WO2006123643A1 - Material for protective film formation for liquid immersion exposure process, and method for photoresist pattern formation using the same - Google Patents

Material for protective film formation for liquid immersion exposure process, and method for photoresist pattern formation using the same Download PDF

Info

Publication number
WO2006123643A1
WO2006123643A1 PCT/JP2006/309718 JP2006309718W WO2006123643A1 WO 2006123643 A1 WO2006123643 A1 WO 2006123643A1 JP 2006309718 W JP2006309718 W JP 2006309718W WO 2006123643 A1 WO2006123643 A1 WO 2006123643A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
photoresist
immersion exposure
exposure process
film
Prior art date
Application number
PCT/JP2006/309718
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Yoshida
Keita Ishiduka
Tomoyuki Hirano
Tomoyuki Ando
Original Assignee
Tokyo Ohka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005144270A external-priority patent/JP2006323002A/en
Priority claimed from JP2005344644A external-priority patent/JP2007148167A/en
Application filed by Tokyo Ohka Kogyo Co., Ltd. filed Critical Tokyo Ohka Kogyo Co., Ltd.
Publication of WO2006123643A1 publication Critical patent/WO2006123643A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a protective film forming material applied to a liquid immersion lithography process and a photoresist pattern forming method using the same.
  • the present invention is suitably applied to a local exposure liquid immersion process in which only a space between a lens of an exposure apparatus and a substrate having a protective film formed on a photoresist layer is filled with an immersion medium.
  • Measures such as shortening the wavelength of the light source and increasing the numerical aperture (NA) of the lens.
  • Measures using photoresist materials include measures to develop new materials that can cope with shorter exposure light wavelengths.
  • an exposure optical path between an exposure apparatus (lens) and a photoresist film on a substrate exposes the photoresist film by interposing an immersion medium having a predetermined thickness on at least the photoresist film.
  • a pattern is formed.
  • an exposure optical path space which has conventionally been an inert gas such as air or nitrogen, has a refractive index (that is larger than the refractive index of these spaces (gas) and smaller than the refractive index of the photoresist film ( By substituting with an immersion medium with n) (e.g.
  • the above Patent Document 1 is a technique proposed by the applicant of the present application.
  • the protective film includes a fluorine-containing resin, specifically, a cyclic perfluoroalkyl polyether and a chain perfluoroalkyl polyether.
  • a protective film was formed using a mixture of a mixture of grease, and it was confirmed that a good profile photoresist pattern with a rectangular cross-section was obtained by this protective film.
  • Non-Patent Document 1 “Journal of Vacuum Science & Technology B” J, (USA), 1999, Vol. 17, No. 6, 330 6 — Page 3309
  • Non-Patent Document 2 “Journal of Vacuum Science & Technology B” J, (USA), 2001, Vol. 19, No. 6, pp. 235 3-2356
  • Non-Patent Document 3 “Proceedings of SPIE”.
  • Patent Document 1 International Publication No. 2004Z074937 Pamphlet
  • the protective film described in Patent Document 1 described above is a simulated immersion exposure dew experiment in a state where a substrate having a protective film formed on a photoresist film is exposed and then immersed in an immersion medium.
  • the evaluation was performed by immersion exposure using a simple method using a prism, and the evaluation of such an immersion exposure process was sufficiently effective.
  • a local immersion exposure method has been adopted in which only the space between the exposure lens that scans at a predetermined speed or more and the substrate is filled with an immersion medium.
  • a substrate provided with a protective film Z photoresist layer is placed on a wafer stage, an exposure lens is arranged above the protective film at a predetermined interval, and a wafer stage.
  • the immersion medium is continuously dropped onto one nozzle force protective film while being moved at a high speed, and exposure is performed while suctioning from the other nozzle.
  • Patent Document 1 the above-described conventional evaluation method is used, and such a conventional immersion exposure method can provide a photoresist pattern with a good profile and has an excellent effect.
  • Predetermined speed The above points in the local immersion exposure using the scanning lens have not been studied.
  • one object of the present invention is to solve the above-mentioned new problems, and in particular to suppress the occurrence of photoresist pattern defects ("water one 'mark defects") due to local immersion, etc.
  • a material for forming a protective film that is widely applicable to commercially available photoresists, has excellent versatility, and has the basic characteristics required for a protective film used in an immersion exposure process.
  • the object is to provide a method for forming a photoresist pattern.
  • another object of the present invention is to provide a protective film forming material that further reduces manufacturing costs and improves product throughput, and a photoresist pattern forming method using the same. Is to provide.
  • the present inventors have made the surface of the protective film more uniform, reduced the contact angle between the water droplet and the protective film, and improved the water repellency of the protective film. As a result of the improvement, the inventors have obtained knowledge that the above problems can be solved, thereby completing the present invention. Furthermore, by using a protective film containing a specific low molecular weight polymer, it is highly soluble in a protective film removal liquid such as a fluorine-based organic solvent that does not impair the characteristics of the protective film. The inventor has obtained the knowledge that the cost can be reduced and the product throughput can be improved, thereby completing the present invention.
  • the present invention is a material for forming a protective film that is used in an immersion exposure process and is stacked on a photoresist film on a substrate, and includes a cyclic fluoroalkyl polyether and a fluorine-based material.
  • a material for forming a protective film for an immersion exposure process containing an organic solvent is provided.
  • the present invention is a photoresist pattern forming method using an immersion exposure process, wherein a photoresist film is provided on a substrate, and the protective film is formed on the photoresist film using the protective film forming material. Thereafter, an immersion medium is disposed on at least the protective film of the substrate, and the photoresist film is selectively exposed by an exposure apparatus through the immersion medium and the protective film, and then the protective film is removed from the photoresist film. Then, the photoresist film is developed, and a photoresist pattern is obtained by developing the photoresist film.
  • the immersion exposure process uses an immersion medium only between the lens of the exposure apparatus and the substrate on which the protective film is formed on the photoresist layer. It is preferably applied to the local immersion exposure process to be filled.
  • the material for forming a protective film of the present invention can achieve further uniformization of the surface of the protective film, and can improve water repellency characteristics between the fine water droplets and the protective film. In particular, it is possible to suppress the occurrence of photoresist pattern defects (“water mark defects”) that are likely to occur in the local immersion exposure process.
  • water mark defects photoresist pattern defects
  • the material for forming a protective film of the present invention further reduces the amount of the protective film removal liquid used for removing the protective film from the photoresist film after the immersion exposure step.
  • the manufacturing cost can be reduced and the product throughput can be improved.
  • the present invention is widely applicable to photoresists currently on the market and is versatile.
  • the present invention is a basic property required as a protective film, and has high resistance to an immersion medium. Low compatibility with the photoresist film provided in the lower layer, immersion medium force Prevention of elution of components into the photoresist film, prevention of elution of components from the photoresist film into the immersion medium, inhibition of gas permeation of the protective film A material for forming a protective film having the above characteristics is provided.
  • fluoroalkyl group refers to a group in which part to all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • a group in which all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms is also referred to as a perfluoroalkyl group.
  • the "fluoroalkyl ether group” refers to a group in which part to all of the hydrogen atoms of the alkyl ether group are substituted with fluorine atoms.
  • a group in which all of the hydrogen atoms of the alkyl ether group are substituted with fluorine atoms is also referred to as a perfluoroalkyl ether group.
  • the material for forming a protective film according to the present invention contains a cyclic fluoroalkyl polyether and a fluorine-based organic solvent. In the present invention, a chain-type fluoroalkyl polyether is not contained.
  • cyclic fluoroalkyl polyether a polymer having a structural unit represented by the following formula (I) is preferably used.
  • Rf represents a fluorine atom, a fluoroalkyl group having 1 to 5 carbon atoms, or
  • a fluoroalkyl ether group, Rf may or may not be present
  • Y is — O— or — (CF) ⁇ (where V represents a number of 1 or more), and Z
  • the polymer having the structural unit represented by the formula (II) is a Cytop series (Asahi Glass Co., Ltd.). C which is commercially available as Ltd.) and the like, can be suitably used
  • Rf represents a fluorine atom, a fluoroalkyl group having 1 to 5 carbon atoms or a fluorine atom.
  • Fluoroalkyl ether group, Rf may or may not be present
  • the case (which may be present in plural) is a fluoroalkyl group or a fluoroalkyl ether group having 1 to 5 carbon atoms, t is a number from 0 to 3, and m is a repeating unit.
  • the polymer having the structural unit represented by the formula (III) is commercially available as "Teflon AF1600", “Teflon A F2400J (all of which are manufactured by DuPont)" and can be suitably used.
  • a cyclic fluoroalkyl polyether having a mass average molecular weight (MW) of a low molecular weight in the range of 5,000 to 200,000 is used.
  • the protective film using the low molecular weight polymer exhibits extremely high solubility in the protective film removing liquid such as a fluorine-based organic solvent, a small amount of the protective film removing liquid is used and the thickness of the protective film is short.
  • the protective film can be removed in time, and the protective film characteristics are not impaired at all, thereby reducing the manufacturing cost and improving the product throughput.
  • m is within the range where Mw of the polymer satisfies 5,000-200,000.
  • Such a low molecular weight polymer is commercially available as “Cytop” series (manufactured by Asahi Glass Co., Ltd.) as a polymer having a structural unit represented by the above formula (II)! This is not limited to the force that can be used for a low molecular weight product.
  • Examples of the polymer having the structural unit represented by the above formula (II I) include low molecular weight polymers such as “Teflon AF1600”, “Teflon AF 2400” (all of which are manufactured by DuPont). ⁇ The power that can be used is not limited to this.
  • the present invention it is preferable to use only one type of polymer as the cyclic fluoroalkyl polyether, even though the above! In this way, with a protective film using a single kind of cyclic fluoroalkyl polyether, the surface of the protective film becomes even more uniform, and the penetration of droplets into the protective film is more effectively suppressed. As a result, water mark defects generated in the photoresist pattern can be more effectively suppressed.
  • the fluorinated organic solvent is not particularly limited as long as it can dissolve the cyclic fluoroalkylpolyether used in the present invention.
  • perfluoroalkanes such as perfluorinated hexane and perfluoroheptane or perfluorocycloalkanes, perfluoroalkenes in which some of the double bonds remain, and perfluoroalkanes.
  • perfluoro cyclic ethers such as tetrahydrofuran and perfluoro (2-butyltetrahydrofuran), and fluorine-based organic solvents such as perfluorotributylamine, perfluorotetrapentylamine, and perfluorotetrahexylamine. These may be used alone or in admixture of two or more. It is also possible to improve solubility by adding other compatible organic solvents or surfactants as additives.
  • the protective film-forming material in which the cyclic fluoroalkyl polyether is dissolved in a fluorine-based organic solvent includes a preservative, a stabilizer, and a surfactant as long as the effects of the present invention are not impaired. You may mix various additives such as ⁇ .
  • the protective film-forming material of the present invention can be produced by a conventional method.
  • the material for forming a protective film of the present invention is used in an immersion exposure process, and is particularly preferably used for local immersion exposure.
  • the refractive index of the photoresist film provided on the substrate is larger than the refractive index of air and smaller than the refractive index of the photoresist film on at least the photoresist film in the path through which the exposure light reaches the photoresist film.
  • a method for improving the resolution of a photoresist pattern by exposing a photoresist film in a state where a liquid (immersion medium) having a predetermined thickness having a refractive index is interposed.
  • the immersion medium water (pure water, deionized water, etc.), a fluorinated solvent, or the like is preferably used. Above all, water is regarded as the most preferable because of optical requirements for immersion exposure (good refractive index characteristics, etc.), ease of handling, and lack of environmental pollution.
  • the protective film-forming material according to the present invention can be directly formed on the photoresist film, and does not hinder non-turn exposure.
  • it since it is insoluble in water, it is possible to obtain a photoresist pattern with good characteristics by using water as an immersion medium and sufficiently protecting photoresist films of various compositions during the immersion exposure process. it can.
  • exposure light with a wavelength of 157 nm such as F excimer laser
  • the absorption of exposure light into the immersion medium is reduced.
  • fluorinated media are considered to be promising as immersion media, but even when such a fluorinated solvent is used, a photoresist film is used in the immersion exposure process as in the case of the water described above. While being provided, it is possible to obtain a photoresist pattern with sufficient protection and good characteristics.
  • An immersion exposure method using the material for forming a protective film of the present invention, in particular, a photoresist pattern formation method by a local immersion exposure method is performed as follows, for example.
  • a conventional photoresist composition is applied onto a substrate such as a silicon wafer with a spinner or the like, and then pre-beta (PAB treatment) to form a photoresist film.
  • PAB treatment pre-beta
  • a photoresist film may be formed after an organic or inorganic antireflection film (lower antireflection film) is provided on the substrate.
  • the photoresist composition is not particularly limited, and any photoresist that can be developed with an aqueous alkaline solution, including negative and positive photoresists, can be used.
  • photoresists include: (i) a positive photoresist containing naphthoquinone diazide compound and novolac resin; (ii) a compound that generates an acid upon exposure; (Iii) A compound that generates an acid upon exposure, an alkali-soluble resin having a group that decomposes with an acid and increases the solubility in an alkaline aqueous solution. And (iv) a force that includes a compound that generates an acid or radical by light, a negative photoresist that contains a crosslinking agent and an alkali-soluble resin, and the like.
  • the protective film-forming material according to the present invention is uniformly applied to the surface of the photoresist film, the protective film is formed by curing by heating or the like.
  • the substrate on which the photoresist film and the protective film are laminated is placed on a wafer stage for local immersion exposure.
  • An exposure apparatus (lens) is disposed above the protective film with a predetermined distance from the protective film.
  • the photoresist layer is selectively exposed through the protective film while continuously dropping the immersion medium onto the nozzle force protective film while moving the wafer stage at a high speed.
  • the immersion medium is dropped on the protective film and moves at a predetermined speed or higher, so that very fine water droplets are scattered on the surface of the protective film.
  • the surface of the protective film is more uniform than in the case of the mixed resin with the chain fluoroalkyl polyether. (Uniformity of water repellency, etc.) could be achieved, and the contact angle between the protective film and the droplet could be reduced. [0060] This will be described below.
  • Equation 1 it is known that the stress (difference between internal pressure and external pressure) applied to a microdroplet is proportional to the surface tension of the droplet and inversely proportional to its sphere radius! / Speak.
  • Equation 1 P represents the internal pressure of the droplet (unit: Pa), P represents the external pressure of the droplet (unit: Pa), y represents the surface tension of the droplet (unit: NZm 2 ), r Indicates the sphere radius (unit: m). ]
  • the spherical radius (r) of the droplet is determined by the amount of the droplet and the contact angle with the material (protective film) that comes into contact with the liquid.
  • the contact angle is high, the internal pressure (P) of the droplet increases. Therefore, in order to reduce the internal pressure, it is required to reduce the contact angle.
  • the protective film Z photoresist film on the substrate in the continuous dropping state is selectively exposed through a mask pattern. Therefore, at this time, the exposure light passes through the immersion medium and the protective film and reaches the photoresist film.
  • the photoresist film is shielded from the immersion medium by the protective film, and is subjected to alteration such as swelling due to the invasion of the immersion medium, or conversely, the components are eluted in the immersion medium.
  • alteration of optical characteristics such as the refractive index of the immersion medium itself is prevented.
  • the protective film maintains uniformity as described above, and also has a low contact angle and high water repellency, so that the dropped microdroplet does not remain on the upper surface of the protective film. Also, it does not penetrate inward from the interface with the photoresist on the periphery.
  • the exposure light is not particularly limited, and can be performed using radiation generally used in the field of photolithography, such as ArF excimer laser, KrF excimer laser, and VUV (vacuum ultraviolet).
  • the immersion medium is not particularly limited as long as it is a liquid having a refractive index larger than that of air and smaller than that of the photoresist film to be used. Examples of such an immersion medium include water (pure water, deionized water), a fluorine-based inert liquid, and the like, but an immersion medium having a high refractive index characteristic that is expected to be developed in the near future can also be used. is there. Specific examples of fluorinated inert liquids include C HC1 F
  • liquids mainly composed of 5 3 7 fluorine-based compounds examples thereof include liquids mainly composed of 5 3 7 fluorine-based compounds.
  • water pure water, deionized water
  • the substrate is taken out of the exposure stage, the substrate force liquid is removed, and then the protective film is brought into contact with the protective film removing liquid to be peeled off.
  • a fluorine-based solvent that dissolves the cyclic fluoroalkyl polyether can be used as it is.
  • Perfluoro (2-propyltetrahydrofuran) (boiling point 102 ° C) is preferable.
  • the dissolution rate of the protective film can be greatly improved as shown in the following examples.
  • the contact time to the protective film protection film peeling time
  • the throughput of the product that does not affect the pattern forming ability can be greatly improved.
  • PEB post-exposure heating
  • an alkali developer a conventional one can be arbitrarily used.
  • a force for suitably using an aqueous solution of tetramethylammonium hydroxide (TMAH) or the like is not limited thereto.
  • TMAH tetramethylammonium hydroxide
  • a post-beta may be performed following the development process.
  • rinsing is performed using pure water or the like. In this water rinse, for example, water is dropped or sprayed on the surface of the substrate while rotating the substrate to wash away the developer on the substrate and the photoresist composition dissolved by the developer. Then, by performing drying, the photoresist pattern is patterned into a shape corresponding to the mask pattern. Can be obtained.
  • the protective film is uniform and the contact angle can be reduced, so that the immersion medium does not penetrate into the protective film even in local exposure immersion, Generation of water mark defects and pattern defects derived therefrom can be prevented in advance.
  • the protective film formed of the protective film forming material of the present invention is excellent in water repellency, the amount of the immersion medium that adheres easily after the completion of the exposure is reduced.
  • a photoresist pattern with a fine line width, particularly a line “and” space pattern with a small pitch can be produced with good resolution.
  • the pitch in the line “and” space pattern means the total distance of the photoresist pattern width and the space width in the line width direction of the pattern.
  • an immersion medium that is widely applicable to currently marketed photoresists (especially, ArF photoresists), has excellent versatility, and is a basic characteristic required as a protective film.
  • High resistance, low compatibility with the underlying photoresist film, prevention of elution of components from the immersion medium to the photoresist film, prevention of elution of components from the photoresist film to the immersion medium, protective film Thus, a material for forming a protective film having characteristics such as inhibition of gas permeation was obtained.
  • Target-P6111 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • a positive photoresist composition is applied on a silicon wafer by a spinner method and dried on a hot plate at 130 ° C. for 90 seconds. A 200 nm thick photoresist layer was formed.
  • FIG. 1 shows a photomicrograph of the air-dried droplets over time (photo taken from above).
  • a white broken line in the figure indicates a dropping center line.
  • Target-P6111 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), which is a positive photoresist composition, is applied onto a silicon wafer by a spinner method, and is pre-betaned at 130 ° C. for 90 seconds on a hot plate. A photoresist layer having a thickness of 200 nm was formed by drying.
  • FIG. 3 shows a photomicrograph (taken from above) showing the time course of air-dried droplets.
  • a white broken line in the figure indicates a dropping center line.
  • the protective film of Fig. 1 (Example 1) has an initial contact angle of 114.7 °
  • the protective film of Fig. 3 (Comparative Example 1)
  • the initial contact angle was 118. 0 °. That is, by using the protective film forming material of the present invention, the initial contact angle can be reduced by 3.3 °, the assumed radius of the same volume droplet can be increased, and the internal pressure of the droplet can be reduced, As a result, the droplets seem to have penetrated into the protective film.
  • an organic antireflective coating composition “ARC-29 ⁇ ” (Nissan Chemical Industry Co., Ltd.) onto a silicon wafer by the spinner method, and baked on a hot plate at 210 ° C for 60 seconds to dry.
  • An organic liquid antireflection film with a film thickness of 77 nm was formed from Tsuji.
  • a positive photoresist composition “TARF-P6111” (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto the antireflection film by a spinner method, and pre-beta was applied on a hot plate at 130 ° C for 90 seconds. Then, a photoresist layer having a film thickness of 200 nm was formed on the antireflection film.
  • the substrate on which this protective film was formed was subjected to immersion exposure using an experimental apparatus manufactured by Nikon Corporation using a prism, liquid, and two-beam interference exposure with a wavelength of 193 nm (the bottom surface of this prism is Contact with the protective film via water!
  • PEB treatment was performed at 115 ° C for 90 seconds, and then the protective film was removed using perfluoro (2-butyltetrahydrofuran). Thereafter, it was further developed with an alkaline developer at 23 ° C for 60 seconds.
  • alkali developer 2.38 mass 0/0 tetramethylammonium - ⁇ beam An aqueous hydroxide solution was used.
  • Cyclic fluoroalkyl polyethers having a structural formula represented by the following formula (Il-a) and having different mass average molecular weights (Mw) as shown in Table 1 below are converted into perfluorotributylamine.
  • the dissolved solution (solid content concentration 1.0 mass%) was used as Samples 1-6.
  • Samples 1 to 6 shown in Table 1 below were each applied onto a substrate by a spinner, and then soft beta at 90 ° C. for 60 seconds to form a protective film having a thickness of 28 nm.
  • Silicone anti-reflective coating composition “ARC29” (Brewer Co.) using a spinner
  • An antireflection film with a thickness of 77 nm was formed by coating on a wafer, baking on a hot plate at 225 ° C for 60 seconds and drying.
  • ArF positive photoresist (“TARF-P6111ME”; manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied, pre-betaed at 130 ° C for 90 seconds on a hot plate, and dried.
  • a 225 nm thick photoresist film was formed on the antireflection film.
  • each of the above samples 2 to 6 (however, the solid content concentration was adjusted to 1.1% by mass) was applied and heated at 90 ° C for 60 seconds to protect the film with a thickness of 28 nm. A film was formed.
  • NSR-S302A ArF exposure machine
  • pure water was dropped for 1 minute and placed in a simulated immersion environment.
  • PEB treatment was performed at 130 ° C. for 90 seconds, and then the protective film was peeled off by indirect contact with perfluoro (2-ptyltetrahydrofuran) for 30 seconds. Thereafter, development was further performed at 23 ° C. for 60 seconds using a 2.38 mass% TMAH aqueous solution.
  • the material for forming a protective film of the present invention is extremely excellent in the uniformity of the film surface and can reduce the contact angle with respect to a droplet dropped during the local liquid immersion exposure.
  • a photoresist pattern free from pattern defects can be obtained. Therefore, it is particularly preferably used for local liquid immersion exposure.
  • FIG. 1 is a graph showing a change with time of a contact angle between a protective film and a droplet used in Example 1.
  • FIG. 2 is a photomicrograph (drawing substitute photo) showing a change with time of a droplet dropped on the protective film used in Example 1.
  • FIG. 3 is a graph showing the change over time in the contact angle between the protective film and the droplet used in Comparative Example 1. ⁇ 4] A photomicrograph (drawing substitute photo) showing the change over time of the droplet dropped on the protective film used in Comparative Example 1.

Abstract

This invention provides a material for protective film formation for a liquid immersion exposure process, suitable for use in a liquid immersion exposure process, particularly a local exposure liquid immersion process for filling a liquid immersion medium into only between an exposure lens and a substrate comprising a protective film provided on a photoresist layer, the material for protective film formation being formed on a photoresist film, wherein the material for protective film formation comprises a cyclic fluoroalkyl polyether and a fluoro organic solvent, and a method for photoresist pattern formation using the material for protective film formation.

Description

明 細 書  Specification
液浸露光プロセス用保護膜形成用材料およびこれを用いたホトレジストパ ターン形成方法  Material for forming protective film for immersion exposure process and method for forming photoresist pattern using the same
技術分野  Technical field
[0001] 本発明は、液浸露光(Liquid Immersion Lithography)プロセスに適用される保護膜 形成用材料およびこれを用いたホトレジストパターン形成方法に関する。本発明は特 に、露光装置のレンズと、ホトレジスト層上に保護膜を形成した基板との間のみを液 浸媒体で満たす局所露光液浸プロセスに好適に適用される。  The present invention relates to a protective film forming material applied to a liquid immersion lithography process and a photoresist pattern forming method using the same. In particular, the present invention is suitably applied to a local exposure liquid immersion process in which only a space between a lens of an exposure apparatus and a substrate having a protective film formed on a photoresist layer is filled with an immersion medium.
背景技術  Background art
[0002] 半導体デバイス、液晶デバイス等の各種電子デバイスにおける微細構造の製造に ホトリソグラフィ法が多用されている。近年、半導体デバイスの高集積化、微小化の進 展が著しぐホトリソグラフイエ程におけるホトレジストパターン形成においてもより一層 の微細化が要求されている。  [0002] Photolithography is frequently used for the production of fine structures in various electronic devices such as semiconductor devices and liquid crystal devices. In recent years, further miniaturization has been required in the formation of photoresist patterns in the photolithography process where the progress of high integration and miniaturization of semiconductor devices is remarkable.
[0003] 現在、ホトリソグラフィ法により、例えば、最先端の領域では、線幅が 90nm程度の 微細なホトレジストパターンの形成が可能となっている力 さらに線幅 65nmといった より微細なパターン形成の研究'開発が行われている。  [0003] Currently, by photolithography, for example, in the state-of-the-art region, the ability to form a fine photoresist pattern with a line width of about 90 nm, and further research into finer pattern formation with a line width of 65 nm. Development is underway.
[0004] このようなより微細なパターン形成を達成させるためには、一般に、露光装置ゃホト レジスト材料による対応策が考えられる。露光装置による対応策としては、 F  [0004] In order to achieve such finer pattern formation, generally, a countermeasure using an exposure apparatus or a photoresist material can be considered. As countermeasures by exposure equipment, F
2エキシマ レーザー、 EUV (極端紫外光)、電子線、 X線、軟 X線等の光源波長の短波長化や、 レンズの開口数 (NA)の増大等の方策が挙げられる。ホトレジスト材料による対応策 としては、露光光の短波長化に対応する新たな材料を開発する方策が挙げられる。  2 Excimer Laser, EUV (extreme ultraviolet light), electron beam, X-ray, soft X-ray, etc. Measures such as shortening the wavelength of the light source and increasing the numerical aperture (NA) of the lens. Measures using photoresist materials include measures to develop new materials that can cope with shorter exposure light wavelengths.
[0005] し力しながら、光源波長の短波長化は高額な新たな露光装置が必要となる。また、 高 NAィ匕では、解像度と焦点深度幅がトレード 'オフの関係にあるため、解像度を上 げても焦点深度幅が低下するという問題がある。また短波長化に対応する新たなホト レジスト材料の開発にも多くのコストがかかる。  However, in order to shorten the wavelength of the light source, an expensive new exposure apparatus is required. Also, with high NA, there is a trade-off relationship between resolution and depth of focus, so there is a problem that the depth of focus decreases even if the resolution is increased. In addition, the development of new photoresist materials that can cope with shorter wavelengths is costly.
[0006] 最近、このような問題を解決可能とするホトリソグラフィ技術として、液浸露光 (Liquid  [0006] Recently, immersion lithography (Liquid) has been developed as a photolithography technology that can solve such problems.
Immersion Lithography)法が報告されている(例えば、非特許文献 1〜3参照)。この 方法は、露光時に、露光装置(レンズ)と基板上のホトレジスト膜との間の露光光路の 、少なくとも前記ホトレジスト膜上に所定厚さの液浸媒体を介在させて、ホトレジスト膜 を露光し、ホトレジストパターンを形成するというものである。この液浸露光法は、従来 は空気や窒素等の不活性ガスであった露光光路空間を、これら空間 (気体)の屈折 率よりも大きぐかつ、ホトレジスト膜の屈折率よりも小さい屈折率 (n)をもつ液浸媒体 (例えば純水、フッ素系不活性液体など)で置換することにより、同じ露光波長の光源 を用いても、より短波長の露光光を用いた場合や高 NAレンズを用いた場合と同様に 、高解像性が達成されるとともに、焦点深度幅の低下も生じない、という利点を有する 。また現在汎用されて 、るホトレジスト材料を用いることができる。 Immersion Lithography) method has been reported (for example, see Non-Patent Documents 1 to 3). this According to the method, at the time of exposure, an exposure optical path between an exposure apparatus (lens) and a photoresist film on a substrate exposes the photoresist film by interposing an immersion medium having a predetermined thickness on at least the photoresist film. A pattern is formed. In this immersion exposure method, an exposure optical path space, which has conventionally been an inert gas such as air or nitrogen, has a refractive index (that is larger than the refractive index of these spaces (gas) and smaller than the refractive index of the photoresist film ( By substituting with an immersion medium with n) (e.g. pure water, fluorinated inert liquid, etc.), even if a light source with the same exposure wavelength is used, exposure light with a shorter wavelength or high NA lenses are used. As in the case of using, there is an advantage that high resolution is achieved and no reduction in the depth of focus occurs. In addition, currently widely used photoresist materials can be used.
[0007] このような液浸露光プロセスを用いれば、現存の露光装置に実装されているレンズ 、露光光波長を用いて、低コストで、より高解像性に優れ、かつ焦点深度にも優れる ホトレジストパターンの形成が実現できるため、大変注目されている。  [0007] If such an immersion exposure process is used, a lens mounted on an existing exposure apparatus and an exposure light wavelength are used, and the cost is lower, the resolution is higher, and the depth of focus is also excellent. It has attracted a great deal of attention because it can form a photoresist pattern.
[0008] しかし、液浸露光プロセスでは、露光用レンズとホトレジスト膜との間に液浸媒体を 介在させた状態で露光を行うことから、当然のことながら、液浸媒体によるホトレジスト 膜の変質、ホトレジスト膜からの溶出成分による液浸媒体自体の変質に伴う屈折率変 動などが懸念される。  However, in the immersion exposure process, since exposure is performed with an immersion medium interposed between the exposure lens and the photoresist film, it is natural that the photoresist film is altered by the immersion medium. There is a concern that the refractive index changes due to alteration of the immersion medium itself due to the elution components from the photoresist film.
[0009] そこでこれに対処すベぐホトレジスト膜上に保護膜を形成し、この保護膜上に液浸 媒体を介在させることによって、液浸媒体によるホトレジスト膜への変質、液浸媒体自 体の変質に伴う屈折率変動を同時に防止することを目的とした技術が提案されてい る (例えば、特許文献 1参照)。  Therefore, a protective film is formed on the photoresist film to cope with this, and an immersion medium is interposed on the protective film, so that the immersion medium is transformed into the photoresist film, and the immersion medium itself is removed. There has been proposed a technique aimed at simultaneously preventing refractive index fluctuations accompanying alteration (see, for example, Patent Document 1).
[0010] 上記特許文献 1は、本出願人により提案された技術であり、保護膜にフッ素含有榭 脂、具体的には環式パーフルォロアルキルポリエーテルと鎖式パーフルォロアルキ ルポリエ一テルの混合榭脂を用いて保護膜を形成し、この保護膜により、液浸露光 において断面形状が矩形の良好なプロフィルのホトレジストパターンが得られたことを 確認している。  [0010] The above Patent Document 1 is a technique proposed by the applicant of the present application. The protective film includes a fluorine-containing resin, specifically, a cyclic perfluoroalkyl polyether and a chain perfluoroalkyl polyether. A protective film was formed using a mixture of a mixture of grease, and it was confirmed that a good profile photoresist pattern with a rectangular cross-section was obtained by this protective film.
[0011] 非特許文献 1 :「ジャーナル'ォブ 'バキューム 'サイエンス'アンド'テクノロジー B (Jo urnal of Vacuum Science & Technology B) J、 (米国)、 1999年、第 17卷、 6号、 330 6— 3309頁 非特許文献 2:「ジャーナル ·ォブ ·バキューム ·サイエンス ·アンド ·テクノロジー B (Jo urnal of Vacuum Science & Technology B) J、 (米国)、 2001年、第 19卷、 6号、 235 3— 2356頁 [0011] Non-Patent Document 1: “Journal of Vacuum Science & Technology B” J, (USA), 1999, Vol. 17, No. 6, 330 6 — Page 3309 Non-Patent Document 2: “Journal of Vacuum Science & Technology B” J, (USA), 2001, Vol. 19, No. 6, pp. 235 3-2356
非特許文献 3:「プロシーディングス ·ォブ ·エスピーアイイ一 (Proceedings of SPIE)」、 Non-Patent Document 3: “Proceedings of SPIE”,
(米国)、 2002年、第 4691卷、 459— 465頁 (USA), 2002, 4691, 459-465
特許文献 1:国際公開第 2004Z074937号パンフレット  Patent Document 1: International Publication No. 2004Z074937 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 上記特許文献 1に記載の保護膜は、ホトレジスト膜上に保護膜を形成した基板に対 して露光後、液浸媒体に浸漬させた状態での擬似的な液浸露光露実験や、プリズム を用いた簡易手法による液浸露光での評価を行ったものであり、このような液浸露光 プロセスの評価においては、十分に効果を発揮し得るものであった。しかし実際の量 産工程においては、所定速度以上で走査させる露光用レンズと基板の間のみを液 浸媒体で満たす局所液浸露光方式が採用されるようになってきた。  [0012] The protective film described in Patent Document 1 described above is a simulated immersion exposure dew experiment in a state where a substrate having a protective film formed on a photoresist film is exposed and then immersed in an immersion medium. The evaluation was performed by immersion exposure using a simple method using a prism, and the evaluation of such an immersion exposure process was sufficiently effective. However, in an actual mass production process, a local immersion exposure method has been adopted in which only the space between the exposure lens that scans at a predetermined speed or more and the substrate is filled with an immersion medium.
[0013] 局所液浸露光方式は、例えば、保護膜 Zホトレジスト層を設けた基板をゥエーハス テージ上に載置し、保護膜の上方に所定間隔を空けて露光用レンズを配置し、ゥェ ーハステージを高速でスキャニング移動させながら、液浸媒体を一方のノズル力 保 護膜上に連続滴下すると同時に他方のノズルから吸引しつつ露光するというもので ある。  [0013] In the local immersion exposure method, for example, a substrate provided with a protective film Z photoresist layer is placed on a wafer stage, an exposure lens is arranged above the protective film at a predetermined interval, and a wafer stage. The immersion medium is continuously dropped onto one nozzle force protective film while being moved at a high speed, and exposure is performed while suctioning from the other nozzle.
[0014] このような局所液浸露光方式では、滴下され続ける水が微小水滴となって保護膜 表面上に残留する。水滴径カ 、さくなるにつれ水滴内圧が指数級数的に大きくなる とされ、保護膜へカゝかる水圧は、これまでの評価手法において問題視されていたォ ーダ一に比べて、比較にならないほど大きくなる。このように極めて内圧の高い微小 液滴が残留する保護膜の表面が不均一な箇所があると、この部位を通じて保護膜内 部へ液滴の滲み込みを生じ、これによりホトレジストパターン形成時にパターン欠陥( 「ウォーター'マーク欠陥」)を引き起こす場合がある。特許文献 1では、上記従来の評 価手法を用いており、このような従来の液浸露光方法ではプロフィルの良好なホトレ ジストパターンが得られ、優れた効果を奏するが、実際の量産化における、所定速度 以上で走査するレンズを用いた局所液浸露光における上記の点についての検討は 行っていなかった。 [0014] In such a local liquid immersion exposure method, water that continues to drip remains as fine water droplets on the surface of the protective film. As the water droplet diameter increases, the internal pressure of the water droplet increases exponentially, and the water pressure applied to the protective film is not comparable to the order of problems that have been regarded as a problem in previous evaluation methods. It gets bigger. In this way, if there is a non-uniform part of the surface of the protective film where microdroplets with extremely high internal pressure remain, droplets penetrate into the inside of the protective film through this part, which causes pattern defects when forming a photoresist pattern. ("Water'mark defect"). In Patent Document 1, the above-described conventional evaluation method is used, and such a conventional immersion exposure method can provide a photoresist pattern with a good profile and has an excellent effect. However, in actual mass production, Predetermined speed The above points in the local immersion exposure using the scanning lens have not been studied.
[0015] したがって本発明の 1つの目的は、上記の新たな問題点を解決し、特に局所液浸 などでのホトレジストパターン欠陥(「ウォータ一'マーク欠陥」)の発生を抑止するとと もに、市販のホトレジストに対して広く適用可能で汎用性に優れ、かつ、液浸露光プ 口セスに用いられる保護膜に要求される基本特性を備えた保護膜形成用材料、およ びこれを用いたホトレジストパターン形成方法を提供することにある。  [0015] Accordingly, one object of the present invention is to solve the above-mentioned new problems, and in particular to suppress the occurrence of photoresist pattern defects ("water one 'mark defects") due to local immersion, etc. A material for forming a protective film that is widely applicable to commercially available photoresists, has excellent versatility, and has the basic characteristics required for a protective film used in an immersion exposure process. The object is to provide a method for forming a photoresist pattern.
[0016] また本発明の他の目的は、上記効果に加え、さらに、製造コストの低減化、製品の スループットの向上を図った保護膜形成用材料、およびこれを用いたホトレジストパタ ーン形成方法を提供することにある。  In addition to the above-described effects, another object of the present invention is to provide a protective film forming material that further reduces manufacturing costs and improves product throughput, and a photoresist pattern forming method using the same. Is to provide.
課題を解決するための手段  Means for solving the problem
[0017] 本発明者らは、局所液浸露光においては、保護膜表面のより一層の均一化を図る こと、および、水滴と保護膜との接触角を低減させること、保護膜の撥水性を向上さ せることにより、上記問題を解決し得るという知見を得、これにより本発明を完成した。 またさらに、特定の低分子体ポリマーを含む保護膜を用いることで、保護膜特性を損 なうことなぐフッ素系有機溶剤カゝらなる保護膜用除去液に対して極めて溶解性が高 ぐ製造コストの低減化、製品のスループット向上を図ることができるという知見を得、 これにより本発明を完成した。  [0017] In the local immersion exposure, the present inventors have made the surface of the protective film more uniform, reduced the contact angle between the water droplet and the protective film, and improved the water repellency of the protective film. As a result of the improvement, the inventors have obtained knowledge that the above problems can be solved, thereby completing the present invention. Furthermore, by using a protective film containing a specific low molecular weight polymer, it is highly soluble in a protective film removal liquid such as a fluorine-based organic solvent that does not impair the characteristics of the protective film. The inventor has obtained the knowledge that the cost can be reduced and the product throughput can be improved, thereby completing the present invention.
[0018] すなわち本発明は、液浸露光プロセスに用いられ、基板上のホトレジスト膜上に積 層される保護膜を形成するための材料であって、環式フルォロアルキルポリエーテル とフッ素系有機溶剤を含有する、液浸露光プロセス用保護膜形成用材料を提供する  That is, the present invention is a material for forming a protective film that is used in an immersion exposure process and is stacked on a photoresist film on a substrate, and includes a cyclic fluoroalkyl polyether and a fluorine-based material. Provided is a material for forming a protective film for an immersion exposure process containing an organic solvent.
[0019] また本発明は、液浸露光プロセスを用いたホトレジストパターン形成方法であって、 基板上にホトレジスト膜を設け、該ホトレジスト膜上に上記保護膜形成用材料を用い て保護膜を形成した後、該基板の少なくとも前記保護膜上に液浸媒体を配置し、前 記液浸媒体および前記保護膜を介して、前記ホトレジスト膜を露光装置により選択的 に露光した後、ホトレジスト膜から保護膜を除去し、次いでホトレジスト膜を現像処理 し、ホトレジストパターンを得る、ホトレジストパターンの形成方法を提供する。 [0020] 上記保護膜形成用材料、ホトレジストパターンの形成方法は、上記液浸露光プロセ スが、露光装置のレンズと、ホトレジスト層上に保護膜を形成した基板との間のみを液 浸媒体で満たす局所液浸露光プロセスに好適に適用される。 Further, the present invention is a photoresist pattern forming method using an immersion exposure process, wherein a photoresist film is provided on a substrate, and the protective film is formed on the photoresist film using the protective film forming material. Thereafter, an immersion medium is disposed on at least the protective film of the substrate, and the photoresist film is selectively exposed by an exposure apparatus through the immersion medium and the protective film, and then the protective film is removed from the photoresist film. Then, the photoresist film is developed, and a photoresist pattern is obtained by developing the photoresist film. [0020] In the method for forming the protective film forming material and the photoresist pattern, the immersion exposure process uses an immersion medium only between the lens of the exposure apparatus and the substrate on which the protective film is formed on the photoresist layer. It is preferably applied to the local immersion exposure process to be filled.
発明の効果  The invention's effect
[0021] 本発明の保護膜形成用材料は、保護膜表面のより一層の均一化を図ることができ 、また微小水滴と保護膜との撥水性の特性向上を図ることができ、これにより、特に局 所液浸露光プロセスにおいて発生しやすいホトレジストパターン欠陥(「ウォータ一' マーク欠陥」 )の発生を抑止することができる。  [0021] The material for forming a protective film of the present invention can achieve further uniformization of the surface of the protective film, and can improve water repellency characteristics between the fine water droplets and the protective film. In particular, it is possible to suppress the occurrence of photoresist pattern defects (“water mark defects”) that are likely to occur in the local immersion exposure process.
[0022] また本発明の保護膜形成用材料は、上記効果に加え、さらに、液浸露光工程後、 保護膜をホトレジスト膜から剥離するために用 ヽる保護膜用除去液の使用量を低減 し、製造コストの低減化、製品のスループット向上を図ることができる。  In addition to the above effects, the material for forming a protective film of the present invention further reduces the amount of the protective film removal liquid used for removing the protective film from the photoresist film after the immersion exposure step. In addition, the manufacturing cost can be reduced and the product throughput can be improved.
[0023] 本発明は、現在市販されているホトレジストに対し広く適用可能で汎用性があり、こ れに加えて、保護膜として要求される基本特性である、液浸媒体への耐性が高い、 下層に設けられるホトレジスト膜との相溶性が低 、、液浸媒体力 ホトレジスト膜への 成分の溶出の防止、ホトレジスト膜から液浸媒体への成分の溶出の防止、保護膜の ガスの透過を抑止、等の特性を併せもつ保護膜形成用材料が提供される。本発明保 護膜形成用材料を液浸露光プロセスに適用することにより、従来のホトレジスト材料、 露光装置を用いてリソグラフィを行った場合の解像度を超えて、極微細なホトレジスト パターンの形成が可能となる。  [0023] The present invention is widely applicable to photoresists currently on the market and is versatile. In addition, the present invention is a basic property required as a protective film, and has high resistance to an immersion medium. Low compatibility with the photoresist film provided in the lower layer, immersion medium force Prevention of elution of components into the photoresist film, prevention of elution of components from the photoresist film into the immersion medium, inhibition of gas permeation of the protective film A material for forming a protective film having the above characteristics is provided. By applying the protective film-forming material of the present invention to the immersion exposure process, it is possible to form a very fine photoresist pattern that exceeds the resolution of lithography using conventional photoresist materials and exposure equipment. Become.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明につ 、て詳述する。 [0024] Hereinafter, the present invention will be described in detail.
[0025] 本明細書にぉ 、て、「フルォロアルキル基」とは、アルキル基の水素原子の一部〜 全部がフッ素原子に置換されている基をいう。なお、アルキル基の水素原子の全部 がフッ素原子に置換されている基をパーフルォロアルキル基とも記す。  In the present specification, the “fluoroalkyl group” refers to a group in which part to all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms. A group in which all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms is also referred to as a perfluoroalkyl group.
[0026] また、「フルォロアルキルエーテル基」とは、アルキルエーテル基の水素原子の一部 〜全部がフッ素原子に置換されている基をいう。なお、アルキルエーテル基の水素 原子の全部がフッ素原子に置換されている基をパーフルォロアルキルエーテル基と も記す。 本発明に係る保護膜形成用材料は、環式フルォロアルキルポリエーテルとフッ素系 有機溶剤を含有する。本発明では鎖式フルォロアルキルポリエーテルは含有しな ヽ [0026] The "fluoroalkyl ether group" refers to a group in which part to all of the hydrogen atoms of the alkyl ether group are substituted with fluorine atoms. A group in which all of the hydrogen atoms of the alkyl ether group are substituted with fluorine atoms is also referred to as a perfluoroalkyl ether group. The material for forming a protective film according to the present invention contains a cyclic fluoroalkyl polyether and a fluorine-based organic solvent. In the present invention, a chain-type fluoroalkyl polyether is not contained.
[0028] 上記環式フルォロアルキルポリエーテルとしては、下記式 (I)で示される構成単位を 有するポリマーが好ましく用いられる。 [0028] As the cyclic fluoroalkyl polyether, a polymer having a structural unit represented by the following formula (I) is preferably used.
( I )
Figure imgf000008_0001
(I)
Figure imgf000008_0001
[0030] 上記式 (I)中、 Rf はフッ素原子、または炭素数 1〜5のフルォロアルキル基若しくは  [0030] In the above formula (I), Rf represents a fluorine atom, a fluoroalkyl group having 1 to 5 carbon atoms, or
1  1
フルォロアルキルエーテル基であり、 Rf は存在していてもいなくてもよぐ存在してい  A fluoroalkyl ether group, Rf may or may not be present
2  2
る場合 (複数存在してもよ 、)は炭素数 1〜5のフルォロアルキル基またはフルォロア ルキルエーテル基であり、 Xは— o—または—(CF ) ― (ただし qは 0または 1の数を  (May be present in plural) is a fluoroalkyl group or a fluoroalkyl ether group having 1 to 5 carbon atoms, and X is —o— or — (CF) — (where q is a number of 0 or 1)
2 q  2 q
示す)であり、 Yは— O—または—(CF ) - (ただし Vは 1以上の数を示す)であり、 Z  Y is — O— or — (CF) − (where V represents a number of 1 or more), and Z
2  2
は—(O) —(ただし sは 0または 1の数を示す)であり、 p、 t、 uはそれぞれ 0〜3の数を 示し、 mは繰り返し単位を意味する。  Is — (O) — (where s represents the number 0 or 1), p, t and u each represent a number from 0 to 3, and m represents a repeating unit.
[0031] 中でも下記式 (Π)、 (III)で表される構成単位を有するポリマーが好ま ヽ。  [0031] Among them, a polymer having a structural unit represented by the following formulas (Π) and (III) is preferable.
( I I )
Figure imgf000008_0002
(II)
Figure imgf000008_0002
[0033] 式(II)中、 p、 t、 uはそれぞれ 0〜3の数を示し、 rは 1〜3の数を示し、 mは繰り返し 単位を意味する。  [0033] In the formula (II), p, t, and u each represent a number from 0 to 3, r represents a number from 1 to 3, and m represents a repeating unit.
[0034] 式 (II)で表される構成単位を有するポリマーは、「サイトップ」シリーズ (旭硝子 (株) 製)等として市販され、好適に用いることができる c [0034] The polymer having the structural unit represented by the formula (II) is a Cytop series (Asahi Glass Co., Ltd.). C which is commercially available as Ltd.) and the like, can be suitably used
Figure imgf000009_0001
Figure imgf000009_0001
[0036] 式 (III)中、 Rf はフッ素原子、または炭素数 1〜5のフルォロアルキル基若しくはフ  [0036] In the formula (III), Rf represents a fluorine atom, a fluoroalkyl group having 1 to 5 carbon atoms or a fluorine atom.
1  1
ルォロアルキルエーテル基であり、 Rf は存在していてもいなくてもよぐ存在している  Fluoroalkyl ether group, Rf may or may not be present
2  2
場合 (複数存在してもよ ヽ)は炭素数 1〜5のフルォロアルキル基またはフルォロアル キルエーテル基であり、 tは 0〜3の数を示し、 mは繰り返し単位を意味する。  The case (which may be present in plural) is a fluoroalkyl group or a fluoroalkyl ether group having 1 to 5 carbon atoms, t is a number from 0 to 3, and m is a repeating unit.
[0037] 式(III)で表される構成単位を有するポリマーは、「テフロン AF1600」、「テフロン A F2400J (以上、いずれもデュポン社製)等として市販され、好適に用いることができ る。  [0037] The polymer having the structural unit represented by the formula (III) is commercially available as "Teflon AF1600", "Teflon A F2400J (all of which are manufactured by DuPont)" and can be suitably used.
[0038] 本発明ではこのように環状フルォロアルキルポリエーテルとして巿販品を使用する ことができ、汎用性があるという利点を有するが、これら市販品はそのポリマーの質量 平均分子量が数十万程度 (例えば 250, 000程度)の高分子体である。高分子量の ポリマーを用いた保護膜を液浸露光工程後、フッ素系有機溶剤等の保護膜用除去 液によりホトレジスト膜から剥離するにはそれ相応の剥離時間を要する。  [0038] In the present invention, commercially available products can be used as cyclic fluoroalkyl polyethers as described above, and there is an advantage that they are versatile. However, these commercially available products have a mass average molecular weight of several tens of polymers. It is a polymer of about 10,000 (for example, about 250,000). After removing the protective film using a high molecular weight polymer from the photoresist film by the protective film removing liquid such as a fluorine-based organic solvent after the immersion exposure process, it takes a corresponding peeling time.
[0039] そこで本発明の他の態様では、環状フルォロアルキルポリエーテルの質量平均分 子量(MW)を 5, 000〜200, 000の範囲の低分子体としたものを用いることを特徴 とする。該低分子体ポリマーを用いた保護膜は、フッ素系有機溶剤カゝらなる保護膜用 除去液に対し極めて高い溶解性を示すことから、少量の保護膜用除去液で、しカゝも 短時間で保護膜剥離を行うことができるとともに、保護膜特性をなんら損なうことがな ぐこれにより製造コストの低減化、製品のスループットの向上を図ることができる。フ ッ素系有機溶剤 (保護膜用除去液)は高価であることから、この保護膜用除去液の使 用量を低減して製造コストの低減ィ匕が可能となる。 [0040] このような低分子体ポリマーを用いる場合、上記式 (I)、 (II)、 (III)中、 mは、ポリマ 一の Mwが 5, 000-200, 000を満足する範囲内における繰り返し単位を意味する [0039] Therefore, in another embodiment of the present invention, a cyclic fluoroalkyl polyether having a mass average molecular weight (MW) of a low molecular weight in the range of 5,000 to 200,000 is used. And Since the protective film using the low molecular weight polymer exhibits extremely high solubility in the protective film removing liquid such as a fluorine-based organic solvent, a small amount of the protective film removing liquid is used and the thickness of the protective film is short. The protective film can be removed in time, and the protective film characteristics are not impaired at all, thereby reducing the manufacturing cost and improving the product throughput. Since the fluorine-based organic solvent (the protective film removing liquid) is expensive, the amount of the protective film removing liquid can be reduced to reduce the manufacturing cost. [0040] When such a low molecular weight polymer is used, in the above formulas (I), (II), and (III), m is within the range where Mw of the polymer satisfies 5,000-200,000. Means repeating unit
[0041] このような低分子体ポリマーは、上記式 (II)で表される構成単位を有するポリマーと しては、「サイトップ」シリーズ (旭硝子 (株)製)等として市販されて!ヽる製品を低分子 量体ィ匕したものを用いることができる力 これに限定されるものでない。また上記式 (II I)で表される構成単位を有するポリマーとしては、「テフロン AF1600」、「テフロン AF 2400」(以上、いずれもデュポン社製)等として市販されている製品を低分子量体ィ匕 したものを用いることができる力 これに限定されるものでない。 [0041] Such a low molecular weight polymer is commercially available as “Cytop” series (manufactured by Asahi Glass Co., Ltd.) as a polymer having a structural unit represented by the above formula (II)! This is not limited to the force that can be used for a low molecular weight product. Examples of the polymer having the structural unit represented by the above formula (II I) include low molecular weight polymers such as “Teflon AF1600”, “Teflon AF 2400” (all of which are manufactured by DuPont).力 The power that can be used is not limited to this.
[0042] 低分子体ポリマーとしたものを用いる場合、上記式 (I)、 (II)、 (III)で表される構成 単位を有するポリマーの末端をフルォロメチルイ匕処理するのが好まし 、。このような 末端のフルォロメチルイ匕処理を行うことによって、保護膜の保護膜除去用溶剤に対 する溶解性は飛躍的に向上する。  [0042] When a low molecular weight polymer is used, it is preferable to treat the terminal of the polymer having the structural units represented by the above formulas (I), (II), and (III) with fluoromethyli. By performing such a terminal fluoromethylation treatment, the solubility of the protective film in the protective film removing solvent is dramatically improved.
[0043] 本発明にお!/、ては、上記!/、ずれの態様にぉ 、ても、環式フルォロアルキルポリェ 一テルとして 1種類のポリマーのみを用いることが好まし 、。このように単独種の環式 フルォロアルキルポリエーテルを用いた保護膜であれば、保護膜表面がより一層均 一となり、保護膜内部へ液滴の滲み込みをより一層効果的に抑制することができ、ひ いてはホトレジストパターンに生じるウォーター'マーク欠陥をより一層効果的に抑制 することができる。  [0043] In the present invention, it is preferable to use only one type of polymer as the cyclic fluoroalkyl polyether, even though the above! In this way, with a protective film using a single kind of cyclic fluoroalkyl polyether, the surface of the protective film becomes even more uniform, and the penetration of droplets into the protective film is more effectively suppressed. As a result, water mark defects generated in the photoresist pattern can be more effectively suppressed.
[0044] 上記フッ素系有機溶剤としては、本発明に用いられる環式フルォロアルキルポリエ 一テルを溶解し得るものであればよい。具体的には、パーフルォ口へキサン、パーフ ルォロヘプタン等のパーフルォロアルカンまたはパーフルォロシクロアルカン、これら の一部に二重結合の残ったパーフルォロアルケン、さらにはパーフルォロテトラヒドロ フラン、パーフルォロ(2—ブチルテトラヒドロフラン)等のパーフルォロ環状エーテル 、パーフルォロトリブチルァミン、パーフルォロテトラペンチルァミン、パーフルォロテト ラへキシルァミン等のフッ素系有機溶剤を挙げることができる。これらは単独で用いて もよぐあるいは 2種以上を混合して用いてもよい。また相溶性を有する他の有機溶剤 や、界面活性剤等を添加剤として添加して溶解性を向上させてもょ ヽ。 [0045] フッ素系有機溶剤に上記ポリマーを溶解させる場合、塗布性等の点から、その濃度 が 0. 1〜30質量%程度となるよう溶解させるのが好ましぐ特には 0. 5〜10質量% である。 [0044] The fluorinated organic solvent is not particularly limited as long as it can dissolve the cyclic fluoroalkylpolyether used in the present invention. Specifically, perfluoroalkanes such as perfluorinated hexane and perfluoroheptane or perfluorocycloalkanes, perfluoroalkenes in which some of the double bonds remain, and perfluoroalkanes. Examples thereof include perfluoro cyclic ethers such as tetrahydrofuran and perfluoro (2-butyltetrahydrofuran), and fluorine-based organic solvents such as perfluorotributylamine, perfluorotetrapentylamine, and perfluorotetrahexylamine. These may be used alone or in admixture of two or more. It is also possible to improve solubility by adding other compatible organic solvents or surfactants as additives. [0045] When the above polymer is dissolved in a fluorinated organic solvent, it is preferable to dissolve the polymer so that its concentration is about 0.1 to 30% by mass, particularly 0.5 to 10%. % By mass.
[0046] 上記環式フルォロアルキルポリエーテルをフッ素系有機溶剤中に溶解させた保護 膜形成用材料には、本発明の効果が損なわれない範囲で、防腐剤、安定剤、界面 活性剤等の各種添加剤を配合してもよ ヽ。  [0046] The protective film-forming material in which the cyclic fluoroalkyl polyether is dissolved in a fluorine-based organic solvent includes a preservative, a stabilizer, and a surfactant as long as the effects of the present invention are not impaired. You may mix various additives such as ヽ.
[0047] 本発明の保護膜形成用材料の製造は常法により行うことができる。  [0047] The protective film-forming material of the present invention can be produced by a conventional method.
[0048] 本発明の保護膜形成用材料は液浸露光プロセスに用いられるが、特に局所液浸 露光に好適に用いられる。液浸露光プロセスは、基板上に設けたホトレジスト膜に対 し、露光光がホトレジスト膜に到達する経路の少なくとも前記ホトレジスト膜上に、空気 の屈折率よりも大きくかつホトレジスト膜の屈折率よりも小さい屈折率を有する所定厚 さの液体 (液浸媒体)を介在させた状態でホトレジスト膜を露光することによって、ホト レジストパターンの解像度を向上させる方法をいう。  [0048] The material for forming a protective film of the present invention is used in an immersion exposure process, and is particularly preferably used for local immersion exposure. In the immersion exposure process, the refractive index of the photoresist film provided on the substrate is larger than the refractive index of air and smaller than the refractive index of the photoresist film on at least the photoresist film in the path through which the exposure light reaches the photoresist film. A method for improving the resolution of a photoresist pattern by exposing a photoresist film in a state where a liquid (immersion medium) having a predetermined thickness having a refractive index is interposed.
[0049] 上記液浸媒体としては、水(純水、脱イオン水など)、フッ素系溶剤等が好適に用い られる。中でも、液浸露光の光学的要求 (屈折率特性が良好である等)、取り扱いの 容易性、環境汚染性がない、等の点から、水が最も好ましいものとして最有力視され ている。  [0049] As the immersion medium, water (pure water, deionized water, etc.), a fluorinated solvent, or the like is preferably used. Above all, water is regarded as the most preferable because of optical requirements for immersion exposure (good refractive index characteristics, etc.), ease of handling, and lack of environmental pollution.
[0050] 本発明に係る保護膜形成用材料は、ホトレジスト膜の上に直接形成することができ 、 ノターン露光を阻害することがない。また水に不溶であるので、液浸媒体として水を 用いて、種々の組成のホトレジスト膜を液浸露光プロセスに供している間、十分に保 護し、良好な特性のホトレジストパターンを得ることができる。他方、波長 157nmの露 光光 (Fエキシマレーザー等)を用いた場合は、液浸媒体への露光光の吸収低減と [0050] The protective film-forming material according to the present invention can be directly formed on the photoresist film, and does not hinder non-turn exposure. In addition, since it is insoluble in water, it is possible to obtain a photoresist pattern with good characteristics by using water as an immersion medium and sufficiently protecting photoresist films of various compositions during the immersion exposure process. it can. On the other hand, if exposure light with a wavelength of 157 nm (such as F excimer laser) is used, the absorption of exposure light into the immersion medium is reduced.
2 2
いう点から、液浸媒体としてフッ素系媒体が有力視されているが、このようなフッ素系 溶剤を用いた場合であっても、上記した水と同様に、ホトレジスト膜を液浸露光プロセ スに供している間、十分に保護し、良好な特性のホトレジストパターンを得ることがで きる。  From this point of view, fluorinated media are considered to be promising as immersion media, but even when such a fluorinated solvent is used, a photoresist film is used in the immersion exposure process as in the case of the water described above. While being provided, it is possible to obtain a photoresist pattern with sufficient protection and good characteristics.
[0051] 本発明の保護膜形成用材料を用いた液浸露光法、特には局所液浸露光法による ホトレジストパターン形成方法は、例えば以下のように行う。 [0052] まず、シリコンゥエーハ等の基板上に、慣用のホトレジスト組成物をスピンナーなど で塗布した後、プレベータ (PAB処理)し、ホトレジスト膜を形成する。なお、基板上に 有機系または無機系の反射防止膜 (下層反射防止膜)を 1層設けてから、ホトレジスト 膜を形成してもよい。 [0051] An immersion exposure method using the material for forming a protective film of the present invention, in particular, a photoresist pattern formation method by a local immersion exposure method is performed as follows, for example. [0052] First, a conventional photoresist composition is applied onto a substrate such as a silicon wafer with a spinner or the like, and then pre-beta (PAB treatment) to form a photoresist film. Note that a photoresist film may be formed after an organic or inorganic antireflection film (lower antireflection film) is provided on the substrate.
[0053] ホトレジスト組成物は、特に限定されるものでなぐネガ型およびポジ型ホトレジスト を含めてアルカリ水溶液で現像可能なホトレジストを任意に使用できる。このようなホ トレジストとしては、(i)ナフトキノンジアジドィ匕合物とノボラック榭脂を含有するポジ型 ホトレジスト、 (ii)露光により酸を発生する化合物、酸により分解しアルカリ水溶液に対 する溶解性が増大する化合物およびアルカリ可溶性榭脂を含有するポジ型ホトレジ スト、 (iii)露光により酸を発生する化合物、酸により分解しアルカリ水溶液に対する溶 解性が増大する基を有するアルカリ可溶性榭脂を含有するポジ型ホトレジスト、およ び (iv)光により酸またはラジカルを発生する化合物、架橋剤およびアルカリ可溶性榭 脂を含有するネガ型ホトレジスト等が挙げられる力 これらに限定されるものではない  [0053] The photoresist composition is not particularly limited, and any photoresist that can be developed with an aqueous alkaline solution, including negative and positive photoresists, can be used. Such photoresists include: (i) a positive photoresist containing naphthoquinone diazide compound and novolac resin; (ii) a compound that generates an acid upon exposure; (Iii) A compound that generates an acid upon exposure, an alkali-soluble resin having a group that decomposes with an acid and increases the solubility in an alkaline aqueous solution. And (iv) a force that includes a compound that generates an acid or radical by light, a negative photoresist that contains a crosslinking agent and an alkali-soluble resin, and the like.
[0054] 次に、上記ホトレジスト膜の表面に、本発明に係る保護膜形成用材料を均一に塗 布した後、加熱などにより硬化させることによって、保護膜を形成する。 Next, after the protective film-forming material according to the present invention is uniformly applied to the surface of the photoresist film, the protective film is formed by curing by heating or the like.
[0055] このホトレジスト膜、保護膜が積層された基板を、局所液浸露光用ゥエーハステージ 上に載置する。  The substrate on which the photoresist film and the protective film are laminated is placed on a wafer stage for local immersion exposure.
[0056] 上記保護膜の上方に、保護膜と所定間隔を空けて露光装置 (レンズ)を配置する。  An exposure apparatus (lens) is disposed above the protective film with a predetermined distance from the protective film.
[0057] 次いで、ゥヱーハステージを高速でスキャニング移動させながら、液浸媒体をノズル 力 保護膜上に連続滴下しながら、保護膜を通してホトレジスト層を選択的に露光す る。 Next, the photoresist layer is selectively exposed through the protective film while continuously dropping the immersion medium onto the nozzle force protective film while moving the wafer stage at a high speed.
[0058] この局所液浸露光では、液浸媒体が保護膜上に滴下され、また、所定速度以上で 移動することから、保護膜表面に極微小水滴が飛散する。  [0058] In this local immersion exposure, the immersion medium is dropped on the protective film and moves at a predetermined speed or higher, so that very fine water droplets are scattered on the surface of the protective film.
[0059] 本発明では保護膜として環式フルォロアルキルポリエーテルを単独で用いて 、るの で、鎖式フルォロアルキルポリエーテルとの混合樹脂の場合に比べ、保護膜表面の 均一性 (撥水性の均一性など)を図ることができ、また、保護膜と液滴との接触角を低 減ィ匕することができた。 [0060] これにつき以下に説明する。 [0059] In the present invention, since the cyclic fluoroalkyl polyether is used alone as the protective film, the surface of the protective film is more uniform than in the case of the mixed resin with the chain fluoroalkyl polyether. (Uniformity of water repellency, etc.) could be achieved, and the contact angle between the protective film and the droplet could be reduced. [0060] This will be described below.
[0061] 下記数式 1に示すように、微小液滴に力かるストレス(内圧と外圧の差)は、液滴の 表面張力に比例し、その球半径に反比例することが知られて!/ヽる。  [0061] As shown in Equation 1 below, it is known that the stress (difference between internal pressure and external pressure) applied to a microdroplet is proportional to the surface tension of the droplet and inversely proportional to its sphere radius! / Speak.
[0062] (P -P ) = 2 y /r (数式 1)  [0062] (P -P) = 2 y / r (Formula 1)
〔数式 1中、 Pは液滴の内圧(単位: Pa)を示し、 Pは液滴の外圧(単位: Pa)を示し、 yは液滴の表面張力(単位: NZm2)を示し、 rは液滴の球半径 (単位: m)を示す。〕[In Equation 1, P represents the internal pressure of the droplet (unit: Pa), P represents the external pressure of the droplet (unit: Pa), y represents the surface tension of the droplet (unit: NZm 2 ), r Indicates the sphere radius (unit: m). ]
[0063] 水の表面張力は室温では一定であることから、液滴の内圧 (P )は球半径 (r)に反 比例して増大することがわかる。 [0063] Since the surface tension of water is constant at room temperature, it can be seen that the internal pressure (P) of the droplet increases in inverse proportion to the sphere radius (r).
[0064] また、液滴の球半径 (r)は、液滴の液量と、接液して ヽる材料 (保護膜)との接触角 とにより決定され、同一容量の液滴の場合、接触角が高いと、液滴の内圧 (P)が高く なる。したがって、内圧を低くするには接触角を低くすることが求められる。  [0064] Further, the spherical radius (r) of the droplet is determined by the amount of the droplet and the contact angle with the material (protective film) that comes into contact with the liquid. When the contact angle is high, the internal pressure (P) of the droplet increases. Therefore, in order to reduce the internal pressure, it is required to reduce the contact angle.
[0065] 上記に加えて、微小液滴が落下接触する保護膜の表面が不均一 (撥水性の不均 一など)な箇所があると、この部位を通じて保護膜内部へ液滴の滲み込みが考えられ ることから、保護膜の膜質のより一層の均一性が求められる。  [0065] In addition to the above, if there is a non-uniform surface (such as a non-uniform water repellency) on the surface of the protective film to which the microdroplet falls and comes into contact, the droplets penetrate into the protective film through this site. For this reason, a more uniform film quality of the protective film is required.
[0066] 本発明の保護膜形成用材料を用いて保護膜を形成することにより、後述する実施 例で効果の確認を行って 、るように、上記の問題点を解消することができた。  [0066] By forming a protective film using the protective film-forming material of the present invention, the above-mentioned problems could be solved, as confirmed in the examples described later.
[0067] 次 、で、この連続滴下状態の基板上の保護膜 Zホトレジスト膜に対して、マスクパ ターンを介して選択的に露光を行う。したがって、このとき、露光光は、液浸媒体と保 護膜とを通過してホトレジスト膜に到達することになる。  Next, the protective film Z photoresist film on the substrate in the continuous dropping state is selectively exposed through a mask pattern. Therefore, at this time, the exposure light passes through the immersion medium and the protective film and reaches the photoresist film.
[0068] このとき、ホトレジスト膜は保護膜によって、液浸媒体から遮断されており、液浸媒体 の侵襲を受けて膨潤等の変質を被ることや、逆に液浸媒体中に成分を溶出させて液 浸媒体自体の屈折率等の光学的特性を変質させることが防止される。また保護膜は 上記したように均一性が保たれ、また接触角も低ぐ撥水性も高いため、滴下した微 小液滴が保護膜上面に残留することもなぐしたがって微小液滴が保護膜上面や周 縁部のホトレジストとの界面などから内方へ滲入することもない。  [0068] At this time, the photoresist film is shielded from the immersion medium by the protective film, and is subjected to alteration such as swelling due to the invasion of the immersion medium, or conversely, the components are eluted in the immersion medium. Thus, alteration of optical characteristics such as the refractive index of the immersion medium itself is prevented. In addition, the protective film maintains uniformity as described above, and also has a low contact angle and high water repellency, so that the dropped microdroplet does not remain on the upper surface of the protective film. Also, it does not penetrate inward from the interface with the photoresist on the periphery.
[0069] 露光光は、特に限定されず、 ArFエキシマレーザー、 KrFエキシマレーザー、 VU V (真空紫外線)などの、現在のホトリソフラフィー分野で汎用されている放射線を用 いて行うことができる。 [0070] 液浸媒体は、空気の屈折率よりも大きくかつ使用されるホトレジスト膜の屈折率より も小さい屈折率を有する液体であれば、特に限定されるものでない。このような液浸 媒体としては、水 (純水、脱イオン水)、フッ素系不活性液体等が挙げられるが、近い 将来に開発が見込まれる高屈折率特性を有する液浸媒体も使用可能である。フッ素 系不活性液体の具体例としては、 C HC1 F [0069] The exposure light is not particularly limited, and can be performed using radiation generally used in the field of photolithography, such as ArF excimer laser, KrF excimer laser, and VUV (vacuum ultraviolet). The immersion medium is not particularly limited as long as it is a liquid having a refractive index larger than that of air and smaller than that of the photoresist film to be used. Examples of such an immersion medium include water (pure water, deionized water), a fluorine-based inert liquid, and the like, but an immersion medium having a high refractive index characteristic that is expected to be developed in the near future can also be used. is there. Specific examples of fluorinated inert liquids include C HC1 F
3 2 5、 C F OCH  3 2 5, C F OCH
4 9 3、C F OC H  4 9 3, C F OC H
4 9 2 5、C H F等  4 9 2 5, C H F, etc.
5 3 7 のフッ素系化合物を主成分とする液体が挙げられる。これらのうち、コスト、安全性、 環境問題および汎用性の観点からは、水(純水、脱イオン水)を用いることが好ましい Examples thereof include liquids mainly composed of 5 3 7 fluorine-based compounds. Of these, water (pure water, deionized water) is preferably used from the viewpoints of cost, safety, environmental problems, and versatility.
1S 157nmの波長の露光光 (例えば Fエキシマレーザーなど)を用いた場合は、露 1S Exposure light with a wavelength of 157 nm (eg F excimer laser)
2  2
光光の吸収が少な 、と 、う観点から、フッ素系溶剤を用いることが好まし 、。  From the viewpoint of low light absorption, it is preferable to use a fluorinated solvent.
[0071] 前記滴下による液浸露光工程が完了したら、基板を露光ステージから取り出し、基 板力 液体を除去し、その後、保護膜を保護膜用除去液に接触させて剥離する。 [0071] When the immersion exposure process by dripping is completed, the substrate is taken out of the exposure stage, the substrate force liquid is removed, and then the protective film is brought into contact with the protective film removing liquid to be peeled off.
[0072] この保護膜用除去液は、上記環式フルォロアルキルポリエーテルを溶解せしめるフ ッ素系溶剤をそのまま用いることができる。ただし、洗浄後の乾燥性の点から、沸点 1 50°C以下程度の溶剤を用いることが好ましぐこの観点力 パーフルォロ(2—プチ ルテトラヒドロフラン)(沸点 102°C)が好ましい。保護膜中に上記環式フルォロアルキ ルポリエ一テルとして特定の低分子量範囲内のものを用いた態様の場合、後述の実 施例に示すように、保護膜溶解速度を大幅に向上させることができることから、保護 膜への接触時間 (保護膜剥離時間)を大幅に短縮することができ、しかも、パターン 形成能に影響を与えることがなぐ製品のスループットを大幅に向上させることができ る。 [0072] As the protective film removal solution, a fluorine-based solvent that dissolves the cyclic fluoroalkyl polyether can be used as it is. However, from the viewpoint of drying properties after washing, it is preferable to use a solvent having a boiling point of about 150 ° C or lower. Perfluoro (2-propyltetrahydrofuran) (boiling point 102 ° C) is preferable. In the case where the above-mentioned cyclic fluoroalkyl polyester in the specific low molecular weight range is used in the protective film, the dissolution rate of the protective film can be greatly improved as shown in the following examples. In addition, the contact time to the protective film (protective film peeling time) can be greatly shortened, and the throughput of the product that does not affect the pattern forming ability can be greatly improved.
[0073] 次 、で、露光したホトレジスト膜に対して PEB (露光後加熱)を行 、、続、て、アル カリ現像液を用いて現像処理を行う。アルカリ現像液としては慣用のものを任意に用 V、ることができ、例えばテトラメチルアンモ-ゥムヒドロキシド (TMAH)水溶液等が好 適に用いられる力 これに限定されるものでない。現像処理に続いてポストベータを 行ってもよい。続いて、純水等を用いてリンスを行う。この水リンスは、例えば、基板を 回転させながら基板表面に水を滴下または噴霧して、基板上の現像液および該現像 液によって溶解したホトレジスト組成物を洗い流す。そして、乾燥を行うことにより、ホ トレジスト膜がマスクパターンに応じた形状にパターユングされた、ホトレジストパター ンが得られる。 Next, PEB (post-exposure heating) is performed on the exposed photoresist film, followed by development using an alkali developer. As the alkali developer, a conventional one can be arbitrarily used. For example, a force for suitably using an aqueous solution of tetramethylammonium hydroxide (TMAH) or the like is not limited thereto. A post-beta may be performed following the development process. Subsequently, rinsing is performed using pure water or the like. In this water rinse, for example, water is dropped or sprayed on the surface of the substrate while rotating the substrate to wash away the developer on the substrate and the photoresist composition dissolved by the developer. Then, by performing drying, the photoresist pattern is patterned into a shape corresponding to the mask pattern. Can be obtained.
[0074] このように本発明では、保護膜が均一で、接触角を低減せしめることができたので、 局所露光液浸にお 、ても液浸媒体が保護膜内に滲み込むことがなく、ウォーター ·マ ーク欠陥の発生、およびこれに由来するパターン欠陥を、未然に防止することができ る。また、本発明の保護膜形成用材料により形成された保護膜は、撥水性に優れる ので、前記露光完了後の液浸媒体の離れがよぐ液浸媒体の付着量が少なくなる。  [0074] Thus, in the present invention, the protective film is uniform and the contact angle can be reduced, so that the immersion medium does not penetrate into the protective film even in local exposure immersion, Generation of water mark defects and pattern defects derived therefrom can be prevented in advance. In addition, since the protective film formed of the protective film forming material of the present invention is excellent in water repellency, the amount of the immersion medium that adheres easily after the completion of the exposure is reduced.
[0075] このようにしてホトレジストパターンを形成することにより、微細な線幅のホトレジスト パターン、特にピッチが小さいライン 'アンド'スペースパターンを良好な解像度により 製造することができる。なお、ここで、ライン 'アンド'スペースパターンにおけるピッチ とは、パターンの線幅方向における、ホトレジストパターン幅とスペース幅の合計の距 離をいう。  By forming a photoresist pattern in this way, a photoresist pattern with a fine line width, particularly a line “and” space pattern with a small pitch can be produced with good resolution. Here, the pitch in the line “and” space pattern means the total distance of the photoresist pattern width and the space width in the line width direction of the pattern.
[0076] 本発明により、現在市販されているホトレジスト(特には ArF用ホトレジスト)に対し広 く適用可能で汎用性に優れ、また、保護膜として要求される基本特性である、液浸媒 体への耐性が高い、下層に設けられるホトレジスト膜との相溶性が低い、液浸媒体か らホトレジスト膜への成分の溶出の防止、ホトレジスト膜から液浸媒体への成分の溶 出の防止、保護膜のガスの透過の抑止、等の特性を併せもつ保護膜形成用材料が 得られた。  [0076] According to the present invention, an immersion medium that is widely applicable to currently marketed photoresists (especially, ArF photoresists), has excellent versatility, and is a basic characteristic required as a protective film. High resistance, low compatibility with the underlying photoresist film, prevention of elution of components from the immersion medium to the photoresist film, prevention of elution of components from the photoresist film to the immersion medium, protective film Thus, a material for forming a protective film having characteristics such as inhibition of gas permeation was obtained.
実施例  Example
[0077] 次に、実施例により本発明をさらに詳細に説明する力 本発明はこれらの例によつ てなんら限定されるものでな 、。  Next, the ability to explain the present invention in more detail by way of examples The present invention is not limited to these examples.
[0078] (実施例 1) [0078] (Example 1)
シリコンゥエーハ上に、ポジ型ホトレジスト組成物である「TARF— P6111」(東京応 化工業 (株)製)をスピンナ一法により塗布し、ホットプレート上で 130°C、 90秒間乾燥 させて、膜厚 200nmのホトレジスト層を形成した。  “TARF-P6111” (manufactured by Tokyo Ohka Kogyo Co., Ltd.), which is a positive photoresist composition, is applied on a silicon wafer by a spinner method and dried on a hot plate at 130 ° C. for 90 seconds. A 200 nm thick photoresist layer was formed.
[0079] 該ホトレジスト層上に、「サイトップ CTX— 809SP2」(旭硝子 (株)製)をパーフル ォロトリブチルァミンに溶解させ、濃度 1質量%とした保護膜材料をスピンナ一法によ り塗布した後、 90°Cにて 60秒間ソフトベータし、膜厚 33nmの保護膜を形成した。 [0079] On the photoresist layer, "CYTOP CTX-809SP2" (manufactured by Asahi Glass Co., Ltd.) was dissolved in perfluorotributylamine to form a protective film material having a concentration of 1% by mass by the spinner method. After coating, soft beta was performed at 90 ° C for 60 seconds to form a protective film with a thickness of 33 nm.
[0080] 次 、で、この保護膜上に、液滴 (純水、液滴サイズ 1. 9 L)を滴下し、風乾した。こ のときの保護膜と液滴との接触角(すなわち、保護膜上面'水平線と、液滴端での接 線とがなす角度)を経時測定し、グラフ化した。結果を図 1に示す。また風乾した液滴 の経時変化を示す顕微鏡写真 (上方から撮影した写真)を図 2に示す。同図中、 Os、 500s, 1000sの記載は、それぞれ液滴滴下後の経過時間 0秒(=滴下直後)、 500 秒、 1000秒を示す。図中の白抜き破線は、滴下中心線を示す。 Next, droplets (pure water, droplet size 1.9 L) were dropped on this protective film and air-dried. This At that time, the contact angle between the protective film and the droplet (that is, the angle formed by the horizontal line on the upper surface of the protective film and the tangent at the edge of the droplet) was measured over time and graphed. The results are shown in Figure 1. Figure 2 shows a photomicrograph of the air-dried droplets over time (photo taken from above). In the figure, the descriptions of Os, 500s, and 1000s indicate the elapsed time after dropping a droplet, 0 seconds (= immediately after dropping), 500 seconds, and 1000 seconds, respectively. A white broken line in the figure indicates a dropping center line.
[0081] (比較例 1)  [0081] (Comparative Example 1)
シリコンゥエーハ上に、ポジ型ホトレジスト組成物である「TARF— P6111」(東京応 化工業 (株)製)をスピンナ一法により塗布し、ホットプレート上で 130°C、 90秒間プレ ベータし、乾燥させて膜厚 200nmのホトレジスト層を形成した。  “TARF-P6111” (manufactured by Tokyo Ohka Kogyo Co., Ltd.), which is a positive photoresist composition, is applied onto a silicon wafer by a spinner method, and is pre-betaned at 130 ° C. for 90 seconds on a hot plate. A photoresist layer having a thickness of 200 nm was formed by drying.
[0082] 該ホトレジスト層上に、「デムナム S— 20」(ダイキン (株)製)および「サイトップ C TX— 809SP2」(混合質量比 = 1: 5)力らなる混合榭脂をパーフルォロトリブチルアミ ンに溶解させ、濃度 1. 2質量%とした保護膜材料をスピンナ一法により塗布した後、 90°Cにて 60秒間ソフトベータし、膜厚 33nmの保護膜を形成した。  [0082] On the photoresist layer, "DEMNUM S-20" (Daikin Co., Ltd.) and "CYTOP C TX-809SP2" (mixing mass ratio = 1: 5) After a protective film material dissolved in rotributylamine and having a concentration of 1.2% by mass was applied by a spinner method, soft beta was performed at 90 ° C. for 60 seconds to form a protective film having a thickness of 33 nm.
[0083] 次 、で、この保護膜上に、液滴 (純水、液滴サイズ 1. 9 L)を滴下し、風乾した。こ のときの保護膜と液滴との接触角(すなわち、保護膜上面'水平線と、液滴端での接 線とがなす角度)を経時測定し、グラフ化した。結果を図 3に示す。また風乾した液滴 の経時変化を示す顕微鏡写真 (上方から撮影)を図 4に示す。同図中、 0s、 500s, 1 000sの記載は、それぞれ液滴滴下後の経過時間 0秒(=滴下直後)、 500秒、 100 0秒を示す。図中の白抜き破線は、滴下中心線を示す。  Next, droplets (pure water, droplet size 1.9 L) were dropped on this protective film and air-dried. At this time, the contact angle between the protective film and the droplet (that is, the angle formed between the horizontal line on the upper surface of the protective film and the tangent line at the edge of the droplet) was measured over time and graphed. The results are shown in Figure 3. Figure 4 shows a photomicrograph (taken from above) showing the time course of air-dried droplets. In the figure, the descriptions of 0 s, 500 s, and 1 000 s indicate the elapsed time after dropping the droplet, 0 seconds (= immediately after dropping), 500 seconds, and 1000 seconds, respectively. A white broken line in the figure indicates a dropping center line.
[0084] 〈評価〉  [0084] <Evaluation>
図 1と図 3との対比力も明らかなように、図 1 (実施例 1)の保護膜では初期接触角が 114. 7° であるのに対し、図 3 (比較例 1)の保護膜では初期接触角が 118. 0° で あった。すなわち本願発明の保護膜形成用材料を用いることにより、初期接触角を 3 . 3° 低減させることができ、同一容量の液滴における見なし半径が大きくなり、液滴 の内圧を下げることができ、ひいては液滴が保護膜内に滲み込みに《なったものと 思われる。  As is clear from the comparison force between Fig. 1 and Fig. 3, the protective film of Fig. 1 (Example 1) has an initial contact angle of 114.7 °, whereas the protective film of Fig. 3 (Comparative Example 1) The initial contact angle was 118. 0 °. That is, by using the protective film forming material of the present invention, the initial contact angle can be reduced by 3.3 °, the assumed radius of the same volume droplet can be increased, and the internal pressure of the droplet can be reduced, As a result, the droplets seem to have penetrated into the protective film.
[0085] なお図 3では 1000秒経過後の計測ができなかった。これは図 4 (後述)に示すよう に液滴の中心がずれたことにより計測不可となったものと思われる。 [0086] また、初期液滴サイズが 1. 8 μ Lとなった時点から、乾燥して消失するまでに要する 時間を測定したところ、実施例 1の保護膜を使用した条件下では 1482秒要したのに 対し、比較例 1の保護膜を使用した場合は 1252秒であり、実施例 1の保護膜を用い た方が液滴の乾燥に要する所要時間が長ぐすなわち保護膜への液滴の滲み込み 速度が遅ぐウォーター'マークリスクが減少したものと思われる。 [0085] In Fig. 3, the measurement after 1000 seconds could not be performed. As shown in Fig. 4 (described later), it seems that measurement was not possible because the center of the droplet was shifted. [0086] Further, when the time required from the initial droplet size of 1.8 μL to drying and disappearing was measured, it took 1482 seconds under the conditions using the protective film of Example 1. On the other hand, when the protective film of Comparative Example 1 was used, it took 1252 seconds, and using the protective film of Example 1 required a longer time to dry the droplets. It seems that the risk of water's mark that the speed of soaking is slow has decreased.
[0087] また、図 2と図 4との対比から明らかなように、図 2 (実施例 1)では滴下された液滴は 経時による中心線力 のずれがほとんどみられないのに対し、図 4 (比較例 1)では滴 下された液滴力 500秒経過後にはすでに中心線力ものかなりのずれ(図中では左 方へのずれ)がみられ、 1000秒経過後では、上述したように接触角の計測ができな いほどに左方へのずれが大き力つた。これは比較例 1の保護膜表面が均一性に欠け るためと考えられる。すなわち実施例 1で用いた保護膜のほうが、比較例 1で用いた 保護膜に比べ、膜の表面均一性が高いことが証明された。  In addition, as is clear from the comparison between FIG. 2 and FIG. 4, in FIG. 2 (Example 1), the dropped droplet shows almost no deviation of the center line force over time, whereas FIG. In 4 (Comparative Example 1), the drop force of the dropped liquid has already shown a considerable shift of the center line force (shift to the left in the figure) after 500 seconds have elapsed, and after 1000 seconds have passed, as described above. The displacement to the left was so strong that the contact angle could not be measured. This is probably because the surface of the protective film of Comparative Example 1 lacks uniformity. That is, it was proved that the protective film used in Example 1 had higher surface uniformity than the protective film used in Comparative Example 1.
[0088] (実施例 2)  [0088] (Example 2)
有機系反射防止膜組成物「ARC— 29Α」(日産化学工業 (株)製)をスピンナ一法 によりシリコンゥエーハ上に塗布し、ホットプレート上で 210°C、 60秒間焼成して乾燥 させること〖こより、膜厚 77nmの有機系液反射防止膜を形成した。そして、この反射防 止膜上に、ポジ型ホトレジスト組成物である「TARF—P6111」(東京応化工業 (株) 製)をスピンナ一法により塗布し、ホットプレート上で 130°C、 90秒間プレベータし、乾 燥させて、反射防止膜上に膜厚 200nmのホトレジスト層を形成した。  Apply an organic antireflective coating composition “ARC-29Α” (Nissan Chemical Industry Co., Ltd.) onto a silicon wafer by the spinner method, and baked on a hot plate at 210 ° C for 60 seconds to dry. An organic liquid antireflection film with a film thickness of 77 nm was formed from Tsuji. A positive photoresist composition “TARF-P6111” (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto the antireflection film by a spinner method, and pre-beta was applied on a hot plate at 130 ° C for 90 seconds. Then, a photoresist layer having a film thickness of 200 nm was formed on the antireflection film.
[0089] 該ホトレジスト層上に、「サイトップ CTX— 809SP2」(旭硝子 (株)製)をパーフル ォロトリブチルァミンに溶解させ、濃度 1質量%とした保護膜材料をスピンナ一法によ り塗布した後、 90°Cにて 60秒間ソフトベータし、膜厚 33nmの保護膜を形成した。  [0089] On the photoresist layer, "CYTOP CTX-809SP2" (manufactured by Asahi Glass Co., Ltd.) was dissolved in perfluorotributylamine to form a protective film material having a concentration of 1% by mass by the spinner method. After coating, soft beta was performed at 90 ° C for 60 seconds to form a protective film with a thickness of 33 nm.
[0090] この保護膜を形成した基板に対して、プリズムと液体と波長 193nmの 2光束干渉露 光を用いた (株)ニコン製の実験装置を用いて浸漬露光を行った (このプリズム下面 は水を介して保護膜と接触して!/ヽた)。  [0090] The substrate on which this protective film was formed was subjected to immersion exposure using an experimental apparatus manufactured by Nikon Corporation using a prism, liquid, and two-beam interference exposure with a wavelength of 193 nm (the bottom surface of this prism is Contact with the protective film via water!
[0091] 続、て、 115°C、 90秒間の条件で PEB処理をした後、保護膜をパーフルォロ(2— プチルテトラヒドロフラン)を用いて除去した。その後、さらに 23°Cにてアルカリ現像液 で 60秒間現像した。アルカリ現像液としては、 2. 38質量0 /0テトラメチルアンモ -ゥム ヒドロキシド水溶液を用いた。 [0091] Subsequently, PEB treatment was performed at 115 ° C for 90 seconds, and then the protective film was removed using perfluoro (2-butyltetrahydrofuran). Thereafter, it was further developed with an alkaline developer at 23 ° C for 60 seconds. As the alkali developer, 2.38 mass 0/0 tetramethylammonium - © beam An aqueous hydroxide solution was used.
[0092] このようにして得た 65nmのライン ·アンド'スペースが 1: 1となるホトレジストパターン を走査型電子顕微鏡 (SEM)により観察したところ、ホトレジストパターンプロファイル は良好なものであり、ゆらぎ等は全く観察されな力つた。  [0092] When a 65 nm line-and-space photoresist pattern obtained in this way was observed with a scanning electron microscope (SEM), the photoresist pattern profile was satisfactory, and fluctuations, etc. It was a force not observed at all.
[0093] (実施例 3)  [0093] (Example 3)
〈保護膜形成用材料〉  <Material for protective film formation>
下記式 (Il-a)で表される構造式からなり、質量平均分子量 (Mw)を下記表 1に示す ようにそれぞれ変えた環式フルォロアルキルポリエーテルを、パーフルォロトリブチル ァミンに溶解させた溶液(固形分濃度 1. 0質量%)を試料 1〜6として用いた。  Cyclic fluoroalkyl polyethers having a structural formula represented by the following formula (Il-a) and having different mass average molecular weights (Mw) as shown in Table 1 below are converted into perfluorotributylamine. The dissolved solution (solid content concentration 1.0 mass%) was used as Samples 1-6.
[0094]  [0094]
Figure imgf000018_0001
Figure imgf000018_0001
[0095] [保護膜溶解速度]  [0095] [Protection film dissolution rate]
下記表 1に示す試料 1〜6をそれぞれスピンナ一により基板上に塗布した後、 90°C にて 60秒間ソフトベータし、膜厚 28nmの保護膜を形成した。  Samples 1 to 6 shown in Table 1 below were each applied onto a substrate by a spinner, and then soft beta at 90 ° C. for 60 seconds to form a protective film having a thickness of 28 nm.
[0096] 次いで、この保護膜上に、保護膜用除去液としてパーフルォロ(2—プチルテトラヒ ドロフラン)を滴下して、保護膜が溶解する速度を測定した。またこの保護膜溶解速 度から、スループットの点力 保護膜除去性について評価した。結果を表 1に示す。 表 1中、「保護膜除去性」評価欄において、「A」は保護膜溶解速度に優れ、スループ ットの点力 保護膜除去性効果に十分に優れることを示し、「B」はスループットの点 力 保護膜除去効果が従来品に比べ改善されたことを示し、「C」は従来品と同等で スループットの改善が要求されるレベルであることを示す。  Next, perfluoro (2-ptyltetrahydrofuran) was dropped as a protective film removal solution on the protective film, and the rate at which the protective film was dissolved was measured. In addition, from the rate of dissolution of the protective film, the point-of-thickness protective film removability of the throughput was evaluated. The results are shown in Table 1. In Table 1, in the “Protective film removability” evaluation column, “A” indicates that the protective film dissolution rate is excellent, and the throughput of the throughput is sufficiently excellent, and “B” indicates the throughput. Point Indicates that the protective film removal effect has been improved compared to the conventional product, and “C” indicates that it is the same level as the conventional product and requires improved throughput.
[0097] (実施例 4)  [Example 4]
下記表 1に示す試料 1〜6の撥水性、スキャン追従性について、転落角、接触角を 測定することにより評価した。 [0098] [転落角] The water repellency and scan followability of Samples 1 to 6 shown in Table 1 below were evaluated by measuring the falling angle and contact angle. [0098] [Falling angle]
下記表 1に示す試料 1 6をそれぞれ基板上に 50 L滴下した後、該基板を 1秒間 に:^ の傾斜速度の割合で斜度を上げていき、基板上の液滴が動き始めた時点で の基板の傾斜角度 (転落角)を測定した。転落角の測定は、転落角計「Drop Master 700」(協和界面科学 (株)製)を用いた。結果を表 1に示す。  After dropping 50 L of each sample 16 shown in Table 1 onto the substrate, the substrate was ramped up at a rate of inclination rate of ^ per second, and the droplet on the substrate started to move. The substrate tilt angle (rolling angle) was measured. The drop angle was measured using a drop angle meter “Drop Master 700” (manufactured by Kyowa Interface Science Co., Ltd.). The results are shown in Table 1.
[0099] [接触角] [0099] [Contact angle]
下記表 1に示す試料 1 6をそれぞれ基板上に 2 L滴下し、液滴と基板との接触 角を測定した。結果を表 1に示す。  2 L of each sample 16 shown in Table 1 below was dropped on the substrate, and the contact angle between the droplet and the substrate was measured. The results are shown in Table 1.
[0100] [表 1] [0100] [Table 1]
Figure imgf000019_0001
Figure imgf000019_0001
[0101] 表 1の結果から明らかなように、質量平均分子量(Mw) 5, 000 200, 000に低分 子量ィ匕した環式フルォロアルキルポリエーテル (試料 2 6)を含む保護膜を用いた 場合、質量平均分子量 (Mw) 250, 000の試料 1に比べ、溶解速度が速ぐ除去液 に対する溶解性に優れる。すなわち従来に比べ少量の除去液で保護膜を溶解除去 することができ、製造コストの低減、スループットの向上を図ることができるという優れ た効果を奏する。なお、試料 1、試料 2 6のいずれも、撥水性に優れ、かつスキャン 追従性にも優れ、局所液浸露光プロセスに好適である。 [0101] As is clear from the results in Table 1, a protective film containing a cyclic fluoroalkyl polyether (sample 26) with a low molecular weight of 5,000 200,000 (Mw) 5,000 When is used, it is superior in solubility in the removal solution with a faster dissolution rate than Sample 1 with a mass average molecular weight (Mw) of 250,000. That is, it is possible to dissolve and remove the protective film with a smaller amount of removal solution than in the prior art, and there is an excellent effect that the manufacturing cost can be reduced and the throughput can be improved. Both Sample 1 and Sample 26 have excellent water repellency and excellent scan followability, and are suitable for the local liquid immersion exposure process.
[0102] (実施例 5)  [0102] (Example 5)
[ ArF用ドライ露光機 ( =非液浸用露光機)による擬似液浸露光評価] 有機系反射防止膜組成物「ARC29」(Brewer社製)をスピンナーを用いてシリコン ゥエーハ上に塗布し、ホットプレート上で 225°C、 60秒間焼成して乾燥させることによ り、膜厚 77nmの反射防止膜を形成した。そして、この反射防止膜上に、 ArF用ポジ 型ホトレジストで(「TARF— P6111ME」;東京応化工業 (株)製)を塗布し、ホットプ レート上で 130°Cにて 90秒間プレベータして、乾燥させることにより、反射防止膜上 に膜厚 225nmのホトレジスト膜を形成した。 [Pseudo immersion exposure evaluation using ArF dry exposure machine (= non-immersion exposure machine)] Silicone anti-reflective coating composition “ARC29” (Brewer Co.) using a spinner An antireflection film with a thickness of 77 nm was formed by coating on a wafer, baking on a hot plate at 225 ° C for 60 seconds and drying. On this antireflection film, ArF positive photoresist (“TARF-P6111ME”; manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied, pre-betaed at 130 ° C for 90 seconds on a hot plate, and dried. As a result, a 225 nm thick photoresist film was formed on the antireflection film.
[0103] 該ホトレジスト膜上に、上記試料 2〜6 (ただし固形分濃度 1. 1質量%に調整)をそ れぞれ塗布し、 90°Cにて 60秒間加熱し、膜厚 28nmの保護膜を形成した。  [0103] On the photoresist film, each of the above samples 2 to 6 (however, the solid content concentration was adjusted to 1.1% by mass) was applied and heated at 90 ° C for 60 seconds to protect the film with a thickness of 28 nm. A film was formed.
[0104] 次に、 ArF用露光機(「NSR— S302A」;(株)ニコン製)を用いて露光した。露光後 、 1分間純水を滴下し擬似液浸環境下においた。次いで 130°C、 90秒間の条件で P EB処理をした後、保護膜をパーフルォロ(2—プチルテトラヒドロフラン)に 30秒間接 触させて剥離した。その後、さらに 2. 38質量%TMAH水溶液を用いて、 23°Cにて 60秒間現像処理した。  Next, exposure was performed using an ArF exposure machine (“NSR-S302A”; manufactured by Nikon Corporation). After the exposure, pure water was dropped for 1 minute and placed in a simulated immersion environment. Next, PEB treatment was performed at 130 ° C. for 90 seconds, and then the protective film was peeled off by indirect contact with perfluoro (2-ptyltetrahydrofuran) for 30 seconds. Thereafter, development was further performed at 23 ° C. for 60 seconds using a 2.38 mass% TMAH aqueous solution.
[0105] このようにして得た 130nmのライン 'アンド'スペースパターン(1 : 1)を走査型電子 顕微鏡 (SEM)により観察したところ、良好な形状のライン 'アンド'スペースパターン が形成できた。  When the 130 nm line “and” space pattern (1: 1) obtained in this way was observed with a scanning electron microscope (SEM), a well-shaped line “and” space pattern could be formed.
産業上の利用可能性  Industrial applicability
[0106] 本発明の保護膜形成用材料は、膜表面の均一性に極めて優れ、また、局所液浸 露光時に滴下される液滴に対する接触角を低減させることができることから、局所液 浸露光によるホトレジストパターン形成において、パターン欠陥のないホトレジストパ ターンを得ることができる。よって特に局所液浸露光に好適に利用される。  [0106] The material for forming a protective film of the present invention is extremely excellent in the uniformity of the film surface and can reduce the contact angle with respect to a droplet dropped during the local liquid immersion exposure. In forming a photoresist pattern, a photoresist pattern free from pattern defects can be obtained. Therefore, it is particularly preferably used for local liquid immersion exposure.
図面の簡単な説明  Brief Description of Drawings
[0107] [図 1]実施例 1で用いた保護膜と液滴の接触角の経時変化を示すグラフである。  FIG. 1 is a graph showing a change with time of a contact angle between a protective film and a droplet used in Example 1.
[図 2]実施例 1で用いた保護膜上に滴下した液滴の経時変化を示す顕微鏡写真(図 面代用写真)である。  FIG. 2 is a photomicrograph (drawing substitute photo) showing a change with time of a droplet dropped on the protective film used in Example 1.
[図 3]比較例 1で用いた保護膜と液滴の接触角の経時変化を示すグラフである。 圆 4]比較例 1で用いた保護膜上に滴下した液滴の経時変化を示す顕微鏡写真 (図 面代用写真)である。  FIG. 3 is a graph showing the change over time in the contact angle between the protective film and the droplet used in Comparative Example 1.圆 4] A photomicrograph (drawing substitute photo) showing the change over time of the droplet dropped on the protective film used in Comparative Example 1.

Claims

請求の範囲  The scope of the claims
[1] 液浸露光プロセスに用いられ、基板上のホトレジスト膜上に積層される保護膜を形 成するための材料であって、環式フルォロアルキルポリエーテルとフッ素系有機溶剤 を含有する、液浸露光プロセス用保護膜形成用材料。  [1] A material used in the immersion exposure process to form a protective film laminated on a photoresist film on a substrate, which contains a cyclic fluoroalkyl polyether and a fluorine-based organic solvent A material for forming a protective film for an immersion exposure process.
[2] 環式フルォロアルキルポリエーテル力 下記式 (I)で表される構成単位を有するポリ マーである、請求項 1記載の液浸露光プロセス用保護膜形成用材料。  [2] The material for forming a protective film for an immersion exposure process according to [1], which is a polymer having a constitutional unit represented by the following formula (I):
( I )
Figure imgf000021_0001
(I)
Figure imgf000021_0001
[式 (I)中、 Rf はフッ素原子、または炭素数 1〜5のフルォロアルキル基若しくはフル  [In the formula (I), Rf represents a fluorine atom, a fluoroalkyl group having 1 to 5 carbon atoms or
1  1
ォロアルキルエーテル基であり、 Rf は存在していてもいなくてもよぐ存在している場  If it is a haloalkyl ether group and Rf is present or absent
2  2
合 (複数存在してもよ 、)は炭素数 1〜5のフルォロアルキル基またはフルォロアルキ ルエーテル基であり、 Xは o または—(CF ) ― (ただし qは 0または 1の数を示す  Is a fluoroalkyl group or a fluoroalkyl ether group having 1 to 5 carbon atoms, and X is o or — (CF) — (where q represents the number of 0 or 1)
2 q  2 q
)であり、 Yは— O または—(CF ) - (ただし Vは 1以上の数を示す)であり、 Zは—(  ), Y is —O or — (CF) − (where V represents a number of 1 or more), and Z is — (
2  2
O) (ただし sは 0または 1の数を示す)であり、 p、 t、 uはそれぞれ 0〜3の数を示し、 mは繰り返し単位を意味する。 ]  O) (wherein s represents a number of 0 or 1), p, t and u each represent a number of 0 to 3, and m represents a repeating unit. ]
[3] 環式フルォロアルキルポリエーテル力 下記式(II)で表される構成単位を有するポ リマーである、請求項 1記載の液浸露光プロセス用保護膜形成用材料。  [3] The material for forming a protective film for an immersion exposure process according to claim 1, which is a polymer having a structural unit represented by the following formula (II):
Figure imgf000021_0002
Figure imgf000021_0002
[式(II)中、 p、 t、 uはそれぞれ 0〜3の数を示し、 rは 1〜3の数を示し、 mは繰り返し 単位を意味する。 ] [In formula (II), p, t and u each represent a number from 0 to 3, r represents a number from 1 to 3, and m represents a repetition. Means a unit. ]
環式フルォロアルキルポリエーテル力 下記式(III)で表される構成単位を有するポ リマーである、請求項 1記載の液浸露光プロセス用保護膜形成用材料。  2. The material for forming a protective film for an immersion exposure process according to claim 1, which is a polymer having a structural unit represented by the following formula (III):
Figure imgf000022_0001
Figure imgf000022_0001
[式 (III)中、 Rf はフッ素原子、または炭素数 1〜5のフルォロアルキル基若しくはフ  [In the formula (III), Rf represents a fluorine atom, a fluoroalkyl group having 1 to 5 carbon atoms or
1  1
ルォロアルキルエーテル基であり、 Rf は存在していてもいなくてもよぐ存在している  Fluoroalkyl ether group, Rf may or may not be present
2  2
場合 (複数存在してもよ ヽ)は炭素数 1〜5のフルォロアルキル基またはフルォロアル キルエーテル基であり、 tは 0〜3の数を示し、 mは繰り返し単位を意味する。 ]  The case (which may be present in plural) is a fluoroalkyl group or a fluoroalkyl ether group having 1 to 5 carbon atoms, t is a number from 0 to 3, and m is a repeating unit. ]
[5] 環式フルォロアルキルポリエーテルの質量平均分子量(Mw)が 5, 000〜200, 00 [5] The weight average molecular weight (Mw) of the cyclic fluoroalkyl polyether is 5,000 to 200, 00
0である、請求項 1記載の保護膜形成用材料。 The material for forming a protective film according to claim 1, wherein the material is 0.
[6] 環式フルォロアルキルポリエーテルとして 1種類のポリマーのみを用いる、請求項 1 記載の液浸露光プロセス用保護膜形成用材料。  6. The material for forming a protective film for an immersion exposure process according to claim 1, wherein only one type of polymer is used as the cyclic fluoroalkyl polyether.
[7] 液浸露光プロセスを用いたホトレジストパターン形成方法であって、基板上にホトレ ジスト膜を設け、該ホトレジスト膜上に請求項 1記載の保護膜形成用材料を用いて保 護膜を形成した後、該基板の少なくとも前記保護膜上に液浸媒体を配置し、前記液 浸媒体および前記保護膜を介して、前記ホトレジスト膜を露光装置により選択的に露 光した後、ホトレジスト膜から保護膜を除去し、次いでホトレジスト膜を現像処理し、ホ トレジストパターンを得る、ホトレジストパターンの形成方法。  [7] A photoresist pattern forming method using an immersion exposure process, wherein a photoresist film is provided on a substrate, and the protective film is formed on the photoresist film using the protective film forming material according to claim 1. Then, an immersion medium is disposed on at least the protective film of the substrate, and the photoresist film is selectively exposed by an exposure device through the immersion medium and the protective film, and then protected from the photoresist film. A method for forming a photoresist pattern, wherein the film is removed, and then the photoresist film is developed to obtain a photoresist pattern.
[8] 液浸露光プロセスが、露光装置のレンズと、ホトレジスト層上に保護膜を形成した基 板との間のみを液浸媒体で満たす局所液浸露光プロセスである、請求項 1記載の液 浸露光プロセス用保護膜形成用材料。  8. The liquid immersion exposure process according to claim 1, wherein the liquid immersion exposure process is a local liquid immersion exposure process in which only a space between the lens of the exposure apparatus and the substrate having a protective film formed on the photoresist layer is filled with the liquid immersion medium. Material for forming a protective film for immersion exposure processes.
[9] 液浸露光プロセスが、露光装置のレンズと、ホトレジスト層上に保護膜を形成した基 板との間のみを液浸媒体で満たす局所液浸露光プロセスである、請求項 7記載のホ トレジストパターンの形成方法。 [9] The immersion exposure process is based on the lens of the exposure apparatus and a protective film formed on the photoresist layer. 8. The method for forming a photoresist pattern according to claim 7, which is a local immersion exposure process in which only a space between the plates is filled with an immersion medium.
PCT/JP2006/309718 2005-05-17 2006-05-16 Material for protective film formation for liquid immersion exposure process, and method for photoresist pattern formation using the same WO2006123643A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-144270 2005-05-17
JP2005144270A JP2006323002A (en) 2005-05-17 2005-05-17 Material for forming photoresist protective film for liquid immersion exposure process, and photoresist pattern forming method using the material
JP2005-344644 2005-11-29
JP2005344644A JP2007148167A (en) 2005-11-29 2005-11-29 Material for protective film formation for liquid immersion exposure process, and method for photoresist pattern formation using the same

Publications (1)

Publication Number Publication Date
WO2006123643A1 true WO2006123643A1 (en) 2006-11-23

Family

ID=37431215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309718 WO2006123643A1 (en) 2005-05-17 2006-05-16 Material for protective film formation for liquid immersion exposure process, and method for photoresist pattern formation using the same

Country Status (2)

Country Link
TW (1) TW200710581A (en)
WO (1) WO2006123643A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352697A (en) * 1998-06-12 1999-12-24 Tokyo Ohka Kogyo Co Ltd Coating solution composition for forming antireflection film and resist material using same
WO2004074937A1 (en) * 2003-02-20 2004-09-02 Tokyo Ohka Kogyo Co., Ltd. Immersion exposure process-use resist protection film forming material, composite film, and resist pattern forming method
JP2005099646A (en) * 2003-03-28 2005-04-14 Tokyo Ohka Kogyo Co Ltd Resist composition for liquid immersion lithography process, and resist pattern forming method using it
JP2005173474A (en) * 2003-12-15 2005-06-30 Tokyo Ohka Kogyo Co Ltd Resist composition for liquid immersion exposure process and method for forming resist pattern by using the resist material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352697A (en) * 1998-06-12 1999-12-24 Tokyo Ohka Kogyo Co Ltd Coating solution composition for forming antireflection film and resist material using same
WO2004074937A1 (en) * 2003-02-20 2004-09-02 Tokyo Ohka Kogyo Co., Ltd. Immersion exposure process-use resist protection film forming material, composite film, and resist pattern forming method
JP2005099646A (en) * 2003-03-28 2005-04-14 Tokyo Ohka Kogyo Co Ltd Resist composition for liquid immersion lithography process, and resist pattern forming method using it
JP2005173474A (en) * 2003-12-15 2005-06-30 Tokyo Ohka Kogyo Co Ltd Resist composition for liquid immersion exposure process and method for forming resist pattern by using the resist material

Also Published As

Publication number Publication date
TW200710581A (en) 2007-03-16

Similar Documents

Publication Publication Date Title
JP4842981B2 (en) How to avoid crushing development patterns
JP4272013B2 (en) Defect reduction method and processing solution in semiconductor device manufacturing
JP4227112B2 (en) Treatment solution containing surfactant
JP5442008B2 (en) Resist pattern forming method and developer
US20080166667A1 (en) Tunable contact angle process for immersionlithography topcoats and photoresists
CN109313398A (en) It rinses composition, form the method for resist pattern and the preparation method of semiconductor devices
US6136505A (en) Liquid coating composition for use in forming antireflective film and photoresist material using said antireflective film
JP2007249154A (en) Method for forming resist laminate
JP2007024959A (en) Material for forming protective film, and method for forming photoresist pattern by using the same
JP2007078744A (en) Protective film forming material and photoresist pattern forming method using the same
JP2010039260A (en) Coating composition suitable to be layered on resist layer
TWI447525B (en) Composition for antireflection coating and method for forming pattern using the same
JP2006184575A (en) Material for forming resist protective film and resist pattern forming method using same
WO2006123643A1 (en) Material for protective film formation for liquid immersion exposure process, and method for photoresist pattern formation using the same
JP2007148167A (en) Material for protective film formation for liquid immersion exposure process, and method for photoresist pattern formation using the same
JP2006323002A (en) Material for forming photoresist protective film for liquid immersion exposure process, and photoresist pattern forming method using the material
JP5110077B2 (en) Resist composition, resist pattern forming method, and electronic device manufacturing method
JP2007052426A (en) Top coating composition for photoresist and method of forming photoresist pattern using the same
US7468235B2 (en) Barrier coating compositions containing fluorine and methods of forming photoresist patterns using such compositions
JP2007078745A (en) Protective film forming material and photoresist pattern forming method using the same
WO2023182094A1 (en) Active-ray-sensitive or radiation-sensitive resin composition, resist film, method for forming resist pattern, method for manufacturing electronic device, and electronic device
WO2023182093A1 (en) Active-ray-sensitive or radiation-sensitive resin composition, resist film, method for forming pattern, method for manufacturing electronic device, and electronic device
JP2010085637A (en) Resist protective film composition for immersion lithography, and method of forming resist pattern
JP2008090081A (en) Detergent for lithography and method for forming resist pattern using the same
JP2010164609A (en) Liquid for modifying resist surface and method for forming resist pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746432

Country of ref document: EP

Kind code of ref document: A1