WO2006123776A1 - Light-emitting device and liquid crystal display - Google Patents

Light-emitting device and liquid crystal display Download PDF

Info

Publication number
WO2006123776A1
WO2006123776A1 PCT/JP2006/310031 JP2006310031W WO2006123776A1 WO 2006123776 A1 WO2006123776 A1 WO 2006123776A1 JP 2006310031 W JP2006310031 W JP 2006310031W WO 2006123776 A1 WO2006123776 A1 WO 2006123776A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
light emitting
electrode
light
liquid crystal
Prior art date
Application number
PCT/JP2006/310031
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Harada
Hiroyasu Kawauchi
Takayuki Ito
Norihito Takeuchi
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Publication of WO2006123776A1 publication Critical patent/WO2006123776A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a light emitting device and a liquid crystal display device, and more specifically, includes a light emitting portion having an electroluminescence (EL) element power in which a light emitting layer is provided between a first electrode and a second electrode.
  • the present invention relates to a light emitting device and a liquid crystal display device including such a light emitting device.
  • Liquid crystal display devices are widely used as displays for computers, portable devices, and the like.
  • a liquid crystal display device generally includes a backlight so that the display can be easily recognized even when the surroundings are dark.
  • a liquid crystal display device including a liquid crystal panel capable of simultaneously displaying a plurality of screens has been proposed (see, for example, Patent Document 1).
  • a light shielding wall between adjacent display areas By providing a light shielding wall between adjacent display areas, light from the backlight arranged corresponding to one display area is not incident on the other display area.
  • Patent Document 2 discloses an EL panel 71 shown in FIG.
  • the EL panel 71 is not shown in the figure! It is provided behind the liquid crystal panel and functions as a backlight.
  • the EL panel 71 includes a plurality of linear light emitting portions 72A, 72B, 72C, and 72D, and electrodes 73A, 73B, 73C, and 73D are provided at positions corresponding to the light emitting portions 72A to 72D, respectively.
  • the light emitting sections 72A to 72D are arranged in stripes so as to correspond to one display line which is a display unit of the liquid crystal panel.
  • Patent Document 3 discloses an improved liquid crystal display device that improves the image quality of moving images.
  • This liquid crystal display device includes a backlight that emits linear light extending in a direction orthogonal to the scanning direction of the liquid crystal panel and having a predetermined width. Linear light emitted from the backlight Are scanned in the same direction as the scanning direction of the liquid crystal panel.
  • a linear non-light emitting portion that does not always emit light exists between the adjacent light emitting portions 72A to 72D.
  • the non-light emitting unit between the light emitting units 72A to 72D that are lit can be visually recognized as dark lines. Therefore, the EL panel 71 in FIG. 16 is not necessarily preferable as a backlight.
  • Patent Document 2 has no description regarding moving image display, but when the EL panel 71 of FIG. 16 is used for moving image display, it is a so-called pseudo image similar to the backlight of the liquid crystal display device of Patent Document 3.
  • Impulse driving can be considered.
  • each of the light emitting units 72A to 72D is switched between the light emitting state and the non-light emitting state during a time required to scan the entire screen of the liquid crystal display device once, that is, one frame time. Even if each of the light emitting units 72A to 72D is switched between the light emitting state and the non-light emitting state during one frame time, all the light emitting units 72A to 72D appear to be always lit due to the afterimage. . However, if a non-light emitting portion exists between the adjacent light emitting portions 72A to 72D, it can be visually recognized as a dark line.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-184494
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-75802
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-6766
  • An object of the present invention is to provide a light emitting device capable of selectively emitting light in a plurality of light emitting regions and suppressing generation of dark lines, and a liquid crystal display device including such a light emitting device. There is.
  • the light-emitting device includes a light-emitting unit that also has an electo-luminescence element power.
  • the electoluminescence element includes a first electrode and a second electrode each having a terminal portion for receiving an external voltage, and a light emitting layer provided between the first electrode and the second electrode.
  • An organic electroluminescence element includes a plurality of first regions that selectively switch between a light emitting state and a non-light emitting state, and a second region that is located between the first regions adjacent to each other. It is set.
  • the organic electoluminescence device is responsible for the light emission in the first region. Instead, each second region is configured to be separated from the first region adjacent to the second region and prevented from being visually recognized by the user.
  • the light-emitting device includes a light-emitting portion that also serves as an electroluminescent device.
  • the electoluminescence device includes a first electrode and a second electrode, and a light emitting layer provided between the first electrode and the second electrode.
  • Each of the first electrode and the second electrode is a solid electrode.
  • the first electrode has a higher volume resistivity than the second electrode and is transparent.
  • the first electrode has three or more terminal portions.
  • the region of the electroluminescent element that emits light varies depending on which terminal portion is applied with voltage.
  • the area of the electroluminescent element that emits light when a voltage is applied to each terminal part is partly the same as the area of the electroluminescent element that emits light when a voltage is applied to another terminal part adjacent to the terminal part. overlapping.
  • liquid crystal display device including a backlight made of any of the above light emitting devices is provided.
  • FIG. 1 (a) is a schematic plan view of a light-emitting device according to a first embodiment of the present invention
  • FIG. 1 (b) is a schematic cross-sectional view taken along line IB-IB in FIG. 1 (a)
  • Fig. 1 (c) is a schematic cross-sectional view taken along line 1C 1C in Fig. 1 (a).
  • FIG. 2 (a) is a schematic plan view showing a transparent electrode of the light emitting device of FIG. 1 (a), and FIG. 2 (b) is a schematic cross-sectional view taken along line 2B-2B of FIG. 2 (a).
  • FIG. 3 is a schematic partial cross-sectional view of a liquid crystal display device according to a first embodiment including the light emitting device of FIG. 1 (a).
  • FIG. 4 is a schematic configuration diagram of a drive circuit of the liquid crystal display device of FIG.
  • FIG. 5 (a) is a schematic plan view showing a transparent electrode of a light-emitting device according to a second embodiment of the present invention
  • FIG. 5 (b) is a schematic cross-sectional view taken along line 5B-5B in FIG. 5 (a). .
  • FIG. 6 (a) is a schematic partial plan view showing a transparent electrode of a light-emitting device according to a third embodiment of the present invention
  • FIG. 6 (b) is a schematic cross-sectional view of the light-emitting device according to the third embodiment.
  • FIG. 7 is a schematic plan view of a light emitting device according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view taken along line 8-8 in FIG.
  • FIG. 9 (a) and FIG. 9 (b) are schematic plan views of transparent electrodes of the light emitting device of FIG.
  • FIG. 10 is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention.
  • FIG. 12 (a) and FIG. 12 (b) are schematic partial plan views of a transparent electrode according to another embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view showing a configuration of a terminal portion in another embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the arrangement of first regions and second regions in another embodiment of the present invention.
  • FIG. 15 is a schematic plan view of a transparent electrode according to another embodiment of the present invention.
  • FIG. 16 is a schematic plan view of a conventional EL panel.
  • the light emitting device 11 includes a planar light emitting portion 17 composed of an organic EL element 16.
  • the organic EL element 16 includes a substrate 12, a transparent electrode 13 as a first electrode provided on the substrate 12, an organic EL layer 14 as a light emitting layer provided on the transparent electrode 13, and an organic EL layer. And a counter electrode 15 as a second electrode provided on 14.
  • the organic EL element 16 is covered with a protective film 18 so that the organic EL layer 14 is not adversely affected by moisture (water vapor) and oxygen.
  • the substrate 12 is formed of a transparent glass cover.
  • the transparent electrode 13 is used as an anode, and the counter electrode 15 is used as a cathode.
  • the volume resistivity of the transparent electrode 13 is higher than the volume resistivity of the counter electrode 15.
  • “transparent” means that at least visible light can be transmitted. That is, the substrate 12 and the transparent electrode 13 can transmit at least visible light.
  • the transparent electrode 13 is made of indium stannate (ITO).
  • the counter electrode 15 is formed of a metal such as aluminum and has a property of reflecting light.
  • the organic EL element 16 is configured as a so-called bottom emission type in which light from the organic EL layer 14 is emitted through the substrate 12.
  • the protective film 18 is made of, for example, silicon nitride. Has been.
  • the organic EL element 16 includes a plurality of first regions 19 extending in the left-right direction and a second region positioned between the first regions 19 adjacent to each other. Region 20 is defined.
  • the extending direction of the first region 19 is orthogonal to the direction of vertical scanning in the liquid crystal panel 32 (see FIG. 3).
  • the first region 19 has the same width as the displacement.
  • Each portion of the transparent electrode 13 located in the first region 19 has the same width as that of the first region 19, and has a terminal portion 13a at one end (the left end in Figs. L (a) to (c)). have. That is, each portion of the transparent electrode 13 located in the first region 19 extends so as to be orthogonal to the direction of vertical scanning in the liquid crystal panel 32, and has a terminal portion 13a at one end.
  • the width of the first region 19 is the same as the width of a plurality of columns of pixels, unlike the width of one column of the liquid crystal panel 32 described later.
  • Each second region 20 includes a plurality of non-light emitting regions 20a and a plurality of light emitting regions 20b, as shown in FIG. 1 (c).
  • the non-light emitting region 20a has a dot shape, and the distribution density of the non-light emitting region 20a is higher as the position is closer to the terminal portion 13a of the transparent electrode 13.
  • the portion of the transparent electrode 13 located in the first region 19 and the portion of the transparent electrode 13 located in the second region 20 are made of a common material.
  • the portion of the counter electrode 15 located in the first region 19 and the portion of the counter electrode 15 located in the second region 20 are formed of a common material.
  • the portion of the organic EL layer 14 located in the first region 19 and the portion of the organic EL layer 14 located in the second region 20 are made of a common material.
  • the formation state of the transparent electrode 13 located in the second region 20 is the formation state of the transparent electrode 13 portion located in the first region 19. Is different. More specifically, a plurality of through-holes 13b are provided in each portion of the transparent electrode 13 located in the second region 20. The interval between the adjacent through holes 13b is closer to the terminal portion 13a of the transparent electrode 13, and becomes smaller as the position is larger.
  • the organic EL layer 14 is provided so as to cover the entire top surface of the transparent electrode 13 excluding a part of each terminal portion 13a and fills the through hole 13b.
  • the organic EL layer 14 is formed using a known organic EL material, and includes, for example, a hole transport layer, a light emitting layer, and an electron transport layer that are sequentially stacked from the transparent electrode 13 side.
  • the organic EL layer 14 emits white light when an electric field is applied.
  • the organic EL layer 14 may be formed by a three-color coating method using red, green, and blue light emitting materials. However, it may be formed by laminating red, green and blue light emitting layers. Alternatively, it may be formed by dispersing red, green and blue dyes in a host molecule or polymer.
  • the counter electrode 15 also has a solid electrode force.
  • the size of the counter electrode 15 in the vertical direction in FIG. 1 (a), that is, the width of the counter electrode 15 is slightly smaller than the size of the organic EL layer 14 in the vertical direction in FIG. 1 (a), that is, the width of the organic EL layer 14.
  • the dimensions of the counter electrode 15 in the left-right direction in FIGS. 1 (a) to 1 (c), that is, the length of the counter electrode 15, is organic in the left and right directions in FIGS. 1 (a) to 1 (c).
  • a part of the counter electrode 15 larger than the dimension of the EL layer 14, that is, the length of the organic EL layer 14 extends from one end of the organic EL layer 14 to constitute an electrode extension 15 b.
  • a terminal portion 15a for the counter electrode 15 is electrically connected to the electrode extension portion 15b.
  • the terminal portion 15a of the counter electrode 15 is located away from the terminal portion 13a of the transparent electrode 13 in the left-right direction of FIGS. 1 (a) to 1 (c).
  • the terminal portion 15a of the counter electrode 15 is made of the same material as that of the transparent electrode 13.
  • a method for manufacturing the light emitting device 11 will be described.
  • a transparent glass substrate 12 having an ITO film on the surface is prepared. Etching is performed on the ITO film to form the transparent electrode 13, the terminal portion 13a, the through hole 13b, and the terminal portion 15a.
  • an organic EL layer 14 is formed so as to cover the transparent electrode 13.
  • the organic EL layer 14 is formed by sequentially laminating the layers constituting the organic EL layer 14 by vapor deposition.
  • the counter electrode 15 is formed on the organic EL layer 14 by vapor deposition of aluminum (A1).
  • the electrode extension 15b of the counter electrode 15 is formed so as to cover a part of the terminal 15a, and as a result, the electrode extension 15b and the terminal 15a are electrically connected to each other.
  • the protective film 18 is formed.
  • the protective film 18 is also a ceramic such as silicon nitride
  • the protective film 18 is formed by, for example, a plasma CVD method.
  • the light emitting device 11 is used by being arranged on the back surface, which is the surface opposite to the display surface of the transmissive liquid crystal panel 32 of the liquid crystal display device 31.
  • the liquid crystal panel 32 has basically the same configuration as a known active matrix type liquid crystal panel for full color display.
  • the liquid crystal panel 32 includes a pair of transparent first substrate 33 and second substrate 34. Both boards 33, 34 Are bonded together with a sealing material (not shown) with a predetermined distance between them.
  • Liquid crystal 35 is sealed between 33 and 34.
  • the substrates 33 and 34 are made of glass, for example.
  • a pixel electrode 36 and thin film transistors (TFT) 37 connected to the pixel electrode 36 are formed in a matrix on the first substrate 33 disposed near the light emitting device 11.
  • the pixel electrode 36 and the TFT 37 are provided on the surface of the first substrate 33 facing the liquid crystal 35.
  • the pixel electrode 36 is made of ITO.
  • One set of three pixel electrodes 36 constitutes one pixel.
  • a polarizing plate 38 is provided on the surface of the first substrate 33 opposite to the liquid crystal 35.
  • a color filter 39 and a transparent electrode 40 common to all pixels are provided in the same order.
  • the transparent electrode 40 is made of ITO.
  • the color filter 39 has regions 39a, 39b, and 39c that transmit red, green, and blue light, and each region 39a, 39b, and 39c corresponds to one of the pixel electrodes 36 that constitute the sub-pixel. Has been placed. Adjacent areas 39 a to 39 c are partitioned by a black matrix 41.
  • a polarizing plate 42 is provided on the surface of the second substrate 34 opposite to the liquid crystal 35.
  • the light emitting device 11 has a substrate 12 facing the liquid crystal panel 32 and a first region 19 extending perpendicularly to the vertical scanning direction (left and right direction in FIG. 3) in the liquid crystal panel 32, that is, In Fig. 3, they are arranged so as to extend in a direction perpendicular to the paper surface.
  • a gate driver 44 for driving the gate electrode of the TFT 37 and a source electrode (data electrode) of the TFT 37 are provided on the outside of the display unit 43 composed of the liquid crystal panel 32 and the light emitting device 11.
  • a driver 46 for driving the light emitting device 11 are provided on the outside of the display unit 43 composed of the liquid crystal panel 32 and the light emitting device 11.
  • the terminal portion 13 a of the transparent electrode 13 is electrically connected to the driver 46.
  • Each driver 44 to 46 is controlled by a control signal from the control device 47.
  • the gate driver 44 supplies an address signal (sequential running signal) to the gate electrode of the TFT 37 based on the control signal from the control device 47, and the source driver 5 receives the control signal from the control device 47. Based on the above, the data signal is supplied to the source electrode of TFT37.
  • the time required to scan the entire screen once, that is, one frame time is set to 1Z60 seconds. Therefore, the output interval of the address signal is (1/60) X (lZAn) seconds, where An is the number of address signal lines.
  • the control device 47 synchronizes with the vertical scanning of the liquid crystal panel 32, that is, outputs an address signal.
  • the driver 46 is controlled to switch the first region 19 between the light emitting state and the non-light emitting state in order.
  • the control device 47 controls the driver 46.
  • the first area 19 is controlled so that the light emission state is maintained for a predetermined time after switching to the light emission state. Therefore, when the liquid crystal display device 31 is driven, two or more first regions 19 are simultaneously in a light emitting state.
  • the first area 19 switched to the light emitting state is replaced with the first area 19 to be switched to the first light emitting state.
  • the region 19 of the light is turned on, and after a certain time t has elapsed, it is switched to the non-lighted state.
  • This fixed time t is an extremely short time and is a length that cannot be recognized by human eyes.
  • Each first region 19 is selectively switched between a light emitting state and a non-light emitting state by a command signal from the control device 47, while a certain region of the liquid crystal panel 32 is in the display data rewriting period. In other words, the first region 19 located immediately below the region of the liquid crystal panel 32 is held in a non-light emitting state. If the first area 19 has a one-to-one correspondence with the scanning line of the pixel electrode 36, the display data rewriting period of the area of the liquid crystal panel 32 coincides with the data rewriting period for one scanning line. However, in the present embodiment, each first region 19 corresponds to a plurality of scanning lines of the pixel electrode 36.
  • the corresponding first region 19 The region 19 of 1 is held in a non-light emitting state. Thereafter, the first area 19 is held in a light emitting state for a preset period.
  • the liquid crystal panel 32 When displaying an image on the display screen of the liquid crystal panel 32, the liquid crystal panel 32 outputs an address signal from the gate driver 44 in response to a command signal from the control device 47, and the TFT 37 is turned on for each column. become. Similarly, in response to a command signal from the control device 47, a data signal is output from the source driver 45 and data is written to each pixel electrode 36. The written data is stored as a charge / discharge charge in a storage capacitor (not shown) of the pixel electrode 36, and a voltage having a magnitude corresponding to the charge is applied to the pixel electrode 36 until the next data write is performed. Held in a state. To each pixel electrode 36 As the applied voltage increases, the liquid crystal 35 facing the pixel electrode 36 can transmit more light. When the display data is rewritten to the pixel electrode 36, the first area 19 facing the pixel electrode 36 is held in a non-light emitting state, so that the quality of the moving image is improved.
  • an ON signal is output from the driver 46 to each terminal portion 13 a so as to synchronize with the address signal. While the ON signal is output, current is supplied to the first region 19 corresponding to the terminal portion 13a, and white light is emitted from the organic EL layer. Light from the organic EL layer 14 is emitted from the light emitting device 11 through the substrate 12, and enters the liquid crystal panel 32 through the first substrate 33.
  • the first region 19 emits light in order in synchronization with the vertical scanning of the liquid crystal panel 32.
  • each first region 19 is opposed to a column of pixel electrodes 36 corresponding to a plurality of scanning lines of the liquid crystal 35, so that the terminal portion of the transparent electrode 13 constituting the first region 19 is provided.
  • the output of the ON signal to 13a is performed after the display data rewriting (writing) to the TFT 37 of the 36 columns of the plurality of pixel electrodes facing the first region 19 is completed.
  • An amount of light corresponding to the state of voltage application to the pixel electrode 36 passes through the liquid crystal 35, passes through the transparent electrodes 40, and passes through the regions 39 a to 39 c of the color filter 39.
  • the user of the liquid crystal display device 31 visually recognizes an image formed by the light transmitted through the color filter 39 as a display on the liquid crystal display device 31.
  • the color of the color image is adjusted to a desired color by mixing the three primary colors of red, green, and blue in each pixel.
  • white light is emitted from the light emitting device 11 with a substantially constant amount of light, and the amount of light transmitted through the power filter 39 in each pixel according to the magnitude of the voltage applied to the pixel electrode 36, that is, the three primary colors in each pixel.
  • the mixing ratio of is adjusted.
  • the plurality of first regions 19 are selectively driven sequentially and switched between the light emitting state and the non-light emitting state within one frame time, apparently all the first regions 19 are simultaneously emitted. The entire light emission state is established.
  • the second region 20 includes a plurality of non-light emitting regions 20a and a plurality of light emitting regions.
  • the adjacent first region 19 when the adjacent first region 19 is in a light emitting state, the current from the portion of the transparent electrode 13 constituting the first region 19 is supplied to the portion of the transparent electrode 13 constituting the light emitting region 20b. As a result, light is emitted from the light emitting region 20b. Therefore, it is possible to prevent the second region 20 from being visually recognized by the user by being separated from the first region 19 adjacent to the second region 20.
  • the first region 19 is in a light emitting state, the light emitted from the second region 20 adjacent to the first region 19 has lower luminance than the light emitted from the first region 19.
  • the second region 20 is more transparent than the transparent electrode 13 portion of the first region 19.
  • the part of the electrode 13 has a high volume resistivity. Therefore, a current flows from the first region 19 to the first region 19 adjacent to the first region 19, thereby ensuring separation between the first regions 19 adjacent to each other.
  • the luminance of the organic EL element 16 is affected by the current density in the organic EL layer 14, and the luminance of the element 16 increases as the current density increases. Since the transparent electrode 13 has a higher volume resistivity than the counter electrode 15, the difference in current density in the organic EL layer 14 in which the difference in electrical resistance value is large is large between the portion near and far from the terminal portion 13a. Therefore, in order to reduce the brightness unevenness of each second region 20, the distribution density of the light emitting region 20b is lower as the position is closer to the terminal portion 13a, in other words, the position closer to the terminal portion 13a. It is preferable that the non-light emitting region 20a has a higher distribution density.
  • the first embodiment has the following effects.
  • the light emitting device 11 includes a light emitting unit 17 including an organic EL element 16 in which an organic EL layer 14 is provided between a transparent electrode 13 and a counter electrode 15.
  • the organic EL element 16 includes a plurality of first regions 19 and a second region 20 located between the first regions 19 adjacent to each other.
  • the organic EL element 16 is visually recognized by the user by dividing each second region 20 from the first region 19 adjacent to the second region 20 regardless of light emission of the first region 19. It is configured to prevent this. Therefore, it is possible to suppress the occurrence of dark lines between the first regions 19 when the first regions 19 adjacent to each other emit light at the same time.
  • the formation state of the transparent electrode 13 portion located in the second region 20 is different from the formation state of the transparent electrode 13 portion located in the first region 19. More specifically, a plurality of through-holes 13b are provided in each portion of the transparent electrode 13 located in the second region 20. Therefore, it is possible to suppress the occurrence of dark lines between the first regions 19 adjacent to each other with a simple configuration.
  • the second region 20 includes a plurality of non-light emitting regions 20a and a plurality of light emitting regions 20b, a light emitting region 20b exists between the first regions 19 adjacent to each other. Therefore, it is possible to suppress the occurrence of dark lines between the first regions 19 by the light emitting region 20b emitting light.
  • the non-light emitting region 20 a is configured by providing a through hole 13 b in a portion of the transparent electrode 13 located in the second region 20. Therefore, if the through-hole 13b is formed at the same time when the transparent electrode 13 is formed, the number of man-hours will not increase significantly due to the formation of the through-hole 13b.
  • the counter electrode 15 of the organic EL element 16 has a property of reflecting light. In this case, since the light emitted from the organic EL layer 14 to the counter electrode 15 is reflected by the counter electrode 15 efficiently, compared to the case where the counter electrode 15 does not have the property of reflecting light, The amount of light emitted from the organic EL element 16 through the transparent electrode 13 can be increased.
  • the liquid crystal display device 31 includes the light emitting device 11 that functions as a backlight.
  • the plurality of first regions 19 defined by the organic EL elements 16 of the light emitting device 11 extend perpendicular to the vertical scanning direction of the liquid crystal panel 32, and emit light according to a command signal from the control device 47. And a non-light emitting state are selectively switched. While a certain area of the liquid crystal panel 32 is in the display data rewriting period, the first area 19 located immediately below the area of the liquid crystal panel is held in a non-light emitting state. Therefore, when moving images are displayed on the liquid crystal display device 31, the generation of afterimages is suppressed and the quality of the moving image is improved.
  • the light emitting section 17 is composed of the organic EL element 16. In this case, it is possible to emit light at a lower voltage than in the case where the light emitting unit 17 is made of an inorganic EL element.
  • FIGS. 5 (a) and 5 (b) a second embodiment of the present invention will be described with reference to FIGS. 5 (a) and 5 (b).
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. .
  • the transparent electrode portions 13 located in the first region 19 all have the same width and extend in parallel to each other.
  • a terminal portion 13 a is formed at one end of each transparent electrode portion 13.
  • the thickness of the transparent electrode portion 13S located in the second region 20 is smaller than the thickness of the transparent electrode portion 13 in the first region 19.
  • each second region 20 does not include a non-light emitting region, and is configured by a light emitting region.
  • the ITO film formed on the surface of the transparent glass substrate 12 is etched to obtain the transparent electrode portion 13, the terminal portion 13a, and the terminal portion 15a. Form. At the same time, a portion to be the transparent electrode portion 13S is also etched to form a transparent electrode portion 13S having a predetermined thickness.
  • the subsequent steps for forming the organic EL layer 14, the counter electrode 15, the protective film 18 and the like are the same as those in the first embodiment.
  • the second region 20 adjacent to the first region 19 via the transparent electrode portion 13 of the first region 19 is used. Since current flows through the transparent electrode portion 13S, the second region 20 is also in a light emitting state. However, since the thickness of the transparent electrode portion 13S in the second region 20 is smaller than the transparent electrode portion 13 in the first region 19, the amount of current flowing through the transparent electrode portion 13S is the amount of current flowing through the transparent electrode portion 13. The smaller second region 20 emits light with lower brightness than the first region 19.
  • the second embodiment has the following effects in addition to the effects (1), (2), and (6) to (9) of the first embodiment.
  • the transparent electrode portion 13S is a force that exists over the entire second region 20.
  • the transparent electrode portion 13S is transparent because the thickness of the transparent electrode portion 13S is smaller than the thickness of the transparent electrode portion 13 in the first region 19.
  • the second region 20 in which the amount of current flowing through the electrode portion 13S is smaller than the amount of current flowing through the transparent electrode portion 13 emits light with a lower luminance than the first region 19. Therefore, it is possible to suppress the occurrence of dark lines between the first regions 19 adjacent to each other.
  • FIGS. 6 (a) and 6 (b) differs from the first embodiment in that the configuration of the second region 20 and the point that the light diffusing member is provided on the light emitting surface of the light emitting device 11 are different from those in the first embodiment. Parts similar to those of the embodiment are given the same reference numerals, and detailed description thereof is omitted.
  • a groove 21 having a certain width extending in a meandering manner is defined between the transparent electrode portions 13 located in the first regions 19 adjacent to each other.
  • a terminal portion 13 a is formed at one end of each transparent electrode portion 13.
  • the linear portions 21a adjacent to each other in the groove 21 intersect at an angle of 90 degrees.
  • the width of the groove 21 is, for example, about 30 / z m.
  • the second region 20 is a portion of the organic EL element 16 corresponding to the groove 21. Therefore, each second region 20 does not include a light emitting region, and is configured by a non-light emitting region.
  • the ITO film formed on the surface of the transparent glass substrate 12 is etched to obtain the transparent electrode portion 13, the terminal portion 13a, and the terminal portion 15a. Form. At the same time, etching is performed also on the portion that should become the groove 21 to form the groove 21 between the transparent electrode portions 13 adjacent to each other.
  • the subsequent steps of forming the organic EL layer 14, the counter electrode 15, the protective film 18 and the like are the same as those in the first embodiment.
  • the light emitting device 11 has a light diffusing member on the surface opposite to the surface of the substrate 12 facing the transparent electrode 13, that is, on the light emitting surface of the light emitting device 11.
  • the light diffusion sheet 22 is provided.
  • the light emitted from the light emitting device 11 through the substrate 12 is diffused by the light diffusion sheet 22 and irradiated onto the liquid crystal panel 32.
  • the second region 20 is a light emitting region. There is no area. If the second region 20 is straight as in the prior art, the light emitted from the pair of first regions 19 adjacent to the second region 20 passes through the second region 20 in the second region. It does not proceed along the direction of 20 extension. Therefore, even if the light diffusion sheet 22 is used, the second region 20 is easily visually recognized by the user of the liquid crystal display device 31 as a dark line.
  • the second region 20 extends in a meandering manner rather than in a straight line, so that light emitted from the pair of first regions 19 adjacent to the second region 20 is the first. There is also a lot of light that enters the second region 20 from various directions and travels along the direction in which the second region 20 extends. Therefore, the use of the light diffusion sheet 22 makes it difficult for the second region 20 to be visually recognized as a dark line.
  • the third embodiment has the following effects.
  • a light diffusing sheet 22 is provided on the light emitting surface of the light emitting device 11, and the second region 20 is a non-light emitting region extending in a meandering manner. Therefore, the second region 20 does not include a light emitting region, but light emitted from the pair of first regions 19 adjacent to the second region 20 enters the second region 20 from various directions. Therefore, the use of the light diffusion sheet 22 makes it difficult for the second region 20 to be visually recognized as a dark line.
  • FIGS. 7 to 9 a fourth embodiment of the present invention will be described with reference to FIGS. 7 to 9 (b). Note that parts similar to those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the light emitting device 11 includes a planar light emitting unit 17 including an organic EL element 16.
  • the organic EL element 16 includes a substrate 12, a transparent electrode 13 as a first electrode provided on the substrate 12, an organic EL layer 14 as a light emitting layer provided on the transparent electrode 13, and an organic EL element 16. And a counter electrode 15 as a second electrode provided on the EL layer 14.
  • the organic EL element 16 is covered with a protective film 18 so that the organic EL layer 14 is not adversely affected by moisture (water vapor) and oxygen.
  • the substrate 12 is also formed with a transparent glass force.
  • Transparent electrode 13 and Each of the counter electrodes 15 is a solid electrode, and the transparent electrode 13 has a higher volume resistivity than the counter electrode 15. Further, the transparent electrode 13 forms an anode, and the counter electrode 15 forms a cathode.
  • the transparent electrode 13 is made of ITO, and the counter electrode 15 is made of aluminum.
  • the organic EL element 16 is configured as a so-called bottom emission type in which light from the organic EL layer 14 is emitted through the substrate 12.
  • the transparent electrode 13, the organic EL layer 14, and the counter electrode 15 are formed in a rectangular shape.
  • a plurality of terminal portions are provided at both ends of the transparent electrode 13 in the direction perpendicular to the vertical scanning direction of the liquid crystal panel 32 (both ends in the left-right direction in FIG. 7).
  • 13a is provided. More specifically, each of a pair of opposing sides of the light emitting portion 17 having a rectangular shape is provided with a plurality of terminal portions 13a arranged along the sides.
  • the plurality of terminal portions 13a provided on both sides are arranged symmetrically with respect to the center line of the transparent electrode 13 (the center line in the left-right direction in FIG. 7).
  • the region of the organic EL element 16 that emits light differs depending on which terminal portion 13a is applied with a voltage.
  • the region of the organic EL element 16 that emits light when a voltage is applied to each terminal portion 13a is the region of the organic EL element 16 that emits light when a voltage is applied to another terminal portion 13a adjacent to the terminal portion 13a. It overlaps partially.
  • the terminal portion 15a of the counter electrode 15 is provided on the side of the light emitting portion 17 different from the side where the terminal portion 13a of the transparent electrode 13 is provided.
  • the terminal portion 13a of the transparent electrode 13 is electrically connected to the driver 46, and a voltage is selectively applied to each terminal portion 13a via the driver 46 by a command signal from the control device 47.
  • the driver 46 constitutes voltage applying means for selectively applying a voltage to the terminal portion 13a.
  • the light emitting device 11 in this embodiment is manufactured in substantially the same manner as the light emitting device 11 of the first embodiment.
  • the difference from the case of the first embodiment is that the transparent electrode 13 is a solid electrode and that the terminal portions 13a are arranged symmetrically on both sides of the transparent electrode 13.
  • the light emitting device 11 of this embodiment is also used as a backlight of the pseudo impulse drive type liquid crystal display device 31.
  • an ON signal is output from the driver 46 to each terminal portion 13a so as to synchronize with the address signal.
  • the control device 47 determines that the area where the liquid crystal panel 32 is directly above each light emitting area is the display data rewriting period.
  • the application of voltage to the terminal portion 13a is controlled through the driver 46 so that the region of the organic EL element 16 located immediately below the region of the liquid crystal panel 32 is maintained in a non-light emitting state.
  • Light of the organic EL layer 14 is emitted from the light emitting device 11 through the substrate 12 and enters the liquid crystal panel 32 through the first substrate 33.
  • the transparent electrode 13 is a solid electrode and has a large volume resistivity
  • the terminal portion 13a in a state where a voltage is applied (ON state) is provided as shown by a two-dot chain line in FIG. 9 (b).
  • a predetermined range at the center is the light emitting region 24 of the organic EL element 16. This light emitting region 24 extends to a part of the virtual band-like region 23 corresponding to the terminal portion 13a to which the adjacent voltage is not applied (OFF state).
  • the fourth embodiment has the following effects in addition to the effects (6) and (9) of the first embodiment.
  • the transparent electrode 13 and the counter electrode 15 are each composed of a solid electrode, and the transparent electrode 13 is provided with three or more terminal portions 13a having a volume resistivity higher than that of the counter electrode 15.
  • the region of the organic EL element 16 that emits light differs depending on which terminal portion 13a is applied with a voltage, and the region of the organic EL element 16 that emits light when a voltage is applied to each terminal portion 13a. Is partially overlapped with a region of the organic EL element 16 that emits light when a voltage is applied to another terminal portion 13a adjacent to the terminal portion 13a. Therefore, unlike a conventional light emitting device having a plurality of light emitting regions that are driven in a divided manner, the dark line can be made inconspicuous even in the full light emission state or the apparent full light emission state.
  • the light emitting portion 17 is formed in a rectangular shape, and a pair of terminal portions 13a are arranged on each of a pair of opposing sides of the light emitting portion 17 along the side. Is arranged. Accordingly, the degree of freedom of the range covering the light emitting region force S is increased in accordance with the voltage application state to the terminal portion 13a. For example, it is possible to display an image on only one half of the screen of the liquid crystal display device 31 or to drive half of the screen simultaneously under different conditions.
  • the light emitting device 11 is used as a backlight of the pseudo impulse drive type liquid crystal display device 31.
  • the terminal portion 13a has a predetermined interval along the vertical scanning direction of the liquid crystal panel 32. Terminals are arranged so that the backlight area located immediately below the area of the liquid crystal panel is kept in a non-light-emitting state while an area of the liquid crystal panel 32 is in the display data rewriting period.
  • Application of the voltage to the unit 13a is controlled by the controller 47 through the driver 46. Therefore, when moving images are displayed on the liquid crystal display device 31, the occurrence of afterimages is suppressed and the quality of the moving image is improved.
  • the first to fourth embodiments may be modified as follows, for example.
  • the transparent electrode 13 located in the second region 20 is penetrated.
  • a through-hole 15c is provided in the portion of the counter electrode 15 located in the second region 20 as shown in FIG.
  • the non-light emitting region 20a may be formed in the second region 20.
  • the distribution density of the through holes 15c is preferably provided such that the density is higher as the position is closer to the terminal portion 13a. In this case, substantially the same effect as the first embodiment can be obtained.
  • the portion where the through-hole 15c is formed does not reflect the light emitted from the organic EL layer 14 toward the counter electrode 15, and therefore the transparent electrode 13 has the direction force when the through-hole 13b is provided.
  • the amount of light emitted through the can be increased.
  • the through holes 13b and 15c may be provided in both the transparent electrode 13 and the counter electrode 15.
  • an insulating part may be provided between the transparent electrode 13 and the organic EL layer 14 or between the organic EL layer 14 and the counter electrode 15.
  • the non-light emitting region 20a may be formed in the second region 20.
  • insulating portions may be provided both between the transparent electrode 13 and the organic EL layer 14 and between the organic EL layer 14 and the counter electrode 15.
  • the insulating portion is provided between the transparent electrode 13 and the organic EL layer 14! /.
  • the shape of the through holes 13b, 15c and the insulating portion provided to form the non-light emitting region 20a in the second region 20 is not limited to an ellipse, but may be a perfect circle or a polygon such as a triangle or a rectangle. Or May be. Also, different shapes may be mixed, or different sizes may be mixed.
  • the second region 20 is transparent.
  • the thickness of the electrode portion 13S may not be constant.
  • the thickness of the transparent electrode portion 13S may be smaller as the position is closer to the terminal portion 13a. In this case, the second region 20 is more difficult to be visually recognized as compared with the case where the thickness of the transparent electrode portion 13S in the second region 20 is uniform.
  • the transparent electrode portion 13S in the region 20 and the transparent electrode 13 in the first region 19 may be formed with different material forces.
  • the second region 20 is not limited to a straight line, and may extend in a wavy line, for example.
  • the groove 21 is not limited to the shape shown in FIG. 6 (a), and for example, may extend so as to repeat an S-shape as shown in FIG. 12 (a). As shown in 12 (b), it may extend in a zigzag so as to include a plurality of straight line portions 21a. Further, the groove 21 may include both a straight portion and a curved portion. In this case, the same effect as that of the third embodiment can be obtained.
  • the light diffusing member is not limited to the light diffusing sheet 22.
  • the light diffusion sheet 22 is provided separately from the substrate 12 instead of being provided integrally with the substrate 12.
  • the interval between the second regions 20 adjacent to each other that is, the width of the first region 19 is not limited, and the width of the first region 19 is different from each other. Also good.
  • a pair of terminal portions 13 a for the transparent electrode 13 may be provided on each of a pair of opposing sides of the light emitting portion 17.
  • a pair of terminal portions 15 a for the counter electrode 15 may be provided on each of a pair of opposing sides of the light emitting portion 17.
  • the terminal portion 15a of the counter electrode 15 is not formed of the same material as that of the transparent electrode 13, and the counter electrode 15 You may comprise by an extension part.
  • the terminal portion 15a of the counter electrode 15 may be arranged on the side not corresponding to the terminal portion 13a of the transparent electrode 13. ,.
  • the terminal portion 15a of the counter electrode 15 may be disposed on the side corresponding to the terminal portion 13a of the transparent electrode 13.
  • the terminal portion 13a of the transparent electrode 13 is formed long and insulated from the portion close to the organic EL layer 14 on the terminal portion 13a.
  • a membrane 25 is provided.
  • an electrode extension 15 b is provided on the insulating film 25.
  • the terminal portion 15a of the counter electrode 15 is formed on the insulating film 25 so as to be electrically connected to the electrode extension portion 15b.
  • the terminal portion 15 a is made of the same material as the transparent electrode 13.
  • the first region 19 is not limited to a configuration extending in a direction orthogonal to the vertical scanning direction of the liquid crystal panel 32.
  • the light emitting unit 17 may be partitioned into two first regions 19 and a second region 20 sandwiched between them.
  • the two first regions 19 may have the same shape, or may have different shapes as shown in FIG.
  • the terminal portion 13 a may be provided only on one side of the transparent electrode 13.
  • the width of the transparent electrode 13 is preferably about 1Z2 or less when the terminal portion 13a is provided on both sides of the transparent electrode 13.
  • the arrangement of the terminal portion 13a is not limited to a configuration in which only one side of the rectangular transparent electrode 13 or a pair of two opposing sides is arranged. Three or more terminal portions 13a may be provided so that a light emitting region is formed in accordance with the display region of the liquid crystal panel 32.
  • the screen of the liquid crystal panel 32 is large, the number of columns of the pixel electrodes 36 that are vertically scanned during one frame time is large, and the screen is arranged in the vertical scanning direction depending on the display device.
  • the light-emitting device 11 also divides a plurality of light-emitting regions correspondingly.
  • the voltage application to the transparent electrode 13 may be controlled so that the first region 19 emits light in order in synchronization with the vertical scanning of the liquid crystal panel 32 for each divided light emitting region. ,.
  • the plurality of first regions 19 are simultaneously in the light emitting state in the steady state,
  • a configuration may be adopted in which one region 19 is sequentially turned on.
  • the first region 19 is not limited to the width capable of irradiating light to the pixel electrodes 36 in a plurality of columns at the time of light emission. Also good. In this case, the first region 19 is switched between the light emitting state and the non-light emitting state in a one-to-one synchronization with the vertical scanning of the liquid crystal panel 32.
  • the substrate 12 is not limited to glass strength, and may be a transparent resin substrate or film.
  • the transparent electrode 13 may be formed not only with ITO force but also with indium zinc oxide (IZO), acid zinc (ZnO) or tin oxide (SnO) force!
  • IZO indium zinc oxide
  • ZnO acid zinc
  • SnO tin oxide
  • the counter electrode 15 is not limited to an aluminum force, and may be formed of a metal such as gold, silver, copper, chromium, or an alloy thereof.
  • the counter electrode 15 does not have to reflect light.
  • the organic EL layer 14 may be configured to emit, for example, monochromatic light such as red, blue, green, yellow, or a combination thereof instead of white light.
  • the organic EL element 16 is not limited to the bottom emission type, and may be a so-called top emission type in which light from the organic EL layer 14 is emitted through the side opposite to the substrate 12.
  • the counter electrode 15, the organic EL layer 14, and the transparent electrode 13 are formed on the substrate 12 in the same order.
  • the counter electrode 15 may be transparent or opaque as long as it is made of a material having a lower volume resistivity than the transparent electrode 13.
  • the substrate 12 may be opaque.
  • the color filter 39 of the liquid crystal panel 32 may be omitted. In this case, the liquid crystal panel 32 displays a black and white image.
  • the light emitting unit 17 of the light emitting device 11 may have an inorganic EL element power including an organic EL layer instead of the organic EL element 16 including the organic EL layer 14.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A light-emitting device (11) comprises a light-emitting section (17) composed of an organic electroluminescence (EL) element (16). The organic EL element (16) has a transparent electrode (13), a counter electrode (15), and an organic EL layer (14) disposed between the transparent electrode (13) and the counter electrode (15). In the organic EL element (16), first regions (19) selectively switching between a light-emitting state and a non-light-emitting state and second region (20) disposed between adjacent first regions (19) are demarcated. Irrespective of the state of emission of the first regions (19), the second region (20) is prevented from being viewed by the user discriminately from the first regions (19) adjacent to the second regions (20).

Description

明 細 書  Specification
発光装置及び液晶表示装置  Light emitting device and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、発光装置及び液晶表示装置に係り、詳しくは第 1電極と第 2電極との間 に発光層が設けられてなるエレクト口ルミネッセンス (EL)素子力 なる発光部を備え る発光装置、及びそうした発光装置を備える液晶表示装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a light emitting device and a liquid crystal display device, and more specifically, includes a light emitting portion having an electroluminescence (EL) element power in which a light emitting layer is provided between a first electrode and a second electrode. The present invention relates to a light emitting device and a liquid crystal display device including such a light emitting device.
背景技術  Background art
[0002] 液晶表示装置は、コンピュータ、携帯機器等のディスプレイとして広く用いられてい る。液晶表示装置は一般に、周囲が暗くても表示を容易に認識できるようにバックラ イトを備える。  [0002] Liquid crystal display devices are widely used as displays for computers, portable devices, and the like. A liquid crystal display device generally includes a backlight so that the display can be easily recognized even when the surroundings are dark.
[0003] 複数の画面を同時に表示することが可能な液晶パネルを備えた液晶表示装置が 提案されている (例えば、特許文献 1参照。 ) o特許文献 1の液晶表示装置では、液 晶パネルの隣り合う表示領域間に遮光壁を設けることにより、一方の表示領域に対 応して配置されたバックライトからの光が他方の表示領域に入射されな 、ようになつ ている。  [0003] A liquid crystal display device including a liquid crystal panel capable of simultaneously displaying a plurality of screens has been proposed (see, for example, Patent Document 1). By providing a light shielding wall between adjacent display areas, light from the backlight arranged corresponding to one display area is not incident on the other display area.
[0004] また、画質の向上を目的に、分割された複数の発光部を有して各発光部が選択的 に駆動される ELパネルを液晶表示装置のバックライトに用いることが提案されている (例えば、特許文献 2参照。 )0特許文献 2には図 16に示す ELパネル 71が開示され て!、る。 ELパネル 71は図示しな!、液晶パネルの背後に設けられてバックライトとして 機能する。 ELパネル 71は複数の線状の発光部 72A, 72B, 72C, 72Dを備え、各 発光部 72A〜72Dと対応する位置にはそれぞれ電極 73A, 73B, 73C, 73Dが設 けられている。発光部 72A〜72Dはそれぞれ液晶パネルの表示単位である 1つの表 示ラインと対応するようにストライプ状に配置されて 、る。 [0004] Further, for the purpose of improving image quality, it has been proposed to use an EL panel having a plurality of divided light emitting portions and each light emitting portion being selectively driven as a backlight of a liquid crystal display device. (For example, refer to Patent Document 2.) 0 Patent Document 2 discloses an EL panel 71 shown in FIG. The EL panel 71 is not shown in the figure! It is provided behind the liquid crystal panel and functions as a backlight. The EL panel 71 includes a plurality of linear light emitting portions 72A, 72B, 72C, and 72D, and electrodes 73A, 73B, 73C, and 73D are provided at positions corresponding to the light emitting portions 72A to 72D, respectively. The light emitting sections 72A to 72D are arranged in stripes so as to correspond to one display line which is a display unit of the liquid crystal panel.
[0005] 液晶表示装置は静止画像だけでなく動画像の表示にも使用される。特許文献 3〖こ は、動画像の画質を向上させるベく改善された液晶表示装置が開示されている。こ の液晶表示装置は、液晶パネルの走査方向と直交する方向に延び、かつ所定の幅 を有する線状光を発するバックライトを備えて 、る。バックライトから発せられる線状光 は、液晶パネルの走査方向と同じ方向に走査される。 The liquid crystal display device is used not only for displaying still images but also for displaying moving images. Patent Document 3 discloses an improved liquid crystal display device that improves the image quality of moving images. This liquid crystal display device includes a backlight that emits linear light extending in a direction orthogonal to the scanning direction of the liquid crystal panel and having a predetermined width. Linear light emitted from the backlight Are scanned in the same direction as the scanning direction of the liquid crystal panel.
[0006] 図 16の ELパネル 71では、隣り合う発光部 72A〜72D同士の間には、常時発光し ない線状の非発光部が存在する。この場合、隣り合う発光部 72A〜72Dが同時に点 灯したとき、その点灯した発光部 72A〜72Dの間の非発光部が暗線として視認され うる。そのため、図 16の ELパネル 71はバックライトとして必ずしも好ましくない。  [0006] In the EL panel 71 of FIG. 16, a linear non-light emitting portion that does not always emit light exists between the adjacent light emitting portions 72A to 72D. In this case, when the adjacent light emitting units 72A to 72D are lit simultaneously, the non-light emitting unit between the light emitting units 72A to 72D that are lit can be visually recognized as dark lines. Therefore, the EL panel 71 in FIG. 16 is not necessarily preferable as a backlight.
[0007] 特許文献 2には動画表示に関しては何ら記載がないが、図 16の ELパネル 71を動 画表示に用いる場合には、特許文献 3の液晶表示装置のバックライトと同様、所謂擬 似インパルス駆動を行うことが考えられる。擬似インノ ルス駆動の場合、液晶表示装 置の画面全体を一度走査するのに必要な時間、即ち 1フレーム時間の間に各発光 部 72A〜72Dが発光状態と非発光状態の間で切り替えられる。 1フレーム時間の間 に各発光部 72A〜72Dが発光状態と非発光状態の間で切り替えられても、残像によ り見かけ上は全ての発光部 72A〜72Dが常時点灯しているように見える。しかし、隣 り合う発光部 72A〜72D同士の間に非発光部が存在すると、それが暗線として視認 されうる。  [0007] Patent Document 2 has no description regarding moving image display, but when the EL panel 71 of FIG. 16 is used for moving image display, it is a so-called pseudo image similar to the backlight of the liquid crystal display device of Patent Document 3. Impulse driving can be considered. In the case of quasi-innocent driving, each of the light emitting units 72A to 72D is switched between the light emitting state and the non-light emitting state during a time required to scan the entire screen of the liquid crystal display device once, that is, one frame time. Even if each of the light emitting units 72A to 72D is switched between the light emitting state and the non-light emitting state during one frame time, all the light emitting units 72A to 72D appear to be always lit due to the afterimage. . However, if a non-light emitting portion exists between the adjacent light emitting portions 72A to 72D, it can be visually recognized as a dark line.
特許文献 1:特開 2004— 184494号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-184494
特許文献 2:特開 2000 - 75802号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-75802
特許文献 3 :特開 2002— 6766号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-6766
発明の開示  Disclosure of the invention
[0008] 本発明の目的は、複数の発光領域を選択的に発光させることが可能で、かつ暗線 の発生を抑制することが可能な発光装置、及びそうした発光装置を備える液晶表示 装置を提供することにある。  [0008] An object of the present invention is to provide a light emitting device capable of selectively emitting light in a plurality of light emitting regions and suppressing generation of dark lines, and a liquid crystal display device including such a light emitting device. There is.
[0009] 上記の目的を達成するために、本発明の一態様では以下の発光装置が提供され る。その発光装置は、エレクト口ルミネッセンス素子力もなる発光部を備える。エレクト 口ルミネッセンス素子は、外部電圧の入力を受ける端子部をそれぞれ有する第 1電極 及び第 2電極と、第 1電極と第 2電極の間に設けられた発光層とを備える。有機エレク トロルミネッセンス素子には、発光状態と非発光状態との間を選択的に切り替わる複 数の第 1の領域と、互いに隣り合う第 1の領域同士の間に位置する第 2の領域とが画 定されている。有機エレクト口ルミネッセンス素子は、第 1の領域の発光の如何に関わ らず、各第 2の領域が当該第 2の領域に隣接する第 1の領域と区分してユーザーに 視認されるのを防ぐように構成されて 、る。 [0009] In order to achieve the above object, according to one embodiment of the present invention, the following light-emitting device is provided. The light-emitting device includes a light-emitting unit that also has an electo-luminescence element power. The electoluminescence element includes a first electrode and a second electrode each having a terminal portion for receiving an external voltage, and a light emitting layer provided between the first electrode and the second electrode. An organic electroluminescence element includes a plurality of first regions that selectively switch between a light emitting state and a non-light emitting state, and a second region that is located between the first regions adjacent to each other. It is set. The organic electoluminescence device is responsible for the light emission in the first region. Instead, each second region is configured to be separated from the first region adjacent to the second region and prevented from being visually recognized by the user.
[0010] 本発明の別の態様では以下の発光装置が提供される。その発光装置は、エレクト口 ルミネッセンス素子力もなる発光部を備える。エレクト口ルミネッセンス素子は、第 1電 極及び第 2電極と、第 1電極と第 2電極の間に設けられた発光層とを備える。第 1電極 及び第 2電極はそれぞれベタ電極からなる。第 1電極は第 2電極よりも体積抵抗率が 高ぐかつ透明である。第 1電極は 3個以上の端子部を備える。いずれの端子部に電 圧を印加するかによって発光するエレクト口ルミネッセンス素子の領域が異なっている 。各端子部に電圧を印加したときに発光するエレクト口ルミネッセンス素子の領域は、 当該端子部に隣接する別の端子部に電圧を印カロしたときに発光するエレクトロルミネ ッセンス素子の領域と部分的に重なっている。  In another aspect of the present invention, the following light emitting device is provided. The light-emitting device includes a light-emitting portion that also serves as an electroluminescent device. The electoluminescence device includes a first electrode and a second electrode, and a light emitting layer provided between the first electrode and the second electrode. Each of the first electrode and the second electrode is a solid electrode. The first electrode has a higher volume resistivity than the second electrode and is transparent. The first electrode has three or more terminal portions. The region of the electroluminescent element that emits light varies depending on which terminal portion is applied with voltage. The area of the electroluminescent element that emits light when a voltage is applied to each terminal part is partly the same as the area of the electroluminescent element that emits light when a voltage is applied to another terminal part adjacent to the terminal part. overlapping.
[0011] 本発明のさらに別の態様では、上記の発光装置のいずれ力からなるバックライトを 備える液晶表示装置が提供される。  [0011] In still another aspect of the present invention, a liquid crystal display device including a backlight made of any of the above light emitting devices is provided.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1 (a)は本発明の第 1の実施形態における発光装置の模式平面図、図 1 (b) は図 1 (a)の IB— IB線における模式断面図、図 1 (c)は図 1 (a)の 1C 1C線におけ る模式断面図。  FIG. 1 (a) is a schematic plan view of a light-emitting device according to a first embodiment of the present invention, FIG. 1 (b) is a schematic cross-sectional view taken along line IB-IB in FIG. 1 (a), Fig. 1 (c) is a schematic cross-sectional view taken along line 1C 1C in Fig. 1 (a).
[図 2]図 2 (a)は図 1 (a)の発光装置の透明電極を示す模式平面図、図 2 (b)は図 2 (a )の 2B— 2B線における模式断面図。  2] FIG. 2 (a) is a schematic plan view showing a transparent electrode of the light emitting device of FIG. 1 (a), and FIG. 2 (b) is a schematic cross-sectional view taken along line 2B-2B of FIG. 2 (a).
[図 3]図 1 (a)の発光装置を備える第 1の実施形態における液晶表示装置の模式部 分断面図。  3 is a schematic partial cross-sectional view of a liquid crystal display device according to a first embodiment including the light emitting device of FIG. 1 (a).
[図 4]図 3の液晶表示装置の駆動回路の概略構成図。  4 is a schematic configuration diagram of a drive circuit of the liquid crystal display device of FIG.
[図 5]図 5 (a)は本発明の第 2の実施形態における発光装置の透明電極を示す模式 平面図、図 5 (b)は図 5 (a)の 5B— 5B線における模式断面図。  FIG. 5 (a) is a schematic plan view showing a transparent electrode of a light-emitting device according to a second embodiment of the present invention, and FIG. 5 (b) is a schematic cross-sectional view taken along line 5B-5B in FIG. 5 (a). .
[図 6]図 6 (a)は本発明の第 3の実施形態における発光装置の透明電極を示す模式 部分平面図、図 6 (b)は第 3の実施形態における発光装置の模式断面図。  FIG. 6 (a) is a schematic partial plan view showing a transparent electrode of a light-emitting device according to a third embodiment of the present invention, and FIG. 6 (b) is a schematic cross-sectional view of the light-emitting device according to the third embodiment.
[図 7]本発明の第 4の実施形態における発光装置の模式平面図。  FIG. 7 is a schematic plan view of a light emitting device according to a fourth embodiment of the present invention.
[図 8]図 7の 8— 8線における模式断面図。 [図 9]図 9 (a)及び図 9 (b)は図 7の発光装置の透明電極の模式平面図。 FIG. 8 is a schematic cross-sectional view taken along line 8-8 in FIG. FIG. 9 (a) and FIG. 9 (b) are schematic plan views of transparent electrodes of the light emitting device of FIG.
[図 10]本発明の別の実施形態における発光装置の模式断面図。  FIG. 10 is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention.
[図 11]本発明の別の実施形態における発光装置の模式断面図。  FIG. 11 is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention.
[図 12]図 12 (a)及び図 12 (b)は本発明の別の実施形態における透明電極の模式部 分平面図。  FIG. 12 (a) and FIG. 12 (b) are schematic partial plan views of a transparent electrode according to another embodiment of the present invention.
[図 13]本発明の別の実施形態における端子部の構成を示す模式断面図。  FIG. 13 is a schematic cross-sectional view showing a configuration of a terminal portion in another embodiment of the present invention.
[図 14]本発明の別の実施形態における第 1の領域及び第 2の領域の配置を示す模 式図。  FIG. 14 is a schematic diagram showing the arrangement of first regions and second regions in another embodiment of the present invention.
[図 15]本発明の別の実施形態における透明電極の模式平面図。  FIG. 15 is a schematic plan view of a transparent electrode according to another embodiment of the present invention.
[図 16]従来技術の ELパネルの模式平面図。  FIG. 16 is a schematic plan view of a conventional EL panel.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の第 1の実施形態を図 1 (a)〜図 4に従って説明する。なお、図 1 (a) 〜図 2 (b)に示す発光装置 11及び図 3に示す液晶表示装置 31の各部材の寸法比 は、図示の便宜上、実際の寸法比とは異なる。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. Note that the dimensional ratio of each member of the light emitting device 11 shown in FIGS. 1 (a) to 2 (b) and the liquid crystal display device 31 shown in FIG. 3 is different from the actual dimensional ratio for convenience of illustration.
[0014] 図 1 (a)〜図 1 (c)に示すように、発光装置 11は、有機 EL素子 16からなる面状の発 光部 17を備えている。有機 EL素子 16は、基板 12と、基板 12の上に設けられた第 1 電極としての透明電極 13と、透明電極 13の上に設けられた発光層としての有機 EL 層 14と、有機 EL層 14の上に設けられた第 2電極としての対向電極 15とを備える。有 機 EL素子 16は、水分 (水蒸気)及び酸素によって有機 EL層 14が悪影響を受けな V、ように保護膜 18で被覆されて 、る。  As shown in FIGS. 1 (a) to 1 (c), the light emitting device 11 includes a planar light emitting portion 17 composed of an organic EL element 16. The organic EL element 16 includes a substrate 12, a transparent electrode 13 as a first electrode provided on the substrate 12, an organic EL layer 14 as a light emitting layer provided on the transparent electrode 13, and an organic EL layer. And a counter electrode 15 as a second electrode provided on 14. The organic EL element 16 is covered with a protective film 18 so that the organic EL layer 14 is not adversely affected by moisture (water vapor) and oxygen.
[0015] 基板 12は透明なガラスカゝら形成されている。また、透明電極 13が陽極として用いら れ、対向電極 15が陰極として用いられる。透明電極 13の体積抵抗率は対向電極 15 の体積抵抗率よりも高くなつている。なお、本明細書中、「透明」とは、少なくとも可視 光を透過可能なことを意味する。すなわち、基板 12及び透明電極 13は、少なくとも 可視光を透過可能である。透明電極 13は、インジウム錫酸ィ匕物 (ITO)により形成さ れている。対向電極 15は、アルミニウム等の金属で形成され、光を反射する性質を 有する。有機 EL素子 16は、有機 EL層 14からの光が基板 12を通って出射される所 謂ボトムェミッションタイプに構成されている。保護膜 18は、例えば窒化ケィ素で形成 されている。 [0015] The substrate 12 is formed of a transparent glass cover. The transparent electrode 13 is used as an anode, and the counter electrode 15 is used as a cathode. The volume resistivity of the transparent electrode 13 is higher than the volume resistivity of the counter electrode 15. In the present specification, “transparent” means that at least visible light can be transmitted. That is, the substrate 12 and the transparent electrode 13 can transmit at least visible light. The transparent electrode 13 is made of indium stannate (ITO). The counter electrode 15 is formed of a metal such as aluminum and has a property of reflecting light. The organic EL element 16 is configured as a so-called bottom emission type in which light from the organic EL layer 14 is emitted through the substrate 12. The protective film 18 is made of, for example, silicon nitride. Has been.
[0016] 図 1 (a)に示すように、有機 EL素子 16には、左右方向に延びる複数の第 1の領域 1 9と、互いに隣り合う第 1の領域 19同士の間に位置する第 2の領域 20とが画定されて いる。第 1の領域 19の延長方向は、液晶パネル 32 (図 3参照)における垂直走査の 方向と直交している。第 1の領域 19は 、ずれも同じ幅を有して 、る。  As shown in FIG. 1 (a), the organic EL element 16 includes a plurality of first regions 19 extending in the left-right direction and a second region positioned between the first regions 19 adjacent to each other. Region 20 is defined. The extending direction of the first region 19 is orthogonal to the direction of vertical scanning in the liquid crystal panel 32 (see FIG. 3). The first region 19 has the same width as the displacement.
[0017] 第 1の領域 19に位置する透明電極 13の各部分は当該第 1の領域 19と同じ幅を有 し、一端(図 l (a)〜(c)においては左端)に端子部 13aを有している。即ち、第 1の領 域 19に位置する透明電極 13の各部分は、液晶パネル 32における垂直走査の方向 と直交するように延び、一端に端子部 13aを有している。第 1の領域 19の幅は、後記 する液晶パネル 32の画素一列分の幅とは異なり、画素複数列分の幅と同じである。  [0017] Each portion of the transparent electrode 13 located in the first region 19 has the same width as that of the first region 19, and has a terminal portion 13a at one end (the left end in Figs. L (a) to (c)). have. That is, each portion of the transparent electrode 13 located in the first region 19 extends so as to be orthogonal to the direction of vertical scanning in the liquid crystal panel 32, and has a terminal portion 13a at one end. The width of the first region 19 is the same as the width of a plurality of columns of pixels, unlike the width of one column of the liquid crystal panel 32 described later.
[0018] 各第 2の領域 20は、図 1 (c)に示すように、複数の非発光領域 20a及び複数の発光 領域 20bを含む。非発光領域 20aはドット状をなし、非発光領域 20aの分布密度は、 透明電極 13の端子部 13aに近い位置であるほど高くなつている。  [0018] Each second region 20 includes a plurality of non-light emitting regions 20a and a plurality of light emitting regions 20b, as shown in FIG. 1 (c). The non-light emitting region 20a has a dot shape, and the distribution density of the non-light emitting region 20a is higher as the position is closer to the terminal portion 13a of the transparent electrode 13.
[0019] 第 1の領域 19に位置する透明電極 13の部分と第 2の領域 20に位置する透明電極 13の部分は互いに共通の材料で形成されている。第 1の領域 19に位置する対向電 極 15の部分と第 2の領域 20に位置する対向電極 15の部分は互いに共通の材料で 形成されている。第 1の領域 19に位置する有機 EL層 14の部分と第 2の領域 20に位 置する有機 EL層 14の部分は互いに共通の材料で形成されて 、る。図 2 (a)及び図 2 (b)に示すように、第 2の領域 20に位置する透明電極 13の部分の形成状態は、第 1 の領域 19に位置する透明電極 13の部分の形成状態とは異なっている。より具体的 には、第 2の領域 20に位置する透明電極 13の各部分には、複数の貫通孔 13bが設 けられている。互いに隣り合う貫通孔 13b同士の間の間隔は、透明電極 13の端子部 13aに近!、位置であるほど小さくなつて!/、る。  The portion of the transparent electrode 13 located in the first region 19 and the portion of the transparent electrode 13 located in the second region 20 are made of a common material. The portion of the counter electrode 15 located in the first region 19 and the portion of the counter electrode 15 located in the second region 20 are formed of a common material. The portion of the organic EL layer 14 located in the first region 19 and the portion of the organic EL layer 14 located in the second region 20 are made of a common material. As shown in FIGS. 2 (a) and 2 (b), the formation state of the transparent electrode 13 located in the second region 20 is the formation state of the transparent electrode 13 portion located in the first region 19. Is different. More specifically, a plurality of through-holes 13b are provided in each portion of the transparent electrode 13 located in the second region 20. The interval between the adjacent through holes 13b is closer to the terminal portion 13a of the transparent electrode 13, and becomes smaller as the position is larger.
[0020] 有機 EL層 14は、各端子部 13aの一部を除く透明電極 13の上面全体を覆うよう〖こ 設けられるとともに貫通孔 13bを満たしている。有機 EL層 14は、公知の有機 EL材料 を用いて形成され、例えば、透明電極 13側から順に積層された正孔輸送層、発光層 及び電子輸送層を備える。有機 EL層 14は、電場の印加により白色光を発する。有 機 EL層 14は、赤、緑、青の発光材料を用いた三色塗り分け方式で形成されてもよい し、赤、緑、青の発光層を積層することにより形成されてもよい。あるいは、赤、緑、青 の色素をホスト分子あるいは高分子中に分散させることにより形成されてもょ 、。 [0020] The organic EL layer 14 is provided so as to cover the entire top surface of the transparent electrode 13 excluding a part of each terminal portion 13a and fills the through hole 13b. The organic EL layer 14 is formed using a known organic EL material, and includes, for example, a hole transport layer, a light emitting layer, and an electron transport layer that are sequentially stacked from the transparent electrode 13 side. The organic EL layer 14 emits white light when an electric field is applied. The organic EL layer 14 may be formed by a three-color coating method using red, green, and blue light emitting materials. However, it may be formed by laminating red, green and blue light emitting layers. Alternatively, it may be formed by dispersing red, green and blue dyes in a host molecule or polymer.
[0021] 対向電極 15はベタ電極力もなる。図 1 (a)の上下方向に関する対向電極 15の寸法 、すなわち対向電極 15の幅は、図 1 (a)の上下方向に関する有機 EL層 14の寸法、 すなわち有機 EL層 14の幅よりもやや小さい。また、図 1 (a)〜図 1 (c)の左右方向に 関する対向電極 15の寸法、すなわち対向電極 15の長さは、図 1 (a)〜図 1 (c)の左 右方向に関する有機 EL層 14の寸法、すなわち有機 EL層 14の長さよりも大きぐ対 向電極 15の一部が有機 EL層 14の一端カも延出して電極延出部 15bを構成してい る。この電極延出部 15bには対向電極 15用の端子部 15aが電気的に接続されて!ヽ る。対向電極 15の端子部 15aは、図 1 (a)〜図 1 (c)の左右方向に関して、透明電極 13の端子部 13aから離れて位置している。対向電極 15の端子部 15aは、透明電極 1 3と同一材料で形成されて 、る。  The counter electrode 15 also has a solid electrode force. The size of the counter electrode 15 in the vertical direction in FIG. 1 (a), that is, the width of the counter electrode 15 is slightly smaller than the size of the organic EL layer 14 in the vertical direction in FIG. 1 (a), that is, the width of the organic EL layer 14. . In addition, the dimensions of the counter electrode 15 in the left-right direction in FIGS. 1 (a) to 1 (c), that is, the length of the counter electrode 15, is organic in the left and right directions in FIGS. 1 (a) to 1 (c). A part of the counter electrode 15 larger than the dimension of the EL layer 14, that is, the length of the organic EL layer 14 extends from one end of the organic EL layer 14 to constitute an electrode extension 15 b. A terminal portion 15a for the counter electrode 15 is electrically connected to the electrode extension portion 15b. The terminal portion 15a of the counter electrode 15 is located away from the terminal portion 13a of the transparent electrode 13 in the left-right direction of FIGS. 1 (a) to 1 (c). The terminal portion 15a of the counter electrode 15 is made of the same material as that of the transparent electrode 13.
[0022] 次に、発光装置 11の製造方法を説明する。発光装置 11を製造する際にはまず、 表面に ITO膜を有する透明なガラス基板 12を準備する。この ITO膜に対してエッチ ングを行い、透明電極 13、端子部 13a、貫通孔 13b及び端子部 15aを形成する。  Next, a method for manufacturing the light emitting device 11 will be described. When manufacturing the light emitting device 11, first, a transparent glass substrate 12 having an ITO film on the surface is prepared. Etching is performed on the ITO film to form the transparent electrode 13, the terminal portion 13a, the through hole 13b, and the terminal portion 15a.
[0023] 基板 12及び透明電極 13の洗浄を行なった後、透明電極 13を覆うように、有機 EL 層 14を形成する。有機 EL層 14は、有機 EL層 14を構成する各層が蒸着により順次 積層されることで形成される。その後、アルミニウム (A1)の蒸着により有機 EL層 14上 に対向電極 15を形成する。このとき、対向電極 15の電極延出部 15bが端子部 15a の一部を覆うように形成され、その結果、電極延出部 15bと端子部 15aが互いに電気 的に接続される。最後に、保護膜 18を形成する。保護膜 18が窒化ケィ素等のセラミ ックカもなる場合、保護膜 18は、例えば、プラズマ CVD法で形成される。  After cleaning the substrate 12 and the transparent electrode 13, an organic EL layer 14 is formed so as to cover the transparent electrode 13. The organic EL layer 14 is formed by sequentially laminating the layers constituting the organic EL layer 14 by vapor deposition. Thereafter, the counter electrode 15 is formed on the organic EL layer 14 by vapor deposition of aluminum (A1). At this time, the electrode extension 15b of the counter electrode 15 is formed so as to cover a part of the terminal 15a, and as a result, the electrode extension 15b and the terminal 15a are electrically connected to each other. Finally, the protective film 18 is formed. In the case where the protective film 18 is also a ceramic such as silicon nitride, the protective film 18 is formed by, for example, a plasma CVD method.
[0024] 次に、擬似インパルス駆動型液晶表示装置 31のバックライトとして発光装置 11を使 用した場合の作用を説明する。  Next, the operation when the light emitting device 11 is used as the backlight of the pseudo impulse drive type liquid crystal display device 31 will be described.
[0025] 図 3に示すように、発光装置 11は、液晶表示装置 31の透過型液晶パネル 32の表 示面と反対側の面である背面に配置して使用される。液晶パネル 32は、公知のァク ティブマトリックス型のフルカラー表示用の液晶パネルと基本的に同じ構成である。液 晶パネル 32は、一対の透明な第 1基板 33及び第 2基板 34を備える。両基板 33, 34 は所定の間隔を保った状態で図示しないシール材により貼り合わされており、両基板As shown in FIG. 3, the light emitting device 11 is used by being arranged on the back surface, which is the surface opposite to the display surface of the transmissive liquid crystal panel 32 of the liquid crystal display device 31. The liquid crystal panel 32 has basically the same configuration as a known active matrix type liquid crystal panel for full color display. The liquid crystal panel 32 includes a pair of transparent first substrate 33 and second substrate 34. Both boards 33, 34 Are bonded together with a sealing material (not shown) with a predetermined distance between them.
33, 34の間には液晶 35が封入されている。基板 33, 34は例えばガラス製である。 発光装置 11寄りに配置されている第 1基板 33には、画素電極 36と、画素電極 36に 接続された薄膜トランジスタ (TFT) 37とがマトリックス状に形成されて 、る。画素電極 36及び TFT37は、液晶 35と対向する第 1基板 33の面に設けられている。画素電極 36は ITOで形成されている。 3個 1組の画素電極 36により 1個の画素が構成されて いる。液晶 35と反対側の第 1基板 33の面には偏光板 38が設けられている。 Liquid crystal 35 is sealed between 33 and 34. The substrates 33 and 34 are made of glass, for example. A pixel electrode 36 and thin film transistors (TFT) 37 connected to the pixel electrode 36 are formed in a matrix on the first substrate 33 disposed near the light emitting device 11. The pixel electrode 36 and the TFT 37 are provided on the surface of the first substrate 33 facing the liquid crystal 35. The pixel electrode 36 is made of ITO. One set of three pixel electrodes 36 constitutes one pixel. A polarizing plate 38 is provided on the surface of the first substrate 33 opposite to the liquid crystal 35.
[0026] 液晶 35と対向する第 2基板 34の面にはカラーフィルタ 39及び全画素共通の透明 電極 40が同順で設けられている。透明電極 40は ITOで形成されている。カラーフィ ルタ 39は、赤色、緑色及び青色の光を透過する領域 39a, 39b, 39cを有しており、 各領域 39a, 39b, 39cがサブ画素を構成する画素電極 36の一つと対応するように 配置されている。互いに隣り合う領域同士 39a〜39cはブラックマトリックス 41で区画 されている。液晶 35と反対側の第 2基板 34の面には偏光板 42が設けられている。  On the surface of the second substrate 34 facing the liquid crystal 35, a color filter 39 and a transparent electrode 40 common to all pixels are provided in the same order. The transparent electrode 40 is made of ITO. The color filter 39 has regions 39a, 39b, and 39c that transmit red, green, and blue light, and each region 39a, 39b, and 39c corresponds to one of the pixel electrodes 36 that constitute the sub-pixel. Has been placed. Adjacent areas 39 a to 39 c are partitioned by a black matrix 41. A polarizing plate 42 is provided on the surface of the second substrate 34 opposite to the liquid crystal 35.
[0027] 発光装置 11は、基板 12が液晶パネル 32と対向し、かつ第 1の領域 19が液晶パネ ル 32における垂直走査の方向(図 3の左右方向)と直交して延びるように、すなわち 図 3にお 、て紙面に対して垂直な方向に延びるように配置される。  The light emitting device 11 has a substrate 12 facing the liquid crystal panel 32 and a first region 19 extending perpendicularly to the vertical scanning direction (left and right direction in FIG. 3) in the liquid crystal panel 32, that is, In Fig. 3, they are arranged so as to extend in a direction perpendicular to the paper surface.
[0028] 図 4に示すように、液晶パネル 32及び発光装置 11で構成される表示部 43の外側 には、 TFT37のゲート電極を駆動するゲートドライバ 44と、 TFT37のソース電極(デ ータ電極)を駆動するソースドライバ 45と、発光装置 11を駆動するドライバ 46が設け られている。透明電極 13の端子部 13aはドライバ 46に電気的に接続される。各ドライ バ 44〜46は制御装置 47からの制御信号により制御される。  [0028] As shown in FIG. 4, on the outside of the display unit 43 composed of the liquid crystal panel 32 and the light emitting device 11, a gate driver 44 for driving the gate electrode of the TFT 37 and a source electrode (data electrode) of the TFT 37 are provided. ) And a driver 46 for driving the light emitting device 11 are provided. The terminal portion 13 a of the transparent electrode 13 is electrically connected to the driver 46. Each driver 44 to 46 is controlled by a control signal from the control device 47.
[0029] ゲートドライバ 44は、制御装置 47からの制御信号に基づ 、てアドレス信号 (順次走 查信号)を TFT37のゲート電極に供給し、ソースドライノ 5は、制御装置 47からの 制御信号に基づ 、てデータ信号を TFT37のソース電極に供給する。画面全体を一 度走査するのに要する時間、即ち 1フレーム時間は 1Z60秒に設定されている。従つ て、アドレス信号の出力される間隔は、アドレス信号線の数を Anとすると、 (1/60) X (lZAn)秒となる。  The gate driver 44 supplies an address signal (sequential running signal) to the gate electrode of the TFT 37 based on the control signal from the control device 47, and the source driver 5 receives the control signal from the control device 47. Based on the above, the data signal is supplied to the source electrode of TFT37. The time required to scan the entire screen once, that is, one frame time is set to 1Z60 seconds. Therefore, the output interval of the address signal is (1/60) X (lZAn) seconds, where An is the number of address signal lines.
[0030] 制御装置 47は、液晶パネル 32の垂直走査に同期して、即ちアドレス信号の出力に 同期して、第 1の領域 19を順に発光状態と非発光状態との間で切り替えるべくドライ バ 46を制御する。本実施形態では、第 1の領域 19の数を N個としたとき、 1フレーム 時間の 1ZNの長さの時間間隔で第 1の領域 19が順次に発光状態 (点灯状態)に切 り替わるように、制御装置 47はドライバ 46を制御する。第 1の領域 19は、発光状態に 切り替わって力 所定時間の間は発光状態が保持されるように制御される。従って、 液晶表示装置 31の駆動時には、 2個以上の第 1の領域 19が同時に発光状態となる The control device 47 synchronizes with the vertical scanning of the liquid crystal panel 32, that is, outputs an address signal. In synchronism, the driver 46 is controlled to switch the first region 19 between the light emitting state and the non-light emitting state in order. In the present embodiment, when the number of the first areas 19 is N, the first areas 19 are sequentially switched to the light emitting state (lighted state) at a time interval of 1ZN length of one frame time. Further, the control device 47 controls the driver 46. The first area 19 is controlled so that the light emission state is maintained for a predetermined time after switching to the light emission state. Therefore, when the liquid crystal display device 31 is driven, two or more first regions 19 are simultaneously in a light emitting state.
[0031] 制御装置 47から出力される指令信号に基づくドライバ 46の駆動に従い、発光状態 に切り替わった第 1の領域 19は、当該第 1の領域 19と入れ替わりに発光状態に切り 替わる別の第 1の領域 19が発光状態になって力 一定時間 tが経過した後に非発光 状態に切り替えられる。この一定時間 tは極短時間であり、人間の目には認識不能な 長さである。 [0031] According to the driving of the driver 46 based on the command signal output from the control device 47, the first area 19 switched to the light emitting state is replaced with the first area 19 to be switched to the first light emitting state. The region 19 of the light is turned on, and after a certain time t has elapsed, it is switched to the non-lighted state. This fixed time t is an extremely short time and is a length that cannot be recognized by human eyes.
[0032] 各第 1の領域 19は、制御装置 47からの指令信号により発光状態と非発光状態との 間を選択的に切り替わるが、液晶パネル 32のある領域が表示データ書き替え期間に ある間は、当該液晶パネル 32の領域の直下に位置する第 1の領域 19が非発光状態 に保持される。第 1の領域 19が画素電極 36の走査ラインと一対一で対応していれば 、液晶パネル 32の前記領域の表示データ書き替え期間は 1走査ライン分のデータ書 き替え期間に一致する。しかし、本実施形態では、各第 1の領域 19が画素電極 36の 複数の走査ラインと対応しているため、その複数の走査ライン分の表示データ書き替 え期間 Tの間は、対応する第 1の領域 19が非発光状態に保持される。第 1の領域 19 はその後、予め設定された期間、発光状態に保持される。  [0032] Each first region 19 is selectively switched between a light emitting state and a non-light emitting state by a command signal from the control device 47, while a certain region of the liquid crystal panel 32 is in the display data rewriting period. In other words, the first region 19 located immediately below the region of the liquid crystal panel 32 is held in a non-light emitting state. If the first area 19 has a one-to-one correspondence with the scanning line of the pixel electrode 36, the display data rewriting period of the area of the liquid crystal panel 32 coincides with the data rewriting period for one scanning line. However, in the present embodiment, each first region 19 corresponds to a plurality of scanning lines of the pixel electrode 36. Therefore, during the display data rewriting period T for the plurality of scanning lines, the corresponding first region 19 The region 19 of 1 is held in a non-light emitting state. Thereafter, the first area 19 is held in a light emitting state for a preset period.
[0033] 液晶パネル 32の表示画面に画像を表示させる際、液晶パネル 32においては、制 御装置 47からの指令信号により、ゲートドライバ 44からアドレス信号が出力されて 1 列毎に TFT37がオン状態になる。また、同じく制御装置 47からの指令信号により、ソ ースドライバ 45からデータ信号が出力されて各画素電極 36にデータが書き込まれる 。そして、書き込まれたデータは当該画素電極 36の図示しない蓄積キャパシタに充 放電電荷として蓄積され、次のデータ書き込みが行われるまで、その電荷に対応した 大きさの電圧が当該画素電極 36に印加される状態に保持される。各画素電極 36へ の印加電圧が大きいほど、当該画素電極 36に対向する液晶 35は多くの光を透過可 能な状態となる。画素電極 36への表示データの書き替えが行われるときには当該画 素電極 36と対向する第 1の領域 19は非発光状態に保持されるため、動画像の画質 が向上する。 [0033] When displaying an image on the display screen of the liquid crystal panel 32, the liquid crystal panel 32 outputs an address signal from the gate driver 44 in response to a command signal from the control device 47, and the TFT 37 is turned on for each column. become. Similarly, in response to a command signal from the control device 47, a data signal is output from the source driver 45 and data is written to each pixel electrode 36. The written data is stored as a charge / discharge charge in a storage capacitor (not shown) of the pixel electrode 36, and a voltage having a magnitude corresponding to the charge is applied to the pixel electrode 36 until the next data write is performed. Held in a state. To each pixel electrode 36 As the applied voltage increases, the liquid crystal 35 facing the pixel electrode 36 can transmit more light. When the display data is rewritten to the pixel electrode 36, the first area 19 facing the pixel electrode 36 is held in a non-light emitting state, so that the quality of the moving image is improved.
[0034] 発光装置 11においては、制御装置 47からの指令信号に基づいて、アドレス信号と 同期するようにドライバ 46から各端子部 13aにオン信号が出力される。オン信号が出 力されている間、当該端子部 13aに対応する第 1の領域 19に電流が供給されて有機 EL層 14から白色光が発せられる。有機 EL層 14からの光は、基板 12を通って発光 装置 11から出射し、第 1基板 33を通って液晶パネル 32に入射する。  In the light emitting device 11, based on a command signal from the control device 47, an ON signal is output from the driver 46 to each terminal portion 13 a so as to synchronize with the address signal. While the ON signal is output, current is supplied to the first region 19 corresponding to the terminal portion 13a, and white light is emitted from the organic EL layer. Light from the organic EL layer 14 is emitted from the light emitting device 11 through the substrate 12, and enters the liquid crystal panel 32 through the first substrate 33.
[0035] 第 1の領域 19は、液晶パネル 32の垂直走査に同期して順に発光する。但し、この 実施形態では、各第 1の領域 19が液晶 35の複数の走査ライン分の画素電極 36の 列と対向しているため、当該第 1の領域 19を構成する透明電極 13の端子部 13aへ のオン信号の出力は、当該第 1の領域 19と対向する複数の画素電極 36列の TFT3 7への表示データ書き替え (書き込み)が完了した後に行われる。  The first region 19 emits light in order in synchronization with the vertical scanning of the liquid crystal panel 32. However, in this embodiment, each first region 19 is opposed to a column of pixel electrodes 36 corresponding to a plurality of scanning lines of the liquid crystal 35, so that the terminal portion of the transparent electrode 13 constituting the first region 19 is provided. The output of the ON signal to 13a is performed after the display data rewriting (writing) to the TFT 37 of the 36 columns of the plurality of pixel electrodes facing the first region 19 is completed.
[0036] 画素電極 36への電圧の印加状態に対応した量の光が液晶 35を透過して、透明電 極 40を経てカラーフィルタ 39の各領域 39a〜39cを透過する。液晶表示装置 31の ユーザーはカラーフィルタ 39を透過した光により形成される画像を液晶表示装置 31 の表示として視認する。  An amount of light corresponding to the state of voltage application to the pixel electrode 36 passes through the liquid crystal 35, passes through the transparent electrodes 40, and passes through the regions 39 a to 39 c of the color filter 39. The user of the liquid crystal display device 31 visually recognizes an image formed by the light transmitted through the color filter 39 as a display on the liquid crystal display device 31.
[0037] カラー画像の色は各画素における赤色、緑色、青色の三原色を混合することで所 望の色に調整される。この実施形態では、発光装置 11からはほぼ一定の光量で白 色光が出射され、画素電極 36に印加される電圧の大きさによって各画素における力 ラーフィルタ 39を透過する光量、即ち各画素における三原色の混合割合が調整され る。  [0037] The color of the color image is adjusted to a desired color by mixing the three primary colors of red, green, and blue in each pixel. In this embodiment, white light is emitted from the light emitting device 11 with a substantially constant amount of light, and the amount of light transmitted through the power filter 39 in each pixel according to the magnitude of the voltage applied to the pixel electrode 36, that is, the three primary colors in each pixel. The mixing ratio of is adjusted.
[0038] 複数の第 1の領域 19が選択的に順次駆動されて 1フレーム時間内に発光状態と非 発光状態と間で切り替えられると、見かけ上、全ての第 1の領域 19が同時に発光され る全面発光状態になる。従来技術では、図 16に示すように、隣り合う発光部 72A〜7 2D同士の間の部分が常時非発光であるため、それが暗線として視認される。しかし 、この実施形態では、第 2の領域 20は複数の非発光領域 20a及び複数の発光領域 20bを含んでおり、発光領域 20bを構成する透明電極 13の部分には、隣接する第 1 の領域 19が発光状態のとき、当該第 1の領域 19を構成する透明電極 13の部分から 電流が流れ、その結果、発光領域 20bから光が発せられる。従って、第 2の領域 20 力 当該第 2の領域 20に隣接する第 1の領域 19と区分してユーザーに視認されるの を防止することができる。第 1の領域 19が発光状態であるときに当該第 1の領域 19に 隣接する第 2の領域 20から発せられる光は、第 1の領域 19から発せられる光よりも低 輝度である。 [0038] When the plurality of first regions 19 are selectively driven sequentially and switched between the light emitting state and the non-light emitting state within one frame time, apparently all the first regions 19 are simultaneously emitted. The entire light emission state is established. In the prior art, as shown in FIG. 16, since the portion between the adjacent light emitting portions 72A to 72D is always non-light emitting, it is visually recognized as a dark line. However, in this embodiment, the second region 20 includes a plurality of non-light emitting regions 20a and a plurality of light emitting regions. 20b, and when the adjacent first region 19 is in a light emitting state, the current from the portion of the transparent electrode 13 constituting the first region 19 is supplied to the portion of the transparent electrode 13 constituting the light emitting region 20b. As a result, light is emitted from the light emitting region 20b. Therefore, it is possible to prevent the second region 20 from being visually recognized by the user by being separated from the first region 19 adjacent to the second region 20. When the first region 19 is in a light emitting state, the light emitted from the second region 20 adjacent to the first region 19 has lower luminance than the light emitted from the first region 19.
[0039] 第 2の領域 20の透明電極 13の部分には複数の貫通孔 13bが形成されているため 、第 1の領域 19の透明電極 13の部分に比べて、第 2の領域 20の透明電極 13の部 分は体積抵抗率が高くなつている。したがって、第 1の領域 19からそれに隣接する第 1の領域 19には電流が流れに《なっており、これによつて互いに隣り合う第 1の領域 19同士の分離が確保されている。  [0039] Since the plurality of through holes 13b are formed in the transparent electrode 13 portion of the second region 20, the second region 20 is more transparent than the transparent electrode 13 portion of the first region 19. The part of the electrode 13 has a high volume resistivity. Therefore, a current flows from the first region 19 to the first region 19 adjacent to the first region 19, thereby ensuring separation between the first regions 19 adjacent to each other.
[0040] 有機 EL素子 16の輝度は、有機 EL層 14における電流密度に影響され、電流密度 が高いほど素子 16の輝度は高くなる。透明電極 13は体積抵抗率が対向電極 15に 比較して高いため、端子部 13aから近い部分と遠い部分とでは、電気抵抗値の差が 大きぐ有機 EL層 14における電流密度の差も大きい。従って、各第 2の領域 20の輝 度ムラを小さくするためには、端子部 13aに近い位置であるほど発光領域 20bの分布 密度が低くなつていること、換言すれば端子部 13aに近い位置であるほど非発光領 域 20aの分布密度が高くなつて 、ることが好まし 、。  [0040] The luminance of the organic EL element 16 is affected by the current density in the organic EL layer 14, and the luminance of the element 16 increases as the current density increases. Since the transparent electrode 13 has a higher volume resistivity than the counter electrode 15, the difference in current density in the organic EL layer 14 in which the difference in electrical resistance value is large is large between the portion near and far from the terminal portion 13a. Therefore, in order to reduce the brightness unevenness of each second region 20, the distribution density of the light emitting region 20b is lower as the position is closer to the terminal portion 13a, in other words, the position closer to the terminal portion 13a. It is preferable that the non-light emitting region 20a has a higher distribution density.
[0041] 第 1の実施形態は以下の効果を有する。  [0041] The first embodiment has the following effects.
[0042] (1)発光装置 11は、透明電極 13と対向電極 15との間に有機 EL層 14が設けられ てなる有機 EL素子 16からなる発光部 17を備える。有機 EL素子 16は、複数の第 1の 領域 19と、互いに隣り合う第 1の領域 19同士の間に位置する第 2の領域 20とが画定 されている。有機 EL素子 16は、第 1の領域 19の発光の如何に関わらず、各第 2の領 域 20が当該第 2の領域 20に隣接する第 1の領域 19と区分してユーザーに視認され るのを防ぐように構成されている。従って、互いに隣り合う第 1の領域 19が同時に発 光したときに、その第 1の領域 19同士の間に暗線が発生するのを抑制することができ る。 [0043] (2)第 2の領域 20に位置する透明電極 13の部分の形成状態は、第 1の領域 19に 位置する透明電極 13の部分の形成状態とは異なっている。より具体的には、第 2の 領域 20に位置する透明電極 13の各部分には複数の貫通孔 13bが設けられている。 従って、簡単な構成により、互いに隣り合う第 1の領域 19同士の間に暗線が発生す るのを抑 ff¾することができる。 (1) The light emitting device 11 includes a light emitting unit 17 including an organic EL element 16 in which an organic EL layer 14 is provided between a transparent electrode 13 and a counter electrode 15. The organic EL element 16 includes a plurality of first regions 19 and a second region 20 located between the first regions 19 adjacent to each other. The organic EL element 16 is visually recognized by the user by dividing each second region 20 from the first region 19 adjacent to the second region 20 regardless of light emission of the first region 19. It is configured to prevent this. Therefore, it is possible to suppress the occurrence of dark lines between the first regions 19 when the first regions 19 adjacent to each other emit light at the same time. (2) The formation state of the transparent electrode 13 portion located in the second region 20 is different from the formation state of the transparent electrode 13 portion located in the first region 19. More specifically, a plurality of through-holes 13b are provided in each portion of the transparent electrode 13 located in the second region 20. Therefore, it is possible to suppress the occurrence of dark lines between the first regions 19 adjacent to each other with a simple configuration.
[0044] (3)第 2の領域 20が複数の非発光領域 20a及び複数の発光領域 20bを含むため、 互いに隣り合う第 1の領域 19同士の間には発光領域 20bが存在する。従って、発光 領域 20bが発光することにより、第 1の領域 19同士の間に暗線が発生するのを抑制 することができる。  (3) Since the second region 20 includes a plurality of non-light emitting regions 20a and a plurality of light emitting regions 20b, a light emitting region 20b exists between the first regions 19 adjacent to each other. Therefore, it is possible to suppress the occurrence of dark lines between the first regions 19 by the light emitting region 20b emitting light.
[0045] (4)ドット状をなす非発光領域 20aの分布密度は、透明電極 13の端子部 13aに近 い位置であるほど高くなつている。この場合、非発光領域 20aの分布密度が均一な 場合に比較して、第 2の領域 20の輝度ムラが小さくなり、より強く暗線の発生が抑制さ れる。  [0045] (4) The distribution density of the non-light-emitting regions 20a in the form of dots increases as the position is closer to the terminal portion 13a of the transparent electrode 13. In this case, as compared with the case where the non-light emitting region 20a has a uniform distribution density, the luminance unevenness of the second region 20 is reduced, and the generation of dark lines is more strongly suppressed.
[0046] (5)非発光領域 20aは、第 2の領域 20に位置する透明電極 13の部分に貫通孔 13 bを設けることにより構成されている。従って、透明電極 13の形成時に貫通孔 13bを 同時に形成するようにすれば、貫通孔 13bの形成により工数が特段に増加する虡は ない。  (5) The non-light emitting region 20 a is configured by providing a through hole 13 b in a portion of the transparent electrode 13 located in the second region 20. Therefore, if the through-hole 13b is formed at the same time when the transparent electrode 13 is formed, the number of man-hours will not increase significantly due to the formation of the through-hole 13b.
[0047] (6)有機 EL素子 16の対向電極 15は光を反射する性質を有する。この場合、有機 EL層 14から対向電極 15に向力つて発せられた光が対向電極 15で効率よく反射さ れるため、対向電極 15が光を反射する性質を有さない場合に比較して、透明電極 1 3を通って有機 EL素子 16から出射する光量を多くすることができる。  (6) The counter electrode 15 of the organic EL element 16 has a property of reflecting light. In this case, since the light emitted from the organic EL layer 14 to the counter electrode 15 is reflected by the counter electrode 15 efficiently, compared to the case where the counter electrode 15 does not have the property of reflecting light, The amount of light emitted from the organic EL element 16 through the transparent electrode 13 can be increased.
[0048] (7)液晶表示装置 31は、バックライトとして機能する発光装置 11を備えている。発 光装置 11の有機 EL素子 16に画定されて 、る複数の第 1の領域 19は、液晶パネル 32の垂直走査の方向と直交して延びており、制御装置 47からの指令信号に従って 発光状態と非発光状態との間を選択的に切り替わる。液晶パネル 32のある領域が表 示データ書き替え期間にある間は、当該液晶パネルの領域の直下に位置する第 1の 領域 19が非発光状態に保持される。従って、液晶表示装置 31において動画表示を 行なった場合、残像の発生を抑制して動画像の画質が向上する。 [0049] (8)液晶表示装置 31の駆動時において、二以上の第 1の領域 19が同時に発光状 態に保持される。この場合、二以上の第 1の領域 19が同時に発光しない構成に比較 して、 1フレーム時間における各第 1の領域 19の発光期間が長くなるため、表示画面 全体の輝度を高めることができる。 (7) The liquid crystal display device 31 includes the light emitting device 11 that functions as a backlight. The plurality of first regions 19 defined by the organic EL elements 16 of the light emitting device 11 extend perpendicular to the vertical scanning direction of the liquid crystal panel 32, and emit light according to a command signal from the control device 47. And a non-light emitting state are selectively switched. While a certain area of the liquid crystal panel 32 is in the display data rewriting period, the first area 19 located immediately below the area of the liquid crystal panel is held in a non-light emitting state. Therefore, when moving images are displayed on the liquid crystal display device 31, the generation of afterimages is suppressed and the quality of the moving image is improved. (8) When the liquid crystal display device 31 is driven, two or more first regions 19 are simultaneously held in a light emitting state. In this case, since the light emission period of each first region 19 in one frame time is longer than in a configuration in which two or more first regions 19 do not emit light simultaneously, the luminance of the entire display screen can be increased.
[0050] (9)発光部 17が有機 EL素子 16からなる。この場合、発光部 17が無機 EL素子から なる場合に比較して、低電圧での発光が可能である。  (9) The light emitting section 17 is composed of the organic EL element 16. In this case, it is possible to emit light at a lower voltage than in the case where the light emitting unit 17 is made of an inorganic EL element.
[0051] 次に本発明の第 2の実施形態を図 5 (a)及び図 5 (b)に従って説明する。この実施 形態は、第 2の領域 20の構成が前記第 1の実施形態と異なっているので、第 1の実 施形態と同様の部分については同一符号を付してその詳細な説明を省略する。  Next, a second embodiment of the present invention will be described with reference to FIGS. 5 (a) and 5 (b). In this embodiment, since the configuration of the second region 20 is different from that of the first embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. .
[0052] 図 5 (a)に示すように、第 1の領域 19に位置する透明電極部 13はいずれも同じ幅を 有し、互いに平行に延びている。各透明電極部 13の一端には端子部 13aが形成さ れている。図 5 (b)に示すように、第 2の領域 20に位置する透明電極部 13Sの厚さは 、第 1の領域 19の透明電極部 13の厚さよりも小さい。この実施形態では、各第 2の領 域 20の全体にわたって透明電極部 13Sが存在するため、各第 2の領域 20は、非発 光領域を含まず、全て発光領域で構成されている。  As shown in FIG. 5 (a), the transparent electrode portions 13 located in the first region 19 all have the same width and extend in parallel to each other. A terminal portion 13 a is formed at one end of each transparent electrode portion 13. As shown in FIG. 5 (b), the thickness of the transparent electrode portion 13S located in the second region 20 is smaller than the thickness of the transparent electrode portion 13 in the first region 19. In this embodiment, since the transparent electrode portion 13S exists over the entire second region 20, each second region 20 does not include a non-light emitting region, and is configured by a light emitting region.
[0053] 上記の第 2の領域 20を形成する場合はまず、透明なガラス基板 12の表面に形成さ れた ITO膜に対してエッチングを行い、透明電極部 13、端子部 13a及び端子部 15a を形成する。それと同時に、透明電極部 13Sとなるべき箇所にもエッチングを行い、 所定の厚さの透明電極部 13Sを形成する。その後の有機 EL層 14、対向電極 15、保 護膜 18等の形成工程は第 1の実施形態と同じである。  [0053] When the second region 20 is formed, first, the ITO film formed on the surface of the transparent glass substrate 12 is etched to obtain the transparent electrode portion 13, the terminal portion 13a, and the terminal portion 15a. Form. At the same time, a portion to be the transparent electrode portion 13S is also etched to form a transparent electrode portion 13S having a predetermined thickness. The subsequent steps for forming the organic EL layer 14, the counter electrode 15, the protective film 18 and the like are the same as those in the first embodiment.
[0054] この実施形態の構成では、第 1の領域 19が発光状態のとき、当該第 1の領域 19の 透明電極部 13を介して当該第 1の領域 19に隣接する第 2の領域 20の透明電極部 1 3Sに電流が流れるため、第 2の領域 20も発光状態となる。しかし、第 2の領域 20の 透明電極部 13Sの厚さが第 1の領域 19の透明電極部 13よりも小さいために、透明電 極部 13Sに流れる電流量は透明電極部 13に流れる電流量よりも小さぐ第 2の領域 20は第 1の領域 19よりも低輝度の光を発する。  In the configuration of this embodiment, when the first region 19 is in a light emitting state, the second region 20 adjacent to the first region 19 via the transparent electrode portion 13 of the first region 19 is used. Since current flows through the transparent electrode portion 13S, the second region 20 is also in a light emitting state. However, since the thickness of the transparent electrode portion 13S in the second region 20 is smaller than the transparent electrode portion 13 in the first region 19, the amount of current flowing through the transparent electrode portion 13S is the amount of current flowing through the transparent electrode portion 13. The smaller second region 20 emits light with lower brightness than the first region 19.
[0055] 第 2の実施形態は、前記第 1の実施形態の効果(1)、(2)、(6)〜(9)に加えて、以 下の効果を有する。 [0056] (10)透明電極部 13Sは各第 2の領域 20の全体にわたって存在する力 透明電極 部 13Sの厚さが第 1の領域 19の透明電極部 13の厚さよりも小さいために、透明電極 部 13Sに流れる電流量は透明電極部 13に流れる電流量よりも小さぐ第 2の領域 20 は第 1の領域 19よりも低輝度の光を発する。従って、互いに隣り合う第 1の領域 19同 士の間に暗線が発生するのを抑制することができる。 [0055] The second embodiment has the following effects in addition to the effects (1), (2), and (6) to (9) of the first embodiment. (10) The transparent electrode portion 13S is a force that exists over the entire second region 20. The transparent electrode portion 13S is transparent because the thickness of the transparent electrode portion 13S is smaller than the thickness of the transparent electrode portion 13 in the first region 19. The second region 20 in which the amount of current flowing through the electrode portion 13S is smaller than the amount of current flowing through the transparent electrode portion 13 emits light with a lower luminance than the first region 19. Therefore, it is possible to suppress the occurrence of dark lines between the first regions 19 adjacent to each other.
[0057] (11)発光装置 11の製造工程のうち基板 12上の ITO膜に対するエッチング工程の 一部を変更するだけで簡単に第 1の領域 19同士の間に暗線が発生するのを抑制す ることがでさる。  (11) By simply changing a part of the etching process for the ITO film on the substrate 12 in the manufacturing process of the light emitting device 11, it is possible to easily suppress the occurrence of dark lines between the first regions 19. It can be done.
[0058] 次に本発明の第 3の実施形態を図 6 (a)及び図 6 (b)に従って説明する。この実施 形態は、第 2の領域 20の構成と、発光装置 11の光出射面上に光拡散部材が設けら れている点が前記第 1の実施形態と異なっているので、第 1の実施形態と同様の部 分については同一符号を付してその詳細な説明を省略する。  Next, a third embodiment of the present invention will be described with reference to FIGS. 6 (a) and 6 (b). This embodiment differs from the first embodiment in that the configuration of the second region 20 and the point that the light diffusing member is provided on the light emitting surface of the light emitting device 11 are different from those in the first embodiment. Parts similar to those of the embodiment are given the same reference numerals, and detailed description thereof is omitted.
[0059] 図 6 (a)に示すように、互いに隣り合う第 1の領域 19に位置する透明電極部 13同士 の間には、蛇行して延びる一定の幅の溝 21が画定されている。各透明電極部 13の 一端には端子部 13aが形成されている。溝 21の互いに隣り合う直線部 21a同士は 9 0度の角度で交差している。溝 21の幅は、例えば、 30 /z m程度である。第 2の領域 2 0は、溝 21と対応する有機 EL素子 16の部分である。従って、各第 2の領域 20は、発 光領域を含まず、全て非発光領域で構成されている。  [0059] As shown in FIG. 6 (a), a groove 21 having a certain width extending in a meandering manner is defined between the transparent electrode portions 13 located in the first regions 19 adjacent to each other. A terminal portion 13 a is formed at one end of each transparent electrode portion 13. The linear portions 21a adjacent to each other in the groove 21 intersect at an angle of 90 degrees. The width of the groove 21 is, for example, about 30 / z m. The second region 20 is a portion of the organic EL element 16 corresponding to the groove 21. Therefore, each second region 20 does not include a light emitting region, and is configured by a non-light emitting region.
[0060] 上記の第 2の領域 20を形成する場合はまず、透明なガラス基板 12の表面に形成さ れた ITO膜に対してエッチングを行い、透明電極部 13、端子部 13a及び端子部 15a を形成する。それと同時に、溝 21となるべき箇所にもエッチングを行い、互いに隣り 合う透明電極部 13同士の間に溝 21を形成する。その後の有機 EL層 14、対向電極 15、保護膜 18等の形成工程は第 1の実施形態と同じである。  [0060] When the second region 20 is formed, first, the ITO film formed on the surface of the transparent glass substrate 12 is etched to obtain the transparent electrode portion 13, the terminal portion 13a, and the terminal portion 15a. Form. At the same time, etching is performed also on the portion that should become the groove 21 to form the groove 21 between the transparent electrode portions 13 adjacent to each other. The subsequent steps of forming the organic EL layer 14, the counter electrode 15, the protective film 18 and the like are the same as those in the first embodiment.
[0061] 図 6 (b)に示すように、発光装置 11は、透明電極 13と対向する基板 12の面とは反 対側の面、即ち発光装置 11の光出射面上に光拡散部材としての光拡散シート 22が 設けられている。  As shown in FIG. 6 (b), the light emitting device 11 has a light diffusing member on the surface opposite to the surface of the substrate 12 facing the transparent electrode 13, that is, on the light emitting surface of the light emitting device 11. The light diffusion sheet 22 is provided.
[0062] この実施形態の構成では、基板 12を通って発光装置 11から出射される光は、光拡 散シート 22で拡散されて液晶パネル 32へ照射される。また、第 2の領域 20は発光領 域を備えていない。もしも第 2の領域 20が従来技術のように一直線状の場合は、第 2 の領域 20に隣接する一対の第 1の領域 19から出射される光が第 2の領域 20内を第 2の領域 20の延びる方向に沿って進むことがない。そのため、光拡散シート 22を使 用しても、液晶表示装置 31のユーザーにより第 2の領域 20が暗線として視認され易 くなる。しかし、この実施形態の構成では、第 2の領域 20は、一直線状ではなく蛇行 して延びているため、第 2の領域 20に隣接する一対の第 1の領域 19から出射される 光が第 2の領域 20に様々な方向から入射し、第 2の領域 20の延びる方向に沿って 進む光も多く存在する。従って、光拡散シート 22を使用することにより第 2の領域 20 が暗線として視認され難くなる。 In the configuration of this embodiment, the light emitted from the light emitting device 11 through the substrate 12 is diffused by the light diffusion sheet 22 and irradiated onto the liquid crystal panel 32. The second region 20 is a light emitting region. There is no area. If the second region 20 is straight as in the prior art, the light emitted from the pair of first regions 19 adjacent to the second region 20 passes through the second region 20 in the second region. It does not proceed along the direction of 20 extension. Therefore, even if the light diffusion sheet 22 is used, the second region 20 is easily visually recognized by the user of the liquid crystal display device 31 as a dark line. However, in the configuration of this embodiment, the second region 20 extends in a meandering manner rather than in a straight line, so that light emitted from the pair of first regions 19 adjacent to the second region 20 is the first. There is also a lot of light that enters the second region 20 from various directions and travels along the direction in which the second region 20 extends. Therefore, the use of the light diffusion sheet 22 makes it difficult for the second region 20 to be visually recognized as a dark line.
[0063] 第 3の実施形態は、前記第 1の実施形態の効果(1)、(6)〜(9)に加えて、以下の 効果を有する。 [0063] In addition to the effects (1) and (6) to (9) of the first embodiment, the third embodiment has the following effects.
[0064] (12)発光装置 11の光出射面上には光拡散シート 22が設けられており、第 2の領 域 20は蛇行して延びる非発光領域よりなる。従って、第 2の領域 20は、発光領域を 備えていないが、第 2の領域 20に隣接する一対の第 1の領域 19から出射される光が 第 2の領域 20に様々な方向から入射するため、光拡散シート 22を使用することにより 第 2の領域 20が暗線として視認され難くなる。  (12) A light diffusing sheet 22 is provided on the light emitting surface of the light emitting device 11, and the second region 20 is a non-light emitting region extending in a meandering manner. Therefore, the second region 20 does not include a light emitting region, but light emitted from the pair of first regions 19 adjacent to the second region 20 enters the second region 20 from various directions. Therefore, the use of the light diffusion sheet 22 makes it difficult for the second region 20 to be visually recognized as a dark line.
[0065] (13)発光装置 11の製造工程のうち基板 12上の ITO膜に対するエッチング工程の 一部を変更するとともに、基板 12に光拡散シート 22を設けることにより簡単に第 1の 領域 19同士の間に暗線が発生するのを抑制することができる。  (13) A part of the etching process for the ITO film on the substrate 12 in the manufacturing process of the light emitting device 11 is changed, and the light diffusion sheet 22 is provided on the substrate 12 so that the first regions 19 can be easily connected to each other. It is possible to suppress the occurrence of dark lines during the period.
[0066] 次に本発明の第 4の実施形態を図 7〜図 9 (b)に従って説明する。なお、第 1の実 施形態と同様の部分については同一符号を付してその詳細な説明を省略する。  Next, a fourth embodiment of the present invention will be described with reference to FIGS. 7 to 9 (b). Note that parts similar to those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0067] 図 7及び図 8に示すように、第 4の実施形態の発光装置 11は、有機 EL素子 16から なる面状の発光部 17を備えている。有機 EL素子 16は、基板 12と、基板 12の上に 設けられた第 1電極としての透明電極 13と、透明電極 13の上に設けられた発光層と しての有機 EL層 14と、有機 EL層 14の上に設けられた第 2電極としての対向電極 15 とを備える。有機 EL素子 16は、水分 (水蒸気)及び酸素によって有機 EL層 14が悪 影響を受けな 、ように保護膜 18で被覆されて 、る。  As shown in FIGS. 7 and 8, the light emitting device 11 according to the fourth embodiment includes a planar light emitting unit 17 including an organic EL element 16. The organic EL element 16 includes a substrate 12, a transparent electrode 13 as a first electrode provided on the substrate 12, an organic EL layer 14 as a light emitting layer provided on the transparent electrode 13, and an organic EL element 16. And a counter electrode 15 as a second electrode provided on the EL layer 14. The organic EL element 16 is covered with a protective film 18 so that the organic EL layer 14 is not adversely affected by moisture (water vapor) and oxygen.
[0068] この実施形態では、基板 12は透明なガラス力も形成されている。透明電極 13及び 対向電極 15はそれぞれベタ電極で構成され、透明電極 13は対向電極 15よりも体積 抵抗率が高くなつている。また、透明電極 13が陽極を構成し、対向電極 15が陰極を 構成する。透明電極 13は ITOにより形成され、対向電極 15はアルミニウムにより形 成されている。有機 EL素子 16は、有機 EL層 14からの光が基板 12を通って出射さ れる所謂ボトムェミッションタイプに構成されている。 In this embodiment, the substrate 12 is also formed with a transparent glass force. Transparent electrode 13 and Each of the counter electrodes 15 is a solid electrode, and the transparent electrode 13 has a higher volume resistivity than the counter electrode 15. Further, the transparent electrode 13 forms an anode, and the counter electrode 15 forms a cathode. The transparent electrode 13 is made of ITO, and the counter electrode 15 is made of aluminum. The organic EL element 16 is configured as a so-called bottom emission type in which light from the organic EL layer 14 is emitted through the substrate 12.
[0069] 透明電極 13、有機 EL層 14及び対向電極 15は長方形状に形成されている。図 7 及び図 9 (a)に示すように、液晶パネル 32の垂直走査の方向と直交する方向におけ る透明電極 13の両端(図 7の左右方向両端)のそれぞれには、複数の端子部 13aが 設けられている。より具体的には、長方形状をなす発光部 17の相対する一対の辺の それぞれには、当該辺に沿って並ぶようにして複数の端子部 13aが設けられている。 両辺に設けられている複数の端子部 13aは、透明電極 13の中心線(図 7の左右方向 の中心線)に対して線対称に配置されている。この発光装置 11では、いずれの端子 部 13aに電圧を印加するかによって発光する有機 EL素子 16の領域が異なっている 。各端子部 13aに電圧を印加したときに発光する有機 EL素子 16の領域は、当該端 子部 13aに隣接する別の端子部 13aに電圧を印加したときに発光する有機 EL素子 16の領域と部分的に重なっている。  [0069] The transparent electrode 13, the organic EL layer 14, and the counter electrode 15 are formed in a rectangular shape. As shown in FIGS. 7 and 9 (a), a plurality of terminal portions are provided at both ends of the transparent electrode 13 in the direction perpendicular to the vertical scanning direction of the liquid crystal panel 32 (both ends in the left-right direction in FIG. 7). 13a is provided. More specifically, each of a pair of opposing sides of the light emitting portion 17 having a rectangular shape is provided with a plurality of terminal portions 13a arranged along the sides. The plurality of terminal portions 13a provided on both sides are arranged symmetrically with respect to the center line of the transparent electrode 13 (the center line in the left-right direction in FIG. 7). In the light emitting device 11, the region of the organic EL element 16 that emits light differs depending on which terminal portion 13a is applied with a voltage. The region of the organic EL element 16 that emits light when a voltage is applied to each terminal portion 13a is the region of the organic EL element 16 that emits light when a voltage is applied to another terminal portion 13a adjacent to the terminal portion 13a. It overlaps partially.
[0070] 図 7に示すように、対向電極 15の端子部 15aは、透明電極 13の端子部 13aが設け られて 、る辺とは異なる発光部 17の辺に設けられて 、る。透明電極 13の端子部 13a はドライバ 46に電気的に接続されており、各端子部 13aには制御装置 47からの指令 信号によりドライバ 46を介して選択的に電圧が印加される。ドライバ 46は、端子部 13 aに選択的に電圧を印加する電圧印加手段を構成する。  As shown in FIG. 7, the terminal portion 15a of the counter electrode 15 is provided on the side of the light emitting portion 17 different from the side where the terminal portion 13a of the transparent electrode 13 is provided. The terminal portion 13a of the transparent electrode 13 is electrically connected to the driver 46, and a voltage is selectively applied to each terminal portion 13a via the driver 46 by a command signal from the control device 47. The driver 46 constitutes voltage applying means for selectively applying a voltage to the terminal portion 13a.
[0071] この実施形態における発光装置 11も第 1の実施形態の発光装置 11とほぼ同様に して製造される。第 1の実施形態の場合と異なる点は、透明電極 13がベタ電極であ る点と、端子部 13aが透明電極 13の両側に対称に配置される点である。  [0071] The light emitting device 11 in this embodiment is manufactured in substantially the same manner as the light emitting device 11 of the first embodiment. The difference from the case of the first embodiment is that the transparent electrode 13 is a solid electrode and that the terminal portions 13a are arranged symmetrically on both sides of the transparent electrode 13.
[0072] この実施形態の発光装置 11も、擬似インパルス駆動型液晶表示装置 31のバックラ イトとして使用される。制御装置 47からの指令信号に基づいて、アドレス信号と同期 するようにドライバ 46から各端子部 13aにオン信号が出力される。その際、制御装置 47は、各発光領域の直上にある液晶パネル 32のある領域が表示データ書き替え期 間にある間は、当該液晶パネル 32の領域の直下に位置する有機 EL素子 16の領域 が非発光状態に保持されるように、端子部 13aへの電圧の印加をドライバ 46を通じ て制御する。オン信号が出力されている間、透明電極 13の当該端子部 13aに対応 する範囲に電流が供給されて有機 EL層 14から白色光が発せられる。有機 EL層 14 力もの光は、基板 12を通って発光装置 11からから出射し、第 1基板 33を通って液晶 パネル 32に入射する。 The light emitting device 11 of this embodiment is also used as a backlight of the pseudo impulse drive type liquid crystal display device 31. Based on the command signal from the control device 47, an ON signal is output from the driver 46 to each terminal portion 13a so as to synchronize with the address signal. At that time, the control device 47 determines that the area where the liquid crystal panel 32 is directly above each light emitting area is the display data rewriting period. During the interval, the application of voltage to the terminal portion 13a is controlled through the driver 46 so that the region of the organic EL element 16 located immediately below the region of the liquid crystal panel 32 is maintained in a non-light emitting state. While the ON signal is output, a current is supplied to a range corresponding to the terminal portion 13 a of the transparent electrode 13 and white light is emitted from the organic EL layer 14. Light of the organic EL layer 14 is emitted from the light emitting device 11 through the substrate 12 and enters the liquid crystal panel 32 through the first substrate 33.
[0073] 透明電極 13はベタ電極で、かつ体積抵抗率が大きいため、図 9 (b)に二点鎖線で 示すように、電圧が印加されている状態 (ONの状態)の端子部 13aを中心とした所定 の範囲が有機 EL素子 16の発光領域 24となる。この発光領域 24は、隣接する電圧 が印加されていない (OFFの状態)の端子部 13aに対応する仮想の帯状領域 23の 一部にまで及ぶ。  [0073] Since the transparent electrode 13 is a solid electrode and has a large volume resistivity, the terminal portion 13a in a state where a voltage is applied (ON state) is provided as shown by a two-dot chain line in FIG. 9 (b). A predetermined range at the center is the light emitting region 24 of the organic EL element 16. This light emitting region 24 extends to a part of the virtual band-like region 23 corresponding to the terminal portion 13a to which the adjacent voltage is not applied (OFF state).
[0074] 第 4の実施形態は、前記第 1の実施形態の効果 (6)、 (9)に加えて、以下の効果を 有する。  [0074] The fourth embodiment has the following effects in addition to the effects (6) and (9) of the first embodiment.
[0075] (14)透明電極 13及び対向電極 15はそれぞれベタ電極で構成され、透明電極 13 は対向電極 15よりも体積抵抗率が高ぐ端子部 13aが 3個以上設けられている。この 発光装置 11では、いずれの端子部 13aに電圧を印加するかによって発光する有機 EL素子 16の領域が異なっており、各端子部 13aに電圧を印加したときに発光する 有機 EL素子 16の領域は、当該端子部 13aに隣接する別の端子部 13aに電圧を印 カロしたときに発光する有機 EL素子 16の領域と部分的に重なっている。従って、分割 駆動される複数の発光領域を備える従来技術の発光装置と異なり、全面発光状態又 は見かけ上全面発光状態にぉ 、て暗線を目立たな 、ようにすることができる。  (14) The transparent electrode 13 and the counter electrode 15 are each composed of a solid electrode, and the transparent electrode 13 is provided with three or more terminal portions 13a having a volume resistivity higher than that of the counter electrode 15. In this light emitting device 11, the region of the organic EL element 16 that emits light differs depending on which terminal portion 13a is applied with a voltage, and the region of the organic EL element 16 that emits light when a voltage is applied to each terminal portion 13a. Is partially overlapped with a region of the organic EL element 16 that emits light when a voltage is applied to another terminal portion 13a adjacent to the terminal portion 13a. Therefore, unlike a conventional light emitting device having a plurality of light emitting regions that are driven in a divided manner, the dark line can be made inconspicuous even in the full light emission state or the apparent full light emission state.
[0076] (15)発光部 17は長方形状に形成されており、発光部 17の相対する一対の辺のそ れぞれには、当該辺に沿って並ぶようにして一組の端子部 13aが配置されている。 従って、端子部 13aへの電圧印加状態に対応して発光領域力 Sカバーする範囲の自 由度が増す。例えば、液晶表示装置 31の画面の片側半分だけに画像を表示したり 、画面の半分ずつを異なる条件で同時に駆動させたりすることも可能になる。  (15) The light emitting portion 17 is formed in a rectangular shape, and a pair of terminal portions 13a are arranged on each of a pair of opposing sides of the light emitting portion 17 along the side. Is arranged. Accordingly, the degree of freedom of the range covering the light emitting region force S is increased in accordance with the voltage application state to the terminal portion 13a. For example, it is possible to display an image on only one half of the screen of the liquid crystal display device 31 or to drive half of the screen simultaneously under different conditions.
[0077] (16)発光装置 11は、擬似インパルス駆動型液晶表示装置 31のバックライトに使用 される。そして、端子部 13aは、液晶パネル 32の垂直走査の方向に沿って所定間隔 おきに配置されており、液晶パネル 32のある領域が表示データ書き替え期間にある 間は当該液晶パネルの領域の直下に位置するバックライトの領域が非発光状態に保 持されるように、端子部 13aへの電圧の印加がドライバ 46を通じて制御装置 47により 制御される。従って、液晶表示装置 31において動画表示を行なった場合、残像の発 生を抑制して動画像の画質が向上する。 (16) The light emitting device 11 is used as a backlight of the pseudo impulse drive type liquid crystal display device 31. The terminal portion 13a has a predetermined interval along the vertical scanning direction of the liquid crystal panel 32. Terminals are arranged so that the backlight area located immediately below the area of the liquid crystal panel is kept in a non-light-emitting state while an area of the liquid crystal panel 32 is in the display data rewriting period. Application of the voltage to the unit 13a is controlled by the controller 47 through the driver 46. Therefore, when moving images are displayed on the liquid crystal display device 31, the occurrence of afterimages is suppressed and the quality of the moving image is improved.
[0078] 前記第 1〜第 4実施形態は例えば次のように変更されてもよい。 [0078] The first to fourth embodiments may be modified as follows, for example.
[0079] 第 1の実施形態のように、第 2の領域 20を非発光領域 20a及び発光領域 20bが混 在する構成とする場合、第 2の領域 20に位置する透明電極 13の部分に貫通孔 13b を設けることにより第 2の領域 20に非発光領域 20aを形成する代わりに、図 10に示 すように、第 2の領域 20に位置する対向電極 15の部分に貫通孔 15cを設けることに より第 2の領域 20に非発光領域 20aを形成してもよい。貫通孔 15cの分布密度は、 端子部 13aに近い位置であるほど密度が高くなるように設けるのが好ましい。この場 合も第 1の実施形態とほぼ同様な効果を得られる。しかし、貫通孔 15cが形成された 部分は有機 EL層 14から対向電極 15に向力つて出射された光を反射しないため、透 明電極 13に貫通孔 13bを設けた場合の方力 透明電極 13を通って出射する光量を 多くすることができる。 [0079] When the second region 20 has a configuration in which the non-light emitting region 20a and the light emitting region 20b are mixed as in the first embodiment, the transparent electrode 13 located in the second region 20 is penetrated. Instead of forming the non-light emitting region 20a in the second region 20 by providing the hole 13b, a through-hole 15c is provided in the portion of the counter electrode 15 located in the second region 20 as shown in FIG. Thus, the non-light emitting region 20a may be formed in the second region 20. The distribution density of the through holes 15c is preferably provided such that the density is higher as the position is closer to the terminal portion 13a. In this case, substantially the same effect as the first embodiment can be obtained. However, the portion where the through-hole 15c is formed does not reflect the light emitted from the organic EL layer 14 toward the counter electrode 15, and therefore the transparent electrode 13 has the direction force when the through-hole 13b is provided. The amount of light emitted through the can be increased.
[0080] 第 2の領域 20を非発光領域 20a及び発光領域 20bが混在する構成とする場合、透 明電極 13及び対向電極 15の両方に貫通孔 13b, 15cを設けてもよい。  When the second region 20 has a configuration in which the non-light emitting region 20a and the light emitting region 20b are mixed, the through holes 13b and 15c may be provided in both the transparent electrode 13 and the counter electrode 15.
[0081] 貫通孔 13b, 15cを設ける代わりに、絶縁部 (絶縁膜)を透明電極 13と有機 EL層 1 4との間に設けたり、有機 EL層 14と対向電極 15との間に設けたりすることにより、第 2 の領域 20に非発光領域 20aを形成してもよい。あるいは、透明電極 13と有機 EL層 1 4との間及び有機 EL層 14と対向電極 15との間の両方に絶縁部を設けてもよい。しか し、絶縁部を有機 EL層 14と対向電極 15との間に設ける場合は、有機 EL層 14を形 成した後に絶縁部を形成する必要があり、水分や高熱に弱い有機 EL層 14を損傷し ないようにするための製造条件が厳しくなる。従って、絶縁部は、透明電極 13と有機 EL層 14との間に設けられることが好まし!/、。  [0081] Instead of providing the through holes 13b and 15c, an insulating part (insulating film) may be provided between the transparent electrode 13 and the organic EL layer 14 or between the organic EL layer 14 and the counter electrode 15. Thus, the non-light emitting region 20a may be formed in the second region 20. Alternatively, insulating portions may be provided both between the transparent electrode 13 and the organic EL layer 14 and between the organic EL layer 14 and the counter electrode 15. However, when an insulating portion is provided between the organic EL layer 14 and the counter electrode 15, it is necessary to form the insulating portion after forming the organic EL layer 14, and the organic EL layer 14 that is vulnerable to moisture and high heat is formed. Manufacturing conditions to prevent damage will be severe. Therefore, it is preferable that the insulating portion is provided between the transparent electrode 13 and the organic EL layer 14! /.
[0082] 第 2の領域 20に非発光領域 20aを形成するべく設けられる貫通孔 13b, 15cや絶 縁部の形状は楕円形に限らず、真円形としたり、三角形、四角形等の多角形としたり してもよい。また、異なる形状のものが混在したり、異なる大きさのものが混在したりし てもよい。 [0082] The shape of the through holes 13b, 15c and the insulating portion provided to form the non-light emitting region 20a in the second region 20 is not limited to an ellipse, but may be a perfect circle or a polygon such as a triangle or a rectangle. Or May be. Also, different shapes may be mixed, or different sizes may be mixed.
[0083] 第 2の実施形態のように、第 2の領域 20の透明電極部 13Sの厚さを第 1の領域 19 の透明電極部 13より薄く形成する構成において、第 2の領域 20の透明電極部 13S の厚さは一定でなくてもよい。例えば、図 11に示すように、端子部 13aに近い位置で あるほど透明電極部 13Sの厚さが小さくなつていてもよい。この場合、第 2の領域 20 の透明電極部 13Sの厚さが均一な場合に比較して、第 2の領域 20がより視認され難 くなる。  [0083] As in the second embodiment, in the configuration in which the transparent electrode portion 13S of the second region 20 is formed thinner than the transparent electrode portion 13 of the first region 19, the second region 20 is transparent. The thickness of the electrode portion 13S may not be constant. For example, as shown in FIG. 11, the thickness of the transparent electrode portion 13S may be smaller as the position is closer to the terminal portion 13a. In this case, the second region 20 is more difficult to be visually recognized as compared with the case where the thickness of the transparent electrode portion 13S in the second region 20 is uniform.
[0084] 第 2の実施形態のように、第 2の領域 20の透明電極部 13Sに流れる電流量を第 1 の領域 19の透明電極部 13に流れる電流量より小さくする構成において、第 2の領域 20の透明電極部 13Sと第 1の領域 19の透明電極 13を互いに異なる材料力 形成し てもよい。  In the configuration in which the amount of current flowing through the transparent electrode portion 13S of the second region 20 is smaller than the amount of current flowing through the transparent electrode portion 13 of the first region 19 as in the second embodiment, The transparent electrode portion 13S in the region 20 and the transparent electrode 13 in the first region 19 may be formed with different material forces.
[0085] 第 1及び第 2の実施形態において、第 2の領域 20は直線状に延びるに限らず、例 えば、波線状に延びてもよい。  [0085] In the first and second embodiments, the second region 20 is not limited to a straight line, and may extend in a wavy line, for example.
[0086] 第 3の実施形態において、溝 21は、図 6 (a)に示す形状に限らず、例えば、図 12 (a )に示すように S字を繰り返すように延びてもよいし、図 12 (b)に示すように複数の直 線部 21aを含むようにジグザグに延びてもよい。また、溝 21は直線部と曲線部の両方 を含んでいてもよい。この場合も、第 3の実施形態と同様の効果が得られる。  [0086] In the third embodiment, the groove 21 is not limited to the shape shown in FIG. 6 (a), and for example, may extend so as to repeat an S-shape as shown in FIG. 12 (a). As shown in 12 (b), it may extend in a zigzag so as to include a plurality of straight line portions 21a. Further, the groove 21 may include both a straight portion and a curved portion. In this case, the same effect as that of the third embodiment can be obtained.
[0087] 第 3の実施形態において、光拡散部材は光拡散シート 22に限らない。また、光拡 散シート 22は、基板 12と一体に設けられる代わりに、基板 12とは別体に設けられて ちょい。  In the third embodiment, the light diffusing member is not limited to the light diffusing sheet 22. In addition, the light diffusion sheet 22 is provided separately from the substrate 12 instead of being provided integrally with the substrate 12.
[0088] 第 1〜第 3の実施形態において、互いに隣り合う第 2の領域 20同士の間隔、即ち第 1の領域 19の幅は一定に限らず、第 1の領域 19の幅は互いに異なってもよい。  [0088] In the first to third embodiments, the interval between the second regions 20 adjacent to each other, that is, the width of the first region 19 is not limited, and the width of the first region 19 is different from each other. Also good.
[0089] 第 1〜第 3の実施形態において、第 4実施形態のように、発光部 17の相対する一対 の辺のそれぞれに透明電極 13用の一組の端子部 13aを設けるようにしてもょ 、。ま た、発光部 17の相対する一対の辺のそれぞれに対向電極 15用の一組の端子部 15 aを設けるようにしてもよい。  In the first to third embodiments, as in the fourth embodiment, a pair of terminal portions 13 a for the transparent electrode 13 may be provided on each of a pair of opposing sides of the light emitting portion 17. Oh ,. Further, a pair of terminal portions 15 a for the counter electrode 15 may be provided on each of a pair of opposing sides of the light emitting portion 17.
[0090] 対向電極 15の端子部 15aを透明電極 13と同じ材料で形成せずに対向電極 15の 延出部で構成してもよい。 The terminal portion 15a of the counter electrode 15 is not formed of the same material as that of the transparent electrode 13, and the counter electrode 15 You may comprise by an extension part.
[0091] 第 1〜第 3の実施形態において、第 4の実施形態のように、透明電極 13の端子部 1 3aと対応しな 、辺に対向電極 15の端子部 15aを配置してもよ 、。  [0091] In the first to third embodiments, as in the fourth embodiment, the terminal portion 15a of the counter electrode 15 may be arranged on the side not corresponding to the terminal portion 13a of the transparent electrode 13. ,.
[0092] 第 1〜第 4の実施形態において、対向電極 15の端子部 15aを透明電極 13の端子 部 13aと対応する辺に配置してもよ 、。端子部 15aを端子部 13aと同じ辺に配置する 場合は、図 13に示すように、透明電極 13の端子部 13aを長く形成するとともに、端子 部 13a上の有機 EL層 14に近い部分に絶縁膜 25が設けられる。対向電極 15は、絶 縁膜 25上に電極延出部 15bが設けられている。また、電極延出部 15bと電気的に接 続するように対向電極 15の端子部 15aが絶縁膜 25上に形成されている。端子部 15 aは、透明電極 13と同一材料で形成されている。  In the first to fourth embodiments, the terminal portion 15a of the counter electrode 15 may be disposed on the side corresponding to the terminal portion 13a of the transparent electrode 13. When the terminal portion 15a is arranged on the same side as the terminal portion 13a, as shown in FIG. 13, the terminal portion 13a of the transparent electrode 13 is formed long and insulated from the portion close to the organic EL layer 14 on the terminal portion 13a. A membrane 25 is provided. In the counter electrode 15, an electrode extension 15 b is provided on the insulating film 25. Further, the terminal portion 15a of the counter electrode 15 is formed on the insulating film 25 so as to be electrically connected to the electrode extension portion 15b. The terminal portion 15 a is made of the same material as the transparent electrode 13.
[0093] 第 1〜第 3の実施形態において、第 1の領域 19は、液晶パネル 32の垂直走査の方 向と直交する方向に延びる構成に限らない。例えば、発光部 17を二つの第 1の領域 19及びそれに挟まれる第 2の領域 20に区画してもよい。二つの第 1の領域 19は同じ 形状であってもよいし、図 14に示すように、互いに異なる形状であってもよい。  In the first to third embodiments, the first region 19 is not limited to a configuration extending in a direction orthogonal to the vertical scanning direction of the liquid crystal panel 32. For example, the light emitting unit 17 may be partitioned into two first regions 19 and a second region 20 sandwiched between them. The two first regions 19 may have the same shape, or may have different shapes as shown in FIG.
[0094] 第 4の実施形態において、図 15に示すように、端子部 13aを透明電極 13の片側に のみ設ける構成としてもよい。この場合、透明電極 13の幅(図 15の左右方向におけ る長さ)は、端子部 13aを透明電極 13の両側に設ける場合の 1Z2以下程度が好まし い。  In the fourth embodiment, as shown in FIG. 15, the terminal portion 13 a may be provided only on one side of the transparent electrode 13. In this case, the width of the transparent electrode 13 (the length in the left-right direction in FIG. 15) is preferably about 1Z2 or less when the terminal portion 13a is provided on both sides of the transparent electrode 13.
[0095] 第 4の実施形態において、端子部 13aの配置は、長方形状の透明電極 13の一辺 のみ、あるいは対向する二辺に対をなすように配置する構成に限らない。端子部 13a は液晶パネル 32の表示領域に合わせて発光領域が形成されるように 3個以上設け られていればよい。  In the fourth embodiment, the arrangement of the terminal portion 13a is not limited to a configuration in which only one side of the rectangular transparent electrode 13 or a pair of two opposing sides is arranged. Three or more terminal portions 13a may be provided so that a light emitting region is formed in accordance with the display region of the liquid crystal panel 32.
[0096] 液晶パネル 32の画面が大きくなつて、 1フレーム時間の間に垂直走査する画素電 極 36の列数が多 、表示装置にぉ 、て、画面を垂直走査方向にお!、て複数に分割し 、分割された領域毎に垂直走査をする構成を採用した場合、発光装置 11においても 、発光領域をそれに対応して複数分割する。この場合、分割された発光領域毎に、 液晶パネル 32の垂直走査に同期して第 1の領域 19が順に発光するように、透明電 極 13への電圧の印加を制御するようにしてもょ 、。 [0097] 定常状態において複数の第 1の領域 19が同時に発光状態となる構成に代えて、第[0096] Since the screen of the liquid crystal panel 32 is large, the number of columns of the pixel electrodes 36 that are vertically scanned during one frame time is large, and the screen is arranged in the vertical scanning direction depending on the display device. In the light-emitting device 11, the light-emitting device 11 also divides a plurality of light-emitting regions correspondingly. In this case, the voltage application to the transparent electrode 13 may be controlled so that the first region 19 emits light in order in synchronization with the vertical scanning of the liquid crystal panel 32 for each divided light emitting region. ,. [0097] Instead of the configuration in which the plurality of first regions 19 are simultaneously in the light emitting state in the steady state,
1の領域 19がー個ずつ順に発光状態となる構成としてもよい。 A configuration may be adopted in which one region 19 is sequentially turned on.
[0098] 第 1の領域 19は、発光時に複数列の画素電極 36に対して光を照射可能な幅に限 らず、 1列の画素電極 36に対して光を照射可能な幅であってもよい。この場合、第 1 の領域 19は、液晶パネル 32の垂直走査に一対一で同期して発光状態と非発光状 態とに切り替えられる。 [0098] The first region 19 is not limited to the width capable of irradiating light to the pixel electrodes 36 in a plurality of columns at the time of light emission. Also good. In this case, the first region 19 is switched between the light emitting state and the non-light emitting state in a one-to-one synchronization with the vertical scanning of the liquid crystal panel 32.
[0099] 基板 12はガラス力も形成されるに限らず、透明な榭脂基板やフィルムであってもよ い。  [0099] The substrate 12 is not limited to glass strength, and may be a transparent resin substrate or film.
[0100] 透明電極 13は、 ITO力も形成されるに限らず、インジウム亜鉛酸化物 (IZO)、酸ィ匕 亜鉛 (ZnO)又は酸化錫(SnO )力も形成されてもよ!、。  [0100] The transparent electrode 13 may be formed not only with ITO force but also with indium zinc oxide (IZO), acid zinc (ZnO) or tin oxide (SnO) force!
2  2
[0101] 対向電極 15は、アルミニウム力も形成されるに限らず、例えば、金、銀、銅、クロム 等の金属やこれらの合金から形成されてもょ 、。  [0101] The counter electrode 15 is not limited to an aluminum force, and may be formed of a metal such as gold, silver, copper, chromium, or an alloy thereof.
[0102] 対向電極 15は光を反射する性質を備えて 、なくてもょ 、。 [0102] The counter electrode 15 does not have to reflect light.
[0103] 有機 EL層 14は、白色光の代わりに、例えば、赤や青や緑や黄色等の単色光若し くはその組み合わせを発光するように構成されてもょ 、。  [0103] The organic EL layer 14 may be configured to emit, for example, monochromatic light such as red, blue, green, yellow, or a combination thereof instead of white light.
[0104] 有機 EL素子 16はボトムェミッション型に限らず、有機 EL層 14からの光が基板 12と は反対側を通って出射される所謂トップェミッション型であってもよい。この場合、有 機 EL素子 16は、対向電極 15、有機 EL層 14及び透明電極 13が同順で基板 12の 上に形成される。対向電極 15は透明電極 13よりも体積抵抗率が低い材料で形成さ れていればよぐ透明であっても不透明であってもよい。また、基板 12は不透明であ つてもよい。  The organic EL element 16 is not limited to the bottom emission type, and may be a so-called top emission type in which light from the organic EL layer 14 is emitted through the side opposite to the substrate 12. In this case, in the organic EL element 16, the counter electrode 15, the organic EL layer 14, and the transparent electrode 13 are formed on the substrate 12 in the same order. The counter electrode 15 may be transparent or opaque as long as it is made of a material having a lower volume resistivity than the transparent electrode 13. The substrate 12 may be opaque.
[0105] 液晶パネル 32のカラーフィルタ 39を省略してもよい。この場合、液晶パネル 32は 白黒画像を表示する。  [0105] The color filter 39 of the liquid crystal panel 32 may be omitted. In this case, the liquid crystal panel 32 displays a black and white image.
[0106] 発光装置 11の発光部 17は、有機 EL層 14を含む有機 EL素子 16の代わりに、無 機 EL層を含む無機 EL素子力もなるものであってもよ 、。  [0106] The light emitting unit 17 of the light emitting device 11 may have an inorganic EL element power including an organic EL layer instead of the organic EL element 16 including the organic EL layer 14.

Claims

請求の範囲 The scope of the claims
[1] エレクト口ルミネッセンス素子力もなる発光部を備える発光装置であって、前記エレ タトロルミネッセンス素子は、外部電圧の入力を受ける端子部をそれぞれ有する第 1 電極及び第 2電極と、第 1電極と第 2電極の間に設けられた発光層とを備え、前記ェ レクト口ルミネッセンス素子には、発光状態と非発光状態との間を選択的に切り替わる 複数の第 1の領域と、互いに隣り合う第 1の領域同士の間に位置する第 2の領域とが 画定されており、前記エレクト口ルミネッセンス素子は、第 1の領域の発光の如何に関 わらず、各第 2の領域が当該第 2の領域に隣接する第 1の領域と区分してユーザー に視認されるのを防ぐように構成されて ヽることを特徴とする発光装置。  [1] A light-emitting device including a light-emitting unit that also has an electroluminescence element power, wherein the electro-luminescence element includes a first electrode and a second electrode that each have a terminal unit that receives an input of an external voltage, a first electrode, A light-emitting layer provided between the second electrodes, and the electoluminescence element includes a plurality of first regions that selectively switch between a light-emitting state and a non-light-emitting state, and a first region adjacent to each other. A second region located between the regions of the first region is defined, and the electoluminescence element is configured so that each second region has the second region irrespective of light emission of the first region. A light-emitting device configured to be separated from a first region adjacent to a region and prevented from being visually recognized by a user.
[2] 第 1の領域が発光状態であるときには当該第 1の領域に隣接する第 2の領域は発 光状態となり、互いに隣り合う第 1の領域が非発光状態であるときには当該隣り合う第 1の領域の間に位置する第 2の領域は非発光状態となることを特徴とする請求項 1に 記載の発光装置。 [2] When the first region is in the light emitting state, the second region adjacent to the first region is in the light emitting state, and when the first region adjacent to each other is in the non-light emitting state, the adjacent first region The light emitting device according to claim 1, wherein the second region located between the regions is in a non-light emitting state.
[3] 第 1の領域が発光状態であるときに当該第 1の領域に隣接する第 2の領域力 発せ られる光は、第 1の領域力 発せられる光よりも輝度が低いことを特徴とする請求項 2 に記載の発光装置。  [3] The light emitted from the second region force adjacent to the first region when the first region is in a light-emitting state is lower in luminance than the light emitted from the first region force. The light emitting device according to claim 2.
[4] 前記第 1の領域に位置する第 1電極の部分と前記第 2の領域に位置する第 1電極 の部分は互いに共通の材料で形成されており、前記第 1の領域に位置する第 2電極 の部分と前記第 2の領域に位置する第 2電極の部分は互いに共通の材料で形成さ れており、前記第 1の領域に位置する発光層の部分と前記第 2の領域に位置する発 光層の部分は互いに共通の材料で形成されており、前記第 1電極は前記第 2電極よ りも体積抵抗率が高ぐかつ透明であり、前記第 2の領域に位置する第 1電極の部分 の形成状態が前記第 1の領域に位置する第 1電極の部分の形成状態とは異なること を特徴とする請求項 1〜3のいずれか一項に記載の発光装置。  [4] The first electrode portion located in the first region and the first electrode portion located in the second region are formed of a common material, and the first electrode portion located in the first region is The portion of the two electrodes and the portion of the second electrode located in the second region are formed of a common material, and the portion of the light emitting layer located in the first region and the portion of the second region are located in the second region. The light emitting layer portions are made of a common material, and the first electrode has a volume resistivity higher than that of the second electrode and is transparent, and the first electrode is located in the second region. 4. The light emitting device according to claim 1, wherein a formation state of the electrode portion is different from a formation state of the first electrode portion located in the first region. 5.
[5] 前記第 2の領域はそれぞれ、複数の非発光領域及び複数の発光領域を含むことを 特徴とする請求項 4に記載の発光装置。  5. The light emitting device according to claim 4, wherein each of the second regions includes a plurality of non-light emitting regions and a plurality of light emitting regions.
[6] 前記非発光領域はドット状をなし、非発光領域の分布密度は、前記第 1電極の端 子部に近い位置であるほど高くなつていることを特徴とする請求項 5に記載の発光装 置。 [6] The non-light-emitting region according to claim 5, wherein the non-light-emitting region has a dot shape, and the distribution density of the non-light-emitting region is higher as the position is closer to the terminal portion of the first electrode. Light emitting device Place.
[7] 前記第 2の領域に位置する第 1電極の部分には複数の貫通孔が設けられているこ とを特徴とする請求項 1〜3のいずれか一項に記載の発光装置。  [7] The light emitting device according to any one of [1] to [3], wherein a plurality of through holes are provided in a portion of the first electrode located in the second region.
[8] 前記貫通孔の分布密度は、前記第 1電極の端子部に近い位置であるほど高くなつ ていることを特徴とする請求項 7に記載の発光装置。  8. The light emitting device according to claim 7, wherein the distribution density of the through holes is higher as the position is closer to the terminal portion of the first electrode.
[9] 前記第 1電極は前記第 2電極よりも体積抵抗率が高ぐかつ透明であり、前記第 2の 領域に位置する第 1電極の部分の厚さが前記第 1の領域に位置する第 1電極の部分 の厚さよりも小さいことを特徴とする請求項 1〜3のいずれか一項に記載の発光装置  [9] The first electrode has a volume resistivity higher than that of the second electrode and is transparent, and a thickness of a portion of the first electrode located in the second region is located in the first region. The light emitting device according to any one of claims 1 to 3, wherein the light emitting device is smaller than a thickness of a portion of the first electrode.
[10] 前記第 2の領域に位置する第 1電極の部分の厚さは、前記第 1電極の端子部に近 い位置であるほど小さくなつていることを特徴とする請求項 9に記載の発光装置。 [10] The thickness of the portion of the first electrode located in the second region is smaller as the position is closer to the terminal portion of the first electrode. Light emitting device.
[11] 前記発光装置の光出射面上には光拡散部材が設けられており、前記第 2の領域は 、蛇行して延びる非発光領域よりなることを特徴とする請求項 1に記載の発光装置。  11. The light emitting device according to claim 1, wherein a light diffusing member is provided on a light emitting surface of the light emitting device, and the second region is a non-light emitting region extending in a meandering manner. apparatus.
[12] 液晶パネルと、  [12] LCD panel,
前記液晶パネルの背面に設けられたバックライトと、  A backlight provided on the back of the liquid crystal panel;
前記液晶パネル及び前記バックライトを制御する制御装置とを備える液晶表示装 置であって、  A liquid crystal display device comprising a control device for controlling the liquid crystal panel and the backlight,
前記バックライトは、請求項 1〜11のいずれか一項に記載の発光装置力 なり、該 発光装置の各第 1の領域は、前記液晶パネルの垂直走査の方向と直交するように延 びており、  The backlight has the light emitting device power according to any one of claims 1 to 11, and each first region of the light emitting device extends to be orthogonal to a vertical scanning direction of the liquid crystal panel,
前記液晶パネルの垂直走査に同期して、前記第 1の領域は順に発光状態と非発 光状態との間で切り替わり、前記制御装置は、液晶パネルのある領域が表示データ 書き替え期間にある間は当該液晶パネルの領域の直下に位置する第 1の領域が非 発光状態に保持されるように、バックライトを制御することを特徴とする液晶表示装置  In synchronization with the vertical scanning of the liquid crystal panel, the first region is sequentially switched between a light emitting state and a non-light emitting state, and the control device is configured to display a region where the liquid crystal panel is in a display data rewriting period. Is a liquid crystal display device, characterized in that the backlight is controlled so that the first region located immediately below the region of the liquid crystal panel is maintained in a non-light-emitting state.
[13] エレクト口ルミネッセンス素子力 なる発光部を備える発光装置であって、前記エレ タトロルミネッセンス素子は、第 1電極及び第 2電極と、第 1電極と第 2電極の間に設 けられた発光層とを備え、前記第 1電極及び第 2電極はそれぞれベタ電極からなり、 前記第 1電極は前記第 2電極よりも体積抵抗率が高ぐかつ透明であり、前記第 1電 極は 3個以上の端子部を備えており、いずれの端子部に電圧を印加するかによって 発光するエレクト口ルミネッセンス素子の領域が異なっており、各端子部に電圧を印 カロしたときに発光するエレクト口ルミネッセンス素子の領域は、当該端子部に隣接す る別の端子部に電圧を印加したときに発光するエレクト口ルミネッセンス素子の領域と 部分的に重なっていることを特徴とする発光装置。 [13] A light-emitting device including a light-emitting unit having the power of an electro-luminescence element, wherein the electro-luminescence element is a light emission provided between the first electrode and the second electrode, and the first electrode and the second electrode. Each of the first electrode and the second electrode comprises a solid electrode, The first electrode has a volume resistivity higher than that of the second electrode and is transparent, and the first electrode has three or more terminal portions, depending on which terminal portion the voltage is applied to. The area of the electroluminescent element that emits light is different, and the area of the electroluminescent element that emits light when a voltage is applied to each terminal is applied with a voltage to another terminal adjacent to the terminal. A light-emitting device, characterized in that it partially overlaps the region of the electroluminescent element that sometimes emits light.
[14] 前記発光部は長方形状に形成されており、前記発光部の相対する一対の辺のそ れぞれには複数の端子部が配置されており、前記複数の端子部は、前記発光部の 端子部が設けられて!/、な 、辺の中心線に対して線対称に配置されて 、ることを特徴 とする請求項 13に記載の発光装置。  [14] The light emitting portion is formed in a rectangular shape, and a plurality of terminal portions are arranged on each of a pair of opposite sides of the light emitting portion, and the plurality of terminal portions are the light emitting portions. 14. The light emitting device according to claim 13, wherein a terminal portion of the portion is provided and arranged symmetrically with respect to the center line of the side.
[15] 液晶を含む液晶パネルと、  [15] a liquid crystal panel including a liquid crystal;
前記液晶パネルの背面に設けられたバックライトと、  A backlight provided on the back of the liquid crystal panel;
前記液晶パネル及び前記バックライトを制御する制御装置とを備える液晶表示装 置であって、  A liquid crystal display device comprising a control device for controlling the liquid crystal panel and the backlight,
前記バックライトは、請求項 9又は 10に記載の発光装置からなり、前記端子部は、 前記液晶パネルの垂直走査の方向に沿って所定間隔おきに配置されており、前記 制御装置は、液晶パネルのある領域が表示データ書き替え期間にある間は当該液 晶パネルの領域の直下に位置するバックライトの領域が非発光状態に保持されるよう に、端子部への電圧の印加を制御することを特徴とする液晶表示装置。  The backlight comprises the light emitting device according to claim 9 or 10, wherein the terminal portions are arranged at predetermined intervals along a vertical scanning direction of the liquid crystal panel, and the control device includes a liquid crystal panel. During the display data rewrite period, the application of voltage to the terminal section is controlled so that the backlight area located immediately below the liquid crystal panel area is maintained in a non-light-emitting state. A liquid crystal display device.
PCT/JP2006/310031 2005-05-20 2006-05-19 Light-emitting device and liquid crystal display WO2006123776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-148505 2005-05-20
JP2005148505A JP2006324600A (en) 2005-05-20 2005-05-20 Light emitting device and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2006123776A1 true WO2006123776A1 (en) 2006-11-23

Family

ID=37431345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310031 WO2006123776A1 (en) 2005-05-20 2006-05-19 Light-emitting device and liquid crystal display

Country Status (3)

Country Link
JP (1) JP2006324600A (en)
TW (1) TW200701831A (en)
WO (1) WO2006123776A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989396B2 (en) * 2007-09-25 2012-08-01 パナソニック株式会社 Planar light emitting module
WO2013186916A1 (en) * 2012-06-15 2013-12-19 パイオニア株式会社 Organic electroluminescence device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157487A (en) * 1981-03-23 1982-09-29 Nippon Electric Co Multicolor emitting field light emitting lamp
JPS62272499A (en) * 1986-05-21 1987-11-26 日産自動車株式会社 Thin film el panel
JPH0325894A (en) * 1989-06-23 1991-02-04 Pioneer Electron Corp Electroluminescent display element
JPH03159096A (en) * 1989-11-17 1991-07-09 Hitachi Maxell Ltd Distributed electroluminescence element
JP2000075802A (en) * 1998-08-26 2000-03-14 Matsushita Electric Ind Co Ltd Back light device and back light element
JP2000082587A (en) * 1998-09-03 2000-03-21 Matsushita Electric Ind Co Ltd Distributed multicolor light emitting el lamp
WO2000036662A1 (en) * 1998-12-16 2000-06-22 Cambridge Display Technology Ltd. Organic light-emitting devices
JP2003243182A (en) * 2002-02-19 2003-08-29 Sanyo Electric Co Ltd Organic el element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157487A (en) * 1981-03-23 1982-09-29 Nippon Electric Co Multicolor emitting field light emitting lamp
JPS62272499A (en) * 1986-05-21 1987-11-26 日産自動車株式会社 Thin film el panel
JPH0325894A (en) * 1989-06-23 1991-02-04 Pioneer Electron Corp Electroluminescent display element
JPH03159096A (en) * 1989-11-17 1991-07-09 Hitachi Maxell Ltd Distributed electroluminescence element
JP2000075802A (en) * 1998-08-26 2000-03-14 Matsushita Electric Ind Co Ltd Back light device and back light element
JP2000082587A (en) * 1998-09-03 2000-03-21 Matsushita Electric Ind Co Ltd Distributed multicolor light emitting el lamp
WO2000036662A1 (en) * 1998-12-16 2000-06-22 Cambridge Display Technology Ltd. Organic light-emitting devices
JP2003243182A (en) * 2002-02-19 2003-08-29 Sanyo Electric Co Ltd Organic el element

Also Published As

Publication number Publication date
TW200701831A (en) 2007-01-01
JP2006324600A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
TWI312143B (en)
KR100527651B1 (en) Display unit
US10186686B2 (en) Apparatus for use as both mirror and display
JP4854207B2 (en) Liquid crystal display device and driving device thereof
TWI322292B (en) Liquid crystal display
KR101777122B1 (en) Liquid crystal display device
KR100617933B1 (en) Liquid crystal display
JP4151493B2 (en) Display device
US20070081321A1 (en) Backlight unit and display apparatus having the same
JP2007334224A (en) Liquid crystal display
US20060139522A1 (en) Transflective liquid crystal display device with balanced chromaticity
EP1748406A2 (en) Display apparatus
JP2021067707A (en) Display device
JP2002196323A (en) Liquid crystal display device
JP2005116383A (en) Backlight device and display device
JP2008191287A (en) Liquid crystal display device
JP2005148740A (en) Reflection type liquid crystal display of dual display
JP2010066537A (en) Electrooptical apparatus and electronic device
KR100846611B1 (en) Liquid crystal display device
JP2007018768A (en) Light emitting device, manufacturing method of the same, and liquid crystal display device
US20050007300A1 (en) Display
WO2006123776A1 (en) Light-emitting device and liquid crystal display
JPWO2003025889A1 (en) Electronic device, method for manufacturing the same, and electronic device
KR101158904B1 (en) Display device
KR20170030727A (en) Organic Light Emitting Diode Display Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06756387

Country of ref document: EP

Kind code of ref document: A1