WO2006123778A1 - Method for producing cadaverine carbonate, and method for producing polyamide using the same - Google Patents

Method for producing cadaverine carbonate, and method for producing polyamide using the same Download PDF

Info

Publication number
WO2006123778A1
WO2006123778A1 PCT/JP2006/310037 JP2006310037W WO2006123778A1 WO 2006123778 A1 WO2006123778 A1 WO 2006123778A1 JP 2006310037 W JP2006310037 W JP 2006310037W WO 2006123778 A1 WO2006123778 A1 WO 2006123778A1
Authority
WO
WIPO (PCT)
Prior art keywords
cadaverine
carbonate
lysine
producing
solution
Prior art date
Application number
PCT/JP2006/310037
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Sato
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005147171A external-priority patent/JP2008193898A/en
Priority claimed from JP2005147172A external-priority patent/JP2008193899A/en
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Publication of WO2006123778A1 publication Critical patent/WO2006123778A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines

Definitions

  • the present invention relates to a method for producing cadaverine carbonate.
  • the present invention also relates to a process for producing cadaverine dicarbonate or cadaverine.
  • the invention further relates to a process for producing polyamide.
  • Petroleum fuels such as naphtha are often used as raw materials for so-called plastic production.
  • Non-petroleum raw material power Various types of plastics, including polylactic acid, are being studied. These plastics have different physical properties such as heat resistance depending on their raw materials. Of these, the development of plastics derived from non-petroleum materials with particularly high heat resistance is suitable for the use of polylactic acid under high temperature conditions! /, Point power.
  • polyamide rosin is polyamide rosin.
  • V ⁇ is used in a large amount of hexamethylene diamine, which is a 6-carbon diamine, and adipic acid, which is a 6-carbon dicarboxylic acid.
  • Nylon 66 which is a polymer having a molar ratio of 1: 1.
  • hexamethyldiamine is produced from benzene, propylene, or butanegen, which also provides naphtha power, and production methods from non-petroleum materials are known!
  • pentamethylenediamine having 5 carbon atoms is also called cadaverine and is known to be produced from lysine, one of the amino acids, by lysine decarbonase (LDC) (Non-Patent Document 1). ). Therefore, it can be used under high temperature conditions using non-petroleum raw materials by producing polyamide resin using cadaverine having 5 carbon atoms as raw material instead of hexamethylenediamine having 6 carbon atoms. It is possible to supply plastic materials. Although cadaverine is expected to be used for pharmaceutical intermediates in addition to polyamide sallow, its price is high. Therefore, development of an inexpensive manufacturing method is indispensable for further spread.
  • adipic acid which is a dicarboxylic acid, which is often an inorganic or organic acid such as hydrochloric acid, sulfuric acid or phosphoric acid as a neutralizing agent for pH adjustment
  • Patent Documents 3 and 4 the ability of cadaverine salt to be generated
  • the cadaverine salt power that is produced also produces a by-product of the acid-derived salt added as a neutralizing agent when purifying cadaverine, giving it a significant environmental impact.
  • dicarboxylic acids such as adipic acid are added when cultivating lysine-fermenting microorganisms, and the resulting lysine / dicarboxylic acid solution is neutralized by acting lysine decarboxylase.
  • cadaverine dicarboxylic acid Patent Document 3
  • Non-Patent Document 2 a method in which polycondensation is carried out by heating cadaverine dicarboxylate under melting conditions.
  • cadaverine dicarboxylate it may be possible to produce cadaverine dicarbonate by cadaverine salt exchange obtained by using inorganic acid or organic acid as neutralizing agent.
  • a by-product salt derived from the neutralizing agent is generated, which becomes an environmental burden.
  • this by-product salt is recovered and reused, a large amount of recovery equipment is required.
  • dicarboxylate is used as a neutralizing agent, cadaverine dicarboxylate can be obtained directly.
  • organic solvent crystallization is required for the purification process. It is necessary to reinforce the equipment when collecting the waste.
  • Patent Document 1 JP 2002-223770 A
  • Patent Document 2 JP 2002-223771
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-208646
  • Patent Document 4 JP-A-2005-006650
  • Non-Patent Document 1 Enzyme Handbook First Edition 636 pages Asakura Shoten
  • Non-Patent Document 2 Introduction to New Polymer Chemistry, page 22, Chemistry Doujin
  • the present invention minimizes by-product salt generated in the production process of cadaverine carbonate, reduces capital investment for recovery of by-product salt and organic solvent, and provides inexpensive and efficient cadaverine carbonate. It is an object to provide a manufacturing method. Another object of the present invention is to provide a method for producing cadaverine carbonate power cadaverine or cadaverine dicarboxylate, and to provide a method for producing polyamides inexpensively and efficiently using these.
  • cadaverine carbonate can be produced efficiently by carrying out enzymatic decarboxylation of lysine while supplying carbon dioxide to produce cadaverine carbonate such as lysine carbonate.
  • cadaverine dicarboxylate can be efficiently produced by adding dicarboxylic acid to the obtained cadaverine carbonate.
  • cadaverine can be efficiently produced by concentrating the obtained cadaverine carbonate and releasing carbonate ions or hydrogen carbonate ions, which are counter ions of cadaverine, as diacid carbon.
  • the present invention is as follows.
  • Enzymatic decarboxylation of lysine was performed while adding diacid-carbon to an aqueous solution of lysine carbonate so that the pH of the aqueous solution was maintained at a pH suitable for enzymatic decarboxylation of lysine.
  • a method for producing cadaverine carbonate comprising producing cadaverine carbonate.
  • Cadaverine carbonate is produced by any one of the methods (1) to (9), and cadaverine dicarboxylate is formed by adding dicarboxylic acid to the resulting aqueous solution of daverine carbonate.
  • a process for producing cadaverine dicarboxylate comprising:
  • a method for producing polyamide comprising producing cadaverine dicarboxylate by any one of the methods (10) to (12) and polycondensing the obtained cadaverine dicarboxylate.
  • a method for producing cadaverine which comprises producing cadaverine carbonate by the method according to any one of (1) to (9), and concentrating an aqueous solution of the obtained force daverine carbonate to produce cadaverine.
  • a method for producing polyamide comprising producing cadaverine by the method of (14) and polycondensing the obtained cadaverine with a dicarboxylic acid.
  • the method for producing cadaverine carbonate of the present invention comprises adding lysine carbon to an aqueous solution of lysine carbonate while adding diacid-carbon so that the pH of the solution is maintained at a pH suitable for enzymatic decarboxylation of lysine. Carrying out an enzymatic decarboxylation reaction of to produce cadaverine carbonate.
  • lysine may be L-lysine or D-lysine as long as it generates cadaverine by enzymatic decarboxylation, but L-lysine is usually good.
  • carbonate includes both carbonate and bicarbonate.
  • an aqueous solution of lysine carbonate is used.
  • the lysine salt contained in this aqueous solution need not be 100% free lysine carbonate, and may partially contain other lysine salts such as lysine hydrochloride and lysine sulfate.
  • An aqueous solution of lysine carbonate can be obtained, for example, by dissolving lysine carbonate in water.
  • a lysine carbonate fermentation solution (see, for example, JP-A-2002-65287) can also be used as an aqueous lysine carbonate solution.
  • a free lysine base (lysine base) may be dissolved in water, and diacid carbon (CO 2) may be added to this aqueous solution to form an aqueous lysine carbonate solution.
  • diacid carbon CO 2
  • the free lysine base may be a purified lysine base because of the raw material, or may be liquid lysine for feed (Japanese Patent Laid-Open No. 2000-256290).
  • a highly purified raw material with a small amount of compounds other than carbonate ions and a small amount of compounds other than lysine is preferred.
  • An isolated and purified free lysine base is more preferable.
  • a lysine fermentation broth obtained by culturing microorganisms (see, for example, WO95 / 016042, WO95 / 023864, WO96 / 040934, WO00 / 056858, WO00 / 077172, WO01 / 002547, or WO01 / 053459)
  • a lysine carbonate aqueous solution may also be used.
  • the decarboxylation reaction is performed using the lysine carbonate solution prepared as described above.
  • Lysine decarboxylation is performed by adding lysine decarboxylase (LDC) to the lysine carbonate solution.
  • LDC lysine decarboxylase
  • the LDC is not particularly limited as long as it acts on lysine to produce cadaverine.
  • LDC a purified enzyme may be used, or various cells such as microorganisms, plant cells or animal cells that produce LDC may be used.
  • the number of LDCs or cells producing them may be one type or two or more types.
  • Examples of the LDC protein include a protein having the amino acid sequence of SEQ ID NO: 12, or an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the amino acid sequence of SEQ ID NO: 12. And a protein having an activity of decarboxylating lysine.
  • a protein having an activity of decarboxylating lysine preferably 1 to 50, preferably 1 to 20, more preferably 1 to LO.
  • the activity of LDC can be measured according to a known method.
  • the above substitution of amino acid residues in LDC is a conservative substitution so that the activity of LDC protein is maintained.
  • a substitution is a change in which at least one residue in the amino acid sequence is removed and another residue is inserted therein.
  • the amino acids that replace the original amino acids of the LDC protein and are considered conservative substitutions are: Ala to Ser or Thr, Arg to Gln, His or Lys, Asn to Glu, Gln, Lys , His or Asp substitution, Asp to Asn, Glu or Gin substitution, Cys to Ser or Ala substitution, Gin to Asn, Glu, Lys, His, Asp or Arg substitution, Glu to Gly, Asn, Gln, Lys or Asp substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, lie to Leu, Met, Val or P he substitution, Leu to Ile , Met, Val or Phe, Lys to Asn, Glu, Gln, His or Arg, Met to
  • the LDC protein has an activity to decarboxylate lysine, it is 80% or more, preferably 90% or more, more preferably 95%, particularly preferably 98, with the amino acid sequence of SEQ ID NO: 12. It may be a protein having a homologous amino acid sequence of more than%. Amino acid sequence homology was determined using, for example, the algorithm BLAST (Pro. Natl. Acad. Sci. US A, 90, 5873 (1993) by Karlin and Altschul and FASTA (Methods EnzymoL, 183, 63 (1990) by Pearson. can do.
  • BLAST Pro. Natl. Acad. Sci. US A, 90, 5873 (1993) by Karlin and Altschul and FASTA (Methods EnzymoL, 183, 63 (1990) by Pearson. can do.
  • cells that express LDC may be used as they are.
  • a cell-treated product containing LDC may be used.
  • the cell treatment product include a cell culture solution, a cell disruption solution, and a fraction thereof.
  • an enzyme reaction is performed using cells such as microorganisms, plant cells, or animal cells
  • use of cells treated with organic solvents or surfactants may improve the permeability of the substrate and improve the reactivity. It is generally known.
  • the reactivity can be enhanced by treating the cells producing LDC with an organic solvent or a surfactant.
  • Triton X-100 Tween 20, sodium cholate and CHAPS can be used as the surfactant to be treated, and acetone, xylene and toluene can be used as the organic solvent. More specifically, when Triton X-100 is used, a concentration of 0.01% to 1.0% (wZv) is added, and treatment at 0 ° C to 37 ° C for 2 minutes to 1 hour is appropriate. .
  • microorganism examples include Escherichia bacteria such as E. coli, coryneform bacteria such as Brevibacterium lactofermentum, Bacillus bacteria such as Bacillus subtilis, Serratia marcescens (Serratia marcescens) of Serratia bacteria such as bacteria include eukaryotic cells such as Saccharomyces' cerevisiae (Saccharomyces cervis i ae). Of these, bacteria, particularly E.coK, are preferred.
  • the microorganism may be a wild strain or a mutant strain as long as it produces LDC.
  • Recombinant cells modified to increase LDC activity include, for example, increasing the copy number of the gene encoding LDC or regulating the expression of the gene so that the expression of the gene is enhanced. Examples include recombinant cells that have been modified so that LDC activity is increased by modifying the sequence.
  • LDC As a gene encoding LDC, for example, it has the base sequence of SEQ ID NO: 11 of E. coli DNA can be used. As long as it encodes a protein having LDC activity, a DNA that hybridizes with a polynucleotide having a complementary sequence of the nucleotide sequence of SEQ ID NO: 11 under stringent conditions can also be used.
  • stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Specifically, it is a condition for washing normal Southerno and Hybridisation60. C, 1 X SSC, 0.1% SDS, preferably 60. C, 0.1 X SSC, 0.1% SDS, more preferably 68. The conditions include washing at a salt concentration and temperature corresponding to C, 0.1 X SSC, 0.1% SDS, more preferably 2 to 3 times.
  • a gene encoding LDC can be obtained by PCR using a nucleotide sequence-specific primer or probe of the LDC gene or a hybridization method.
  • Increasing the number of copies of the gene encoding LDC can be achieved by, for example, transforming a cell with a plasmid containing the gene encoding LDC, or integrating the gene encoding LDC into the host cell chromosome by homologous recombination. This can be done by dragging.
  • the plasmid for introducing the gene encoding LDC is not particularly limited as long as it has replication ability in the host cell. For example, in the case of Escherichia coli, for example, pSTV 29 (manufactured by Takara Bio Inc.). ), RSF1010 (Gene vol.
  • vectors that function in coryneform bacteria include pAM330 (Japanese Patent Laid-Open No. 58-067699), pHM1519 (Japanese Patent Laid-Open No. 58-77895), and pSFK6 (Japanese Patent Laid-Open No. 2000-262288).
  • Transformation using a plasmid and homologous recombination can be performed according to known methods.
  • the expression regulatory region of the LDC gene to be introduced may be modified.
  • expression control regions include promoters, and strong promoters include, for example, lac promoter, trp promoter, tr c promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, amyE promoter, Examples include a spac promoter and an acid phosphatase promoter.
  • mutant strains with enhanced LDC activity may be used for the decarboxylation reaction.
  • a mutant strain is obtained by subjecting a parent strain or a wild strain to normal mutation treatment, that is, irradiation with X-rays or ultraviolet rays, Or N-methyl ⁇ 'nitro ⁇ nitrosoguanidine, etc., treated with a mutagen, etc., and obtained from the obtained mutant strain by selecting a strain with enhanced LDC activity be able to.
  • Culture for obtaining LDC protein or microorganisms or cells with enhanced LDC activity may be performed by a method suitable for LDC production depending on the microorganisms or cells used.
  • the medium used for the culture may be a normal medium containing a carbon source, a nitrogen source, inorganic ions, and other organic components as required.
  • Carbon sources include sucrose, dulcose, latatoose, galactose, fructose, arabinose, maltose, xylose, trehalose, sugars such as ribose and starch-calyzed hydrolyzate, alcohols such as glycerol, mannitol and sorbitol, darcon Organic acids such as acid, fumaric acid, succinic acid and succinic acid can be used.
  • Nitrogen sources include inorganic ammonium salts such as ammonium sulfate, salt ammonia, and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas, and aqueous ammonia. Etc. can be used.
  • organic micronutrients it is desirable to contain an appropriate amount of required substances such as vitamins such as vitamin B1, nucleic acids such as adenine and RNA, or yeast sex.
  • vitamins such as vitamin B1
  • nucleic acids such as adenine and RNA
  • yeast sex a small amount of calcium phosphate, magnesium sulfate, iron ions, manganese ions, etc. is added as necessary.
  • the culture temperature is controlled to 20-45 ° C and the culture pH is controlled to 5.0-8.0.
  • inorganic or organic acidic or alkaline substances, ammonia gas, etc. can be used for pH adjustment.
  • an inducing agent is added to the medium.
  • the cells can be collected from the culture medium using a centrifuge or a separation membrane.
  • the cells may be used as they are, but when those treatments containing LDC are used, the cells can be disrupted by ultrasonication, French press or enzymatic treatment to extract the enzyme and used as an enzyme extract. .
  • LDC when purifying the LDC, LDC can be purified by using ammonium sulfate salting-out and various chromatographies according to conventional methods. Purified LDC can be obtained using a carrier. It can also be used in a state where it can be fixed or contacted with the reaction solution through a membrane or the like.
  • a decarboxylation reaction is carried out using the cells expressing LDC protein or LDC gene obtained as described above or a treated product thereof.
  • lysine carbonate as a substrate may be further added according to the progress of the reaction.
  • LDC protein and LDC gene-expressing cells and cell treatment solution may be added directly to the reaction solution at the start of the reaction, or may be added in portions according to the progress of the reaction.
  • the pH is adjusted to a pH suitable for the enzymatic decarboxylation reaction of lysine.
  • This pH is adjusted by adjusting the purity, flow rate and pressure of the enzyme reaction system.
  • the pH is usually 9.0 or less, preferably pH 5.0-9.0, more preferably pH 7.0-9.0.
  • Cadaverine is produced by decarboxylation of lysine. At this time, lysine, which is a monovalent cation, decarboxylation, cadaverine, which is a divalent cation, is converted into cadaverine, and the carbonic acid present in the aqueous solution becomes a counter ion, and cadaverine carbonate is obtained in the reaction solution.
  • reaction pH can be maintained within the above pH range, strict pH adjustment is not necessary during the decarboxylation reaction.
  • the carbon dioxide released from the lysine force is released as the reaction solution and the pH rises. Therefore, carbon dioxide is added to the reaction solution and adjusted so that the pH of the reaction solution falls within the above range.
  • the carbon dioxide to be added may be a gas, a liquid, or a solid (dry ice), but is preferably stored as a gas.
  • the diacid carbon may be a mixed gas containing other gases, but is preferably 100% pure carbon dioxide.
  • the carbon dioxide addition may be continuous or intermittent.
  • a neutralizing agent other than carbon dioxide may be added at the same time. However, in order not to generate a double salt, it is preferable that the neutralizing agent only contains carbon dioxide.
  • the reaction temperature of the decarboxylase reaction is preferably within the range where the enzyme reaction is maximized, the release of carbon dioxide from the solution is minimized, and the reaction pH is kept within the above pH range. 20-50 ° C, more preferably 25-45 ° C.
  • the enzymatic decarboxylation reaction can be accelerated by adding vitamin B6, which is a coenzyme.
  • vitamin B6 which is a coenzyme.
  • pyridoxine, pyridoxamine and pyridoxal phosphate may be preferable. More preferably pyridoxal phosphate (PLP)
  • PBP pyridoxal phosphate
  • the addition concentration is not particularly limited, but is preferably a concentration of O.lmM or more.
  • cadaverine is recovered.
  • Dicarboxylates can be produced. That is, cadaverine dicarboxylate is formed in the solution by a salt exchange reaction between carbonic acid and dicarboxylic acid. On the other hand, carbonate ions are released out of the system as carbon dioxide.
  • the dicarboxylic acid added at this time should be equimolar with cadaverine.
  • the dicarboxylic acid to be added is preferably a dicarboxylic acid having 4 to 10 carbon atoms!
  • dicarboxylic acid having 4 to 10 carbon atoms examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, sebacic acid, terephthalic acid, and isophthalic acid. More preferred are 6-carbon adipic acid or 8 carbon-terephthalic acid.
  • the obtained cadaverine dicarboxylate can be easily separated and recovered by, for example, the following method. First, after sterilization by centrifugation, decolorization is preferably performed by activated carbon treatment to remove PLP and impurities. Next, cadaverine dicarboxylate crystals can be obtained by concentration under reduced pressure.
  • Cadaverine can be produced by concentrating an aqueous solution of cadaverine carbonate obtained by the method for producing cadaverine carbonate of the present invention. Cadaverine can be easily separated and recovered by, for example, the following method.
  • the aqueous solution of cadaverine carbonate is decolorized by treatment with activated carbon to remove PLP and impurities after removing cells by centrifugation or the like.
  • concentration carbonate ions and hydrogen carbonate ions are released into the atmosphere as carbon dioxide and carbon dioxide, and cadaverine can be obtained after water evaporation.
  • Concentration is preferably performed under reduced pressure, and can be efficiently concentrated by heating.
  • the heating temperature is preferably 40 to 100 ° C.
  • the method of the present invention does not use a large amount of water in the refining process, does not generate by-product salt in the process of resin regeneration, Melting This is an excellent and simple method that does not use a medium.
  • Polyamides can be produced using cadaverine dicarboxylate or cadaverine obtained by the above method.
  • Examples of the polyamide production method include a method of performing a polycondensation reaction using cadaverine dicarboxylic acid salt and a method of performing a polycondensation reaction using cadaverine and dicarboxylic acid.
  • the polycondensation reaction can be carried out according to a known method (see, for example, “Plastic Materials Course [16] Polyamide resin” (Nikkan Kogyo Shimbun)).
  • cadaverine dicarboxylate is mixed with water and the mixture is heated and dehydrated for condensation.
  • cadaverine and dicarboxylic acid may be mixed with water, and the mixture may be polycondensed while being dehydrated by heating.
  • the molecular weight can be increased by solid phase polymerization.
  • Solid-phase polymerization proceeds by heating in a vacuum or in an inert gas in the temperature range from 100 ° C to the melting point, and polyamides with insufficient molecular weight can be converted to high molecular weight by heating polycondensation. .
  • polyamides can be produced depending on the type of dicarboxylic acid used for polycondensation.
  • the dicarboxylic acid that can be used for polycondensation is not particularly limited as long as it can be used for the production of polyamide.
  • succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, sebacic acid, terephthalic acid And isophthalic acid For example, when adipic acid is used for polycondensation, 5,6-nylon can be obtained, and when terephthalic acid is used for polycondensation, 5, T-nylon can be obtained.
  • the pH of the L-lysine solution depends on the CO flow rate at the beginning of the reaction. The larger the addition flow rate, the lower the pH.
  • the solution should have enough CO dissolved in the solution to neutralize L-lysine.
  • E.coli-derived LDC gene (cadA) (N. Watson et al., Journal of bacteriolog y, (1992) vol. 174, 530-540; SY Neng and GN Bennet, Journal of bacteriology (19 92) vol 174, 2659-2669), and designed a PCR primer having the base sequence shown in 5, -gtcgacactgcacacggctggcgg-3, (SEQ ID NO: 1) and 5, -gttagcggcacgtacacctgcctgg-3, (SEQ ID NO: 2).
  • a DNA fragment containing cadA was amplified by PCR using the E. coli W3110 (ATCC39936) chromosome as a saddle.
  • the amplified DNA fragment was cleaved with Kpnl and Sphl, and the obtained fragment (2,468 bp) was inserted into the Kpnl and Sphl cleavage sites of pUC18 (Tacarano) to prepare plasmid pcadA.
  • reaction solution containing 1 unit at 94 ° C for 30 seconds, then 94 ° C for 15 seconds, 55 ° C for 30 seconds, 68 ° C for 2 minutes 30 seconds 25 Repeated PCR was performed to amplify the cadA gene portion.
  • PCR was performed under the same conditions using the above plasmid pEAM330 as the cage type, 5′-gctctagaattttttcaatg tgattt-3 ( ⁇ ⁇ ⁇ ⁇ 3 ⁇ 4 ⁇ No. 5) and a-gtgattcaatattgcaataacgttcatctacatttccttacggtgtta-. (SEQ ID NO: 6) oligonucleotide as primers.
  • the promoter sequence portion of acid phosphatase was amplified.
  • the reaction solution was subjected to agarose gel electrophoresis, and each amplified DNA fragment was recovered using a Microspin column (manufactured by Amersham's Pharmacia Biotech).
  • the amplified fragment mixture is made into a bowl shape, and oligonucleotides of SEQ ID NO: 3 and SEQ ID NO: 5 are used as primers, and 94 ° C for 15 seconds, 55 ° C for 30 seconds, 68 ° C in a reaction solution having the same composition.
  • PCR was repeated 25 times in a cycle of 2 minutes and 30 seconds to construct a chimeric enzyme gene.
  • Each amplified DNA fragment was recovered using a Microspin column (Amersham 'Farmasia' Biotech) and digested with Xbal and Pstl. This was ligated to the Xbal-Pstl site of plasmid pUC119.
  • the CadA expression plasmid was constructed by force and named pcadA202.
  • plasmid pcadA202 is used as a cocoon, and as a primer, 5, -ggacatataacaccgtaagg PCR was performed using aggaatgtagatgaacgttattgc-3, (self-sequence number 7) and 5, -gcaataacgttcatctacattcctccttacggt gttatatgtcc-3, (SEQ ID NO: 8) oligonucleotide according to the method described in the manual to construct plasmid pcadA210.
  • PCR was performed using the plasmid pcadA210 as a saddle type, and using 5, -gaattttttcaatgtgattttg acatttacttccagatgac- ⁇ (item ti column 3 ⁇ 4 ⁇ No. 9) and 5-gtcatctggaagtaaatgtcaaaatcacattgaaaa attc-3 ′ (SEQ ID NO: 10) oligonucleotide as primers.
  • a plasmid was constructed. This CadA high expression plasmid was named pcadA220.
  • pcadA220 is designed to enhance LDC expression by modifying the constitutive expression promoter and ribosome binding site of the acid phosphatase gene of the genus Enterobacter.
  • E. coli JM109 strain (Takara Bio) was transformed with plasmid pcadA220, and the resulting transformant was named Escherichia coli cadA220.
  • the constitutive expression promoter of the Enterobacter genus acid phosphatase gene and the ribosome binding site were modified and succeeded in higher expression of LDC.
  • Escherichia coli cadA220 strain is inoculated on LB medium plate for 1 ase and cultured at 26 ° C for ⁇ , and then cultured cells are sown for 1 ase and inoculated into 50 mL of liquid LB medium at 28 ° C. C. Shaking culture was performed for 8 hours under conditions of 150 rpm, and a culture solution was obtained in advance.
  • the pre-culture solution obtained was inoculated into 10 mL of the pre-culture medium shown below, and pre-cultured at a total volume of 300 mL under the conditions of 28 ° C, 700 rpm, pH 7.0, aeration rate of 300 mL / min. .
  • Ammonia was used to adjust the culture pH.
  • the culture was terminated to obtain a preculture solution.
  • the medium was mixed and adjusted to pH 5.0 with KOH aqueous solution.
  • the main culture was performed at 300 ° C., 30 ° C., 700 rpm, pH 7.0, and aeration rate of 300 mL / min.
  • the culture pH was adjusted with ammonia, and when the sugar consumption in the main culture medium was completed, the culture was terminated to obtain Escherichia coli cadA220 cells.
  • the obtained Escherichia coli cadA220 strain was subjected to the pretreatment shown below before the enzyme reaction.
  • the bacterial cell culture solution was centrifuged at 6,000 rpm for 10 minutes at 4 ° C to obtain precipitated bacterial cells.
  • a 1/5 volume of 0.1% Triton X_100, 0.2 M Tris-HCl (pH 7.4) solution of 1/5 of the culture solution used for the centrifugation was added to the precipitated cells to suspend the precipitated cells uniformly. After suspending, the solution was ice-cooled for 10 minutes to obtain an enzyme solution.
  • the obtained cadaverine adipic acid solution was centrifuged (12,000 rpm, 10 minutes) to remove the cells and their residues, and a supernatant fraction was obtained.
  • cadaverine adipate solution 200 mL of the obtained cadaverine adipate solution was concentrated under reduced pressure using an evaporator. By this operation, water in the solution was removed and finally 64.0 g of cadaverine adipate was obtained.
  • the cadaverine carbonate solution obtained in Example 2 was first centrifuged at 12,000 rpm for 10 minutes at 4 ° C. The microbial cells and microbial cell residues in the reaction solution were removed, and the supernatant fraction was obtained.
  • Cadaverine was purified by concentrating 300 mL of the obtained cadaverine carbonate solution under reduced pressure at 40 ° C. using an evaporator. This operation removed carbon dioxide and water from the solution, and 28.7 g of cadaverine was finally obtained.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyamides (AREA)

Abstract

A cadaverine carbonate is produced by using lysine carbonate as a substrate, conducting a pH adjustment by the addition of carbon dioxide, and then carrying out an enzymatic decarboxylation of lysine. A dicarboxylic acid salt is added to the resultant cadaverine carbonate, and a cadaverine dicarboxylic acid salt is produced through an isolation step after a salt exchange reaction with carbonic acid. Cadaverine is produced by concentrating a solution of the cadaverine carbonate, to thereby release carbon dioxide out of the system. A polyamide is produced by using the resultant cadaverine dicarboxylic acid salt or cadaverine.

Description

明 細 書  Specification
カダベリン炭酸塩の製造法、及びそれを利用したポリアミドの製造法 技術分野  Method for producing cadaverine carbonate and method for producing polyamide using the same
[0001] 本発明はカダベリン炭酸塩の製造法に関する。本発明はまた、カダベリンジカルボ ン酸塩又はカダベリンの製造法に関する。本発明はさらに、ポリアミドの製造法に関 する。  [0001] The present invention relates to a method for producing cadaverine carbonate. The present invention also relates to a process for producing cadaverine dicarbonate or cadaverine. The invention further relates to a process for producing polyamide.
背景技術  Background art
[0002] 所謂ブラスティック生産の原料としてナフサ等の石油系燃料が多く用いられて 、る。  [0002] Petroleum fuels such as naphtha are often used as raw materials for so-called plastic production.
ブラスティックを再生利用する場合はともかぐ燃焼等によるブラスティックの廃棄は炭 酸ガスの放出を招くことから近年社会問題となりつつある。そこで、地球温暖化防止 及び循環型社会の形成に向けてブラスティック原料を非石油系原料に置き換えるこ とが嘱望されている。  In the case of recycling plastics, the disposal of plastics due to smoldering combustion has become a social problem in recent years because it causes the release of carbon dioxide gas. Therefore, it is encouraging to replace non-petroleum raw materials with the aim of preventing global warming and creating a recycling society.
非石油系原料力 製造されるブラスティックはポリ乳酸を始めとする様々な種類のも のが検討されている。これらのブラスティックはその原料により耐熱性などの物性が異 なる。このうち特に耐熱性の高い非石油系原料由来のブラスティックの開発は、ポリ 乳酸が高温条件での使用に向かな!/、点力 特に注目されて 、る。  Non-petroleum raw material power Various types of plastics, including polylactic acid, are being studied. These plastics have different physical properties such as heat resistance depending on their raw materials. Of these, the development of plastics derived from non-petroleum materials with particularly high heat resistance is suitable for the use of polylactic acid under high temperature conditions! /, Point power.
耐熱性の高いブラスティックとしてはポリアミド榭脂があげられ、このうち使用量が多 Vヽのは炭素数 6のジァミンであるへキサメチレンジァミンと炭素数 6のジカルボン酸で あるアジピン酸とのモル比 1:1の重合体であるナイロン 66である。しかしへキサメチレ ンジァミンはナフサ力も得られるベンゼン、プロピレンまたはブタンジェンを原料に製 造されており、非石油系原料からの製造方法は知られて!/、な 、。  One example of a high heat-resistant plastic is polyamide rosin. Of these, V ヽ is used in a large amount of hexamethylene diamine, which is a 6-carbon diamine, and adipic acid, which is a 6-carbon dicarboxylic acid. Nylon 66 which is a polymer having a molar ratio of 1: 1. However, hexamethyldiamine is produced from benzene, propylene, or butanegen, which also provides naphtha power, and production methods from non-petroleum materials are known!
[0003] 一方、炭素数 5のペンタメチレンジァミンは別名カダベリンと呼ばれ、アミノ酸の 1つ であるリジンからリジン脱炭素酵素(LDC)によって生成することが知られている(非特 許文献 1)。したがって、炭素数 6のへキサメチレンジァミンの代わりに炭素数 5のカダ ベリンを原料に用いてポリアミド榭脂を製造することにより、非石油系原料を用いた高 温条件下で使用可能なブラスティック素材の供給が可能となる。また、カダベリンはポ リアミド榭脂以外にも医薬中間体などで需要が見込まれるが、その価格が高価であり 、更なる普及の為には安価な製造方法の開発が必須である。 [0003] On the other hand, pentamethylenediamine having 5 carbon atoms is also called cadaverine and is known to be produced from lysine, one of the amino acids, by lysine decarbonase (LDC) (Non-Patent Document 1). ). Therefore, it can be used under high temperature conditions using non-petroleum raw materials by producing polyamide resin using cadaverine having 5 carbon atoms as raw material instead of hexamethylenediamine having 6 carbon atoms. It is possible to supply plastic materials. Although cadaverine is expected to be used for pharmaceutical intermediates in addition to polyamide sallow, its price is high. Therefore, development of an inexpensive manufacturing method is indispensable for further spread.
[0004] リジンに LDCを作用させてカダベリンを生成する場合、リジンの脱炭酸により二酸ィ匕 炭素が発生し、 1価のカチオンであるリジンから 2価のカチオンであるカダベリンが生 成するため、反応中 pHが上昇する。したがって、 pH上昇を防ぎ酵素反応を最適 pH に維持する為には高濃度の緩衝液中で反応させる力 又は酸を逐次反応系に添カロ する必要がある (特許文献 1、 2)。 pH調整の中和剤として通常塩酸、硫酸、リン酸な どの無機酸や有機酸が使用される場合が多ぐジカルボン酸であるアジピン酸で中 和する報告もある(特許文献 3、 4)。中和剤を用いた場合、カダベリンの塩が生成す る力 生成したカダベリン塩力もカダベリンを精製するに際し、中和剤として添加した 酸由来の塩が副生し、多大な環境負荷を与える。これを改善する為に、リジン発酵微 生物を培養する際にアジピン酸等のジカルボン酸を添加し、得られたリジン ·ジカル ボン酸溶液にリジン脱炭酸酵素を作用させて中和することなしにカダベリン'ジカルボ ン酸を生成する方法がある (特許文献 3)。この方法を用いると精製工程における副 生塩の削減は可能であるが、精製工程において有機溶媒晶析工程が必要になり、 有機溶媒による環境負荷が生じ、有機溶媒を回収する場合は設備が必要となる。  [0004] When cadaverine is produced by the action of LDC on lysine, carbon dioxide is generated by decarboxylation of lysine, and cadaverine, a divalent cation, is generated from lysine, a monovalent cation. During the reaction, the pH increases. Therefore, in order to prevent an increase in pH and maintain the enzyme reaction at the optimum pH, it is necessary to add a reaction force or acid in a high concentration buffer solution to the sequential reaction system (Patent Documents 1 and 2). There are also reports that neutralize with adipic acid, which is a dicarboxylic acid, which is often an inorganic or organic acid such as hydrochloric acid, sulfuric acid or phosphoric acid as a neutralizing agent for pH adjustment (Patent Documents 3 and 4). When neutralizers are used, the ability of cadaverine salt to be generated The cadaverine salt power that is produced also produces a by-product of the acid-derived salt added as a neutralizing agent when purifying cadaverine, giving it a significant environmental impact. In order to improve this, dicarboxylic acids such as adipic acid are added when cultivating lysine-fermenting microorganisms, and the resulting lysine / dicarboxylic acid solution is neutralized by acting lysine decarboxylase. There is a method for producing cadaverine dicarboxylic acid (Patent Document 3). By using this method, it is possible to reduce by-product salts in the purification process, but an organic solvent crystallization process is required in the purification process, and an environmental burden is created by the organic solvent. It becomes.
[0005] 一方、カダベリンをジカルボン酸と重合させてナイロンを製造する場合、カダベリン のジカルボン酸塩を溶融条件下で加熱して重縮合させる方法が知られて ヽる(非特 許文献 2)。カダベリンのジカルボン酸塩を得るためには、中和剤として無機酸や有 機酸を使用することにより得られたカダベリン塩力 塩交換によりカダベリンジカルボ ン酸塩を生成させることが考えられるが、この場合、中和剤に由来する副生塩が発生 し、これが環境負荷となる。また、この副生塩を回収再利用する場合は多大な回収設 備が必要となる。他方、中和剤としてジカルボン酸塩を使用した場合は直接カダベリ ンのジカルボン酸塩を得ることができるものの、精製工程にぉ ヽて有機溶媒晶析が 必要となり、有機溶媒による環境負荷及び有機溶媒を回収する場合は設備強化が 必要となる。  [0005] On the other hand, in the case of producing nylon by polymerizing cadaverine with a dicarboxylic acid, a method is known in which polycondensation is carried out by heating cadaverine dicarboxylate under melting conditions (Non-Patent Document 2). In order to obtain cadaverine dicarboxylate, it may be possible to produce cadaverine dicarbonate by cadaverine salt exchange obtained by using inorganic acid or organic acid as neutralizing agent. In this case, a by-product salt derived from the neutralizing agent is generated, which becomes an environmental burden. In addition, when this by-product salt is recovered and reused, a large amount of recovery equipment is required. On the other hand, when dicarboxylate is used as a neutralizing agent, cadaverine dicarboxylate can be obtained directly. However, organic solvent crystallization is required for the purification process. It is necessary to reinforce the equipment when collecting the waste.
特許文献 1:特開 2002-223770号公報  Patent Document 1: JP 2002-223770 A
特許文献 2:特開 2002-223771号公報  Patent Document 2: JP 2002-223771
特許文献 3:特開 2004-208646号公報 特許文献 4:特開 2005-006650号公報 Patent Document 3: Japanese Patent Application Laid-Open No. 2004-208646 Patent Document 4: JP-A-2005-006650
非特許文献 1 :酵素ハンドブック 初版 636ページ 朝倉書店  Non-Patent Document 1: Enzyme Handbook First Edition 636 pages Asakura Shoten
非特許文献 2 :新高分子化学序論、 22ページ、化学同人  Non-Patent Document 2: Introduction to New Polymer Chemistry, page 22, Chemistry Doujin
発明の開示  Disclosure of the invention
[0006] 本発明は、カダベリン炭酸塩の製造工程で発生する副生塩を極小化し、かつ副生 塩回収及び有機溶媒回収のための設備投資を削減し、安価かつ効率的なカダベリ ン炭酸塩の製造方法を提供することを課題とする。本発明は、また、カダベリン炭酸 塩力 カダベリンまたはカダベリンジカルボン酸塩を製造する方法を提供し、これらを 用いて安価かつ効率的にポリアミドを製造する方法を提供することを課題とする。  [0006] The present invention minimizes by-product salt generated in the production process of cadaverine carbonate, reduces capital investment for recovery of by-product salt and organic solvent, and provides inexpensive and efficient cadaverine carbonate. It is an object to provide a manufacturing method. Another object of the present invention is to provide a method for producing cadaverine carbonate power cadaverine or cadaverine dicarboxylate, and to provide a method for producing polyamides inexpensively and efficiently using these.
[0007] 上記課題を解決する為、本発明者は鋭意検討を行った。その結果、二酸化炭素を 供給しながらリジンの酵素的脱炭酸反応を行ってリジン炭酸塩カゝらカダベリン炭酸塩 を生成させることによりカダベリン炭酸塩を効率よく製造できることを見出した。さらに 、得られたカダベリン炭酸塩にジカルボン酸を添加することで、カダベリンジカルボン 酸塩を効率よく製造できることを見出した。また、得られたカダベリン炭酸塩を濃縮し てカダベリンの対イオンである炭酸イオンあるいは炭酸水素イオンを二酸ィ匕炭素とし て系外に放出させることによりカダベリンを効率よく製造できることを見出した。これら により、脱炭酸反応時に中和剤を添加する工程を省略または添加量を低減すること に成功した。さらに、従来必要であったイオン交換榭脂又は有機溶媒晶析などの操 作を不要とし、これらの操作に由来する副生塩及び有機溶媒の環境に対する負荷を 低減し、これら副生塩、有機溶媒を回収再利用する為の設備投資を軽減すること〖こ 成功した。さらに、得られたカダベリンまたはカダベリンジカルボン酸塩を用いることで 効率よくポリアミドを製造できることを見出し、本発明を完成させるに至った。  [0007] In order to solve the above problems, the present inventor has intensively studied. As a result, it was found that cadaverine carbonate can be produced efficiently by carrying out enzymatic decarboxylation of lysine while supplying carbon dioxide to produce cadaverine carbonate such as lysine carbonate. Furthermore, it has been found that cadaverine dicarboxylate can be efficiently produced by adding dicarboxylic acid to the obtained cadaverine carbonate. It was also found that cadaverine can be efficiently produced by concentrating the obtained cadaverine carbonate and releasing carbonate ions or hydrogen carbonate ions, which are counter ions of cadaverine, as diacid carbon. As a result, the process of adding a neutralizing agent during the decarboxylation reaction was omitted or the amount added was successfully reduced. Furthermore, operations such as ion exchange resin or organic solvent crystallization, which were conventionally required, are unnecessary, reducing the burden on the environment of by-product salts and organic solvents derived from these operations. We succeeded in reducing the capital investment for recovering and reusing the solvent. Furthermore, it has been found that a polyamide can be efficiently produced by using the obtained cadaverine or cadaverine dicarboxylate, and has completed the present invention.
[0008] すなわち、本発明は以下のとおりである。  [0008] That is, the present invention is as follows.
(1)リジン炭酸塩の水溶液に、同水溶液の pHがリジンの酵素的脱炭酸反応に適し た pHに維持されるように二酸ィ匕炭素を加えながら、リジンの酵素的脱炭酸反応を行 つてカダベリン炭酸塩を生成させることを含む、カダベリン炭酸塩の製造方法。  (1) Enzymatic decarboxylation of lysine was performed while adding diacid-carbon to an aqueous solution of lysine carbonate so that the pH of the aqueous solution was maintained at a pH suitable for enzymatic decarboxylation of lysine. A method for producing cadaverine carbonate, comprising producing cadaverine carbonate.
(2)前記酵素的脱炭酸反応に適した pHが pH9.0以下である(1)の方法。 (2) The method according to (1), wherein the pH suitable for the enzymatic decarboxylation reaction is pH 9.0 or less.
(3)前記二酸化炭素を気体として加える(1)の方法。 (4)前記酵素的脱炭酸反応時に二酸化炭素以外の中和剤を添加しな!ヽことを特 徴とする(1)の方法。 (3) The method of (1), wherein the carbon dioxide is added as a gas. (4) The method according to (1), wherein a neutralizing agent other than carbon dioxide is not added during the enzymatic decarboxylation reaction.
(5)前記リジン炭酸塩の水溶液がリジン炭酸塩発酵液である(1)の方法。  (5) The method according to (1), wherein the aqueous solution of lysine carbonate is a lysine carbonate fermentation solution.
(6)前記酵素的脱炭酸反応を、リジン脱炭酸酵素、またはリジン脱炭酸酵素を産生 する細胞もしくは同細胞の処理物を用いて行う(1)の方法。  (6) The method according to (1), wherein the enzymatic decarboxylation reaction is performed using lysine decarboxylase, a cell that produces lysine decarboxylase, or a treatment product of the cell.
(7)前記細胞が、リジン脱炭酸酵素活性が上昇するように改変された細胞である(1 )の方法。  (7) The method according to (1), wherein the cell is a cell modified to increase lysine decarboxylase activity.
(8)前記細胞が、リジン脱炭酸酵素をコードする遺伝子のコピー数を高めること、又 は同遺伝子の発現が増強されるように同遺伝子の発現調節配列を改変することによ り、リジン脱炭酸酵素活性が上昇した組換え細胞である(7)の方法。  (8) By increasing the copy number of the gene encoding lysine decarboxylase or modifying the expression regulatory sequence of the gene so that the expression of the gene is enhanced, (7) The method according to (7), wherein the cell is a recombinant cell having an increased carbonase activity.
(9)前記細胞がェシエリヒア'コリ細胞であり、リジン脱炭酸酵素をコードする遺伝子 が下記の(a)又は (b)に記載の DNAである(8)の方法;  (9) The method according to (8), wherein the cell is an Escherichia coli cell, and the gene encoding lysine decarboxylase is the DNA described in (a) or (b) below;
(a)配列番号 11に記載の塩基配列を有する DNA、  (a) DNA having the base sequence set forth in SEQ ID NO: 11,
(b)配列番号 11に記載の塩基配列の相補配列を有するポリヌクレオチドとストリンジ ェントな条件下でノ、イブリダィズし、リジン脱炭酸酵素活性を有するタンパク質をコー ドする DNA。  (b) A DNA that is hybridized with a polynucleotide having a complementary sequence of the nucleotide sequence of SEQ ID NO: 11 under stringent conditions and encodes a protein having lysine decarboxylase activity.
(10) (1)〜(9)のいずれかの方法によってカダベリン炭酸塩を製造し、得られた力 ダベリン炭酸塩の水溶液にジカルボン酸を添カ卩してカダベリンジカルボン酸塩を生 成させることを含む、カダベリンジカルボン酸塩の製造方法。  (10) Cadaverine carbonate is produced by any one of the methods (1) to (9), and cadaverine dicarboxylate is formed by adding dicarboxylic acid to the resulting aqueous solution of daverine carbonate. A process for producing cadaverine dicarboxylate, comprising:
(11)前記ジカルボン酸が炭素数 4〜 10のジカルボン酸である(10)の方法。  (11) The method according to (10), wherein the dicarboxylic acid is a dicarboxylic acid having 4 to 10 carbon atoms.
(12)前記ジカルボン酸がアジピン酸である(10)の方法。  (12) The method according to (10), wherein the dicarboxylic acid is adipic acid.
(13) (10)〜(12)のいずれかの方法によってカダベリンジカルボン酸塩を製造し、 得られたカダベリンジカルボン酸塩を重縮合させることを含む、ポリアミドの製造法。  (13) A method for producing polyamide, comprising producing cadaverine dicarboxylate by any one of the methods (10) to (12) and polycondensing the obtained cadaverine dicarboxylate.
(14) (1)〜(9)のいずれかの方法によってカダベリン炭酸塩を製造し、得られた力 ダベリン炭酸塩の水溶液を濃縮してカダベリンを生成させることを含む、カダベリンの 製造法。  (14) A method for producing cadaverine, which comprises producing cadaverine carbonate by the method according to any one of (1) to (9), and concentrating an aqueous solution of the obtained force daverine carbonate to produce cadaverine.
(15) (14)の方法によってカダベリンを製造し、得られたカダベリンをジカルボン酸 と重縮合させることを含む、ポリアミドの製造法。 発明を実施する為の最良の形態 (15) A method for producing polyamide, comprising producing cadaverine by the method of (14) and polycondensing the obtained cadaverine with a dicarboxylic acid. BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、本発明の詳細を説明する。  Hereinafter, details of the present invention will be described.
<カダベリン炭酸塩の製造法 >  <Method for producing cadaverine carbonate>
本発明のカダベリン炭酸塩の製造法は、リジン炭酸塩の水溶液に、同溶液の pHが リジンの酵素的脱炭酸反応に適した pHに維持されるように二酸ィ匕炭素を加えながら 、リジンの酵素的脱炭酸反応を行ってカダベリン炭酸塩を生成させることを含む。 ここで、リジンは酵素的脱炭酸反応でカダベリンを生成するものであれば L-リジンで も D-リジンでも構わな 、が、通常は L-リジンが良 、。  The method for producing cadaverine carbonate of the present invention comprises adding lysine carbon to an aqueous solution of lysine carbonate while adding diacid-carbon so that the pH of the solution is maintained at a pH suitable for enzymatic decarboxylation of lysine. Carrying out an enzymatic decarboxylation reaction of to produce cadaverine carbonate. Here, lysine may be L-lysine or D-lysine as long as it generates cadaverine by enzymatic decarboxylation, but L-lysine is usually good.
また、「炭酸塩」とは特に断わらない限り、炭酸塩と炭酸水素塩の両者を含むものと する。  In addition, unless otherwise specified, “carbonate” includes both carbonate and bicarbonate.
[0010] 本発明の製造法においては、リジン炭酸塩の水溶液を用いる。この水溶液に含ま れるリジンの塩は 100%遊離リジン炭酸塩である必要はなぐ部分的に他のリジン塩、 例えばリジン塩酸塩、リジン硫酸塩などが含まれて 、ても良 、。  [0010] In the production method of the present invention, an aqueous solution of lysine carbonate is used. The lysine salt contained in this aqueous solution need not be 100% free lysine carbonate, and may partially contain other lysine salts such as lysine hydrochloride and lysine sulfate.
リジン炭酸塩の水溶液は、例えば、リジン炭酸塩を水に溶解することによって得るこ とができる。また、リジン炭酸塩発酵液 (例えば、特開 2002-65287号参照)をリジン炭 酸塩水溶液として使用することもできる。  An aqueous solution of lysine carbonate can be obtained, for example, by dissolving lysine carbonate in water. A lysine carbonate fermentation solution (see, for example, JP-A-2002-65287) can also be used as an aqueous lysine carbonate solution.
また、後述の実施例に示すように、遊離リジン塩基 (リジンベース)を水に溶解し、こ の水溶液に二酸ィ匕炭素(CO )を添加してリジン炭酸塩水溶液としてもよい。この場合  Further, as shown in the Examples described later, a free lysine base (lysine base) may be dissolved in water, and diacid carbon (CO 2) may be added to this aqueous solution to form an aqueous lysine carbonate solution. in this case
2  2
の二酸ィ匕炭素の添加方法は特に制限されないが、例えば、気体として添加すること 力 Sできる。二酸ィ匕炭素を気体として添加してリジン炭酸塩水溶液を得る場合、二酸ィ匕 炭素を好ましくは 12時間以上リジン水溶液に通気する。遊離リジン塩基は原料の由 来は精製リジン塩基であってもよ!、し、飼料用液体リジン (特開 2000-256290号)であ つても良い。好ましくはリジン以外の化合物の含有が少なぐ対となる炭酸イオン以外 のァ-オンが少ない、精製度の高い原料がよい。より好ましくは単離精製された遊離 リジン塩基がよい。  There are no particular restrictions on the method of adding carbon dioxide, but for example, it can be added as a gas. When the lysine carbon is added as a gas to obtain a lysine carbonate aqueous solution, the diacid carbon is preferably bubbled through the lysine aqueous solution for 12 hours or longer. The free lysine base may be a purified lysine base because of the raw material, or may be liquid lysine for feed (Japanese Patent Laid-Open No. 2000-256290). Preferably, a highly purified raw material with a small amount of compounds other than carbonate ions and a small amount of compounds other than lysine is preferred. An isolated and purified free lysine base is more preferable.
また、微生物を培養することによって得られたリジンの発酵液 (例えば、 WO95/0160 42、 WO95/023864, WO96/040934, WO00/056858、 WO00/077172, WO01/00254 7、または WO01/053459参照)に、好ましくは菌体を除いた後、二酸化炭素を加えて 、リジン炭酸塩水溶液とすることもできる。 In addition, a lysine fermentation broth obtained by culturing microorganisms (see, for example, WO95 / 016042, WO95 / 023864, WO96 / 040934, WO00 / 056858, WO00 / 077172, WO01 / 002547, or WO01 / 053459) Preferably, after removing the cells, add carbon dioxide A lysine carbonate aqueous solution may also be used.
[0011] 上記のようにして調製したリジン炭酸塩の溶液を用いて脱炭酸反応を行う。  [0011] The decarboxylation reaction is performed using the lysine carbonate solution prepared as described above.
リジン脱炭酸反応はリジン炭酸塩溶液にリジン脱炭酸酵素(LDC)を添加することに より行う。前記 LDCとしては、リジンに作用してカダベリンを生成させるものであれば特 に制限はない。 LDCとしては、精製酵素を用いてもよいし、 LDCを産生する微生物、 植物細胞又は動物細胞などの各種細胞を用いてもょ 、。 LDC又はそれを産生する 細胞は、 1種でもよぐ 2種以上であってもよい。  Lysine decarboxylation is performed by adding lysine decarboxylase (LDC) to the lysine carbonate solution. The LDC is not particularly limited as long as it acts on lysine to produce cadaverine. As LDC, a purified enzyme may be used, or various cells such as microorganisms, plant cells or animal cells that produce LDC may be used. The number of LDCs or cells producing them may be one type or two or more types.
[0012] LDCタンパク質としては、例えば、配列番号 12のアミノ酸配列を有するタンパク質、 または配列番号 12のアミノ酸配列において 1もしくは数個のアミノ酸が置換、欠失、 挿入もしくは付加されたアミノ酸配列を有し、かつリジンを脱炭酸させる活性を有する タンパク質が挙げられる。ここで、数個とは 1〜50個、好ましくは 1〜20個、より好まし くは 1〜: LO個を意味するものとする。 LDCの活性は公知の方法に従って測定すること ができる。  [0012] Examples of the LDC protein include a protein having the amino acid sequence of SEQ ID NO: 12, or an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the amino acid sequence of SEQ ID NO: 12. And a protein having an activity of decarboxylating lysine. Here, several means 1 to 50, preferably 1 to 20, more preferably 1 to LO. The activity of LDC can be measured according to a known method.
上記の LDCにおけるアミノ酸残基の置換は、 LDCタンパク質の活性が維持されるよ うな保存的置換である。置換は、アミノ酸配列中の少なくとも 1残基が除去され、そこ に他の残基が挿入される変化である。 LDCタンパク質の元々のアミノ酸を置換し、力 つ、保存的置換とみなされるアミノ酸としては、 Alaから Ser又は Thrへの置換、 Argから Gln、 His又は Lysへの置換、 Asnから Glu、 Gln、 Lys、 His又は Aspへの置換、 Aspから A sn、 Glu又は Ginへの置換、 Cysから Ser又は Alaへの置換、 Ginから Asn、 Glu、 Lys, His 、 Asp又は Argへの置換、 Gluから Gly、 Asn、 Gln、 Lys又は Aspへの置換、 Glyから Pro への置換、 Hisから Asn、 Lys, Gln、 Arg又は Tyrへの置換、 lieから Leu、 Met, Val又は P heへの置換、 Leuから Ile、 Met, Val又は Pheへの置換、 Lysから Asn、 Glu、 Gln、 His又 は Argへの置換、 Metから Ile、 Leu、 Val又は Pheへの置換、 Pheから Trp、 Tyr、 Met, He 又は Leuへの置換、 Serから Thr又は Alaへの置換、 Thrから Ser又は Alaへの置換、 Trp から Phe又は Tyrへの置換、 Tyrから His、 Phe又は Trpへの置換、及び、 Valから Met、 II e又は Leuへの置換が挙げられる。  The above substitution of amino acid residues in LDC is a conservative substitution so that the activity of LDC protein is maintained. A substitution is a change in which at least one residue in the amino acid sequence is removed and another residue is inserted therein. The amino acids that replace the original amino acids of the LDC protein and are considered conservative substitutions are: Ala to Ser or Thr, Arg to Gln, His or Lys, Asn to Glu, Gln, Lys , His or Asp substitution, Asp to Asn, Glu or Gin substitution, Cys to Ser or Ala substitution, Gin to Asn, Glu, Lys, His, Asp or Arg substitution, Glu to Gly, Asn, Gln, Lys or Asp substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, lie to Leu, Met, Val or P he substitution, Leu to Ile , Met, Val or Phe, Lys to Asn, Glu, Gln, His or Arg, Met to Ile, Leu, Val or Phe, Phe to Trp, Tyr, Met, He or Leu Substitution, Ser to Thr or Ala, Thr to Ser or Ala, Trp to Phe or Tyr, Tyr to His, Phe or Trp Substituted, and, Met from Val, and substitution of II e or Leu.
また、 LDCタンパク質は、リジンを脱炭酸する活性を有する限り、配列番号 12のアミ ノ酸配列と 80%以上、好ましくは 90%以上、より好ましくは 95%、特に好ましくは 98 %以上相同なアミノ酸配列を有するタンパク質であってもよ 、。アミノ酸配列の相同 性は、例えば Karlin and Altschulによるアルゴリズム BLAST(Pro. Natl. Acad. Sci. US A, 90, 5873(1993》や Pearsonの FASTA(Methods EnzymoL, 183, 63 (1990》を用いて 決定することができる。 Further, as long as the LDC protein has an activity to decarboxylate lysine, it is 80% or more, preferably 90% or more, more preferably 95%, particularly preferably 98, with the amino acid sequence of SEQ ID NO: 12. It may be a protein having a homologous amino acid sequence of more than%. Amino acid sequence homology was determined using, for example, the algorithm BLAST (Pro. Natl. Acad. Sci. US A, 90, 5873 (1993) by Karlin and Altschul and FASTA (Methods EnzymoL, 183, 63 (1990) by Pearson. can do.
[0013] また、 LDCを発現する細胞をそのまま用いてもよぐ LDCを含む細胞処理物を用い てもよい。細胞処理物としては、細胞培養液、細胞破砕液、及びその分画物が挙げ られる。微生物、植物細胞又は動物細胞等の細胞を用いて酵素反応を行う場合、有 機溶媒や界面活性剤等で処理した細胞を用いると基質の透過性が良くなり、反応性 が向上する場合があることが一般的に知られている。リジンの酵素的脱炭酸反応に おいても、 LDCを産生する細胞を有機溶媒や界面活性剤等で処理することにより、 反応性を高めることができる。処理する界面活性剤としては Triton X-100、 Tween 20 、コール酸ナトリウム、 CHAPS、有機溶媒としてはアセトン、キシレン、トルエンなどが 使用可能である。さらに具体的には Triton X-100を用いる場合、 0. 01%〜1. 0% ( wZv)濃度を添加し、 0°C〜37°Cで、 2分〜 1時間の処理が適当である。  [0013] Alternatively, cells that express LDC may be used as they are. Alternatively, a cell-treated product containing LDC may be used. Examples of the cell treatment product include a cell culture solution, a cell disruption solution, and a fraction thereof. When an enzyme reaction is performed using cells such as microorganisms, plant cells, or animal cells, use of cells treated with organic solvents or surfactants may improve the permeability of the substrate and improve the reactivity. It is generally known. In the enzymatic decarboxylation reaction of lysine, the reactivity can be enhanced by treating the cells producing LDC with an organic solvent or a surfactant. Triton X-100, Tween 20, sodium cholate and CHAPS can be used as the surfactant to be treated, and acetone, xylene and toluene can be used as the organic solvent. More specifically, when Triton X-100 is used, a concentration of 0.01% to 1.0% (wZv) is added, and treatment at 0 ° C to 37 ° C for 2 minutes to 1 hour is appropriate. .
[0014] 前記微生物としては E.coli等のェシエリヒア属細菌、ブレビバタテリゥム'ラクトファー メンタム(Brevibacterium lactofermentum)等のコリネ型細菌、バチルス 'サブチリス(B acillus subtilis)等のバチルス属細菌、セラチア'マルセッセンス(Serratia marcescens )等のセラチア属細菌等の細菌、サッカロマイセス 'セレビシェ(Saccharomyces cervis iae)等の真核細胞が挙げられる。これらの中では細菌、特に E.coKが好ましい。 Examples of the microorganism include Escherichia bacteria such as E. coli, coryneform bacteria such as Brevibacterium lactofermentum, Bacillus bacteria such as Bacillus subtilis, Serratia marcescens (Serratia marcescens) of Serratia bacteria such as bacteria include eukaryotic cells such as Saccharomyces' cerevisiae (Saccharomyces cervis i ae). Of these, bacteria, particularly E.coK, are preferred.
前記微生物は LDCを産生する限り、野生株でもよぐ変異株であってもよい。  The microorganism may be a wild strain or a mutant strain as long as it produces LDC.
また LDC活性が上昇するように改変された組換え体を用いても良 ヽ(例えば、特開 2002-223770号公報参照)。 LDC活性が上昇するように改変された微生物、植物細 胞又は動物細胞などを用いることができる。  It is also possible to use a recombinant modified so as to increase LDC activity (see, for example, JP-A-2002-223770). Microorganisms, plant cells, or animal cells that have been modified to increase LDC activity can be used.
[0015] LDC活性が上昇するように改変された組換え細胞としては、例えば、 LDCをコード する遺伝子のコピー数を高めること、又は同遺伝子の発現が増強されるように同遺伝 子の発現調節配列を改変することにより LDC活性が上昇するように改変された組換 え細胞が挙げられる。  [0015] Recombinant cells modified to increase LDC activity include, for example, increasing the copy number of the gene encoding LDC or regulating the expression of the gene so that the expression of the gene is enhanced. Examples include recombinant cells that have been modified so that LDC activity is increased by modifying the sequence.
LDCをコードする遺伝子としては、例えば、 E.coliの配列番号 11の塩基配列を有す る DNAを用いることができる。また、 LDC活性を有するタンパク質をコードする限りに ぉ 、て、配列番号 11の塩基配列の相補配列を有するポリヌクレオチドとストリンジェ ントな条件下でハイブリダィズする DNAを用いることもできる。ここで、「ストリンジェント な条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが 形成されない条件をいう。具体的には、通常のサザンノ、イブリダィゼーシヨンの洗い の条件である 60。C、 1 X SSC、 0. 1%SDS、好ましくは、 60。C、 0. 1 X SSC、 0. 1 %SDS、さらに好ましくは、 68。C、 0. 1 X SSC、 0. 1%SDSに相当する塩濃度、温 度で、 1回より好ましくは 2〜3回洗浄する条件が挙げられる。 As a gene encoding LDC, for example, it has the base sequence of SEQ ID NO: 11 of E. coli DNA can be used. As long as it encodes a protein having LDC activity, a DNA that hybridizes with a polynucleotide having a complementary sequence of the nucleotide sequence of SEQ ID NO: 11 under stringent conditions can also be used. Here, “stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Specifically, it is a condition for washing normal Southerno and Hybridisation60. C, 1 X SSC, 0.1% SDS, preferably 60. C, 0.1 X SSC, 0.1% SDS, more preferably 68. The conditions include washing at a salt concentration and temperature corresponding to C, 0.1 X SSC, 0.1% SDS, more preferably 2 to 3 times.
LDCをコードする遺伝子は、 LDC遺伝子の塩基配列特異的なプライマーやプロ一 ブを用いた PCRやハイブリダィゼーシヨン法などによって得ることができる。  A gene encoding LDC can be obtained by PCR using a nucleotide sequence-specific primer or probe of the LDC gene or a hybridization method.
LDCをコードする遺伝子のコピー数を高めることは、例えば、 LDCをコードする遺伝 子を含むプラスミドで細胞を形質転換したり、相同組換えにより LDCをコードする遺伝 子を宿主細胞の染色体上に組み込んだりすることにより行うことができる。 LDCをコー ドする遺伝子を導入するためのプラスミドとしては、宿主細胞内で複製能を有するも のであれば特に制限されないが、例えば、ェシエリヒア'コリの場合には、例えば pSTV 29 (宝バイオ社製)、 RSF1010 (Gene vol.75 (2), p271- 288, 1989)、 pUC19、 pBR322 、 pMW119等が挙げられ、他にもファージ DNAのベクターも利用できる。またコリネ型 細菌で機能するベクターとしては、 pAM330(特開昭 58-067699号公報)、 pHM1519(特 開昭 58-77895号公報)、 pSFK6 (特開 2000-262288号公報)などが挙げられる。  Increasing the number of copies of the gene encoding LDC can be achieved by, for example, transforming a cell with a plasmid containing the gene encoding LDC, or integrating the gene encoding LDC into the host cell chromosome by homologous recombination. This can be done by dragging. The plasmid for introducing the gene encoding LDC is not particularly limited as long as it has replication ability in the host cell. For example, in the case of Escherichia coli, for example, pSTV 29 (manufactured by Takara Bio Inc.). ), RSF1010 (Gene vol. 75 (2), p271-288, 1989), pUC19, pBR322, pMW119, and the like, and phage DNA vectors can also be used. Examples of vectors that function in coryneform bacteria include pAM330 (Japanese Patent Laid-Open No. 58-067699), pHM1519 (Japanese Patent Laid-Open No. 58-77895), and pSFK6 (Japanese Patent Laid-Open No. 2000-262288).
プラスミドを用いた形質転換や相同組換えは公知の方法に従って行うことができる。 プラスミドを用いた形質転換や相同組換えを行う場合、導入する LDC遺伝子の発 現調節領域を改変してもよい。発現調節領域としては、例えば、プロモーターが挙げ られ、強力なプロモーターとしては、たとえば、 lacプロモーター、 trpプロモーター、 tr cプロモーター、 tacプロモーター、ラムダファージの PRプロモーター、 PLプロモータ 一、 tetプロモーター、 amyEプロモーター、 spacプロモーター、酸性フォスファタ一 ゼのプロモーター等が挙げられる。  Transformation using a plasmid and homologous recombination can be performed according to known methods. When performing transformation or homologous recombination using a plasmid, the expression regulatory region of the LDC gene to be introduced may be modified. Examples of expression control regions include promoters, and strong promoters include, for example, lac promoter, trp promoter, tr c promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, amyE promoter, Examples include a spac promoter and an acid phosphatase promoter.
また、 LDC活性が高められた変異株を脱炭酸反応に用いてもよい。このような変異 株は、例えば、親株又は野生株を通常の変異処理、すなわち X線や紫外線の照射、 または N—メチル Ν' ニトロ一 Ν ニトロソグァ二ジン等の変異剤処理などによつ て処理し、得られた変異株の中から、 LDC活性が高められた株を選択することによつ て得ることができる。 In addition, mutant strains with enhanced LDC activity may be used for the decarboxylation reaction. For example, such a mutant strain is obtained by subjecting a parent strain or a wild strain to normal mutation treatment, that is, irradiation with X-rays or ultraviolet rays, Or N-methyl Ν 'nitro Ν nitrosoguanidine, etc., treated with a mutagen, etc., and obtained from the obtained mutant strain by selecting a strain with enhanced LDC activity be able to.
LDCタンパク質、または LDC活性が高められた微生物もしくは細胞を得るための培 養は、用いる微生物又は細胞に応じ、 LDC産生に適した方法によって行えばよい。 例えば、培養に用いられる培地は炭素源、窒素源、無機イオン及び必要に応じてそ の他の有機成分を含有する通常の培地でよい。炭素源としては、シュクロース、ダル コース、ラタトース、ガラクトース、フラクトース、ァラビノース、マルトース、キシロース、 トレハロース、リボースや澱粉カ卩水分解物などの糖類、グリセロール、マン-トールや ソルビトールなどのアルコール類、ダルコン酸、フマル酸、クェン酸ゃコハク酸等の有 機酸類を用いることができる。窒素源としては、硫酸アンモ-ゥム、塩ィ匕アンモ-ゥム 、リン酸アンモ-ゥム等の無機アンモ-ゥム塩、大豆加水分解物などの有機窒素、ァ ンモ -ゥムガス、アンモニア水等を用いることができる。有機微量栄養素としては、ビ タミン B1等のビタミン類、アデニンや RNA等の核酸類などの要求物質または酵母ェキ ス等を適量含有させることが望ましい。これらの他に、必要に応じて、リン酸カルシゥ ム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。  Culture for obtaining LDC protein or microorganisms or cells with enhanced LDC activity may be performed by a method suitable for LDC production depending on the microorganisms or cells used. For example, the medium used for the culture may be a normal medium containing a carbon source, a nitrogen source, inorganic ions, and other organic components as required. Carbon sources include sucrose, dulcose, latatoose, galactose, fructose, arabinose, maltose, xylose, trehalose, sugars such as ribose and starch-calyzed hydrolyzate, alcohols such as glycerol, mannitol and sorbitol, darcon Organic acids such as acid, fumaric acid, succinic acid and succinic acid can be used. Nitrogen sources include inorganic ammonium salts such as ammonium sulfate, salt ammonia, and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas, and aqueous ammonia. Etc. can be used. As organic micronutrients, it is desirable to contain an appropriate amount of required substances such as vitamins such as vitamin B1, nucleic acids such as adenine and RNA, or yeast sex. In addition to these, a small amount of calcium phosphate, magnesium sulfate, iron ions, manganese ions, etc. is added as necessary.
培養は、例えば、 E.coliの場合は、好気的条件下で 16-72時間程度実施するのがよ ぐ培養温度は 20-45°C、培養 pHは 5.0-8.0に制御する。なお、 pH調整には無機ある いは有機の酸性あるいはアルカリ性物質、更にはアンモニアガス等を使用することが できる。  For example, in the case of E. coli, the culture temperature is controlled to 20-45 ° C and the culture pH is controlled to 5.0-8.0. In addition, inorganic or organic acidic or alkaline substances, ammonia gas, etc. can be used for pH adjustment.
尚、 LDC遺伝子が誘導可能なプロモーターによって発現が調整されている場合に は誘導剤を培地に添加する。  If expression is regulated by a promoter capable of inducing the LDC gene, an inducing agent is added to the medium.
培養後、細胞は、遠心分離機や分離膜などにより、培養液カゝら回収することができ る。細胞はそのまま用いてもよいが、 LDCを含むそれらの処理物を用いる場合は、細 胞を超音波、フレンチプレスまたは酵素的処理により破砕し、酵素を抽出させ、酵素 抽出液として用いることができる。  After culturing, the cells can be collected from the culture medium using a centrifuge or a separation membrane. The cells may be used as they are, but when those treatments containing LDC are used, the cells can be disrupted by ultrasonication, French press or enzymatic treatment to extract the enzyme and used as an enzyme extract. .
さらにそこ力 LDCを精製する場合には、常法に従い、硫安塩析、各種クロマトダラ フィーを使用することによって精製することができる。精製した LDCは、担体を用いて 固定ィ匕したり、膜等を通じて反応液と接触できる状態にして用いることもできる。 Further, when purifying the LDC, LDC can be purified by using ammonium sulfate salting-out and various chromatographies according to conventional methods. Purified LDC can be obtained using a carrier. It can also be used in a state where it can be fixed or contacted with the reaction solution through a membrane or the like.
[0018] 本発明の方法においては、上記のようにして得られる LDCタンパク質又は LDC遺伝 子を発現する細胞もしくはその処理物を用いて脱炭酸反応を行う。脱炭酸反応を行 う際は、基質であるリジン炭酸塩は反応の進行に応じてさらに追加してもよい。また、 LDCタンパク質及び LDC遺伝子を発現する細胞、細胞処理液は反応開始時に反応 液中に全量、直接添加してもよいし、反応の進行に応じて分割して添加してもよい。 [0018] In the method of the present invention, a decarboxylation reaction is carried out using the cells expressing LDC protein or LDC gene obtained as described above or a treated product thereof. When performing the decarboxylation reaction, lysine carbonate as a substrate may be further added according to the progress of the reaction. In addition, LDC protein and LDC gene-expressing cells and cell treatment solution may be added directly to the reaction solution at the start of the reaction, or may be added in portions according to the progress of the reaction.
[0019] 反応液に二酸化炭素を供給することにより、 pHをリジンの酵素的脱炭酸反応に適し た pHに調整する。この pHは添カ卩ニ酸ィ匕炭素ガスの純度、流量及び酵素反応系の圧 力を調整することによって調整する。通常は pH9.0以下とし、好ましくは pH5.0-9.0、よ り好ましくは pH7.0-9.0とする。 [0019] By supplying carbon dioxide to the reaction solution, the pH is adjusted to a pH suitable for the enzymatic decarboxylation reaction of lysine. This pH is adjusted by adjusting the purity, flow rate and pressure of the enzyme reaction system. The pH is usually 9.0 or less, preferably pH 5.0-9.0, more preferably pH 7.0-9.0.
リジンの脱炭酸反応によりカダベリンが生成する。この時 1価のカチオンであるリジン 力 脱炭酸により 2価のカチオンであるカダベリンとなる力 水溶液中に存在する炭酸 が対イオンとなり、反応液中にカダベリン炭酸塩が得られる。  Cadaverine is produced by decarboxylation of lysine. At this time, lysine, which is a monovalent cation, decarboxylation, cadaverine, which is a divalent cation, is converted into cadaverine, and the carbonic acid present in the aqueous solution becomes a counter ion, and cadaverine carbonate is obtained in the reaction solution.
反応 pHは前記 pH範囲内で維持できれば脱炭酸反応中は厳密な pH調整は必要と しない。しかし、反応の進行に伴い、リジン力 遊離される炭酸ガスが反応液力 放 出され、 pHが上昇する。したがって、反応液の pHが前記範囲となるように、二酸化炭 素を反応液に添加して調整する。添加する二酸化炭素は気体、液体、固体 (ドライア イス)であってもよいが、気体としてカ卩えることが好ましい。二酸ィ匕炭素は他のガスを 含む混合ガスであっても構わないが、好ましくは純度 100%の二酸ィ匕炭素が良い。二 酸ィ匕炭素の添カ卩は連続的又は間欠的であってもよい。二酸化炭素以外の中和剤を 同時に加えてもよいが、複生塩を発生させないために、中和剤は二酸ィ匕炭素のみカロ えることが好ましい。  If the reaction pH can be maintained within the above pH range, strict pH adjustment is not necessary during the decarboxylation reaction. However, as the reaction proceeds, the carbon dioxide released from the lysine force is released as the reaction solution and the pH rises. Therefore, carbon dioxide is added to the reaction solution and adjusted so that the pH of the reaction solution falls within the above range. The carbon dioxide to be added may be a gas, a liquid, or a solid (dry ice), but is preferably stored as a gas. The diacid carbon may be a mixed gas containing other gases, but is preferably 100% pure carbon dioxide. The carbon dioxide addition may be continuous or intermittent. A neutralizing agent other than carbon dioxide may be added at the same time. However, in order not to generate a double salt, it is preferable that the neutralizing agent only contains carbon dioxide.
[0020] 脱炭酸酵素反応の反応温度は酵素反応が最大となり、かつ二酸化炭素の溶液か らの放出を最小限に抑え、反応 pHを前記 pHの範囲に抑えられる範囲であればよぐ 好ましくは 20-50°Cであり、より好ましくは 25-45°Cである。  [0020] The reaction temperature of the decarboxylase reaction is preferably within the range where the enzyme reaction is maximized, the release of carbon dioxide from the solution is minimized, and the reaction pH is kept within the above pH range. 20-50 ° C, more preferably 25-45 ° C.
[0021] 酵素的脱炭酸反応は補酵素であるビタミン B6を添加することにより加速することが できる。ビタミン B6の種類に制限はないが、好ましくはピリドキシン、ピリドキサミン及び ピリドキサルリン酸のうちの 1種類でよい。より好ましくはピリドキサルリン酸 (PLP)であ る。添加濃度も特に制限はないが、好ましくは O.lmM以上の濃度である。 [0021] The enzymatic decarboxylation reaction can be accelerated by adding vitamin B6, which is a coenzyme. There is no limitation on the type of vitamin B6, but one of pyridoxine, pyridoxamine and pyridoxal phosphate may be preferable. More preferably pyridoxal phosphate (PLP) The The addition concentration is not particularly limited, but is preferably a concentration of O.lmM or more.
[0022] <カダベリンジカルボン酸塩の製造法 > <Method for producing cadaverine dicarboxylate>
本発明のカダベリン炭酸塩の製造法により得られたカダベリン炭酸塩の水溶液にジ カルボン酸を添カ卩してカダベリンジカルボン酸塩を生成させ、該カダベリンジカルボ ン酸塩を回収することによって、カダベリンジカルボン酸塩を製造することができる。 すなわち、炭酸とジカルボン酸の塩交換反応により溶液中にカダベリンジカルボン 酸塩が生成する。一方、炭酸イオンは二酸ィ匕炭素として系外に放出される。この時添 加するジカルボン酸はカダベリンと等モルであることが望ま U、。また添加するジカル ボン酸は炭素数 4-10のジカルボン酸であることが好まし!/、。炭素数 4-10のジカルボ ン酸としては、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、セバシン酸 、テレフタル酸、イソフタル酸などが挙げられる。より好ましくは炭素数 6のアジピン酸 もしくは炭素数 8のテレフタル酸である。  By adding dicarboxylic acid to the aqueous solution of cadaverine carbonate obtained by the method for producing cadaverine carbonate of the present invention to produce cadaverine dicarboxylate, and recovering the cadaverine dicarbonate, cadaverine is recovered. Dicarboxylates can be produced. That is, cadaverine dicarboxylate is formed in the solution by a salt exchange reaction between carbonic acid and dicarboxylic acid. On the other hand, carbonate ions are released out of the system as carbon dioxide. The dicarboxylic acid added at this time should be equimolar with cadaverine. The dicarboxylic acid to be added is preferably a dicarboxylic acid having 4 to 10 carbon atoms! Examples of the dicarboxylic acid having 4 to 10 carbon atoms include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, sebacic acid, terephthalic acid, and isophthalic acid. More preferred are 6-carbon adipic acid or 8 carbon-terephthalic acid.
[0023] 得られたカダベリンジカルボン酸塩は、例えば、以下の方法により、簡易に分離回 収することができる。まず、遠心分離により除菌後、好ましくは PLP及び不純物を除く ために活性炭処理により脱色を行う。次に減圧濃縮を行うことにより、カダベリンジカ ルボン酸塩の結晶を取得することができる。 [0023] The obtained cadaverine dicarboxylate can be easily separated and recovered by, for example, the following method. First, after sterilization by centrifugation, decolorization is preferably performed by activated carbon treatment to remove PLP and impurities. Next, cadaverine dicarboxylate crystals can be obtained by concentration under reduced pressure.
[0024] くカダベリンの製造法 > [0024] Production Method of Kudaverine>
本発明のカダベリン炭酸塩の製造法により得られたカダベリン炭酸塩の水溶液を濃 縮することによりカダベリンを製造することができる。カダベリンは、例えば、以下の方 法により、簡易に分離回収することができる。  Cadaverine can be produced by concentrating an aqueous solution of cadaverine carbonate obtained by the method for producing cadaverine carbonate of the present invention. Cadaverine can be easily separated and recovered by, for example, the following method.
すなわち、カダベリン炭酸塩の水溶液について、遠心分離等により菌体などを除い た後、好ましくは PLP及び不純物を除くために活性炭処理により脱色を行う。次に、濃 縮を行うことにより、炭酸イオン、炭酸水素イオンは大気中に二酸ィ匕炭素として放出さ れ、水分蒸発後、カダベリンを取得することができる。濃縮は、減圧下で行うことが好 ましぐまた、加熱することにより効率よく濃縮することができる。加熱する場合の温度 は 40〜100°Cが好ましい。  That is, the aqueous solution of cadaverine carbonate is decolorized by treatment with activated carbon to remove PLP and impurities after removing cells by centrifugation or the like. Next, by performing concentration, carbonate ions and hydrogen carbonate ions are released into the atmosphere as carbon dioxide and carbon dioxide, and cadaverine can be obtained after water evaporation. Concentration is preferably performed under reduced pressure, and can be efficiently concentrated by heating. The heating temperature is preferably 40 to 100 ° C.
本発明の方法は、公知のイオン交換榭脂法、及び有機溶媒晶析法と比較して、精 製工程で大量の水を使用しない、榭脂再生の過程で副生塩を発生しない、有機溶 媒を使用しな ヽなどの点で優れておりかつ、簡便な方法である。 Compared with the known ion exchange resin method and organic solvent crystallization method, the method of the present invention does not use a large amount of water in the refining process, does not generate by-product salt in the process of resin regeneration, Melting This is an excellent and simple method that does not use a medium.
[0025] <ポリアミドの製造法 >  <Manufacturing method of polyamide>
上記方法によって得られたカダベリンジカルボン酸塩またはカダベリンを用いてポリ アミドを製造することができる。ポリアミドの製造方法としては、カダベリンジカルボン酸 塩を用いて重縮合反応を行う方法、およびカダベリンとジカルボン酸とを用いて重縮 合反応を行う方法が挙げられる。重縮合反応は、公知の方法に従って行うことができ る (例えば、「プラスチック材料講座 [16]ポリアミド榭脂」(日刊工業新聞社)参照)。例 えば、カダベリンジカルボン酸塩を水と混合し、該混合物を加熱して脱水させながら 縮合させる加熱重縮合法が挙げられる。また、カダベリンおよびジカルボン酸を水と 混合し、該混合物を加熱して脱水させながら重縮合させてもよ ヽ。  Polyamides can be produced using cadaverine dicarboxylate or cadaverine obtained by the above method. Examples of the polyamide production method include a method of performing a polycondensation reaction using cadaverine dicarboxylic acid salt and a method of performing a polycondensation reaction using cadaverine and dicarboxylic acid. The polycondensation reaction can be carried out according to a known method (see, for example, “Plastic Materials Course [16] Polyamide resin” (Nikkan Kogyo Shimbun)). For example, there is a heat polycondensation method in which cadaverine dicarboxylate is mixed with water and the mixture is heated and dehydrated for condensation. Further, cadaverine and dicarboxylic acid may be mixed with water, and the mixture may be polycondensed while being dehydrated by heating.
重縮合後、固相重合することによって、分子量を上昇させることも可能である。固相 重合は、 100°Cから融点の温度範囲で、真空中、あるいは不活性ガス中で加熱する ことにより進行し、加熱重縮合では分子量が不十分なポリアミドを高分子量ィ匕すること ができる。  After the polycondensation, the molecular weight can be increased by solid phase polymerization. Solid-phase polymerization proceeds by heating in a vacuum or in an inert gas in the temperature range from 100 ° C to the melting point, and polyamides with insufficient molecular weight can be converted to high molecular weight by heating polycondensation. .
重縮合に用いるジカルボン酸の種類に応じて様々な種類のポリアミドを製造するこ とができる。重縮合に用いることのできるジカルボン酸はポリアミドの製造に用いること が出来るものであれば特に制限はないが、例えば、コハク酸、マレイン酸、フマル酸、 グルタル酸、アジピン酸、セバシン酸、テレフタル酸、イソフタル酸などが挙げられる。 例えば、アジピン酸を重縮合に用いた場合、 5, 6—ナイロンを得ることができ、テレフ タル酸を重縮合に用いた場合、 5, T—ナイロンを得ることができる。  Various types of polyamides can be produced depending on the type of dicarboxylic acid used for polycondensation. The dicarboxylic acid that can be used for polycondensation is not particularly limited as long as it can be used for the production of polyamide. For example, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, sebacic acid, terephthalic acid And isophthalic acid. For example, when adipic acid is used for polycondensation, 5,6-nylon can be obtained, and when terephthalic acid is used for polycondensation, 5, T-nylon can be obtained.
実施例  Example
[0026] [実施例;二酸化炭素添加によるリジン炭酸塩溶液の pH調整]  [0026] [Example; pH adjustment of lysine carbonate solution by addition of carbon dioxide]
100g/L L-リジン溶液 200mLに対して 100%二酸化炭素ガスを 5、 10、 20、 50mL/mi nで溶液中に通気し、 lOOrpm相当の攪拌を行いながら、 L-リジン炭酸塩の生成を行 つた。この際、反応中の pHの測定を行った。結果は表 1に示した。  100% carbon dioxide gas is bubbled into the solution at 5, 10, 20, 50 mL / min for 200 mL of 100 g / L L-lysine solution, and L-lysine carbonate is formed while stirring equivalent to lOOrpm. I went. At this time, the pH during the reaction was measured. The results are shown in Table 1.
[0027] [表 1] 表 1 CO 2添加流量と L-リジン溶液の pHの関係 [0027] [Table 1] Table 1 Relationship between CO 2 addition flow rate and pH of L-lysine solution
Figure imgf000014_0001
Figure imgf000014_0001
[0028] L-リジン溶液の pHは、反応初期は CO流量に依存し、添加流量が大きい程、 pH低  [0028] The pH of the L-lysine solution depends on the CO flow rate at the beginning of the reaction. The larger the addition flow rate, the lower the pH.
2  2
下速度は速ぐ反応 18時間後に、それぞれの CO添加流速に依存した pHで平衡状  After 18 hours, the lower speed is equilibrated at a pH that depends on the CO addition flow rate.
2  2
態に達し、 pHは一定の値を示した。その後、 CO添加を中断すると pHはアルカリ方向  The pH reached a constant value. After that, when CO addition is interrupted, pH tends to be alkaline
2  2
に上昇し、溶液中には L-リジンを中和するのに十分以上な COが溶解していることが  The solution should have enough CO dissolved in the solution to neutralize L-lysine.
2  2
確認された。  confirmed.
この結果より、 L-リジン溶液に COを添加して L-リジン炭酸塩を生成する際に、 CO  From this result, when CO is added to the L-lysine solution to produce L-lysine carbonate, CO
2 2 添加量を高めることより、より多くの COを溶液中に溶解させ、反応液の pHを更に低  2 2 By increasing the amount added, more CO is dissolved in the solution, and the pH of the reaction solution is further lowered.
2  2
下させることが可能であることが確認された。  It was confirmed that it was possible to lower
反応基質の L-リジン炭酸塩溶液の pHが酵素(LDC)の反応至適 pHと異なる場合は 、上記の方法により酵素の反応至適 pHに反応液の pHを調整することが可能であるこ とが確認された。  If the pH of the L-lysine carbonate solution of the reaction substrate is different from the optimum reaction pH of the enzyme (LDC), it is possible to adjust the pH of the reaction solution to the optimum pH of the enzyme reaction by the above method. Was confirmed.
[0029] [実施例 1:プラスミド cadA220の構築] [0029] [Example 1: Construction of plasmid cadA220]
(Escherichia coli由来 LDC発現プラスミドの構築)  (Construction of LDC expression plasmid derived from Escherichia coli)
E.coli由来 LDC遺伝子(cadA)の塩基配列(N. Watson et al., Journal of bacteriolog y, (1992) vol. 174, 530-540; S. Y. Neng and GN Bennet, Journal of bacteriology (19 92) vol. 174, 2659- 2669)を基に、 5, - gtcgacactgcacacggctggcgg- 3, (配列番号 1)及 び 5, - gttagcggcacgtacacctgcctgg-3,(配列番号 2)に示す塩基配列を有する PCRプラ イマ一を設計し、 E.coli W3110 (ATCC39936)の染色体を铸型として、 PCR法により ca dAを含む DNA断片を増幅した。  E.coli-derived LDC gene (cadA) (N. Watson et al., Journal of bacteriolog y, (1992) vol. 174, 530-540; SY Neng and GN Bennet, Journal of bacteriology (19 92) vol 174, 2659-2669), and designed a PCR primer having the base sequence shown in 5, -gtcgacactgcacacggctggcgg-3, (SEQ ID NO: 1) and 5, -gttagcggcacgtacacctgcctgg-3, (SEQ ID NO: 2). A DNA fragment containing cadA was amplified by PCR using the E. coli W3110 (ATCC39936) chromosome as a saddle.
増幅された DNA断片を、 Kpnlと Sphlで切断し、得られた断片(2,468bp)を pUC18 (タ カラノィォ)の Kpnlと Sphl切断部位に挿入してプラスミド pcadAを作製した。  The amplified DNA fragment was cleaved with Kpnl and Sphl, and the obtained fragment (2,468 bp) was inserted into the Kpnl and Sphl cleavage sites of pUC18 (Tacarano) to prepare plasmid pcadA.
[0030] (Enterobacter属酸性フォスファターゼ遺伝子発現プラスミドの構築) [0030] (Construction of Enterobacter acid phosphatase gene expression plasmid)
Journal of Bioscience and Bioengineering (2001) Vol. 92, No.l, 50— 54記載の通り( もしくは特開平 10- 201481号公報、実施例 24など)、ェンテロパクター 'ァエロゲネス( Enterobacter aerogenes) IFO 12010菌株由来の染色体 DNAより、酸性フォスファタ ーゼ遺伝子領域を含む、制限酵素 Sailと制限酵素 Kpnlで切り出される 1.6kbpの DNA 断片を単離し、 PUC118に連結したプラスミド pEAM330を作製した。 As described in Journal of Bioscience and Bioengineering (2001) Vol. 92, No.l, 50-54 ( Alternatively, it is excised from the chromosomal DNA derived from Enterobacter aerogenes IFO 12010 strain with restriction enzyme Sail and restriction enzyme Kpnl from Enterobacter aerogenes IFO 12010 strain. A 1.6 kbp DNA fragment was isolated and a plasmid pEAM330 linked to PUC118 was prepared.
(LDC高発現型プラスミドの構築) (Construction of LDC high expression plasmid)
铸型として上記プラスミド pcadA、プライマーとして 5 ' -ggggtacctgtgagggtgttttcatg tg ttctc- 3 (酉己列番 3)及び 5 -tattgcaataacgttcatcgcgaaagcgttaacgg-3 ' (目 il列番号 4) オリゴヌクレオチド各 0.4mM並びに KOD plus用緩衝液(TOYOBO社製)、 dATP、 dC TP、 dGTP、 dTTP各 0.2mM、 MgSO ImM及び KOD plusポリメラーゼ(TOYOBO社  The above plasmid pcadA as a cage type, 5'-ggggtacctgtgagggtgttttcatg tg ttctc-3 (Tatsumi column number 3) and 5-tattgcaataacgttcatcgcgaaagcgttaacgg-3 '(the first column number 4) each oligonucleotide 0.4mM and buffer for KOD plus ( TOYOBO), dATP, dC TP, dGTP, dTTP 0.2 mM each, MgSO ImM and KOD plus polymerase (TOYOBO)
4  Four
製) 1ユニットを含む 50 μ Lの反応液を 94°C、 30秒の熱処理後、 94°Cを 15秒、 55°Cを 3 0秒、 68°Cを 2分 30秒のサイクルを 25回繰り返す PCRを行い、 cadA遺伝子部分を増幅 した。 50 μL reaction solution containing 1 unit at 94 ° C for 30 seconds, then 94 ° C for 15 seconds, 55 ° C for 30 seconds, 68 ° C for 2 minutes 30 seconds 25 Repeated PCR was performed to amplify the cadA gene portion.
また、铸型として上記プラスミド pEAM330、プライマーとして 5 ' -gctctagaattttttcaatg tgattt— 3 (酉歹 ϋ¾·号 5)及び a -gtgattcaatattgcaataacgttcatctacatttccttacggtgtta- . ( 配列番号 6)オリゴヌクレオチドを用い同条件にて PCRを行 、、酸性フォスファターゼ のプロモーター配列部分を増幅した。反応液はァガロースゲル電気泳動に供し、増 幅された各 DNA断片を Microspin column (アマシャム 'フアルマシア ·バイオテク社製) を用いて回収した。  Further, PCR was performed under the same conditions using the above plasmid pEAM330 as the cage type, 5′-gctctagaattttttcaatg tgattt-3 (酉 歹 酉 歹 ¾ · No. 5) and a-gtgattcaatattgcaataacgttcatctacatttccttacggtgtta-. (SEQ ID NO: 6) oligonucleotide as primers. The promoter sequence portion of acid phosphatase was amplified. The reaction solution was subjected to agarose gel electrophoresis, and each amplified DNA fragment was recovered using a Microspin column (manufactured by Amersham's Pharmacia Biotech).
次 ヽで該増幅断片混合物を铸型とし、プライマーとして配列番号 3及び配列番号 5 オリゴヌクレオチドを用い、同様の組成の反応液で 94°Cを 15秒、 55°Cを 30秒、 68°Cを 2分 30秒のサイクルで 25回繰り返す PCRを行い、キメラ型酵素遺伝子を構築した。増 幅された各 DNA断片を Microspin column (アマシャム'フアルマシア'バイオテク社製 )を用いて回収し、これを Xbalと Pstlで消化した。これをプラスミド pUC119の Xbal-Pstl サイトに連結した。力べして CadA発現プラスミドを構築し、 pcadA202と命名した。  Next, the amplified fragment mixture is made into a bowl shape, and oligonucleotides of SEQ ID NO: 3 and SEQ ID NO: 5 are used as primers, and 94 ° C for 15 seconds, 55 ° C for 30 seconds, 68 ° C in a reaction solution having the same composition. PCR was repeated 25 times in a cycle of 2 minutes and 30 seconds to construct a chimeric enzyme gene. Each amplified DNA fragment was recovered using a Microspin column (Amersham 'Farmasia' Biotech) and digested with Xbal and Pstl. This was ligated to the Xbal-Pstl site of plasmid pUC119. The CadA expression plasmid was constructed by force and named pcadA202.
次【こ QuickChange 'Site-Directed Mutagenesis Kit (Stratageneノを用 ヽ、 CadA発 量を上昇させる為に pcadA202の発現制御領域に、以下に示す手順に従って変異導 入を行った。  Next, using the QuickChange 'Site-Directed Mutagenesis Kit (Stratagene was used, mutation was introduced into the expression control region of pcadA202 in accordance with the following procedure in order to increase CadA production.
始めにプラスミド pcadA202を铸型として、プライマーとして 5, -ggacatataacaccgtaagg aggaatgtagatgaacgttattgc-3, (酉己列番号 7)及び 5, -gcaataacgttcatctacattcctccttacggt gttatatgtcc-3,(配列番号 8)オリゴヌクレチドを用いて説明書の方法に従 、PCRを行 い、プラスミド pcadA210を構築した。 First, plasmid pcadA202 is used as a cocoon, and as a primer, 5, -ggacatataacaccgtaagg PCR was performed using aggaatgtagatgaacgttattgc-3, (self-sequence number 7) and 5, -gcaataacgttcatctacattcctccttacggt gttatatgtcc-3, (SEQ ID NO: 8) oligonucleotide according to the method described in the manual to construct plasmid pcadA210.
次 、でプラスミド pcadA210を铸型として、プライマーとして 5, -gaattttttcaatgtgattttg acatttacttccagatgac-ύ (目 ti列 ¾·号 9)及び 5 -gtcatctggaagtaaatgtcaaaatcacattgaaaaa attc-3 ' (配列番号 10)オリゴヌクレオチドを用いて PCRを行い、プラスミドを構築した。 この CadA高発現型プラスミドを pcadA220と命名した。 pcadA220は、 Enterobacter属の 酸性フォスファターゼ遺伝子の構成発現型プロモーター及びリボソーム結合部位に 改変が加えられ、 LDCをより高発現するように設計されて!、る。  Next, PCR was performed using the plasmid pcadA210 as a saddle type, and using 5, -gaattttttcaatgtgattttg acatttacttccagatgac-ύ (item ti column ¾ · No. 9) and 5-gtcatctggaagtaaatgtcaaaatcacattgaaaaa attc-3 ′ (SEQ ID NO: 10) oligonucleotide as primers. A plasmid was constructed. This CadA high expression plasmid was named pcadA220. pcadA220 is designed to enhance LDC expression by modifying the constitutive expression promoter and ribosome binding site of the acid phosphatase gene of the genus Enterobacter.
全ての構築したプラスミドは、その都度 DNA Sequencing Kit Dye Terminator Cycle Sequencing Ready Reaction (PERKIN ELMER社製)を用いた Dye Terminator法により 、 310 Genetic analyzer (ABI)にて塩基配列を決定し、 目的の変異が導入されている ことを確認した。  All constructed plasmids were sequenced using the 310 Genetic analyzer (ABI) by the Dye Terminator method using the DNA Sequencing Kit Dye Terminator Cycle Sequencing Ready Reaction (PERKIN ELMER). It was confirmed that it was introduced.
また、プラスミド pcadA220で E.coli JM109株(Takara Bio社)を形質転換し、得られた 形質転換体を Escherichia coli cadA220と命名した。この菌株は Enterobacter属酸性 フォスファターゼ遺伝子の構成発現型プロモーター及びリボソームバインディングサ イトに改変が加えられ、 LDCをより高発現することに成功した。  Also, E. coli JM109 strain (Takara Bio) was transformed with plasmid pcadA220, and the resulting transformant was named Escherichia coli cadA220. In this strain, the constitutive expression promoter of the Enterobacter genus acid phosphatase gene and the ribosome binding site were modified and succeeded in higher expression of LDC.
[実施例 2 :カダベリン炭酸塩の生成] [Example 2: Production of cadaverine carbonate]
(Escherichia coli cadA220株の培養) (Culture of Escherichia coli cadA220 strain)
Escherichia coli cadA220株を LB培地プレートに 1エーゼ植菌し、 26°C、ー晚培養を 行い、ここから培養菌体を 1エーゼ搔き取り、 50mLの液体 LB培地に植菌を行い、 28 °C、 150rpmの条件で振とう培養を 8時間行い、前々培養液を得た。  Escherichia coli cadA220 strain is inoculated on LB medium plate for 1 ase and cultured at 26 ° C for 晚, and then cultured cells are sown for 1 ase and inoculated into 50 mL of liquid LB medium at 28 ° C. C. Shaking culture was performed for 8 hours under conditions of 150 rpm, and a culture solution was obtained in advance.
得られた前々培養液を以下に示す前培養培地に 10mL植菌を行 ヽ、全量 300mLと して 28°C、 700rpm、 pH7.0、通気量 300mL/minの条件で前培養を行った。培養 pHの 調整にはアンモニアを使用した。前培養培地中の糖消費が終了した時点で培養を 終了し、前培養液を得た。  The pre-culture solution obtained was inoculated into 10 mL of the pre-culture medium shown below, and pre-cultured at a total volume of 300 mL under the conditions of 28 ° C, 700 rpm, pH 7.0, aeration rate of 300 mL / min. . Ammonia was used to adjust the culture pH. When the consumption of sugar in the preculture medium was completed, the culture was terminated to obtain a preculture solution.
前培養培地組成  Preculture medium composition
グルコース 25g/Lゝ MgSO 7aq 1.0g/L、 KH PO 1.4g/Lゝ (NH ) SO 5.0g/L、 大豆 塩酸分解物 無機窒素換算 0.45g/L、 FeSO 7aq 20mg/L、 MnSO 5H O 20mg/L、 Glucose 25g / L ゝ MgSO 7aq 1.0g / L, KH PO 1.4g / L ゝ (NH) SO 5.0g / L, soybean Hydrochloric acid decomposition product 0.45g / L in terms of inorganic nitrogen, FeSO 7aq 20mg / L, MnSO 5H O 20mg / L,
4 4 2  4 4 2
Thiamine HC1 1.0mg/L、 消泡剤 O.lmL/L  Thiamine HC1 1.0mg / L, Antifoam O.lmL / L
培地は混合後、 KOH水溶液で pH5.0に調整を行った。  The medium was mixed and adjusted to pH 5.0 with KOH aqueous solution.
[0033] 得られた前培養液 15mLを前培養培地と同じ組成の本培養培地に添加して全容量[0033] 15 mL of the obtained preculture solution was added to the main culture medium having the same composition as that of the preculture medium, and the total volume was added.
300mLとして 30°C、 700rpm、 pH7.0、通気量 300mL/minの条件で本培養を行った。培 養 pHの調整はアンモニアで行い、本培養培地中の糖消費が終了した時点で培養を 終了し、 Escherichia coli cadA220菌体を得た。 The main culture was performed at 300 ° C., 30 ° C., 700 rpm, pH 7.0, and aeration rate of 300 mL / min. The culture pH was adjusted with ammonia, and when the sugar consumption in the main culture medium was completed, the culture was terminated to obtain Escherichia coli cadA220 cells.
[0034] (Escherichia coli cadA220株の反応前処理) [0034] (Pretreatment of Escherichia coli cadA220 strain)
得られた Escherichia coli cadA220株は酵素反応前に以下に示す反応前処理を実 施した。菌体培養液を 6,000rpm、 10分、 4°Cの条件で遠心分離を行い、沈殿菌体を 得た。  The obtained Escherichia coli cadA220 strain was subjected to the pretreatment shown below before the enzyme reaction. The bacterial cell culture solution was centrifuged at 6,000 rpm for 10 minutes at 4 ° C to obtain precipitated bacterial cells.
この沈殿菌体に遠心分離に使用した培養液の 1/5量の 0.1%Triton X_100、 0.2M T ris-HCl (pH7.4)溶液を添加して沈殿菌体を均一に懸濁した。懸濁後、溶液は 10分間 氷冷を行い、これを酵素溶液とした。  A 1/5 volume of 0.1% Triton X_100, 0.2 M Tris-HCl (pH 7.4) solution of 1/5 of the culture solution used for the centrifugation was added to the precipitated cells to suspend the precipitated cells uniformly. After suspending, the solution was ice-cooled for 10 minutes to obtain an enzyme solution.
[0035] (リジン炭酸塩溶液の調製) [Preparation of lysine carbonate solution]
L-リジン(医薬用グレード)溶液 200g/L 200mLに 60mL/minの流量で炭酸ガスの添 加を行った。攪拌 150rpm、 25°Cの条件でー晚調整を行い、所定の pHで平衡になつ た溶液を L-リジン炭酸塩溶液として以下の反応に用 、た。  Carbon dioxide was added to L-lysine (pharmaceutical grade) solution 200 g / L 200 mL at a flow rate of 60 mL / min. Stirring was carried out under conditions of 150 rpm and 25 ° C., and a solution equilibrated at a predetermined pH was used as an L-lysine carbonate solution for the following reaction.
[0036] (カダベリン炭酸塩の生成反応) [0036] (Production reaction of cadaverine carbonate)
得られた L-リジン炭酸塩 200g/L (L-リジン換算) 200mLに、酵素溶液 5mL及びピリド キサール- 5-リン酸 (PLP)を O.lmM相当になるように添加を行い、酵素反応を開始し た。反応は攪拌 150rpm、 25°C、炭酸ガス 60mL/min添加の条件で行い、反応途中に は他の中和剤の添カ卩は行わなかつた。  To 200 mL of the obtained L-lysine carbonate 200 g / L (converted to L-lysine), add 5 mL of the enzyme solution and pyridoxal-5-phosphate (PLP) so as to correspond to O.lmM, and carry out the enzyme reaction. Started. The reaction was carried out under the conditions of stirring at 150 rpm, 25 ° C. and carbon dioxide gas 60 mL / min, and no other neutralizing agent was added during the reaction.
酵素反応は一晚行 、、その結果反応溶液中に 128g/L (カダベリン換算)のカダベリ ン炭酸塩の生成が確認された。  Enzymatic reaction was carried out, and as a result, 128 g / L (converted to cadaverine) of cadaverine carbonate was confirmed in the reaction solution.
[0037] [実施例 3:カダベリンカルボン酸塩の精製] [0037] [Example 3: Purification of cadaverine carboxylate]
141.4g/Lカダベリン炭酸塩溶液 400mLに対して、等モル量のアジピン酸結晶 80.9g をカダベリン炭酸塩溶液に添加し攪拌混合を行った。攪拌はアジピン酸が溶解し、 二酸ィ匕炭素の発生が終了し、かつ反応 pHが一定になるまで行った。この結果、カダ ベリンアジピン酸溶液が取得された。 An equimolar amount of 80.9 g of adipic acid crystals was added to 400 mL of 141.4 g / L cadaverine carbonate solution, and the mixture was stirred and mixed. Stirring dissolves adipic acid, The reaction was continued until the generation of carbon dioxide and the reaction pH became constant. As a result, a cadaverine adipic acid solution was obtained.
取得されたカダベリンアジピン酸溶液は遠心分離(12,000rpm、 10分)にて菌体及び その残渣を除去し、上清画分を取得した。  The obtained cadaverine adipic acid solution was centrifuged (12,000 rpm, 10 minutes) to remove the cells and their residues, and a supernatant fraction was obtained.
得られた上清各分に対し活性炭を 10%乾燥重量 (対カダベリン)添加し、 50°C、 30 分間反応を行った。その後、ろ過により活性炭を除去し、カダベリン炭酸塩溶液を取 得した。この操作により反応溶液中の PLP及び不純物の分離が行われた。  10% dry weight (vs. cadaverine) of activated carbon was added to each obtained supernatant and reacted at 50 ° C for 30 minutes. Thereafter, the activated carbon was removed by filtration to obtain a cadaverine carbonate solution. By this operation, PLP and impurities in the reaction solution were separated.
得られたカダベリンアジピン酸塩溶液 200mLを、エバポレーターを使用して減圧濃 縮を行った。この操作により溶液中の水分が除去され、最終的に 64.0gのカダベリン アジピン酸塩が取得された。  200 mL of the obtained cadaverine adipate solution was concentrated under reduced pressure using an evaporator. By this operation, water in the solution was removed and finally 64.0 g of cadaverine adipate was obtained.
[0038] [実施例 4 ;カダベリンの精製] [Example 4; Purification of cadaverine]
実施例 2で得られたカダベリン炭酸塩溶液を初めに 12,000rpm、 10分、 4°Cの条件 で遠心分離を行った。反応液中の菌体及び菌体残渣の除去を行い、上清画分を取 得した。  The cadaverine carbonate solution obtained in Example 2 was first centrifuged at 12,000 rpm for 10 minutes at 4 ° C. The microbial cells and microbial cell residues in the reaction solution were removed, and the supernatant fraction was obtained.
得られた上清各分に対し活性炭を 10%乾燥重量 (対カダベリン)添加し、 50°C、 30 分間反応を行った。その後、ろ過により活性炭を除去し、カダベリン炭酸塩溶液を取 得した。この操作により反応溶液中の PLP及び不純物の分離が行われた。  10% dry weight (vs. cadaverine) of activated carbon was added to each obtained supernatant and reacted at 50 ° C for 30 minutes. Thereafter, the activated carbon was removed by filtration to obtain a cadaverine carbonate solution. By this operation, PLP and impurities in the reaction solution were separated.
得られたカダベリン炭酸塩溶液 300mLを、エバポレーターを使用して 40°Cで減圧濃 縮することによりカダベリンの精製を行った。この操作により溶液中の二酸化炭素及 び水分が除去され、最終的に 28.7gのカダベリンが取得された。  Cadaverine was purified by concentrating 300 mL of the obtained cadaverine carbonate solution under reduced pressure at 40 ° C. using an evaporator. This operation removed carbon dioxide and water from the solution, and 28.7 g of cadaverine was finally obtained.
産業上の利用の可能性  Industrial applicability
[0039] 本発明において、カダベリンの対イオンに二酸ィ匕炭素を使用することにより、副生 物の塩の生成を極小化し、かつ精製工程を簡略ィ匕し、安価なカダベリン炭酸塩、及 びこれを用いるカダベリンまたはカダベリンジカルボン酸塩の供給、並びにこれらを 用いたポリアミドの製造を可能とした。 [0039] In the present invention, by using diacid carbon as the counter ion of cadaverine, the production of by-product salts is minimized, the purification process is simplified, and inexpensive cadaverine carbonate, and Using this, it was possible to supply cadaverine or cadaverine dicarboxylate and to produce polyamides using these.

Claims

請求の範囲  The scope of the claims
[I] リジン炭酸塩の水溶液に、同水溶液の pHがリジンの酵素的脱炭酸反応に適した pH に維持されるように二酸ィ匕炭素を加えながら、リジンの酵素的脱炭酸反応を行って力 ダベリン炭酸塩を生成させることを含む、カダベリン炭酸塩の製造方法。  [I] Enzymatic decarboxylation of lysine was carried out while adding diacid-carbon to an aqueous solution of lysine carbonate so that the pH of the aqueous solution was maintained at a pH suitable for enzymatic decarboxylation of lysine. A method for producing cadaverine carbonate, comprising producing daverine carbonate.
[2] 前記酵素的脱炭酸反応に適した pHが pH9.0以下である請求項 1に記載の方法。  [2] The method according to [1], wherein the pH suitable for the enzymatic decarboxylation reaction is pH 9.0 or less.
[3] 前記二酸化炭素を気体として加える請求項 1に記載の方法。 3. The method according to claim 1, wherein the carbon dioxide is added as a gas.
[4] 前記酵素的脱炭酸反応時に二酸ィ匕炭素以外の中和剤を添加しないことを特徴とす る請求項 1に記載の方法。  [4] The method according to [1], wherein a neutralizing agent other than carbon dioxide and carbon dioxide is not added during the enzymatic decarboxylation reaction.
[5] 前記リジン炭酸塩の水溶液がリジン炭酸塩発酵液である請求項 1に記載の方法。 5. The method according to claim 1, wherein the lysine carbonate aqueous solution is a lysine carbonate fermentation solution.
[6] 前記酵素的脱炭酸反応を、リジン脱炭酸酵素、またはリジン脱炭酸酵素を産生する 細胞もしくは同細胞の処理物を用いて行う請求項 1に記載の方法。 6. The method according to claim 1, wherein the enzymatic decarboxylation reaction is performed using lysine decarboxylase, a cell producing lysine decarboxylase, or a treated product of the same.
[7] 前記細胞が、リジン脱炭酸酵素活性が上昇するように改変された細胞である請求項 6 に記載の方法。 7. The method according to claim 6, wherein the cell is a cell modified so that lysine decarboxylase activity is increased.
[8] 前記細胞が、リジン脱炭酸酵素をコードする遺伝子のコピー数を高めること、又は同 遺伝子の発現が増強されるように同遺伝子の発現調節配列を改変することにより、リ ジン脱炭酸酵素活性が上昇した組換え細胞である請求項 7に記載の方法。  [8] By increasing the copy number of the gene encoding lysine decarboxylase or modifying the expression regulatory sequence of the gene so that the expression of the gene is enhanced, The method according to claim 7, which is a recombinant cell having an increased activity.
[9] 前記細胞がェシエリヒア'コリ細胞であり、リジン脱炭酸酵素をコードする遺伝子が下 記の(a)又は (b)に記載の DNAである請求項 8に記載の方法;  [9] The method according to claim 8, wherein the cell is an Escherichia coli cell, and the gene encoding lysine decarboxylase is the DNA according to (a) or (b) below:
(a)配列番号 11に記載の塩基配列を有する DNA、  (a) DNA having the base sequence set forth in SEQ ID NO: 11,
(b)配列番号 11に記載の塩基配列の相補配列を有するポリヌクレオチドとストリンジ ェントな条件下でノ、イブリダィズし、リジン脱炭酸酵素活性を有するタンパク質をコー ドする DNA。  (b) A DNA that is hybridized with a polynucleotide having a complementary sequence of the nucleotide sequence of SEQ ID NO: 11 under stringent conditions and encodes a protein having lysine decarboxylase activity.
[10] 請求項 1〜9のいずれか一項に記載の方法によってカダベリン炭酸塩を製造し、得ら れたカダベリン炭酸塩の水溶液にジカルボン酸を添カ卩してカダベリンジカルボン酸塩 を生成させることを含む、カダベリンジカルボン酸塩の製造方法。  [10] Cadaverine carbonate is produced by the method according to any one of claims 1 to 9, and cadaverine dicarboxylate is produced by adding dicarboxylic acid to the obtained aqueous solution of cadaverine carbonate. A method for producing cadaverine dicarboxylate.
[II] 前記ジカルボン酸が炭素数 4〜: LOのジカルボン酸である請求項 10に記載の方法。  [II] The method according to claim 10, wherein the dicarboxylic acid is a dicarboxylic acid having a carbon number of 4 to LO.
[12] 前記ジカルボン酸がアジピン酸である請求項 10に記載の方法。 12. The method according to claim 10, wherein the dicarboxylic acid is adipic acid.
[13] 請求項 10〜12のいずれか一項に記載の方法によってカダベリンジカルボン酸塩を 製造し、得られたカダベリンジカルボン酸塩を重縮合させることを含む、ポリアミドの製 造法。 [13] The cadaverine dicarboxylate is obtained by the method according to any one of claims 10 to 12. A process for producing a polyamide, comprising polycondensing a cadaverine dicarboxylate produced and obtained.
[14] 請求項 1〜9のいずれか一項に記載の方法によってカダベリン炭酸塩を製造し、得ら れたカダベリン炭酸塩の水溶液を濃縮してカダベリンを生成させることを含む、カダ ベリンの製造法。  [14] Production of cadaverine, comprising producing cadaverine carbonate by the method according to any one of claims 1 to 9, and concentrating the obtained aqueous solution of cadaverine carbonate to produce cadaverine. Law.
[15] 請求項 14に記載の方法によってカダベリンを製造し、得られたカダベリンをジカルボ ン酸と重縮合させることを含む、ポリアミドの製造法。  [15] A process for producing a polyamide, comprising producing cadaverine by the method according to claim 14, and polycondensing the obtained cadaverine with dicarboxylic acid.
PCT/JP2006/310037 2005-05-19 2006-05-19 Method for producing cadaverine carbonate, and method for producing polyamide using the same WO2006123778A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-147171 2005-05-19
JP2005147171A JP2008193898A (en) 2005-05-19 2005-05-19 Method for producing cadaverine
JP2005147172A JP2008193899A (en) 2005-05-19 2005-05-19 Method for producing cadaverine dicarboxylate from lysine carbonate
JP2005-147172 2005-05-19

Publications (1)

Publication Number Publication Date
WO2006123778A1 true WO2006123778A1 (en) 2006-11-23

Family

ID=37431347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310037 WO2006123778A1 (en) 2005-05-19 2006-05-19 Method for producing cadaverine carbonate, and method for producing polyamide using the same

Country Status (1)

Country Link
WO (1) WO2006123778A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084849A1 (en) * 2007-01-11 2008-07-17 Mitsubishi Chemical Corporation Cadaverine salt, aqueous cadaverine salt solution, polyamide resin, molded article and process for producing cadaverine salt and aqueous cadaverine salt solution
JP2008187963A (en) * 2007-02-06 2008-08-21 Mitsubishi Chemicals Corp Solution of cadaverine and/or cadaverine salt, and method for producing the same
JP2008189661A (en) * 2007-01-11 2008-08-21 Mitsubishi Chemicals Corp Method for producing aqueous cadaverine salt solution, cadaverine salt solution, cadaverine salt, polyamide resin, and molding
JP2008220195A (en) * 2007-03-08 2008-09-25 Mitsubishi Chemicals Corp Method for producing cadaverine and/or cadaverine salt
WO2010002000A1 (en) * 2008-07-03 2010-01-07 三菱化学株式会社 Process for production of pentamethylenediamine, and process for production of polyamide resin
US20100292429A1 (en) * 2008-01-23 2010-11-18 Basf Se Method for Fermentatively Producing 1,5-Diaminopentane
JP2010275516A (en) * 2008-07-03 2010-12-09 Mitsubishi Chemicals Corp Method for producing purified pentamethylenediamine and method for producing polyamide resin
EP2415801A1 (en) * 2009-03-30 2012-02-08 Toray Industries, Inc. Polyamide resin, polyamide resin composition, and molded article comprising same
CN105164101A (en) * 2014-04-04 2015-12-16 Cj第一制糖株式会社 Method for purifying 1,5-diaminopentane
WO2016106367A1 (en) 2014-12-23 2016-06-30 Genomatica, Inc. Method of producing & processing diamines
US20190322995A1 (en) * 2016-05-16 2019-10-24 Ningxia Eppen Biotech Co., Ltd Method for fermentation-production of pentanediamine comprising carbon dioxide stripping technique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223771A (en) * 2001-02-01 2002-08-13 Toray Ind Inc Method for producing cadaverine
JP2003000294A (en) * 2000-08-21 2003-01-07 Showa Denko Kk Method for producing l-phenylalanine derivative by microorganism
JP2005006650A (en) * 2003-05-26 2005-01-13 Ajinomoto Co Inc Method for producing cadaverine-dicarboxylic acid salt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000294A (en) * 2000-08-21 2003-01-07 Showa Denko Kk Method for producing l-phenylalanine derivative by microorganism
JP2002223771A (en) * 2001-02-01 2002-08-13 Toray Ind Inc Method for producing cadaverine
JP2005006650A (en) * 2003-05-26 2005-01-13 Ajinomoto Co Inc Method for producing cadaverine-dicarboxylic acid salt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG S-Y. ET AL.: "Nucleotide sequence of Escherichia coli cad Operon: a System for Neutralization of Low Extracellular pH", J. BACTERIOL., vol. 174, no. 8, 1992, pages 2659 - 2669, XP000978358 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189661A (en) * 2007-01-11 2008-08-21 Mitsubishi Chemicals Corp Method for producing aqueous cadaverine salt solution, cadaverine salt solution, cadaverine salt, polyamide resin, and molding
WO2008084849A1 (en) * 2007-01-11 2008-07-17 Mitsubishi Chemical Corporation Cadaverine salt, aqueous cadaverine salt solution, polyamide resin, molded article and process for producing cadaverine salt and aqueous cadaverine salt solution
JP2008187963A (en) * 2007-02-06 2008-08-21 Mitsubishi Chemicals Corp Solution of cadaverine and/or cadaverine salt, and method for producing the same
JP2008220195A (en) * 2007-03-08 2008-09-25 Mitsubishi Chemicals Corp Method for producing cadaverine and/or cadaverine salt
US8906653B2 (en) 2008-01-23 2014-12-09 Basf Se Method for fermentatively producing 1,5-diaminopentane
US20100292429A1 (en) * 2008-01-23 2010-11-18 Basf Se Method for Fermentatively Producing 1,5-Diaminopentane
CN102056889B (en) * 2008-07-03 2016-01-20 三菱化学株式会社 The manufacture method of five methylene diamine and the manufacture method of polyamide resin
JP2014185156A (en) * 2008-07-03 2014-10-02 Mitsubishi Chemicals Corp Production method of purification pentamethylenediamine and production method of polyamide resin
JP2010275516A (en) * 2008-07-03 2010-12-09 Mitsubishi Chemicals Corp Method for producing purified pentamethylenediamine and method for producing polyamide resin
WO2010002000A1 (en) * 2008-07-03 2010-01-07 三菱化学株式会社 Process for production of pentamethylenediamine, and process for production of polyamide resin
EP2415801A1 (en) * 2009-03-30 2012-02-08 Toray Industries, Inc. Polyamide resin, polyamide resin composition, and molded article comprising same
EP2415801A4 (en) * 2009-03-30 2013-07-17 Toray Industries Polyamide resin, polyamide resin composition, and molded article comprising same
CN105164101A (en) * 2014-04-04 2015-12-16 Cj第一制糖株式会社 Method for purifying 1,5-diaminopentane
US9963421B2 (en) 2014-04-04 2018-05-08 Cj Cheiljedang Corp. Refining method of organic amine
WO2016106367A1 (en) 2014-12-23 2016-06-30 Genomatica, Inc. Method of producing & processing diamines
US20190322995A1 (en) * 2016-05-16 2019-10-24 Ningxia Eppen Biotech Co., Ltd Method for fermentation-production of pentanediamine comprising carbon dioxide stripping technique
US11060080B2 (en) * 2016-05-16 2021-07-13 Heilongjiang Eppen New Materials Co., Ltd. Method for fermentation-production of pentanediamine comprising carbon dioxide stripping technique

Similar Documents

Publication Publication Date Title
WO2006123778A1 (en) Method for producing cadaverine carbonate, and method for producing polyamide using the same
US10584338B2 (en) Promoter and use thereof
EP1482055B1 (en) Method for producing cadaverine dicarboxylate and its use for the production of nylon
JP5088136B2 (en) Method for producing succinic acid
JP2008193898A (en) Method for producing cadaverine
JP2005006650A (en) Method for producing cadaverine-dicarboxylic acid salt
CA2860616C (en) L-threonine and l-tryptophan producing bacterial strain and method of making same
WO2005026349A1 (en) Process for producing non-amino organic acid
JP4760121B2 (en) Method for producing succinic acid
AU2020262366B2 (en) Microorganism with enhanced L-histidine production capacity and method for producing histidine by using same
WO2007099867A1 (en) Bacterium capable of producing organic acid, and method for production of organic acid
KR102205717B1 (en) Novel variant of L-tryptophan exporter and the method of producing L-tryptophan using the same
WO2005005649A1 (en) Method for producing organic acid
JP7383046B2 (en) Microorganisms that produce L-amino acids and methods for producing L-amino acids using the same
JP2019013256A (en) Microorganism of genus escherichia capable of producing l-tryptophan and method for producing l-tryptophan using the same
JP5034630B2 (en) Preparation method of organic acid producing microorganism and production method of organic acid
JP5602982B2 (en) Method for producing succinic acid
JP2008193899A (en) Method for producing cadaverine dicarboxylate from lysine carbonate
JP2008067623A (en) Method for producing non-amino organic acids
EP1002866B1 (en) TEMPERATURE SENSITIVE dtsR GENES
WO2005045049A1 (en) Method for producing organic acid ammonium solution
JP2004513636A (en) Novel enzymes and genes of Methylophilus methylotrophus
JP4428999B2 (en) Method for producing non-amino organic acid
EP4276107A2 (en) Glxr protein variant or threonine production method using same
JP2010178672A (en) Method for producing pentamethylenediamine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06756393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP