WO2006123029A2 - Dispositif de direction de moto et procede de fabrication d'un dispositif de direction de moto - Google Patents

Dispositif de direction de moto et procede de fabrication d'un dispositif de direction de moto Download PDF

Info

Publication number
WO2006123029A2
WO2006123029A2 PCT/FR2006/000940 FR2006000940W WO2006123029A2 WO 2006123029 A2 WO2006123029 A2 WO 2006123029A2 FR 2006000940 W FR2006000940 W FR 2006000940W WO 2006123029 A2 WO2006123029 A2 WO 2006123029A2
Authority
WO
WIPO (PCT)
Prior art keywords
support
wheel
motorcycle
chassis
frame
Prior art date
Application number
PCT/FR2006/000940
Other languages
English (en)
Other versions
WO2006123029A3 (fr
Inventor
Paul Meuret
Original Assignee
Paul Meuret
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Meuret filed Critical Paul Meuret
Priority to EP06743750A priority Critical patent/EP1881926A2/fr
Publication of WO2006123029A2 publication Critical patent/WO2006123029A2/fr
Publication of WO2006123029A3 publication Critical patent/WO2006123029A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • B62K25/12Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg
    • B62K25/14Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg with single arm on each fork leg
    • B62K25/16Axle suspensions for mounting axles resiliently on cycle frame or fork with rocking arm pivoted on each fork leg with single arm on each fork leg for front wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices

Definitions

  • the present invention relates generally to the field of motorcycle directions.
  • the invention relates to a steering device for motorcycle comprising:
  • Orientation of the directional wheel is generally carried out using a handlebar rotating a telescopic fork at the lower end of which is assembled the wheel.
  • This device of the prior art has a motorcycle whose chassis is connected to the support of the directional wheel by means of a lateral arm oscillating in a plane parallel to the longitudinal plane of symmetry of the motorcycle.
  • the swing arm is connected by a pivot connection to the fasteners located in the lower part of the engine.
  • a telescopic damper is connected at one end to the swing arm and at the other end to a high point of the engine.
  • the wheel support is connected to the swing arm by ball joints and its position relative to these ball joints is controlled by a directional rod connected to the handlebar of the motorcycle.
  • the purpose of the present invention is to propose another solution that makes it possible, on the one hand, to orient a directional motorcycle wheel with respect to the frame of this motorcycle and, on the other hand, to increase the rigidity of the wheel / chassis while lowering the center of gravity of such a motorcycle.
  • connection assembly comprises first and second links; the first link being connected to the mobile support by a first support pivot connection and to a first of said chassis fasteners by a first chassis pivot connection;
  • the second connecting rod being connected to the mobile support by a second support pivot connection and to a second of said chassis fastenings by a second chassis pivot connection
  • said first link having a minimum height at least equal to a quarter of a minimum separation distance between the first support pivot connection and the first chassis pivot connection
  • said second connecting rod having a minimum height at least equal to a quarter of a minimum separation distance between the second support pivot connection and the second chassis pivot connection
  • first and second fasteners being spaced apart from each other by a fixed distance away from the fasteners and the first and second support pivot links being spaced apart from each other by a fixed distance away from the pivot support links, these distances being different from each other.
  • the connecting assembly connecting the movable support to the frame is made as a deformable quadrilateral in a plane including the quadrilateral and having two nonparallel sides to each other, each of these sides being formed by a single connecting rod having a minimum height connecting rod at least equal to a quarter of the length of the same rod, one side of the quadrilateral being chosen to be fixed on the frame and in that to vary the orientation of the axis of the directional wheel with respect to a plane of longitudinal symmetry motorcycle, deforming said quadrilateral.
  • each connecting rod is provided to allow a long centering of the support and frame pivots it maintains assembled together.
  • each rod has a large cross section, of minimum height at least equal to one quarter of the distance it maintains between the pivots.
  • the first and second connecting rods are dimensioned to allow them to be held on only the mobile support relative to the chassis.
  • the quadrilateral thus formed although being of reduced thickness can only be deformed in the plane of the quadrilateral.
  • This sizing of the rods also allows a compacting of the steering device while allowing its lowering substantially at the same level as the wheel axis.
  • the link assembly and more particularly the first and second connecting rods can be very low relative to the chassis, closer to the wheel axle than the handlebars of the bike.
  • the links between the steering device and the chassis are located in the lower part of the chassis which allows to stiffen them, to lower the center of gravity of the bike and improve its directional maneuverability.
  • Another advantage of the invention is that the center of gravity of the motorcycle using the device of the invention is laterally offset from the longitudinal plane of symmetry of the motorcycle when the directional wheel is oriented to turn. This offset of motorcycle center of gravity is particularly visible in Figure 1 which is described below.
  • the device further comprises a steering control shaft rotatably mounted according to a fixed control axis relative to the first and second frame fasteners and the movable support of the wheel axle comprises a piece main support; -
  • the control shaft having a control gear portion meshing with a conjugate toothed portion carried by the main part.
  • this embodiment offers the possibility of having a reduction ratio between the rotational movement of the handlebar and the orientation movement of the motorcycle wheel.
  • This embodiment also allows to have a relatively low center of gravity since the reduction means that constitute the control gear portion meshing with the conjugate toothed portion are located at the main part.
  • This embodiment will be presented in more detail with reference to FIGS. 2 and 4.
  • other motion reduction means may be used instead of the movement reduction device constituted by the control gear portion (28) meshing with the conjugate toothed portion (29) carried by the main piece (20).
  • Such reduction means may for example comprise a toothed belt or a drive chain connecting the control gear portion with a complementary toothed portion belonging to the main part.
  • the link assembly comprises at most two connecting rods which allows for a resistant assembly while being extremely compact compared to a system that would have more than two connecting rods.
  • the device comprises a wheel rotatably mounted along the wheel axle and that the first and second links are arranged in an intermediate zone situated between the wheel and the chassis fasteners, the wheel being situated at a distance of this intermediate zone.
  • first and second support pivot connections and the first and second chassis pivot links prefferably be pivot links of pivot axes parallel to each other.
  • Such a structure is deformable only in a given deformation plane, which facilitates the adjustment and implementation of the steering device and in particular the adjustment of the flush angle. It can also be ensured that said first and second chassis pivot links are located in lateral planes substantially parallel to the longitudinal plane of symmetry of motorcycle and are each inclined in these lateral planes of the same flush angle.
  • This embodiment makes it possible to exert a return torque on the steering device so that the wheel axle support positions itself in a predetermined predetermined position.
  • This recall torque is generated as soon as the device direction is no longer positioned symmetrically with respect to the plane in which a reaction force of the running surface on the wheel is exerted. The more the flush angle tends to cancel out and the lower the return torque will be to zero when the flush angle is zero.
  • the mobile support of the wheel axle to comprise a main support piece with which said first and second support pivot links are formed and a secondary part carrying the wheel axle, this secondary part. being movably assembled relative to the main piece so that the wheel axle can move relative to the main support piece while remaining perpendicular to a longitudinal motorcycle symmetry plane.
  • This embodiment allows vertical movement of the wheel axle relative to the rest of the chassis without having to rotate the steering.
  • a damper can be easily integrated into the steering device.
  • the steering device can comprise at least one damper such as a telescopic damper generally provided with a spring adapted to damp the movement movement of the wheel axle with respect to the main piece of the support.
  • the secondary part is an oscillating arm or an oscillating fork, the arm or the fork being pivotally mounted relative to the main part along a pivot axis parallel to the wheel axis.
  • This embodiment is an alternative to the telescopic fork system which has the advantage of being particularly stronger than the telescopic fork, especially at the level of frontal impacts.
  • the damper may comprise a first shock absorber assembly point articulated with respect to the main part and a second shock absorber assembly point articulated with respect to the secondary part, the damper being adapted to allow relative damped movement between said first and second damper assembly points. Thanks to this structure, a single damper can be used to cushion the vertical displacement of the wheel directional relative to the rest of the steering device, which is advantageous over conventional motorcycle damping systems which generally use two front dampers.
  • the steering device may comprise a steering control shaft rotatably mounted according to a fixed control axis relative to the first and second chassis fasteners.
  • This embodiment makes it possible to maintain a control by shaft / handlebars without resorting to a traditional telescopic fork which combines the functions of support of the motorcycle, shock absorber and wheel orientation.
  • the steering interface is therefore close to that generally used while retaining the advantages of the invention such as lowering the center of gravity of the bike and a greater rigidity of the wheel relative to the chassis.
  • control shaft has a control toothed portion meshing with a conjugate toothed portion carried by the main part.
  • a rotational direction control shaft is mounted according to a fixed control axis relative to the frame, this control shaft comprising a control gear portion meshing with a conjugate toothed portion carried by the main piece.
  • FIG. 1 represents a schematic top view of the device direction according to the invention
  • Figure 2 shows an embodiment of the steering device of the invention for right side view
  • FIG. 3 represents a view from above of the embodiment detailed in FIG. 2
  • Figure 4 shows a top view of the steering device of the invention with a steering control shaft and a steering control gear for orienting the directional wheel with respect to the longitudinal axis of motorcycle symmetry
  • FIG. 5 represents a particular embodiment of the invention comprising longer connecting rods that cross each other and each rod of which has an end connected to the mobile support.
  • the invention relates to a motorcycle steering device 1.
  • the principle of the invention is based on the fact of using a deformable quadrilateral other than a parallelogram (or deformable structure similar functionally to the quadrilateral) to mechanically connect the wheel axle support 2 of the motorcycle to the chassis 6 of the motorbike.
  • This deformable quadrilateral has sides whose lengths are fixed. However, these lengths may, in a particular embodiment, be adjustable to vary properties of the device such that:
  • Connecting rods 9a and 9b (also referenced 31a and 31b in FIG. 1) constitute sides of the quadrilateral that are not parallel to one another. These sides are symmetrical with respect to a longitudinal plane of symmetry 17 of the motorcycle, when the directional wheel is also placed in this plane of symmetry 17.
  • the intersections of the sides of the quadrilateral are constituted by pivot links 10, 11, 12, 13 whose pivot axes are parallel to each other.
  • One of the sides of the quadrilateral is constituted by the frame of the motorcycle and has the ends of chassis fasteners 5a and 5b.
  • the opposite side of the quadrilateral is constituted by a portion of the movable support 4 of the wheel axle 2. This side has a spacing 15 less than the spacing 14 of the side constituted by the frame 6.
  • the fixed distance distance of the fasteners 5a, 5b is greater than the fixed distance away from the support pivot links 10, 12. It should however be noted that the fixed distance away from the fasteners 5a, 5b may alternatively be less than the distance fixed distance of support pivot links 10, 12.
  • the first and second connecting rods which form opposite sides of the deformable quadrilateral interconnect the frame 6 and the movable support 4 of the wheel axle 2.
  • These connecting rods are of identical lengths to each other so that the sides of the quadrilateral respectively belonging to the support 4 and the chassis are parallel to each other when the axis of rotation 2 wheel is perpendicular to the longitudinal plane of symmetry of motorcycle 17. In this way, the device naturally tends to be symmetrically aligned with the motorcycle when it rolls on its horizontal rolling plane.
  • the appropriate dimensions of the quadrilateral are 400 mm for the distance 14 between the fasteners, 220 mm for the length of connecting rods and 240 mm distance from the pivot support connections. These dimensions and proportions provide a rotation of the directional wheel of 16 ° in each direction and a rigid holding of this wheel.
  • Dotted lines in Figure 1 show the steering device when the steering wheel is oriented to the right to make a right turn. Everything then happens substantially as if the wheel revolved around an axis perpendicular to the deformation plane of the quadrilateral and passing through the center of the wheel. It should be noted that the deformation plane of the quadrilateral is inclined by an angle, which is here 24 °, corresponding to the hunting angle of the steering wheel of the motorcycle.
  • the quadrilateral In the right turn configuration (configuration shown in dotted lines), the quadrilateral is deformed in such a way that the connecting rods pivot (around the links frame pivot 11 and 13) to the left causing a pivoting to the right of the movable support 4.
  • the quadrilateral is deformed in such a way that the connecting rods pivot (around the chassis pivot links 11 and 13) towards the right, causing the mobile support 4 to pivot to the left.
  • This pivoting movement of the rods and the movable support 4 in a direction opposite to the direction of the turn to take allows to deport the center of gravity of the motorcycle in a direction also opposite to the direction of the turn.
  • This mode of operation corresponds to a wheel 3 thrust, but could be reversed in the case where the invention is implemented with a wheel pulled.
  • Figure 2 shows a right side view of the device of the invention.
  • the frame 6 of the motorcycle carries two pivot links, only one of which is visible in this view.
  • the pivot links are inclined at a hunting angle 18 with respect to a plane 19 which is perpendicular to the motorcycle running surface.
  • the link assembly 7 comprises two links, only one of which is visible 9a in this view.
  • Each connecting rod has a minimum height H at least equal to a quarter of the center distance D between the support and chassis pivot links that maintains this rod.
  • This minimum height H of the connecting rod is measured in a cross sectional plane of the connecting rod, this section plane always being parallel to the axes of the support and chassis pivot links linked by this connecting rod.
  • the distance / center distance D is the distance of distance between the pivot links linked by the same rod.
  • the dimension H is preferably equal to or greater than the center distance D which avoids the deflection of the steering device. Indeed, the dimension H of each connecting rod is always chosen so that the connecting rod does not bend under the forces applied to the steering device and that the pivot links always remain substantially parallel to each other.
  • Each rod has the shape of a substantially flat flank having an outer shape to obtain sufficient ground clearance in all driving configurations of the bike.
  • Each flank has two mutually parallel opposite side edges along which a frame pivot 11 is respectively arranged and a support pivot 10.
  • This flank shape has the advantage of being relatively prone to deformations in the plane of the sidewall which stiffens the direction.
  • Each side can be perforated to lighten and allow the circulation of air.
  • the pivot connections are made by cylindrical axes penetrating into bores.
  • these pivot links are free from play and with low friction and comprise for this purpose needle bearings for precise guidance.
  • the movable support 4 has a main support part 20 which is in the form of a bracket and a part of which is situated in the plane of the support pivot connections and the other part of which is substantially perpendicular and carries a conjugate toothed portion 29 serving to control the orientation of the steering device.
  • a lower side of the bracket / main part 20 extends in the plane of the support pivot links therebetween. This lower side carries a pivot axis 23 on which pivots an oscillating arm
  • This oscillating arm / fork / secondary part 21 is rigid and preferably extends on each side of the wheel 3 to hold it at its end via the wheel axle 2.
  • a stiffener 33 forms a triangulation with the fork 21 and its extension 32.
  • the spacer 34 solidarises the extensions 32 and connects to the damper
  • the damper 22 is telescopic and has one end fixed to the spacer 34 by a pivot axis 25 and another end fixed to the main piece 20 in the shape of a square by the axis of rotation. pivoting 24 of a fixation 35.
  • the damper is located in the plane of rotation of the wheel 3 to reduce the torsional effects of the device and allow the use of a single damper.
  • the wheel 3 is shown in the normal rolling position and is also represented in dashed lines 3 'in the maximum damping position, with its axis in
  • FIG. 3 shows a top view of the steering device according to the invention with the wheel facing to the left.
  • This diagram shows a detail of the secondary part 21 which in this embodiment comprises a spacer 34 interconnecting the two extensions 32 of the oscillating arm 21 thus forming a fork in which the wheel 3 is placed.
  • FIG. 4 shows a top view of the steering device of the invention whose wheel is oriented to the right.
  • This figure represents a part of the control means necessary for the orientation of the wheel.
  • a bearing 36 is connected to a fixed portion 6 of the frame so as to allow the maintenance of a steering control shaft 26 at the top of which is assembled a traditional handlebar (not shown).
  • the control shaft pivots according to a fixed control axis 27 which is parallel to the pivot links 10, 11, 12, 13.
  • the lower end of the control shaft carries a toothing 28 meshing with a conjugate toothed portion 29 reported on the top of the bracket of the main part 20.
  • This gear connection is provided for a rotation to the right of the handlebar causes a rotation to the right of the wheel and preferably allows a gear reduction.
  • this toothing 29 constantly cleans a wide meshing zone 37 which moves towards either end of the toothing 29 when the handlebar is turned in either direction .
  • the tangential force transmitted by the toothing 28 to the toothing 29 is oriented more favorably when the steering angle increases, which reinforces the handlebar control.
  • the handlebar torque would not exceed 50 Nm; it's about the torque on the handlebars of a telescopic fork that encloses a wheel equipped with a side disc brake. It should be noted that in normal braking on the road, the torque on the handlebar of the steering device 1 is significantly lower than this value.
  • FIG. 5 represents an embodiment of the invention with two connecting rods 9a, 9b crossed together and each having an end connected by support pivot connection 10, 12 with the support 4.
  • Each of these two connecting rods is connected at its other end to a frame attachment 5a, 5b.
  • This embodiment requires that the rods are shaped to nest.
  • at least one of the connecting rods can be hollowed to let the other rod through this opening.
  • the rods can be bent so as not to interfere with each other when steering the steering wheel.
  • the steering device 1 of the invention has the following advantages: - high rigidity because the device is attached to the bottom of the chassis that joins the motorcycle rear suspension arm and not in an upper part of the frame which is subject to greater deformities; - A better distribution of masses because the device and its fasteners with the chassis are located in the lower part of the chassis; - Better stability of the steering device during braking because unlike a telescopic fork substantially vertical motorcycle that has a tendency to sink (dive) and bend during braking, the device of the invention is disposed substantially horizontally relative to to the axis of rotation of the motorcycle wheel, which virtually eliminates diving and bending; a significant reduction in the unsprung mass and an improvement in the handling of this fact and the fact that the mobile support 4 is a short swingarm or a short fork;
  • the suspension can be made with a single shock and becomes similar to the rear suspension of most motorcycles; the angle of orientation of the wheel axle 2 can be different from the angle of orientation of the handlebar by realizing for example a reduction of angle between the handlebar and the support 4, hence a higher accuracy and more softness in driving on the road; the chassis of the bike no longer need to withstand the efforts of management in its upper part, can be lightened portions of chassis traditionally placed above and in front of the engine of the motorcycle, which facilitates engine access;

Abstract

Dispositif de direction (1) pour moto comprenant : un axe de roue (2), un support mobile de l'axe de roue (4), des fixations de châssis (5a, 5b), un ensemble de liaison (7) reliant de façon articulée le support mobile (4) par rapport aux fixations de châssis (5a, 5b), L'ensemble de liaison (7) comporte : une première bielle (9a) reliée au support mobile (4) par une première liaison pivot de support (10) et à une première desdites fixations de châssis (5 a) par une première liaison pivot de châssis (11), une seconde bielle (9b) reliée au support mobile (4) par une seconde liaison pivot de support (12) et à une seconde desdites fixations de châssis (5b) par une seconde liaison pivot de châssis (13) ; et un arbre de commande (28) engrenant avec une portion dentée conjuguée (29) portée par la pièce principale (20).

Description

DISPOSITIF DE DIRECTION DE MOTO ET PROCEDE DE FABRICATION D'UN DISPOSITIF DE DIRECTION DE MOTO
La présente invention concerne, de façon générale, le domaine des directions de motos.
Plus particulièrement, l'invention concerne un dispositif de direction pour moto comprenant :
- un axe de roue,
- un support mobile de l'axe de roue,
- des fixations de châssis assemblées fixement sur un châssis de moto ou adaptées pour être assemblées fixement sur un châssis de moto, - un ensemble de liaison reliant de façon articulée le support mobile par rapport aux fixations de châssis et comportant pour cela au moins une liaison pivot entre les fixations de châssis et l'ensemble de liaison.
Pour diriger une moto, on utilise une roue avant directionnelle pouvant être orientée par rapport au châssis de la moto. Sur route ou sur circuit, l'on tourne très peu la roue car la moto doit être penchée pour équilibrer la force centrifuge, ce qui la fait naturellement tourner. Le guidon est tourné plus fort à faible allure, en ville, dans les parkings ou pour rebrousser chemin.
L'orientation de la roue directionnelle est généralement réalisée à l'aide d'un guidon entraînant à rotation une fourche télescopique à l'extrémité inférieure de laquelle est assemblée la roue.
Afin de faciliter la maniabilité de la moto il est souhaitable que la roue directrice reste très stable par rapport à l'autre roue, et d'abaisser le centre de gravité de la moto. D'autre part, l'emploi d'un bras oscillant ou d'une fourche horizontale évite la fameuse plongée des fourches télescopiques au freinage. Ce sont des raisons pour lesquelles de nombreux inventeurs de dispositifs de direction pour moto ont développé diverses solutions visant à rapprocher des éléments du dispositif de direction de la partie basse du châssis moto. Un dispositif de direction du type précédemment défini, permettant un tel abaissement du centre de gravité de la moto, est par exemple décrit dans le document brevet US 4, 265, 329.
Ce dispositif de l'art antérieur présente une moto dont le châssis est relié au support de la roue directionnelle par l'intermédiaire d'un bras latéral oscillant dans un plan parallèle au plan de symétrie longitudinal de la moto. Pour cela le bras oscillant est relié par une liaison pivot à des fixations situées en partie basse du moteur. Un amortisseur télescopique est relié par une extrémité au bras oscillant et par l'autre extrémité à un point haut du moteur. Le support de roue est relié au bras oscillant par des rotules et sa position par rapport à ces rotules est commandée par une biellette directionnelle reliée au guidon de la moto.
Dans ce contexte, la présente invention a pour but de proposer une autre solution permettant d'une part d'orienter une roue directionnelle de moto par rapport au châssis de cette moto et d'autre part d'augmenter la rigidité de la liaison roue / châssis tout en abaissant le centre de gravité d'une telle moto.
A cette fin, le dispositif de direction pour moto de l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule défini précédemment, est essentiellement caractérisé en ce que l'ensemble de liaison comporte des première et seconde bielles ; - la première bielle étant reliée au support mobile par une première liaison pivot de support et à une première desdites fixations de châssis par une première liaison pivot de châssis ;
- la seconde bielle étant reliée au support mobile par une seconde liaison pivot de support et à une seconde desdites fixations de châssis par une seconde liaison pivot de châssis,
- ladite première bielle ayant une hauteur minimale au moins égale au quart d'une distance minimale d'éloignement entre la première liaison pivot de support et la première liaison pivot de châssis, - ladite seconde bielle ayant une hauteur minimale au moins égale au quart d'une distance minimale d'éloignement entre la seconde liaison pivot de support et la seconde liaison pivot de châssis,
- les première et seconde fixations étant éloignées entre elles d'une distance fixe d'éloignement des fixations et les première et seconde liaisons pivot de support étant éloignées entre elles d'une distance fixe d'éloignement des liaisons pivot de support, ces distances étant différentes l'une de l'autre.
A cette même fin, il est également proposé un procédé de direction d'une moto consistant à : - créer un châssis de moto ;
- créer un support mobile portant un axe de roue directionnelle de moto ;
- relier le support mobile au châssis par l'intermédiaire d'un ensemble de liaison adapté pour permettre une mobilité relative du support mobile par rapport au châssis ; caractérisé en ce que on réalise l'ensemble de liaison reliant le support mobile au châssis comme un quadrilatère déformable dans un plan incluant le quadrilatère et possédant deux côtés non parallèles entre eux, chacun de ces côtés étant formé par une seule bielle ayant une hauteur minimale de bielle au moins égale au quart de la longueur de cette même bielle, un côté du quadrilatère étant choisi pour être fixé sur le châssis et en ce que pour faire varier l'orientation de l'axe de la roue directionnelle par rapport à un plan de symétrie longitudinal de moto, on déforme ledit quadrilatère.
Le fait que le support mobile soit relié aux fixations du châssis par des biellettes articulées à leurs extrémités par des liaisons pivot permet de réaliser un quadrilatère déformable dans un plan de déformation permettant l'orientation de l'axe de rotation de la roue. Chaque bielle est prévue pour permettre un centrage long des pivots de support et de châssis qu'elle maintient assemblés entre eux. Pour cela, chaque bielle possède une section transversale importante, de hauteur minimale au moins égale au quart de la distance qu'elle maintient entre les pivots. De ce fait les première et seconde bielles sont dimensionnées pour permettre le maintien à elles seules du support mobile par rapport au châssis. Le quadrilatère ainsi formé bien qu'étant d'épaisseur réduite ne peut se déformer que dans le plan du quadrilatère. Ce dimensionnement des bielles permet également un compactage du dispositif de direction tout en permettant son abaissement sensiblement au même niveau que l'axe de roue. Ainsi l'ensemble de liaison et plus particulièrement les première et seconde bielles peuvent se situer très bas par rapport au châssis, à plus grande proximité de l'axe de roue que du guidon de la moto.
Grâce à l'invention, les liaisons entre le dispositif de direction et le châssis sont situées en partie basse du châssis ce qui permet de les rigidifier, d'abaisser le centre de gravité de la moto et d'améliorer sa manœuvrabilité directionnelle.
Un autre avantage de l'invention est que le centre de gravité de la moto utilisant le dispositif de l'invention se déporte latéralement par rapport au plan de symétrie longitudinal de la moto lorsque la roue directionnelle est orientée pour tourner. Ce déport de centre de gravité de moto est particulièrement visible sur la figure 1 qui est décrite plus loin.
On peut également faire en sorte que le dispositif comporte en outre un arbre de commande de direction monté à rotation selon un axe de commande fixe par rapport aux première et seconde fixations de châssis et que le support mobile de l'axe de roue comporte une pièce principale de support ; - l'arbre de commande comportant une portion dentée de commande engrenant avec une portion dentée conjuguée portée par la pièce principale. Comme indiqué ci-après ce mode de réalisation offre la possibilité d'avoir une démultiplication entre le mouvement de rotation du guidon et le mouvement d'orientation de la roue de moto. Ce mode de réalisation permet également d'avoir un centre de gravité relativement bas puisque les moyens de démultiplication que constituent la portion dentée de commande engrenant avec la portion dentée conjuguée se trouvent placé au niveau de la pièce principale. Ce mode de réalisation sera présenté plus en détail en référence aux figures 2 et 4. Dans d'autres modes de réalisation de l'invention, d'autres moyens de démultiplication de mouvement peuvent être utilisés en remplacement -des moyens de démultiplication de mouvement constitués par la portion dentée de commande (28) engrenant avec la portion dentée conjuguée (29) portée par la pièce principale (20).
De tels moyens de démultiplication peuvent par exemple comprendre une courroie crantée ou une chaine d'entraînement reliant par engrainement la portion dentée de commande avec une portion dentée complémentaire appartenant à la pièce principale.
On peut également faire en sorte que l'ensemble de liaison comporte au plus deux bielles ce qui permet de réaliser un ensemble résistant tout en étant extrêmement compact par rapport à un système qui comporterait plus de deux bielles.
On peut également faire en sorte que le dispositif comporte une roue montée à rotation selon l'axe de roue et que les première et seconde bielles soient disposées dans une zone intermédiaire située entre la roue et les fixations de châssis, la roue étant située à distance de cette zone intermédiaire. L'avantage de toujours disposer les bielles entre la roue et le châssis est que ces éléments sont sensiblement alignés les un par rapport aux autres (lorsque la direction est droite) ce qui évite le phénomène de plongée de fourche lors d'un freinage.
On peut par exemple faire en sorte que les première et seconde liaisons pivot de support et les première et seconde liaisons pivot de châssis soient des liaisons pivot d'axes de pivotement parallèles entre eux.
Une telle structure n'est déformable que dans un plan de déformation donné, ce qui facilite le réglage et la mise en œuvre du dispositif de direction et notamment le réglage de l'angle de chasse. On peut également faire en sorte que lesdites première et seconde liaisons pivot de châssis soient situées dans des plans latéraux sensiblement parallèles au plan de symétrie longitudinal de moto et soient chacune inclinées dans ces plans latéraux d'un même angle de chasse.
Ce mode de réalisation permet d'exercer un couple de rappel sur le dispositif de direction afin que le support d'axe de roue se positionne de lui-même dans une position donnée prédéterminée. Ce couple de rappel est généré dès que le dispositif de direction n'est plus positionné symétriquement par rapport au plan dans lequel s'exerce une force de réaction du plan de roulement sur la roue. Plus l'angle de chasse tend à s'annuler et plus le couple de rappel sera faible jusqu'à devenir nul lorsque l'angle de chasse est nul. On peut par exemple faire en sorte que le support mobile de l'axe de roue, comporte une pièce principale de support avec laquelle sont formées lesdites première et seconde liaisons pivot de support et une pièce secondaire portant l'axe de roue, cette pièce secondaire étant assemblée de façon mobile par rapport à la pièce principale de telle façon que l'axe de roue puisse se déplacer par rapport à la pièce principale de support tout en restant perpendiculaire à un plan de symétrie longitudinal de moto.
Ce mode de réalisation permet un mouvement vertical de l'axe de roue par rapport au reste du châssis sans avoir à pivoter la direction. De ce fait, un amortisseur peut être aisément intégré au dispositif de direction. On peut par exemple faire en sorte que le dispositif de direction comporte au moins un amortisseur tel qu'un amortisseur télescopique généralement pourvu d'un ressort adapté pour amortir le mouvement de déplacement de l'axe de roue par rapport à la pièce principale du support. On peut également faire en sorte que la pièce secondaire soit un bras oscillant ou une fourche oscillante, le bras ou la fourche étant monté pivotant par rapport à la pièce principale selon un axe de pivotement parallèle à l'axe de roue. Ce mode de réalisation est une alternative au système de fourche télescopique qui a l'avantage d'être particulièrement plus résistant que la fourche télescopique, notamment au niveau des chocs frontaux. On peut également faire en sorte que l'amortisseur comporte un premier point d'assemblage d'amortisseur articulé par rapport à la pièce principale et un second point d'assemblage d'amortisseur articulé par rapport à la pièce secondaire, l'amortisseur étant adapté pour permettre un mouvement relatif amorti entre lesdits premier et second points d'assemblage d'amortisseur. Grâce à cette structure, un seul amortisseur peut être utilisé pour amortir le déplacement vertical de la roue directionnelle par rapport au reste du dispositif de direction, ce qui est avantageux par rapport aux systèmes d'amortisseurs conventionnels pour moto qui utilisent généralement deux amortisseurs avant.
On peut également faire en sorte que le dispositif de direction comporte un arbre de commande de direction monté à rotation selon un axe de commande fixe par rapport aux première et seconde fixations de châssis.
Ce mode de réalisation permet de conserver une commande par arbre / guidon sans avoir recours à une traditionnelle fourche télescopique qui cumule les fonctions de support de la moto, d'amortisseur et d'orientation de roue. L'interface de direction est donc proche de celle généralement utilisée tout en conservant les avantages de l'invention tel que l'abaissement du centre de gravité de la moto et une rigidité plus grande de la roue par rapport au châssis.
On peut également faire en sorte que l'arbre de commande comporte une portion dentée de commande engrenant avec une portion dentée conjuguée portée par la pièce principale. Ce mode de réalisation permet de créer une démultiplication au niveau de l'engrenage entre le mouvement de rotation du guidon et le mouvement d'orientation de la roue de moto.
On peut également faire en sorte que suivant le procédé de l'invention précité l'on monte un arbre de commande de direction à rotation selon un axe de commande fixe par rapport au châssis, cet arbre de commande comportant une portion dentée de commande engrenant avec une portion dentée conjuguée portée par la pièce principale.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels: la figure 1 représente une vue de dessus schématique du dispositif de direction selon l'invention ; la figure 2 représente un mode de réalisation du dispositif de direction de l'invention en vue de coté droit ; la figure 3 représente une vue de dessus du mode de réalisation détaillé à la figure 2 ; la figure 4 représente une vue de dessus du dispositif de direction de l'invention avec un arbre de commande de direction et un engrenage de commande de direction pour l'orientation de la roue directionnelle par rapport à l'axe de symétrie longitudinal de moto ; la figure 5 représente un mode de réalisation particulier de l'invention comportant des bielles plus longues qui se croisent et dont chaque bielle possède une extrémité reliée au support mobile.
Comme annoncé précédemment, l'invention concerne un dispositif de direction 1 de moto. Le principe de l'invention repose sur le fait d'utiliser un quadrilatère déformable autre qu'un parallélogramme (ou une structure déformable similaire fonctionnellement au quadrilatère) pour relier mécaniquement le support d'axe de roue 2 de la moto au châssis 6 de la moto.
Ce quadrilatère déformable possède des côtés dont les longueurs sont fixes. Toutefois, ces longueurs peuvent, dans un mode de réalisation particulier, être réglables pour faire varier des propriétés du dispositif telles que :
- le couple de rappel maximum du dispositif dans une position symétrique par rapport au plan de symétrie longitudinal de moto ;
- l'angle de chasse du dispositif.
Des bielles 9a et 9b (aussi référencées 31a et 31b sur la figure 1), constituent des côtés du quadrilatère non parallèles entre eux. Ces côtés sont symétriques par rapport à un plan de symétrie longitudinal 17 de la moto, lorsque la roue directionnelle est également placée dans ce plan de symétrie 17.
Les intersections des côtés du quadrilatère sont constituées par des liaisons pivot 10, 11, 12, 13 dont les axes de pivotement sont parallèles entre eux. L'un des cotés du quadrilatère est constitué par le châssis de la moto et a pour extrémités des fixations de châssis 5 a et 5b. Le côté opposé du quadrilatère est constitué par une partie du support mobile 4 de l'axe de roue 2. Ce côté à un écartement 15 inférieur à l'écartement 14 du côté constitué par le châssis 6. En d'autres termes la distance fixe d'éloignement des fixations 5a, 5b est supérieure à la distance fixe d'éloignement des liaisons pivot de support 10, 12. Il est toutefois à noter que la distance fixe d'éloignement des fixations 5a, 5b peut alternativement être inférieure à la distance fixe d'éloignement des liaisons pivot de support 10, 12.
Les première et seconde bielles qui forment des côtés opposés du quadrilatère déformable relient entre eux le châssis 6 et le support mobile 4 de l'axe de roue 2. Ces bielles sont de longueurs identiques entre elles de manière que les côtés du quadrilatère appartenant respectivement au support 4 et au châssis soient parallèles entre eux lorsque l'axe de rotation 2 de roue est perpendiculaire au plan de symétrie longitudinal de moto 17. De cette façon, le dispositif a naturellement tendance à s'axer de façon symétrique par rapport à la moto lorsque celle-ci roule sur son plan de roulement horizontal.
Les dimensions appropriées du quadrilatère sont 400 mm pour la distance d'éloignement 14 entre les fixations, 220 mm de longueur de bielles et 240 mm de distance d'éloignement 15 des liaisons pivot de support. Ces dimensions et proportions procurent une rotation de la roue directionnelle de 16° dans chaque sens et un maintien rigide de cette roue.
Des lignes en pointillé de la figure 1 représentent le dispositif de direction lorsque la roue directionnelle est orientée vers la droite pour effectuer un virage à droite. Tout se passe alors sensiblement comme si la roue tournait autour d'un axe perpendiculaire au plan de déformation du quadrilatère et passant par le centre de la roue. Il est à noter que le plan de déformation du quadrilatère est incliné d'un angle , qui est ici de 24°, correspondant à l'angle de chasse de la roue directrice de la moto.
En configuration de virage à droite (configuration représentée en pointillés), le quadrilatère se déforme de telle manière que les bielles pivotent (autour des liaisons pivot de châssis 11 et 13) vers la gauche entraînant un pivotement vers la droite du support mobile 4.
A l'inverse, en configuration virage à gauche, le quadrilatère se déforme de telle manière que les bielles pivotent (autour des liaisons pivot de châssis 11 et 13) vers la droite entraînant un pivotement vers la gauche du support mobile 4.
Ce mouvement de pivotement des bielles et du support mobile 4 dans un sens opposé au sens du virage à prendre permet de déporter le centre de gravité de la moto dans une direction également opposée au sens du virage. Ce mode de fonctionnement correspond à une roue 3 poussée, mais pourrait être inversé dans le cas où l'invention est mise en œuvre avec une roue tirée.
La figure 2 représente une vue de côté droit du dispositif de l'invention. Le châssis 6 de la moto porte deux liaisons pivot dont une seule 11 est visible sur cette vue. Les liaisons pivot sont inclinées d'un angle chasse 18 par rapport à un plan 19 qui est perpendiculaire au plan de roulement de moto. L'ensemble de liaison 7 comprend deux bielles dont une seule est visible 9a sur cette vue.
Chaque bielle possède une hauteur minimale H au moins égale au quart de l'entraxe D entre les liaisons pivots de support et de châssis que maintient cette bielle. Cette hauteur minimale H de la bielle se mesure dans un plan de section transversal de la bielle, ce plan de section étant toujours parallèle aux axes des liaisons pivots de support et de châssis liées par cette bielle. La distance / l'entraxe D est la distance d'éloignement entre les liaisons pivots liées par une même bielle. La dimension H est préférentiellement égale ou supérieure à l'entraxe D ce qui permet d'éviter le fléchissement du dispositif de direction. En effet la dimension H de chaque bielle est toujours choisie pour que la bielle ne fléchisse pas sous les efforts appliqués sur le dispositif de direction et pour que les liaisons pivots restent toujours sensiblement parallèles entre elles.
Chaque bielle à la forme d'un flanc sensiblement plat ayant une forme extérieure permettant d'obtenir une garde au sol suffisante dans toutes les configurations de roulage de la moto. Chaque flanc comporte deux bords latéraux opposés entre eux et parallèles le long desquels sont respectivement disposés un pivot de châssis 11 et un pivot de support 10. Cette forme de flanc à l'avantage d'être peu sujette aux déformations dans le plan du flanc ce qui rigidifie la direction. Chaque flanc peut être ajouré pour l'alléger et permettre la circulation de l'air. Les liaisons pivots sont réalisées par des axes cylindriques pénétrant dans des alésages. Préférentiellement ces liaisons pivot sont sans jeu et avec un frottement faible et comportent pour cela des roulements à aiguilles permettant un guidage précis. Le support mobile 4 possède une pièce principale de support 20 qui a la forme d'une équerre et dont une partie est située dans le plan des liaisons pivot de support et dont l'autre partie est sensiblement perpendiculaire et porte une portion dentée conjuguée 29 servant à commander l'orientation du dispositif de direction. Un côté inférieur de l'équerre / pièce principale 20 s'étend dans le plan des liaisons pivot de support entre celles-ci. Ce côté inférieur porte un axe de pivotement 23 sur lequel pivote un bras oscillant
21 aussi appelé pièce secondaire ou fourche. Ce bras oscillant / fourche / pièce secondaire 21 est rigide et s'étend préférentiellement de chaque côté de la roue 3 pour la maintenir à son extrémité par l'intermédiaire de l'axe de roue 2. De chaque côté de la roue, un raidisseur 33 forme une triangulation avec la fourche 21 et son extension 32. L' entretoise 34 solidarise les extensions 32 et se relie à l'amortisseur
22 par son milieu.
Dans l'exemple de la figure 2, l'amortisseur 22 est télescopique et possède une extrémité fixée l'entretoise 34 par un axe de pivotement 25 et une autre extrémité fixée à la pièce principale 20 en forme d'équerre par l'axe de pivotement 24 d'une fixation 35. Idéalement l'amortisseur est situé dans le plan de rotation de la roue 3 pour réduire les effets de torsion du dispositif et permettre l'utilisation d'un seul amortisseur. La roue 3 est représentée en position de roulage normal et est également représentée en pointillés 3' en position d'amortissement maximal, avec son axe en
2'.
Ce changement de position de la roue est réalisé grâce au pivotement du bras oscillant 21 autour de son axe 23. La figure 3 représente une vue de dessus du dispositif de direction selon l'invention avec la roue orientée vers la gauche. Ce schéma montre un détail de la pièce secondaire 21 qui dans ce mode de réalisation comporte une entretoise 34 reliant entre-elles les deux extensions 32 du bras oscillant 21 formant ainsi une fourche dans laquelle est placée la roue 3.
Il est à noter qu'il est également possible de supporter la roue à l'aide d'un seul bras oscillant déporté sur un côté de la roue. Il peut également être envisagé de réaliser une suspension de type « EARLES », où de chaque côté de la roue, un amortisseur assure la liaison entre l'axe de roue 2 et la partie haute de la pièce principale 20 en forme d'équerre.
La figure 4 représente une vue de dessus du dispositif de direction de l'invention dont la roue est orientée vers la droite. Cette figure représente une partie des moyens de commande nécessaires à l'orientation de la roue. Ici, un palier 36 est relié à une partie fixe 6 du châssis de façon à permettre le maintien d'un arbre de commande de direction 26 en haut duquel est assemblé un guidon traditionnel (non représenté). L'arbre de commande pivote selon un axe de commande fixe 27 qui est parallèle aux liaisons pivot 10, 11, 12, 13. L'extrémité inférieure de l'arbre de commande porte une denture 28 engrenant sur une portion dentée conjuguée 29 rapportée sur le haut de l'équerre de la pièce principale 20. Cette liaison par engrenage est prévue pour qu'une rotation à droite du guidon entraîne une rotation à droite de la roue et permette préférentiellement une démultiplication.
La forme en fer à cheval de cette denture 29 ménage constamment une large zone d'engrènement 37 qui se déporte vers l'une ou l'autre extrémité de la denture 29 lorsqu'on tourne le guidon dans l'un ou l'autre sens. De la sorte, l'effort tangentiel transmis par la denture 28 à la denture 29 est orienté plus favorablement lorsque l'angle de direction augmente, ce qui renforce le contrôle au guidon. Ainsi, dans le cas extrême et irréaliste d'un freinage brutal, la roue directrice étant braquée à fond, le couple au guidon n'excéderait pas 50 Nm ; c'est à peu près le couple au guidon d'une fourche télescopique qui enserre une roue équipée d'un frein à disque latéral. II faut observer qu'en freinage normal sur route, le couple au guidon du dispositif de direction 1 est notablement inférieur à cette valeur. Il faut remarquer ici que la commande de direction décrite ci-dessus, comportant les dentures 28, 29, l'arbre de commande 26, le palier 36, ses liaisons au châssis 6, peut être remplacée simplement par un guidon rattaché fixement au support mobile 20 par un tube coudé par exemple. L'axe du guidon, incliné selon l'angle de chasse, doit passer par le centre de le roue ou à peu près. Cette commande simple et directe peut séduire davantage des pilotes de compétition.
La figure 5 représente un mode de réalisation de l'invention avec deux bielles 9a, 9b croisées entre elles et ayant chacune une extrémité reliée par liaison pivot de support 10, 12 avec le support 4.
Chacune de ces deux bielles est reliée par son autre extrémité à une fixation de châssis 5a, 5b. Ce mode de réalisation impose que les bielles soient conformées pour pouvoir s'imbriquer. Ainsi, l'une au moins des bielles peut être évidée pour laisser passer l'autre bielle par cette ouverture. A cette même fin, les bielles peuvent être cintrées pour ne pas interférer l'une avec l'autre lors du braquage de la roue directionnelle. Le dispositif de direction 1 de l'invention a pour avantages : - une grande rigidité car le dispositif est fixé au bas du châssis qui rejoint le bras de suspension arrière de moto et non dans une partie haute du châssis qui est soumise à de plus grandes déformations ; - une meilleure répartition des masses car le dispositif et ses fixations avec le châssis sont situés en partie basse du châssis ; - une meilleure stabilité du dispositif de direction lors du freinage car contrairement à une fourche télescopique sensiblement verticale de moto qui a tendance à s'enfoncer (plongée) et à fléchir lors du freinage, le dispositif de l'invention est disposé sensiblement horizontalement par rapport à l'axe de rotation de la roue de moto, ce qui supprime pratiquement la plongée et la flexion ; - une réduction notable de la masse non suspendue et une amélioration de la tenue de route de ce fait et du fait que le support mobile 4 est un bras oscillant court ou une fourche courte ;
- une meilleure résistance aux chocs frontaux car le bras oscillant disposé sensiblement horizontal peut admettre des efforts horizontaux supérieurs à ce que supporterait une fourche de direction sensiblement verticale qui travaille en flexion ;
- la suspension peut être réalisée avec un seul amortisseur et devient semblable à la suspension arrière de la plupart des motos ; - l'angle d'orientation de l'axe de roue 2 peut être différent de l'angle d'orientation du guidon en réalisant par exemple une démultiplication d'angle entre le guidon et le support 4, d'où une plus grande précision et plus de douceur dans la conduite sur route ; le châssis de la moto n'ayant plus besoin de supporter des efforts de la direction dans sa partie haute, peut être allégé de portions de châssis traditionnellement placées au dessus et en avant du moteur de la moto, ce qui facilite l'accès moteur ;
- du fait du déplacement des fixations du dispositif sur la partie basse du châssis un espace est libéré en partie haute, ce qui facilite l'implantation d'équipements de conduite et de signalisation.

Claims

REVENDICATIONS
1. Dispositif de direction (1) pour moto comprenant :
- un axe de roue (2),
- un support mobile de l'axe de roue (4), - des fixations de châssis (5a, 5b) assemblées fixement sur un châssis de moto
(6) ou adaptées pour être assemblées fixement sur un châssis de moto (6),
- un ensemble de liaison (7) reliant de façon articulée le support mobile (4) par rapport aux fixations de châssis (5 a, 5b) et comportant pour cela au moins une liaison pivot (8) entre les fixations de châssis et l'ensemble de liaison, caractérisé en ce que l'ensemble de liaison (7) comporte des première et seconde bielles (9a, 9b),
- la première bielle (9a) étant reliée au support mobile (4) par une première liaison pivot de support (10) et à une première desdites fixations de châssis (5a) par une première liaison pivot de châssis (11), - la seconde bielle (9b) étant reliée au support mobile (4) par une seconde liaison pivot de support (12) et à une seconde desdites fixations de châssis (5b) par une seconde liaison pivot de châssis (13),
- ladite première bielle (9a) ayant une hauteur minimale (H) au moins égale au quart d'une distance minimale (D) d'éloignement entre la première liaison pivot de support (10) et la première liaison pivot de châssis (11),
- ladite seconde bielle (9b) ayant une hauteur minimale (H) au moins égale au quart d'une distance minimale (D) d'éloignement entre la seconde liaison pivot de support (12) et la seconde liaison pivot de châssis (13),
- les première et seconde fixations (5a, 5b) étant éloignées entre elles d'une distance fixe d'éloignement des fixations (14) et les première et seconde liaisons pivot de support (10, 12) étant éloignées entre elles d'une distance fixe d'éloignement des liaisons pivot de support (15), ces distances étant différentes l'une de l'autre ; le dispositif comportant en outre un arbre de commande de direction (26) monté à rotation selon un axe de commande fixe (27) par rapport aux première et seconde fixations de châssis (5a, 5b) et le support mobile (4) de l'axe de roue comportant une pièce principale de support (20) ; - l'arbre de commande (26) comportant une portion dentée de commande (28) engrenant avec une portion dentée conjuguée (29) portée par la pièce principale (20).
2. Dispositif selon la revendication 1, caractérisé en ce que l'ensemble de liaison (7) comporte au plus deux bielles.
3. Dispositif selon l'une quelconque des revendications 1 ou 2, caractérisé en ce qu'il comporte une roue (3) montée à rotation selon l'axe de roue et en ce que les première et seconde bielles sont disposées dans une zone intermédiaire (38) située entre la roue et les fixations de châssis, la roue étant située à distance de cette zone intermédiaire.
4. Dispositif de direction (1) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les première et seconde liaisons pivot de support (10, 12) et les première et seconde liaisons pivot de châssis (11, 13) sont des liaisons pivot d'axes de pivotement parallèles entre eux.
5. Dispositif de direction (1) selon la revendication 4, caractérisé en ce que lesdites première et seconde liaisons pivot de châssis (11, 13) sont situées dans des plans latéraux (16a, 16b) sensiblement parallèles à un plan de symétrie longitudinal (17) de moto et sont chacune inclinées dans ces plans latéraux (16a, 16b) d'un même angle de chasse (18).
6. Dispositif de direction (1) selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdites première et seconde liaisons pivot de support (10, 12) sont formées avec ladite pièce principale de support (20) et en ce que le support mobile (4) de l'axe de roue comporte en outre une pièce secondaire (21) portant l'axe de roue (2), cette pièce secondaire (21) étant assemblée de façon mobile par rapport à la pièce principale (20) de telle façon que l'axe de roue (2) puisse se déplacer par rapport à la pièce principale de support (20) tout en restant perpendiculaire par rapport à un plan de symétrie longitudinal (17) de moto.
7. Dispositif de direction (1) selon la revendication 6, caractérisé en ce qu'il comporte au moins un amortisseur (22) tel qu'un amortisseur télescopique adapté pour amortir le mouvement de déplacement de l'axe de roue (2) par rapport à la pièce principale (20) du support (4).
8. Dispositif de direction (1) selon l'une quelconque des revendications 6 ou 7, caractérisé en ce que la pièce secondaire (21) est un bras oscillant (21) ou une fourche oscillante, le bras ou la fourche étant monté pivotant par rapport à la pièce principale (20) selon un axe de pivotement (23) parallèle à l'axe de roue (2).
9. Dispositif de direction (1) selon la revendication 7 ou la revendication 8 dépendante de la revendication 7, caractérisé en ce que l'amortisseur (22) comporte un premier point d'assemblage (24) d'amortisseur articulé par rapport à la pièce principale (20) et un second point d'assemblage (25) d'amortisseur articulé par rapport à la pièce secondaire (21), l'amortisseur (22) étant adapté pour permettre un mouvement relatif amorti entre lesdits premier et second points d'assemblage d'amortisseur (24, 25).
10. Moto caractérisée en ce qu'elle comprend le dispositif de direction (1) selon l'une quelconque des revendications 1 à 9.
11. Procédé de direction d'une moto consistant à : - créer un châssis de moto (6) ; - créer un support mobile (4) comportant une pièce principale de support (20) portant un axe de roue directionnelle de moto (2);
- relier le support mobile (4) au châssis (6) par l'intermédiaire d'un ensemble de liaison (7) adapté pour permettre une mobilité relative du support mobile (4) par rapport au châssis (6) ;
-caractérisé en ce qu'on réalise l'ensemble de liaison (7) reliant le support mobile (4) au châssis (6) comme un quadrilatère déformable (30) dans un plan incluant le quadrilatère et possédant deux côtés non parallèles entre eux (31a, 31b), chacun de ces côtés étant formé par une seule bielle ayant une hauteur minimale de bielle (H) au moins égale au quart de la longueur de cette même bielle, un côté du quadrilatère étant choisi pour être fixé sur le châssis (6) et en ce que pour faire varier l'orientation de l'axe de la roue directionnelle (2) par rapport à un plan de symétrie longitudinal de moto (17), on déforme ledit quadrilatère, le procédé étant en outre caractérisé en ce que l'on monte un arbre de commande de direction (26) à rotation selon un axe de commande fixe (27) par rapport au châssis (5a, 5b), cet arbre de commande (26) comportant une portion dentée de commande (28) engrenant avec une portion dentée conjuguée (29) portée par la pièce principale (20).
PCT/FR2006/000940 2005-05-16 2006-05-10 Dispositif de direction de moto et procede de fabrication d'un dispositif de direction de moto WO2006123029A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06743750A EP1881926A2 (fr) 2005-05-16 2006-05-10 Dispositif de direction de moto et procede de fabrication d 'un dispositif de direction de moto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0504902 2005-05-16
FR0504902A FR2885590B1 (fr) 2005-05-16 2005-05-16 Dispositif de direction de moto et procede de fabrication d'un dispositif de direction de moto

Publications (2)

Publication Number Publication Date
WO2006123029A2 true WO2006123029A2 (fr) 2006-11-23
WO2006123029A3 WO2006123029A3 (fr) 2007-03-15

Family

ID=35658929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/000940 WO2006123029A2 (fr) 2005-05-16 2006-05-10 Dispositif de direction de moto et procede de fabrication d'un dispositif de direction de moto

Country Status (3)

Country Link
EP (1) EP1881926A2 (fr)
FR (1) FR2885590B1 (fr)
WO (1) WO2006123029A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106240727A (zh) * 2016-09-19 2016-12-21 宁波斯普锐汽车部件有限公司 一种独立悬架的转向控制系统
DE102012204031B4 (de) * 2011-04-16 2017-12-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Radaufhängung für ein lenkbares Rad

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089725A1 (fr) * 2010-01-25 2011-07-28 本田技研工業株式会社 Dispositif de suspension pour véhicule à enfourcher

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1319703A (en) * 1970-05-01 1973-06-06 King L W Motor bicycle assemblies
US4353567A (en) * 1980-11-24 1982-10-12 Weldy Ross A Steering and suspension system for the front wheel of a three-wheeled vehicle
US4480847A (en) * 1981-09-14 1984-11-06 Honda Giken Kogyo Kabushiki Kaisha Steering device for vehicle
DE3914050A1 (de) * 1989-04-28 1990-10-31 Bayerische Motoren Werke Ag Lenkung fuer ein fahrzeugrad
DE29912796U1 (de) * 1999-07-22 1999-12-09 Kranczoch Jan Dr Knicklenkung für ein frontgetriebenes Liegerad
FR2817529A1 (fr) * 2000-12-05 2002-06-07 Jean Claude Orgeval Systeme de direction et de suspension pour motocyclette

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES477766A1 (es) 1978-02-24 1979-10-16 Cortanze Andre Motociclo o vehiculo analogo de dos ruedas.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1319703A (en) * 1970-05-01 1973-06-06 King L W Motor bicycle assemblies
US4353567A (en) * 1980-11-24 1982-10-12 Weldy Ross A Steering and suspension system for the front wheel of a three-wheeled vehicle
US4480847A (en) * 1981-09-14 1984-11-06 Honda Giken Kogyo Kabushiki Kaisha Steering device for vehicle
DE3914050A1 (de) * 1989-04-28 1990-10-31 Bayerische Motoren Werke Ag Lenkung fuer ein fahrzeugrad
DE29912796U1 (de) * 1999-07-22 1999-12-09 Kranczoch Jan Dr Knicklenkung für ein frontgetriebenes Liegerad
FR2817529A1 (fr) * 2000-12-05 2002-06-07 Jean Claude Orgeval Systeme de direction et de suspension pour motocyclette

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204031B4 (de) * 2011-04-16 2017-12-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Radaufhängung für ein lenkbares Rad
CN106240727A (zh) * 2016-09-19 2016-12-21 宁波斯普锐汽车部件有限公司 一种独立悬架的转向控制系统

Also Published As

Publication number Publication date
EP1881926A2 (fr) 2008-01-30
WO2006123029A3 (fr) 2007-03-15
FR2885590B1 (fr) 2008-11-14
FR2885590A1 (fr) 2006-11-17

Similar Documents

Publication Publication Date Title
EP3041699B1 (fr) Véhicule inclinable à trois roues
CA2645634C (fr) Suspension arriere de bicyclette
EP1049618B1 (fr) Fourche avant suspendue pour velo tout terrain et moto
EP3131769B1 (fr) Véhicule possédant un châssis et une nacelle pendulaire
EP1883574B1 (fr) Train arriere pour bicyclette
FR2723561A1 (fr) Bicyclette comportant un cadre a articulation
FR2495093A1 (fr) Motocyclette a suspension arriere perfectionnee
EP0975509B1 (fr) Suspension arriere pour bicyclette
EP2334542B1 (fr) Suspension arriere d ' un vehicule a deux roues
EP1881926A2 (fr) Dispositif de direction de moto et procede de fabrication d 'un dispositif de direction de moto
CA2021553C (fr) Cadre de side-car pour motocyclette
FR2961746A1 (fr) Suspension pour tricycle
EP1026073A1 (fr) Vehicule avec suspension arriere a bras oscillant
EP3694733B1 (fr) Véhicule à train roulant amélioré
FR3018062A1 (fr) Perfectionnement a un systeme de suspension pour bicyclette
WO2004062994A1 (fr) Vehicule a pedales, a trois ou quatre roues
FR2851983A1 (fr) Cadre de velo a poutre flexible
EP2161147A1 (fr) Train arrière directeur pour véhicule automobile
FR2752213A1 (fr) Perfectionnement pour chassis de vehicule
FR2667041A1 (fr) Engin de locomotion tout terrain a trois roues.
EP1389578A1 (fr) Fourche avant de bicyclette avec dispositif d'adaptation de sa géométrie à usage de tandem à trois roues
FR2981042A1 (fr) Suspension arriere d'un vehicule a deux roues avec deformation elastique du bras oscillant arriere
CA2253192A1 (fr) Ensemble avant et arriere de direction et de suspension pour vehicule motorise de neige
BE332820A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006743750

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006743750

Country of ref document: EP