WO2006120890A1 - Tube and liquid feeder - Google Patents

Tube and liquid feeder Download PDF

Info

Publication number
WO2006120890A1
WO2006120890A1 PCT/JP2006/308617 JP2006308617W WO2006120890A1 WO 2006120890 A1 WO2006120890 A1 WO 2006120890A1 JP 2006308617 W JP2006308617 W JP 2006308617W WO 2006120890 A1 WO2006120890 A1 WO 2006120890A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
liquid
flow rate
tube body
flow path
Prior art date
Application number
PCT/JP2006/308617
Other languages
French (fr)
Japanese (ja)
Inventor
Souichi Ooue
Takato Murashita
Masaaki Kasai
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to JP2007528212A priority Critical patent/JP4970261B2/en
Publication of WO2006120890A1 publication Critical patent/WO2006120890A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16813Flow controllers by controlling the degree of opening of the flow line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • A61M2205/3372Temperature compensation

Definitions

  • the present invention relates to a tube through which a liquid passes and a liquid supply device including the tube.
  • a chemical solution injection device for administering a chemical solution to a patient
  • a medical institution such as a hospital
  • a microinjection of an analgesic agent such as morphine is continuously performed using a drug solution injector.
  • Such a chemical solution injector mainly includes a chemical solution supply source such as a balloon or a syringe pump having a function of storing the chemical solution and discharging the chemical solution, and an extended chemical solution supply source.
  • a chemical solution supply source such as a balloon or a syringe pump having a function of storing the chemical solution and discharging the chemical solution
  • an extended chemical solution supply source such as a balloon or a syringe pump having a function of storing the chemical solution and discharging the chemical solution
  • Line and a flow rate control device installed in the middle of the chemical solution supply line.
  • the flow control device has an orifice with a small cross-sectional area of the flow path (having an ultra-fine flow path), and controls the flow rate in a very small amount by a large pipe resistance when the chemical solution passes through the orifice. (For example, see JP-A-10-295811).
  • the chemical solution supply device having such a configuration it is necessary to accurately secure the dose of the chemical solution to the patient.
  • the flow rate of the chemical solution may change, that is, the dosage may change.
  • the viscosity of the chemical solution and the diameter of the orifice channel may change due to a change in room temperature, and the flow rate of the chemical solution passing through the channel may change. Atsuta. For example, when the room temperature rises, the viscosity of the chemical solution decreases as the temperature rises, and the orifice expands to increase the diameter of the flow path. Thereby, the flow volume of a chemical
  • An object of the present invention is to provide a tube and a liquid supply device that can prevent the flow rate of the liquid passing through the flow path from being changed due to a temperature change.
  • the tube of the present invention comprises:
  • a tube body that forms a flow path through which liquid can pass and expands and contracts due to changes in temperature.
  • a regulating member for regulating the outer diameter of the tube body
  • the tube is characterized in that the cross-sectional area of the flow path changes as the tube body expands and contracts due to the temperature change at the portion where the regulating member is provided.
  • the degree of expansion Z contraction of the tube body due to the temperature change is such that the flow rate of the liquid becomes constant. It is preferred to be set.
  • the regulating member has a smaller coefficient of thermal expansion than the tube body.
  • the restricting member is provided over substantially the entire length in the longitudinal direction of the tube main body.
  • a plurality of the regulating members are provided at intervals along the longitudinal direction of the tube body. [0016] Thereby, the rate of change in the cross-sectional area of the flow path can be reduced.
  • the tube body includes a laminated portion having an inner layer and an outer layer provided on an outer peripheral side of the inner layer and made of a material different from the inner layer,
  • the regulating member is preferably provided on the outer peripheral side of the outer layer.
  • the outer layer has a higher coefficient of thermal expansion than the inner layer.
  • the rate of change in the cross-sectional area of the flow path can be set more appropriately, and thus the flow rate of the liquid passing through the flow path can be more reliably prevented from changing due to a temperature change. it can.
  • the regulating member has a substantially cross-sectional shape in a cross section! /.
  • the regulating member is mainly made of a metal material.
  • the coefficient of thermal expansion is surely smaller than that of the tube body, and the regulating member can be formed (configured).
  • the liquid is a chemical solution to be administered into a living body.
  • the liquid supply device of the present invention comprises:
  • a liquid supply tool comprising the tube according to any one of (1) and (10) above, and having a flow rate adjusting unit for adjusting the flow rate of the liquid.
  • FIG. 1 is a cross-sectional side view showing a liquid supply tool of the present invention.
  • FIG. 2 is an exploded view of the liquid supply tool shown in FIG. 1.
  • FIG. 3 is a plan view of the liquid supply tool shown in FIG. 1.
  • FIG. 4 is a plan view showing a state in which the upper cover of the liquid supply tool shown in FIG. 1 is removed.
  • FIG. 5 is a plan view showing a state where an upper cover of the liquid supply tool shown in FIG. 1 is removed.
  • FIG. 6 is a plan view showing a state in which the upper cover of the liquid supply tool shown in FIG. 1 has been removed.
  • FIG. 7 is a perspective view showing a first embodiment of the tube of the present invention.
  • FIG. 8 is a perspective view when the tube shown in FIG. 7 is deformed by a temperature change.
  • FIG. 9 is a perspective view when the tube shown in FIG. 7 is deformed by a temperature change.
  • FIG. 10 is a perspective view showing a second embodiment of the tube of the present invention.
  • FIG. 11 is a perspective view showing a third embodiment of the tube of the present invention.
  • FIG. 12 is a perspective view showing a fourth embodiment of the tube of the present invention.
  • FIG. 13 is a graph showing the relationship between the temperature and the flow rate of water passing through the tube.
  • the tube and the liquid supply tool of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
  • the liquid that passes through the inside of the tube of the present invention is used as a liquid that is administered into a living body
  • the liquid supply device of the present invention is used as a liquid medicine supply device that supplies the liquid medicine. It becomes an embodiment.
  • FIG. 1 is a sectional side view showing a liquid supply tool of the present invention
  • FIG. 2 is an exploded view of the liquid supply tool shown in FIG. 1
  • FIG. 3 is a liquid supply tool shown in FIG. Fig. 4, Fig. 5, Fig. 5 and Fig. 6 show the state where the upper cover of the liquid supply tool shown in Fig. 1 is removed.
  • FIG. 1 is a sectional side view showing a liquid supply tool of the present invention
  • FIG. 2 is an exploded view of the liquid supply tool shown in FIG. 1
  • FIG. 3 is a liquid supply tool shown in FIG. Fig. 4, Fig. 5, Fig. 5 and Fig. 6 show the state where the upper cover of the liquid supply tool shown in Fig. 1 is removed.
  • FIG. 1 is a sectional side view showing a liquid supply tool of the present invention
  • FIG. 2 is an exploded view of the liquid supply tool shown in FIG. 1
  • FIG. 3 is a liquid supply tool shown in FIG. Fig. 4, Fig. 5,
  • FIGS. 1 to 6 The left side in FIGS. 1 to 6 is referred to as “upstream side”, the right side is referred to as “downstream side”, the upper side in FIGS. 1 and 2 is referred to as “upper”, and the lower side is referred to as “upper side”. This will be described as “below”.
  • the chemical solution supply device (liquid supply device) 1 of the present invention is mainly mounted on the first lower case 3, the second lower case 4, and the upper parts thereof. And a casing 2 composed of the upper case 5.
  • the first lower case 3 includes a chamber 1 (chemical solution storage unit) 31 for storing a chemical solution, and the chamber
  • a force S is formed with the inflow ports 32a and 32b and the outflow port 33 of the chemical solution communicating with 31.
  • the chamber 31 is defined by a cylindrical recess formed in the center of the first lower case 3 and a diaphragm 7 attached to the upper part.
  • the volume of the chamber 31 is not particularly limited, but usually about 0.3 to 5. OmL is preferable, and about 2.0 to 3. OmL is more preferable.
  • the second lower case 4 is joined to the upstream side of the first lower case 3, and stores a flow rate switching means (flow rate adjusting unit) 9 described later between the upper case 5 and the second lower case 4.
  • a recess 41 is formed that serves as a bearing for the operation dial 91 of the flow rate switching means 9.
  • an opening 56 serving as a bearing for the operation dial 91 is formed at a corresponding position of the upper case 5.
  • a circular opening 52 into which the button blade and the udging 61 are movably inserted in the vertical direction is formed at the top of the raised portion 51.
  • a first stepped portion 53 that increases the cross-sectional area of the opening 52 and a second stepped portion 54 that further increases the cross-sectional area are formed.
  • the button housing 61 is a ring-shaped member, and a female screw 67 is formed on the inner peripheral surface thereof.
  • the button (presser) 62 presses the diaphragm 7 and presses it inside the chamber 31. It is made up of a substantially cylindrical member having a contact surface 63 that contacts the membrane 72 of the diaphragm 7 at the lower end thereof.
  • a male screw 66 that is screwed with the female screw 67 is formed on the upper outer peripheral surface of the button 62.
  • the male screw 66 is screwed with the female screw 67
  • the button 62 is inserted inside the button housing 61.
  • the vertical position of the button 62 with respect to the button housing 61 that is, the distance between the button 62 and the diaphragm 7 (separation distance). Is adjusted and set.
  • the contact surface 63 of the button 62 and the membrane 72 of the diaphragm 7 are in contact.
  • the contact surface 63 of the button 62 and the membrane 72 of the diaphragm 7 are in contact with each other as described above.
  • the contact surface 63 of the button 62 is separated from the membrane 72 by a predetermined distance. May be.
  • the discharge amount adjusting mechanism by screwing the female screw 67 and the male screw 66 is provided, the position of the button 62 in the vertical direction with respect to the button housing 61, that is, the button 62 is changed.
  • the amount of projection (insertion state) of the membrane 72 of the diaphragm 7 into the chamber 31 during the pressing operation (one-shot injection operation) can be adjusted steplessly.
  • Q discharge amount can be adjusted.
  • the discharge amount adjustment mechanism is a mechanism that adjusts the distance (separation distance) between the button 62 and the diaphragm 7, it is always possible to discharge the chemical Q from the chamber 31 ( The adjustment can be made (for example, even during microinjection).
  • a groove 64 for rotating the button 62 with respect to the button housing 61 is formed on the upper surface of the button 62.
  • a coin or a screwdriver is inserted into the groove 64, the button 62 is rotated with respect to the button nosing 61, and the vertical position thereof is adjusted and set.
  • the chemical supply tool 1 is provided with a rotation stopping mechanism for preventing the button housing 61 from rotating with respect to the upper case 5 when the button 62 is rotated as described above.
  • RU a rotation stopping mechanism for preventing the button housing 61 from rotating with respect to the upper case 5 when the button 62 is rotated as described above.
  • a pair of grooves 611 extending in a direction perpendicular to the paper surface in FIG. 1 is formed on the outer peripheral surface of the button housing 61, while the groove 611 of the upper case 5 is formed in the groove 611 of the upper case 5.
  • a ridge 55 to be inserted into the groove 611 is formed.
  • the button housing 61 and the button 62 held by the button housing 61 are urged upward by a coiled panel (biasing member) 65 in a compressed state.
  • the upper end portion of the panel 65 is inserted into a panel seat 612 made of a ring-shaped recess formed in the button housing 61, and the lower end of the panel 65 is in contact with the upper surface of the clamping member 8.
  • a panel seat 612 made of a ring-shaped recess formed in the button housing 61, and the lower end of the panel 65 is in contact with the upper surface of the clamping member 8.
  • a flange 613 is formed on the outer peripheral portion of the lower end of the button housing 61, and the button housing 61 urged upward by the panel 65 is engaged with the first stepped portion 53 of the flange 613. This limits the upward movement limit.
  • the diaphragm 7 is composed of a ring-shaped rim portion 71 and a film (thin wall portion) 72 formed on the inside thereof.
  • the diaphragm 7 seals the upper surface opening of the cylindrical concave portion formed in the first lower case 3 in a liquid-tight manner, that is, defines the upper surface (part) of the chamber 31.
  • This diaphragm 7 is made of, for example, various rubber materials such as natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, silicone rubber, fluoro rubber, and various heat materials such as polyurethane, polyester, and polyamide. It is preferably made of an elastic material (elastic material) such as a plastic elastomer. Among these, silicone rubber is especially preferred because of its high stability against chemical Q!
  • the diaphragm 7 is sandwiched between the first lower case 3 and a ring-shaped sandwiching member 8 located at the upper part thereof, and maintains the liquid tightness of the upper part of the chamber 31. That is, the rim portion 71 of the diaphragm 7 is inserted in a state of being compressed in the vertical direction into the concave portions 81 formed by ring-shaped groove caps formed in the first lower case 3 and the clamping member 8 respectively. And rim part A film 72 in the vicinity of the inner side from 71 is sandwiched between the lip 34 formed on the upper outer peripheral edge of the chamber 31 of the first lower case 3 and the lower surface of the clamping member 8.
  • the outer peripheral portion of the clamping member 8 engages with the second step portion 54 of the upper case 5 and receives a pressing force downward from the second step portion 5, thereby the first lower portion
  • the clamping force between case 3 and clamping member 8 is obtained. Therefore, the diaphragm 7 is sandwiched between the first lower case 3 and the upper case 5 via the sandwiching member 8.
  • a circular opening 82 through which the button 62 can pass is formed at the center of the clamping member 8.
  • the first lower case 3 is formed with a pair of inflow ports 32a and 32b and an outflow port 33 communicating with the chamber 31.
  • channels l la and l ib having a small cross-sectional area are formed, respectively, and the chemical solution Q passes through the channels l la and l ib.
  • a large pipe resistance viscous resistance
  • the flow path 1 la and the flow path 1 lb have different cross-sectional areas of the flow paths! /. That is, since the cross-sectional area of the flow path 11a is smaller than the cross-sectional area of the flow path l ib, the flow rate V of the chemical liquid Q passing through the flow path 11a is smaller than the flow rate V of the chemical liquid Q passing through the flow path l ib. .
  • the upstream sides of the first tube 10a and the second tube 10b are each flexible so that they can be deformed when the tubes are closed.
  • Those having a restoring property of 1 are preferable.
  • constituent materials that satisfy such conditions include various synthetic resins such as soft polychlorinated butyl, polyethylene, polypropylene, ethylene acetate butyl copolymer, polyamide, polyester, and polyurethane, natural rubber, and polystyrene-butadiene rubber. And various rubbers such as butyl rubber, silicone rubber and isoprene, and various thermoplastic elastomers.
  • the upstream ends of the first tube 10a and the second tube 10b are connected to the tube 14 via the Y-shaped connector 13.
  • the tube 14 projects out of the casing 2, and the upstream end of the tube 14 is connected to a chemical supply source (not shown) such as a syringe pump or a balloon. It is connected.
  • a one-way valve (check valve) 16 that restricts the flow of the chemical solution Q in one direction from the upstream side to the downstream side is installed on the upstream side inside the connector 15. As a result, the chemical liquid Q flows backward and is prevented from flowing into the chamber 31 through the outlet 33.
  • a tube 17 is connected to the downstream side of the connector 15.
  • a puncture needle (not shown) is attached to the downstream end of the tube 17, and the drug solution Q can be administered by puncturing the puncture needle into the blood vessel or epidural surface of the patient.
  • the tubes 14 and 17 each have flexibility (softness), and those having a certain degree of resilience are particularly preferable.
  • the constituent material of the tubes 14 and 17 satisfying such conditions include various synthetic resins such as soft polysalt cellulose, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polyamide, polyester, and polyurethane, Various rubbers such as natural rubber, styrene butadiene rubber, butyl rubber, and silicone rubber, and various thermoplastic elastomers can be used.
  • the inner surfaces of the tubes 14 and 17 can be subjected to a surface treatment that does not adversely affect the chemical Q (particularly, formation of a coating layer).
  • the purpose of the surface treatment is arbitrary.For example, a hydrophilic layer is formed to prevent organic components in the tube constituent material from eluting into the chemical solution Q or to prevent air blocking. Can be mentioned.
  • the flow rate switching means (flow rate adjustment unit) 9 switches (adjusts) the flow rate of the liquid, and an operation dial (operation member) having a first tube 10a and a second tube 10b and a pressure closing unit 92.
  • an operation dial operation member
  • the tube pressure closing mechanism composed of receiving members 94a and 94b for pressing and closing the first tube 10a and the second tube 10b, respectively, and the positioning of the operation dial 91 in the rotational direction. It consists of positioning means 95 to perform.
  • the operation dial 91 is rotatably supported with respect to the casing 2 by the concave portion 41 functioning as a bearing and the opening 56, and below the operation dial 91 is displaced with respect to the receiving members 94a and 94b and is displaced by the first tube.
  • a cam-shaped crushing portion 92 that can selectively crush 10a and the second tube 10b is formed. It is made.
  • a grip portion 93 that grips the operation dial 91 to rotate is formed on the operation dial 91.
  • the receiving members 94a and 94b are installed in contact with the inner surface of the upstream side wall of the casing 2, respectively.
  • Each of the receiving members 94a and 94b is formed with a protrusion 941 that protrudes toward the operation dial 91.
  • the projecting portion 941 and the pressure closing portion 92 of the operation dial 91 close the first tube 10a and the second tube 10b, and close the flow paths (internal flow paths) lla and lib.
  • the receiving members 94a and 94b are integrated with the second lower case 4, but may be separate members.
  • the positioning means 95 includes three concave portions 96 &, 96b, 96c formed on the outer peripheral surface of the operation dial 91 on the side opposite to the pressure closing portion 92 at substantially equal intervals, and a tip force concave portion 96 &, 96b, 96c V, Pin 97 selectively inserted in the gap, coil-shaped panel (biasing member) 98 that urges the pin 97 toward the operation dial 91 side, and stopper 99 Has been.
  • the pin 97 and the panel 98 are inserted into the hole 43 of the support portion 42 erected from the bottom of the second lower case 4, and the tip of the pin 97 protrudes from the downstream end of the hole 43. ing. Further, a stopper 99 is fitted into the upstream end portion of the hole 43 and sealed. A panel 98 is inserted between the pin 97 and the stopper 99 in a compressed state to urge the pin 97 downstream.
  • the positioning means 95 sets the operation dial 91 in the rotational direction in three stages (first state, second state, and third state) (FIGS. 4 to 6). According to this, the pattern in which the first tube 10a and the second tube 10b are closed and sealed is selected, and the flow rate of the chemical solution Q is set.
  • the first tube 10a and the second tube 10b Both are not closed, so that the chemical Q passes through the flow paths 11a and l ib of the first tube 10a and the second tube 10b, respectively, and passes through the inlets 32a and 32b. Flows into 1. Therefore, the flow rate V of the chemical solution Q at this time is the flow rate V and the flow rate V.
  • the maximum flow rate is almost equal to the sum of 3 1 2.
  • the flow rate switching means 9 selects the chemical solution Q by selecting the distribution pattern of the chemical solution Q to each of the two flow paths l la and l ib (the first tube 10a and the second tube 10b).
  • the flow rate of V is set to three levels: V, V, and V (which satisfy the relationship V ⁇ V ⁇ V)
  • the flow rate can be set at a level higher than the number of tubes (flow paths), and finer flow rate adjustment (flow rate switching) becomes possible.
  • a scale 18 indicating the position of the operation dial 91 in the rotational direction, that is, the magnitude of the flow rate of the chemical liquid Q is formed.
  • the drug solution Q supplied by the drug solution supply device 1 of the present invention is appropriately selected according to the purpose of use.
  • analgesics such as morphine (narcotic analgesics), insulin preparations, antibiotics, etc. , Anticancer agents, and narcotic agents.
  • the type of the drug solution Q is not limited to this, and includes, for example, those that do not exert direct effects such as physiological saline, electrolytic water, cleaning solution, anticoagulant, and contrast agent.
  • the grip portion 93 is gripped and the operation dial 91 is rotated, so that the third state shown in FIG. 4 (the state where the tip of the pin 97 is inserted into the recess 96b) ), The first state shown in FIG. 5 (the state where the tip of the pin 97 is inserted into the recess 96a) or the second state shown in FIG. 6 (the state where the tip of the pin 97 is inserted into the recess 96c) ), And the upstream force of the tube 14 also supplies the chemical Q. After a predetermined time has elapsed, the chamber 31 is filled with the chemical Q and primed (filled).
  • the chemical Q from the tube 14 flows through the second tube 10b through the Y-shaped connector 13, and passes through the inlet 32b to the chamber 31. Flows in.
  • the drug solution Q force outflowing from the outlet 33 which has been stored in the chamber 31 of approximately the same amount as the inflow, is sent to the downstream via the one-way valve 16 and the tube 17, and is administered to the patient. Is done.
  • the flow rate of the chemical liquid Q flowing out from the outlet 33 is V.
  • the chemical Q from the tube 14 flows through the first tube 10a via the Y-shaped connector 13, and passes through the inlet 32a to the chamber 31. Flows in.
  • the drug solution Q force outflowing from the outlet 33 which has been stored in the chamber 31 of approximately the same amount as the inflow, is sent to the downstream via the one-way valve 16 and the tube 17, and is administered to the patient. Is done.
  • the flow rate of the chemical liquid Q flowing out from the outlet 33 is V.
  • the flow rate of the drug solution Q to be injected and administered is set to V, V ⁇ V
  • the tube of the present invention having the constant temperature flow rate function as described below can be employed in at least one of the first tube 10a and the second tube 10b.
  • the tube of the present invention is applied (adopted) to the second tube 10b will be described, and the tube of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
  • FIG. 7 is a perspective view showing the first embodiment of the tube (second tube) of the present invention
  • FIGS. 8 and 9 are views when the second tube shown in FIG. 7 is deformed by a temperature change, respectively.
  • FIG. 7 is a perspective view showing the first embodiment of the tube (second tube) of the present invention
  • FIGS. 8 and 9 are views when the second tube shown in FIG. 7 is deformed by a temperature change, respectively.
  • the second tube 10b includes a tube main body 12 in which a flow path l ib through which the chemical liquid Q can pass is formed at a downstream side thereof, and a regulating member 19 that regulates the outer diameter of the tube main body 12. (See Fig. 4 and Fig. 7).
  • the restricting member 19 has a substantially ring-shaped cross section, and is fixed (provided) to the downstream side portion of the tube body 12 (see FIGS. 4 and 7).
  • the restricting member 19 is made of a material having a coefficient of thermal expansion S smaller than that of the tube body 12.
  • the cross-sectional area of the flow path 1 lb changes (increased Z decreases) as the tube body 12 expands and contracts due to temperature changes at the portion where the regulating member 19 is provided.
  • This “cross-sectional area increases Z decreases” is referred to as “channel l ib increases in diameter Z decreases in diameter”.
  • the tube body 12 When the temperature rises, the tube body 12 tries to expand outward (in the direction of the arrow toward the outside of the tube body 12 in Fig. 8), but the outer periphery (outer side) of the tube body 12 is restricted. It is regulated by the material 19, and the tube body 12 cannot expand outward. For this reason, the tube main body 12 expands toward the center side (the direction of the arrow toward the inside of the tube main body 12 in FIG. 8). Therefore, the diameter of the flow path l ib is reduced.
  • the flow path ib decreases in diameter so as to offset the increase in the flow rate of the chemical solution Q due to the decrease in the viscosity of the chemical solution Q.
  • the flow path ib expands so as to offset the decrease in the flow rate of the chemical solution Q due to the increase in the viscosity of the chemical solution Q.
  • the flow rate of the chemical liquid Q passing through the flow path ib can be made constant regardless of the temperature change. That is, it is possible to prevent the flow rate of the chemical liquid Q passing through the flow path l ib from changing due to a temperature change.
  • a state in which the flow rate of the chemical solution Q is constant regardless of temperature changes is referred to as an “equilibrium state”.
  • an analgesic such as morphine
  • administration of the dose must be very strict.
  • the tube of the present invention is also very suitable for such a case.
  • the present invention is not limited to applying the tube of the present invention only to the second tube 10b.
  • Examples of the constituent material of the tube body 12 include various types of plastics such as soft polysalt cellulose, polyethylene, polyurethane, and polybutadiene, natural rubber, styrene butadiene rubber, and isoprene rubber. Those which are easily expanded and contracted by change are preferred.
  • the regulating member 19 is mainly composed of a metal material.
  • the metal material include various metals such as iron, nickel, stainless steel, copper, brass, aluminum, and titanium. Or alloys containing these, and plastics that have low expansion and contraction due to temperature changes and high rigidity.
  • the regulating member 19 having a smaller coefficient of thermal expansion than that of the tube main body 12 can be formed (configured).
  • the method for fixing the tube main body 12 and the regulating member 19 is not particularly limited.
  • the tube main body 12 and the regulating member 19 can be fixed by bonding with an adhesive. This makes the tube book When the body 12 contracts, the tube main body 12 and the regulating member 19 can be prevented from being separated from each other, so that the diameter of the flow path rib can be reliably increased.
  • the thickness of the adhesive layer is preferably thin.
  • FIG. 10 is a perspective view showing a second embodiment of the tube (second tube) of the present invention.
  • This embodiment is the same as the first embodiment except that the configuration (installation state) of the restricting member is different.
  • a plurality of regulating members 19A are provided at intervals (intermittently) along the longitudinal direction of the tube body 12.
  • the restricting member 19A has a cylindrical shape with a predetermined length.
  • the ratio of the diameter of the channel l ib to the Z contraction (hereinafter referred to as "correction Rate)).
  • the correction factor can be set more appropriately by appropriately adjusting the number (number of installations) of the regulating members 19A, the size of the interval between the neighboring regulating members 19A, etc. 2Tube 10b can be brought closer to equilibrium.
  • the tube body 12 can be easily bent, and thus the second tube 10b can be easily (compactly) stored (installed) in the chemical solution supply tool 1.
  • FIG. 11 is a perspective view showing a third embodiment of the tube (second tube) of the present invention.
  • This embodiment is the same as the first embodiment except that the configuration of the tube body is different.
  • the tube main body 12A is provided on the inner layer 121 and on the outer peripheral side of the inner layer 121.
  • the laminated portion 123A having the outer layer 122 is provided.
  • the laminated portion 123A is formed over substantially the entire length of the second tube 10b (tube body 12A) in the longitudinal direction.
  • the inner layer 121 is made of a material that is more inert to the chemical Q.
  • the outer layer 122 is made of a material having an appropriate coefficient of thermal expansion in order to maintain an equilibrium state.
  • the coefficient of thermal expansion is preferably larger than the coefficient of thermal expansion of the inner layer 121.
  • the regulating member 19 is provided over almost the entire length of the outer layer 122 in the longitudinal direction.
  • the correction factor can be set more appropriately, and thus the second tube 10b can be brought closer to an equilibrium state.
  • FIG. 12 is a perspective view showing a fourth embodiment of a tube (second tube) of the present invention.
  • This embodiment is the same as the third embodiment, except that the configuration of the laminated portion is different.
  • the laminated portion 123B of the tube body 12B is provided (formed) on a part of the tube body 12B.
  • the outer layer 122 of the laminated portion 123B is filled (injected) with a liquid material having a higher thermal expansion coefficient than the inner layer 121 in a gap formed between the outer peripheral surface of the inner layer 121 and the inner peripheral surface of the regulating member 19. It is formed by solidifying.
  • the correction factor can be set more appropriately by appropriately adjusting the length, outer diameter, constituent material, and the like of the outer layer 122. Accordingly, the second tube 10b can be more appropriately configured. It can approach the equilibrium state.
  • the liquid material includes, for example, epoxy resin, water, oil, various gel materials, and those in which bubbles are mixed.
  • the tube is not limited to being used in a liquid supply tool as shown in FIG.
  • a tube having the structure shown in FIG. 10 was produced. The specification of this tube is shown below.
  • Tube body length 31mm
  • Tube body outer diameter 1.5 mm
  • Tube body 0.06mm (25 ° C)
  • the restriction member was removed from the tube of the above example! /, And a tube with only the (deleted) tube body was produced.
  • FIG. 13 shows the result.
  • FIG. 13 is a graph showing the relationship between the temperature and the flow rate of water passing through the tube.
  • the tube of the example has a smaller width of the change in the water flow rate due to the temperature change than the tube of the comparative example. Therefore, it was confirmed that the tube of the example can keep the flow rate of water as constant as possible regardless of the temperature change.
  • the tube of the present invention is a tube through which a liquid passes.
  • a tube body in which a liquid can pass is formed, and expands and contracts due to a temperature change, and at least a part of the tube body in the longitudinal direction.

Abstract

A tube for passing a liquid therein and a liquid feeder. The tube comprises a tube body in which a flow passage allowing the liquid to pass therein is formed and expanded/contracted due to a change in temperature and restriction members fitted to at least parts of the tube body in the longitudinal direction and restricting the outer diameter of the tube body. In the tube of this structure, the cross sectional areas of the flow passage at portions where the restriction members are fitted are changed according to the expansion/contraction of the tube body due to a change in temperature.

Description

明 細 書  Specification
チューブおよび液体供給具  Tube and liquid supply
技術分野  Technical field
[0001] 本発明は、内部を液体が通過するチューブおよびそれを備えた液体供給具に関す る。  [0001] The present invention relates to a tube through which a liquid passes and a liquid supply device including the tube.
背景技術  Background art
[0002] 例えば、患者に対し薬液を投与するための薬液注入具 (薬液供給具)としては、病 院等の医療機関にお 、て使用されるものと、患者自身が自宅や職場等で自己投与 する際に使用されるものとがある。例えば、術後疼痛や癌性疼痛の緩和のような疼痛 管理のために、薬液注入具を用いて、モルヒネ等の鎮痛剤を連続的に微量注入する ことが行われている。  [0002] For example, as a chemical solution injection device (medical solution supply device) for administering a chemical solution to a patient, one used in a medical institution such as a hospital, and one who is self-administered at home or at work. Some are used when administered. For example, in order to manage pain such as postoperative pain and cancer pain, a microinjection of an analgesic agent such as morphine is continuously performed using a drug solution injector.
[0003] このような薬液注入具は、主に、薬液を貯留するとともに該薬液を排出する機能を 有するバルーンやシリンジポンプ等の薬液供給源と、該薬液供給源カゝら延長された 薬液供給ラインと、該薬液供給ラインの途中に設置された流量制御装置とで構成さ れている。流量制御装置は、流路の横断面積が微小な (極細の流路を有する)オリフ イスを有し、薬液が該オリフィスを通過する際の大きな管路抵抗により流量を微量に 制御するものである(例えば、特開平 10— 295811号公報参照)。  [0003] Such a chemical solution injector mainly includes a chemical solution supply source such as a balloon or a syringe pump having a function of storing the chemical solution and discharging the chemical solution, and an extended chemical solution supply source. Line and a flow rate control device installed in the middle of the chemical solution supply line. The flow control device has an orifice with a small cross-sectional area of the flow path (having an ultra-fine flow path), and controls the flow rate in a very small amount by a large pipe resistance when the chemical solution passes through the orifice. (For example, see JP-A-10-295811).
[0004] し力しながら、このような構成の薬液供給具では、患者への薬液の投与量を正確に 確保する必要があるが、前記薬液供給具を使用する使用温度 (室温)の変化によつ ては、薬液の流量が変化する、すなわち、投与量が変化する場合があった。換言す れば、このような構成の薬液供給具では、室温の変化により、薬液の粘度およびオリ フィスの流路の径が変化して、この流路を通過する薬液の流量が変化する場合があ つた。例えば、室温が上昇したとき、その温度上昇により薬液の粘度が低くなるととも に、オリフィスが膨張して流路の径が大きくなる。これにより、薬液の流量が多くなる。  [0004] However, in the chemical solution supply device having such a configuration, it is necessary to accurately secure the dose of the chemical solution to the patient. However, due to the change in use temperature (room temperature) at which the chemical solution supply device is used. Therefore, the flow rate of the chemical solution may change, that is, the dosage may change. In other words, in the chemical solution supply device having such a configuration, the viscosity of the chemical solution and the diameter of the orifice channel may change due to a change in room temperature, and the flow rate of the chemical solution passing through the channel may change. Atsuta. For example, when the room temperature rises, the viscosity of the chemical solution decreases as the temperature rises, and the orifice expands to increase the diameter of the flow path. Thereby, the flow volume of a chemical | medical solution increases.
[0005] このように薬液の流量に変化、すなわち、誤差が生じ、正確な薬液の投与量が確保 するのが困難な場合があるという問題あった。  [0005] As described above, there has been a problem that a change in the flow rate of the chemical solution, that is, an error occurs, and it may be difficult to ensure an accurate dose of the chemical solution.
発明の開示 [0006] 本発明の目的は、流路を通過する液体の流量が温度変化により変化するのを防止 することができるチューブおよび液体供給具を提供することにある。 Disclosure of the invention [0006] An object of the present invention is to provide a tube and a liquid supply device that can prevent the flow rate of the liquid passing through the flow path from being changed due to a temperature change.
[0007] (1)上記目的を達成するために、本発明のチューブは、 [0007] (1) In order to achieve the above object, the tube of the present invention comprises:
内部を液体が通過するチューブであって、  A tube through which liquid passes;
液体が通過可能な流路が形成され、温度変化により膨張 Z収縮するチューブ本体 と、  A tube body that forms a flow path through which liquid can pass and expands and contracts due to changes in temperature.
前記チューブ本体の長手方向の少なくとも一部に設けられ、前記チューブ本体の 外径を規制する規制部材とを備え、  Provided in at least a part of the longitudinal direction of the tube body, and a regulating member for regulating the outer diameter of the tube body,
前記規制部材が設けられた部位にぉ 、て、前記温度変化によるチューブ本体の膨 張 Z収縮に伴って、前記流路の横断面積が変化することを特徴とするチューブであ る。  The tube is characterized in that the cross-sectional area of the flow path changes as the tube body expands and contracts due to the temperature change at the portion where the regulating member is provided.
[0008] これにより、流路を通過する液体の流量が温度変化により変化するのを確実に防止 することができる。  [0008] Thereby, it is possible to reliably prevent the flow rate of the liquid passing through the flow path from changing due to a temperature change.
[0009] (2)また、本発明のチューブでは、前記液体が前記流路を通過したとき、前記液体 の流量が一定になるように、前記温度変化による前記チューブ本体の膨張 Z収縮の 程度が設定されて 、るのが好まし 、。  [0009] (2) In the tube of the present invention, when the liquid passes through the flow path, the degree of expansion Z contraction of the tube body due to the temperature change is such that the flow rate of the liquid becomes constant. It is preferred to be set.
[0010] これにより、流路を通過する液体の流量が温度変化により変化するのをより確実に 防止することができる。  [0010] Thereby, it is possible to more reliably prevent the flow rate of the liquid passing through the flow path from changing due to a temperature change.
[0011] (3)また、本発明のチューブでは、前記規制部材は、前記チューブ本体より熱膨張 率が小さいのが好ましい。  [0011] (3) Further, in the tube of the present invention, it is preferable that the regulating member has a smaller coefficient of thermal expansion than the tube body.
[0012] これにより、流路を通過する液体の流量が温度変化により変化するのをより確実に 防止することができる。 [0012] Thereby, it is possible to more reliably prevent the flow rate of the liquid passing through the flow path from changing due to a temperature change.
[0013] (4)また、本発明のチューブでは、前記規制部材は、前記チューブ本体の長手方 向のほぼ全長にわたり設けられているのが好ましい。  [0013] (4) In the tube of the present invention, it is preferable that the restricting member is provided over substantially the entire length in the longitudinal direction of the tube main body.
[0014] これにより、流路を通過する液体の流量が温度変化により変化するのをより確実に 防止することができる。 [0014] Thereby, it is possible to more reliably prevent the flow rate of the liquid passing through the flow path from changing due to a temperature change.
[0015] (5)また、本発明のチューブでは、前記規制部材は、前記チューブ本体の長手方 向に沿って、間隔をあけて複数設けられて 、るのが好まし 、。 [0016] これにより、流路の横断面積の変化の割合を緩和することができる。 [0015] (5) In the tube of the present invention, it is preferable that a plurality of the regulating members are provided at intervals along the longitudinal direction of the tube body. [0016] Thereby, the rate of change in the cross-sectional area of the flow path can be reduced.
[0017] (6)また、本発明のチューブでは、前記チューブ本体は、内層と、該内層の外周側 に設けられ、前記内層と異なる材料で構成された外層とを有する積層部を備え、 前記規制部材は、前記外層の外周側に設けられて 、るのが好ま 、。  [0017] (6) In the tube of the present invention, the tube body includes a laminated portion having an inner layer and an outer layer provided on an outer peripheral side of the inner layer and made of a material different from the inner layer, The regulating member is preferably provided on the outer peripheral side of the outer layer.
[0018] これにより、流路の横断面積の変化の割合をより適正に設定することができ、よって[0018] Thereby, the rate of change in the cross-sectional area of the flow path can be set more appropriately, thus
、流路を通過する液体の流量が温度変化により変化するのをさらに確実に防止する ことができる。 Further, it is possible to more reliably prevent the flow rate of the liquid passing through the flow path from changing due to a temperature change.
[0019] (7)また、本発明のチューブでは、前記外層は、前記内層より熱膨張率が大きいの が好ましい。  [0019] (7) In the tube of the present invention, it is preferable that the outer layer has a higher coefficient of thermal expansion than the inner layer.
[0020] これにより、流路の横断面積の変化の割合をより適正に設定することができ、よって 、流路を通過する液体の流量が温度変化により変化するのをさらに確実に防止する ことができる。  [0020] Thereby, the rate of change in the cross-sectional area of the flow path can be set more appropriately, and thus the flow rate of the liquid passing through the flow path can be more reliably prevented from changing due to a temperature change. it can.
[0021] (8)また、本発明のチューブでは、前記規制部材は、その横断面形状がほぼリング 状をなして!/、るのが好まし!/、。  [0021] (8) Further, in the tube of the present invention, it is preferable that the regulating member has a substantially cross-sectional shape in a cross section! /.
[0022] これにより、流路を通過する液体の流量が温度変化により変化するのをより確実に 防止することができる。 [0022] Thereby, it is possible to more reliably prevent the flow rate of the liquid passing through the flow path from changing due to a temperature change.
[0023] (9)また、本発明のチューブでは、前記規制部材は、主として金属材料で構成され ているのが好ましい。  [0023] (9) In the tube of the present invention, it is preferable that the regulating member is mainly made of a metal material.
[0024] これにより、チューブ本体よりも確実に熱膨張率が小さ!/、規制部材を形成 (構成)す ることがでさる。  [0024] Thereby, the coefficient of thermal expansion is surely smaller than that of the tube body, and the regulating member can be formed (configured).
[0025] (10)また、本発明のチューブでは、前記液体は、生体内に投与される薬液である のが好ましい。  [0025] (10) In the tube of the present invention, it is preferable that the liquid is a chemical solution to be administered into a living body.
[0026] これにより、流路を通過する薬液の流量が温度変化により変化するのを確実に防止 することができる。  [0026] Thereby, it is possible to reliably prevent the flow rate of the chemical solution passing through the flow path from changing due to a temperature change.
[0027] (11)また、上記目的を達成するために、本発明の液体供給具は、  [0027] (11) In order to achieve the above object, the liquid supply device of the present invention comprises:
上記(1)な 、し(10)の 、ずれかに記載のチューブを有し、液体の流量を調節する 流量調整部を備えることを特徴とする液体供給具である。  A liquid supply tool comprising the tube according to any one of (1) and (10) above, and having a flow rate adjusting unit for adjusting the flow rate of the liquid.
[0028] これにより、流路を通過する液体の流量が温度変化により変化するのを防止するこ とがでさる。 [0028] This prevents the flow rate of the liquid passing through the flow path from changing due to a temperature change. Togashi.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]第 1図は、本発明の液体供給具を示す断面側面図である。  FIG. 1 is a cross-sectional side view showing a liquid supply tool of the present invention.
[図 2]第 2図は、第 1図に示す液体供給具の分解図である。  FIG. 2 is an exploded view of the liquid supply tool shown in FIG. 1.
[図 3]第 3図は、第 1図に示す液体供給具の平面図である。  FIG. 3 is a plan view of the liquid supply tool shown in FIG. 1.
[図 4]第 4図は、第 1図に示す液体供給具の上カバーを取り外した状態を示す平面図 である。  FIG. 4 is a plan view showing a state in which the upper cover of the liquid supply tool shown in FIG. 1 is removed.
[図 5]第 5図は、第 1図に示す液体供給具の上カバーを取り外した状態を示す平面図 である。  FIG. 5 is a plan view showing a state where an upper cover of the liquid supply tool shown in FIG. 1 is removed.
[図 6]第 6図は、第 1図に示す液体供給具の上カバーを取り外した状態を示す平面図 である。  FIG. 6 is a plan view showing a state in which the upper cover of the liquid supply tool shown in FIG. 1 has been removed.
[図 7]第 7図は、本発明のチューブの第 1実施形態を示す斜視図である。  FIG. 7 is a perspective view showing a first embodiment of the tube of the present invention.
[図 8]第 8図は、第 7図に示すチューブが温度変化により変形したときの斜視図である  FIG. 8 is a perspective view when the tube shown in FIG. 7 is deformed by a temperature change.
[図 9]第 9図は、第 7図に示すチューブが温度変化により変形したときの斜視図である FIG. 9 is a perspective view when the tube shown in FIG. 7 is deformed by a temperature change.
[図 10]第 10図は、本発明のチューブの第 2実施形態を示す斜視図である。 FIG. 10 is a perspective view showing a second embodiment of the tube of the present invention.
[図 11]第 11図は、本発明のチューブの第 3実施形態を示す斜視図である。  FIG. 11 is a perspective view showing a third embodiment of the tube of the present invention.
[図 12]第 12図は、本発明のチューブの第 4実施形態を示す斜視図である。  FIG. 12 is a perspective view showing a fourth embodiment of the tube of the present invention.
[図 13]第 13図は、温度とチューブを通過する水の流量との関係を示すグラフである。 発明を実施するための最良の形態  FIG. 13 is a graph showing the relationship between the temperature and the flow rate of water passing through the tube. BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明のチューブおよび液体供給具を添付図面に示す好適実施形態に基 づいて詳細に説明する。なお、本実施形態は、本発明のチューブの内部を通過する 液体として、生体内に投与される薬液を用い、また、本発明の液体供給具を前記薬 液を供給する薬液供給具として用いた実施形態になって 、る。  Hereinafter, the tube and the liquid supply tool of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings. In the present embodiment, the liquid that passes through the inside of the tube of the present invention is used as a liquid that is administered into a living body, and the liquid supply device of the present invention is used as a liquid medicine supply device that supplies the liquid medicine. It becomes an embodiment.
[0031] 第 1図は、本発明の液体供給具を示す断面側面図、第 2図は、第 1図に示す液体 供給具の分解図、第 3図は、第 1図に示す液体供給具の平面図、第 4図、第 5図およ び第 6図は、それぞれ、第 1図に示す液体供給具の上カバーを取り外した状態を示 す平面図である。 FIG. 1 is a sectional side view showing a liquid supply tool of the present invention, FIG. 2 is an exploded view of the liquid supply tool shown in FIG. 1, and FIG. 3 is a liquid supply tool shown in FIG. Fig. 4, Fig. 5, Fig. 5 and Fig. 6 show the state where the upper cover of the liquid supply tool shown in Fig. 1 is removed. FIG.
[0032] なお、第 1図〜第 6図中の左側を「上流側」、右側を「下流側」と言うとともに、第 1図 および第 2図中の上側を「上」、下側を「下」として説明する。  [0032] The left side in FIGS. 1 to 6 is referred to as "upstream side", the right side is referred to as "downstream side", the upper side in FIGS. 1 and 2 is referred to as "upper", and the lower side is referred to as "upper side". This will be described as “below”.
[0033] 第 1図〜第 6図に示すように、本発明の薬液供給具 (液体供給具) 1は、主に第 1下 ケース 3と、第 2下ケース 4と、これらの上部に装着される上ケース 5とで構成されるケ 一シング 2を有する。 [0033] As shown in FIG. 1 to FIG. 6, the chemical solution supply device (liquid supply device) 1 of the present invention is mainly mounted on the first lower case 3, the second lower case 4, and the upper parts thereof. And a casing 2 composed of the upper case 5.
[0034] 第 1下ケース 3には、薬液を貯留するチャンバ一 (薬液貯留部) 31と、該チャンバ一  [0034] The first lower case 3 includes a chamber 1 (chemical solution storage unit) 31 for storing a chemical solution, and the chamber
31に連通する薬液の流入口 32a、 32bおよび流出口 33と力 S形成されて 、る。  A force S is formed with the inflow ports 32a and 32b and the outflow port 33 of the chemical solution communicating with 31.
[0035] チャンバ一 31は、第 1下ケース 3の中央部に形成された円柱状の凹部と、その上部 に装着されるダイヤフラム 7とで画成されている。チャンバ一 31の容積は、特に限定 されないが、通常、 0. 3〜5. OmL程度が好ましぐ 2. 0〜3. OmL程度がより好まし い。  The chamber 31 is defined by a cylindrical recess formed in the center of the first lower case 3 and a diaphragm 7 attached to the upper part. The volume of the chamber 31 is not particularly limited, but usually about 0.3 to 5. OmL is preferable, and about 2.0 to 3. OmL is more preferable.
[0036] 第 2下ケース 4は、第 1下ケース 3の上流側に接合されており、上ケース 5との間で、 後述する流量切替手段 (流量調整部) 9を収納する。第 2下ケース 4の底部内面には 、流量切替手段 9の操作ダイヤル 91の軸受けとなる凹部 41が形成されている。また 、上ケース 5の対応する位置にも、同様に操作ダイヤル 91の軸受けとなる開口 56が 形成されている。  The second lower case 4 is joined to the upstream side of the first lower case 3, and stores a flow rate switching means (flow rate adjusting unit) 9 described later between the upper case 5 and the second lower case 4. On the inner surface of the bottom of the second lower case 4, a recess 41 is formed that serves as a bearing for the operation dial 91 of the flow rate switching means 9. Similarly, an opening 56 serving as a bearing for the operation dial 91 is formed at a corresponding position of the upper case 5.
[0037] 上ケース 5の下流側には、上方へ向力つて隆起した隆起部 51が形成され、該隆起 部 51には、ワンショット注入 (所定量の薬液 Qを患者に一時的に注入すること)を行う 際の流出口 33からの薬液 Qの吐出量を調整する吐出量調整機構を備える操作手段 6が収納されている。  [0037] On the downstream side of the upper case 5, there is formed a raised portion 51 that protrudes upwardly, and a one-shot injection (a predetermined amount of a medicinal solution Q is temporarily injected into the patient). The operation means 6 having a discharge amount adjusting mechanism for adjusting the discharge amount of the chemical liquid Q from the outlet 33 at the time of carrying out is housed.
[0038] すなわち、隆起部 51の頂部には、ボタンノ、ウジング 61を上下方向に移動可能に挿 入する円形の開口 52が形成されている。また、開口 52の下端には、開口 52の横断 面積が増大するような第 1段差部 53と、さらに横断面積が増大するような第 2段差部 54とが形成されている。  [0038] That is, a circular opening 52 into which the button blade and the udging 61 are movably inserted in the vertical direction is formed at the top of the raised portion 51. At the lower end of the opening 52, a first stepped portion 53 that increases the cross-sectional area of the opening 52 and a second stepped portion 54 that further increases the cross-sectional area are formed.
[0039] ボタンハウジング 61は、リング状の部材であり、その内周面には、雌螺子 67が形成 されている。  The button housing 61 is a ring-shaped member, and a female screw 67 is formed on the inner peripheral surface thereof.
[0040] また、ボタン (押し子) 62は、ダイヤフラム 7を押圧してそれをチャンバ一 31の内側 に突出させる押圧部材に相当するもので、その下端にダイヤフラム 7の膜 72と当接 する当接面 63を有する略円柱状の部材で構成されている。 [0040] Further, the button (presser) 62 presses the diaphragm 7 and presses it inside the chamber 31. It is made up of a substantially cylindrical member having a contact surface 63 that contacts the membrane 72 of the diaphragm 7 at the lower end thereof.
[0041] このボタン 62の上部外周面には、前記雌螺子 67と螺合する雄螺子 66が形成され ている。この雄螺子 66が雌螺子 67と螺合することにより、ボタン 62がボタンハウジン グ 61の内側に挿入されて ヽる。  [0041] On the upper outer peripheral surface of the button 62, a male screw 66 that is screwed with the female screw 67 is formed. When the male screw 66 is screwed with the female screw 67, the button 62 is inserted inside the button housing 61.
[0042] そして、ボタンハウジング 61に対するボタン 62の回転方向および回転量を調整す ることにより、ボタン 62のボタンハウジング 61に対する上下方向の位置、すなわちボ タン 62とダイヤフラム 7との距離 (離間距離)が調整、設定される。第 1図に示す状態 では、ボタン 62の当接面 63とダイヤフラム 7の膜 72とが接触している。なお、ボタン 6 2の当接面 63とダイヤフラム 7の膜 72とは、前述のように接触して 、るのに限定され ず、例えば、ボタン 62の当接面 63が膜 72から所定距離離間してもよい。  [0042] Then, by adjusting the rotation direction and the rotation amount of the button 62 with respect to the button housing 61, the vertical position of the button 62 with respect to the button housing 61, that is, the distance between the button 62 and the diaphragm 7 (separation distance). Is adjusted and set. In the state shown in FIG. 1, the contact surface 63 of the button 62 and the membrane 72 of the diaphragm 7 are in contact. The contact surface 63 of the button 62 and the membrane 72 of the diaphragm 7 are in contact with each other as described above. For example, the contact surface 63 of the button 62 is separated from the membrane 72 by a predetermined distance. May be.
[0043] ボタン 62を押圧操作してダイヤフラム 7をチャンバ一 31の内側に突出させると、チ ヤンバー 31の容積が一時的に減少し、チャンバ一 31内の薬液 Qが流出口 33より吐 出する。この吐出量は、前記ボタン 62のボタンハウジング 61に対する上下方向の位 置に対応する。  [0043] When the button 62 is pressed to project the diaphragm 7 to the inside of the chamber 31, the volume of the chamber 31 is temporarily reduced, and the chemical Q in the chamber 31 is discharged from the outlet 33. . This discharge amount corresponds to the vertical position of the button 62 with respect to the button housing 61.
[0044] 本実施形態では、このような雌螺子 67と雄螺子 66の螺合による吐出量調整機構を 備えているため、ボタン 62のボタンハウジング 61に対する上下方向の位置、すなわ ちボタン 62を押圧操作 (ワンショット注入操作)した際におけるダイヤフラム 7の膜 72 のチャンバ一 31内への突出量 (挿入状態)を無段階に調整することができ、これによ り、流出口 33からの薬液 Qの吐出量を調整することができる。  [0044] In the present embodiment, since the discharge amount adjusting mechanism by screwing the female screw 67 and the male screw 66 is provided, the position of the button 62 in the vertical direction with respect to the button housing 61, that is, the button 62 is changed. The amount of projection (insertion state) of the membrane 72 of the diaphragm 7 into the chamber 31 during the pressing operation (one-shot injection operation) can be adjusted steplessly. Q discharge amount can be adjusted.
[0045] また、吐出量調整機構は、ボタン 62とダイヤフラム 7との距離 (離間距離)を調整す る機構よりなるものであるため、チャンバ一 31から薬液 Qを吐出することなぐいつで も(例えば微量注入時でも)その調整を行うことができる。  [0045] In addition, since the discharge amount adjustment mechanism is a mechanism that adjusts the distance (separation distance) between the button 62 and the diaphragm 7, it is always possible to discharge the chemical Q from the chamber 31 ( The adjustment can be made (for example, even during microinjection).
[0046] ボタン 62の上面には、ボタン 62をボタンハウジング 61に対し回転操作するための 溝 64が形成されている。この溝 64に例えばコインやドライバーを挿入し、ボタン 62を ボタンノヽウジング 61に対し回転させ、その上下方向の位置を調整、設定する。  A groove 64 for rotating the button 62 with respect to the button housing 61 is formed on the upper surface of the button 62. For example, a coin or a screwdriver is inserted into the groove 64, the button 62 is rotated with respect to the button nosing 61, and the vertical position thereof is adjusted and set.
[0047] また、薬液供給具 1には、前記のようにボタン 62を回転させたとき、ボタンハウジン グ 61が上ケース 5に対し回転しな 、ようにするための回転止め機構が設けられて 、る 。すなわち、第 3図に示すように、ボタンハウジング 61の外周面には、第 1図中の紙 面に対して垂直方向に延びる一対の溝 611が形成され、一方、上ケース 5の溝 611 に対応する位置には、溝 611に挿入する突条 55が形成され、ボタンハウジング 61を 上下方向(垂直方向)に移動する際は、突条 55が溝 611に沿って摺動してその移動 を可能とするが、ボタンノヽウジング 61の上ケース 5に対する回転方向の応力が作用し た際には、突条 55と溝 611とが係合しているため、その回転は阻止される。これによ り、ボタンノヽウジング 61は、第 1図中の上下方向にのみ移動することができる。 [0047] In addition, the chemical supply tool 1 is provided with a rotation stopping mechanism for preventing the button housing 61 from rotating with respect to the upper case 5 when the button 62 is rotated as described above. RU . That is, as shown in FIG. 3, a pair of grooves 611 extending in a direction perpendicular to the paper surface in FIG. 1 is formed on the outer peripheral surface of the button housing 61, while the groove 611 of the upper case 5 is formed in the groove 611 of the upper case 5. At the corresponding position, a ridge 55 to be inserted into the groove 611 is formed. When the button housing 61 is moved in the vertical direction (vertical direction), the ridge 55 slides along the groove 611 and moves. Although it is possible, when the rotational stress is applied to the upper case 5 of the button housing 61, the protrusion 55 and the groove 611 are engaged with each other, so that the rotation is prevented. As a result, the button nosing 61 can move only in the vertical direction in FIG.
[0048] このようなボタンハウジング 61およびこれに保持されたボタン 62は、圧縮状態のコ ィル状のパネ (付勢部材) 65により上方へ付勢されて 、る。  [0048] The button housing 61 and the button 62 held by the button housing 61 are urged upward by a coiled panel (biasing member) 65 in a compressed state.
[0049] パネ 65の上端部は、ボタンノヽウジング 61に形成されたリング状の凹部よりなるパネ 座 612に挿入され、パネ 65の下端は、挟持部材 8の上面に当接している。パネ 65が 最も収縮したときには、パネ 65の全部または大部分がパネ座 612内に収納される。  The upper end portion of the panel 65 is inserted into a panel seat 612 made of a ring-shaped recess formed in the button housing 61, and the lower end of the panel 65 is in contact with the upper surface of the clamping member 8. When the panel 65 is most contracted, all or most of the panel 65 is stored in the panel seat 612.
[0050] ボタンハウジング 61の下端外周部には、フランジ 613が形成され、パネ 65により上 方へ付勢されているボタンノヽウジング 61は、このフランジ 613が前記第 1段差部 53と 係合することにより、その上方への移動の限界が規制される。  [0050] A flange 613 is formed on the outer peripheral portion of the lower end of the button housing 61, and the button housing 61 urged upward by the panel 65 is engaged with the first stepped portion 53 of the flange 613. This limits the upward movement limit.
[0051] ダイヤフラム 7は、リング状のリム部 71と、その内側に形成された膜 (薄肉部) 72とで 構成されている。このダイヤフラム 7は、第 1下ケース 3に形成された前記円柱状の凹 部の上面開口を液密に封止するものであり、すなわち、チャンバ一 31の上面(一部) を画成する。  The diaphragm 7 is composed of a ring-shaped rim portion 71 and a film (thin wall portion) 72 formed on the inside thereof. The diaphragm 7 seals the upper surface opening of the cylindrical concave portion formed in the first lower case 3 in a liquid-tight manner, that is, defines the upper surface (part) of the chamber 31.
[0052] このダイヤフラム 7は、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン ブタジエンゴム、ブチルゴム、シリコーンゴム、フッ素ゴムのような各種ゴム材料や、 ポリウレタン系、ポリエステル系、ポリアミド系等の各種熱可塑性エラストマ一等の弹 性体 (弾性材料)で構成されているのが好ましい。このなかでも、薬液 Qに対する安定 性が高!、ことから、シリコーンゴムが特に好まし!/、。  [0052] This diaphragm 7 is made of, for example, various rubber materials such as natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, silicone rubber, fluoro rubber, and various heat materials such as polyurethane, polyester, and polyamide. It is preferably made of an elastic material (elastic material) such as a plastic elastomer. Among these, silicone rubber is especially preferred because of its high stability against chemical Q!
[0053] このダイヤフラム 7は、第 1下ケース 3と、その上部に位置するリング状の挟持部材 8 とにより挟持され、チャンバ一 31の上部の液密性を保持している。すなわち、第 1下 ケース 3と挟持部材 8とにそれぞれ形成されたリング状の溝カゝら構成される凹部 81内 に、ダイヤフラム 7のリム部 71が上下方向に圧縮された状態で挿入され、かつ、リム部 71より内側近傍の膜 72が第 1下ケース 3のチャンバ一 31の上部外周縁に形成され たリップ 34と挟持部材 8の下面との間に挟持されている。 The diaphragm 7 is sandwiched between the first lower case 3 and a ring-shaped sandwiching member 8 located at the upper part thereof, and maintains the liquid tightness of the upper part of the chamber 31. That is, the rim portion 71 of the diaphragm 7 is inserted in a state of being compressed in the vertical direction into the concave portions 81 formed by ring-shaped groove caps formed in the first lower case 3 and the clamping member 8 respectively. And rim part A film 72 in the vicinity of the inner side from 71 is sandwiched between the lip 34 formed on the upper outer peripheral edge of the chamber 31 of the first lower case 3 and the lower surface of the clamping member 8.
[0054] この場合、挟持部材 8の外周部は、上ケース 5の第 2段差部 54に係合し、該第 2段 差部 5より下方への押圧力を受け、これにより、第 1下ケース 3と挟持部材 8との挟持 力を得ている。従って、ダイヤフラム 7は、第 1下ケース 3と上ケース 5との間に挟持部 材 8を介して挟持されて 、ることとなる。 [0054] In this case, the outer peripheral portion of the clamping member 8 engages with the second step portion 54 of the upper case 5 and receives a pressing force downward from the second step portion 5, thereby the first lower portion The clamping force between case 3 and clamping member 8 is obtained. Therefore, the diaphragm 7 is sandwiched between the first lower case 3 and the upper case 5 via the sandwiching member 8.
[0055] 挟持部材 8の中心部には、ボタン 62が揷通可能な円形の開口 82が形成されてい る。 [0055] A circular opening 82 through which the button 62 can pass is formed at the center of the clamping member 8.
第 1下ケース 3には、チャンバ一 31に連通する一対の流入口 32a、 32bと流出口 33 とが形成されている。  The first lower case 3 is formed with a pair of inflow ports 32a and 32b and an outflow port 33 communicating with the chamber 31.
[0056] 流入口 32aおよび 32bには、それぞれ、第 1チューブ 10aおよび第 2チューブ 10b の下流側端部が液密に嵌入されて!ヽる。  [0056] The downstream ends of the first tube 10a and the second tube 10b are liquid-tightly inserted into the inflow ports 32a and 32b, respectively! Speak.
[0057] 第 1チューブ 10aおよび第 2チューブ 10bの下流側端部は、それぞれ、横断面積が 微小な流路 l la、 l ibが形成され、薬液 Qが流路 l la、 l ibを通過する際に、各流路 内面から大きな管路抵抗 (粘性抵抗)を受け、流量が微量に制御される。  [0057] At the downstream ends of the first tube 10a and the second tube 10b, channels l la and l ib having a small cross-sectional area are formed, respectively, and the chemical solution Q passes through the channels l la and l ib. At the same time, a large pipe resistance (viscous resistance) is received from the inner surface of each flow path, and the flow rate is controlled to a very small amount.
[0058] この場合、流路 1 laと流路 1 lbとは、その流路の横断面積が異なって!/、る。すなわ ち、流路 11aの横断面積が流路 l ibの横断面積より小さぐよって、流路 11aを通過 する薬液 Qの流量 Vは、流路 l ibを通過する薬液 Qの流量 Vより小さい。  [0058] In this case, the flow path 1 la and the flow path 1 lb have different cross-sectional areas of the flow paths! /. That is, since the cross-sectional area of the flow path 11a is smaller than the cross-sectional area of the flow path l ib, the flow rate V of the chemical liquid Q passing through the flow path 11a is smaller than the flow rate V of the chemical liquid Q passing through the flow path l ib. .
1 2  1 2
[0059] また、第 1チューブ 10aおよび第 2チューブ 10bの上流側は、チューブの圧閉に際 し変形し得るように、それぞれ、可撓性 (柔軟性)を有するものとされ、特に、ある程度 の復元性を有するものが好ましい。このような条件を満たす構成材料としては、例え ば、軟質ポリ塩化ビュル、ポリエチレン、ポリプロピレン、エチレン 酢酸ビュル共重 合体、ポリアミド、ポリエステル、ポリウレタン等の各種合成樹脂や、天然ゴム、スチレ ン一ブタジエンゴム、ブチルゴム、シリコーンゴム、イソプレン等の各種ゴム、各種熱 可塑性エラストマ一等が挙げられる。  [0059] Further, the upstream sides of the first tube 10a and the second tube 10b are each flexible so that they can be deformed when the tubes are closed. Those having a restoring property of 1 are preferable. Examples of constituent materials that satisfy such conditions include various synthetic resins such as soft polychlorinated butyl, polyethylene, polypropylene, ethylene acetate butyl copolymer, polyamide, polyester, and polyurethane, natural rubber, and polystyrene-butadiene rubber. And various rubbers such as butyl rubber, silicone rubber and isoprene, and various thermoplastic elastomers.
[0060] 第 1チューブ 10aおよび第 2チューブ 10bの上流側端部は、 Y字コネクタ 13を介し てチューブ 14と接続されている。チューブ 14は、ケーシング 2外へ突出し、チューブ 14の上流端は、例えばシリンジポンプやバルーンのような薬液供給源(図示せず)に 接続されている。 [0060] The upstream ends of the first tube 10a and the second tube 10b are connected to the tube 14 via the Y-shaped connector 13. The tube 14 projects out of the casing 2, and the upstream end of the tube 14 is connected to a chemical supply source (not shown) such as a syringe pump or a balloon. It is connected.
[0061] 流出口 33の下流側には、内径が拡大する拡大部 35を有し、この拡大部 35には、 コネクタ 15が液密に嵌入されて ヽる。  [0061] On the downstream side of the outlet 33, there is an enlarged portion 35 whose inner diameter is enlarged, and the connector 15 is fitted in the enlarged portion 35 in a liquid-tight manner.
[0062] コネクタ 15の内部の上流側には、薬液 Qの流れを上流側から下流側への一方向に 規制する一方向弁 (逆止弁) 16が設置されている。これにより、薬液 Qが逆流し、流 出口 33を経てチャンバ一 31内へ流入することが阻止される。  A one-way valve (check valve) 16 that restricts the flow of the chemical solution Q in one direction from the upstream side to the downstream side is installed on the upstream side inside the connector 15. As a result, the chemical liquid Q flows backward and is prevented from flowing into the chamber 31 through the outlet 33.
[0063] コネクタ 15の下流側には、チューブ 17が接続されている。このチューブ 17の下流 端には、例えば穿刺針(図示せず)が装着され、この穿刺針を患者の血管または硬 膜外に穿刺して薬液 Qを投与することができる。  A tube 17 is connected to the downstream side of the connector 15. For example, a puncture needle (not shown) is attached to the downstream end of the tube 17, and the drug solution Q can be administered by puncturing the puncture needle into the blood vessel or epidural surface of the patient.
[0064] チューブ 14、 17は、それぞれ、可撓性 (柔軟性)を有するものとされ、特に、ある程 度の復元性を有するものが好ましい。このような条件を満たすチューブ 14、 17の構 成材料としては、例えば、軟質ポリ塩ィ匕ビュル、ポリエチレン、ポリプロピレン、ェチレ ンー酢酸ビニル共重合体、ポリアミド、ポリエステル、ポリウレタン等の各種合成樹脂 や、天然ゴム、スチレン ブタジエンゴム、ブチルゴム、シリコーンゴム等の各種ゴム、 各種熱可塑性エラストマ一等が挙げられる。  [0064] The tubes 14 and 17 each have flexibility (softness), and those having a certain degree of resilience are particularly preferable. Examples of the constituent material of the tubes 14 and 17 satisfying such conditions include various synthetic resins such as soft polysalt cellulose, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polyamide, polyester, and polyurethane, Various rubbers such as natural rubber, styrene butadiene rubber, butyl rubber, and silicone rubber, and various thermoplastic elastomers can be used.
[0065] また、チューブ 14、 17の内面には、薬液 Qに対し悪影響を及ぼさないような表面処 理を施すこと (特に被覆層の形成)が可能である。表面処理の目的は、任意であり、 例えば、チューブの構成材料中の有機成分が薬液 Q中に溶出するのを防止するバリ ャ層の形成や、エアーブロッキングの防止目的で親水性コートを施すことが挙げられ る。 [0065] In addition, the inner surfaces of the tubes 14 and 17 can be subjected to a surface treatment that does not adversely affect the chemical Q (particularly, formation of a coating layer). The purpose of the surface treatment is arbitrary.For example, a hydrophilic layer is formed to prevent organic components in the tube constituent material from eluting into the chemical solution Q or to prevent air blocking. Can be mentioned.
[0066] 流量切替手段 (流量調節部) 9は、液体の流量を切替える(調節する)ものであり、 第 1チューブ 10aおよび第 2チューブ 10bと、圧閉部 92を有する操作ダイヤル (操作 部材) 91と、圧閉部 92との間で第 1チューブ 10aおよび第 2チューブ 10bをそれぞれ 圧閉する受部材 94a、 94bとで構成されるチューブ圧閉機構と、操作ダイヤル 91の 回転方向の位置決めを行う位置決め手段 95とで構成されて 、る。  [0066] The flow rate switching means (flow rate adjustment unit) 9 switches (adjusts) the flow rate of the liquid, and an operation dial (operation member) having a first tube 10a and a second tube 10b and a pressure closing unit 92. 91 and the pressure closing part 92, the tube pressure closing mechanism composed of receiving members 94a and 94b for pressing and closing the first tube 10a and the second tube 10b, respectively, and the positioning of the operation dial 91 in the rotational direction. It consists of positioning means 95 to perform.
[0067] 操作ダイヤル 91は、軸受けとして機能する凹部 41と開口 56とによりケーシング 2に 対し回動可能に支持されており、その下方には、受部材 94a、 94bに対し変位して第 1チューブ 10aと第 2チューブ 10bとを選択的に圧閉し得るカム形状の圧閉部 92が形 成されている。また、操作ダイヤル 91の上部には、操作ダイヤル 91を回動操作する ために把持する把持部 93が形成されて ヽる。 [0067] The operation dial 91 is rotatably supported with respect to the casing 2 by the concave portion 41 functioning as a bearing and the opening 56, and below the operation dial 91 is displaced with respect to the receiving members 94a and 94b and is displaced by the first tube. A cam-shaped crushing portion 92 that can selectively crush 10a and the second tube 10b is formed. It is made. In addition, a grip portion 93 that grips the operation dial 91 to rotate is formed on the operation dial 91.
[0068] 受部材 94a、 94bは、それぞれ、ケーシング 2の上流側の側壁内面に当接して設置 されている。受部材 94a、 94bには、それぞれ、操作ダイヤル 91側に向カゝつて突出す る突部 941が形成されている。この突部 941と操作ダイヤル 91の圧閉部 92とで、第 1 チューブ 10a、第 2チューブ 10bを圧閉し、その流路(内部流路) l la、 l ibを閉塞さ せる。 [0068] The receiving members 94a and 94b are installed in contact with the inner surface of the upstream side wall of the casing 2, respectively. Each of the receiving members 94a and 94b is formed with a protrusion 941 that protrudes toward the operation dial 91. The projecting portion 941 and the pressure closing portion 92 of the operation dial 91 close the first tube 10a and the second tube 10b, and close the flow paths (internal flow paths) lla and lib.
[0069] なお、本実施例では、受部材 94a、 94bは、第 2下ケース 4と一体ィ匕されているが、 別部材であってもよい。  [0069] In the present embodiment, the receiving members 94a and 94b are integrated with the second lower case 4, but may be separate members.
[0070] 位置決め手段 95は、操作ダイヤル 91の圧閉部 92と反対側の外周面にほぼ等間 隔で形成された 3つの凹部 96 &、 96b, 96cと、その先端部力凹部 96 &、 96b, 96cの V、ずれかに選択的に挿入されるピン 97と、ピン 97を操作ダイヤル 91側へ付勢するコ ィル状のパネ (付勢部材) 98と、止め具 99とで構成されている。  [0070] The positioning means 95 includes three concave portions 96 &, 96b, 96c formed on the outer peripheral surface of the operation dial 91 on the side opposite to the pressure closing portion 92 at substantially equal intervals, and a tip force concave portion 96 &, 96b, 96c V, Pin 97 selectively inserted in the gap, coil-shaped panel (biasing member) 98 that urges the pin 97 toward the operation dial 91 side, and stopper 99 Has been.
[0071] ピン 97およびパネ 98は、第 2下ケース 4の底部から立設された支持部 42の孔 43内 に挿入されており、ピン 97の先端部は、孔 43の下流側端より突出している。また、孔 43の上流側端部は、止め具 99が嵌入され、封止されている。ピン 97と止め具 99との 間には、パネ 98が圧縮状態で挿入され、ピン 97を下流側へ付勢している。  [0071] The pin 97 and the panel 98 are inserted into the hole 43 of the support portion 42 erected from the bottom of the second lower case 4, and the tip of the pin 97 protrudes from the downstream end of the hole 43. ing. Further, a stopper 99 is fitted into the upstream end portion of the hole 43 and sealed. A panel 98 is inserted between the pin 97 and the stopper 99 in a compressed state to urge the pin 97 downstream.
[0072] ピン 97の先端咅 ま、ノ ネ 98により付勢されて 咅 96a、 96b、 96cの!ヽずれ力に挿 入され、その状態で、操作ダイヤル 91の回転方向の位置が停止し、位置決めがなさ れる。  [0072] The tip end of the pin 97 is urged by the screw 98 and is inserted into the ヽ 96a, 96b, 96c displacement force, and in this state, the position of the operation dial 91 in the rotational direction stops, Positioning is performed.
[0073] すなわち、位置決め手段 95により、操作ダイヤル 91は、その回転方向の位置が 3 段階 (第 1の状態、第 2の状態および第 3の状態)に設定され (第 4図〜第 6図参照)、 それに応じて、第 1チューブ 10aおよび第 2チューブ 10bが圧閉、封止されるパター ンが選択され、薬液 Qの流量が設定される。  That is, the positioning means 95 sets the operation dial 91 in the rotational direction in three stages (first state, second state, and third state) (FIGS. 4 to 6). According to this, the pattern in which the first tube 10a and the second tube 10b are closed and sealed is selected, and the flow rate of the chemical solution Q is set.
[0074] すなわち、第 4図に示すように、ピン 97の先端部が中央の凹部 96bに挿入された状 態 (第 3の状態 Z基準位置)では、第 1チューブ 10aおよび第 2チューブ 10bの双方 が圧閉されず、従って、薬液 Qは、第 1チューブ 10aおよび第 2チューブ 10bのそれ ぞれの流路 11aおよび流路 l ibを通過し、流入口 32aおよび 32bを経てチャンバ一 3 1内に流入する。よって、このときの薬液 Qの流量 Vは、前記流量 Vと前記流量 Vと That is, as shown in FIG. 4, in the state where the tip end portion of the pin 97 is inserted into the central recess 96b (third state Z reference position), the first tube 10a and the second tube 10b Both are not closed, so that the chemical Q passes through the flow paths 11a and l ib of the first tube 10a and the second tube 10b, respectively, and passes through the inlets 32a and 32b. Flows into 1. Therefore, the flow rate V of the chemical solution Q at this time is the flow rate V and the flow rate V.
3 1 2 の和にほぼ等しぐ最大流量となる。  The maximum flow rate is almost equal to the sum of 3 1 2.
[0075] また、第 5図に示すように、ピン 97の先端部が凹部 96aに挿入された状態 (第 1の状 態)では、第 1チューブ 10aおよび第 2チューブ 10bのうちの第 1チューブ 10aのみが 圧閉され、従って、薬液 Qは、第 2チューブ 10bの流路 l ibを通過し、流入口 32bを 経てチャンバ一 31内に流入する。このときの薬液 Qの流量は、前記流量 Vとなる。  [0075] Further, as shown in FIG. 5, when the tip end of the pin 97 is inserted into the recess 96a (first state), the first tube of the first tube 10a and the second tube 10b is the first tube. Only 10a is closed, so that the chemical Q passes through the flow path ib of the second tube 10b and flows into the chamber 31 through the inlet 32b. At this time, the flow rate of the chemical solution Q becomes the flow rate V.
2  2
[0076] また、第 6図に示すように、ピン 97の先端部が凹部 96cに挿入された状態 (第 2の状 態)では、第 1チューブ 10aおよび第 2チューブ 10bのうちの第 2チューブ 10bのみが 圧閉され、従って、薬液 Qは、第 1チューブ 10aの流路 11aを通過し、流入口 32aを 経てチャンバ一 31内に流入する。このときの薬液 Qの流量は、前記流量 V (<V )と  [0076] Also, as shown in FIG. 6, when the tip of the pin 97 is inserted into the recess 96c (second state), the second tube out of the first tube 10a and the second tube 10b. Only the liquid 10b is closed, so that the chemical Q passes through the flow path 11a of the first tube 10a and flows into the chamber 31 through the inlet 32a. The flow rate of the chemical solution Q at this time is the flow rate V (<V).
1 2 なる。  1 2
[0077] このように、流量切替手段 9では、 2つの流路 l la、 l ib (第 1チューブ 10aおよび第 2チューブ 10b)のそれぞれへの薬液 Qの流通パターンを選択することにより、薬液 Q の流量を V、 V、 V (これらは、 V <V <Vの関係を満たす)の 3段階に設定するこ  [0077] As described above, the flow rate switching means 9 selects the chemical solution Q by selecting the distribution pattern of the chemical solution Q to each of the two flow paths l la and l ib (the first tube 10a and the second tube 10b). The flow rate of V is set to three levels: V, V, and V (which satisfy the relationship V <V <V)
1 2 3 1 2 3  1 2 3 1 2 3
とができる。そして、位置決め手段 95の設置により、このような流量の設定操作も、容 易かつ正確に行うことができる。  You can. By setting the positioning means 95, such a flow rate setting operation can be easily and accurately performed.
[0078] なお、本発明において、さらに、 3本以上のチューブを用いた場合(図示せず)には[0078] In the present invention, when three or more tubes are used (not shown),
、それらの組み合わせ (パターン)により、チューブ (流路)の本数以上の段階に流量 を設定することができ、よりきめ細力な流量調整 (流量切替え)が可能となる。 By combining them (patterns), the flow rate can be set at a level higher than the number of tubes (flow paths), and finer flow rate adjustment (flow rate switching) becomes possible.
[0079] また、操作ダイヤル 91の回転方向の位置、すなわち薬液 Qの流量の大小を示す目 盛り 18が形成されている。これにより、流量調節をより容易に、誤操作なく行うことが できる。 Further, a scale 18 indicating the position of the operation dial 91 in the rotational direction, that is, the magnitude of the flow rate of the chemical liquid Q is formed. As a result, the flow rate can be adjusted more easily and without erroneous operation.
[0080] また、本発明の薬液供給具 1により供給される薬液 Qは、その使用目的に応じて適 宜選択され、例えばモルヒネ (麻薬性鎮痛剤)等の鎮痛剤、インシュリン製剤、抗生物 質、抗ガン剤、局麻剤等が挙げられる。なお、薬液 Qの種類は、これに限定されるも のではなぐ例えば、生理食塩水、電解水、洗浄液、抗凝固剤、造影剤等の直接薬 効を発揮しな 、ものも含まれる。  [0080] Further, the drug solution Q supplied by the drug solution supply device 1 of the present invention is appropriately selected according to the purpose of use. For example, analgesics such as morphine (narcotic analgesics), insulin preparations, antibiotics, etc. , Anticancer agents, and narcotic agents. Note that the type of the drug solution Q is not limited to this, and includes, for example, those that do not exert direct effects such as physiological saline, electrolytic water, cleaning solution, anticoagulant, and contrast agent.
[0081] 次に、薬液供給具 1の作用について説明する。 まず、薬液 Qの微量注入について説明する。 Next, the operation of the chemical solution supply tool 1 will be described. First, the microinjection of the drug solution Q will be described.
[0082] 薬液 Qの微量注入に際しては、把持部 93を把持して操作ダイヤル 91を回動操作し 、第 4図に示す第 3の状態 (ピン 97の先端部が凹部 96bに挿入された状態)、第 5図 に示す第 1の状態 (ピン 97の先端部が凹部 96aに挿入された状態)または第 6図に 示す第 2の状態 (ピン 97の先端部が凹部 96cに挿入された状態)のいずれかを選択 するとともに、チューブ 14の上流側力も薬液 Qを供給する。所定時間経過後、チャン バー 31内は、薬液 Qで満たされ、プライミング (充填)される。  [0082] When injecting a small amount of the drug solution Q, the grip portion 93 is gripped and the operation dial 91 is rotated, so that the third state shown in FIG. 4 (the state where the tip of the pin 97 is inserted into the recess 96b) ), The first state shown in FIG. 5 (the state where the tip of the pin 97 is inserted into the recess 96a) or the second state shown in FIG. 6 (the state where the tip of the pin 97 is inserted into the recess 96c) ), And the upstream force of the tube 14 also supplies the chemical Q. After a predetermined time has elapsed, the chamber 31 is filled with the chemical Q and primed (filled).
[0083] 操作ダイヤル 91が前記第 3の状態 (基準位置)に設定されている場合には、チュー ブ 14を経た薬液 Qは、 Y字コネクタ 13にて分流され、第 1チューブ 10aおよび第 2チ ユーブ 10bのそれぞれを流れ、流入口 32aおよび 32bを経てチャンバ一 31内に流入 する。これにより、該流入量とほぼ同量のチャンバ一 31内に貯留されていた薬液 Qが 、流出口 33から流出し、一方向弁 16およびチューブ 17を経て下流側へ送られ、患 者に投与される。このとき、流出口 33から流出する薬液 Qの流量は、前記 V (=V +  [0083] When the operation dial 91 is set to the third state (reference position), the drug solution Q that has passed through the tube 14 is diverted by the Y-shaped connector 13, and the first tube 10a and the second tube It flows through each tube 10b and flows into the chamber 31 through the inlets 32a and 32b. As a result, approximately the same amount of the drug Q stored in the chamber 31 flows out from the outlet 33 and is sent downstream through the one-way valve 16 and the tube 17 to be administered to the patient. Is done. At this time, the flow rate of the chemical liquid Q flowing out from the outlet 33 is V (= V +
3 1 3 1
V )である。 V).
2  2
[0084] 操作ダイヤル 91が前記第 1の状態に設定されている場合には、チューブ 14からの 薬液 Qは、 Y字コネクタ 13を経て第 2チューブ 10bを流れ、流入口 32bを経てチャン バー 31内に流入する。これにより、該流入量とほぼ同量のチャンバ一 31内に貯留さ れていた薬液 Q力 流出口 33から流出し、一方向弁 16およびチューブ 17を経て下 流側へ送られ、患者に投与される。このとき、流出口 33から流出する薬液 Qの流量は 、前記 Vである。  [0084] When the operation dial 91 is set to the first state, the chemical Q from the tube 14 flows through the second tube 10b through the Y-shaped connector 13, and passes through the inlet 32b to the chamber 31. Flows in. As a result, the drug solution Q force outflowing from the outlet 33, which has been stored in the chamber 31 of approximately the same amount as the inflow, is sent to the downstream via the one-way valve 16 and the tube 17, and is administered to the patient. Is done. At this time, the flow rate of the chemical liquid Q flowing out from the outlet 33 is V.
2  2
[0085] 操作ダイヤル 91が前記第 2の状態に設定されている場合には、チューブ 14からの 薬液 Qは、 Y字コネクタ 13を経て第 1チューブ 10aを流れ、流入口 32aを経てチャン バー 31内に流入する。これにより、該流入量とほぼ同量のチャンバ一 31内に貯留さ れていた薬液 Q力 流出口 33から流出し、一方向弁 16およびチューブ 17を経て下 流側へ送られ、患者に投与される。このとき、流出口 33から流出する薬液 Qの流量は 、前記 Vである。  [0085] When the operation dial 91 is set to the second state, the chemical Q from the tube 14 flows through the first tube 10a via the Y-shaped connector 13, and passes through the inlet 32a to the chamber 31. Flows in. As a result, the drug solution Q force outflowing from the outlet 33, which has been stored in the chamber 31 of approximately the same amount as the inflow, is sent to the downstream via the one-way valve 16 and the tube 17, and is administered to the patient. Is done. At this time, the flow rate of the chemical liquid Q flowing out from the outlet 33 is V.
[0086] 以上のようにして、注入、投与する薬液 Qの流量を V 、 V <V  [0086] As described above, the flow rate of the drug solution Q to be injected and administered is set to V, V <V
1、 V 1, V
2、 V (これらは  2, V (these are
3 1 2 3 1 2
<Vの関係を満たす)の 3段階に設定することができる。 [0087] さて、第 1チューブ 10a、第 2チューブ 10bの少なくとも一方に、以下に述べるような 対温度定流量機能を有する本発明のチューブを採用することができる。ここでは、第 2チューブ 10bについて本発明のチューブを適用(採用)した場合を述べ、以下、本 発明のチューブを添付図面に示す好適実施形態に基づいて詳細に説明する。 <V satisfies the relationship of V). [0087] Now, the tube of the present invention having the constant temperature flow rate function as described below can be employed in at least one of the first tube 10a and the second tube 10b. Here, a case where the tube of the present invention is applied (adopted) to the second tube 10b will be described, and the tube of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
[0088] <第 1実施形態 >  [0088] <First embodiment>
第 7図は、本発明のチューブ (第 2チューブ)の第 1実施形態を示す斜視図、第 8図 および第 9図は、それぞれ、第 7図に示す第 2チューブが温度変化により変形したとき の斜視図である。  FIG. 7 is a perspective view showing the first embodiment of the tube (second tube) of the present invention, and FIGS. 8 and 9 are views when the second tube shown in FIG. 7 is deformed by a temperature change, respectively. FIG.
[0089] 第 2チューブ 10bは、その下流側の部位において、薬液 Qが通過可能な流路 l ib が形成されているチューブ本体 12と、チューブ本体 12の外径を規制する規制部材 1 9とを備えている (第 4図、第 7図参照)。  [0089] The second tube 10b includes a tube main body 12 in which a flow path l ib through which the chemical liquid Q can pass is formed at a downstream side thereof, and a regulating member 19 that regulates the outer diameter of the tube main body 12. (See Fig. 4 and Fig. 7).
[0090] 規制部材 19は、その横断面形状がほぼリング状をなしおり、チューブ本体 12の下 流側の部位に固着されて (設けられて)いる (第 4図、第 7図参照)。また、この規制部 材 19は、チューブ本体 12より熱膨張率力 S小さい材料で構成されている。  [0090] The restricting member 19 has a substantially ring-shaped cross section, and is fixed (provided) to the downstream side portion of the tube body 12 (see FIGS. 4 and 7). The restricting member 19 is made of a material having a coefficient of thermal expansion S smaller than that of the tube body 12.
[0091] 第 2チューブ 10bは、規制部材 19が設けられた部位において、温度変化によるチュ ーブ本体 12の膨張 Z収縮に伴って、流路 1 lbの横断面積が変化 (増大 Z減少)す る。以下、この「横断面積が増大 Z減少する」ことを「流路 l ibが拡径 Z縮径する」と いう。  [0091] In the second tube 10b, the cross-sectional area of the flow path 1 lb changes (increased Z decreases) as the tube body 12 expands and contracts due to temperature changes at the portion where the regulating member 19 is provided. The Hereinafter, this “cross-sectional area increases Z decreases” is referred to as “channel l ib increases in diameter Z decreases in diameter”.
[0092] 温度が上昇したとき、チューブ本体 12は、外側(第 8図中のチューブ本体 12の外 側に向う矢印方向)に膨張しょうとするが、チューブ本体 12の外周(外側)が規制部 材 19により規制されており、チューブ本体 12が外側に膨張することができない。この ため、チューブ本体 12は、中心側(第 8図中のチューブ本体 12の内側に向う矢印方 向)に向って膨張する。従って、流路 l ibが縮径する。  [0092] When the temperature rises, the tube body 12 tries to expand outward (in the direction of the arrow toward the outside of the tube body 12 in Fig. 8), but the outer periphery (outer side) of the tube body 12 is restricted. It is regulated by the material 19, and the tube body 12 cannot expand outward. For this reason, the tube main body 12 expands toward the center side (the direction of the arrow toward the inside of the tube main body 12 in FIG. 8). Therefore, the diameter of the flow path l ib is reduced.
[0093] 一方、温度が低下したとき、前記とは逆に流路 1 lbが拡径する。  [0093] On the other hand, when the temperature is lowered, the diameter of the channel 1 lb is increased, contrary to the above.
また、流路 l ibの径が変化しない (一定)と想定した場合、温度が上昇すると、薬液 Qの粘度が小さくなり、流路 l ib内を流れる薬液 Qの抵抗が少なくなるため、チュー ブ本体 12の両端に一定の圧力差が生じているとき薬液 Qの流量は多くなる。  Assuming that the diameter of the flow channel l ib does not change (constant), the viscosity of the chemical solution Q decreases as the temperature rises, and the resistance of the chemical solution Q flowing in the flow channel l ib decreases. When a certain pressure difference is generated at both ends of the main body 12, the flow rate of the chemical Q increases.
[0094] 一方、温度が低下すると、前記と同様の圧力差の場合、前記とは逆に薬液 Qの流 量が少、なくなる。 [0094] On the other hand, when the temperature decreases, in the case of the same pressure difference as described above, the flow of the chemical solution Q is reversed. The amount is too small.
[0095] そこで、本発明のチューブは、温度が上昇した場合、薬液 Qの粘度の低下による薬 液 Qの流量の増大を相殺するように流路 l ibが縮径する。一方、温度が低下した場 合、薬液 Qの粘度の上昇による薬液 Qの流量の減少を相殺するように流路 l ibが拡 径する。  [0095] Therefore, in the tube of the present invention, when the temperature rises, the flow path ib decreases in diameter so as to offset the increase in the flow rate of the chemical solution Q due to the decrease in the viscosity of the chemical solution Q. On the other hand, when the temperature decreases, the flow path ib expands so as to offset the decrease in the flow rate of the chemical solution Q due to the increase in the viscosity of the chemical solution Q.
[0096] 以上のような構成により、温度変化によらず、流路 l ibを通過する薬液 Qの流量を 一定にすることができる。すなわち、流路 l ibを通過する薬液 Qの流量が温度変化に より変化するのを防止することができる。以下、温度変化によらず、薬液 Qの流量が 一定になるような状態を「均衡状態」という。  [0096] With the configuration as described above, the flow rate of the chemical liquid Q passing through the flow path ib can be made constant regardless of the temperature change. That is, it is possible to prevent the flow rate of the chemical liquid Q passing through the flow path l ib from changing due to a temperature change. Hereinafter, a state in which the flow rate of the chemical solution Q is constant regardless of temperature changes is referred to as an “equilibrium state”.
[0097] また、例えば、モルヒネなどの鎮痛剤を患者へ投与(注入)する場合には、微量注 入が必要である。従って、投与量 (単位時間あたりの流量)の管理は、極めて厳格に 行なわなければならない。本発明のチューブは、このような場合にも非常に適してい る。  [0097] Further, for example, when an analgesic such as morphine is administered (injected) to a patient, a minute injection is required. Therefore, administration of the dose (flow rate per unit time) must be very strict. The tube of the present invention is also very suitable for such a case.
[0098] また、第 2チューブ 10bのみに本発明のチューブを適用しているのに限定されず、 例えば、第 1チューブ 10aおよび第 2チューブ 10bのそれぞれに本発明のチューブを 適用するとより好ましい。  [0098] Further, the present invention is not limited to applying the tube of the present invention only to the second tube 10b. For example, it is more preferable to apply the tube of the present invention to each of the first tube 10a and the second tube 10b.
[0099] チューブ本体 12の構成材料としては、例えば、軟質ポリ塩ィ匕ビュル、ポリエチレン、 ポリウレタン、ポリブタジエン等の各種プラスチック、天然ゴム、スチレンブタジエンゴ ム、イソプレンゴム等の各種ゴムが挙げられ、温度変化により膨張 Z収縮し易いもの が好ましい。  [0099] Examples of the constituent material of the tube body 12 include various types of plastics such as soft polysalt cellulose, polyethylene, polyurethane, and polybutadiene, natural rubber, styrene butadiene rubber, and isoprene rubber. Those which are easily expanded and contracted by change are preferred.
[0100] 規制部材 19は、主として金属材料で構成されているのが好ましぐその金属材料と しては、例えば、鉄、ニッケル、ステンレス鋼、銅、真鍮、アルミニウム、チタン等の各 種金属、またはこれらを含む合金等、また、温度変化により膨張 Z収縮が少なぐか つ、剛性の高いプラスチック等が挙げられる。  [0100] It is preferable that the regulating member 19 is mainly composed of a metal material. Examples of the metal material include various metals such as iron, nickel, stainless steel, copper, brass, aluminum, and titanium. Or alloys containing these, and plastics that have low expansion and contraction due to temperature changes and high rigidity.
[0101] これにより、チューブ本体 12よりも確実に熱膨張率が小さい規制部材 19を形成 (構 成)することができる。  Thereby, the regulating member 19 having a smaller coefficient of thermal expansion than that of the tube main body 12 can be formed (configured).
[0102] また、チューブ本体 12と規制部材 19との固着方法は、特に限定されないが、例え ば、接着剤による接着を施すことにより固定することができる。これにより、チューブ本 体 12が収縮したとき、チューブ本体 12と規制部材 19との離間を防止することができ 、よって、確実に流路 l ibを拡径させることができる。また、前記接着剤の層の厚さは 、薄い方が好ましい。 [0102] The method for fixing the tube main body 12 and the regulating member 19 is not particularly limited. For example, the tube main body 12 and the regulating member 19 can be fixed by bonding with an adhesive. This makes the tube book When the body 12 contracts, the tube main body 12 and the regulating member 19 can be prevented from being separated from each other, so that the diameter of the flow path rib can be reliably increased. Further, the thickness of the adhesive layer is preferably thin.
[0103] <第 2実施形態 > [0103] <Second Embodiment>
第 10図は、本発明のチューブ (第 2チューブ)の第 2実施形態を示す斜視図である  FIG. 10 is a perspective view showing a second embodiment of the tube (second tube) of the present invention.
[0104] 以下、この図を参照して本発明のチューブの第 2実施形態について説明するが、 前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。 [0104] Hereinafter, the second embodiment of the tube of the present invention will be described with reference to this figure, but the description will focus on differences from the above-described embodiment, and the description of the same matters will be omitted.
[0105] 本実施形態は、規制部材の構成 (設置状態)が異なること以外は前記第 1実施形態 と同様である。  This embodiment is the same as the first embodiment except that the configuration (installation state) of the restricting member is different.
第 10図に示すように、規制部材 19Aは、チューブ本体 12の長手方向に沿って、間 隔をあけて(間欠的に)複数設けられている。この規制部材 19Aは、その形状が所定 長さの筒状をなしている。  As shown in FIG. 10, a plurality of regulating members 19A are provided at intervals (intermittently) along the longitudinal direction of the tube body 12. The restricting member 19A has a cylindrical shape with a predetermined length.
[0106] このような構成、すなわち、規制部材 19Aにより規制される箇所がない部位 (部分) を設ける(形成する)ことにより、流路 l ibの拡径 Z縮径の割合 (以下、「補正率」とい う)を緩和することができる。その結果、規制部材 19Aの形成数 (設置数)、隣り合う規 制部材 19A同士の間隔の大きさ等を適宜調整することにより、補正率をより適正に設 定することができ、よって、第 2チューブ 10bをより均衡状態に近づけることができる。  [0106] By providing (forming) such a configuration, that is, by providing (forming) a portion (part) where there is no portion restricted by the restricting member 19A, the ratio of the diameter of the channel l ib to the Z contraction (hereinafter referred to as "correction Rate)). As a result, the correction factor can be set more appropriately by appropriately adjusting the number (number of installations) of the regulating members 19A, the size of the interval between the neighboring regulating members 19A, etc. 2Tube 10b can be brought closer to equilibrium.
[0107] また、チューブ本体 12を容易に曲げることができ、よって、第 2チューブ 10bを薬液 供給具 1内に容易に (コンパクトに)収納 (設置)することができる。  [0107] Further, the tube body 12 can be easily bent, and thus the second tube 10b can be easily (compactly) stored (installed) in the chemical solution supply tool 1.
[0108] <第 3実施形態 >  <Third Embodiment>
第 11図は、本発明のチューブ (第 2チューブ)の第 3実施形態を示す斜視図である  FIG. 11 is a perspective view showing a third embodiment of the tube (second tube) of the present invention.
[0109] 以下、この図を参照して本発明のチューブの第 2実施形態について説明するが、 前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。 [0109] Hereinafter, the second embodiment of the tube of the present invention will be described with reference to this figure. However, the description will focus on the differences from the above-described embodiment, and the description of the same matters will be omitted.
[0110] 本実施形態は、チューブ本体の構成が異なること以外は前記第 1実施形態と同様 である。  [0110] This embodiment is the same as the first embodiment except that the configuration of the tube body is different.
[0111] 第 11図に示すように、チューブ本体 12Aは、内層 121と、内層 121の外周側に設 けられて 、る外層 122とを有する積層部 123Aを備えて 、る。この積層部 123Aは、 第 2チューブ 10b (チューブ本体 12A)の長手方向のほぼ全長にわたり形成されてい る。 [0111] As shown in Fig. 11, the tube main body 12A is provided on the inner layer 121 and on the outer peripheral side of the inner layer 121. The laminated portion 123A having the outer layer 122 is provided. The laminated portion 123A is formed over substantially the entire length of the second tube 10b (tube body 12A) in the longitudinal direction.
[0112] 内層 121は、薬液 Qに対してより不活性な材料で構成されている。  [0112] The inner layer 121 is made of a material that is more inert to the chemical Q.
外層 122は、均衡状態を保っために、適度な熱膨張率を有する材料で構成されて いる。なお、この熱膨張率は、内層 121の熱膨張率より大きいのが好ましい。  The outer layer 122 is made of a material having an appropriate coefficient of thermal expansion in order to maintain an equilibrium state. The coefficient of thermal expansion is preferably larger than the coefficient of thermal expansion of the inner layer 121.
規制部材 19は、外層 122の長手方向のほぼ全長にわたって設けられている。  The regulating member 19 is provided over almost the entire length of the outer layer 122 in the longitudinal direction.
[0113] このような構成により、補正率をより適正に設定することができ、よって、第 2チュー ブ 10bをより均衡状態に近づけることができる。 [0113] With such a configuration, the correction factor can be set more appropriately, and thus the second tube 10b can be brought closer to an equilibrium state.
[0114] <第 4実施形態 > [0114] <Fourth embodiment>
第 12図は、本発明のチューブ (第 2チューブ)の第 4実施形態を示す斜視図である  FIG. 12 is a perspective view showing a fourth embodiment of a tube (second tube) of the present invention.
[0115] 以下、この図を参照して本発明のチューブの第 4実施形態について説明するが、 前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。 [0115] Hereinafter, a fourth embodiment of the tube of the present invention will be described with reference to this figure, but the description will focus on differences from the above-described embodiment, and the description of the same matters will be omitted.
[0116] 本実施形態は、積層部の構成が異なること以外は前記第 3実施形態と同様である。  [0116] This embodiment is the same as the third embodiment, except that the configuration of the laminated portion is different.
第 12図に示すように、チューブ本体 12Bの積層部 123Bは、チューブ本体 12Bの 一部に設けられ (形成され)ている。この積層部 123Bの外層 122は、内層 121の外 周面と規制部材 19の内周面との間に形成された間隙に、内層 121より熱膨張率が 大きい液状材料を充填(注入)して固化させることにより形成されている。  As shown in FIG. 12, the laminated portion 123B of the tube body 12B is provided (formed) on a part of the tube body 12B. The outer layer 122 of the laminated portion 123B is filled (injected) with a liquid material having a higher thermal expansion coefficient than the inner layer 121 in a gap formed between the outer peripheral surface of the inner layer 121 and the inner peripheral surface of the regulating member 19. It is formed by solidifying.
[0117] このような構成により、外層 122の長さ、外径、構成材料等を適宜調整することによ り、補正率をより適正に設定することができ、よって、第 2チューブ 10bをより均衡状態 に近づけることができる。  [0117] With such a configuration, the correction factor can be set more appropriately by appropriately adjusting the length, outer diameter, constituent material, and the like of the outer layer 122. Accordingly, the second tube 10b can be more appropriately configured. It can approach the equilibrium state.
[0118] なお、前記液状材料としては、例えば、エポキシ榭脂、水、オイル、各種ゲル状物 質等や、これらに気泡を混入させたものが挙げられる。  [0118] The liquid material includes, for example, epoxy resin, water, oil, various gel materials, and those in which bubbles are mixed.
[0119] 以上、本発明のチューブおよび液体供給具を図示の各実施形態に基づいて説明 したが、本発明は、これらに限定されるものではなぐ例えば、各部の構成は、同様の 機能を発揮し得る任意の構成と置換することができる。  [0119] While the tube and the liquid supply device of the present invention have been described based on the illustrated embodiments, the present invention is not limited to them. For example, the configuration of each part exhibits the same function. Any possible configuration can be substituted.
[0120] また、チューブは、第 1図に示すような液体供給具に用いられるのに限定されず、 例えば、輸液バッグ等に用いてもよい。 [0120] Further, the tube is not limited to being used in a liquid supply tool as shown in FIG. For example, you may use for an infusion bag etc.
実施例  Example
[0121] 次に、本発明の具体的実施例について説明する。  Next, specific examples of the present invention will be described.
1.チューブの作製  1. Preparation of tube
[0122] (実施例) [0122] (Example)
第 10図に示す構造のチューブを作製した。このチューブの仕様を下記に示す。  A tube having the structure shown in FIG. 10 was produced. The specification of this tube is shown below.
[0123] チューブ本体の構成材料:ポリ塩化ビニル [0123] Constituent material of the tube body: Polyvinyl chloride
チューブ本体の長さ: 31mm  Tube body length: 31mm
チューブ本体の外径: 1. 5mm  Tube body outer diameter: 1.5 mm
チューブ本体の内径: 0. 06mm (25°C)  Inner diameter of tube body: 0.06mm (25 ° C)
規制部材の構成材料:ステンレス鋼  Regulatory component material: Stainless steel
規制部材の形成数 (設置数):4つ  Number of restriction members formed (number of installations): 4
規制部材 1つあたりの長さ: 3mm  Length per regulating member: 3mm
規制部材の外径: 1. 8mm  Regulating member outer diameter: 1.8 mm
規制部材の内径: 1. 6mm  Inner diameter of regulating member: 1.6 mm
各規制部材間の間隔: 5mm  Spacing between each regulating member: 5mm
[0124] (比較例) [0124] (Comparative example)
前記実施例のチューブから規制部材を取り除!/、た(削除した)チューブ本体のみの チューブを作製した。  The restriction member was removed from the tube of the above example! /, And a tube with only the (deleted) tube body was produced.
[0125] 2.評価 [0125] 2. Evaluation
次に、温度を変化させ、一端側に一定圧力をかけた水が、実施例のチューブおよ び比較例のチューブのそれぞれの流路内を通過したときの流量を測定した。  Next, the flow rate was measured when water having a constant pressure applied to one end side through each flow path of the tube of the example and the tube of the comparative example while changing the temperature.
[0126] この結果を第 13図に示す。第 13図は、温度とチューブを通過する水の流量との関 係を示すグラフである。 [0126] Fig. 13 shows the result. FIG. 13 is a graph showing the relationship between the temperature and the flow rate of water passing through the tube.
[0127] 第 13図に示すように、実施例のチューブは、比較例のチューブに比べ、温度変化 による水の流量の変化の幅が小さい。従って、実施例のチューブは、温度変化によら ず水の流量を可能な限り一定にすることができるのが確認された。  [0127] As shown in Fig. 13, the tube of the example has a smaller width of the change in the water flow rate due to the temperature change than the tube of the comparative example. Therefore, it was confirmed that the tube of the example can keep the flow rate of water as constant as possible regardless of the temperature change.
[0128] また、第 7図、第 11図、第 12図に示す構造のチューブをそれぞれ作製し、前記実 施例と同様にして評価を行なったところ、前記実施例と同様の結果が得られた。 産業上の利用可能性 [0128] In addition, tubes having the structures shown in Figs. 7, 11, and 12 were produced, respectively. When the evaluation was performed in the same manner as in the examples, the same results as in the above examples were obtained. Industrial applicability
本発明のチューブは、内部を液体が通過するチューブであって、液体が通過可能 な流路が形成され、温度変化により膨張 Z収縮するチューブ本体と、前記チューブ 本体の長手方向の少なくとも一部に設けられ、前記チューブ本体の外径を規制する 規制部材とを備え、前記規制部材が設けられた部位において、前記温度変化による チューブ本体の膨張 Z収縮に伴って、前記流路の横断面積が変化する。そのため、 温度変化によらず、流路を通過する液体の流量を一定にすることができる。すなわち 、流路を通過する液体の流量が温度変化により変化するのを防止することができる。 従って、本発明のチューブは、産業上の利用可能性を有する。  The tube of the present invention is a tube through which a liquid passes. A tube body in which a liquid can pass is formed, and expands and contracts due to a temperature change, and at least a part of the tube body in the longitudinal direction. And a regulating member that regulates the outer diameter of the tube main body, and in the portion where the regulating member is provided, the tube main body expands due to the temperature change. To do. Therefore, the flow rate of the liquid passing through the flow path can be made constant regardless of the temperature change. That is, it is possible to prevent the flow rate of the liquid passing through the flow path from changing due to temperature change. Therefore, the tube of the present invention has industrial applicability.

Claims

請求の範囲 The scope of the claims
[I] 内部を液体が通過するチューブであって、  [I] A tube through which liquid passes,
液体が通過可能な流路が形成され、温度変化により膨張 Z収縮するチューブ本体 と、  A tube body that forms a flow path through which liquid can pass and expands and contracts due to changes in temperature.
前記チューブ本体の長手方向の少なくとも一部に設けられ、前記チューブ本体の 外径を規制する規制部材とを備え、  Provided in at least a part of the longitudinal direction of the tube body, and a regulating member for regulating the outer diameter of the tube body,
前記規制部材が設けられた部位にぉ 、て、前記温度変化によるチューブ本体の膨 張 Z収縮に伴って、前記流路の横断面積が変化することを特徴とするチューブ。  A tube characterized in that the cross-sectional area of the flow path changes as the tube body expands and contracts due to the temperature change at a portion where the regulating member is provided.
[2] 前記液体が前記流路を通過したとき、前記液体の流量が一定になるように、前記温 度変化による前記チューブ本体の膨張 Z収縮の程度が設定されている請求の範囲 第 1項に記載のチューブ。  [2] The extent of expansion and contraction of the tube body due to the temperature change is set so that the flow rate of the liquid becomes constant when the liquid passes through the flow path. Tube as described in.
[3] 前記規制部材は、前記チューブ本体より熱膨張率が小さい請求の範囲第 1項に記載 のチューブ。 [3] The tube according to claim 1, wherein the regulating member has a smaller coefficient of thermal expansion than the tube body.
[4] 前記規制部材は、前記チューブ本体の長手方向のほぼ全長にわたり設けられている 請求の範囲第 1項に記載のチューブ。  [4] The tube according to claim 1, wherein the restricting member is provided over substantially the entire length in the longitudinal direction of the tube body.
[5] 前記規制部材は、前記チューブ本体の長手方向に沿って、間隔をあけて複数設けら れている請求の範囲第 1項に記載のチューブ。 [5] The tube according to claim 1, wherein a plurality of the regulating members are provided at intervals along the longitudinal direction of the tube body.
[6] 前記チューブ本体は、内層と、該内層の外周側に設けられ、前記内層と異なる材料 で構成された外層とを有する積層部を備え、 [6] The tube body includes a laminated portion having an inner layer and an outer layer provided on the outer peripheral side of the inner layer and made of a material different from the inner layer,
前記規制部材は、前記外層の外周側に設けられている請求の範囲第 1項に記載 のチューブ。  The tube according to claim 1, wherein the regulating member is provided on an outer peripheral side of the outer layer.
[7] 前記外層は、前記内層より熱膨張率が大きい請求の範囲第 6項に記載のチューブ。  7. The tube according to claim 6, wherein the outer layer has a larger coefficient of thermal expansion than the inner layer.
[8] 前記規制部材は、その横断面形状がほぼリング状をなしている請求の範囲第 1項 に記載のチューブ。 [8] The tube according to claim 1, wherein the regulating member has a substantially ring-shaped cross section.
[9] 前記規制部材は、主として金属材料で構成されている請求の範囲第 1項に記載のチ ユーブ。  [9] The tube according to claim 1, wherein the restriction member is mainly made of a metal material.
[10] 前記液体は、生体内に投与される薬液である請求の範囲第 1項に記載のチューブ。  10. The tube according to claim 1, wherein the liquid is a chemical solution administered into a living body.
[II] 請求の範囲第 1項ないし第 10項のいずれかに記載のチューブを有し、液体の流量 [II] It has the tube according to any one of claims 1 to 10 and has a liquid flow rate.
PCT/JP2006/308617 2005-05-06 2006-04-25 Tube and liquid feeder WO2006120890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528212A JP4970261B2 (en) 2005-05-06 2006-04-25 Tube and liquid supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005135084 2005-05-06
JP2005-135084 2005-05-06

Publications (1)

Publication Number Publication Date
WO2006120890A1 true WO2006120890A1 (en) 2006-11-16

Family

ID=37396400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308617 WO2006120890A1 (en) 2005-05-06 2006-04-25 Tube and liquid feeder

Country Status (2)

Country Link
JP (1) JP4970261B2 (en)
WO (1) WO2006120890A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127704A (en) * 2007-11-21 2009-06-11 Alps Electric Co Ltd Valve device and multilayered substrate
JP2010512941A (en) * 2006-12-22 2010-04-30 モンディエール テクノロジーズ リミテッド Flow controller
JP5480431B1 (en) * 2013-07-16 2014-04-23 アルテア技研株式会社 Tube valve and injection system
WO2020012876A1 (en) * 2018-07-12 2020-01-16 株式会社エンプラス Fluid-handling device and fluid-handling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121080A (en) * 1977-03-31 1978-10-23 Nitto Electric Ind Co Ltd Manufacture of bellows tube
JP2004180831A (en) * 2002-12-02 2004-07-02 Machida Endscope Co Ltd Flexible tube for endoscope or the like and production method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752951A (en) * 1953-05-27 1956-07-03 Silverstein Abraham Temperature compensated hydraulic resistor
JPS57175882U (en) * 1981-04-30 1982-11-06
US4626243A (en) * 1985-06-21 1986-12-02 Applied Biomedical Corporation Gravity-independent infusion system
JPS6320586U (en) * 1986-07-24 1988-02-10
DE19534455C1 (en) * 1995-09-16 1996-12-12 Fresenius Ag Multilayer plastics tube free from PVC, for medical purposes
MXPA04007115A (en) * 2002-01-25 2005-07-05 Natvar Holdings Inc Co-extruded tubing.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121080A (en) * 1977-03-31 1978-10-23 Nitto Electric Ind Co Ltd Manufacture of bellows tube
JP2004180831A (en) * 2002-12-02 2004-07-02 Machida Endscope Co Ltd Flexible tube for endoscope or the like and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512941A (en) * 2006-12-22 2010-04-30 モンディエール テクノロジーズ リミテッド Flow controller
JP2009127704A (en) * 2007-11-21 2009-06-11 Alps Electric Co Ltd Valve device and multilayered substrate
JP5480431B1 (en) * 2013-07-16 2014-04-23 アルテア技研株式会社 Tube valve and injection system
WO2015008761A1 (en) * 2013-07-16 2015-01-22 アルテア技研株式会社 Tube valve and injection system
WO2020012876A1 (en) * 2018-07-12 2020-01-16 株式会社エンプラス Fluid-handling device and fluid-handling system

Also Published As

Publication number Publication date
JPWO2006120890A1 (en) 2008-12-18
JP4970261B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
AU702480B2 (en) Disposable fluid infusion pumping chamber cassette having a push button flow stop thereon
US9132233B2 (en) Infusion control device
US5368571A (en) Electrochemical controlled dispensing assembly and method
CA2673517C (en) Flow controller
KR100790433B1 (en) Device for selectively regulating the flow rate of a fluid
JP3833657B2 (en) Device for regulating flow rate of drug solution for intravenous injection
US20060206052A1 (en) Fluid delivery and mixing apparatus with flow rate control
JP2004506491A (en) Constant velocity fluid delivery device with bolus button with selectable flow rate and titration
JP2005515032A (en) Pressure compensation type IV flow control and adjustment device
US11964129B2 (en) Implantable continuous-flow pumps
KR101695453B1 (en) Selector
EP3669909A1 (en) Medical liquid administration device
JP4970261B2 (en) Tube and liquid supply
JPH10295811A (en) Medical liquid supply tool
US20120191074A1 (en) Reduced sized programmable pump
JPH10295812A (en) Medical liquid supply tool
CN211986537U (en) Infusion device
US20140276557A1 (en) Dual rate insulin pump
JPH07222798A (en) Transfusion set and medicinal liquid injecting device using the same
NZ574516A (en) Flow controller with dial to adjust cam to compress conduit
NZ552376A (en) Flow controller, typically used in IV line, with uniform deformation of tube over a length

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528212

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745645

Country of ref document: EP

Kind code of ref document: A1