WO2006119643A1 - Molecules contre l'angiogenese oculaire et leurs utilisations - Google Patents

Molecules contre l'angiogenese oculaire et leurs utilisations Download PDF

Info

Publication number
WO2006119643A1
WO2006119643A1 PCT/CA2006/000779 CA2006000779W WO2006119643A1 WO 2006119643 A1 WO2006119643 A1 WO 2006119643A1 CA 2006000779 W CA2006000779 W CA 2006000779W WO 2006119643 A1 WO2006119643 A1 WO 2006119643A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
formulation
nucleotides
sequence
ocular angiogenesis
Prior art date
Application number
PCT/CA2006/000779
Other languages
English (en)
Inventor
Andrew Vaillant
Jean-Marc Juteau
Original Assignee
Replicor Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Replicor Inc. filed Critical Replicor Inc.
Publication of WO2006119643A1 publication Critical patent/WO2006119643A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the invention relates to oligonucleotides inhibiting angiogenesis predominantly by a sequence independent mode of action.
  • the invention also relates to oligonucleotides and their use as therapeutic agents, and more particularly for their use for the treatment of diseases involving angiogenesis in the eye.
  • Angiogenesis the growth of new blood vessels, is an important natural process occulting in the body, both in normal development, and in diseases.
  • angiogenic growth factors are produced in excess of angiogenesis inhibitors, the balance is tipped in favor of new blood vessel growth.
  • inhibitors are present in excess of stimulators, angiogenesis is stopped.
  • the normal, healthy body maintains a perfect balance of angiogenesis modulators.
  • angiogenesis is "turned off by the production of more inhibitors than stimulators.
  • angiogenesis-dependent diseases result when new blood vessels either grow excessively or insufficiently.
  • Excessive angiogenesis occurs in diseases such as diabetic blindness, age-related macular degeneration, rheumatoid arthritis, psoriasis, and more than 70 other conditions. In these conditions, new blood vessels feed diseased tissues, thus destroying normal tissues.
  • Excessive angiogenesis occurs when diseased cells produce abnormal amounts of angiogenic growth factors, overwhelming the effects of natural angiogenesis inhibitors.
  • Anti-angiogenic therapies aimed at halting new blood vessel growth, are being developed to treat these conditions.
  • RPE retinal pigment epithelial
  • ischemia a condition called "ischemia”
  • Ocular angiogenesis may occur under certain conditions.
  • these new blood vessels do not form properly, and blood leaking results. This leakage causes scarring in the macula and eventual loss of central vision.
  • Age-related macular degeneration is the leading cause of blindness in the United States and many European countries.
  • the neovascular "wet” form of the disease is responsible for the most (90%) severe loss of vision. There are approximately 200,000 new cases of wet macular degeneration in the United States diagnosed each year.
  • oligonucleotides mainly antisense and sequence-specific aptamers
  • PS ON 2'methoxyethyl, 2'deoxy chimeric phosphorothioate oligonucleotides
  • Fluorescein angiography has also demonstrated in the animal that an antisense therapy was successful in reducing laser-mediated choroidal neovascularisation (Garrett et al, 2001, J. Gene Med. 3: 373-383). Ophthalmic evaluation revealed that patients who received an aptamer ON alone showed stabilized or improved vision 3 months after treatment and that 25% of eyes demonstrated a 3 line or greater improvement in vision on the Early Treatment of Diabetic Retinopathy Study chart during this period (Eyetech Study Group, 2003, Ophtalmology 110: 879-881).
  • the invention relates to a method for inhibiting angiogenesis with oligonucleotides (ONs) predominantly by a sequence independent mode of action.
  • the invention also relates to ONs and their use as therapeutic agents, and more particularly for their use in methods of treatment and formulations for the treatment of diseases involving angiogenesis in the eye.
  • an anti-ocular angiogenesis oligonucleotide formulation comprising at least one oligonucleotide, said oligonucleotide having an anti-ocular angiogenesis activity, said activity of said oligonucleotide occuring by a sequence independent mode of action.
  • Another object of the present invention is to provide an oligonucleotide formulation, wherein said oligonucleotide is at least 15, 20, 25, 30, 35, 40, 45, 50, 60 or 80 nucleotides in length.
  • the oligonucleotide formulation of contains an oligonucleotide which is 20-30, 30-40, 40-50, 50-60, 60-70, or 70-80 nucleotides in length.
  • the oligonucleotide formulation has an oligonucleotide having a sequence not complementary to any equal length portion of a genomic sequence.
  • the genomic sequence is of a human. Most preferably, the genomic sequence is of a non human animal.
  • the oligonucleotide used in the formulation comprises at least 10 contiguous nucleotides of randomer sequence, more preferably 20 nucleotides of randomer sequence, 30 nucleotides of randomer sequence, 40 nucleotides of randomer sequence or more preferably is a randomer oligonucleotide.
  • the oligonucleotide comprises a homopolymer sequence of at least 10 contiguous A nucleotides, or 10 contiguous T nucleotides, or 10 contiguous U nucleotides, or 10 contiguous G nucleotides, or 10 contiguous I nucleotide analogs or 10 contiguous C nucleotides.
  • the oligonucleotide comprised in the oligonucleotide formulation is a homopolymer of C nucleotides.
  • the oligonucleotide formulation comprises an oligonucleotide having a poly AT sequence at least 10 nucleotides in length; a polyAC sequence at least 10 nucleotides in length; a poly AG sequence at least 10 nucleotides in length; a polyAU sequence at least 10 nucleotides in length; a polyAI sequence at least 10 nucleotides in length; a polyGC sequence at least 10 nucleotides in length; a polyGT sequence at least 10 nucleotides in length; a polyGU sequence at least 10 nucleotides in length; a polyGI sequence at least 10 nucleotides in length; a polyCT sequence at least 10 nucleotides in length; a polyCU sequence at least 10 nucleotides in length;
  • the oligonucleotide formulation comprises an oligonucleotide having at least one ribonucleotide.
  • the oligonucleotide formulation comprises an oligonucleotide having at least one modification to its chemical structure, more preferably at least two different modifications to its chemical structure.
  • an oligonucleotide formulation comprising an oligonucleotide having at least one sulfur modification.
  • the oligonucleotide formulation comprises an oligonucleotide having at least one phosphorothioated linkage; at least one phosphorodithioated linkage; or at least one boranophosphate linkage.
  • the oligonucleotide formulation comprises an oligonucleotide having at least one sulfur modified nucleobase moiety such as one sulfur modified ribose moiety, one T modification to the ribose moiety, one 2'-0 alkyl modified ribose moiety, one 2'-0 methyl modified ribose, one 2'-methoxyethyl modified ribose, or one 2'-FANA modified ribose.
  • one sulfur modified nucleobase moiety such as one sulfur modified ribose moiety, one T modification to the ribose moiety, one 2'-0 alkyl modified ribose moiety, one 2'-0 methyl modified ribose, one 2'-methoxyethyl modified ribose, or one 2'-FANA modified ribose.
  • the oligonucleotide formulation comprises an oligonucleotide having at least one methylphosphonate linkage.
  • the oligonucleotide formulation comprises an oligonucleotide having at least one portion consisting of glycol nucleic acid (GNA) with an acyclic propylene glycol phosphorothioate backbone.
  • GAA glycol nucleic acid
  • the oligonucleotide formulation comprises an oligonucleotide having at least one locked nucleic acid portion.
  • the oligonucleotide formulation comprises an oligonucleotide having at least one phosphorodiamidate morpholino portion.
  • the oligonucleotide formulation comprises an oligonucleotide having at least one abasic nucleic acid.
  • the oligonucleotide formulation comprises an oligonucleotide having a linker to form a concatemer of two or more oligonucleotide sequences.
  • the oligonucleotide formulation of the present invention comprises an oligonucleotide linked or conjugated at one or more nucleotide residues, to a molecule modifying the characteristics of the oligonucleotide to obtain one or more characteristics selected from the group consisting of higher stability, lower serum interaction, higher cellular uptake, an improved ability to be formulated, a detectable signal, higher anti- ocular angiogenesis activity, better pharmacokinetic properties, specific tissue distribution and lower toxicity.
  • the oligonucleotide formulation comprises an oligonucleotide linked or conjugated to a PEG molecule; or linked or conjugated to a cholesterol molecule.
  • the oligonucleotide formulation comprises a double stranded oligonucleotide.
  • the oligonucleotide formulation comprises an oligonucleotide having at least one base which is capable of hybridizing via non- Watson-Crick interactions.
  • the oligonucleotide formulation comprises an oligonucleotide having a portion complementary to a genome.
  • the oligonucleotide of the present invention has at most 90%, preferably 80%, more preferably 75% identity with the genomic sequence.
  • the oligonucleotide formulation comprises an oligonucleotide that binds to one or more cellular components.
  • the oligonucleotide formulation comprises an oligonucleotide that interacts with one or more cellular components, wherein said interaction resulting in inhibition of a protein activity or expression.
  • the oligonucleotide formulation comprises an oligonucleotide wherein at least a portion of the sequence of said oligonucleotide is derived from a genome.
  • the oligonucleotide formulation comprises an oligonucleotide having at least a portion of its sequence derived from a genome and has an anti-ocular angiogenesis activity that predominantly occurs by a sequence independent mode of action.
  • the oligonucleotide mixture comprises a mixture of at least two different oligonucleotides. More preferably, the oligonucleotide formulation of the present invention comprises a mixture of at least ten different oligonucleotides or at least 100 different oligonucleotides; or at least 1000 different oligonucleotides; or at least 10 6 different oligonucleotides.
  • an anti-ocular angiogenesis pharmaceutical composition comprising a therapeutically effective amount of at least one pharmacologically acceptable, anti-ocular angiogenesis oligonucleotide formulation according to the present invention and a pharmaceutically acceptable carrier.
  • the anti-ocular angiogenesis pharmaceutical composition is adapted for delivery by a mode selected from the group consisting of topical ocular administration, eye drop administration, intraconjunctival injection, intraocular implant, intraocular injection, oral ingestion, subcutaneous injection, intramuscular injection, and intravenous injection.
  • the anti-ocular angiogenesis pharmaceutical composition further comprises a delivery system.
  • the anti-ocular angiogenesis pharmaceutical composition further comprises at least one other anti-ocular angiogenesis drug.
  • the anti-ocular angiogenesis pharmaceutical composition further comprises a anti-ocular angiogenesis drug.
  • the anti-ocular angiogenesis pharmaceutical composition further comprises an anti-ocular angiogenesis antisense oligonucleotide.
  • the anti-ocular angiogenesis pharmaceutical composition further comprises an anti-ocular angiogenesis RNAi-inducing oligonucleotide.
  • an anti-ocular angiogenesis pha ⁇ naceutical composition according to the present invention, adapted for the treatment, control, or prevention of an ocular angiogenesis disease.
  • the ocular angiogenesis disease is macular degeneration.
  • the ocular angiogenesis disease is a retinopathy.
  • the ocular angiogenesis disease is diabetic retinopathy.
  • a therapeutically effective amount of at least one pharmacologically acceptable anti-ocular angiogenesis oligonucleotide formulation, or anti-ocular angiogenesis pharmaceutical composition according to the present invention for the prophylaxis or treatment of an ocular angiogenesis disease in a subject.
  • the subject is a human, more preferably a non-human animal.
  • a method for the prophylaxis or treatment of an ocular angiogenesis disease in a subject comprising administering to a subject in need of such treatment a therapeutically effective amount of at least one pharmacologically acceptable anti-ocular angiogenesis oligonucleotide, oligonucleotide formulation, oligonucleotide mixture, or anti-ocular angiogenesis pharmaceutical composition according to the present invention.
  • the present invention is concerned with the identification and use of anti-ocular angiogenesis ONs that act by a sequence independent mechanism, and includes the discovery that 1he anti-ocular angiogenesis activity is greater for larger ONs.
  • antisense ONs and ON aptamers have been tested for anti- ocular angiogenesis activity.
  • antisense and aptameric ONs are typically sequence-specific and target either intracellular mRNA or a protein, and typically are about 16- 25 nucleotides in length.
  • the anti-ocular angiogenesis effect of randomer ONs is sequence independent. Considering the volumes and concentrations of ONs used in the present invention, it is theoretically impossible that a particular sequence is present at more than 1 copy in the mixture. This means than there can be no antisense or sequence-specific aptameric effect in these ONs randomers. In all examples, should the angiogenesis inhibition effect be caused by the sequence-specificity of the ONs, such effect would thus have to be caused by only one molecule, a result that does not appear possible. For example, for an ON randomer 40 bases in length, any particular sequence in the population would theoretically represent only 1/4 40 or 1/8.27X10 "25 of the total fraction.
  • ONs with different chemical modifications.
  • a modification of the ON such as, but not limited to, a phosphorothioate modification or other sulfur modifications, appears to be beneficial for anti- ocular angiogenesis activity.
  • Such sulfur modifications may include without restriction mono and diphosphorothioation of the phosphodiester linkage, 4' or 5' thiolation of the uracil moiety, 5' thiolation of the cytidine moiety, 2' or 4' thiolation of the thymine moiety, 6' thiolation of the guanine moiety, sulfur modifications to any other nucleobase moiety and sulfur modification to the ribose moiety of any nucleotide.
  • ONs may have more than one sulfur substitution on each nucleotide, which can potentially increase the activity.
  • any single or multiple sulfur substitution may be combined with other modifications known to improve properties of ONs.
  • ONs of this invention may also have chemical modifications including without restriction: any 2' ribose modification including 2'-0 methyl, 2'-fiuorine, 2'-FANA, 2'-methoxyethyl, locked nucleic acids, methylphosphonates and phosphorodiamidate morpholino oligomers.
  • ONs may have a structure of or comprise a portion consisting of nucleic acid (GNA) with an acyclic propylene glycol phosphodiester backbone capable of forming stable antiparallel duplexes following the Watson-Crick base pairing rules (Zhang et ah, 2005, J. Am. Chem. Soc. 127(12): 4174-4175).
  • GNA nucleic acid
  • Such GNA may comprise phosphorothioate linkages.
  • One aspect of the invention provides an anti-ocular angiogenesis ON targeting angiogenic cells or cells involved in ocular angiogenesis diseases.
  • Such an ON comprises at least one active ON and is adapted for use as an anti-ocular angiogenesis agent.
  • ONs of this invention may be in the form of a formulation targeting angiogenic cells or cells involved in ocular angiogenic diseases.
  • a formulation comprises at least one active ON and is adapted for use as an anti-ocular angiogenesis agent.
  • the ONs of this invention may be in the form of a pharmaceutical composition useful for treating (or prophylaxis of) ocular angiogenic diseases, which may be approved by a regulatory agency for use in humans or in non-human animals, and/or against a particular angiogenesis disease.
  • a pharmaceutical composition comprises at least one therapeutically active ON and is adapted for use as an anti-ocular angiogenesis agent.
  • This pharmaceutical composition may include physiologically and/or pharmaceutically acceptable carriers. The characteristics of the carrier may depend on the route of administration.
  • the pharmaceutical composition of the invention may also contain other active factors and/or agents which enhance activity.
  • the invention provides a method for the prophylaxis or treatment of ocular angiogenic diseases in a subject by administering to a subject in need of such treatment a therapeutically effective amount of at least one pharmacologically acceptable ON as described herein, e.g., a sequence independent ON at least 6 nucleotides in length, more preferably 15 nucleotides in length, or a pharmaceutical composition or formulation containing such ON.
  • a pharmacologically acceptable ON as described herein, e.g., a sequence independent ON at least 6 nucleotides in length, more preferably 15 nucleotides in length, or a pharmaceutical composition or formulation containing such ON.
  • the disease is related to a disease or condition indicated herein as related to ocular angiogenesis;
  • the subject is a type of subject as indicated herein, e.g., human, non- human animal, non-human mammal, bird and the like;
  • the treatment is for a ocular angiogenic disease or disease with a angiogenesis etiology, e.g., a disease as indicated in the Background section herein.
  • the present invention involves the discovery that oligonucleotides (ONs), e.g., oligodeoxynucleotides (ODNs), including modified oligonucleotides, can have a therapeutic application through a sequence independent mode of action. It is not necessary for the oligonucleotide to be complementary to any sequence or to have a particular distribution of nucleotides in order to have activity. Such an oligonucleotide can even be prepared as a randomer.
  • ONs oligonucleotides
  • ODNs oligodeoxynucleotides
  • oligonucleotide agents that can have activity against diseases and conditions described herein. Such agents are particularly advantageous in view of the limited therapeutic options currently available.
  • the ONs, e.g., ODNs, of the present invention are useful in therapy for treating or preventing diseases and conditions described herein.
  • Such treatments are applicable to many types of patients and treatments, including, for example, the prophylaxis or treatment of diseases and conditions described herein.
  • a first aspect of the invention concerns oligonucleotides, e.g., purified oligonucleotides, where the activity occurs principally by a sequence independent (e.g., non- sequence complementary or non-sequence dependant aptameric activity) mode of action, and formulations containing such oligonucleotides.
  • sequence independent e.g., non- sequence complementary or non-sequence dependant aptameric activity
  • Oligonucleotides useful in the present invention can be of various lengths, e.g., at least 6, 10, 14, more preferably 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, or more nucleotides in length.
  • the oligonucleotide can be in a range, e.g., a range defined by taking any two of the preceding listed values as inclusive end points of the range, for example 10-20, more preferably 15-20, 20-30, 20-40, 30-40, 30-50, 40-50, 40-60, 40-80, 50-60, 50-70, 60-70, 70-80, 60-120, and 80-120 nucleotides.
  • a minimum length or length range is combined with any other of the oligonucleotide specifications listed herein for the present oligonucleotides.
  • the nucleotide can include various modifications, e.g., stabilizing modifications, and thus can include at least one modification in the phosphodiester linkage and/or on the sugar, and/or on the base.
  • the oligonucleotide can include one or more phdsphorothioate linkages, phosphorodithioate linkages, and/or methylphosphonate linkages.
  • Different chemically compatible modified linkages can be combined, e.g., modifications where the synthesis conditions are chemically compatible.
  • the oligonucleotides can include phosphodiester linkages, e.g., include at least one phosphodiester linkage, or at least 5, 10, 20, 30% or more phosphodiester linkages.
  • oligonucleotide has modified linkages throughout, e.g., phosphorothioate; has a 3'- and/or 5'-cap; includes a terminal 3'-5' linkage; the oligonucleotide is or includes a concatemer consisting of two or more oligonucleotide sequences joined by a linker(s).
  • the present invention further provides an oligonucleotide, wherein said oligonucleotide is linked or conjugated at one or more nucleotide residues, to a molecule modifying the characteristics of the oligonucleotide to obtain one or more characteristics selected from the group consisting of higher stability, lower serum interaction, higher cellular uptake, higher protein interaction, an improved ability to be formulated for delivery, a detectable signal, higher activity, better pharmacokinetic properties, specific tissue distribution, lower toxicity.
  • the oligonucleotide of the present invention includes at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 100% modified linkages, e.g., phosphorothioate, phosphorodithioate, and/or methylphosphonate.
  • At least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 95%, or all of the nucleotides are modified at the 2'-position of the ribose, e.g., 2'-OMe, 2'-F, 2'-amino.
  • modified linkages are combined with a 2 '-modifications, for example, at least 30% modified linkages and at least 30% 2 '-modifications; or respectively at least 40% and 40%, at least 50% and 50%, at least 60% and 60%, at least 70% and 70%, at least 80% and 80%, at least 90% and 90%, 100% and 100%.
  • the oligonucleotide includes at least 30, 40, 50, 60, 70, 80, 90, or 100% modified linkages and at least 30, 40, 50, 60, 70, 80, 90, or 100% 2 '-modifications where embodiments include each combination of listed modified linkage percentage and 2 '-modification percentage (e.g., at least 50% modified linkage and at least 80% 2 '-modifications, and at least 80% modified linkages and 100% 2 '-modifications).
  • the modified linkages are phosphorothioate linkages; the modified linkages are phosphorodithioate linkages; the 2 '-modifications are 2'-OMe; the 2 '-modifications are T- fluoro; the 2 '-modifications are a combination of 2'-OMe and 2'-fluoro; the modified linkages are phosphorothioate linkages and the 2 '-modifications are 2'-OMe; the modified linkages are phosphorothioate linkages and the 2 '-modifications are 2'-fluoro; the modified linkages are phosphorodithioate linkages and the 2 '-modifications are 2'-OMe; the modified linkages are phosphorodithioate linkages and the 2 '-modifications are 2'-OMe; the modified linkages are phosphorodithioate linkages and the 2 '-modifications are 2'-fluoro; the modified linkages are phosphorodithioate linkages and the
  • the oligonucleotide is at least 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, or 120 nucleotides in length, or is in a length range defined by taking any two of the specified lengths as inclusive endpoints of the range.
  • all but 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 of the internucleotidic linkages and/or 2'-positions of the ribose moiety are modified, e.g., with linkages modified with phosphorothioate, phosphorodithioate, or methylphosphonate linkages and/or 2'-OMe, 2'-F, and/or 2 '-amino modifications of the ribose moiety.
  • the oligonucleotide includes at least 1, 2, 3, or 4 ribonucleotides, or at least 10, 20, 30, 40, 50, 60, 70, 80, 90%, or even 100% ribonucleotides.
  • the oligonucleotide includes non-nucleotide groups in the chain (i.e., form part of the chain backbone) and/or as side chain moieties, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or even more, or up to 5, 10, 20% or more of the chain moieties and/or side chain moieties.
  • the oligonucleotide is free of self-complementary sequences longer than 5, 8, 10, 15, 20, 25, 30 nucleotides; the oligonucleotide is free of catalytic activity, e.g., cleavage activity against RNA; the oligonucleotide does not induce an RNAi mechanism.
  • the oligonucleotide binds protein involved in a disease or condition described in the present invention ; the sequence of the oligonucleotide (or a portion thereof, e.g., at least 20, 30, 40, 50, 60, 70% or more) is derived from a genome; the activity of an oligonucleotide with a sequence derived from a genome is not superior to a randomer oligonucleotide or a random oligonucleotide of the same length; the oligonucleotide includes a portion complementary to a genome sequence and a portion not complementary to a genome sequence; unless otherwise indicated, the sequence of the oligonucleotide includes A(x), C(x), G(x), T(x), U(x), I(x), AC(x), AG(X), AT(x), AU(x), CG(x), CT(x), CU(x), GT(x), GU(x), TU(
  • the oligonucleotide is at least 15, 20, 25, 29, 30, 32, 34, 35, 36, 38, 40, 45, 46, 50, 60, 70, 80, 90, 100, 110, 120, 140, or 160 nucleotides in length or is in a range defined by taking any two of the listed values as inclusive endpoints, or the length of the specified repeat sequence is at least a length or in a length range just specified);
  • the oligonucleotide includes a combination of repeat sequences (e.g., repeat sequences as specified above), including, for example, each combination of the above monomer and/or dimer repeats taken 2, 3, or 4 at a time;
  • the oligonucleotide is single stranded (RNA or DNA);
  • the oligonucleotide is double stranded (RNA or DNA);
  • the oligonucleotide includes at least one Gquartet or CpG portion;
  • the oligonucleotide includes a portion complementary to a
  • phosphorothioated ONs containing only (or at least primarily) pyrimidine nucleotides, including cytosine and/or thymidine and/or other pyrimidines are resistant to low pH and polycytosine oligonucleotides showed increased resistance to a number of nucleases, thereby providing two important characteristics for oral administration of an ON.
  • the oligonucleotide has at least 80, 90, or 95, or 100% modified internucleotidic linkages (e.g., phosphorothioate or phosphorodithoiate) and the pyrimidine content is more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, or 100%; i.e. is a pyrimidine oligonucleotide or the cytosine content is more than 50%, more than 60%, more than 70%, more than 80%, more than 90% or 100% i.e. is a polycytosine oligonucleotide.
  • modified internucleotidic linkages e.g., phosphorothioate or phosphorodithoiate
  • the length is at least 29, 30, 32, 34, 36, 38, 40, 45, 50, 60, 70, or 80 nucleotides, or is in a range of 20-28, 25-35, 29-40, 30-40, 35-45, 40-50, 45-55, 50-60, 55-65, 60-70, 65-75, or 70-80, or is in a range defined by taking any two of the listed values as inclusive endpoints of the range.
  • the oligonucleotide is at least 50, 60, 70, 80, or 90% cytosine; at least 50, 60, 70, 80, or 90% thymidine (and may have a total pyrimidine content as listed above).
  • the oligonucleotide contains a listed percentage of either cytosine or thymidine, and the remainder of the pyrimidine nucleotides are cytosine and thymidine. Also in a certain embodiment, the oligonucleotide includes at least 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, or more contiguous pyrimidine nucleotides, e.g., as C nucleotides, T nucleotides, or CT dinucleotide pairs;.
  • the pyrimidine oligonucleotide consists only of pyrimidine nucleotides; includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 non-pyrimidine moieities; includes 1-5, 6-10, 11-15, or at least 16 non-pyrimidine backbone moieties; includes at least one, 1-20, 1-5, 6- 10, 1 1-15, or 16-20 non-nucleotide moieties; includes at least one, 1-20, 1-5, 6-10, 11-15, or 16- 20 purine nucleotides.
  • the linkages between such moieties or between such moieties and nucleotides are at least 25, 35, 50, 70, 90, or 100 % as resistant to acidic conditions as PS linkages in a 40-mer polyC oligonucleotide and as evaluated by gel electrophoresis under conditions appropriate for the size and chemistry of the oligonucleotide.
  • Oligonucleotides of the present invention can also be used in combinations, e.g., as a mixture.
  • Such combinations or mixtures can include, for example, at least 2, 3, 4, 5, 10, 20, 50, 100, 1000, 10000, 100,000, 1,000,000, or more different oligonucleotides, e.g., any combination of oligonucleotides are described herein.
  • Such combinations or mixtures can, for example, be different sequences and/or different lengths and/or different modifications and/or different linked or conjugated molecules.
  • a plurality of oligonucleotides have a minimum length or are in a length range as specified above for oligonucleotides.
  • at least one, a plurality, or each of the oligonucleotides can have any of the other properties specified herein for individual oligonucleoties (which can also be in any consistent combination).
  • the sequence of the oligonucleotide is not perfectly complementary to any equal length portion of the a genome sequence, or has less than 95, 90, 80, 70, 60, or 50% complementarity to any equal length portion of the genomic sequence.
  • the oligonucleotide sequence does not consist essentially of polyA, polyC, polyG, polyT, Gquartet, or a TG-rich sequence.
  • TG-rich indicates that the sequence of the oligonucleotide consists of at least 50 percent T and G nucleotides, or if so specified, at least 60, 70, 80, 90, or 95% T and G, or even 100%.
  • the invention provides a mixture of oligonucleotides that includes at least two different oligonucleotides as described herein, e.g., at least 2, 3, 4, 5, 7, 10, 50, 100, 1000, 10,000, 100,000, 1,000,000, or even more.
  • oligonucleotide includes at least 20 linked nucleotides.
  • the oligonucleotide may also include additional, non-nucleotide moieties, which may form part of the backbone of the oligonucleotide chain. Unless otherwise indicated, when non-nucleotide moieities are present in the backbone, at least 10 of the linked nucleotides are contiguous.
  • sequence independent mode of action indicates that the particular biological activity is not dependent on a particular oligonucleotide sequence in the oligonucleotide.
  • the activity does not depend on sequence dependent hybridization such as with antisense activity, or a particular sequence resulting in a sequence dependent aptameric interaction.
  • non- sequence complementary mode of action indicates that the mechanism by which the material exhibits an effect is not due to hybridization of complementary nucleic acid sequences, e.g., an antisense effect.
  • sequence complementary mode of action means that the effect of a material involves hybridization of complementary nucleic acid sequences or sequence specific aptameric interaction.
  • sequence complementary mode of action means that the activity of the oligonucleotide satisfies at least one of the 3 tests provided herein.
  • the oligonucleotide satisfies test 1, test 2 or test 3; the oligonucleotide satisfies a combination of two of the tests, i.e., tests 1 & 2; tests 1 & 3 or tests 2 & 3; the oligonucleotide satisfies all of tests 1, 2 and 3.
  • a related aspect concerns an oligonucleotide randomer or randomer formulation that contains at least one randomer, where the activity of the randomer occurs principally by a sequence independent, e.g., non-sequence complementary mode of action.
  • a randomer formulation can, for example, include a mixture of randomers of different lengths, e.g., at least 2, 3, 5, 10, or more different lengths, or other mixtures as described herein.
  • the phrase "derived from a genome” indicates that a particular sequence has a nucleotide base sequence that has at least 70% identity to a genomic nucleotide sequence or its complement (e.g., is the same as or complementary to a genomic sequence), or is a corresponding RNA sequence.
  • the expression "derived from a genome” indicates that the sequence is at least 70% identical to a genomic sequence of a particular gene involved in a disease or condition against which the oligonucleotide is directed, or to its complementary sequence.
  • the identity is at most 90%, preferably 80%, more preferably 75%.
  • Genome can be from an animal, e.g. a human, from a microorganism, e.g. a virus, a bacteria, a parasite, or from plant.
  • the invention also provides a pharmaceutical composition that includes a therapeutically effective amount of a pharmacologically acceptable, oligonucleotide or mixture of oligonucleotides as described herein, e.g., at least 6 nucleotides in lenght, more preferably 15 nucleotides in length, or other length as listed herein, where the activity of the oligonucleotide occurs principally by a sequence independent, e.g., non-sequence complementary or non- sequence dependent aptamer, mode of action, and a pharmaceutically acceptable carrier.
  • the pharmaceutical compositions are approved for administration to a human, or a non-human animal such as a non-human primate.
  • the pharmaceutical composition can be formulated for delivery by a mode selected from the group consisting of oral ingestion, oral mucosal delivery, intranasal drops or spray, intraocular injection, subconjonctival injection, eye drops, ear drops, by inhalation, intratracheal injection or spray, intrabronchial injection or spray, intrapleural injection, intraperitoneal injection perfusion or irrigation, intrathecal injection or perfusion, intracranial injection or perfusion, intramuscular injection, intravenous injection or perfusion, intraarterial injection or perfusion, intralymphatic injection or perfusion, subcutaneous injection or perfusion, intradermal injection, topical skin application, by organ perfusion, by topical application during surgery, intratumoral injection, topical application, gastric injection perfusion or irrigation, enteral injection or perfusion, colonic injection perfusion or irrigation, rectal injection perfusion or irrigation, by rectal suppository or enema, by urethral suppository or injection, intravesical injection perfusion or irrigation
  • the composition includes a delivery system, e.g., targeted to specific cells or tissues; a liposomal formulation, another drug, e.g., a non-nucleotide polymer, an antisense molecule, a siRNA, or a small molecule drug.
  • a delivery system e.g., targeted to specific cells or tissues
  • a liposomal formulation e.g., another drug, e.g., a non-nucleotide polymer, an antisense molecule, a siRNA, or a small molecule drug.
  • the oligonucleotide, oligonucleotide preparation, oligonucleotide formulation, or pharmaceutical composition has an in vitro ICs 0 or ECso of 10, 5, 2, 1, 0.50, 0.20, 0.10, 0.09. 0.08, 0.07, 0.75, 0.06, 0.05, 0.045, 0.04, 0.035, 0.03, 0.025, 0.02, 0.015, or 0.01 ⁇ M or less.
  • the pharmaceutical composition contains at least one polypyrimidine oligonucleotide as described herein.
  • a composition is adapted for delivery to an acidic in vivo site, e.g., oral delivery or vaginal delivery.
  • an acidic in vivo site e.g., oral delivery or vaginal delivery.
  • the term "acidic site” means a site that has a pH of less than 7. Examples include the stomach (pH generally 1-2), the vagina (pH generally 4-5 but may be lower), and to a lesser degree, the skin (pH generally 4-6).
  • the phrase "adapted for oral delivery" and like terms indicate that the composition is sufficiently resistant to acidic pH to allow oral administration without a clinically excessive loss of activity, e.g., an excessive first pass loss due to stomach acidity of less than 50% (or is indicated, less than 40%, 30%, 20%, 10%, or 5%).
  • small molecule means that the molecular weight of the molecule is 1500 daltons or less. In some cases, the molecular weight is 1000, 800, 600, 500, or 400 daltons or less.
  • the invention provides a kit that includes at least one oligonucleotide, oligonucleotide mixture, oligonucleotide formulation, or pharmaceutical composition that includes such oligonucleotide, oligonucleotide mixture, or oligonucleotide formulation in a labeled package, where the activity of the oligonucleotide occurs principally by a sequence independent e.g., non-sequence complementary or non-sequence dependent aptameric, mode of action and the label on the package indicates that the oligonucleotide can be used against at least one disease or condition.
  • a sequence independent e.g., non-sequence complementary or non-sequence dependent aptameric, mode of action indicates that the oligonucleotide can be used against at least one disease or condition.
  • the kit includes a pharmaceutical composition that includes at least one oligonucletide as described herein.
  • the kit contains a mixture of at least two different oligonucleotides.
  • the oligonucleotide is adapted for in vivo use in an animal and/or the label indicates that the oligonucleotide or composition is acceptable and/or approved for use in an animal; the animal is a mammal, such as human, or a non-human mammal such as bovine, porcine, a ruminant, ovine, or equine; the animal is a non- human animal; the animal is a bird, the kit is approved by a regulatory agency such as the U.S.
  • the different random oligonucleotides comprises randomers of different lengths; the random oligonucleotides can have different sequences or can have sequence in common, such as the sequence of the shortest oligos of the plurality; and/or the different random oligonucleotides comprise a plurality of oligonucleotides comprising a randomer segment at least 5 nucleotides in length or the different random oligonucleotides include a plurality of randomers of different lengths.
  • Other oligonucleotides e.g., as described herein oligonucleotides, can be tested in a particular system.
  • the invention provides a method for the prophylaxis or treatment in a subject by administering to a subject in need of such treatment a therapeutically effective amount of at least one pharmacologically acceptable oligonucleotide as described herein, e.g., a sequence independent oligonucleotide at least 6 nucleotides in length, more preferably 15 nucleotides in length, or an pharmaceutical composition or formulation or mixture containing such oligonucleotide(s).
  • a sequence independent oligonucleotide at least 6 nucleotides in length, more preferably 15 nucleotides in length, or an pharmaceutical composition or formulation or mixture containing such oligonucleotide(s).
  • the invention provides a use for the prophylaxis or treatment in a subject by administering to a subject in need of such treatment a therapeutically effective amount of at least one pharmacologically acceptable oligonucleotide as described herein, e.g., a sequence independent oligonucleotide at least 6 nucleotides in length, more preferably 15 nucleotides in length, or a pharmaceutical composition or formulation or mixture containing such oligonucleotide(s).
  • a sequence independent oligonucleotide at least 6 nucleotides in length, more preferably 15 nucleotides in length, or a pharmaceutical composition or formulation or mixture containing such oligonucleotide(s).
  • the invention provides a method for the prophylaxis or treatment of a in an acidic environment in a subject, comprising administering to a subject in need of such a treatment a therapeutically effective amount of at least one pharmacologically acceptable pharmaceutical composition of the invention, said composition being adapted for administration to an acidic in vivo site.
  • the invention provides a use for the prophylaxis or treatment in an acidic environment in a subject, comprising administering to a subject in need of such a treatment a therapeutically effective amount of at least one pharmacologically acceptable pharmaceutical composition of the invention, said composition being adapted for administration to an acidic in vivo site.
  • the oligonucleotide is a polypyrimidine oligonucleotide (or a formulation or pharmaceutical composition containing such polypyrimidine oligonucleotide), which may be adapted for oral or vaginal administration, e.g., as described herein.
  • terapéuticaally effective amount refers to an amount that is sufficient to effect a therapeutically or prophylactically significant reduction of a disease or condition when administered to a typical subject of the intended type.
  • oligonucleotide, formulation, or composition should be administered in a therapeutically effective amount.
  • the oligonucleotide(s) having a sequence independent mode of action is not associated with a transfection agent; the oligonucleotide(s) having a sequence independent mode of action is not encapsulated in liposomes and/or non-liposomal lipid particles.
  • the oligonucleotide(s) having a sequence independent mode of action is in a pharmaceutical composition or is administered in conjunction with (concurrently or sequentially) an oligonucleotide that acts principally by a sequence dependent mode of action, e.g., antisense oligonucleotide or siRNA, where the oligonucleotide(s) having a sequence dependent mode of action can be associated with a transfection agent and/or encapsulated in liposomes and/or non- liposomal lipid particles.
  • a sequence dependent mode of action e.g., antisense oligonucleotide or siRNA
  • the invention provides a polymer mix that includes at least one oligonucleotide and at least one non-nucleotide polymer.
  • the oligonucleotide is as described herein and/or the polymer is as described herein or otherwise known in the art or subsequently identified [0100]
  • the invention provides an oligonucleotide randomer, where the randomer is at least 6 nucleotides in length, more preferably 15 nucleotides in lenght.
  • the randomer has a length as specified above for oligonucleotides; the randomer includes at least one phosphorothioate linkage, the randomer includes at least one phosphorodithioate linkage or other modification as listed herein; the randomer oligonucleotides include at least one non-randomer segment (such as a segment complementary to a selected nucleic acid sequence), which can have a length as specified above for oligonucleotides; the randomer is in a preparation or pool of preparations containing at least 5, 10, 15, 20, 50, 100, 200, 500, or 700 micromol, 1, 5, 7, 10, 20, 50, 100, 200, 500, or 700 mmol, or 1 mole of randomer, or a range defined by taking any two different values from the preceding as inclusive end points, or is synthesized at one of the listed scales or scale ranges.
  • the randomer includes at least one phosphorothioate linkage, the randomer includes at least one phosphorodithioate linkage or other modification
  • oligonucleotide means oligodeoxynucleotide or oligodeoxyribonucleotide or oligoribonucleotide.
  • oligonucleotide refers to an oligomer or polymer of ribonucleic acid (RNA) and/or deoxyribonucleic acid (DNA) and/or analogs thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly.
  • Oligonucleotides that include backbone and/or other modifications can also be referred to as oligonucleosides. Except otherwise specified, oligonucleotide definition includes homopolymers, heteropolymers, randomers (see below), random sequence oligonucleotides, genomic-derived sequence oligonucleotides and oligonucleotides purified from natural sources.
  • sequence independent activity indicates that the mechanism by which the molecule exhibits an anti-ocular angiogenesis effect is not due to hybridization of complementary nucleic acid sequences, e.g., an antisense effect nor it is due to a sequence-specific aptameric activity.
  • a “sequence dependant mode of action or activity” means that the anti-ocular angiogenesis effect of a molecule involves hybridization of complementary nucleic acid sequences or involves a sequence-specific aptameric interaction.
  • anti-ocular angiogenesis means inhibiting or stopping pro- angiogenic activity of cells or the de novo formation of or reorganization of blood vessels in the eye.
  • An anti-ocular angiogenesis compound can be used to treat a disease whose etiology is based on abnormal angiogenic activity in the eye.
  • Ocular angiogenesis when referring to a disease means a disease involving unwanted or uncontrolled growth of new blood vessels (or neovascularization) or the improper reorganization or remodeling of existing blood vessels in the eye.
  • Ocular angiogenesis diseases include, without limitation, macular degeneration, unwanted angiogenesis, retinopathy, diabetic retinopathy, macular edema and neovascular glaucoma.
  • An ocular angiogenic disease means a disease involving angiogenesis in the eye.
  • anti-ocular angiogenesis refers to an effect due to the presence of ONs or other material that inhibits angiogenic cells in the eye, de novo blood vessel formation or blood vessel remodeling or an ocular angiogenic disease, i.e., reducing or stopping the number of angiogenic cells or angiogenic processes compared to untreated cells, in a system or organism otherwise suitable for the measurement of angiogenesis in such cells.
  • anti-ocular angiogenesis ONs will have anti-ocular angiogenesis activity against multiple cell types.
  • anti-ocular angiogenesis oligonucleotide formulation refers to a preparation that includes at least one anti-ocular angiogenesis oligonucleotide that is adapted for use as an anti-ocular angiogenesis agent.
  • the formulation includes the ON or ONs, and can contain other materials that do not interfere with their use as an anti-ocular angiogenesis agents in vivo. Such other materials can include without restriction diluents, excipients, carrier materials, delivery systems and/or other anti-ocular angiogenesis materials.
  • composition refers to an anti-ocular angiogenesis ON formulation that includes a physiologically or pharmaceutically acceptable carrier or excipient. Such compositions can also include other components that do not make the composition unsuitable for administration to a desired subject, e.g., a human.
  • the phrase "adapted for use as an anti-ocular angiogenesis agent" indicates that the material exhibits an anti-ocular angiogenesis effect and does not include any component or material that makes it unsuitable for use in inhibiting angiogenesis in an in vivo system, e.g., for administering to a subject such as a human subject.
  • the term "subject” refers to a living higher organism, including, for example, animals such as mammals, e.g., humans, non-human primates, non-human animals and plants, e.g., fruit trees.
  • the term "randomer” is intended to mean a single stranded nucleic acid polymer, modified or not, having degenerate sequences at every position, such as NNNNNNNNNN.
  • Each degenerate nucleotide position actually exists as a random population of the five naturally occurring bases on the nucleotide (adenine, guanine, cytosine, thymine, uracil) at this particular position, resulting in a completely degenerate pool of ONs of the same size but having no sequence identity as a population.
  • Randomers can also include nucleobases which do not occur naturally including without restriction hypoxanthine, xanthosine, imidazole, 2- aninopurines or 5-nitroindole.
  • the term randomer can apply to a sequence or a portion of a sequence.
  • degenerate means that a sequence is made of a mix of nucleotides.
  • a completely degenerate sequence means that A, C, G, and T (or other nucleobases) are randomly used at each position of the sequence and nucleotide position are identified by N.
  • a degenerate sequence means also that at least two nucleobases are randomly used at each position of the sequence.
  • degenerate can apply to a sequence, a portion of a sequence or one nucleotide position in a sequence.
  • the term "delivery system” refers to a component or components that, when combined with an ON as described herein, facilitates the transfer of ONs inside cells, increases the amount of ONs that contact the intended location in vivo, and/or extends the duration of its presence at the target or increases its circulating lifetime in vivo, e.g., by at least 10, 20, 50, or 100%, or even more as compared to the amount and/or duration in the absence of the delivery system.
  • the term delivery system also means encapsulation system or encapsulation reagent.
  • To encapsulate ONs means to put in contact an ON with a delivery system or an encapsulation reagent.
  • An ON in contact with a delivery system can be referred to as an "encapsulated ON".
  • oligonucleotides having each linkage phosphorothioated and each ribonucleotide modified at the 2'-position of the ribose may have anti-ocular angiogenesis activity but do not trigger RNase H activity, a property desirable for traditional antisense ONs but completely dispensable for the activity described in the present invention.
  • Results demonstrate that modifications at the 2 '-position of each ribose of PS-ONs renders the ON more resistant to nucleases in comparison with a PS-ON comprising the same modifications but only at both ends (gapmer). Gapmers are preferentially used in the antisense technology. Nuclease resistance of PS-ONs including modifications at the 2'-position of each ribose could display beneficial properties, such as improved pharmakokinetics and/or oral availability.
  • PS-ONs that include modifications at the 2'-position of each ribose show desirable characteristics
  • PS-ONs with substantial numbers of modifications at the T- position of ribose could also display desirable characteristics, e.g., modification on at least 50 % of the riboses and more preferably 80% or even more.
  • modified ONs are useful in this invention.
  • Such modified ONs include, for example, ONs containing modified backbones or non-natural internucleoside linkages.
  • ONs having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone.
  • Such modified ON backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters aminoalkylphosphotri-esters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphorami dates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates, carboranyl phosphate and borano-phosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5 ' to 5' or T to 2' linkage.
  • Oligonucleotides having inverted polarity typically include a single 3' to 3' linkage at the 3'- mosi internucleotide linkage, i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof).
  • Various salts, mixed salts and free acid forms are also included.
  • Some exemplary modified ON backbones that do not include a phosphodiester linkage have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
  • morpholino linkages formed in part from the sugar portion of a nucleoside
  • siloxane backbones sulfide, sulfoxide and sulfone backbones
  • formacetyl and thioformacetyl backbones methylene formacetyl and thioformacetyl backbones
  • riboacetyl backbones alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, 0, S and CH 2 component parts.
  • Modified ONs may also contain one or more substituted sugar moieties.
  • such oligonucleotides can include one of the following 2 '-modifications: OH; F; O-, S-, or N- alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-0-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted Ci to Ci 0 alkyl or C 2 to C 10 alkenyl and alkynyl, or 2'-O-(O-carboran-l-yl)methyl.
  • Particular examples are O[(CH 2 ) n O] m CH 3 , O(CH 2 ) ⁇ OCH 3 , O(CH 2 ) n NH 2 , O(CH 2 ) n CH 3 , O(CH 2 ) n ONH 2 , and 0(CH 2 ) n 0N [(CH 2 ) n CH 3 )] 2 , where n and m are from 1 to 10.
  • exemplary ONs include one of the following 2 '-modifications: C 1 to Ci 0 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH 3 , OCN, Cl, Br, CN, CF 3 .
  • OCF 3 SOCH 3 , SO 2 CH 3 , ONO 2 , NO 2 , N 3 , NH 2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an ON, or a group for improving the pharmacodynamic properties of an ON.
  • Examples include T- methoxyethoxy (2'-0-CH 2 CH 2 OCH 3 , also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., HeIv. Chim.
  • LNAs Locked Nucleic Acids
  • the linkage can be a methelyne (-CH 2 -) n group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2.
  • LNAs and preparation thereof are described in international patent application publication Nos WO 98/39352 and WO 99/14226, which are incorporated herein by reference in their entireties.
  • modifications include sulfur-nitrogen bridge modifications, such as locked nucleic acid as described in Orum et al. (2001, Curr. Opin. MoI. Ther. 3: 239-243).
  • the 2 '-modification may be in the arabino (up) position or ribo (down) position. Similar modifications may also be made at other positions on the ON, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of ths 5' terminal nucleotide. ONs may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Exemplary U.S. patents describing the preparation of such modified sugar structures include, for example, U.S.
  • Still other modifications include an ON concatemer consisting of multiple ON sequences joined by a linker(s).
  • the linker may, for example, consist of modified nucleotides or non-nucleotide units.
  • the linker provides flexibility to the ON concatemer. Use of such ON concatemers can provide a method to synthesize a final molecule, by joining smaller ON building blocks to obtain the desired length.
  • a 12 carbon linker C 12 phosphoramidite
  • nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). ONs may also include base modifications or substitutions.
  • Modified bases include other synthetic and naturally-occurring bases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosiine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl(-C ⁇ C-CH 3 ) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5- uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8- substituted adenines and guanines, 5-hal
  • Additional modified bases include tricyclic pyrimidines such as phenoxazine cytidine(lH-pyrimido[5,4-b][l,4]benzoxazin-2(3H)-one), phenothiazine cytidine (lH-pyrimido[5,4-b][l,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g.
  • Modified bases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deazaadenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those described in U.S.
  • Another modification includes phosphorodithioate linkages. Knowing that phosphorodithioate ONs (PS2-ONs) and PS-ONs have a similar binding affinity to proteins (Tonkinson et al, 1994, Antisense Res. Dev. 4 : 269-278; Cheng et al, 1997, J. MoI. Recogn. 10: 101-107) and knowing that a possible mechanism of action of ONs is binding to protein involved in angiogenesis, it could be desirable to include phosphorodithioate linkages on the anti-ocular angiogenesis ONs described in this invention.
  • ONs prepared by conventional methods consist of a mixture of diastereomers by virtue of the asymmetry around the phosphorus atom involved in the internucleotide linkage. This may affect the stability of the binding between ONs and targets such as proteins involved in angiogenesis. Previous data showed that protein binding is significantly stereo-dependent (Yu et al, 2000, Bioorg. Med. Chem. 8: 275-284). Thus, using stereodefined or stereo-enriched ONs could improve their protein binding properties and improve their anti-ocular angiogenesis efficacy.
  • modified oligonucleotides containing phosphorothioate or dithioate linkages may also contain one or more substituted sugar moieties particularly modifications at the sugar moieties including, without restriction, 2 '-ethyl, 2'-ethoxy, 2'-methoxy, 2'-aminopropoxy, 2'-allyl, 2'-fluoro, 2'-pentyl, 2'-propyl, T- dimethylaminooxyethoxy, and 2'-dimethylaminoethoxyethoxy.
  • the 2'-modification may be in the arabino (up) position or ribo (down) position.
  • a preferred 2'-arabino modification is T- fluoro. Similar modifications may also be made at other positions on the ON, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2 '-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. ONs may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Moreover ONs may have a structure of or comprise a portion consisting of glycol nucleic acid (GNA) with an acyclic propylene glycol phosphodiester backbone (Zhang et al, 2005, J. Am. Chem. Soc. 127(12): 4174-4175). Such GNA may comprise phosphorothioate linkages and may comprise only pyrimidine bases.
  • GNA glycol nucleic acid
  • Such GNA may comprise phosphorothioate linkages and may comprise only pyrimidine bases.
  • the present oligonucleotides can be prepared in an ON formulation or pharmaceutical composition.
  • the present ONs may also be mixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption.
  • Exemplary United States patents that describe the preparation of such uptake, distribution and/or absorption assisting formulations include, for example, U.S.
  • the ONs, formulations, and compositions of the invention include any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.
  • prodrug indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions.
  • prodrug versions of the present oligonucleotides are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in Gosselin et al, International patent application publication No WO 93/24510, and in Imbach et al, International patent application publication No WO 94/26764 and U.S. patent No 5,770,713, which are hereby incorporated by reference in their entireties.
  • pharmaceutically acceptable salts refers to physiologically and pharmaceutically acceptable salts of the present compounds: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. Many such pharmaceutically acceptable salts are known and can be used in the present invention.
  • useful examples of pharmaceutically acceptable salts include but are not limited to salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and salts formed from element
  • the present invention also includes pharmaceutical compositions and formulations which contain the anti-ocular angiogenesis ONs of the invention.
  • Such pharmaceutical compositions may be administered in a number of ways such as intra-ocular, subconjunctival, by eye drop or topically to the eye.
  • administrations include topical (including ophthalmic and to mucous membranes including rectal delivery); pulmonary, e.g., by inhalation or insufflations of powders or aerosols, including by nebulizer; intratracheal; intranasal; epidermal and transdermal; oral; or parenteral.
  • Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion.
  • compositions and formulations for administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
  • Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
  • Other formulations include those in which the ONs of the invention are in mixed with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants.
  • Preferred lipids and liposomes include neutral (e.g.
  • ONs may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, ONs may be complexed to lipids, in particular to cationic lipids.
  • Preferred fatty acids and esters include but are not limited arachidonic acid, oleic acid, eicosanoic acid, laurie acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1 -monocaprate, l-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a Ci -10 alkyl ester (e.g. isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof.
  • a Ci -10 alkyl ester e.g. isopropylmyristate IPM
  • compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsif ⁇ ers, dispersing aids or binders may be desirable.
  • Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators.
  • Exemplary surfactants include fatty acids and/or esterSi or salts thereof, bile acids and/or salts thereof.
  • Exemplary bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenedeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate.
  • DCA chenodeoxycholic acid
  • UDCA ursodeoxychenedeoxycholic acid
  • cholic acid dehydrocholic acid
  • deoxycholic acid deoxycholic acid
  • glucholic acid glycholic acid
  • glycodeoxycholic acid taurocholic acid
  • taurodeoxycholic acid sodium tauro-24,25-dihydro-fusidate
  • sodium glycodihydrofusidate sodium glycodihydrofusidate.
  • Exemplary fatty acids include arachidonic acid, undecanoic acid, oleic acid, laurie acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1 -monocaprate, 1- dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium).
  • arachidonic acid arachidonic acid, undecanoic acid, oleic acid, laurie acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, gly
  • penetration enhancers for example, fatty acids/salts in combination with bile acids/salts.
  • a particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA.
  • Further exemplary penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally in granular form including sprayed dried particles, or complexed to form micro or nanoparticles.
  • ON complexing agents include poly-amino acids; polyimines; polyacrytates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses, and starches.
  • Particularly advantageous complexing agents include chitosan, N-trimethytchitosan, poly-L-lysine, polyhistidine, polyorithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylarnino-methylethylene P(TDAE), polyaminostyrene (e.g.
  • PEG polyethyleneglycol
  • compositions and formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
  • compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.
  • compositions of the present invention may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaking the product.
  • compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas.
  • the compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media.
  • Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran.
  • the suspension may also contain stabilizers.
  • the pharmaceutical compositions may be formulated and used as foams.
  • Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature, these formulations vary in the components and the consistency of the final product.
  • the preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.
  • the formulations and compositions of the present invention may be prepared and formulated as emulsions.
  • Emulsions are typically heterogenous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 ⁇ m in diameter.
  • Emulsions are often biphasic systems comprising of two immiscible liquid phases intimately mixed and dispersed with each other.
  • emulsions may be either water-in-oil (w/o) or of the oil-in- water (o/w) variety.
  • Emulsions may contain additional components in addition to the dispersed phases and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed.
  • compositions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in- water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions.
  • Such complex formulations often provide certain advantages that simple binary emulsions do not.
  • Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion.
  • a system of oil droplets enclosed in globules of water stabilized in an oily continuous provides an o/w/o emulsion.
  • Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the 1 formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion.
  • Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N. Y., volume 1, p. 199).
  • Synthetic surfactants also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N. Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., New York, N. Y., 1988, volume 1, p. 199).
  • Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion.
  • HLB hydrophile/lipophile balance
  • surfactants may be classified into different classes based on the nature of the hydrophilic group: non-ionic, anionic, cationic and amphoteric (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N. Y., volume 1, p. 285).
  • Naturally occurring emulsii ⁇ ers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia.
  • Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsif ⁇ ers especially in combination with surfactants and in viscous preparations.
  • polar inorganic solids such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.
  • Non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N. Y., volume 1, p. 335; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N. Y., volume 1, p. 199).
  • Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxy vinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong inter- facial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.
  • polysaccharides for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth
  • cellulose derivatives for example, carboxymethylcellulose and carboxypropylcellulose
  • synthetic polymers for example, carbomers, cellulose ethers, and carboxy vinyl
  • emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives.
  • preservatives included in emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid.
  • Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation.
  • Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulf ⁇ te, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.
  • free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulf ⁇ te
  • antioxidant synergists such as citric acid, tartaric acid, and lecithin.
  • the compositions of ONs are formulated as microemulsions.
  • a microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N. Y., volume 1, p. 245).
  • micro-emulsions are systems that are prep ⁇ ired by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system.
  • microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215).
  • Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte.
  • microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type, it is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington 's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).
  • microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.
  • Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML31O), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DA0750), alone or in combination with co surfactants.
  • ionic surfactants non-ionic surfactants
  • Brij 96 polyoxyethylene oleyl ethers
  • polyglycerol fatty acid esters tetraglycerol monolaurate (ML31
  • the cosurfactant usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules.
  • Microemulsions may be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art.
  • the aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol.
  • the oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.
  • materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.
  • Microemulsions are particularly of interest from the standpoint of drug solubilization and title enhanced absorption of drugs.
  • Lipid based microemulsions both o/w and w/o have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al, Pharmaceutical Research, 1994, 11 : 1385-1390; Ritschet, Met/i. Find. Exp. Clin. PharmacoL, 1993: 13, 205).
  • Micro-emulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant- induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al, Pharmaceutical Research, 1994, 11 : 1385; Ho et al., J. Pharm. Set, 1996, 85: 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermolabile drugs, peptides or oligonucleotides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of ONs and nucleic acids from the gastrointestinal tract.
  • Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention.
  • Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories: surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92).
  • liposome refers to a vesicle composed of amphophilic lipids arranged in a spherical bilayer or bilayers, i.e., liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior.
  • the aqueous portion typically contains the composition to be delivered.
  • lipid vesicles In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores. Additional factors for liposomes include the lipid surface charge, and the aqueous volume of the liposomes.
  • liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N. Y., volume 1, p. 245).
  • liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target.
  • liposomal composition includes phospholipids other than naturally- derived phosphatidylcholine.
  • Neutral liposome compositions can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC).
  • Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE).
  • DOPE dioleoyl phosphatidylethanolamine
  • Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC.
  • PC phosphatidylcholine
  • Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.
  • Liposomes also include "sterically stabilized" liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids.
  • sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome include one or more glycolipids, such as monosialoganglioside GM l, or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety.
  • PEG polyethylene glycol
  • Liposomes that include lipids derivatized with one or more hydrophilic polymers, and methods of preparation are described, for example, in Sunamoto et al. ⁇ Bull. Chem. Soc. Jpn., 1980, 53: 2778; a nonionic detergent, 2Ci 2 15G, that contains a PEG moiety); Ilium et al. ⁇ FEBS Lett., 1984, 167,: 79;hydrophilic coating of polystyrene particles with polymeric glycols); Sears (U.S. patents Nos.
  • Liposomes that include nucleic acids have been described, for example, in EMS et al. (International patent publication No WO 96/40062; methods for encapsulating high molecular weight nucleic acids in liposomes); Tagawa et al. (U.S. patent No 5,264,221; protein-bonded liposomes containing RNA); Rahman et al. (U.S. patent No 5,665,710; methods of encapsulating oligodeoxynucleotides in liposomes); Love et al. (International patent application publication No WO 97/04787; liposomes that include antisense oligonucleotides).
  • Transfersomes are highly deformable lipid aggregates which are attractive for drug delivery vehicles (Cevc et al, 1998, Biochim Biophys Acta. 1368(2): 201- 215). Transfersomes may be described as lipid droplets which are so highly deformable that they can penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, for example, they are shape adaptive, self-repairing, frequently reach their targets without fragmenting, and often self-loading. Transfersomes can be made, for example, by adding surface edge-activators, usually surfactants, to a standard liposomal composition.
  • surfactants are widely used in formulations such as emulsions (including microemulsions) and liposomes.
  • HLB hydrophile/lipophile balance
  • the nature of the hydrophilic group also known as the "head" provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N. Y., 1988, p. 285).
  • the surfactant molecule is not ionized, it is classified as a nonionic surfactant.
  • Nonionic surfactants are widely used in pharmaceutical and cosmetic products and are usable over a wide range of pH values, and with typical HLB values from 2 to about 18 depending on structure.
  • Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters; and nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class.
  • the polyoxyethylene surfactants are the most commonly used members of the nonionic surfactant class.
  • Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isothionates, acyl laurates and sulfo succinates, and phosphates.
  • the alkyl sulfates and soaps are the most commonly used anionic surfactants.
  • Cationic surfactants include quaternary ammonium salts and ethoxylated amines, with the quaternary ammonium salts used most often.
  • Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N- alkylbetaines and phosphatides.
  • penetration enhancers are used in or with a composition to increase the delivery of nucleic acids, particularly ONs across membranes of animals.
  • Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non- lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.
  • Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating nonsurfactants (Lee et al, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92). Each of these classes of penei ration enhancers is described herein below in greater detail.
  • surfactants are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of ONs through the mucosa is enhanced.
  • penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether (Lee et al. , CriticalReviews in Therapeutic Drug Carrier Systems, 1991, p.92); and perfluorochemical emulsions, such as FC-43 (Takahashi et al., J. Pharm. Pharmacol, 1988, 40, 252), each of which is incorporated herein by reference in its entirety.
  • Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac- glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1- dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, Ci -I0 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and diglycerides thereof (/.
  • oleic acid lauric acid
  • capric acid n-decanoic acid
  • myristic acid palmitic acid
  • stearic acid linole
  • bile salts include any of the naturally occurring components of bile as well as any of their synthetic derivatives.
  • the bile salts of the invention include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxy cholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydro-fusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) ⁇ Lee et al.
  • cholic acid or its pharmaceutically acceptable sodium salt, sodium cholate
  • dehydrocholic acid sodium dehydr
  • chelating agents can be regarded as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of ONs through the mucosa is enhanced.
  • chelating agents have the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J Chromatogr., 1993, 618: 315-339).
  • chelating agents include disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines)(Lee et al, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control ReL, 1990, 14: 43-51).
  • EDTA disodium ethylenediaminetetraacetate
  • citric acid e.g., citric acid
  • salicylates e.g., sodium salicylate, 5-methoxysalicylate and homovanilate
  • N-acyl derivatives of collagen laureth-9
  • N-amino acyl derivatives of beta-diketones enamines
  • non-chelating non-surfactant penetration enhancing compounds are compounds that do not demonstrate significant chelating agent or surfactant activity, but still enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990: 7, 1-33).
  • penetration enhancers include unsaturated cyclic ureas, 1 -alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and nonsteroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al , J. Pharm. Pharmacol, 1987, 39: 621-626).
  • nucleic acids include glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as limonene and menthone.
  • glycols such as ethylene glycol and propylene glycol
  • pyrrols such as 2-pyrrol
  • azones such as 2-pyrrol
  • terpenes such as limonene and menthone.
  • compositions of the present invention also incorporate carrier compounds in the formulation.
  • carrier compound or “carrier” can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation.
  • carrier compound can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation.
  • the coadministration of a nucleic acid and a carrier compound often with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney
  • the recovery of a partially phosphorothioated ON in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido- 4'isothiocyano-stilbene-2,2-disulfonic acid (Miyao et al., AntisenseR.es. Dev., 1995, 5: 1 15-121 ; Takakura et al. , Antisense & Nucl Acid Drug Dev., 1996, 6: 177-183), each of which is incorporated herein by reference in its entirety.
  • a “pharmaceutical carrier” or “excipient” is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal, and is typically liquid or solid.
  • a pharmaceutical carrier is generally selected to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition, in view of the intended administration mode.
  • Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycotate, etc.); and wetting agents (e.g., sodium lauryl sulphate, etc.).
  • binding agents e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxyprop
  • compositions of the present invention can also be used to formulate the compositions of the present invention.
  • suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.
  • Formulations for topical administration of nucleic acids may include sterile and non- sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases.
  • the solutions may also contain buffers, diluents and other suitable additives.
  • Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.
  • compositions may additionally contain other components conventionally found in pharmaceutical compositions, at their art-established usage levels.
  • the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers.
  • additional materials useful in physically formulating various dosage forms of the compositions of the present invention such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers.
  • such materials when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention.
  • the formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.
  • Aqueous suspensions may contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran, and/or stabilizers.
  • a pharmaceutical composition containing (a) one or more anti-ocular angiogenesis ONs and (b) one or more other chemotherapeutic agents which function by a similar or a different mechanism.
  • chemotherapeutic agents include but are not limited to maltose tetrapalmitate, maltose tripalmitate, daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bis-chloroethylnitrosurea, busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentameth
  • chemotherapeutic agents may be used individually (e.g., 5-FU and an ON), sequentially (e.g., 5-FU and an ON for a period of time followed by MTX and ON), or in combination with one or more other such chemotherapeutic agents (e.g., 5-EU, MTX and an ON, or 5-FU, radiotherapy and an ON).
  • Chemotherapeutic agents can be anti-inflammatory drugs, including but not limited to nonsteroidal antiinflammatory drugs and corticosteroids.
  • Chemotherapeutic agents can be anti-ocular angiogenesis drugs including but not limited to anti-VEGF (vascular endothelial growth factor) drugs, anti-IGF-1 (insulin-like growth factor 1) drugs, anti-PKC-beta (the beta-isoform of protein kinase) drugs, interferon alpha-2a, thalidomide, anti-VEGF monoclonal antibody and anti-VEGF aptamer.
  • anti-VEGF vascular endothelial growth factor
  • IGF-1 insulin-like growth factor 1
  • anti-PKC-beta the beta-isoform of protein kinase
  • ONs of this invention used in the pharmaceutical composition or formulation or to practice a method of or use for treating a human or an animal can be carried out in a variety of conventional ways for example using intraocular, subconjunctival, by eye drop, by intraocular implant, oral, subcutaneous, intravenous, intraperitoneal, intramuscular, intrathecal, intranasal, by inhalation, by enema, transdermal, sublingual and dermal routes.
  • the pharmaceutical composition or ON formulation of the invention may further contain other drugs for the treatment of ocular angiogenic diseases. Such additional factors and/or agents may be included in the pharmaceutical composition, for example, to produce a synergistic effect with the ONs of the invention.
  • an anti-ocular angiogenesis ONs demonstrating low, preferably the lowest possible, homology with the human (or other subject organism's) genome is designed.
  • One goal is to obtain an ON that will show the lowest toxicity due to interactions with human or animal genome sequence(s) and/or mRNAs.
  • the first step is to produce the desired length sequence of the ON, e.g., by aligning nucleotides A, C, G, T/U in a random fashion, manually or, more commonly, using a computer program.
  • the second step is to compare the ON sequence with a library of human sequences such as GenBank and/or the Ensemble Human Genome Database.
  • the sequence generation and comparison can be performed repetitively, if desired, to identify a sequence or sequences having a desired low homology level with the subject genome. It is desirable for the ON sequence to have the lowest homology possible with the entire genome, while also minimizing self interaction.
  • the last step is to test the ON in an angiogenesis assay to measure anti-ocular angiogenesis activity.
  • sequence independent ON sequence portion(s) is/are coupled with antisense sequence portion(s) to increase the activity of the final ON.
  • the non-specific portion of the ON is disclosed in the present invention.
  • the antisense portion can be complementary to an angiogenesis-related gene mRNA or to other genes important for cellular angiogenesis or for the progression of angiogenesis diseases.
  • sequence independent portion(s) is/are coupled with a G-rich motif ON portion(s) to improve the activity of the final ON.
  • the non-specific portion of the ON is described in the present invention.
  • the G-rich motif portion can, as non-limiting examples, include, CpG, Gquartet, and/or CG that are described in the literature as stimulators of the immune system.
  • Another approach is to use an ON composed of one or more types of non- Watson- Crick nucleotides/nucleosides.
  • Such ONs can mimic PS-ONs and other modifications with some of the following characteristics similar to PS-ONs: a) the total charge; b) the space between the units; c) the length of the chain; d) a net dipole with accumulation of negative charge on one side; e) the ability to bind to proteins f) the ability to be with delivery systems, h) an acceptable therapeutic index, i) an anti-ocular angiogenesis activity.
  • the ON can have a phosphorothioate backbone but is not limited to it. Examples of non- Watson-Crick nucleotides/nucleosides are described in Kool (2002, Ace. Chem. Res. 35: 936-943) and Takeshita et al, (1987, J Biol. Chem. 262: 10171-10179) where ONs containing synthetic abasic sites are described.
  • Another approach is to use a polymer mimicking the activity of ONs described in the present invention to obtain inhibition of ocular angiogenic activity.
  • anionic polymers were shown to bind to proteins. These polymers belong to several classes: (1) sulfate esters of polysaccharides (dextrin and dextran sulfates; cellulose sulfate); (2) polymers containing sulfonated benzene or naphthalene rings and naphthalene sulfonate polymers; (3) polycarboxylates (acrylic acid polymers); and acetyl phthaloyl cellulose (Neurath et al, 2002, BMC Infect Dis 2: 27); and (4) abasic ONs (Takeshita et al, 1987, J.
  • the anti-ocular angiogenesis polymer may preferably be a polyanion displaying similar space between its units as compared to a PS-ON. Also to mimic the effect of an ON, the anti-ocular angiogenesis polymer may display a similar hydrophobicity than PS-ON. Treatment of ocular angiogenic diseases
  • the anti-ocular angiogenesis ON of the present invention can also be administered by intraocular injection or topically, for example, by patch or by direct application to the eye, or by iontophoresis.
  • the ON may be provided in sustained release compositions, such as those described in, for example, U.S. patents Nos 5,672,659 and 5,595,760.
  • immediate or sustained release compositions depends on the nature of the condition being treated. If the condition consists of an acute or over-acute disorder, treatment with an immediate release form will be preferred over a prolonged release composition. Alternatively, for certain preventative or long-term treatments, a sustained released composition may be appropriate
  • the anti-ocular angiogenesis ON may also be delivered using an intraocular implant.
  • implants may be biodegradable and/or biocompatible implants, or may be non biodegradable implants.
  • the implants may be permeable or impermeable to the active agent, and may be inserted into a chamber of the eye, such as the anterior or posterior chambers or may be implanted in the sclera, transchoroidal space, or an avascularized region exterior to the vitreous.
  • the implant may be positioned over an avascular region, such as on the sclera, so as to allow for transcleral diffusion of the drug to the desired site of treatment, e.g. the intraocular space and macula of the eye.
  • the site of transcleral diffusion is preferably in proximity to the macula.
  • the dosage may be administered as a single dose or divided into multiple doses.
  • the desired dosage should be administered at set intervals for a prolonged period, usually at least over several weeks, although longer periods of administration of several months or more may be needed.
  • the present invention features a method for treating a patient suffering from an ocular angiogenic disease, which method includes administering to the patient an effective amount of an anti-ocular angiogenesis ON.
  • the present invention provides a method for treating an ocular angiogenesis disease in a patient, which method involves administering to the patient: (a) an effective amount of an anti-ocular angiogenesis ON; and (b) a second compound capable of diminishing or preventing the development of unwanted neovasculature.
  • the other compounds that may be combined with anti-ocular angiogenesis ON include, but are not limited to: antibodies or antibody fragments; antibodies specific to angiogenesis receptors; compounds that inhibit, regulate, and/or modulate tyrosine kinase signal transduction; polypepides; oligonucleotides that inhibit expression at the nucleic acid level, for example antisense RNAs; retinoids; growth factor-containing compositions; antibodies that bind to collagens; and various organic compounds and other agents with angiogenesis inhibiting activity.
  • Randomer oligonucleotides have a size dependent anti-ocular angiogenesis activity.
  • Endothelial cells (HUVECs, Human Umbilical Vein Endothelial Cell) were trypsinised, counted, seeded on Matrigel and were left to adhere for 30 min at 37°C, 5% CO 2 . Then, cells were treated or not with increasing concentrations of the drugs in eilher 0.5% serum or serum-free media for 8 h (Table 1 and 2).
  • REP 2004 SEQ ID NO: 4
  • REP 2006 SEQ ID NO: 6
  • REP 2004 SEQ ID NO: 4
  • DA units expressed as a function of optic disk area and margin. Cell density is also expressed relative to the cell density in the optic disk.
  • Anti-ocular angiogenesis ONs with increased pH resistance, lower serum protein binding and superior nuclease resistance.
  • a phosphorothioate randomer labeled at the 3 ' end with FITC (the bait) is diluted to 2nM in assay buffer (1OmM Tris, pH7.2, 8OmM NaCl, 1OmM EDTA, 10OmM b-mercaptoethanol and 1% tween 20). This oligo is then mixed with the appropriate amount of non heat-inactivated FBS. Following randomer-FBS interaction, the complexes are challenged with various unlabelled randomers to assess their ability to displace the bait from its complex. Displaced bait is measured by fluorescence polarization. The displacement curve was used to determine Kd.
  • pH resistance was determined by incubation of randomers in PBS adjusted to the appropriate pH with HCl. 24 hours after incubation, samples were neutralized with IM TRIS, pH 7.4 and run on denaturing acryalmide gels and visualized following EtBr staining.
  • R resistant
  • S susceptible (not resistant).
  • REP 2107 While most chemistries exhibited resistance to more than one nuclease, only REP 2107 (SEQ ID NO: 103) was resistant to all four nucleases tested. It is important to note that REP 2024 (SEQ ID NO: 24) (which has 2'-0 methyl modifications at the 4 riboses at each end of the molecule) showed the same resistance profile as its parent molecule REP 2006 (SEQ ID No: 6), being sensitive to Sl nuclease degradation while 2107 (fully 2'-0 methyl modified) was resistant to this enzyme. These results suggest that fully 2'-0 methyl modified and fully phosphorothioated ON will be the most effective of the tested oligonucleotides in resisting degradation by nucleases in the blood.
  • An ti -ocular angiogenesis phosphorothioated polypyrimidine ONs exhibit acid and nuclease resistance.
  • the phosphorothioated 40mer ONs containing only the pyrimidine nucleotides cytosine (polyC, REP 2031 ; SEQ ID NO: 31) or thymidine (polyT, REP 2030; SEQ ID NO: 30) or the polyTC heteropolymer (REP 2056; SEQ ID NO: 52) had equivalent acid resistance compared to the fully 2'-O-methylated randomers whether phosphorothioated (REP 2107; SEQ ID NO: 103) or not (REP 2086; SEQ ID NO: 83).
  • phosphorothioated oligonucleotides containing only the purine nucleotide adenosine (polyA, REP 2029; SEQ ID NO: 29) or any adenosine or guanosine nucleotides (REP 2033, SEQ ID NO: 33; REP 2055, SEQ ID NO: 51 ; REP 2057, SEQ ID NO: 53) showed no greater acid resistance compared to unmodified DNA.
  • PII phosphodiesterase 11
  • Sl Sl nuclease
  • Exol Exonuclease 1
  • PS all linkages phosphorothioated
  • PII phosphodiesterase 11
  • Sl Sl nuclease
  • Exol Exonuclease 1
  • PS all linkages phosphorothioated
  • 2'OMe all riboses are 2'0 methylated.
  • - complete degredation
  • ++++ no degredation
  • PS phosphorothioate
  • 2'0Me 2'-O-methyl modification of the ribose.
  • the pyrimidine content of such an oligonucleotide is more than 50%, more than 60%, or more than 70%, or more than 80%, or more than 90%, or 100%.
  • these results show the potential of a method of or use for treatment using oral administration of a therapeutically effective amount of at least one pharmacologically acceptable ON composed of pyrimidine nucleotides.
  • These results also show the potential of ONs containing high levels of pyrimidine nucleotides as a component of an ON formulation.
  • Example 7 Tests for determining if an oligonucleotide has sequence-independent activity.
  • X the number of bases on each end of the oligo to be made degenerate (but having the same chemistry as the candidate ON);
  • X must be equal to or greater than 4.
  • the IC50 generation will be performed using the in vitro assay described herein. IC50 values shall be generated using a minimum of seven concentrations of compound, with three or more points in the linear range of the dose response curve. Using these tests, the IC50 of the candidate ON shall be compared to its degenerate counterpart. If the IC50 of the partially degenerate ON is less than 5 -fold greater than the original candidate ON (based on minimum triplicate measurements, standard deviation not to exceed 15% of mean) then the ON shall be deemed to have sequence independent activity.
  • This test serves to compare the anti-ocular angiogenesis efficacy of a candidate ON with the anti-ocular angiogenesis efficacy of a randomer ON of equivalent size and chemistry.
  • the IC50 values shall be generated using the in vitro assays described herein. IC50 values shall be generated using a minimum of seven concentrations of compound, with three or more points in the linear range of the dose response curve. Using this test, the IC50 of the candidate ON shall be compared to an ON randomer of equivalent size and chemistry. If the IC50 of the ON randomer is less than 5-fold greater than the candidate ON (based on minimum triplicate measurements, standard deviation not to exceed 15% of mean) then the candidate ON shall be deemed to have sequence-independent activity.
  • Extracellular anti-ocular angiogenesis activity of a candidate ON Extracellular anti-ocular angiogenesis activity of a candidate ON.
  • the sequence-independent anti-ocular angiogenesis activity of ONs occurs outside the cell.
  • the state of the art in ON technology teaches that, since ONs are not readily cell permeable, they must be delivered across the cell membrane by an appropriate carrier to have antisense activity in an in vitro context.
  • the anti-ocular angiogenesis activity of antisense ONs by definition is dependent on delivery inside cells for activity. If a particular sequence-specific candidate ON has in vitro anti-ocular angiogenesis activity when used naked, it must benefit from the sequence-independent properties of ONs described in this invention.
  • the anti-ocular angiogenesis activity of the naked candidate ON shall be compared to that of the encapsulated (for transfection) candidate ON (using identical candidate ON concentrations in both naked and encapsulated conditions).
  • the activity shall be measured by a dose response curve with not less than 7 concentrations, at least 3 of which fall in the linear range: which includes the 50% inhibition of ocular-angiogenic activity.
  • the IC50 (the concentration which reduces ocular-angiogenic activity 50%) shall be calculated by linear regression of the linear range of the dose response curve as defined above. If the IC50 of the naked candidate ON is less than 5 fold greater than that of the encapsulated candidate ON, then the activity of the candidate ON shall be deemed to have sequence-independent activity.
  • a threshold of at least a 5-fold difference between the IC50s of said compounds was set. This threshold ensures the reliability of the assessment of the above mentioned tests.
  • the thresholds described in tests 1 to 3 are the default thresholds. If specifically indicated, other thresholds can be used in the comparison tests 1 to 3 described above. Thus for example, if specifically indicated, the threshold for determining whether an ON is acting with sequence-independent activity can be any of 10-fold, 8-fold, 6-fold, 5-fold, 4-fold, 3-fold, 2-fold, 1.5-fold, or equal. [0234] Similarly, though the default is that satisfying any one of the above 3 tests is sufficient, if specifically indicated, the ON can be required to satisfy any two at a default threshold, or if specifically indicated, at another threshold(s) as indicated above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention concerne des oligonucléotides inhibant l'angiogenèse et qui agissent essentiellement selon un mode d'action indépendant de la séquence. L'invention concerne également des oligonucléotides et leur utilisation en tant qu'agents thérapeutiques, et plus particulièrement leur utilisation dans le traitement de maladies impliquant l'angiogenèse oculaire.
PCT/CA2006/000779 2005-05-12 2006-05-12 Molecules contre l'angiogenese oculaire et leurs utilisations WO2006119643A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68001005P 2005-05-12 2005-05-12
US60/680,010 2005-05-12

Publications (1)

Publication Number Publication Date
WO2006119643A1 true WO2006119643A1 (fr) 2006-11-16

Family

ID=37396162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2006/000779 WO2006119643A1 (fr) 2005-05-12 2006-05-12 Molecules contre l'angiogenese oculaire et leurs utilisations

Country Status (1)

Country Link
WO (1) WO2006119643A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381208B2 (en) 2006-08-08 2016-07-05 Rheinische Friedrich-Wilhelms-Universität Structure and use of 5′ phosphate oligonucleotides
US9399658B2 (en) 2011-03-28 2016-07-26 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
CN106607014A (zh) * 2016-12-29 2017-05-03 嘉兴德扬生物科技有限公司 一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法
US9738680B2 (en) 2008-05-21 2017-08-22 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10059943B2 (en) 2012-09-27 2018-08-28 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US11166976B2 (en) 2018-11-08 2021-11-09 Aligos Therapeutics, Inc. S-antigen transport inhibiting oligonucleotide polymers and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019776A1 (fr) * 1994-01-19 1995-07-27 The Trustees Of Columiba University In The City Of New York Methode de traitement du glaucome
WO2004024919A1 (fr) * 2002-09-13 2004-03-25 Replicor, Inc. Oligonucleotides antiviraux non complementaires de sequence
WO2004064760A2 (fr) * 2003-01-21 2004-08-05 Archemix Corp. Agents therapeutiques aptameres utiles dans la pharmacotherapie oculaire
WO2005025487A2 (fr) * 2003-09-11 2005-03-24 Replicor, Inc. Oligonucleotides ciblant les maladies a prions
WO2006002540A1 (fr) * 2004-06-06 2006-01-12 Replicor Inc. Oligonucleotides a action ciblee contre les maladies a prions et utilisations correspondantes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019776A1 (fr) * 1994-01-19 1995-07-27 The Trustees Of Columiba University In The City Of New York Methode de traitement du glaucome
WO2004024919A1 (fr) * 2002-09-13 2004-03-25 Replicor, Inc. Oligonucleotides antiviraux non complementaires de sequence
WO2004064760A2 (fr) * 2003-01-21 2004-08-05 Archemix Corp. Agents therapeutiques aptameres utiles dans la pharmacotherapie oculaire
WO2005025487A2 (fr) * 2003-09-11 2005-03-24 Replicor, Inc. Oligonucleotides ciblant les maladies a prions
WO2006002540A1 (fr) * 2004-06-06 2006-01-12 Replicor Inc. Oligonucleotides a action ciblee contre les maladies a prions et utilisations correspondantes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381208B2 (en) 2006-08-08 2016-07-05 Rheinische Friedrich-Wilhelms-Universität Structure and use of 5′ phosphate oligonucleotides
US10238682B2 (en) 2006-08-08 2019-03-26 Rheinische Friedrich-Wilhelms-Universität Bonn Structure and use of 5′ phosphate oligonucleotides
US9738680B2 (en) 2008-05-21 2017-08-22 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10036021B2 (en) 2008-05-21 2018-07-31 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10196638B2 (en) 2008-05-21 2019-02-05 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US9399658B2 (en) 2011-03-28 2016-07-26 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US9896689B2 (en) 2011-03-28 2018-02-20 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US10059943B2 (en) 2012-09-27 2018-08-28 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US10072262B2 (en) 2012-09-27 2018-09-11 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US11142763B2 (en) 2012-09-27 2021-10-12 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
CN106607014A (zh) * 2016-12-29 2017-05-03 嘉兴德扬生物科技有限公司 一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法
US11166976B2 (en) 2018-11-08 2021-11-09 Aligos Therapeutics, Inc. S-antigen transport inhibiting oligonucleotide polymers and methods

Similar Documents

Publication Publication Date Title
US20190323013A1 (en) Antisense oligonucleotides directed against connective tissue growth factor and uses thereof
JP6985283B2 (ja) Serpinc1関連障害を処置するための方法および組成物
ES2640260T3 (es) Composiciones y métodos para inhibir la expresión del Gen alas1
TWI788312B (zh) 絲胺酸蛋白酶抑制因子A1 iRNA組成物及其使用方法
TW201831685A (zh) 使用甲狀腺素運載蛋白(TTR)iRNA組成物於治療或預防TTR相關疾病之方法
KR20150038522A (ko) Eg5 유전자의 발현을 억제하는 이본쇄 리보핵산
WO2006002540A1 (fr) Oligonucleotides a action ciblee contre les maladies a prions et utilisations correspondantes
WO2006122409A1 (fr) Molecules antimicrobiennnes et leur utilisation
WO2006119643A1 (fr) Molecules contre l'angiogenese oculaire et leurs utilisations
WO2006130949A1 (fr) Molecules contre des maladies liees a l'amyloide et leur utilisation
WO2007022642A2 (fr) Molecules anti-inflammatoires et leurs utilisations
US20090215873A1 (en) Therapeutic Molecules and their Uses
AU2004271807A1 (en) Oligonucleotides targeting prion diseases
US20030176385A1 (en) Antisense modulation of protein expression
WO2003070160A2 (fr) Modulation antisens d'expression de proteine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06741494

Country of ref document: EP

Kind code of ref document: A1