaks may develop. Generally, fluid controlled input shaft brakes do not lend themselves to operation with electric clutch actuators because they require extensive independent control systems that must be integrated with the electric clutch actuator system. There is a need for an electric clutch actuator that can be integrally controlled and used to actuate an inertia brake. There is a particular need for such a system that can reduce the cost of an inertia brake system by utilizing electric clutch actuator components to operate the inertia brake.
These and other problems and needs are addressed by applicants' invention as summarized below.
SUMMARY OF THE INVENTION
According to one aspect of the present invention, a transmission system is disclosed that includes a plurality of selectable gear sets that may be engaged to provide different gear ratios. The transmission system comprises an input shaft that supplies torque to the transmission system. A clutch selectively transfers torque to the input shaft. A release bearing is received on the input shaft and is axially moved relative to the input shaft to selectively release and engage the clutch. An electric actuator engages the release bearing to move the release bearing axially on the input shaft. An input shaft brake is disposed on the input shaft and has brake plates that selectively engage a rotor that rotates with the input shaft to apply a braking force to the input shaft. The release bearing is shifted by an electric clutch actuator in one axial direction to engage the clutch and in the opposite axial direction to both disengage the clutch and engage the input shaft brake after the clutch is disengaged to facilitate shifting between selectable gear sets.
According to another aspect of the present invention, a combination of a clutch and input shaft brake is provided for a multiple speed transmission system. The input shaft is intended to be selectively connected to a source of torque by a clutch. A release bearing is received by and axially moved on the input shaft to selectively release and engage the clutch. A clutch actuator engages the release bearing to move the release bearing axially on the input shaft. At least one reaction plate is provided that is non-rotatably mounted adjacent to a rotor that rotates with the input shaft to apply a braking force to the input shaft. The release bearing is shifted by the clutch actuator in one axial direction to engage the clutch and in the opposite axial direction to both disengage the clutch and engage the reaction plate.
According to other aspects of the invention, the clutch actuator may have a cross shaft that moves the actuator axially so that the cross shaft may operate both the clutch and the input shaft brake. The release bearing is coaxially received on the input shaft. The electric clutch actuator is moved in a first direction to cause the release bearing to engage the clutch. The electric clutch actuator is moved in a second direction to disengage the clutch and engage the input shaft brake.
According to other aspects of the invention, The input shaft brake may comprise more than one reaction plate with each of the reaction plates being non-rotatably grounded to the clutch housing. Two reaction plates may be disposed on opposite sides of the rotor that are relatively axially movable to a limited extent. The release bearing applies an axial force to the first reaction plate that is driven into contact with the rotor. The rotor is axially shifted to engage the second reaction plate when the braking force is applied. A spring may operatively engage the first and second reaction plates to bias the reaction plates out of engagement with the rotor when the release bearing is not applying an axial force to the first reaction plate. The inertia brake may be a low capacity dry clutch type of inertia brake.
These and other aspects of the present invention will be better understood in view of the attached drawings and following detailed description of an illustrated embodiment of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a cross-sectional view of a clutch assembly having an electric clutch actuator and input shaft brake made in accordance with one embodiment of the present invention; FIGURE 2 is a diagrammatic half-section view of the clutch assembly showing the clutch engaged;
FIGURE 3 is a diagrammatic half-section view of the clutch assembly at the release bearing touch point;
FIGURE 4 is a diagrammatic half-section view of the clutch assembly at the clutch touch point;
FIGURE 5 is a diagrammatic half-section view of the clutch assembly with the clutch fully open and the release bearing initially contacting the input shaft brake; and
FIGURE 6 is a diagrammatic half-section view of the clutch assembly showing the clutch disengaged and the inertia brake fully engaged.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
Referring to Figure 1 , a clutch is generally indicated by reference numeral 10. The clutch assembly 10 is at least partially enclosed within a clutch housing 12. A clutch 14 of conventional design is partially disposed within the clutch housing 12. A release bearing 16 have a sealed anti-friction bearing is provided on an input shaft 18. An electric clutch actuator 20 is coaxially received on the input shaft 18.
A transmission housing 24 is partially illustrated in Figure 1 and the clutch assembly 10 is attached to the transmission housing 24. An input gear 26 is shown secured to the input shaft 18 within the transmission housing 24.
An input shaft inertia brake assembly is generally referred to by reference numeral 30. The input shaft inertia brake may be a low capacity dry clutch type of brake. Input shaft inertia brake assembly 30 includes a first reaction plate 32 and a second reaction plate 34. The reaction plates 32, 34 are non-rotatably assembled to the clutch housing 12. Alternatively, the second reaction plate could be formed as a portion of a release bearing cap. A rotor 36 is disposed between the first and second reaction plates 32 and 34. The rotor 36 is secured by splines 38 to the input shaft 18 to permit limited axial movement of the rotor 36. A layer of friction material 40 is provided on each of the reaction plates 32 and 34. The layer of friction material 40 could also be provided by permeating the reaction plates 32 and 34 with friction material as they are formed, for example, by means of a sintering process. The first and second reaction plates 32 and 34 are biased against engagement with the rotor 36 by a reaction spring 42. The reaction spring 42 is received on a reaction bushing 44 that is retained by bolts 46. Bolts 46 extend through the reaction bushing 44 and also may be used as shown to secure the clutch housing 12 to the transmission housing 24.
A bearing cap 48 is provided on the side of the clutch housing 12 that is secured to the transmission housing 24. The bearing cap 48 is provided with an annular seal member 50 that provides a seal around the periphery of the bearing cap 48.
The release bearing 16 includes an actuating plate 52 that is adapted to engage the first reaction plate 32 when the electric clutch actuator 20 is shifted to engage the input shaft inertia brake assembly 30.
Operation of the electric clutch actuator and input shaft inertia brake assembly will be described below with reference to Figures 2-6.
Referring to Figure 2, the clutch assembly 10 of the present invention is schematically represented. The clutch assembly 10 includes the clutch 14, release bearing 16, and input shaft inertia brake assembly 30. The release bearing 16 is coaxially received on the input shaft 18. It should be noted that only the upper half of the clutch assembly is shown. The electric clutch actuator 20 is provided with a cross shaft 56 that contacts the release bearing 16. The cross shaft 56 axially shifts the release bearing 16 relative to the input shaft 18. In Figure 2, the release bearing is shown in the clutch engaged position in which the clutch springs 58 bias a plurality of levers 60 to engage the clutch 14. This is the position of the clutch when the transmission is engaged. The input shaft brake 30 is shown with the reaction spring 34 biasing the reaction plates 32 and 34 out of engagement with the rotor 36.
Referring to Figure 3, the electric clutch actuator 20 is shown at the release bearing touch point (the electric clutch actuator 20 causes the cross shaft 56 to initially touch the release bearing 16 or actuating plate 52 that is connected to the release bearing 16). A solenoid (not shown) may be incorporated in the electric clutch actuator 20. At this point the clutch is still fully engaged and the input shaft inertia brake assembly 30 is not engaged.
Referring to Figure 4, the electric clutch actuator 20 is shown further rotated to cause the cross shaft 56 to shift the release bearing 16 toward input shaft brake assembly 30. Movement of the electric clutch actuator 20 also causes the levers 60 to move out of engagement with the clutch 14. The electric clutch actuator 20 is shown prior to engaging the first reaction plate 32.
Referring to Figure 5, the clutch assembly 10 is shown with the electric clutch actuator 20 further rotated to fully release the clutch 14 and with the actuator 20 engaging the first reaction plate 32 of the input shaft inertia brake assembly 30. The first reaction plate 32 is shifted axially by the actuating plate 52 into engagement with the rotor 36.
Referring to Figure 6, the clutch assembly 10 is shown with the input shaft inertia brake assembly 30 fully engaged. The levers 60 hi this position do not exert any substantial pressure on the clutch 14 and the release bearing 16 is shifted against the clutch springs 58. The release bearing 16 and actuating plate 52 shift the first reaction plate 32 and rotor 36 into engagement with the second reaction plate 34 against the biasing force of the reaction spring 42. The rotor 36 shifts axially on its splined connection to the input shaft 18. In this position, the input shaft inertia brake assembly 30 applies its full braking force to the input shaft 18. This slows the input shaft 18 and permits more rapid upshifting through available gear ratios. While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various, changes may be made without departing from the spirit and scope of the invention.

Claims

WHAT IS CLAIMED IS:
1. A transmission system (24) having a plurality of selectable gear sets that may be engaged to provide different gear ratios, comprising: an input shaft (18) that supplies torque to the transmission system
a clutch (14) that selectively transfers torque to the input shaft (18) of the transmission system (24); a release bearing (16) that is received on the input shaft (18) and is axially moved relative to the input shaft (18) to selectively release and engage the clutch (14); an electric clutch actuator (20) operatively engaging the release bearing (16) to move the release bearing (16) axially on the input shaft (18); an input shaft brake (30) that is disposed on the input shaft (18), the input shaft brake (30) having brake plates (32, 34) that selectively engage a rotor (36) that rotates with the input shaft (18) to apply a braking force to the input shaft (18); and wherein the release bearing (16) is shifted by the electric clutch actuator (20) in one axial direction to engage the clutch (14) and in the opposite axial direction to both disengage the clutch (14) and engage the input shaft brake (30) after the clutch (16) is disengaged to facilitate shifting between selectable gear sets.
2. The transmission system of claim 1 wherein the electric clutch actuator (20) has a cross shaft (56) that moves the release bearing (16) axially, wherein the electric clutch actuator (20) operates both the clutch (14) and the input shaft brake (30).
3. The transmission system of claim 1 wherein the inertia brake (30) is a low capacity dry clutch type of inertia brake.
4. The transmission system of claim 1 wherein the electric clutch actuator (20) in a first stroke in a first direction causes the release bearing (16) to engage the clutch (14) and in a second stroke in a second direction causes the release bearing (16) to disengage the clutch (14) and engage the input shaft brake (30).
5. The transmission system of claim 1 wherein the input shaft brake (30) further comprises first and second reaction plates (32, 34) that are non-rotatably secured to the clutch housing (12), the reaction plates (32, 34) being disposed on opposite sides of the rotor (36) and at least one reaction plate (32) being axially moveable to a limited extent, an actuator plate (52) of the release bearing (16) applies an axial force to the first reaction plate (32) that is driven into contact with the rotor (16), the rotor (16) being axially shifted to engage the second reaction plate (34) when the braking force is applied.
6. The transmission system of claim 5 wherein a reaction spring (42) operatively engages the first and second reaction plates (32, 34) to bias the reaction plates out of engagement with the rotor (36) when the release bearing (16) is not applying an axial force to the first reaction plate (32).
7. The transmission system of claim 1 wherein the release bearing (16) is coaxially received on the input shaft (18).
8. The transmission system of claim 7 wherein a cross shaft (56) is provided that is axially moved by the electric clutch actuator (20) and engages the release bearing (16) to move the release bearing (16) axially relative to the input shaft (18).
9. A clutch (10) and input shaft brake (30), in combination, for a multiple gear set transmission system having a plurality of selectable gear sets that may be engaged to provide different gear ratios, comprising: an input shaft (18) that is adapted to be operatively connected to a source of torque; a clutch (10) that selectively connects the input shaft (18) to the source of torque; . . a release bearing (16) received by and axially moved relative to the input shaft (18) to selectively release and engage the clutch (10); a clutch actuator (20) engaging the release bearing (16) to move the release bearing (16) axially on the input shaft (18); at least one reaction plate (32, 34) that is non-rotatably mounted adjacent to a rotor (36) that rotates with the input shaft (18) to apply a braking force to the rotor (16) that is attached to the input shaft (18); and wherein the release bearing (16) is shifted by the clutch actuator (20) in one axial direction to engage the clutch (10) and in the opposite axial direction to disengage the clutch (10) and engage the reaction plate (32, 34).
10. The combination of claim 9 wherein the clutch actuator (20) has a cross shaft (56) that moves the release bearing (16) axially to selectively engage the clutch (10) and the reaction plate (32, 34).
11. The combination of claim 9 wherein the inertia brake (30) is a low capacity dry clutch inertia brake (30).
12. The combination of claim 9 wherein the clutch actuator (20) in a first stroke in a first direction causes the release bearing (16) to engage the clutch (10) and in a second stroke in a second direction causes the release bearing (16) to disengage the clutch (10) and engage the reaction plate (32, 34).
13. The combination of claim 9 wherein the input shaft brake (30) further comprises first and second reaction plates (32, 34) that are non- rotatably secured to the clutch housing (12), the reaction plates (32, 34) being disposed on opposite sides of the rotor (36) and being relatively axially moveable to a limited extent, the release bearing (16) applying an axial force to the first reaction plate (32) that is driven into contact with the rotor (36), the rotor (36) being axially shifted on the input shaft (18) to engage the second reaction plate (34) when the braking force is applied.
14. The combination of claim 13 wherein a spring (42) operatively engages the first and second reaction plates (32, 34) to bias the reaction plates (32, 34) out of engagement with the rotor (36) when the release bearing (16) is not applying an axial force to the first reaction plate (32).
15. The combination of claim 9 wherein the release bearing (16) is coaxially received on the input shaft (18).
16. The combination of claim 15 wherein a cross shaft (56) is provided that is axially moved by the clutch actuator (20) and engages the release bearing (16) to move the release bearing (16) axially relative to the input shaft (18).
PCT/IB2006/001363 2005-05-24 2006-05-24 Electric clutch actuator shifted inertia brake WO2006126073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IS136149 2005-05-24
IS11/136,149 2005-05-24

Publications (1)

Publication Number Publication Date
WO2006126073A1 true WO2006126073A1 (en) 2006-11-30

Family

ID=37011930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2006/001363 WO2006126073A1 (en) 2005-05-24 2006-05-24 Electric clutch actuator shifted inertia brake

Country Status (1)

Country Link
WO (1) WO2006126073A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722643A (en) * 1970-10-09 1973-03-27 Fichtel & Sachs Ag Vehicle clutch with gear synchronizing brake
US4108295A (en) * 1975-02-11 1978-08-22 Societe Anonyme Francaise Du Ferodo Inertia-brake control for input shaft of gear box, and its application to clutches and units formed by a clutch and a gear-box
US4750596A (en) * 1985-10-11 1988-06-14 Valeo Control mechanism for a coupling device such as a clutch, variable speed drive, brake or the like
DE19826068A1 (en) * 1998-06-12 1999-12-16 Zahnradfabrik Friedrichshafen Joint actuation of clutch and transmission brake
US6029782A (en) * 1998-03-24 2000-02-29 Dana Corporation Multiple actuator brake
EP1065407A1 (en) * 1999-07-02 2001-01-03 MAGNETI MARELLI S.p.A. A transmission unit for a vehicle
DE102004002045A1 (en) * 2004-01-15 2005-08-04 Zf Friedrichshafen Ag Vehicle clutch with transmission braking and hill holder function integrated into one compact layout using a wet plate clutch and with a common actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722643A (en) * 1970-10-09 1973-03-27 Fichtel & Sachs Ag Vehicle clutch with gear synchronizing brake
US4108295A (en) * 1975-02-11 1978-08-22 Societe Anonyme Francaise Du Ferodo Inertia-brake control for input shaft of gear box, and its application to clutches and units formed by a clutch and a gear-box
US4750596A (en) * 1985-10-11 1988-06-14 Valeo Control mechanism for a coupling device such as a clutch, variable speed drive, brake or the like
US6029782A (en) * 1998-03-24 2000-02-29 Dana Corporation Multiple actuator brake
DE19826068A1 (en) * 1998-06-12 1999-12-16 Zahnradfabrik Friedrichshafen Joint actuation of clutch and transmission brake
EP1065407A1 (en) * 1999-07-02 2001-01-03 MAGNETI MARELLI S.p.A. A transmission unit for a vehicle
DE102004002045A1 (en) * 2004-01-15 2005-08-04 Zf Friedrichshafen Ag Vehicle clutch with transmission braking and hill holder function integrated into one compact layout using a wet plate clutch and with a common actuator

Similar Documents

Publication Publication Date Title
EP2274528B1 (en) Synchro-lock clutch combination friction and mechanical locking clutch
US8397890B2 (en) Latching clutch assembly and method of operating the same
US6543596B2 (en) Multi-disk friction device having low-drag characteristics
CN108443433B (en) Single-actuator type two-gear transmission for electric vehicle
US7832535B2 (en) Method of controlling an external activation clutch brake
JP3996063B2 (en) Switchable transmission
CN101014780A (en) Planar coupling assembly for an automatic transmission
KR101236152B1 (en) Lever applied dry clutch
JPH0712221A (en) Fastening force adjusting device of automatic transmission
US20010025760A1 (en) Double clutch assembly
WO2007045841A1 (en) Latching linear actuator
EP1369613B1 (en) Dual clutch transmission unit for a motor vehicle
US6264009B1 (en) Multi-stage wet disc brake
US7931135B2 (en) Multi-area clutch assembly
EP0614021B1 (en) Clutch pedal dashpot driveline torque limiter
KR102487179B1 (en) Clutch device for automatic transmission
KR100854285B1 (en) Hydraulic clutch
US20060266607A1 (en) Electric clutch actuator shifted inertia brake
WO2006126073A1 (en) Electric clutch actuator shifted inertia brake
KR100858121B1 (en) Hydraulic clutch
US5833041A (en) Clutch operating mechanism
KR102487176B1 (en) Clutch device for automatic transmission
KR20200008220A (en) Clutch device for automatic transmission
KR20220136802A (en) Limited slip differential for vehicle
KR20110030787A (en) Hydraulic brake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06744765

Country of ref document: EP

Kind code of ref document: A1