WO2006118176A1 - Polyimide for optical component, optical component and optical waveguide - Google Patents

Polyimide for optical component, optical component and optical waveguide Download PDF

Info

Publication number
WO2006118176A1
WO2006118176A1 PCT/JP2006/308809 JP2006308809W WO2006118176A1 WO 2006118176 A1 WO2006118176 A1 WO 2006118176A1 JP 2006308809 W JP2006308809 W JP 2006308809W WO 2006118176 A1 WO2006118176 A1 WO 2006118176A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
optical
mode
diamine
bis
Prior art date
Application number
PCT/JP2006/308809
Other languages
French (fr)
Japanese (ja)
Inventor
Fumiyasu Sezaki
Hitoshi Nojiri
Mitsuhiro Hori
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007514796A priority Critical patent/JPWO2006118176A1/en
Publication of WO2006118176A1 publication Critical patent/WO2006118176A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents

Definitions

  • the present invention relates to a polyimide for producing an optical component used in the fields of optical communication and optical information processing, and an optical component and an optical waveguide produced using the resin.
  • optical waveguides are, for example, optical devices (ONU (Optical Network Unit), etc.), photoelectric integrated circuits for realizing large-capacity information transmission such as movies and movies and optical computers. (OEIC), basic components in optical integrated circuits (optical IC), etc.
  • optical waveguides have been studied earnestly due to the large amount of demand, while high-performance and low-cost products are required.
  • Conventionally known optical waveguides include quartz optical waveguides and polymer optical waveguides.
  • the silica-based optical waveguide has an advantage that the transmission loss is low, but there are process problems such as high processing temperature in the manufacturing process and difficulty in manufacturing a large-area one. It was.
  • polymer-based optical waveguides have advantages such as ease of processing and wide material design, and therefore, those using polymer materials such as polymethylmethalate and polycarbonate have been studied.
  • the polymer-based optical waveguide has a problem that heat resistance is poor.
  • polymethylmetatalate and polycarbonate have had a problem of large transmission loss at a wavelength of about 830 nm, which has recently been studied as a light source for optical communication.
  • Patent Document 1 proposes a fluorinated polyimide that defines a refractive index difference between a TE mode and a TM mode, a glass transition temperature, a transmission loss in a certain wavelength region, and a fluorine content.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-41003
  • the conventional polymer-based optical waveguide material is a transmission loss of the waveguide in a region of 600 to 1600 nm (particularly around 830 nm, which has been recently studied) used in optical communications and the like.
  • a first aspect of the present invention is a polyimide comprising a diamine containing diamine having at least a fluorine substituent and a fluorenyl group, and a tetracarboxylic dianhydride having a wavelength of 8
  • Polyimide for optical components characterized in that transmission loss at 30nm is ldBZcm or less in both TE mode and TM mode.
  • a second aspect of the present invention is the polyimide for optical components according to the first aspect, wherein the transmission loss at a wavelength of 633 nm is 1 dBZcm or less in both the TE mode and the TM mode. .
  • the diamino amino group having a fluorine substituent and a fluorenyl group is bonded to an aromatic ring, and the fluorine substituent is located at the ortho position of the amino group.
  • a fourth aspect of the present invention is a diamine force having the above-described fluorine substituent and fluorenyl group.
  • the polyimide for optical parts according to the first or second invention which is a diamine represented by the formula (1).
  • R to R may be the same or different, either hydrogen or fluorine.
  • the diamine having a fluorine substituent and a fluorenyl group is 9,9-bis (3-fluoro-4-aminophenol) fluorene. It is a polyimide for optical components described in the invention.
  • the diamine includes the diamine having a fluorine substituent and a fluorenyl group and one or more types of copolymerization diamine, wherein the copolymerization diamine is represented by the following formula (2):
  • any two of X to ⁇ are ⁇ , and the remaining 8 are from H, CH and CF.
  • 1 10 2 3 3 is any one group selected from the group consisting of R is - ⁇ -, -S-, -SO-,
  • the copolymerization diamine is 4,4'-diaminodiphenyl ether, 3,4, -diaminodiphenyl ether, 2,2, -bis (trifluoromethyl) -4, 4, -Diaminobiphenyl, 4, 4, -Diaminodiphenyl sulfone, 1,5- (4-aminophenoxy) pentane, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane, 2,2-bis ( 4-aminophenoloxy) propane, 2,2-bis [4- (4-aminophenoxy) phenol] hexafluoropropane, bis [4- (4-aminophenoxy) phenol] sulfone And the bis [4- (3-aminophenoxy) phenyl] sulfone force, and the at least one diamine selected for the group force, the polyimide for optical components according to the sixth invention.
  • the tetracarboxylic dianhydride includes a tetracarboxylic dianhydride having a fluorine substituent. It is a polyimide for optical parts.
  • the tetracarboxylic dianhydride includes 2,2-bis-((3,4-dicarboxyphenyl) monohexafluoropropane dianhydride).
  • the polyimide for optical parts according to any one of the first to seventh inventions, wherein the polyimide is for optical parts.
  • the tetracarboxylic dianhydrides include 2,2-bis-((3,4-dicarboxyphenyl) monohexafluoropropane dianhydride) and Including one or more types of copolymerization tetracarboxylic dianhydrides, wherein the copolymerization tetracarboxylic dianhydride is a tetracarboxylic dianhydride represented by the following formula (4):
  • the polyimide for optical components according to any one of the first to seventh inventions.
  • R is — O—, —CO—, —SO— and a group force consisting of direct bonding force
  • the transmission loss at the wavelength of 830 nm is 0.1 dB / cm or less in both the TE mode and the TM mode. It is a polyimide for optical parts.
  • the transmission loss at the wavelength of 633nm is 0.1 dB / cm or less in both the TE mode and the TM mode. It is a polyimide for optical components as described in above.
  • a thirteenth aspect of the present invention is characterized in that the refractive index at a wavelength of 830 nm is 1.55 or more for both the TE mode and the TM mode, and the difference in refractive index between the TE mode and the TM mode is 0.01 or less.
  • the polyimide for optical components according to any one of the first to twelfth inventions.
  • a fourteenth aspect of the present invention is characterized in that the refractive index at a wavelength of 633 nm is 1.55 or more for both the TE mode and the TM mode, and the difference in refractive index between the TE mode and the TM mode is 0.01 or less.
  • the polyimide for optical components according to any one of the first to twelfth inventions.
  • the fifteenth aspect of the present invention is capable of bending 300 times or more in the MIT bending test with a bending radius of 0.38 mm, a bending angle of 135 °, and a load of lOOg when a film having a thickness of 50 m is formed.
  • the polyimide for optical parts according to any one of the first to fourteenth inventions.
  • the sixteenth aspect of the present invention is a group force consisting of dioxolane, dimethylformamide, N-methyl-2-pyrrolidone, N, N dimethylacetamide and methylethylketone, at least one single solvent or two or more selected
  • the polyimide for optical components according to any one of the first to fifteenth inventions which has a solubility power of 20% by weight or more in a mixed solvent at 25 ° C.
  • a seventeenth aspect of the present invention is a polyimide for optical components according to any one of the first to sixteenth aspects of the present invention. It is a polyamic acid which is a precursor of
  • An eighteenth aspect of the present invention is an optical component comprising the polyimide according to any one of the first to sixteenth aspects and Z or the polyamic acid according to the seventeenth aspect.
  • a nineteenth aspect of the present invention is an optical waveguide comprising the polyimide according to any one of the first to sixteenth aspects and Z or the polyamic acid according to the seventeenth aspect.
  • a polyimide comprising at least a diamine containing diamine having a fluorine substituent and a fluorenyl group and a tetracarboxylic dianhydride is used as a core.
  • This is an optical waveguide.
  • the twenty-first aspect of the present invention is the optical waveguide according to the twentieth aspect, wherein the transmission loss of the optical waveguide at a wavelength of 830 nm is ldBZcm or less in both the TE mode and the TM mode.
  • a twenty-second aspect of the present invention is the optical waveguide according to the twentieth or twenty-first aspect of the present invention, wherein the transmission loss of the optical waveguide at a wavelength of 633 nm is ldB / cm or less in both the TE mode and the TM mode. is there.
  • the polyimide of the present invention has physical properties such as excellent transmission characteristics (low! Waveguide transmission loss) when optical components and optical waveguides with extremely low transmission loss at 830 nm are formed. It can be suitably used as an optical component and an optical waveguide forming material. In addition, the transmission loss at 633 nm is extremely low.
  • the optical component of the present invention includes an optical branching coupler (optical power bra), an optical multiplexer / demultiplexer, an optical isolator, a ring power plastic, a grating (diffraction grating), a lens array, a Furnell lens, a micromirror, a mode converter or Photonic crystals, optical waveguides, etc.
  • optical branching coupler optical power bra
  • optical multiplexer / demultiplexer an optical isolator
  • a ring power plastic a grating (diffraction grating), a lens array, a Furnell lens, a micromirror, a mode converter or Photonic crystals, optical waveguides, etc.
  • grating it is used as a wavelength filter in optical communications, and also used as a pickup in a CD optical system.
  • Lens arrays are also used in various applications such as liquid crystal projectors.
  • the optical component manufacturing method may follow a conventional optical component manufacturing method using a polymer.
  • a method for manufacturing an optical waveguide will be described.
  • polyimide having a low refractive index is selected from the polyimide for optical parts of the present invention and used as a cladding material.
  • the cladding layer is formed on a silicon substrate or the like by spin coating or vacuum deposition.
  • the optical waveguide core is formed by spin coating the polyimide for optical components of the present invention, which is a core material, on the cladding layer, and then performing resist coating, patterning, etching, etc. Only the core is formed.
  • the upper clad is fabricated by spin coating.
  • an ultrashort pulse laser (pulse laser on the order of 10 femtoseconds or more and 500 picoseconds or less) is condensed and irradiated inside a polyimide film, and the polyimide film is scanned.
  • a method of forming an optical waveguide by scanning an ultrashort pulse laser is a method of forming an optical waveguide by scanning an ultrashort pulse laser.
  • a method of forming an optical waveguide by electron beam (EB) irradiation a method of patterning a core or a clad by exposure using photosensitive polyimide, and the like.
  • a fluorinated polyamic acid solution spin coat is formed from a transfer mold in which a silicon oxide film is deposited on a polyimide transfer mold or a quartz glass transfer mold, and is heated and imidized.
  • an optical waveguide is formed by heating imidization and forming an upper clad with the same molding material as that of a clad formed by a transfer mold on the upper part.
  • Sarakuko is a method in which a core material is dissolved in an organic solvent, the solution is applied by ink jet to form a core portion, and then an upper cladding layer is formed to form an optical waveguide.
  • a self-forming method in which the monomer solution that becomes the polymer is guided and irradiated with ultraviolet rays from one optical fiber, and the irradiated part gradually extends to form the core part.
  • the polyimide for optical components in the present invention at a wavelength of 830 nm and a wavelength of 633 nm
  • the transmission loss is ldBZcm or less in both TE mode and TM mode, preferably 0.5 dB / cm or less, and more preferably 0.1 dBZcm or less. If the transmission loss is greater than ldBZcm, the power consumption of the light source input to the optical component will increase.
  • the transmission loss of the polyimide for optical parts in the present invention is preferably not more than the wavelength 830 nm and the wavelength 633 nm, but the transmission loss in the wavelength region of 600 nm to less than lOOOnm and Z or lOOOnm is ldBZcm or less. This is because two-way communication using many types of wavelengths is possible if the transmission loss is less than ldBZcm even in wavelength ranges other than 830 nm and 633 nm.
  • the transmission loss of polyimide in the present invention was measured using a prism force plastic model 2010 (manufactured by Metricon), which is an apparatus that can realize the prism force bra method.
  • a prism force plastic model 2010 manufactured by Metricon
  • the measurement mode since the polarization of the transmitted light is usually performed separately from the TE mode and the TM mode, the transmission loss was measured in both of the embodiments of the present invention.
  • the transmission loss measured by the prism force bra method is the wavelength guided through a thin film with a thickness of about 1 ⁇ m to 15 m fabricated on a silicon substrate with an oxide film by a spin coat method.
  • the slope of the straight line obtained by plotting the change in leakage light intensity and transmission length of light at 830 nm and 633 nm is calculated.
  • This method can be applied in a thin film having a thickness of 1 m or more and 15 m or less. In this thickness range, the transmission loss does not depend on the thickness, but as the thickness increases, many transmission modes exist and measurement becomes difficult.
  • it is thicker than 15 m the smoothness of the thin film is impaired, which is not preferable. If it is less than 1 ⁇ m, there is no transmission mode and measurement is not possible.
  • TE mode TM mode
  • difference in refractive index between the TE mode and TM mode of the present invention are used in the same meaning as those known to those skilled in the art (for example, (Patent Document 1) 2003-41003).
  • the transmission loss of the optical waveguide made of the polyimide of the present invention at a wavelength of 830 nm and a wavelength of 633 nm is less than ldBZcm in both TE mode and TM mode, preferably 0.5d.
  • the transmission loss of the optical component is larger than the transmission loss of the optical component polyimide itself as a raw material. This is because when the polyimide is added to the desired state by the above-described method, there are a few scratches and undulations at the interface, and losses are caused by scattering from the interface. Therefore, when the transmission loss in an optical component (for example, an optical waveguide) is less than ldBZcm, it is used to manufacture the optical component! The transmission loss of the optical component polyimide is less than 1 dBZcm. It will be natural.
  • the refractive index in the present invention is a value obtained by measuring by the prism force bra method.
  • the prism force plastic model 2010 (made by Metricon) was used for the measurement.
  • the refractive index at a wavelength of 830 nm and a wavelength of 633 nm is preferably 1.55 or more in both the TE mode and the TM mode. If the refractive index is less than 1.55, the combination with other resins is limited when using the difference in refractive index when used for optical parts.
  • the polyimide of the present invention is used for the core of the optical waveguide, it is necessary to select a material having a refractive index smaller than that of the core as the cladding material. If the refractive index is less than 1.55, the choice of cladding material is limited.
  • the refractive index difference in the present invention is a value obtained by subtracting the refractive index power in the plane direction and the refractive index in the thickness direction.
  • the refractive index in the surface direction represents the refractive index obtained when measured using TE mode light
  • the refractive index in the thickness direction represents the refractive index obtained when measured using TM mode light. Represents.
  • the refractive index difference When used as an optical waveguide material, the smaller the refractive index difference, the better. This is because if the difference in refractive index is large, the refractive index varies depending on the polarization direction of the light incident on the waveguide, so that differences in the propagation mode and propagation speed appear and the signal transmission accuracy may deteriorate.
  • the refractive index difference in the present invention was measured by the prism force bra method. Specifically, Prism Force Plastic Model 2010 (made by Metricon) was used.
  • the polyimide of the present invention has at least a fluorine substituent and a fluorenyl group as a raw material.
  • a polyimide comprising a diamine containing diamine and a tetracarboxylic dianhydride.
  • An example of a diamine having a fluorine substituent and a fluorenyl group includes fluorenedamine having a structure represented by the following formula (1).
  • R to R may be the same or different from each other, either hydrogen or fluorine.
  • the amino group of diamine having a fluorine substituent and a fluorenyl group is bonded to an aromatic ring, and the fluorine substituent is located at the ortho position of the amino group. .
  • the diamine is 9,9-bis (3-fluoro-4-aminophenol) fluorene. This is because the transmission loss becomes smaller.
  • the bending resistance of the material is also important as a characteristic required for the material.
  • the present inventors consider that the factors governing the bending resistance are mainly the structure of the monomer and the arrangement order of the molecular chains. By controlling these, the bending resistance is improved compared to conventional polymers. Therefore, as a result of copolymerizing polyimide containing diamine having a flexible molecular structure to diamine having a fluorine substituent and a fluorenyl group, the transmission loss is relatively low, and the bending resistance is greatly improved while maintaining the value. I found this on my own.
  • the polyimide copolymerized with the formula (1) is preferably a polyimide containing diamine having a structure represented by the following formula (2) from the viewpoint of enhancing flexibility.
  • the polyimide copolymer as described above is the most preferred form for applications requiring flexibility such as a flexible substrate.
  • the number of diamines may be three or more as long as they contain a fluorine substituent and a fluorenyl group.
  • a copolymer using a plurality of tetracarboxylic dianhydrides may be produced.
  • At least the diamine having a fluorine substituent and a fluorenyl group satisfies 30 mol% or more of the total diamine ratio! / If other diamine, tetracarboxylic dianhydride The ratio of things!
  • the structure of the polyimide used for the optical component requiring transparency is not particularly limited, but as the diamines used in the present invention, for example, the following may be used for copolymerization. However, jamins other than those described herein can also be used.
  • a diamine skeleton containing an electron-withdrawing group such as SO--, -C (CF) 1, -CO, or
  • tetracarboxylic dianhydride component used in the present invention known tetracarboxylic dianhydrides can be used. Two or more kinds of acid dianhydrides may be copolymerized.
  • fluorine-free tetracarboxylic dianhydrides include pyromellitic dianhydride, 3, 3 ', 4, 4, monobenzophenone tetracarboxylic dianhydride, 3, 3', 4, 4 , -Biphenyltetracarboxylic dianhydride, 2, 3, 3 ', 4, biphenyl tetracarboxylic dianhydride, 3, 3', 4, 4'-diphenylsulfonetetracarboxylic dianhydride Anhydride, 1, 4, 5, 8—Naphthalenetetracarboxylic dianhydride, 2, 3, 6, 7 Naphthalenetetracarboxylic dianhydride Water, 1, 2, 5, 6 Naphthalenetetracarboxylic dianhydride,
  • tetracarboxylic dianhydride contains fluorine. This is because the inclusion of fluorine in polyimide can be expected to improve various properties such as high transparency in the near infrared wavelength, low moisture absorption, chemical and thermal stability.
  • Fluorine-containing tetracarboxylic dianhydrides include 2, 2 bis-((3,4 dicarboxyl) monohexafluoropropane dianhydride) and (trifluoromethyl) pyromellit.
  • Acid dianhydride di (trifluoromethyl) pyromellitic dianhydride, di (heptafluoropropyl) pyromellitic dianhydride, pentafluoroethyl pyromellitic dianhydride, bis ⁇ 3, 5 Di (trifluoromethyl) phenoxy ⁇ pyromellitic dianhydride, 2, 2 bis (3,4 dicarboxyphenol) hexafluoropropane dianhydride, 5, 5, -bis (trifluoromethyl) Chill) —3, 3, 4, 4, 4, teracarboxybiphenyl anhydride, 2, 2 ′, 5, 5, —terakis (trifluoromethyl) -3, 3 ′, 4,4, -Tetracarboxybiphenyl anhydride, 5,5'-bis (trifluoromethyl) -3,3 ', 4,4'-tetracarboxydiphenyl ether dianhydride, 5,5 , —Bis (
  • the benzene ring of the acid dianhydride may further have a site substituted with an alkyl group.
  • the tetracarboxylic dianhydride is 2, 2 bis ((3,4-dicarboxyphenyl) monohexafluoropropane dianhydride, because transmission loss is extremely small. Is preferred.
  • 2, 2 bis ((3,4 dicarboxyphenol) -hexafluoropropane dianhydride power is expressed by the following formula (4). It is also possible to use a polyimide obtained by copolymerizing a polyimide made of tetracarboxylic dianhydride.
  • the combination of the fluorine-containing group-containing fluorenediamine component and the tetracarboxylic dianhydride component described here shows one specific example for obtaining the polyimide for optical parts of the present invention. It is possible to adjust the polyimide for optical components of the present invention by changing the combination and use ratio of the tetracarboxylic dianhydride component and the fluorine substituent-containing fluorenedamine component as well as these combinations. Two or more of the above-mentioned tetracarboxylic dianhydrides and diamines may be used in combination.
  • the diamine and tetracarboxylic dianhydride used for the production of the polyimide are preferably purified before the synthetic reaction.
  • the purification method may be selected from known methods, for example, a recrystallization method in which diamine or tetracarboxylic dianhydride is dissolved in a poor solvent with low solubility while heating and re-precipitated by rapid cooling. It is
  • the diamine-tetracarboxylic dianhydride solution is dissolved in a solvent and filtered through a filter, and if necessary, the solvent is removed and the force is also used for producing the polyimide. May be.
  • the polyimide for optical components of the present invention can be produced by a known production method. That is, one or more tetracarboxylic dianhydride components as raw materials, and one or two A polyamic acid polymer solution is obtained by polymerizing in an organic polar solvent using substantially equimolar amounts of at least one kind of diamine component.
  • Preferred solvents for synthesizing the polyamic acid are amide solvents such as N, N dimethylformamide, N, N dimethylacetamide, N-methyl-2-pyrrolidone, and N, N dimethylformamide is particularly preferred.
  • the reaction apparatus is preferably equipped with a temperature adjusting device for controlling the reaction temperature.
  • the reaction solution temperature is preferably 60 ° C or less, and 40 ° C or less is effective for the reaction. This is also preferable because the viscosity of the polyamic acid is likely to increase.
  • the weight% of the polyamic acid in the polyamic acid solution is preferably 5 to 50 wt%, preferably 10 to 40 wt%, more preferably 15 to 30 wt% of the polyamic acid in the organic solvent from the viewpoint of handling. .
  • the average molecular weight of the polyamic acid when measured in terms of GPC PEG (polyethylene glycol), is such that the weight average molecular weight is 10,000 or more, preferably 50,000 or more, more preferably 100,000 or more. This is preferred when using grease in optical components. If it exceeds 200,000, the solubility becomes low, which is preferable!
  • the polyamic acid which is a precursor of the polyimide is imidized.
  • any one of a thermal cure method and a chemical cure method is used.
  • the thermal cure method is a method in which an imidization reaction proceeds by heating alone without the action of a dehydrating ring-closing agent or the like. Specifically, it is cast-coated on a support such as a glass plate, stainless steel belt, or stainless drum, and after the reaction has progressed to the extent that it has self-supporting properties, it is peeled off from the support, and the end is pinned, clipped, It can be obtained by fixing with a gripping jig or other method, and further heating to complete imidization.
  • the chemical cure method includes a polyamic acid organic solvent solution, a chemical conversion agent (dehydrating agent) represented by acid anhydrides such as acetic anhydride, and tertiary amines such as isoquinoline, ⁇ -picoline, and pyridine.
  • a catalyst typified by a class. It is also possible to use a calpositimide compound such as dicyclohexyl carpositimide as the dehydrating agent.
  • a dehydrating agent in combination with imidizing from the viewpoint of shortening imidizing time.
  • dehydrating agents include aliphatic acid anhydrides such as acetic anhydride and aromatic acid anhydrides. Etc. It is preferable from the viewpoint that acetic anhydride is used for cleaning polyimide resin.
  • the amount of dehydrating agent and imidization accelerator added to the polyamic acid depends on the chemical structure of the polyamic acid, but the amount of dehydrating agent is (molar ratio of dehydrating agent Z molar ratio of amide group in polyamic acid). It can be used to be 3 to 1.2. If the amount of the dehydrating agent is small, it may take time for the imidation to proceed. On the other hand, if the amount is too large, the molecular weight may be lowered.
  • reaction conditions for imidization in which the chemical curing method and the thermal curing method may be used in combination are the type of polyamic acid, the form of the obtained resin, the thermal curing method, and the Z or chemical curing method. It may vary depending on the selection.
  • the temperature during imidization is preferably 50 ° C to 120 ° C, and the heating time is preferably 1 to 10 hours.
  • the extraction method of the imide resin powder of the present invention will be described.
  • a method for extracting a polyimide resin powder from a solution containing the polyimide resin obtained as described above a polyimide resin solution containing a polyimide resin and an imido accelerator is contained in a poor solvent for the polyimide resin. It is possible to use a method in which polyimide resin is extracted into a solid state.
  • the polyimide resin powder of the present invention is in the form of a solid including powder, flakes and various forms, and the average particle size is preferably 5 mm or less, more preferably 3 mm or less, especially lmm or less is preferable.
  • the poor solvent for polyimide resin used in the present invention is a poor solvent for polyimide resin, which is mixed with an organic solvent used as a solvent in which polyamic acid and polyimide resin are dissolved.
  • an organic solvent used as a solvent in which polyamic acid and polyimide resin are dissolved can be used.
  • water, methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycolanol, triethylene glycol, 2-butanol monole, 2-pentanol monore, 2-hexanol nore, cyclopentenoleanoreconole, cyclohexenole alcohol examples include phenol and t-butyl alcohol.
  • alcohols such as isopropyl alcohol, 2-butanol, 2-pentanol, phenol, cyclopentyl alcohol, cyclohexyl alcohol, and t-butyl alcohol increase the stability of the polyimide resin after extraction.
  • the viewpoint power that the imidization rate becomes high is preferable.
  • isopropyl alcohol is preferred! /.
  • Charging method When a polyimide resin solution is charged into a poor solvent, after diluting so that the solid content concentration of the polyamic acid solution is 15% or less, preferably 10% or less.
  • the polyimide solution is preferably introduced into the poor solvent solution.
  • the diameter immediately before the polyimide resin solution is introduced is 1 mm or less, and more preferably that the diameter is 0.5 mm.
  • the amount of the poor solvent is preferably extracted in an amount that is at least three times that of the polyimide resin solution.
  • the resin since the resin may become thread-like immediately after the addition of the resin, it is as fine as possible! / * In order to obtain a flake-shaped polyimide resin powder, it is necessary to stir in a poor solvent. I like it. Also, if the amount of solvent used for dissolving the polyimide in the poor solvent becomes large after completely adding the polyimide resin solution, the polyimide resin dissolves. It is preferable to add the same amount of solvent, more preferably twice the amount of solvent. By adding a large amount of solvent, the imide resin dissolved in the poor solvent is precipitated again and becomes a powdery resin.
  • Drying method The method for drying the solidified flaky solid material in the present invention may be vacuum drying or hot air drying. Coloring may occur at a drying temperature of 120 ° C or higher in the presence of oxygen. Therefore, it is desirable to dry at 120 ° C or less. It is desirable to carry out at 120 ° C or less even in vacuum or in an inert gas atmosphere.
  • the molecular weight of the polyimide resin prepared by the above method is preferably a weight average molecular weight of 10,000 or more and 500,000 or less when measured in terms of PEG (polyethylene glycol) of GPC. It is preferably 50,000 or more and 400,000 or less, particularly preferably 80,000 or more and 300,000 or less.
  • PEG polyethylene glycol
  • the polyimide resin powder thus obtained has high imidization rate and molecular weight for practical use with high solubility in organic solvents.
  • the practically sufficient imidi ratio and molecular weight are determined by those skilled in the art depending on the application, but generally the imido ratio is 95% or more, preferably 98% or more, more preferably 99% or more.
  • the polyimide obtained as described above is usually used by dissolving in a solvent.
  • Solvents for dissolving polyimide include amide solvents, that is, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and the like. N, N-dimethylformamide , Dioxolane, methyl ethyl ketone, and the like.
  • the polyimide resin After the polyimide resin is added to the organic solvent, it may be mixed by centrifugation using a centrifuge, or may be vibrated.
  • the concentration of the polyimide solution is preferably 10 wt% or more and 60 wt% or less.
  • a concentration of 20% by weight or more is preferable because the thickness of the polyimide thin film or polyimide film can be accurately controlled.
  • the content is less than 10% by weight, for example, when a spin coating or the like is performed to form a polyimide thin film on a silicon substrate, a smooth and uniform thin film may not be formed.
  • the polyimide solution is more preferable as it has a smaller particle content.
  • the particles refer to dust in the air, dust, components not dissolved in the solvent, and the like. If there are many particles, light scattering will occur and input light power will be lost.
  • the content of particles of 0.3 m or more is preferably 50000 particles / g or less. Less particle content is preferred! /.
  • Examples of a method for removing 0.3 ⁇ m particles include a method of filtering a polyimide solution using a membrane filter or the like. In order to efficiently filter, synthesis of polyimide resin may be started after diamine and tetracarboxylic dianhydride before synthesis of polyimide are filtered using a 0.2 m membrane filter. .
  • the polyimide for optical components of the present invention is dioxolane, dimethylformamide, N-methyl.
  • the solubility at 25 ° C. in a single solvent or mixed solvent selected from 2-pyrrolidone, N, N dimethylacetamide and methyl ethyl ketone is preferably 20% by weight or more. If the amount is less than 20% by weight, the volume of the polyimide solution increases and the volume required for storage increases. In addition, when forming a thin film using the solution, the solution viscosity is small, and the solute This is because there is a tendency that V cannot obtain a thin film having a desired thickness because the concentration of V is low.
  • the optical component of the present invention contains polyimide and Z or polyamic acid.
  • Polyamic acid is a precursor of the polyimide.
  • the production method of the polyamic acid is the same as that described in the column “Production Method of Polyimide” above.
  • the glass transition temperature (hereinafter, Tg) of the polyimide resin in the present invention is preferably 150 ° C or higher. If the temperature falls below 150 ° C, it may not be able to withstand long-term reliability tests and nonder reflow processes, resulting in malfunctions.
  • Examples include the TMA method, the DSC method, and the DMA method.
  • TMA method the temperature of a specimen is raised from room temperature, for example, at a rate of 10 ° CZ, and the amount of thermal expansion in the thickness direction is measured with a thermal analyzer, and the horizontal axis represents temperature and the vertical axis represents thermal expansion coefficient. Create a plotted graph. In this method, a tangent line is drawn on the curve before and after the glass transition point, and Tg is obtained from the intersection of these tangent lines.
  • the DSC method the test piece is heated at room temperature, for example, at a rate of 20 ° CZ, and the calorific value is measured with a differential scanning calorimeter.
  • the DMA method is also called a tensile method.
  • the test piece is heated from room temperature at a rate of 2 ° CZ, and the dynamic viscoelasticity and loss tangent of the test piece are measured with a viscoelasticity measuring device.
  • the heat resistance of the polyimide for optical components in the present invention is measured according to JIS c 0021: 1995. Similarly, moisture resistance (JIS c 0032: 1996), cold resistance (JIS c 0020: 1995), flex resistance CFIS K 6272: 2003) are measured according to each JIS standard.
  • the heat resistance of the polyimide for optical components in the present invention is preferably 150 ° C or higher, preferably 180 ° C or higher, and more preferably 200 ° C or higher. This is because the higher the heat resistance, the better the heat resistance of the solder, and it can withstand a heating process such as a reflow process even if it is mixed with electrical wiring, thereby expanding the range of applications.
  • the mechanical and physical properties of the optical waveguide particularly when used for an optical waveguide core, include the following. That is, there are a bending test, a high temperature storage test, a low temperature storage test, a high temperature and high humidity storage test, a temperature and humidity cycle test, and a temperature cycle test. The evaluation of each test is expressed as the change in insertion loss [dB] into the optical waveguide. The details of the test are described in JPCA standards (JPCA-PE02-05-01S-2004) as a test method for polymer optical waveguides.
  • the change in insertion loss before and after the test is 3 dB or less, more preferably 2 dB or less, and further preferably 1 dB or less. Since the optical signal transmission loss is small, the size of the mounting package can be reduced and the output of the optical signal light source can be reduced.
  • the insertion loss exceeds 3 dB, it may be inferior in practical resistance when used in mobile devices or information appliances, and may shorten the product life.
  • the optical component is an optical waveguide
  • its cross-sectional shape varies depending on the fabrication process. For example, the method using photolithography and RIE is rectangular (square, rectangular, trapezoidal), and the self-forming optical waveguide fabrication process is greatly affected by the laser beam profile that hardens the resin.
  • the cross-sectional shape of the produced optical waveguide tends to be a circle or an ellipse.
  • the shape of the optical waveguide is often linear when used simply as an optical wiring for transmitting light.
  • the optical wiring is provided with a coupling / branching function, for example, a Y-branching structure or a ring shape may be used.
  • the optical wiring may be made three-dimensional in order to transmit the light to the necessary place. For this reason, there is a form of an optical waveguide having a three-dimensional structure.
  • An opto-electric hybrid board is one in which both optical signals and electric signals are formed on a single board including a laminate, and a thin insulating material is used for the base, and an electric distribution is provided on the base. Lines are formed, and optical wiring is connected in the form of lamination or connection, and a transformation (photodetector, laser diode, etc.) that converts optical signals and electrical signals into each other is mounted.
  • an electrical wiring material a metal alloy such as copper, aluminum, nickel, gold, and stainless steel, and a paste containing conductive carbon or silver powder are used as the electrical wiring material.
  • the electrical wiring portion of the opto-electric hybrid board is wired in the form of one or both surfaces of the insulating material substrate, multilayer, and the like.
  • Other forms include rigid 'flex', double-sided exposed structure and fly-in-grade.
  • optical components the application range of the optical waveguide is particularly wide.
  • Optical components, particularly optical waveguides and multiplexers / demultiplexers are generally used for an opto-electric hybrid board that uses both optical signals and electrical signals.
  • the opto-electric hybrid board has a configuration in which the optical transmission layer and the electric transmission layer are separately configured and further laminated, or in the same layer as the electric transmission layer, the optical wiring by the optical waveguide. Shape Depending on the application, there are various forms.
  • the opto-electric hybrid board has a plate-like and solid board that can be bent freely with a certain radius of curvature.
  • the former is called a rigid board.
  • the latter is called a flexible substrate.
  • the electric wiring portion is already formed after the electric wiring portion is formed by a known method.
  • a film or the like is laminated on an already produced electric wiring part, or after the electric wiring part is formed, the optical wiring part is formed in the same plane.
  • the electrical wiring portion and the optical wiring portion may be formed separately on the upper and lower sides of the insulating material substrate.
  • the opto-electric hybrid board is applied to a device that requires high-speed signal exchange and causes large electric signal transmission loss due to electric noise.
  • wiring display module
  • the inside of a small hard disk such as a DVD, HDD VD, or Blue-Ray disk
  • the signal pickup of the CD pickup unit and the print head unit of the inkjet printer
  • notebook PCs have a wiring section that connects the liquid crystal display and the hard disk section.
  • an optical waveguide When transmitting an optical signal, for example, light transmitted through an optical waveguide with a large curvature that seems to be sufficient if the optical waveguide is connected to a linear part or curved part on a substrate and finally connected to a light receiver. Leaks into the cladding without being confined to the core of the optical waveguide, resulting in extremely low transmission efficiency. Therefore, it is rather undesirable to use an optical waveguide having a large curvature. Therefore, when there is no light receiver on the extension line of the optical waveguide, the optical signal may be reflected and incident on the light receiver using a 45 degree mirror or the like. Similarly, a mirror may be used when light is incident on the core portion of the optical waveguide. The In some cases, one end of an optical fiber cut into a V-groove is used to extract an optical signal.
  • the index for evaluating the bending resistance of the polyimide for optical components in the present invention was the number of bendings at which the conductor resistance value increased by 80% or more.
  • a flexible printed circuit board produced using the polyimide resin for optical components (the structure is as follows: an adhesive layer is formed on a base film, and a conductor circuit is formed on the adhesive layer. It has a further adhesive layer so as to cover the whole, and a cover lay is laminated on this adhesive layer) into a rectangular shape with a width of 7mm and a length of 150mm. Obtain the number of flexing times when the conductor resistance rises by 80% or more. That is, the ambient temperature is 80 ° C, the stroke is 25 mm, the bending speed is 25 Hz, and the curvature radius is 2 mm.
  • the number of bendings is 10,000 times or more, preferably 100,000 times or more. This is because practical durability is extended and product life can be extended.
  • the opto-electric hybrid board is also used as a display module of a mobile phone as described above, it is required to have bending resistance.
  • the evaluation of the bending resistance may be based on the bending resistance test described above.
  • the bending resistance is 10,000 times or more, preferably 100,000 times or more in terms of the number of times of bending. This is because practical durability is extended and product life can be extended.
  • MIT test bending resistance evaluation
  • a 50 m film was cut into a rectangular shape with a width of 15 mm and a length of 110 mm, an ambient temperature of 25 ° C, a radius of curvature of 0.38 mm, and a bending angle.
  • a bending test was conducted under the conditions of 135 °, a bending speed of 3 Hz, and a load of lOOg.
  • ONU which is a device for connecting the optical fiber drawn into each home to a PC.
  • the ONU has a function of once entering an optical signal from the optical fiber into the optical waveguide, entering the photodiode, and converting it into an electrical signal.
  • a V-groove for fixing the POF to the substrate may be formed.
  • the V When an optical fiber is set in the groove, the optical axis of the optical component including the optical waveguide (for example, in the case of an optical waveguide) is at the height where the optical fiber core comes. Just design the optical components.
  • the optical connection between the optical fiber and an optical component such as an optical waveguide can be improved.
  • the polyimide for an optical component in the present invention includes an add / drop for extracting and adding an optical signal as necessary, a wavelength filter for combining or demultiplexing optical signals of different wavelengths into one fiber, and an optical signal. Mach-Zehnder type optical switches that turn signals on and off, thermo-optic type optical switches, etc. are also examples of optical components.
  • the polyimide for optical components according to the present invention can be suitably used as an in-vehicle optical component because of its high heat resistance and long-term reliability.
  • any optical component can be used as long as it is used for in-vehicle LAN.
  • an optical component used in a display module in a car navigation system for example, an optical waveguide, a multiplexer / demultiplexer, etc. .
  • the obtained polyimide solution was dropped into a large amount of isopropyl alcohol to precipitate the polyimide, which was sufficiently dried at 80 ° C under reduced pressure to obtain polyimide I.
  • Refractive index measurement was performed at a wavelength of 830 nm and a wavelength of 633 nm using a prism force plastic model 2010 (manufactured by Metricon). Table 1 shows the measurement results at a wavelength of 830 nm.
  • the refractive index at a wavelength of 633 nm was 1.59557 in the TE mode and 1.59466 in the TM mode, and the refractive index difference was very low at 0.00091.
  • Prism force plastic model 2010 manufactured by Metricon was used for transmission loss measurement. Transmission loss was measured by introducing and propagating a laser beam having a wavelength of 830 nm and a wavelength of 633 nm to a polyimide thin film formed on a silicon substrate with an oxide film by a prism force bra method. The polarization of one laser beam was measured separately for the TE mode and the TM mode. Table 1 shows the measurement results. As can be seen from Table 1, Polyimide I has an extremely small transmission loss value. Table 1 shows the measurement results of the number of MIT test bends.
  • Both end surfaces of the optical waveguide were cut out by dicing, light having a wavelength of 830 nm was incident on the optical waveguide with a quartz single mode fiber, and the intensity of the emitted light was measured with an optical power meter. The same measurement was performed every time dicing the optical waveguide length to 30 mm, 20 mm, and 10 mm, and the horizontal axis represents the optical waveguide length, and the vertical axis represents the optical power transmitted through the optical waveguide. Then, the transmission loss as an optical waveguide calculated from the graph and linear approximation is calculated from the slope of the straight line is 0.2 dBZcm.
  • a low-loss optical waveguide can be formed, and by using the optical waveguide core to form the optical wiring portion of the opto-electric hybrid board.
  • the power consumption of the light source incident on the optical waveguide can be reduced, and when used as an opto-electric hybrid board, high-speed data transmission and low power consumption are achieved as compared with the electric wiring board.
  • the diamine component was added to 39 g of 9, 9-bis (3-fluoro-4-aminophenol) fluorene.
  • a polyimide film was obtained in the same manner as in Example 1, except that 44 g of bibis [4- (3-aminophenoxy) phenol] sulfone was used.
  • the bending test, transmission loss and refractive index measurement were performed in the same manner as in Example 1.
  • the thin film thickness was 10 m.
  • Table 1 From this result, it can be seen that, in addition to diamine having at least a fluorine substituent and a fluorenyl group, copolymerization diamine has a sufficiently low transmission loss and high flexibility. Therefore, it is obvious that it is suitable for optical components, particularly for optical waveguide cores.
  • Polyimide and IV were obtained in the same manner as in Example 1 except that the diamine component was changed to 70 g of 9,9bis (4-aminophenol) fluorene.
  • bending test, transmission loss and refractive index measurement were performed in the same manner as in Example 1.
  • the thin film thickness was 8 m. The results are shown in Table 1. From this result, it can be seen that when there is no fluorine substituent in diamine, the transmission loss at a wavelength of 633 nm is clearly high, which is unsuitable for optical components at this wavelength as compared with the examples.
  • Polyimide V was obtained in the same manner as in Example 1 except that the diamine component was changed to 64 g of 2,2,1bis (trifluoromethyl) 4,4, diaminobiphenyl.
  • bending test, transmission loss and refractive index measurement were performed in the same manner as in Example 1.
  • the thin film thickness was 8 m.
  • Table 1 Looking at the results, the transmission loss at wavelengths of 830 nm and 633 nm exceeded ldBZcm regardless of the polarization direction. Therefore, it can be seen that polyimide V is not suitable as an optical component at these wavelengths.

Abstract

This invention provides a polyimide having very low transmission loss, an optical component, and an optical waveguide. The polyimide for an optical component is characterized in that it comprise at least diamines containing a diamine having a fluorine substituent and a fluorenyl group, and tetracarboxylic acid dianhydrides and the transmission loss at a wavelength of 830 nm is not more than 1 dB/cm in both TE mode and TM mode.

Description

明 細 書  Specification
光学部品用ポリイミド、光学部品および光導波路  Polyimide for optical components, optical components and optical waveguides
技術分野  Technical field
[0001] 本発明は、光通信分野や光情報処理分野で用いられる光学部品を作製するため のポリイミド、および該榭脂を用いて作製される光学部品および光導波路に関する。 背景技術  The present invention relates to a polyimide for producing an optical component used in the fields of optical communication and optical information processing, and an optical component and an optical waveguide produced using the resin. Background art
[0002] マルチメディア時代を迎え、光通信システムやコンピュータにおける情報処理の大 容量ィ匕および高速ィ匕の要求から、光を伝送媒体とする伝送システムが、 FTTH (Fib er To The Home)、 LAN (ローカルエリアネットワーク)、 FA (ファクトリーオートメ ーシヨン)、コンピュータボード内のインターコネクト、コンピュータ間のインターコネクト 、家庭内配線等に使用されつつある。この伝送システムを構成する要素のうち、光導 波路は、例えば、映画や動画等の大容量の情報伝達や光コンピュータ等を実現する ための光デバイス(ONU (Optical Network Unit)など)、光電集積回路(OEIC )、光集積回路 (光 IC)等における基本構成要素である。特に、光導波路は、大量の 需要があることから鋭意研究される一方で、高性能で低コストの製品が求められてい る。光導波路としては、従来、石英系光導波路やポリマー系光導波路が知られている  [0002] In the multimedia era, transmission systems that use light as a transmission medium have been developed in response to demands for large-capacity and high-speed information processing in optical communication systems and computers. FTTH (Fibre To The Home), LAN (Local Area Network), FA (Factory Automation), Interconnects in computer boards, Interconnects between computers, Home wiring, etc. Among the elements that make up this transmission system, optical waveguides are, for example, optical devices (ONU (Optical Network Unit), etc.), photoelectric integrated circuits for realizing large-capacity information transmission such as movies and movies and optical computers. (OEIC), basic components in optical integrated circuits (optical IC), etc. In particular, optical waveguides have been studied earnestly due to the large amount of demand, while high-performance and low-cost products are required. Conventionally known optical waveguides include quartz optical waveguides and polymer optical waveguides.
[0003] このうち、石英系光導波路は、伝送損失が低いという利点を有する反面、製造工程 における加工温度が高いこと、および、大面積のものを作製し難いこと等のプロセス 上の問題があった。また、ポリマー系光導波路は、加工のし易さや材料設計の幅広さ 等の利点を有することから、ポリメチルメタタリレートやポリカーボネート等のポリマー 材料を用いたものが検討されてきた。しかし、前記ポリマー系光導波路は、耐熱性が 劣るという問題があった。また、ポリメチルメタタリレートやポリカーボネートは、近年光 通信用光源として数多く検討され始めた波長 830nm付近での伝送損失が大きいこ とが問題であった。そのため、最近では耐熱性といった信頼性に優れることや伝送損 失に優れるといった特性を有することから、フッ素化ポリイミドを光導波路用ポリマー に用 ヽた検討が盛んに行なわれて ヽる。 [0004] 例えば特許文献 1には、 TEモードと TMモードの屈折率差、ガラス転移温度、ある 波長域における伝送損失およびフッ素含有率を規定したフッ素化ポリイミドが提案さ れている。し力し、フルオレン骨格を有するポリイミドについては一切の記載がない。 特許文献 1 :特開 2003— 41003号公報 [0003] Among these, the silica-based optical waveguide has an advantage that the transmission loss is low, but there are process problems such as high processing temperature in the manufacturing process and difficulty in manufacturing a large-area one. It was. In addition, polymer-based optical waveguides have advantages such as ease of processing and wide material design, and therefore, those using polymer materials such as polymethylmethalate and polycarbonate have been studied. However, the polymer-based optical waveguide has a problem that heat resistance is poor. In addition, polymethylmetatalate and polycarbonate have had a problem of large transmission loss at a wavelength of about 830 nm, which has recently been studied as a light source for optical communication. For this reason, recently, fluorinated polyimide has been actively used as a polymer for optical waveguides because it has excellent properties such as heat resistance and excellent transmission loss. [0004] For example, Patent Document 1 proposes a fluorinated polyimide that defines a refractive index difference between a TE mode and a TM mode, a glass transition temperature, a transmission loss in a certain wavelength region, and a fluorine content. However, there is no description about polyimide having a fluorene skeleton. Patent Document 1: Japanese Patent Laid-Open No. 2003-41003
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上述のように、従来のポリマー系光導波路の材料は、光通信等で用いられる 600〜 1600nmの領域 (特に近年検討されて 、る 830nm付近)にお 、て導波路の伝送損 失が比較的大きく充分小さいわけではないという問題があり、光導波路に求められる 諸特性を満足するものではな力つた。また、伝送損失を満足するものであっても、材 料選択という観点では比較的、限られていた。そこで、本発明は、伝送損失の極めて 低いポリイミド、光学部品および光導波路を提供することを目的とする。 [0005] As described above, the conventional polymer-based optical waveguide material is a transmission loss of the waveguide in a region of 600 to 1600 nm (particularly around 830 nm, which has been recently studied) used in optical communications and the like. There is a problem that is not relatively large and small enough, and it does not satisfy the various characteristics required for optical waveguides. Even if transmission loss is satisfied, it is relatively limited in terms of material selection. Accordingly, an object of the present invention is to provide a polyimide, an optical component, and an optical waveguide with extremely low transmission loss.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者は、上記課題を解決するために鋭意検討した結果、フッ素置換基及びフ ルォレニル基を有するジァミンを用いたポリイミドは、波長 830nmにおける伝送損失 が特異的に低いことを見出し、本発明を完成した。 [0006] As a result of intensive studies to solve the above problems, the present inventor has found that a polyimide using a diamine having a fluorine substituent and a fluorenyl group has a specifically low transmission loss at a wavelength of 830 nm. The present invention has been completed.
[0007] 本発明の第 1は、少なくともフッ素置換基及びフルォレニル基を有するジァミンを含 むジァミン類とテトラカルボン酸二無水物類とを用いてなるポリイミドであって、波長 8[0007] A first aspect of the present invention is a polyimide comprising a diamine containing diamine having at least a fluorine substituent and a fluorenyl group, and a tetracarboxylic dianhydride having a wavelength of 8
30nmにおける伝送損失が TEモード、 TMモードともに ldBZcm以下であることを 特徴とする、光学部品用ポリイミドである。 Polyimide for optical components, characterized in that transmission loss at 30nm is ldBZcm or less in both TE mode and TM mode.
[0008] 本発明の第 2は、さらに波長 633nmにおける伝送損失が TEモード、 TMモードとも に 1 dBZcm以下であることを特徴とする、前記第 1の発明に記載の光学部品用ポリ イミドである。 [0008] A second aspect of the present invention is the polyimide for optical components according to the first aspect, wherein the transmission loss at a wavelength of 633 nm is 1 dBZcm or less in both the TE mode and the TM mode. .
[0009] 本発明の第 3は、前記フッ素置換基及びフルォレニル基を有するジァミンのァミノ 基は、芳香族環に結合しており、前記フッ素置換基が、前記アミノ基のオルト位に位 置することを特徴とする、前記第 1または第 2の発明に記載の光学部品用ポリイミドで ある。  [0009] In a third aspect of the present invention, the diamino amino group having a fluorine substituent and a fluorenyl group is bonded to an aromatic ring, and the fluorine substituent is located at the ortho position of the amino group. The polyimide for optical parts according to the first or second invention, wherein the polyimide is for optical parts.
[0010] 本発明の第 4は、前記フッ素置換基及びフルォレニル基を有するジァミン力 下記 式(1)で表されるジァミンであることを特徴とする、前記第 1または第 2の発明に記載 の光学部品用ポリイミドである。 [0010] A fourth aspect of the present invention is a diamine force having the above-described fluorine substituent and fluorenyl group. The polyimide for optical parts according to the first or second invention, which is a diamine represented by the formula (1).
[0011] [化 1]  [0011] [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
[0012] (式中の R〜Rは、それぞれ同一でも異なっていてもよぐ水素またはフッ素のいず [0012] (wherein R to R may be the same or different, either hydrogen or fluorine.
1 8  1 8
れかであり、少なくとも一つはフッ素である。 )  And at least one is fluorine. )
本発明の第 5は、前記フッ素置換基及びフルォレニル基を有するジァミンが、 9、 9 -ビス ( 3 -フルォロ 4—ァミノフエ-ル)フルオレンであることを特徴とする、前記第 1または第 2の発明に記載の光学部品用ポリイミドである。  According to a fifth aspect of the present invention, the diamine having a fluorine substituent and a fluorenyl group is 9,9-bis (3-fluoro-4-aminophenol) fluorene. It is a polyimide for optical components described in the invention.
[0013] 本発明の第 6は、前記ジァミン類は、前記フッ素置換基及びフルォレニル基を有す るジァミン及び 1種類以上の共重合用ジァミンを含み、前記共重合用ジァミンが下記 式(2)で表されるジァミンであることを特徴とする、前記第 1〜5の発明のいずれかに 記載の光学部品用ポリイミドである。  [0013] In a sixth aspect of the present invention, the diamine includes the diamine having a fluorine substituent and a fluorenyl group and one or more types of copolymerization diamine, wherein the copolymerization diamine is represented by the following formula (2): The polyimide for optical components according to any one of the first to fifth inventions, wherein the polyimide is an diamine represented by formula (1).
[0014] [化 2]  [0014] [Chemical 2]
Figure imgf000004_0002
Figure imgf000004_0002
[0015] (式中の X〜Χ のうち任意の 2つは ΝΗであり、残りの 8つは、 H, CH及び CFから [0015] (In the formula, any two of X to 式 are 、, and the remaining 8 are from H, CH and CF.
1 10 2 3 3 なる群から選ばれるいずれか 1つの基である。また、 R は—Ο—, - S - , —SO—,  1 10 2 3 3 is any one group selected from the group consisting of R is -Ο-, -S-, -SO-,
11 2 11 2
-CH - , -CO - , -C (CH ) ―, -C (CF ) ―, -O -R — O , 一フルォレ-CH-, -CO-, -C (CH) ―, -C (CF) ―, -O -R — O, one fluoride
2 3 2 3 2 12 2 3 2 3 2 12
-ル基—及び直接結合力 なる群力 選ばれるいずれ力 1つである。ただし、 R  -Lu group- and direct bond force are group forces. Where R
12は 炭素数 1以上 5以下のアルキル基及び下記式群 (3)で表される基力 なる群力 選 ばれるいずれ力 1つの基である。 [0016] [化 3] 12 is an alkyl group having 1 or more and 5 or less carbon atoms, and a group force which is selected as a group force represented by the following formula group (3). [0016] [Chemical 3]
Figure imgf000005_0001
Figure imgf000005_0001
[0017] 本発明の第 7は、前記共重合用ジァミンが 4, 4' -ジアミノジフエ-ルエーテル、 3, 4 ,-ジアミノジフエニルエーテル、 2, 2,-ビス(トリフルォロメチル) -4, 4,-ジアミノビフ ェニル、4, 4,-ジァミノジフエ-ルスルホン、 1, 5- (4-アミノフエノキシ)ペンタン、 1, 3 -ビス (4-アミノフエノキシ) -2, 2-ジメチルプロパン、 2, 2-ビス (4-ァミノフエノキシフエ -ル)プロパン、 2, 2-ビス [4 -(4—アミノフエノキシ)フエ-ル]へキサフルォロプロパン 、ビス [4- (4-アミノフエノキシ)フエ-ル]スルホン及びビス [4- (3-アミノフエノキシ)フ ェニル]スルホン力もなる群力も選ばれる少なくとも 1つのジァミンであることを特徴と する前記第 6の発明に記載の光学部品用ポリイミドである。 [0017] According to a seventh aspect of the present invention, the copolymerization diamine is 4,4'-diaminodiphenyl ether, 3,4, -diaminodiphenyl ether, 2,2, -bis (trifluoromethyl) -4, 4, -Diaminobiphenyl, 4, 4, -Diaminodiphenyl sulfone, 1,5- (4-aminophenoxy) pentane, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane, 2,2-bis ( 4-aminophenoloxy) propane, 2,2-bis [4- (4-aminophenoxy) phenol] hexafluoropropane, bis [4- (4-aminophenoxy) phenol] sulfone And the bis [4- (3-aminophenoxy) phenyl] sulfone force, and the at least one diamine selected for the group force, the polyimide for optical components according to the sixth invention.
[0018] 本発明の第 8は、前記テトラカルボン酸二無水物類がフッ素置換基を有するテトラ カルボン酸二無水物を含むことを特徴とする、前記第 1〜7の発明のいずれかに記載 の光学部品用ポリイミドである。  [0018] According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the tetracarboxylic dianhydride includes a tetracarboxylic dianhydride having a fluorine substituent. It is a polyimide for optical parts.
[0019] 本発明の第 9は、前記テトラカルボン酸二無水物類が、 2, 2—ビス一((3, 4—ジカ ルボキシフエ-ル)一へキサフルォロプロパン二無水物)を含むことを特徴とする、前 記第 1〜7の発明のいずれかに記載の光学部品用ポリイミドである。  [0019] In a ninth aspect of the present invention, the tetracarboxylic dianhydride includes 2,2-bis-((3,4-dicarboxyphenyl) monohexafluoropropane dianhydride). The polyimide for optical parts according to any one of the first to seventh inventions, wherein the polyimide is for optical parts.
[0020] 本発明の第 10は、前記テトラカルボン酸二無水物類は、 2, 2—ビス一((3, 4—ジ カルボキシフエ-ル)一へキサフルォロプロパン二無水物)及び 1種類以上の共重合 用テトラカルボン酸二無水物を含み、前記共重合用テトラカルボン酸二無水物が下 記式 (4)で表されるテトラカルボン酸二無水物であることを特徴とする、前記第 1〜7 の発明のいずれかに記載の光学部品用ポリイミドである。  [0020] According to a tenth aspect of the present invention, the tetracarboxylic dianhydrides include 2,2-bis-((3,4-dicarboxyphenyl) monohexafluoropropane dianhydride) and Including one or more types of copolymerization tetracarboxylic dianhydrides, wherein the copolymerization tetracarboxylic dianhydride is a tetracarboxylic dianhydride represented by the following formula (4): The polyimide for optical components according to any one of the first to seventh inventions.
[0021] [化 4] 式 ( 4 )[0021] [Chemical 4] Formula (4)
Figure imgf000006_0001
Figure imgf000006_0001
[0022] (式中、 R は— O— , —CO— , - SO—及び直接結合力 なる群力 選ばれるいず [0022] (In the formula, R is — O—, —CO—, —SO— and a group force consisting of direct bonding force
13 2  13 2
れか 1つである。 )  One of them. )
本発明の第 11は、前記波長 830nmにおける伝送損失が TEモード、 TMモードと もに 0. ldB/cm以下であることを特徴とする、前記第 1〜: L0の発明のいずれかに 記載の光学部品用ポリイミドである。  In an eleventh aspect of the present invention, the transmission loss at the wavelength of 830 nm is 0.1 dB / cm or less in both the TE mode and the TM mode. It is a polyimide for optical parts.
[0023] 本発明の第 12は、前記波長 633nmにおける伝送損失が TEモード、 TMモードと もに 0. ldB/cm以下であることを特徴とする、前記第 2〜: L0の発明のいずれかに 記載の光学部品用ポリイミドである。  [0023] In a twelfth aspect of the present invention, the transmission loss at the wavelength of 633nm is 0.1 dB / cm or less in both the TE mode and the TM mode. It is a polyimide for optical components as described in above.
[0024] 本発明の第 13は、波長 830nmにおける屈折率が TEモード、 TMモードともに 1. 5 5以上であり、前記 TEモード、 TMモードの屈折率差が 0. 01以下であることを特徴と する、前記第 1〜12の発明のいずれかに記載の光学部品用ポリイミドである。  A thirteenth aspect of the present invention is characterized in that the refractive index at a wavelength of 830 nm is 1.55 or more for both the TE mode and the TM mode, and the difference in refractive index between the TE mode and the TM mode is 0.01 or less. The polyimide for optical components according to any one of the first to twelfth inventions.
[0025] 本発明の第 14は、波長 633nmにおける屈折率が TEモード、 TMモードともに 1. 5 5以上であり、前記 TEモード、 TMモードの屈折率差が 0. 01以下であることを特徴と する、前記第 1〜12の発明のいずれかに記載の光学部品用ポリイミドである。  A fourteenth aspect of the present invention is characterized in that the refractive index at a wavelength of 633 nm is 1.55 or more for both the TE mode and the TM mode, and the difference in refractive index between the TE mode and the TM mode is 0.01 or less. The polyimide for optical components according to any one of the first to twelfth inventions.
[0026] 本発明の第 15は、厚さ 50 mのフィルム状にした場合の屈曲半径 0. 38mm,屈 曲角度 135° 、荷重 lOOgでの MIT屈曲試験において 300回以上の屈曲が可能で あることを特徴とする、前記第 1〜14の発明のいずれかに記載の光学部品用ポリイミ ドである。  [0026] The fifteenth aspect of the present invention is capable of bending 300 times or more in the MIT bending test with a bending radius of 0.38 mm, a bending angle of 135 °, and a load of lOOg when a film having a thickness of 50 m is formed. The polyimide for optical parts according to any one of the first to fourteenth inventions.
[0027] 本発明の第 16は、ジォキソラン、ジメチルホルムアミド、 N—メチル 2 ピロリドン、 N, N ジメチルァセトアミド及びメチルェチルケトン力 なる群力 選ばれる少なくと も 1つの単独溶媒または 2つ以上の混合溶媒への 25°Cでの溶解度力 20重量%以 上であることを特徴とする、前記第 1〜15の発明のいずれかに記載の光学部品用ポ リイミドである。  [0027] The sixteenth aspect of the present invention is a group force consisting of dioxolane, dimethylformamide, N-methyl-2-pyrrolidone, N, N dimethylacetamide and methylethylketone, at least one single solvent or two or more selected The polyimide for optical components according to any one of the first to fifteenth inventions, which has a solubility power of 20% by weight or more in a mixed solvent at 25 ° C.
[0028] 本発明の第 17は、前記第 1〜16の発明のいずれかに記載の光学部品用ポリイミド の前駆体であるポリアミド酸である。 [0028] A seventeenth aspect of the present invention is a polyimide for optical components according to any one of the first to sixteenth aspects of the present invention. It is a polyamic acid which is a precursor of
[0029] 本発明の第 18は、前記第 1〜16の発明のいずれかに記載のポリイミド及び Zまた は、前記第 17の発明に記載のポリアミド酸を含む、光学部品である。  [0029] An eighteenth aspect of the present invention is an optical component comprising the polyimide according to any one of the first to sixteenth aspects and Z or the polyamic acid according to the seventeenth aspect.
[0030] 本発明の第 19は、前記第 1〜16の発明のいずれかに記載のポリイミド及び Zまた は、前記第 17の発明に記載のポリアミド酸を含む、光導波路である。  [0030] A nineteenth aspect of the present invention is an optical waveguide comprising the polyimide according to any one of the first to sixteenth aspects and Z or the polyamic acid according to the seventeenth aspect.
[0031] 本発明の第 20はコアとクラッドを有する光導波路において、少なくともフッ素置換基 及びフルォレニル基を有するジァミンを含むジァミン類とテトラカルボン酸二無水物 類とを用いてなるポリイミドをコアとして用いることを特徴とする、光導波路である。  [0031] According to the twentieth aspect of the present invention, in an optical waveguide having a core and a clad, a polyimide comprising at least a diamine containing diamine having a fluorine substituent and a fluorenyl group and a tetracarboxylic dianhydride is used as a core. This is an optical waveguide.
[0032] 本発明の第 21は波長 830nmにおける前記光導波路の伝送損失が TEモード、 T Mモードともに ldBZcm以下であることを特徴とする、前記第 20の発明に記載の光 導波路である。  [0032] The twenty-first aspect of the present invention is the optical waveguide according to the twentieth aspect, wherein the transmission loss of the optical waveguide at a wavelength of 830 nm is ldBZcm or less in both the TE mode and the TM mode.
[0033] 本発明の第 22は波長 633nmにおける前記光導波路の伝送損失が TEモード、 T Mモードともに ldB/cm以下であることを特徴とする、前記第 20または 21の発明に 記載の光導波路である。  [0033] A twenty-second aspect of the present invention is the optical waveguide according to the twentieth or twenty-first aspect of the present invention, wherein the transmission loss of the optical waveguide at a wavelength of 633 nm is ldB / cm or less in both the TE mode and the TM mode. is there.
発明の効果  The invention's effect
[0034] 本発明のポリイミドは、 830nmにおける伝送損失が極めて低ぐ光学部品および光 導波路を形成した場合に優れた伝送特性 (低!ヽ導波路の伝送損失)等の物性を有 するため、光学部品および光導波路形成用材料として好適に用いることができる。さ らに、 633nmにおける伝送損失も極めて低い。  [0034] The polyimide of the present invention has physical properties such as excellent transmission characteristics (low! Waveguide transmission loss) when optical components and optical waveguides with extremely low transmission loss at 830 nm are formed. It can be suitably used as an optical component and an optical waveguide forming material. In addition, the transmission loss at 633 nm is extremely low.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下、本発明を詳細に説明する。  [0035] Hereinafter, the present invention will be described in detail.
[0036] <光学部品 ·光導波路 >  [0036] <Optical components / optical waveguide>
本発明の光学部品とは、光分岐結合器 (光力ブラ)、光合分波器、光アイソレータ、 リング力プラ、グレーティング(回折格子)、レンズアレイ、フルネルレンズ、マイクロミラ 一、モードコンバーターまたはフォトニック結晶、光導波路、等である。例えば、グレー ティングの場合、光通信において波長フィルタ一等に使用され、また CD光学系にお けるピックアップ等にも使用されて 、る。またレンズアレイも液晶プロジェクター用途な ど種々の用途で使用されている。 [0037] <光学部品の製造方法'光導波路の製造方法 > The optical component of the present invention includes an optical branching coupler (optical power bra), an optical multiplexer / demultiplexer, an optical isolator, a ring power plastic, a grating (diffraction grating), a lens array, a Furnell lens, a micromirror, a mode converter or Photonic crystals, optical waveguides, etc. For example, in the case of grating, it is used as a wavelength filter in optical communications, and also used as a pickup in a CD optical system. Lens arrays are also used in various applications such as liquid crystal projectors. <Optical component manufacturing method> Optical waveguide manufacturing method>
光学部品の製造方法は、従来のポリマーを用いた光学部品の製造方法に従えば 良い。例えば、光導波路の製造方法の一例について説明する。本発明の光学部品 用ポリイミドを光導波路コアに用いる場合は、まず、本発明の光学部品用ポリイミドょ りも屈折率の小さいポリイミドを選択し、クラッド材料として用いる。クラッド層はシリコン 基板などの上にスピンコート法や真空蒸着法等により薄膜を形成する。光導波路コア の形成は、コア材料である本発明の光学部品用ポリイミドを前記クラッド層の上にスピ ンコートして薄膜を作製し、その後、レジスト塗布、パターユング、エッチングなどを行 い、光導波路コア部のみを形成させる。次いで、上部クラッドをスピンコートすることに より作製する。  The optical component manufacturing method may follow a conventional optical component manufacturing method using a polymer. For example, an example of a method for manufacturing an optical waveguide will be described. When using the polyimide for optical parts of the present invention for an optical waveguide core, first, polyimide having a low refractive index is selected from the polyimide for optical parts of the present invention and used as a cladding material. The cladding layer is formed on a silicon substrate or the like by spin coating or vacuum deposition. The optical waveguide core is formed by spin coating the polyimide for optical components of the present invention, which is a core material, on the cladding layer, and then performing resist coating, patterning, etching, etc. Only the core is formed. Next, the upper clad is fabricated by spin coating.
[0038] その他の光導波路の作製方法としては、ポリイミドからなるフィルムの内部に、超短 パルスレーザー(10フェムト秒以上 500ピコ秒以下のオーダーのパルスレーザー)を 集光照射し、ポリイミドフィルムを走査することによって、または、超短パルスレーザー を走査することによって、光導波路を形成する方法がある。  [0038] As another method for producing an optical waveguide, an ultrashort pulse laser (pulse laser on the order of 10 femtoseconds or more and 500 picoseconds or less) is condensed and irradiated inside a polyimide film, and the polyimide film is scanned. There is a method of forming an optical waveguide by scanning an ultrashort pulse laser.
[0039] その他、電子線 (EB)照射による光導波路形成方法、感光性ポリイミドを用いてコア またはクラッドを露光によりパターユングする方法などもある。更に、ポリイミド製の転 写型上に酸化シリコン膜を蒸着した転写型または石英ガラス転写型の上から成形材 料であるフッ素化ポリアミド酸溶液スピンコートし加熱イミドィ匕し、その後、転写型ごと フッ酸水溶液 (ポリイミド製転写型の場合)または水 (石英転写型の場合)に浸漬して 転写型力も剥離させたのち、光導波路コアとなるポリアミド酸溶液をスピンコートして 形成した溝を埋め、加熱イミドィ匕させて、さらにその上部に転写型により形成されたク ラッドと同じ成形材料で上部クラッドを形成して光導波路とする方法がある。  [0039] In addition, there are a method of forming an optical waveguide by electron beam (EB) irradiation, a method of patterning a core or a clad by exposure using photosensitive polyimide, and the like. Further, a fluorinated polyamic acid solution spin coat is formed from a transfer mold in which a silicon oxide film is deposited on a polyimide transfer mold or a quartz glass transfer mold, and is heated and imidized. After dipping in an acid aqueous solution (for polyimide transfer mold) or water (for quartz transfer mold) to release the transfer mold force, the groove formed by spin-coating the polyamic acid solution that becomes the optical waveguide core is filled, There is a method in which an optical waveguide is formed by heating imidization and forming an upper clad with the same molding material as that of a clad formed by a transfer mold on the upper part.
[0040] さら〖こは、コア材料を有機溶剤に溶解させ、該溶液をインクジェットにより塗布し、コ ァ部を形成した後、上部クラッド層を形成して光導波路を形成する方法、紫外線硬化 してポリマーとなるモノマー溶液へ光ファイバ一から紫外線を誘導'照射し、照射部が 徐々に伸びてコア部を形成する自己形成法、などがある。  [0040] Sarakuko is a method in which a core material is dissolved in an organic solvent, the solution is applied by ink jet to form a core portion, and then an upper cladding layer is formed to form an optical waveguide. There is a self-forming method in which the monomer solution that becomes the polymer is guided and irradiated with ultraviolet rays from one optical fiber, and the irradiated part gradually extends to form the core part.
[0041] <ポリイミドの伝送損失 >  [0041] <Transmission loss of polyimide>
本発明における光学部品用ポリイミドの、波長 830nmおよび波長 633nmにおける 伝送損失は TEモード、 TMモードともに ldBZcm以下であり、好ましくは 0. 5dB/c m以下であり、より好ましくは 0. ldBZcm以下である。伝送損失が ldBZcmより大 きくなると、光学部品に入力する光源の消費電力が増大してしまう。 The polyimide for optical components in the present invention at a wavelength of 830 nm and a wavelength of 633 nm The transmission loss is ldBZcm or less in both TE mode and TM mode, preferably 0.5 dB / cm or less, and more preferably 0.1 dBZcm or less. If the transmission loss is greater than ldBZcm, the power consumption of the light source input to the optical component will increase.
[0042] 本発明における光学部品用ポリイミドの伝送損失は、波長 830nmや波長 633nm のみならず、波長 600nm以上 lOOOnm未満および Zまたは lOOOnm以上の領域で の伝送損失が ldBZcm以下であることが好ましい。波長 830nm、波長 633nm以外 の波長域においても伝送損失が ldBZcm以下であると、何種類もの波長を用いた 双方向通信が可能となるためである。  The transmission loss of the polyimide for optical parts in the present invention is preferably not more than the wavelength 830 nm and the wavelength 633 nm, but the transmission loss in the wavelength region of 600 nm to less than lOOOnm and Z or lOOOnm is ldBZcm or less. This is because two-way communication using many types of wavelengths is possible if the transmission loss is less than ldBZcm even in wavelength ranges other than 830 nm and 633 nm.
[0043] 本発明におけるポリイミドの伝送損失は、プリズム力ブラ法を実現できる装置である プリズム力プラモデル 2010 (メトリコン社製)を用いて測定した。測定モードに関して は、伝送させる光の偏波は、 TEモード、 TMモードと分けて行うのが通例であるため 、本発明の実施例においてもこの両者での伝送損失を測定した。  [0043] The transmission loss of polyimide in the present invention was measured using a prism force plastic model 2010 (manufactured by Metricon), which is an apparatus that can realize the prism force bra method. Regarding the measurement mode, since the polarization of the transmitted light is usually performed separately from the TE mode and the TM mode, the transmission loss was measured in both of the embodiments of the present invention.
[0044] プリズム力ブラ法により測定される伝送損失は、酸ィ匕膜付シリコン基板上にスピンコ ート法により作製された厚み 1 μ mカゝら 15 m程度の薄膜中を導波した波長 830nm および 633nmの光の漏洩光強度の変化と伝送長をプロットしたときに得られる直線 の傾き力 算出される。この方法は厚み 1 m以上、 15 m以下の薄膜中で適用で きる方法である。この厚み範囲において、伝送損失は、厚みには依存しないが、厚み が厚くなると伝送モードが数多く存在することになり測定が困難となるので、 10 m 前後が好適である。また、 15 mより厚くなると、薄膜の平滑性が損なわれるので、好 ましくない。 1 μ m未満になると、伝送モードが存在しなくなるので、測定できなくなる  [0044] The transmission loss measured by the prism force bra method is the wavelength guided through a thin film with a thickness of about 1 μm to 15 m fabricated on a silicon substrate with an oxide film by a spin coat method. The slope of the straight line obtained by plotting the change in leakage light intensity and transmission length of light at 830 nm and 633 nm is calculated. This method can be applied in a thin film having a thickness of 1 m or more and 15 m or less. In this thickness range, the transmission loss does not depend on the thickness, but as the thickness increases, many transmission modes exist and measurement becomes difficult. On the other hand, if it is thicker than 15 m, the smoothness of the thin film is impaired, which is not preferable. If it is less than 1 μm, there is no transmission mode and measurement is not possible.
[0045] なお、本発明の TEモード、 TMモード、 TEモードと TMモードの屈折率差などは、 当業者にとって公知の概念であるものと同じ意味で用いる (例えば、(特許文献 1)特 開 2003— 41003号公報などに記載されている)。 [0045] It should be noted that the TE mode, TM mode, and difference in refractive index between the TE mode and TM mode of the present invention are used in the same meaning as those known to those skilled in the art (for example, (Patent Document 1) 2003-41003).
[0046] <光導波路の伝送損失 > [0046] <Transmission loss of optical waveguide>
本発明のポリイミドにより作られる光導波路の波長 830nmおよび波長 633nmにお ける伝送損失は TEモード、 TMモードともに ldBZcm以下であり、好ましくは 0. 5d The transmission loss of the optical waveguide made of the polyimide of the present invention at a wavelength of 830 nm and a wavelength of 633 nm is less than ldBZcm in both TE mode and TM mode, preferably 0.5d.
BZcm以下であり、より好ましくは 0. ldBZcm以下である。 [0047] 一般に、光学部品用ポリイミドを実際に光導波路などの光学部品に適用した場合、 該光学部品の伝送損失は原料となる光学部品用ポリイミド自体の伝送損失よりも大き くなる。それはポリイミドを上記記載の方法で所望の状態に加ェするときに少なから ず界面に傷やうねりが生じ、そこからの散乱が原因で損失が生じるためである。従つ て、光学部品(例えば、光導波路)での伝送損失が ldBZcm以下であるとき、該光 学部品を製造するのに用!、られた光学部品用ポリイミドの伝送損失は 1 dBZcm未 満になるのは当然のことである。 BZcm or less, more preferably 0.1 dBZcm or less. [0047] Generally, when polyimide for an optical component is actually applied to an optical component such as an optical waveguide, the transmission loss of the optical component is larger than the transmission loss of the optical component polyimide itself as a raw material. This is because when the polyimide is added to the desired state by the above-described method, there are a few scratches and undulations at the interface, and losses are caused by scattering from the interface. Therefore, when the transmission loss in an optical component (for example, an optical waveguide) is less than ldBZcm, it is used to manufacture the optical component! The transmission loss of the optical component polyimide is less than 1 dBZcm. It will be natural.
[0048] <屈折率 >  [0048] <Refractive index>
本発明における屈折率は、プリズム力ブラ法により測定され、得られた値である。測 定には、プリズム力プラモデル 2010 (メトリコン社製)を使用した。  The refractive index in the present invention is a value obtained by measuring by the prism force bra method. The prism force plastic model 2010 (made by Metricon) was used for the measurement.
[0049] 本発明にお 、て、波長 830nmおよび波長 633nmでの屈折率は TEモード、 TMモ ードともに 1. 55以上が好ましい。屈折率が 1. 55より小さいと、光学部品に用いた場 合、屈折率差を利用する場合に、他榭脂との組み合せが制限されてしまうためである 。特に、光導波路のコアに本発明のポリイミドを用いる場合、クラッド材料には、コアよ りも屈折率の小さい材料を選択する必要がある。屈折率が 1. 55よりも小さいと、クラ ッド材料の選択の余地が制限されてしまう。  In the present invention, the refractive index at a wavelength of 830 nm and a wavelength of 633 nm is preferably 1.55 or more in both the TE mode and the TM mode. If the refractive index is less than 1.55, the combination with other resins is limited when using the difference in refractive index when used for optical parts. In particular, when the polyimide of the present invention is used for the core of the optical waveguide, it is necessary to select a material having a refractive index smaller than that of the core as the cladding material. If the refractive index is less than 1.55, the choice of cladding material is limited.
[0050] 本発明における屈折率差とは、面方向の屈折率力 厚さ方向の屈折率を引いた値 である。面方向の屈折率とは、 TEモードの光を用いて測定したときに得られる屈折 率を表し、厚さ方向の屈折率とは、 TMモードの光を用いて測定したときに得られる 屈折率を表す。光導波路材料として用いる場合、屈折率差は小さければ小さいほど 好ましい。屈折率差が大きいと、導波路内に入射された光の偏波方向によって屈折 率が異なるので伝搬モードや伝搬速度に差異が現れ、信号伝達の精度が悪くなる 可能性があるためである。  The refractive index difference in the present invention is a value obtained by subtracting the refractive index power in the plane direction and the refractive index in the thickness direction. The refractive index in the surface direction represents the refractive index obtained when measured using TE mode light, and the refractive index in the thickness direction represents the refractive index obtained when measured using TM mode light. Represents. When used as an optical waveguide material, the smaller the refractive index difference, the better. This is because if the difference in refractive index is large, the refractive index varies depending on the polarization direction of the light incident on the waveguide, so that differences in the propagation mode and propagation speed appear and the signal transmission accuracy may deteriorate.
[0051] 本発明における屈折率差の測定は、プリズム力ブラ法により測定された。具体的に は、プリズム力プラモデル 2010 (メトリコン社製)を使用した。  [0051] The refractive index difference in the present invention was measured by the prism force bra method. Specifically, Prism Force Plastic Model 2010 (made by Metricon) was used.
[0052] <少なくともフッ素置換基及びフルォレニル基を有するジァミンを含むジァミン類と テトラカルボン酸二無水物類とを用いてなるポリイミド>  [0052] <Polyimide using diamines including diamine having at least a fluorine substituent and a fluorenyl group and tetracarboxylic dianhydrides>
本発明のポリイミドは、原料に少なくともフッ素置換基及びフルォレニル基を有する ジァミンを含むジァミン類とテトラカルボン酸二無水物類とを用いてなるポリイミドであ る。 The polyimide of the present invention has at least a fluorine substituent and a fluorenyl group as a raw material. A polyimide comprising a diamine containing diamine and a tetracarboxylic dianhydride.
[0053] <ジァミン類 >  [0053] <Diamins>
フッ素置換基及びフルォレニル基を有するジァミンの一例としては、下記式(1)で 表される構造を有するフルオレンジァミンが挙げられる。  An example of a diamine having a fluorine substituent and a fluorenyl group includes fluorenedamine having a structure represented by the following formula (1).
[0054] [化 5] [0054] [Chemical 5]
Figure imgf000011_0001
Figure imgf000011_0001
[0055] (式中の R〜Rは、それぞれ同一でも異なっていてもよぐ水素またはフッ素のいず [0055] (In the formula, R to R may be the same or different from each other, either hydrogen or fluorine.
1 8  1 8
れかであり、少なくとも一つはフッ素である。 )  And at least one is fluorine. )
具体的には、 9、 9—ビス(3—フルオロー 4—ァミノフエ-ル)フルオレン、 9、 9—ビ ス(3, 3,一ジフルオロー 4—ァミノフエ-ル)フルオレン、 9、 9—ビス(2, 3—ジフルォ 口一 4—ァミノフエ-ル)フルオレン、 9、 9—ビス(2, 2' , 3—トリフルォロ一 4—アミノフ ェニル)フルオレン等のフッ素置換基を 1個以上含有するフルオレンジァミンが例示さ れる。  Specifically, 9, 9-bis (3-fluoro-4-aminophenol) fluorene, 9, 9-bis (3,3,1-difluoro-4-aminophenol) fluorene, 9, 9-bis (2 , 3-Difluorine 4-Faminophenol) Fluorene, 9, 9-Bis (2,2 ', 3-trifluoro-4-fluorophenyl) Fluoroamine containing one or more fluorine substituents such as fluorene Is exemplified.
[0056] これらの中でも、前記フッ素置換基及びフルォレニル基を有するジァミンのアミノ基 力 芳香族環に結合しており、前記フッ素置換基が、前記アミノ基のオルト位に位置 することが望まし 、。フルオレンジァミンユニットとテトラカルボン酸二無水物ユニット に空間的な捻れが生じ、電荷移動吸収による着色が制限され、伝送損失低減に寄 与するからである。  Among these, it is desirable that the amino group of diamine having a fluorine substituent and a fluorenyl group is bonded to an aromatic ring, and the fluorine substituent is located at the ortho position of the amino group. . This is because a spatial twist occurs in the fluorenedamine unit and the tetracarboxylic dianhydride unit, coloring due to charge transfer absorption is limited, and transmission loss is reduced.
[0057] より好ましくは、前記ジァミンが 9、 9—ビス(3—フルオロー 4—ァミノフエ-ル)フル オレンであることが望ましい。より伝送損失が小さくなるからである。  [0057] More preferably, the diamine is 9,9-bis (3-fluoro-4-aminophenol) fluorene. This is because the transmission loss becomes smaller.
<ポリイミドの共重合 >  <Polyimide copolymerization>
ポリマーを光学材料に用いる大きなメリットの一つに耐屈曲性が挙げられる。例えば 光導波路を携帯電話などのフレキシブル基板に搭載すると 、つた場合、光導波路材 料に求められる特性として、伝送損失に加え材料の耐屈曲性も重要となる。本発明 者らは、その耐屈曲性を支配する因子は主にモノマーの構造、及び分子鎖の配列 順序と考え、これらを制御することで耐屈曲性が従来のポリマーよりも向上すると考え た。そこで、フッ素置換基及びフルォレニル基を有するジァミンに、柔軟な分子構造 を有するジァミンを含むポリイミド共重合させた結果、伝送損失が比較的低 、値を維 持したまま、耐屈曲性が大きく向上することを独自に見出した。 One of the major merits of using a polymer for an optical material is bending resistance. For example, when an optical waveguide is mounted on a flexible substrate such as a mobile phone, the optical waveguide material In addition to transmission loss, the bending resistance of the material is also important as a characteristic required for the material. The present inventors consider that the factors governing the bending resistance are mainly the structure of the monomer and the arrangement order of the molecular chains. By controlling these, the bending resistance is improved compared to conventional polymers. Therefore, as a result of copolymerizing polyimide containing diamine having a flexible molecular structure to diamine having a fluorine substituent and a fluorenyl group, the transmission loss is relatively low, and the bending resistance is greatly improved while maintaining the value. I found this on my own.
[0058] 式(1)に共重合するポリイミドとしては、屈曲性を強化する観点から、下記式 (2)で 表される構造を有するジァミンを含むポリイミドが好ましい。  [0058] The polyimide copolymerized with the formula (1) is preferably a polyimide containing diamine having a structure represented by the following formula (2) from the viewpoint of enhancing flexibility.
[0059] [化 6] [0059] [Chemical 6]
Figure imgf000012_0001
Figure imgf000012_0001
[0060] (式中の X〜X のうち任意の 2つは NHであり、残りの 8つは、 H, CH及び CF力 [0060] (Any two of X to X in the formula are NH, and the remaining eight are H, CH and CF forces.
1 10 2 3 3 なる群から選ばれるいずれ力 1つの基である。また、 R  1 10 2 3 3 One force selected from the group consisting of one group. R
11は— O— , — S— , —SO—,  11 is — O—, — S—, —SO—,
2 CH —, 一 CO—, -C (CH ) 一, C (CF ) —, -O-R O , 一フルォレ 2 CH —, one CO—, -C (CH) one, C (CF) —, -O-R O, one fluoride
2 3 2 3 2 12 2 3 2 3 2 12
-ル基—及び直接結合力 なる群力 選ばれるいずれ力 1つである。ただし、 R  -Lu group- and direct bond force are group forces. Where R
12は 炭素数 1以上 5以下のアルキル基及び下記式群 (3)で表される基力 なる群力 選 ばれるいずれ力 1つの基である。  12 is an alkyl group having 1 or more and 5 or less carbon atoms, and a group force which is selected as a group force represented by the following formula group (3).
[0061] [化 7]
Figure imgf000012_0002
Figure imgf000012_0003
[0061] [Chemical 7]
Figure imgf000012_0002
Figure imgf000012_0003
[0062] さらにその中でも、 4, 4' -ジアミノジフエ-ルエーテル、 3, 4' -ジアミノジフエ-ルェ 一テル、 2, 2' -ビス(トリフルォロメチル) -4, 4' -ジアミノビフエニル、 4, 4' -ジアミノジ フエニルスルホン、 1, 5- (4-アミノフエノキシ)ペンタン、 1, 3-ビス (4-アミノフエノキシ) -2, 2-ジメチルプロパン、 2, 2-ビス (4-ァミノフエノキシフエ-ル)プロパン、 2, 2 -ビス [4 -(4—アミノフエノキシ)フエ-ル]へキサフルォロプロパン、ビス [4- (4-アミノフエノ キシ)フエ-ル]スルホン及びビス [4- (3-アミノフエノキシ)フエ-ル]スルホンからなる 群力も選ばれる少なくとも 1つのジァミンを含むポリイミドを共重合することが好ましい [0062] Among them, 4, 4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4 , 4'-Diaminodi Phenylsulfone, 1,5- (4-aminophenoxy) pentane, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane, 2,2-bis (4-aminophenoxyphenol) propane 2,2-bis [4- (4-aminophenoxy) phenol] hexafluoropropane, bis [4- (4-aminophenoxy) phenol] sulfone and bis [4- (3-aminophenoxy) It is preferable to copolymerize a polyimide containing at least one diamine selected from the group]
[0063] したがって、フレキシブル基板などといった耐屈曲性が求められる用途においては 前述のようなポリイミド共重合体が最も好ま 、形態となる。もちろんジァミンの種類は フッ素置換基及びフルォレニル基を含んで ヽれば 3種類以上となっても構わな 、。ま た、ジァミン類に限らず、テトラカルボン酸二無水物類を複数用いた共重合体を作つ てもよい。 [0063] Therefore, the polyimide copolymer as described above is the most preferred form for applications requiring flexibility such as a flexible substrate. Of course, the number of diamines may be three or more as long as they contain a fluorine substituent and a fluorenyl group. Further, not limited to diamines, a copolymer using a plurality of tetracarboxylic dianhydrides may be produced.
[0064] 共重合のモノマー比率にっ 、ては少なくともフッ素置換基及びフルォレニル基を有 するジァミンが全ジァミン比率の 30mol%以上を満たして!/ヽれば、その他のジァミン 、テトラカルボン酸二無水物の比率につ!、ては制限しな!、。  [0064] According to the monomer ratio of copolymerization, at least the diamine having a fluorine substituent and a fluorenyl group satisfies 30 mol% or more of the total diamine ratio! / If other diamine, tetracarboxylic dianhydride The ratio of things!
[0065] さらに、透明性が要求される光学部品に用いるポリイミドの構造としては、特に限定 されないが、本発明に使用されるジァミン類として、例えば下記のものを用いて共重 合しても良いし、ここに記載された以外のジァミンも用いることができる。特に、ジアミ ン骨格に SO —、 -C (CF ) 一、—CO 等の電子吸引基が含まれるもの、または  [0065] Further, the structure of the polyimide used for the optical component requiring transparency is not particularly limited, but as the diamines used in the present invention, for example, the following may be used for copolymerization. However, jamins other than those described herein can also be used. In particular, a diamine skeleton containing an electron-withdrawing group such as SO--, -C (CF) 1, -CO, or
2 3 2  2 3 2
ジァミンの芳香環に直接 CF 、 F、 Cl、 Br等の電子吸引基が導入されているものが好  Those in which electron-withdrawing groups such as CF, F, Cl and Br are introduced directly into the aromatic ring of diamine are preferred.
3  Three
ましい。例えば、 3, 3,一ジアミノジフエ-ルスルホン、 3, 4,一ジアミノジフエ-ルスル ホン、 4, 4'—ジアミノジフエ-ルスルホン、 3, 3'—ジァミノべンゾフエノン、 3, 4'— ジァミノべンゾフエノン、 4, 4'ージァミノべンゾフエノン、 2, 2 ビス(4ーァミノフエ二 ノレ)一 1, 1, 1, 3, 3, 3 へキサフノレオロフ。ロノ ン、 2, 2 ヒ、、ス(3 ァミノフエ-ノレ) —1, 1, 1, 3, 3, 3 へキサフノレオロフ。ロノ ン、 2— (3 ァミノフエ-ノレ)一 2— (4— ァミノフエ二ノレ)一 1, 1, 1, 3, 3, 3 へキサフノレ才ロプロノ ン、 1, 3 ヒ、、ス(3 ァミノ ベンゾィル)ベンゼン、 1 , 4 ビス(3 ァミノべンゾィル)ベンゼン、 1, 3 ビス(4 - ァミノべンゾィル)ベンゼン、 1, 4 ビス(4 ァミノべンゾィル)ベンゼン、 3, 3, 一ジァ ミノー 4 フエノキシベンゾフエノン、 4, 4'ージアミノー 5—フエノキシベンゾフエノン、 3, 4'ージアミノー 4 フエノキシベンゾフエノン、 3, 4'—ジアミノー 5—フエノキシベ ンゾフエノン、 2, 2 ビス〔4— (3 アミノフエノキシ)フエ-ル〕一 1, 1, 1, 3, 3, 3— へキサフルォロプロパン、 2, 2 ビス〔4— (4 アミノフエノキシ)フエ-ル〕一 1 , 1, 1 , 3, 3, 3 へキサフルォロプロパン、 2, 2 ビス〔3— (3 アミノフエノキシ)フエ-ル 〕一1, 1, 1, 3, 3, 3 へキサフノレ才ロプロノ ン、 2, 2 ヒ、、ス〔3— (4—ァミノフエノキ シ)フエ-ル〕— 1, 1, 1, 3, 3, 3 へキサフルォロプロノ ン、 1, 4 ビス〔4— (3 ァ ミノフエノキシ)ベンゾィル〕ベンゼン、 1, 3 ビス〔4— (3 アミノフエノキシ)ベンゾィ ル〕ベンゼン、 1 , 3 ビス(3 アミノー 4 フエノキシベンゾィル)ベンゼン、 1, 4 ビ ス(3 ァミノ一 4 フエノキシベンゾィル)ベンゼン、 1, 3 ビス(4 ァミノ一 5 フエ ノキシベンゾィル)ベンゼン、 1, 3 ビス(4 アミノー 5 ビフエノキシベンゾィル)ベ ンゼン、 1, 4 ビス(4 アミノー 5 ビフエノキシベンゾィル)ベンゼン、 1, 3 ビス(3 —ァミノ一 4 ビフエノキシベンゾィル)ベンゼン、 1, 4 ビス(3 ァミノ一 4 ビフエノ キシベンゾィル)ベンゼン、 1, 3 ビス〔4— (4 ァミノ一 6 トリフルォロメチルフエノ キシ) α , α ジメチルベンジル〕ベンゼン、 1, 3 ビス〔4— (4 ァミノ 6 フル ォロメチルフエノキシ) , ひ一ジメチルベンジル〕ベンゼン、 2, 2,一ビス(トリフル ォロメチル)一4, 4,ージアミノビフエ-ル、 3, 3,一ビス(トリフルォロメチル)一4, 4, —ジアミノビフエ-ル、 2, 2,一ビス(トリフルォロメチル) 4, 4,一ジアミノビフエ-ル 、 2, 2'ージクロロー 4, 4'ージアミノビフエニル、 3, 3,ージクロロー 4, 4'ージアミノビ フエニル、 2, 2,一ジブ口モー 4, 4,ージアミノビフエニル、 3, 3,一ジブ口モー 4, 4, ージアミノビフエニル等が挙げられる。 Good. For example, 3, 3, 1-diaminodiphenyl sulfone, 3, 4, 1-diaminodiphenyl sulfone, 4, 4'-diaminodiphenyl sulfone, 3, 3'-diaminobenzophenone, 3, 4'-diaminobenzophenone, 4, 4'-aminominobenzofuenone, 2, 2 bis (4-aminominophenole) 1, 1, 1, 3, 3, 3 hexaf-noreolov. Ronon, 2, 2 and 3, Su (3 aminophene-nore) —1, 1, 1, 3, 3, 3 Hexafnoreolov. Ronon, 2— (3 aminophenol) 1— 2- (4-aminofluorine) 1, 1, 1, 3, 3, 3 Hexafnole-old lopronone, 1, 3 h, S (3 aminobenzoyl) ) Benzene, 1,4 bis (3-aminobenzoyl) benzene, 1,3 bis (4-aminobenzoyl) benzene, 1,4 bis (4-aminobenzoyl) benzene, 3, 3, 1 diamine Enoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3, 4'-diamino-4 phenoxybenzophenone, 3, 4'-diamino-5-phenoxybenzophenone, 2, 2 bis [4- (3 aminophenoxy) phenol] 1, 1, 1, 3, 3, 3— Hexafluoropropane, 2, 2 bis [4— (4 aminophenoxy) phenol] 1, 1, 1, 1, 3, 3, 3 Hexafluoropropane, 2, 2 bis [3— (3 aminophenoxy) phenol] 1,1,1,3,3,3 Hexa-Fonole-old lopronone, 2, 2 and 2,3- (4- (aminophenol) phenol) — 1, 1 , 1, 3, 3, 3 Hexafluoropronone, 1,4 bis [4— (3 aminophenoxy) benzoyl] benzene, 1,3 bis [4— (3 aminophenoxy) benzoyl] benzene, 1, 3 Bis (3 amino-4 phenoxybenzoyl) benzene, 1,4 bis (3 amino-4-phenoloxy benzoyl) benzene, 1,3 bis (4 amino-1-phenyl) Noxybenzoyl) benzene, 1,3 bis (4 amino-5 biphenoxybenzoyl) benzene, 1,4 bis (4 amino-5 biphenoxybenzoyl) benzene, 1,3 bis (3 —amino-4 bif Enoxybenzoyl) benzene, 1,4 bis (3 amino-4-biphenoxybenzoyl) benzene, 1,3 bis [4- (4-amino-6 trifluoromethylphenoxy) α, α dimethylbenzyl] benzene, 1, 3 bis [4- (4 amino 6 fluoromethylphenoxy), dimethyl benzyl] benzene, 2, 2, 1 bis (trifluoromethyl) 1, 4, 4, diaminobiphenyl, 3, 3, 1,4,1-diaminobiphenyl, 2,2,1bis (trifluoromethyl) 4,4,1 diaminobiphenyl, 2,2'-dichloro-4,4'-diamino Biphenyl, 3, 3, Dichloro - 4, 4 'Jiaminobi phenyl, 2, 2, single jib port mode 4, 4, over diamino Biff enyl, 3, 3, one jib port mode 4, 4, include over diamino Biff enyl and the like.
<テトラカルボン酸二無水物類 >  <Tetracarboxylic dianhydrides>
本発明に使用されるテトラカルボン酸二無水物成分としては公知のテトラカルボン 酸二無水物類を使用することができる。また、 2種類以上の酸二無水物を共重合して もよい。例えばフッ素を含まないテトラカルボン酸二無水物としては、ピロメリット酸二 無水物、 3, 3 ' , 4, 4,一べンゾフエノンテトラカルボン酸二無水物、 3, 3 ' , 4, 4,ービ フエ-ルテトラカルボン酸二無水物、 2, 3, 3 ' , 4,ービフエ-ルテトラカルボン酸二無 水物、 3, 3 ' , 4, 4'ージフエ-ルスルホンテトラカルボン酸二無水物、 1, 4, 5, 8— ナフタレンテトラカルボン酸二無水物、 2, 3, 6, 7 ナフタレンテトラカルボン酸二無 水物、 1, 2, 5, 6 ナフタレンテトラカルボン酸二無水物、 4, 4'ーォキシジフタル酸 無水物、 3, 3' , 4, 4'ージメチルジフエ-ルシランテトラカルボン酸二無水物、 3, 3, , 4, 4'ーテトラフエ-ルシランテトラカルボン酸二無水物、 1, 2, 3, 4 フランテトラ カルボン酸二無水物、 4, 4 '—ビス(3, 4—ジカルボキシフエノキシ)ジフエ-ルプロ パンニ無水物、 4, 4'一へキサフルォロイソプロピリデンジフタル酸無水物、 p フエ -レンジフタル酸ニ無水物、 2, 2 ビス一((3, 4 ジカルボキシフエ-ル)一へキサ フルォロプロパン二無水物、 9, 9 ビス(3, 4—ジカルボキシフエ-ル)フルオレン二 無水物、 9, 9 '—ビス [4— (3, 4—ジカルボキシフエノキシ)フエ-ル]フルオレン二無 水物、 3, 3' , 4, 4' ービフエ-ルエーテルテトラカルボン酸二無水物、 2, 3, 5, 6 ピリジンテトラカルボン酸二無水物、 3, 4, 9, 10 ペリレンテトラカルボン酸二無 水物、 4, 4' スルホ -ルジフタル酸ニ無水物、パラーターフェ-ルー 3, 4, 3' , 4, ーテトラカルボン酸二無水物、メタ ターフェ-ルー 3, 3' , 4, 4'ーテトラカルボン酸 二無水物、 3, 3' , 4, 4' ージフエ-ルエーテルテトラカルボン酸二無水物、 1, 3— ビス(3, 4 ジカルボキシフエ-ル) 1, 1, 3, 3—テトラメチルジシロキサン二無水 物、 1ー(2, 3 ジカルボキシフエ-ル) 3—(3, 4 ジカルボキシフエ-ル) 1, 1 , 3, 3—テトラメチルジシロキサン二無水物などが挙げられる。上記酸二無水物のベ ンゼン環には、アルキル基置換および Zまたはハロゲン置換された部位を有して ヽ ても良い。 As the tetracarboxylic dianhydride component used in the present invention, known tetracarboxylic dianhydrides can be used. Two or more kinds of acid dianhydrides may be copolymerized. For example, fluorine-free tetracarboxylic dianhydrides include pyromellitic dianhydride, 3, 3 ', 4, 4, monobenzophenone tetracarboxylic dianhydride, 3, 3', 4, 4 , -Biphenyltetracarboxylic dianhydride, 2, 3, 3 ', 4, biphenyl tetracarboxylic dianhydride, 3, 3', 4, 4'-diphenylsulfonetetracarboxylic dianhydride Anhydride, 1, 4, 5, 8—Naphthalenetetracarboxylic dianhydride, 2, 3, 6, 7 Naphthalenetetracarboxylic dianhydride Water, 1, 2, 5, 6 Naphthalenetetracarboxylic dianhydride, 4, 4'-oxydiphthalic anhydride, 3, 3 ', 4, 4'-dimethyldiphenylsilane tetracarboxylic dianhydride, 3, 3 ,, 4, 4'-tetraphenylsilane tetracarboxylic dianhydride, 1, 2, 3, 4 furan tetracarboxylic dianhydride, 4, 4'-bis (3,4-dicarboxyphenoxy) diphenol -Lupropan anhydride, 4,4'-hexafluoroisopropylidene diphthalic anhydride, p-diene diphthalic anhydride, 2,2 bis-((3,4 dicarboxyphenol) Monohexafluoropropane dianhydride, 9, 9 bis (3,4-dicarboxyphenol) fluorene dianhydride, 9, 9'-bis [4- (3,4-dicarboxyphenoxy) phenol- Fluorene dianhydride, 3, 3 ', 4, 4'-biphenyl ether tetracarboxylic dianhydride, 2, 3, 5, 6 pyridine Tracarboxylic dianhydride, 3, 4, 9, 10 Perylenetetracarboxylic dianhydride, 4, 4 'Sulfo-diphthalic dianhydride, Paraterferreux 3, 4, 3', 4, 4-tetracarboxylic dianhydride Anhydride, Metaterferreux 3, 3 ', 4, 4'-tetracarboxylic dianhydride, 3, 3', 4, 4'-diphenyl ether tetracarboxylic dianhydride, 1, 3-bis (3,4) Dicarboxyl) 1, 1, 3, 3—tetramethyldisiloxane dianhydride, 1- (2,3 dicarboxyl) 3— (3,4 dicarboxyl) 1, 1, 3, 3-tetramethyldisiloxane dianhydride, etc. The benzene ring of the above acid dianhydride may have alkyl-substituted and Z- or halogen-substituted sites.
[0067] さらに本発明のようにポリイミドを光学材料用途に用いる場合、テトラカルボン酸二 無水物にフッ素が含まれていることが好ましい。ポリイミドにフッ素を含有させることで 近赤外波長での高い透明性、低吸湿性、化学的および熱的な安定性など様々な特 性の向上が期待できるためである。  [0067] Further, when polyimide is used for an optical material as in the present invention, it is preferable that tetracarboxylic dianhydride contains fluorine. This is because the inclusion of fluorine in polyimide can be expected to improve various properties such as high transparency in the near infrared wavelength, low moisture absorption, chemical and thermal stability.
[0068] フッ素を含むテトラカルボン酸二無水物としては、 2, 2 ビス一((3, 4 ジカルボ キシフエ-ル)一へキサフルォロプロパン二無水物)、(トリフルォロメチル)ピロメリット 酸二無水物、ジ(トリフルォロメチル)ピロメリット酸二無水物、ジ(ヘプタフルォロプロ ピル)ピロメリット酸二無水物、ペンタフルォロェチルピロメリット酸二無水物、ビス {3, 5 ジ(トリフルォロメチル)フエノキシ }ピロメリット酸二無水物、 2, 2 ビス(3, 4 ジ カルボキシフエ-ル)へキサフルォロプロパン二無水物、 5, 5,—ビス(トリフルォロメ チル)—3, 3,, 4, 4,―テ卜ラカルボキシビフエ-ルニ無水物、 2, 2' , 5, 5,—テ卜ラ キス(トリフルォロメチル)ー 3, 3' , 4, 4,ーテトラカルボキシビフエ-ルニ無水物、 5, 5 '—ビス(トリフルォロメチル)ー 3, 3' , 4, 4'ーテトラカルボキシジフエ-ルエーテル 二無水物、 5, 5,—ビス(トリフルォロメチル)ー 3, 3' , 4, 4,ーテトラカルボキシベン ゾフエノン二無水物、ビス { (トリフルォロメチル)ジカルボキシフエノキシ }ベンゼン二 ゼンニ無水物、ビス(ジカルボキシフエノキシ)(トリフルォロメチル)ベンゼン二無水物 、ビス(ジカルボキシフエノキシ)ビス(トリフルォロメチル)ベンゼン二無水物、ビス(ジ カルボキシフエノキシ)テトラキス(トリフルォロメチル)ベンゼン二無水物、 2, 2—ビス { (4 (3, 4ージカルボキシフエノキシ)フエ-ル)へキサフルォロプロパン二無水物、 ビス { (トリフルォロメチル)ジカルボキシフエノキシ }ビフエ-ルニ無水物、ビス { (トリフ ルォロメチル)ジカルボキシフエノキシ }ビス(トリフルォロメチル)ビフエ-ルニ無水物 、ビス { (トリフルォロメチル)ジカルボキシフエノキシ }ジフエ-ルエーテル二無水物、 ビス(ジカルボキシフエノキシ)ビス(トリフルォロメチル)ビフエ-ルニ無水物などが挙 げられる。 [0068] Fluorine-containing tetracarboxylic dianhydrides include 2, 2 bis-((3,4 dicarboxyl) monohexafluoropropane dianhydride) and (trifluoromethyl) pyromellit. Acid dianhydride, di (trifluoromethyl) pyromellitic dianhydride, di (heptafluoropropyl) pyromellitic dianhydride, pentafluoroethyl pyromellitic dianhydride, bis {3, 5 Di (trifluoromethyl) phenoxy} pyromellitic dianhydride, 2, 2 bis (3,4 dicarboxyphenol) hexafluoropropane dianhydride, 5, 5, -bis (trifluoromethyl) Chill) —3, 3, 4, 4, 4, teracarboxybiphenyl anhydride, 2, 2 ′, 5, 5, —terakis (trifluoromethyl) -3, 3 ′, 4,4, -Tetracarboxybiphenyl anhydride, 5,5'-bis (trifluoromethyl) -3,3 ', 4,4'-tetracarboxydiphenyl ether dianhydride, 5,5 , —Bis (trifluoromethyl) -3,3 ', 4,4, -tetracarboxybenzazophenone dianhydride, bis {(trifluoromethyl) dicarboxyphenoxy} benzene dizenni anhydride, bis ( Dicarboxyphenoxy) (trifluoromethyl) benzene dianhydride, bis (dicarboxyphenoxy) bis (trifluoromethyl) benzene dianhydride, bis (dicarboxyphenoxy) tetrakis (trifluoro) Methyl) benzene dianhydride, 2, 2—bis {(4 (3, 4-dicarboxypheno Bis) hexafluoropropane dianhydride, bis {(trifluoromethyl) dicarboxyphenoxy} biphenol dianhydride, bis {(trifluoromethyl) dicarboxyphenoxy} bis ( Trifluoromethyl) biphenyl anhydride, bis {(trifluoromethyl) dicarboxyphenoxy} diphenyl ether dianhydride, bis (dicarboxyphenoxy) bis (trifluoromethyl) biphenyl Examples include anhydrides.
[0069] 上記酸二無水物のベンゼン環には、更にアルキル基置換された部位を有していて も良い。  [0069] The benzene ring of the acid dianhydride may further have a site substituted with an alkyl group.
[0070] そして、伝送損失をより低減させるために、フッ素置換基を含有することが好ましい 。さらには、該テトラカルボン酸二無水物は、伝送損失が極めて小さくなるため、 2, 2 ビス一((3, 4—ジカルボキシフエ-ル)一へキサフルォロプロパン二無水物である ことが好ましい。  [0070] In order to further reduce transmission loss, it is preferable to contain a fluorine substituent. Furthermore, the tetracarboxylic dianhydride is 2, 2 bis ((3,4-dicarboxyphenyl) monohexafluoropropane dianhydride, because transmission loss is extremely small. Is preferred.
[0071] また、屈曲性を付与するという観点から、 2, 2 ビス一((3, 4 ジカルボキシフエ- ル)一へキサフルォロプロパン二無水物力 なるポリイミドに下記式 (4)で表されるテ トラカルボン酸二無水物からなるポリイミドを共重合させたポリイミドを使用することも 可能である。  [0071] Further, from the viewpoint of imparting flexibility, 2, 2 bis ((3,4 dicarboxyphenol) -hexafluoropropane dianhydride power is expressed by the following formula (4). It is also possible to use a polyimide obtained by copolymerizing a polyimide made of tetracarboxylic dianhydride.
[0072] [化 8] 式 ( 4 )[0072] [Chemical 8] Formula (4)
Figure imgf000017_0001
Figure imgf000017_0001
[0073] (式中、 R は—O , 一 CO— , -SO 及び直接結合力 なる群力 選ばれるいず [0073] (where R is —O, one CO—, —SO and a group force consisting of direct bonding forces
13 2  13 2
れか 1つである。 )  One of them. )
ここに記載したフッ素置換基含有フルオレンジァミン成分とテトラカルボン酸二無水 物成分の組み合わせは、本発明の光学部品用ポリイミドを得るための一具体例を示 すものである。これらの組み合わせに限らず用いるテトラカルボン酸二無水物成分、 及びフッ素置換基含有フルオレンジァミン成分の組み合わせおよび使用比率を変え て、本発明の光学部品用ポリイミドを調整することが可能である。上記のテトラカルボ ン酸ニ無水物およびジァミンはそれぞれ 2種以上を併用してもよ ヽ。ポリアミド酸溶液 の製造反応に用いられる酸二無水物類とジァミン類の使用モル比率 = (酸二無水物 類の総モル数) Z (ジァミン類の総モル数)は、 0. 9以上 1. 5以下であることが好まし く、さらに好ましくは 0. 95以上 1. 3以下であることが好ましぐ特に好ましくは、 0. 98 以上 1. 2以下であることがポリアミド酸溶液力も得られるポリイミド榭脂中の未反応の 酸二無水物ゃジァミンを減少させる上で好まし 、。  The combination of the fluorine-containing group-containing fluorenediamine component and the tetracarboxylic dianhydride component described here shows one specific example for obtaining the polyimide for optical parts of the present invention. It is possible to adjust the polyimide for optical components of the present invention by changing the combination and use ratio of the tetracarboxylic dianhydride component and the fluorine substituent-containing fluorenedamine component as well as these combinations. Two or more of the above-mentioned tetracarboxylic dianhydrides and diamines may be used in combination. The molar ratio of acid dianhydrides and diamines used in the reaction for producing the polyamic acid solution = (total number of moles of acid dianhydrides) Z (total number of moles of diamines) is 0.9 or more 1. It is preferably 5 or less, more preferably 0.95 or more and 1.3 or less, particularly preferably 0.98 or more and 1.2 or less. Preferred in reducing unreacted acid dianhydride diamin in polyimide resin.
[0074] ポリイミドの製造に用いられるジァミンおよびテトラカルボン酸二無水物は、合成反 応の前に、精製されていることが好ましい。精製の方法は公知の方法から選択すれ ば良いが、例えば、ジァミンまたはテトラカルボン酸二無水物を加熱しながら溶解度 の小さい貧溶媒に溶解させ、急冷することにより再析出させる再結晶法などが挙げら れる。 [0074] The diamine and tetracarboxylic dianhydride used for the production of the polyimide are preferably purified before the synthetic reaction. The purification method may be selected from known methods, for example, a recrystallization method in which diamine or tetracarboxylic dianhydride is dissolved in a poor solvent with low solubility while heating and re-precipitated by rapid cooling. It is
[0075] また、ポリイミドを合成する前に、ジアミンゃテトラカルボン酸二無水物溶液を溶媒に 溶力しフィルタ一により濾過してから、必要な場合溶媒を除去して力もポリイミドの製 造に用いても良い。  [0075] Further, before synthesizing the polyimide, the diamine-tetracarboxylic dianhydride solution is dissolved in a solvent and filtered through a filter, and if necessary, the solvent is removed and the force is also used for producing the polyimide. May be.
[0076] <ポリイミドの製造方法 >  <Polyimide production method>
本発明の光学部品用ポリイミドは公知の製造方法により製造可能である。すなわち 、原料である 1種または 2種以上のテトラカルボン酸二無水物成分、及び 1種または 2 種以上のジァミン成分を実質的に等モル量使用し、有機極性溶媒中で重合してポリ アミド酸重合体溶液を得る。ポリアミド酸を合成するための好ましい溶媒は、アミド系 溶媒すなわち N, N ジメチルフオルムアミド、 N, N ジメチルァセトアミド、 N—メチ ル— 2—ピロリドンなどであり、 N, N ジメチルフオルムアミドが特に好ましく用いられ る。反応装置には、反応温度を制御するための温度調製装置を備えていることが好 ましぐ反応溶液温度として 60°C以下が好ましぐさらに、 40°C以下であることが反応 を効率良くし力も、ポリアミド酸の粘度が上昇しやす 、ことから好ま 、。 The polyimide for optical components of the present invention can be produced by a known production method. That is, one or more tetracarboxylic dianhydride components as raw materials, and one or two A polyamic acid polymer solution is obtained by polymerizing in an organic polar solvent using substantially equimolar amounts of at least one kind of diamine component. Preferred solvents for synthesizing the polyamic acid are amide solvents such as N, N dimethylformamide, N, N dimethylacetamide, N-methyl-2-pyrrolidone, and N, N dimethylformamide is particularly preferred. Preferably used. The reaction apparatus is preferably equipped with a temperature adjusting device for controlling the reaction temperature. The reaction solution temperature is preferably 60 ° C or less, and 40 ° C or less is effective for the reaction. This is also preferable because the viscosity of the polyamic acid is likely to increase.
ポリアミド酸溶液中のポリアミド酸の重量%は、有機溶媒中にポリアミド酸が 5〜50wt %、好ましくは 10〜40wt%、更に好ましくは、 15〜30wt%溶解されているのが取り 扱い面から好ましい。尚、ポリアミド酸の平均分子量は、 GPCの PEG (ポリエチレング リコール)換算で測定した際に重量平均分子量が 1万以上、好ましくは 5万以上、更 に好ましくは 10万以上であることがポリイミド榭脂を光学部品に使用する際に好まし い。 20万以上になると溶解性が低くなる為好ましくな!、。  The weight% of the polyamic acid in the polyamic acid solution is preferably 5 to 50 wt%, preferably 10 to 40 wt%, more preferably 15 to 30 wt% of the polyamic acid in the organic solvent from the viewpoint of handling. . The average molecular weight of the polyamic acid, when measured in terms of GPC PEG (polyethylene glycol), is such that the weight average molecular weight is 10,000 or more, preferably 50,000 or more, more preferably 100,000 or more. This is preferred when using grease in optical components. If it exceeds 200,000, the solubility becomes low, which is preferable!
[0077] このポリイミドの前駆体であるポリアミド酸を必要によりイミドィ匕する。このイミド化には 、熱キュア法及びケミカルキュア法の 、ずれかを用いる。  [0077] If necessary, the polyamic acid which is a precursor of the polyimide is imidized. For this imidization, any one of a thermal cure method and a chemical cure method is used.
[0078] 熱キュア法は、脱水閉環剤等を作用させずに加熱だけでイミド化反応を進行させる 方法である。具体的には、ガラス板やステンレスベルト、ステンレスドラムなどの支持 体上に流延塗布し、自己支持性を持つ程度に反応を進行させた後に支持体より引き 剥がし、端部をピン、クリップ、把持冶具などの方法で固定してさらに加熱して完全に イミドィ匕することで得られる。  [0078] The thermal cure method is a method in which an imidization reaction proceeds by heating alone without the action of a dehydrating ring-closing agent or the like. Specifically, it is cast-coated on a support such as a glass plate, stainless steel belt, or stainless drum, and after the reaction has progressed to the extent that it has self-supporting properties, it is peeled off from the support, and the end is pinned, clipped, It can be obtained by fixing with a gripping jig or other method, and further heating to complete imidization.
[0079] 熱キュア法の中には、ポリアミド酸溶液を製造した後に、真空乾燥器内で加熱しな 力 脱溶媒、脱水することによりイミドィ匕する方法もある。  [0079] In the heat curing method, there is a method in which, after the polyamic acid solution is produced, imidization is performed by desolvation and dehydration without heating in a vacuum dryer.
[0080] また、ケミカルキュア法は、ポリアミド酸有機溶媒溶液に、無水酢酸等の酸無水物に 代表される化学的転化剤 (脱水剤)と、イソキノリン、 β ピコリン、ピリジン等の第三 級ァミン類等に代表される触媒と、を作用させる方法である。脱水剤としてジシクロへ キシルカルポジイミド等のカルポジイミドィ匕合物を用いることも可能である。  [0080] In addition, the chemical cure method includes a polyamic acid organic solvent solution, a chemical conversion agent (dehydrating agent) represented by acid anhydrides such as acetic anhydride, and tertiary amines such as isoquinoline, β-picoline, and pyridine. And a catalyst typified by a class. It is also possible to use a calpositimide compound such as dicyclohexyl carpositimide as the dehydrating agent.
[0081] イミドィ匕に際して、脱水剤を併用することはイミドィ匕時間を短縮できる観点で好まし い。このような脱水剤としては、無水酢酸などの脂肪族酸無水物や芳香族酸無水物 などが挙げられる。無水酢酸を用いることがポリイミド榭脂の洗浄に適して 、ると 、う 点から好ましい。ポリアミド酸に対する脱水剤及びイミド化促進剤の添加量は、ポリア ミド酸の化学構造に依存するが、脱水剤の量は、(脱水剤のモル比 Zポリアミド酸中 のアミド基のモル比)で 3〜1. 2となるよう用いることができる。脱水剤の量が少ないと イミドィ匕が進行するのに時間が要する場合があり、逆に多すぎると分子量の低下を引 き起こす場合がある。 [0081] It is preferable to use a dehydrating agent in combination with imidizing from the viewpoint of shortening imidizing time. Examples of such dehydrating agents include aliphatic acid anhydrides such as acetic anhydride and aromatic acid anhydrides. Etc. It is preferable from the viewpoint that acetic anhydride is used for cleaning polyimide resin. The amount of dehydrating agent and imidization accelerator added to the polyamic acid depends on the chemical structure of the polyamic acid, but the amount of dehydrating agent is (molar ratio of dehydrating agent Z molar ratio of amide group in polyamic acid). It can be used to be 3 to 1.2. If the amount of the dehydrating agent is small, it may take time for the imidation to proceed. On the other hand, if the amount is too large, the molecular weight may be lowered.
[0082] 無論、ケミカルキュア法と熱キュア法を併用してもよぐイミド化の反応条件は、ポリ アミド酸の種類、得られる榭脂の形態、熱キュア法、および Zまたはケミカルキュア法 の選択等により変動し得る。  [0082] Of course, the reaction conditions for imidization in which the chemical curing method and the thermal curing method may be used in combination are the type of polyamic acid, the form of the obtained resin, the thermal curing method, and the Z or chemical curing method. It may vary depending on the selection.
[0083] イミドィ匕する際の温度は 50°C〜 120°Cで、加熱時間は 1〜 10時間であることが好ま しい。  [0083] The temperature during imidization is preferably 50 ° C to 120 ° C, and the heating time is preferably 1 to 10 hours.
[0084] 本発明のイミド榭脂粉体の抽出方法について記載する。上述のようにして得られた ポリイミド榭脂を含む溶液から、ポリイミド榭脂粉体を抽出する方法として、ポリイミド榭 脂、イミドィ匕促進剤を含有するポリイミド榭脂の溶液をポリイミド榭脂の貧溶媒中に投 入することで、ポリイミド榭脂を固形状態に抽出する方法を用いることができる。本発 明のポリイミド榭脂粉体とは、粉末状、フレーク状、種々の形態を含む固形物状態の ものであり、その平均粒径は、好ましくは 5mm以下であり、さらには 3mm以下、特に は lmm以下が好ましい。  [0084] The extraction method of the imide resin powder of the present invention will be described. As a method for extracting a polyimide resin powder from a solution containing the polyimide resin obtained as described above, a polyimide resin solution containing a polyimide resin and an imido accelerator is contained in a poor solvent for the polyimide resin. It is possible to use a method in which polyimide resin is extracted into a solid state. The polyimide resin powder of the present invention is in the form of a solid including powder, flakes and various forms, and the average particle size is preferably 5 mm or less, more preferably 3 mm or less, especially lmm or less is preferable.
[0085] 本発明で用いられるポリイミド榭脂の貧溶媒としては、ポリイミド榭脂の貧溶媒であつ て、ポリアミド酸及びポリイミド榭脂を溶解している溶媒として使用した有機溶剤と混 和するものを用いることができる。例えば、水、メチルアルコール、エチルアルコール 、イソプロピルアルコール、エチレングリコーノレ、トリエチレングリコール、 2—ブタノ一 ノレ、 2—ペンタノ一ノレ、 2—へキサノーノレ、シクロペンチノレアノレコーノレ、シクロへキシノレ アルコール、フエノール、 t ブチルアルコールなどが挙げられる。上記アルコールの 中でもイソプロピルアルコール、 2—ブタノール、 2—ペンタノール、フエノール、シクロ ペンチルアルコール、シクロへキシルアルコール、 t ブチルアルコール等のアルコ ールが、抽出後のポリイミド榭脂の安定性が高くなる、イミド化率が高くなるという観点 力 好まし 、。さらにはイソプロピルアルコールが好まし!/、。 [0086] 投入方法:ポリイミド榭脂の溶液を貧溶媒中に投入する際には、ポリアミド酸溶液の 固形分濃度が 15%以下、好ましくは 10%以下の状態になるように希釈を行った後に 、貧溶媒溶液中にポリイミド溶液を投入することが好ましい。ポリイミド榭脂溶液の投 入直前の直径は lmm以下が好ましぐ更に好ましくは直径が 0. 5mmになるように投 入することが乾燥工程で完全に溶媒を除去する上で好ま 、。貧溶媒量はポリイミド 榭脂溶液の 3倍以上の量で抽出することが好ましい。 [0085] The poor solvent for polyimide resin used in the present invention is a poor solvent for polyimide resin, which is mixed with an organic solvent used as a solvent in which polyamic acid and polyimide resin are dissolved. Can be used. For example, water, methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycolanol, triethylene glycol, 2-butanol monole, 2-pentanol monore, 2-hexanol nore, cyclopentenoleanoreconole, cyclohexenole alcohol, Examples include phenol and t-butyl alcohol. Among the above alcohols, alcohols such as isopropyl alcohol, 2-butanol, 2-pentanol, phenol, cyclopentyl alcohol, cyclohexyl alcohol, and t-butyl alcohol increase the stability of the polyimide resin after extraction. The viewpoint power that the imidization rate becomes high is preferable. Furthermore, isopropyl alcohol is preferred! /. [0086] Charging method: When a polyimide resin solution is charged into a poor solvent, after diluting so that the solid content concentration of the polyamic acid solution is 15% or less, preferably 10% or less. The polyimide solution is preferably introduced into the poor solvent solution. In order to completely remove the solvent in the drying process, it is preferable that the diameter immediately before the polyimide resin solution is introduced is 1 mm or less, and more preferably that the diameter is 0.5 mm. The amount of the poor solvent is preferably extracted in an amount that is at least three times that of the polyimide resin solution.
[0087] 例えば、榭脂の投入直後は榭脂が糸状になる場合があるので、できるだけ細か!/ヽ フレーク状のポリイミド榭脂の粉体を得るためには、貧溶媒中で攪拌することが好まし い。また、完全にポリイミド榭脂溶液を投入後、貧溶媒中のポリイミド溶解用に用いて いる溶媒量が多量になると、ポリイミド榭脂が溶解するので、投入後に貧溶媒を最初 に加えた溶媒量と同量の溶媒を加えることが好ましぐ更に好ましくは 2倍量の溶媒を 添加することが好ま Uヽ。大量の溶媒を添加することで貧溶媒中に溶解したイミド榭 脂が再度沈殿すると共に、粉末状の榭脂となる。  [0087] For example, since the resin may become thread-like immediately after the addition of the resin, it is as fine as possible! / * In order to obtain a flake-shaped polyimide resin powder, it is necessary to stir in a poor solvent. I like it. Also, if the amount of solvent used for dissolving the polyimide in the poor solvent becomes large after completely adding the polyimide resin solution, the polyimide resin dissolves. It is preferable to add the same amount of solvent, more preferably twice the amount of solvent. By adding a large amount of solvent, the imide resin dissolved in the poor solvent is precipitated again and becomes a powdery resin.
[0088] 洗浄方法:固形のポリイミド榭脂を取り出して、アルコール等の貧溶媒中で洗浄する  [0088] Cleaning method: Solid polyimide resin is taken out and washed in a poor solvent such as alcohol.
[0089] 乾燥方法:本発明で凝固させフレーク状にした榭脂固形物の乾燥方法は、真空乾 燥によってもよいし熱風乾燥によってもよい。乾燥温度は酸素存在下では 120°C以 上では着色が起こる場合がある。したがって乾燥は 120°C以下で行うことが望ましい 。真空中や不活性ガス雰囲気でも、 120°C以下で行うことが望ましい。 [0089] Drying method: The method for drying the solidified flaky solid material in the present invention may be vacuum drying or hot air drying. Coloring may occur at a drying temperature of 120 ° C or higher in the presence of oxygen. Therefore, it is desirable to dry at 120 ° C or less. It is desirable to carry out at 120 ° C or less even in vacuum or in an inert gas atmosphere.
[0090] 上記方法で作製したポリイミド榭脂の分子量は、 GPCの PEG (ポリエチレングリコー ル)換算で測定した際に重量平均分子量が 1万以上 50万以下であることが好ましぐ さらに好ましくは、 5万以上 40万以下であることが好ましぐ特に好ましくは 8万以上 3 0万以下であることがポリイミド榭脂を例えばフィルム体に表面に塗布する際に塗布 斑が少なぐ取扱が容易であることから好ましい。  [0090] The molecular weight of the polyimide resin prepared by the above method is preferably a weight average molecular weight of 10,000 or more and 500,000 or less when measured in terms of PEG (polyethylene glycol) of GPC. It is preferably 50,000 or more and 400,000 or less, particularly preferably 80,000 or more and 300,000 or less. When polyimide resin is applied to the surface of a film body, for example, it is easy to handle with few spots. This is preferable.
このようにして得られるポリイミド榭脂の粉体は、有機溶剤に対する溶解性が高ぐ実 用上十分なイミド化率、分子量を有している。ここで実用上十分なイミドィ匕率、分子量 とは適用用途により当業者が決定するものであるが、一般的にイミドィ匕率 95%以上、 好ましくは 98%以上、更に好ましくは 99%以上であり、重量平均分子量は 5万以上、 好ましくは 8万以上、さらに好ましくは 10万以上である。 20万以上であると溶解性が 低下する傾向にある。 The polyimide resin powder thus obtained has high imidization rate and molecular weight for practical use with high solubility in organic solvents. Here, the practically sufficient imidi ratio and molecular weight are determined by those skilled in the art depending on the application, but generally the imido ratio is 95% or more, preferably 98% or more, more preferably 99% or more. , Weight average molecular weight more than 50,000, Preferably it is 80,000 or more, more preferably 100,000 or more. If it is 200,000 or more, the solubility tends to decrease.
[0091] 上記のようにして得られたポリイミドを通常は溶媒に溶解して使用する。 [0091] The polyimide obtained as described above is usually used by dissolving in a solvent.
[0092] ポリイミドを溶解させる溶媒としては、アミド系溶媒すなわち N, N—ジメチルフオル ムアミド、 N, N—ジメチルァセトアミド、 N—メチル—2—ピロリドンなどであり、 N, N— ジメチルフオルムアミドゃ、ジォキソラン、メチルェチルケトン、などが挙げられる。 [0092] Solvents for dissolving polyimide include amide solvents, that is, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and the like. N, N-dimethylformamide , Dioxolane, methyl ethyl ketone, and the like.
[0093] ポリイミド溶液の調整方法としては、粉末化または粉砕化後に溶媒を加える方法や[0093] As a method for adjusting the polyimide solution, a method of adding a solvent after pulverization or pulverization,
、溶媒中へ粉末ィ匕または粉砕ィ匕ポリイミドを投入して溶解させる方法がある。大量の 溶媒にポリイミドを溶解させた後に、溶媒を自然揮発させるなどしてポリイミド溶液の 濃度を上昇させても良い。また、必要に応じて溶解中に加熱しても良い。 There is a method in which a powdery or pulverized polyimide is introduced into a solvent and dissolved. After dissolving the polyimide in a large amount of solvent, the concentration of the polyimide solution may be increased by volatilizing the solvent spontaneously. Moreover, you may heat during melt | dissolution as needed.
[0094] ポリイミド榭脂を有機溶媒中へ添加した後に、遠心機にかけて遠心混合したり、振 動を与えるなどしても良い。 [0094] After the polyimide resin is added to the organic solvent, it may be mixed by centrifugation using a centrifuge, or may be vibrated.
[0095] ポリイミド溶液の濃度は、 10重量%以上 60重量%以下の濃度であることが好ましい[0095] The concentration of the polyimide solution is preferably 10 wt% or more and 60 wt% or less.
。さらには、ポリイミド薄膜やポリイミドフィルムの厚み制御を精度良くできるという点か ら 20重量%以上の濃度であることが好ま 、。 . Furthermore, a concentration of 20% by weight or more is preferable because the thickness of the polyimide thin film or polyimide film can be accurately controlled.
[0096] 10重量%未満の場合、例えば、シリコン基板上にポリイミド薄膜を形成するために スピンコート等をする場合に、平滑で厚み均一な薄膜を形成することができな 、場合 がある。 [0096] When the content is less than 10% by weight, for example, when a spin coating or the like is performed to form a polyimide thin film on a silicon substrate, a smooth and uniform thin film may not be formed.
[0097] ポリイミド溶液の濃度が 60重量%より大きくなると、ポリイミド溶液の流れ性が極端に 悪くなる傾向にあり、ひどい場合には、流れなくなってしまう。  [0097] If the concentration of the polyimide solution exceeds 60% by weight, the flowability of the polyimide solution tends to be extremely poor, and if it is severe, it does not flow.
[0098] さらに、ポリイミドフィルムまたはポリイミド薄膜を形成した場合、平滑性が悪ぐ厚み の均一性が失われるほか、ポリイミド薄膜やポリイミドフィルム中に微小な気泡が含有 されるなどの欠陥が生じる場合がある。 [0098] Furthermore, when a polyimide film or a polyimide thin film is formed, the uniformity of the thickness, which is poor in smoothness, is lost, and defects such as the inclusion of minute bubbles in the polyimide thin film or the polyimide film may occur. is there.
[0099] 前記ポリイミド溶液は、パーティクル含有量が少な 、ほど好ま 、。 [0099] The polyimide solution is more preferable as it has a smaller particle content.
[0100] ここでパーティクルとは、空気中の塵、埃、溶媒に未溶解成分などを言う。パーティ クルが多いと、光散乱等が生じてしまい、入力光パワーをロスすることになる。 [0100] Here, the particles refer to dust in the air, dust, components not dissolved in the solvent, and the like. If there are many particles, light scattering will occur and input light power will be lost.
[0101] 具体的には、 0. 3 m以上のパーティクル含有量は 50000個/ g以下であることが 好まし 、。パーティクルの含有量は少な 、ほど好まし!/、。 [0102] 0. 3 μ mのパーティクルの除去方法としては、メンブレンフィルターなどを用いてポ リイミド溶液を濾過する方法が挙げられる。効率良く濾過するためには、ポリイミド合 成前の、ジァミンおよびテトラカルボン酸二無水物を溶液の状態で 0. 2 mのメンブ レンフィルターを用いて濾過した後にポリイミド榭脂の合成をはじめても良い。 [0101] Specifically, the content of particles of 0.3 m or more is preferably 50000 particles / g or less. Less particle content is preferred! /. [0102] Examples of a method for removing 0.3 μm particles include a method of filtering a polyimide solution using a membrane filter or the like. In order to efficiently filter, synthesis of polyimide resin may be started after diamine and tetracarboxylic dianhydride before synthesis of polyimide are filtered using a 0.2 m membrane filter. .
[0103] 本発明の光学部品用ポリイミドは、ジォキソラン、ジメチルホルムアミド、 N—メチル  [0103] The polyimide for optical components of the present invention is dioxolane, dimethylformamide, N-methyl.
2—ピロリドン、 N, N ジメチルァセトアミド及びメチルェチルケトンより選ばれる単 独溶媒または混合溶媒への 25°Cでの溶解度が、 20重量%以上であることが好まし い。 20重量%未満であると、ポリイミド溶液の体積が大きくなり、保管に必要な容積が 増えてしまうということの他に、該溶液を用いて薄膜形成させる場合に、溶液粘度が 小さいため、また溶質の濃度が低いため所望の厚みを有する薄膜を得ることができな V、と 、つた傾向が有るからである。  The solubility at 25 ° C. in a single solvent or mixed solvent selected from 2-pyrrolidone, N, N dimethylacetamide and methyl ethyl ketone is preferably 20% by weight or more. If the amount is less than 20% by weight, the volume of the polyimide solution increases and the volume required for storage increases. In addition, when forming a thin film using the solution, the solution viscosity is small, and the solute This is because there is a tendency that V cannot obtain a thin film having a desired thickness because the concentration of V is low.
[0104] ポリイミド溶液の濃度が 60重量%より大きくなると、ポリイミドフィルムまたはポリイミド 薄膜を形成した場合、平滑性が悪ぐ厚みの均一性が失われるほか、ポリイミド薄膜 やポリイミドフィルム中に微小な気泡が含有されるなどの欠陥が生じると 、つた問題が ある。  [0104] When the concentration of the polyimide solution exceeds 60% by weight, when a polyimide film or a polyimide thin film is formed, the uniformity of thickness is lost due to poor smoothness, and minute bubbles are formed in the polyimide thin film or polyimide film. When defects such as inclusion occur, there are other problems.
[0105] 本発明の光学部品は、ポリイミド及び Zまたは、ポリアミド酸を含んで 、る。ポリアミド 酸は、前記のポリイミドの前駆体である。ポリアミド酸の製造方法は、前記のくポリイミ ドの製造方法 >の欄に記載したものと同じである。  [0105] The optical component of the present invention contains polyimide and Z or polyamic acid. Polyamic acid is a precursor of the polyimide. The production method of the polyamic acid is the same as that described in the column “Production Method of Polyimide” above.
[0106] 本発明におけるポリイミド榭脂のガラス転移温度(以下、 Tg)は、 150°C以上である ことが望ましい。 150°C未満になると、長期信頼性試験やノヽンダリフロー工程などに 耐えることができず、不具合を生じる場合がある。 [0106] The glass transition temperature (hereinafter, Tg) of the polyimide resin in the present invention is preferably 150 ° C or higher. If the temperature falls below 150 ° C, it may not be able to withstand long-term reliability tests and nonder reflow processes, resulting in malfunctions.
[0107] Tgの測定方法としては、公知の方法を使用すれば良い。 JIS K 7121 : 1987に 準拠すれば良い。 [0107] As a method for measuring Tg, a known method may be used. It only has to comply with JIS K 7121: 1987.
[0108] 例えば、 TMA法、 DSC法、 DMA法などがある。 TMA法は、試験片を室温から例 えば 10°CZ分の割合で昇温させ、熱分析装置にて厚さ方向の熱膨張量を測定し、 横軸に温度、縦軸に熱膨張率をプロットしたグラフを作成する。ガラス転移点の前後 の曲線に接線を引き、この接線の交点から Tgを求める方法である。 DSC法は、試験 片を室温力 例えば 20°CZ分の割合で昇温させ、示差走査熱量計にて発熱量を測 定し、横軸に温度、縦軸に発熱量をとつたグラフを作成する。作成グラフ中、吸熱曲 線および発熱曲線に 2本の延長線を引き、延長線間の 1Z2直線と吸熱曲線の交点 から Tgを求める方法である。 DMA法は、引張り法とも呼ばれ、試験片を室温から例 えば、 2°CZ分の割合で昇温させ、粘弾性測定装置にて試験片の動的粘弾性およ び損失正接を測定し、横軸温度、第一縦軸に弾性率、第二縦軸に損失正接をプロッ トしたグラフを作成し、損失正接のピーク温度から Tgを求める方法である。採用する 方法が異なると、得られるデータも若干異なる傾向にあるため、本発明においては、 DMA法により得られた値を Tgとして採用することとした。 [0108] Examples include the TMA method, the DSC method, and the DMA method. In the TMA method, the temperature of a specimen is raised from room temperature, for example, at a rate of 10 ° CZ, and the amount of thermal expansion in the thickness direction is measured with a thermal analyzer, and the horizontal axis represents temperature and the vertical axis represents thermal expansion coefficient. Create a plotted graph. In this method, a tangent line is drawn on the curve before and after the glass transition point, and Tg is obtained from the intersection of these tangent lines. In the DSC method, the test piece is heated at room temperature, for example, at a rate of 20 ° CZ, and the calorific value is measured with a differential scanning calorimeter. And create a graph with temperature on the horizontal axis and calorific value on the vertical axis. In this graph, two extension lines are drawn on the endothermic curve and exothermic curve, and Tg is obtained from the intersection of the 1Z2 line and endothermic curve between the extension lines. The DMA method is also called a tensile method. For example, the test piece is heated from room temperature at a rate of 2 ° CZ, and the dynamic viscoelasticity and loss tangent of the test piece are measured with a viscoelasticity measuring device. This is a method of creating a graph plotting the temperature on the horizontal axis, the elastic modulus on the first vertical axis, and the loss tangent on the second vertical axis, and obtaining Tg from the peak temperature of the loss tangent. Since the data obtained tends to be slightly different depending on the method used, in the present invention, the value obtained by the DMA method is adopted as Tg.
[0109] 本発明における光学部品用ポリイミドの耐熱性は、 JIS c 0021 : 1995に準拠して 測定される。同様に、耐湿性 (JIS c 0032 : 1996)、耐寒性 (JIS c 0020 : 1995) 、耐屈曲性 CFIS K 6272 : 2003)は各 JIS規格に準拠して測定する。  [0109] The heat resistance of the polyimide for optical components in the present invention is measured according to JIS c 0021: 1995. Similarly, moisture resistance (JIS c 0032: 1996), cold resistance (JIS c 0020: 1995), flex resistance CFIS K 6272: 2003) are measured according to each JIS standard.
[0110] 本発明における光学部品用ポリイミドの耐熱性は、 150°C以上、好ましくは 180°C 以上、更には 200°C以上であることが望ましい。耐熱性が高い程、半田耐熱性に優 れることになり、また、電気配線と混載してもリフロー工程などの加熱工程に耐えること ができ、アプリケーションの幅が広がるからである。  [0110] The heat resistance of the polyimide for optical components in the present invention is preferably 150 ° C or higher, preferably 180 ° C or higher, and more preferably 200 ° C or higher. This is because the higher the heat resistance, the better the heat resistance of the solder, and it can withstand a heating process such as a reflow process even if it is mixed with electrical wiring, thereby expanding the range of applications.
[0111] 本発明における光学部品用ポリイミドを用いて光導波路を作製した場合、特に、光 導波路コアに用いた場合の該光導波路の機械および物理的物性として、次のような ものがある。即ち、曲げ試験、高温放置試験、低温放置試験、高温高湿放置試験、 温湿度サイクル試験、温度サイクル試験がある。各試験の評価は、光導波路への挿 入損失変化 [dB]で表される。なお、前記試験の詳細は、高分子 (ポリマー)光導波 路の試験方法として、 JPCA規格 (JPCA— PE02— 05— 01 S— 2004)に記載され ている。  [0111] When an optical waveguide is produced using the polyimide for an optical component in the present invention, the mechanical and physical properties of the optical waveguide, particularly when used for an optical waveguide core, include the following. That is, there are a bending test, a high temperature storage test, a low temperature storage test, a high temperature and high humidity storage test, a temperature and humidity cycle test, and a temperature cycle test. The evaluation of each test is expressed as the change in insertion loss [dB] into the optical waveguide. The details of the test are described in JPCA standards (JPCA-PE02-05-01S-2004) as a test method for polymer optical waveguides.
[0112] 各試験においていずれも、試験前後の挿入損失変化が 3dB以下であり、更には 2d B以下であり、更には、 ldB以下であることが好ましい。光信号の伝送ロスが小さいた め、実装パッケージの大きさを小さくでき、光信号光源の出力を小さくできるといった 禾 IJ点がある。  [0112] In each test, the change in insertion loss before and after the test is 3 dB or less, more preferably 2 dB or less, and further preferably 1 dB or less. Since the optical signal transmission loss is small, the size of the mounting package can be reduced and the output of the optical signal light source can be reduced.
[0113] 挿入損失が 3dBを超える場合は、携帯機器や情報家電などに搭載した場合の実 用耐性に劣り製品寿命を低下させることになる場合がある。 [0114] 光学部品が光導波路の場合、その断面形状は、作製プロセスにより異なる。例えば 、フォトリソグラフィ一と RIEを用いた方法では、矩形 (正方形、長方形、台形)になり、 自己形成光導波路作製プロセスでは、榭脂を硬化させるレーザーのビームプロファ ィルの影響を大きく受ける。レーザーが光ファイバ一より出射されている場合には、作 製される光導波路の断面形状は、円または楕円になる傾向にある。 [0113] If the insertion loss exceeds 3 dB, it may be inferior in practical resistance when used in mobile devices or information appliances, and may shorten the product life. [0114] When the optical component is an optical waveguide, its cross-sectional shape varies depending on the fabrication process. For example, the method using photolithography and RIE is rectangular (square, rectangular, trapezoidal), and the self-forming optical waveguide fabrication process is greatly affected by the laser beam profile that hardens the resin. When the laser is emitted from one optical fiber, the cross-sectional shape of the produced optical waveguide tends to be a circle or an ellipse.
[0115] どのような断面形状が良いか、ということについては、用途により様々であり、適した 形状を選択すれば良い。  [0115] What kind of cross-sectional shape is good depends on the application, and a suitable shape may be selected.
[0116] 光導波路の形としては、単に光を伝送させる光配線として用いる場合には、直線状 になることが多い。該光配線に、合分岐機能を付与する場合には、例えば Y分岐構 造やリング形状にすることがある。また、光配線と電気配線を混載するような光電気混 載基板では、光を必要なところへ伝送させるために、光配線を 3次元化する場合があ る。このため、 3次元構造の光導波路という形態もある。  [0116] The shape of the optical waveguide is often linear when used simply as an optical wiring for transmitting light. When the optical wiring is provided with a coupling / branching function, for example, a Y-branching structure or a ring shape may be used. Also, in an opto-electric hybrid board where optical and electrical wiring are mixed, the optical wiring may be made three-dimensional in order to transmit the light to the necessary place. For this reason, there is a form of an optical waveguide having a three-dimensional structure.
[0117] 光電気混載基板とは、光信号と電気信号の両方が積層も含めて一繋がりの基板上 に形成されているものを言い、ベースに薄い絶縁材料が用いられ、その上に電気配 線が形成され、更に、積層または連結する形で光配線が繋がり、光信号と電気信号 を相互に変換する変翻 (フォトディテクターやレーザーダイオードなど)が搭載され た形態をとつている。  [0117] An opto-electric hybrid board is one in which both optical signals and electric signals are formed on a single board including a laminate, and a thin insulating material is used for the base, and an electric distribution is provided on the base. Lines are formed, and optical wiring is connected in the form of lamination or connection, and a transformation (photodetector, laser diode, etc.) that converts optical signals and electrical signals into each other is mounted.
[0118] 電気配線材料には、銅やアルミニウム、ニッケル、金、ステンレススチールなどの金 属ゃ合金、その他には導電性の炭素や銀粉末を含んだペーストなどが電気配線材 料として用いられる。  [0118] As an electrical wiring material, a metal alloy such as copper, aluminum, nickel, gold, and stainless steel, and a paste containing conductive carbon or silver powder are used as the electrical wiring material.
[0119] 光電気混載基板の電気配線部は、絶縁材料基板の片面または両面、多層などの 形態をもって、配線される。他に、リジッド'フレックス、両面露出構造、フライイングリ ードなどの形態もある。  [0119] The electrical wiring portion of the opto-electric hybrid board is wired in the form of one or both surfaces of the insulating material substrate, multilayer, and the like. Other forms include rigid 'flex', double-sided exposed structure and fly-in-grade.
[0120] 光学部品の中でも、特に光導波路の適用範囲は広い。光信号と電気信号を併用 する光電気混載基板に光学部品が、特には光導波路や合分波器が一般に用いられ る。  [0120] Among optical components, the application range of the optical waveguide is particularly wide. Optical components, particularly optical waveguides and multiplexers / demultiplexers are generally used for an opto-electric hybrid board that uses both optical signals and electrical signals.
[0121] 該光電気混載基板とは、その構成が、光伝送層と電気伝送層が別々に構成され、 更に積層されている場合や、電気伝送層と同一層内に、光導波路による光配線が形 成されている場合があり、用途に応じて種々の形態がある。 [0121] The opto-electric hybrid board has a configuration in which the optical transmission layer and the electric transmission layer are separately configured and further laminated, or in the same layer as the electric transmission layer, the optical wiring by the optical waveguide. Shape Depending on the application, there are various forms.
[0122] 光電気混載基板は、基板自体が板状で固!ヽもの (簡単に曲げられな ヽもの)とある 曲率半径をもって自由に曲げることができるものがあり、前者をリジッド基板と呼び、 後者をフレキシブル基板と呼ぶ。  [0122] The opto-electric hybrid board has a plate-like and solid board that can be bent freely with a certain radius of curvature. The former is called a rigid board. The latter is called a flexible substrate.
[0123] 例えば、フレキシブルな光電気混載基板にっ ヽて記載すると、電気配線部と光配 線部があり、電気配線部は既知の方法により形成された後、光配線部を既に形成し たフィルム等を、既作製の電気配線部に積層する場合や、電気配線部を形成した後 に、同一面内に光配線部を形成することもある。  [0123] For example, to describe a flexible opto-electric hybrid board, there are an electric wiring portion and an optical wiring portion, and the electric wiring portion is already formed after the electric wiring portion is formed by a known method. In some cases, a film or the like is laminated on an already produced electric wiring part, or after the electric wiring part is formed, the optical wiring part is formed in the same plane.
[0124] また、絶縁材料基板の上下別に電気配線部と光配線部を形成することもある。  [0124] In addition, the electrical wiring portion and the optical wiring portion may be formed separately on the upper and lower sides of the insulating material substrate.
[0125] 光電気混載基板は、高速な信号のやり取りが必要で、電気ノイズによる電気信号伝 送損失が大きくなつてしまう機器内に適用される。例えば、携帯電話のディスプレイと 操作部を繋ぐ配線(ディスプレイモジュール)、 DVD、 HDD VDや Blue— Rayデイス クを用いたといった小型ハードディスクの内部、 CDのピックアップ部、インクジェットプ リンターのプリントヘッド部の信号配線部、ノート PCでは、液晶ディスプレイとハード ディスク部を繋ぐ配線部などがある。  [0125] The opto-electric hybrid board is applied to a device that requires high-speed signal exchange and causes large electric signal transmission loss due to electric noise. For example, wiring (display module) that connects the display of the mobile phone to the operation unit, the inside of a small hard disk such as a DVD, HDD VD, or Blue-Ray disk, the signal pickup of the CD pickup unit, and the print head unit of the inkjet printer And notebook PCs have a wiring section that connects the liquid crystal display and the hard disk section.
[0126] また、こうした小型機器ではなぐ光通信機器であるバックプレーンボード、大容量 サーバー、ルーター等のボード間配線にも使用され、高速 LSIチップ間なども対象と なる。さら〖こ、複写機内のボード、車載制御機器の配線基板などがある。また、近年ィ ンターネットとの融合が進むテレビ (双方向通信など)や、 DVD機器、家庭用ゲーム 機などに光電気混載基板が使用され得る。  [0126] Also, it is used for inter-board wiring of backplane boards, large-capacity servers, routers, etc., which are optical communication devices that are not such small devices, and also covers high-speed LSI chips. Sarahoko, boards in copiers, wiring boards for in-vehicle control equipment. In addition, opto-electric hybrid boards can be used in TVs (two-way communication, etc.), DVD devices, home game machines, etc., which have recently been integrated with the Internet.
[0127] 光信号を電気信号に変換するためには、光信号を受光器に入射する必要がある。  [0127] In order to convert an optical signal into an electrical signal, the optical signal needs to be incident on a light receiver.
光信号を伝送する場合、例えば、光導波路を基板上に直線部や曲線部を繋げて、 最終的に受光器に接続すれば良いように思われる力 曲率の大きな光導波路内を 伝送される光は、光導波路コア部に閉じこめられずにクラッドに漏洩し、伝送効率が 極端に低下してしまう。従って、大きな曲率を有する光導波路を使用することは、むし ろ好ましくない。そこで、光導波路のその延長線上に受光器が無い場合には、 45度 ミラー等を使用して、光信号を反射させて受光器に入射する場合がある。光発振器 力ゝら光導波路コア部に光を入射させる場合も同様に、ミラーを使用することがある。さ らには、光ファイバ一端部を V溝型に切削したものを光信号の取り出しとして用いる 場合もある。 When transmitting an optical signal, for example, light transmitted through an optical waveguide with a large curvature that seems to be sufficient if the optical waveguide is connected to a linear part or curved part on a substrate and finally connected to a light receiver. Leaks into the cladding without being confined to the core of the optical waveguide, resulting in extremely low transmission efficiency. Therefore, it is rather undesirable to use an optical waveguide having a large curvature. Therefore, when there is no light receiver on the extension line of the optical waveguide, the optical signal may be reflected and incident on the light receiver using a 45 degree mirror or the like. Similarly, a mirror may be used when light is incident on the core portion of the optical waveguide. The In some cases, one end of an optical fiber cut into a V-groove is used to extract an optical signal.
[0128] 本発明における光学部品用ポリイミドの耐屈曲性を評価する指標を導体抵抗値 が 80%以上上昇する屈曲回数とした。該光学部品用ポリイミド榭脂を用いて作製し たフレキシブルプリント基板 (該構成は以下の通り:ベースフィルムの上に接着層を有 し、該接着層の上に導体回路が形成され、該導体回路全体をカバーするように更な る接着剤層を有し、この接着層の上にカバーレイが積層される構成)を幅 7mm、長さ 150mmの矩形状に切り出し、下記の条件で耐屈曲性を評価した場合の導体抵抗 値が 80%以上上昇する屈曲回数を求める。即ち、雰囲気温度 80°C、ストローク 25m m、屈曲速度 25Hz、曲率半径 2mmである。  [0128] The index for evaluating the bending resistance of the polyimide for optical components in the present invention was the number of bendings at which the conductor resistance value increased by 80% or more. A flexible printed circuit board produced using the polyimide resin for optical components (the structure is as follows: an adhesive layer is formed on a base film, and a conductor circuit is formed on the adhesive layer. It has a further adhesive layer so as to cover the whole, and a cover lay is laminated on this adhesive layer) into a rectangular shape with a width of 7mm and a length of 150mm. Obtain the number of flexing times when the conductor resistance rises by 80% or more. That is, the ambient temperature is 80 ° C, the stroke is 25 mm, the bending speed is 25 Hz, and the curvature radius is 2 mm.
[0129] 本発明における光学部品用ポリイミドを上記形態のフレキシブルプリント基板に形 成されたときの、屈曲回数は、 1万回以上であり、好ましくは 10万回以上であることが 望ましい。実用耐性が延び、製品寿命を長くすることができるからである。  [0129] When the polyimide for an optical component according to the present invention is formed on the flexible printed board having the above-described configuration, the number of bendings is 10,000 times or more, preferably 100,000 times or more. This is because practical durability is extended and product life can be extended.
[0130] 光電気混載板は、上述のように携帯電話のディスプレイモジュールとしても用いら れることを考えるに、耐屈曲性が求められる。該耐屈曲性の評価は、既述の耐屈曲 性試験に準拠すれば良い。光電気混載板としては、屈曲耐性は、屈曲回数で 1万回 以上であり、好ましくは 10万回以上であることが望ましい。実用耐性が延び、製品寿 命を長くすることができるからである。  [0130] Considering that the opto-electric hybrid board is also used as a display module of a mobile phone as described above, it is required to have bending resistance. The evaluation of the bending resistance may be based on the bending resistance test described above. For an opto-electric hybrid board, the bending resistance is 10,000 times or more, preferably 100,000 times or more in terms of the number of times of bending. This is because practical durability is extended and product life can be extended.
[0131] 本発明の実施例における屈曲耐性評価(MIT試験)では 50 mのフィルムを幅 15 mm、長さ 110mmの矩形状に切り出し、雰囲気温度 25°C、曲率半径 0. 38mm,屈 曲角度 135° 、屈曲速度 3Hz、荷重 lOOgの条件で屈曲試験を実施し、 300回以上 の屈曲回数を望ま 、特性であるとした。  [0131] In the bending resistance evaluation (MIT test) in the examples of the present invention, a 50 m film was cut into a rectangular shape with a width of 15 mm and a length of 110 mm, an ambient temperature of 25 ° C, a radius of curvature of 0.38 mm, and a bending angle. A bending test was conducted under the conditions of 135 °, a bending speed of 3 Hz, and a load of lOOg.
[0132] 光学部品の中では、特に光導波路の形態が頻度高く利用される。 FTTHの構築に ためには、各家庭に引き込んだ光ファイバ一を PCに繋ぐための装置である ONUを 作製する。該 ONUは、光ファイバ一からの光信号を、光導波路にいったん入射し、 フォトダイオードへ入射、電気信号へ変換させる機能を有して 、る。  [0132] Among optical components, the form of an optical waveguide is particularly frequently used. In order to build FTTH, we will make ONU, which is a device for connecting the optical fiber drawn into each home to a PC. The ONU has a function of once entering an optical signal from the optical fiber into the optical waveguide, entering the photodiode, and converting it into an electrical signal.
光導波路と光ファイバ一を接続する必要があるが、光軸ァライメントを精度良く行う必 要がある。その際、基板に POFを固定するための V溝が形成してあっても良い。該 V 溝に光ファイバ一をセットした場合に光ファイバ一コアが来る高さに、光導波路をはじ めとした光学部品の光軸 (例えば、光導波路の場合は光導波路コアの光軸)が来るよ うに光学部品を設計しておけば良い。該 V溝を利用することによって、光ファイバ一と 光導波路をはじめとした光学部品との光接続を改善することができる。 It is necessary to connect the optical waveguide and the optical fiber, but it is necessary to perform optical axis alignment with high accuracy. At that time, a V-groove for fixing the POF to the substrate may be formed. The V When an optical fiber is set in the groove, the optical axis of the optical component including the optical waveguide (for example, in the case of an optical waveguide) is at the height where the optical fiber core comes. Just design the optical components. By using the V-groove, the optical connection between the optical fiber and an optical component such as an optical waveguide can be improved.
[0133] 本発明における光学部品用ポリイミドは、光信号を必要に応じて取り出したり加え たりするアドドロップ、異なる波長の光信号を 1本のファイバーに合波または分波する ための波長フィルター、光信号を ONZOFFさせるマッハツェンダー型光スィッチ、 熱光学型光スィッチなども光学部品として挙げられる。  [0133] The polyimide for an optical component in the present invention includes an add / drop for extracting and adding an optical signal as necessary, a wavelength filter for combining or demultiplexing optical signals of different wavelengths into one fiber, and an optical signal. Mach-Zehnder type optical switches that turn signals on and off, thermo-optic type optical switches, etc. are also examples of optical components.
[0134] 本発明における光学部品用ポリイミドは、その耐熱性および長期信頼性の高さから 、車載光学部品としても好適に使用することができる。即ち、車内 LAN用に使用され る光学部品であれば何でも良ぐ例えば、カーナビゲーシヨンシステムにおけるデイス プレイモジュール内に使用される光学部品、例えば、光導波路、合分波器などがそ れである。  [0134] The polyimide for optical components according to the present invention can be suitably used as an in-vehicle optical component because of its high heat resistance and long-term reliability. In other words, any optical component can be used as long as it is used for in-vehicle LAN. For example, an optical component used in a display module in a car navigation system, for example, an optical waveguide, a multiplexer / demultiplexer, etc. .
実施例  Example
[0135] 以下、本発明を実施例に基づいて具体的に説明する。ただし、本発明は、これらの 実施例によって限定されるものではなぐ種々の実施形態の変更が可能である。  Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to these examples, and various modifications can be made.
[0136] (実施例 1)  [Example 1]
攪拌翼がっ 、た容器に、モレキュラーシーブにて十分に脱水したジメチルホルムァ ミド(DMF)を lOOOg入れ、 9, 9—ビス(3—フルオロー 4—ァミノフエ-ル)フルオレン 77gをカ卩え、完全に溶解するまで攪拌した。この系を 0°Cに冷却し、 2, 2—ビス一((3 , 4ージカルボキシフエ-ル)一へキサフルォロプロパン二無水物 89gを徐々〖こカロえ、 3時間攪拌し、ポリアミド酸 (ポリアミド酸)溶液 Iを得た。  In a container with a stirring blade, put dimethylformamide (DMF) fully dehydrated in a molecular sieve into lOOOg, and store 77 g of 9, 9-bis (3-fluoro-4-aminophenol) fluorene. Stir until completely dissolved. The system was cooled to 0 ° C and gradually added 89 g of 2,2-bis ((3,4-dicarboxyphenol) monohexafluoropropane dianhydride and stirred for 3 hours. Thus, a polyamic acid (polyamic acid) solution I was obtained.
[0137] 次に、上記溶液に、触媒であるイソキノリンを 17g、脱水剤である無水酢酸を 120g を添加し、 100°C、 1時間攪拌してポリイミド溶液を得た。  Next, 17 g of isoquinoline as a catalyst and 120 g of acetic anhydride as a dehydrating agent were added to the above solution, followed by stirring at 100 ° C. for 1 hour to obtain a polyimide solution.
[0138] 得られたポリイミド溶液を大量のイソプロピルアルコール中に滴下し、ポリイミドを沈 殿析出させ、 80°C、減圧下にて充分に乾燥し、ポリイミド Iを得た。  [0138] The obtained polyimide solution was dropped into a large amount of isopropyl alcohol to precipitate the polyimide, which was sufficiently dried at 80 ° C under reduced pressure to obtain polyimide I.
[0139] 得られたポリイミド 2gをジメチルホルムアミド(DMF) 4ccに溶解し、 0. 5 mの目を 持つメンブレンフィルターを用いて濾過した。濾過溶液 lccを酸化膜付シリコン基板 ( 4インチ径)上に滴下し、 lOOOrpm.で 20秒スピンコートした後に、 80°Cで 10分乾燥 させることにより厚み 6 mの薄膜を得た。スピンコートして作製した薄膜の厚みは、 酸ィ匕膜付シリコン基板を割断して薄膜を剥がしてから、別途機械的に厚み測定を実 施した。 [0139] 2 g of the obtained polyimide was dissolved in 4 cc of dimethylformamide (DMF) and filtered using a membrane filter having an eye of 0.5 m. Filtration solution lcc silicon substrate with oxide film ( 4 inches diameter), spin-coated at lOOOrpm. For 20 seconds, and dried at 80 ° C for 10 minutes to obtain a 6 m thick thin film. The thickness of the thin film prepared by spin coating was mechanically measured separately after cleaving the silicon substrate with an oxide film and peeling off the thin film.
[0140] プリズム力プラモデル 2010 (メトリコン社製)を使用して波長 830nmおよび波長 63 3nmにおける屈折率測定を実施した。波長 830nmにおける測定結果を表 1に示す 。波長 633nmにおける屈折率は TEモードで 1. 59557、 TMモードで 1. 59466で あり、屈折率差は 0. 00091と非常に低い値となった。  [0140] Refractive index measurement was performed at a wavelength of 830 nm and a wavelength of 633 nm using a prism force plastic model 2010 (manufactured by Metricon). Table 1 shows the measurement results at a wavelength of 830 nm. The refractive index at a wavelength of 633 nm was 1.59557 in the TE mode and 1.59466 in the TM mode, and the refractive index difference was very low at 0.00091.
[0141] 伝送損失測定には、プリズム力プラモデル 2010 (メトリコン社製)を用いた。酸ィ匕膜 付シリコン基板上に形成させたポリイミド薄膜に、プリズム力ブラ法により波長 830nm および波長 633nmのレーザー光を導入、伝搬させて伝送損失を測定した。レーザ 一光の偏波は、 TEモードと TMモードとに分けて測定した。測定結果を表 1に示す。 表 1からわ力るように、ポリイミド Iは極めて小さな伝送損失値を有することがわかる。ま た、 MIT試験屈曲回数の測定結果を表 1に示す。  [0141] Prism force plastic model 2010 (manufactured by Metricon) was used for transmission loss measurement. Transmission loss was measured by introducing and propagating a laser beam having a wavelength of 830 nm and a wavelength of 633 nm to a polyimide thin film formed on a silicon substrate with an oxide film by a prism force bra method. The polarization of one laser beam was measured separately for the TE mode and the TM mode. Table 1 shows the measurement results. As can be seen from Table 1, Polyimide I has an extremely small transmission loss value. Table 1 shows the measurement results of the number of MIT test bends.
[0142] [表 1] [0142] [Table 1]
Figure imgf000029_0001
Figure imgf000029_0001
[0143] シリコン基板上に、スピンコート法により 2, 2,一ビス(トリフルォロメチル) 4, 4,一 ジアミノビフエニルと 2, 2 ビス一((3, 4 ジカルボキシフエ二ル)一へキサフルォロ プロパン二無水物力もなるポリイミド(以下、ポリイミド VIとする)薄膜 (厚み 10 m)を 形成した後に、更にスピンコート法で厚み 8 mのポリイミド榭脂 I薄膜を形成した。こ の後、フォトマスク塗布、フォトリソグラフィーおよび RIEを行い、更に、ポリイミド VIを 厚み 10 μ mの厚みで上部クラッドとして薄膜形成させてコア幅 8 μ m、長さ 40mmの 光導波路を得た。 [0143] 2, 2, 1 Bis (trifluoromethyl) 4, 4, 1 on a silicon substrate by spin coating After forming diaminobiphenyl and 2, 2 bis ((3,4 dicarboxyphenyl) -hexafluoropropane dianhydride force polyimide (hereinafter referred to as polyimide VI) thin film (thickness 10 m), An 8 m thick polyimide resin I thin film was formed by spin coating, followed by photomask coating, photolithography and RIE, and polyimide VI was formed as an upper cladding with a thickness of 10 μm. An optical waveguide with a core width of 8 μm and a length of 40 mm was obtained.
[0144] 該光導波路の両端面をダイシングにより切り出し、石英シングルモードファイバーに て、波長 830nmの光を該光導波路に入射し、出射光強度を光パワーメーターにより 測定した。光導波路の長さを 30mm、 20mm, 10mm,と徐々に短くダイシングする たびに同様の測定を行い、横軸に光導波路長さを、縦軸に該光導波路内を伝送し た光パワーをとつてグラフ化し、直線近似を行い、直線の傾きから算出される光導波 路としての伝送損失は 0. 2dBZcmである。  [0144] Both end surfaces of the optical waveguide were cut out by dicing, light having a wavelength of 830 nm was incident on the optical waveguide with a quartz single mode fiber, and the intensity of the emitted light was measured with an optical power meter. The same measurement was performed every time dicing the optical waveguide length to 30 mm, 20 mm, and 10 mm, and the horizontal axis represents the optical waveguide length, and the vertical axis represents the optical power transmitted through the optical waveguide. Then, the transmission loss as an optical waveguide calculated from the graph and linear approximation is calculated from the slope of the straight line is 0.2 dBZcm.
[0145] したがって、本発明における光学部品用ポリイミドを用いることで、低損失な光導波 路を形成することができ、光導波路コアに使用して光電気混載板の光配線部を形成 することによって、光導波路に入射させる光源の消費電力を低減させることが可能と なり、光電気混載板として用いる場合には、電気配線板に比べて高速データ伝送、 低消費電力化が達成される。  Therefore, by using the polyimide for an optical component in the present invention, a low-loss optical waveguide can be formed, and by using the optical waveguide core to form the optical wiring portion of the opto-electric hybrid board. In addition, the power consumption of the light source incident on the optical waveguide can be reduced, and when used as an opto-electric hybrid board, high-speed data transmission and low power consumption are achieved as compared with the electric wiring board.
[0146] (実施例 2)  [0146] (Example 2)
ジァミン成分を、 9, 9—ビス(3—フルオロー 4—ァミノフエ-ル)フルオレン 39gおよ び 2, 2,一ビス(トリフルォロメチル) 4, 4,—ジアミノビフエ-ル 32gに変えた以外は 実施例 1と同様にしてポリイミド Πを得た。ポリイミド IIにつ ヽても実施例 1と同様にして 、屈曲試験、伝送損失および屈折率測定を実施した。薄膜厚みは 7 mであった。 結果を表 1に示す。この結果から、少なくともフッ素置換基及びフルォレニル基を有 するジァミンに加え、共重合用ジァミンを使用することにより、十分に低い伝送損失を 有する上に、高い屈曲性を有することがわかる。従って、光学部品、特に、光導波路 コア用に適して ヽることがわかる。  Except that the diamine component was changed to 39 g of 9, 9-bis (3-fluoro-4-aminophenol) fluorene and 32 g of 2,2,1bis (trifluoromethyl) 4,4, -diaminobiphenyl. A polyimide cage was obtained in the same manner as in Example 1. For Polyimide II, the bending test, the transmission loss, and the refractive index were measured in the same manner as in Example 1. The thin film thickness was 7 m. The results are shown in Table 1. From this result, it can be seen that by using a copolymerization diamine in addition to a diamine having at least a fluorine substituent and a fluorenyl group, it has sufficiently low transmission loss and high flexibility. Therefore, it can be seen that it is suitable for optical components, particularly for optical waveguide cores.
[0147] (実施例 3)  [Example 3]
ジァミン成分を、 9, 9—ビス(3—フルオロー 4—ァミノフエ-ル)フルオレン 39gおよ びビス [4- (3-アミノフエノキシ)フエ-ル]スルホン 44gに変えた以外は実施例 1と同 様にしてポリイミド ΠΙを得た。ポリイミド IIIについても実施例 1と同様にして、屈曲試験 、伝送損失および屈折率測定を実施した。薄膜厚みは 10 mであった。結果を表 1 に示す。この結果から、少なくともフッ素置換基及びフルォレニル基を有するジァミン に加え、共重合用ジァミンを使用することにより、十分に低い伝送損失を有する上に 、高い屈曲性を有することがわかる。従って、光学部品、特に、光導波路コア用に適 していることがわ力る。 The diamine component was added to 39 g of 9, 9-bis (3-fluoro-4-aminophenol) fluorene. A polyimide film was obtained in the same manner as in Example 1, except that 44 g of bibis [4- (3-aminophenoxy) phenol] sulfone was used. For Polyimide III, the bending test, transmission loss and refractive index measurement were performed in the same manner as in Example 1. The thin film thickness was 10 m. The results are shown in Table 1. From this result, it can be seen that, in addition to diamine having at least a fluorine substituent and a fluorenyl group, copolymerization diamine has a sufficiently low transmission loss and high flexibility. Therefore, it is obvious that it is suitable for optical components, particularly for optical waveguide cores.
[0148] (比較例 1)  [0148] (Comparative Example 1)
ジァミン成分を、 9, 9 ビス(4ーァミノフエ-ル)フルオレン 70gに変えた以外は実 施例 1と同様にしてポリイミド、IVを得た。ポリイミド、IVにつ 、て実施例 1と同様にして、 屈曲試験、伝送損失および屈折率測定を実施した。薄膜厚みは 8 mであった。結 果を表 1に示す。この結果から、実施例と比較して、ジァミンにフッ素置換基が存在し ない場合には、波長 633nmにおける伝送損失が明らかに高ぐこの波長における光 学部品には不向きであることがわかる。  Polyimide and IV were obtained in the same manner as in Example 1 except that the diamine component was changed to 70 g of 9,9bis (4-aminophenol) fluorene. For polyimide and IV, bending test, transmission loss and refractive index measurement were performed in the same manner as in Example 1. The thin film thickness was 8 m. The results are shown in Table 1. From this result, it can be seen that when there is no fluorine substituent in diamine, the transmission loss at a wavelength of 633 nm is clearly high, which is unsuitable for optical components at this wavelength as compared with the examples.
[0149] (比較例 2)  [0149] (Comparative Example 2)
ジァミン成分を、 2, 2,一ビス(トリフルォロメチル) 4, 4,ージアミノビフエ-ル 64g に変えた以外は実施例 1と同様にしてポリイミド Vを得た。ポリイミド Vにつ 、て実施例 1と同様にして、屈曲試験、伝送損失および屈折率測定を実施した。薄膜厚みは 8 mであった。結果を表 1に示す。結果を見ると、波長 830nm、波長 633nmにおける 伝送損失は偏波方向に関わらずともに ldBZcmを超える結果となった。よってポリイ ミド Vはこれらの波長における光学部品としては不向きであることがわかる。  Polyimide V was obtained in the same manner as in Example 1 except that the diamine component was changed to 64 g of 2,2,1bis (trifluoromethyl) 4,4, diaminobiphenyl. For polyimide V, bending test, transmission loss and refractive index measurement were performed in the same manner as in Example 1. The thin film thickness was 8 m. The results are shown in Table 1. Looking at the results, the transmission loss at wavelengths of 830 nm and 633 nm exceeded ldBZcm regardless of the polarization direction. Therefore, it can be seen that polyimide V is not suitable as an optical component at these wavelengths.

Claims

請求の範囲 The scope of the claims
[1] 少なくともフッ素置換基及びフルォレニル基を有するジァミンを含むジァミン類とテト ラカルボン酸二無水物類とを用いてなるポリイミドであって、波長 830nmにおける伝 送損失が TEモード、 TMモードともに ldBZcm以下であることを特徴とする、光学部 品用ポリイミド。  [1] A polyimide comprising diamines containing diamine having at least a fluorine substituent and a fluorenyl group and tetracarboxylic dianhydride, and transmission loss at a wavelength of 830 nm is less than ldBZcm in both TE mode and TM mode. Polyimide for optical parts, characterized by
[2] さらに波長 633nmにおける伝送損失が TEモード、 TMモードともに ldBZcm以下 であることを特徴とする、請求項 1記載の光学部品用ポリイミド。  [2] The polyimide for optical parts according to claim 1, wherein the transmission loss at a wavelength of 633 nm is ldBZcm or less in both the TE mode and the TM mode.
[3] 前記フッ素置換基及びフルォレニル基を有するジァミンのアミノ基は、芳香族環に 結合しており、  [3] The amino group of the diamine having a fluorine substituent and a fluorenyl group is bonded to an aromatic ring,
前記フッ素置換基が、前記アミノ基のオルト位に位置することを特徴とする、請求項 1または 2記載の光学部品用ポリイミド。  3. The polyimide for an optical component according to claim 1, wherein the fluorine substituent is located at the ortho position of the amino group.
[4] 前記フッ素置換基及びフルォレニル基を有するジァミンが、下記式(1)で表される ジァミンであることを特徴とする、請求項 1または 2記載の光学部品用ポリイミド。 [4] The polyimide for optical parts according to claim 1 or 2, wherein the diamine having a fluorine substituent and a fluorenyl group is a diamine represented by the following formula (1).
[化 1]  [Chemical 1]
Figure imgf000032_0001
Figure imgf000032_0001
(式中の R〜Rは、それぞれ同一でも異なっていてもよぐ水素またはフッ素のいず (In the formula, R to R may be the same or different from each other, either hydrogen or fluorine.
1 8  1 8
れかであり、少なくとも一つはフッ素である。 )  And at least one is fluorine. )
[5] 前記フッ素置換基及びフルォレニル基を有するジァミン力 9、 9 ビス(3—フルォ 口一 4 ァミノフエ-ル)フルオレンであることを特徴とする、請求項 1または 2記載の 光学部品用ポリイミド。  [5] The polyimide for optical parts according to claim 1 or 2, wherein the polyimide is a diamine force 9, 9 bis (3-fluorine-4-aminophenol) fluorene having the fluorine substituent and the fluorenyl group.
[6] 前記ジァミン類は、前記フッ素置換基及びフルォレニル基を有するジァミン及び 1 種類以上の共重合用ジァミンを含み、  [6] The diamines include the diamine having a fluorine substituent and a fluorenyl group and at least one copolymerized diamine.
前記共重合用ジァミンが下記式(2)で表されるジァミンであることを特徴とする、請 求項 1〜5のいずれかに記載の光学部品用ポリイミド。 [化 2] The polyimide for optical components according to any one of claims 1 to 5, wherein the copolymerized diamine is a diamine represented by the following formula (2). [Chemical 2]
式 (2 )Formula (2)
Figure imgf000033_0001
Figure imgf000033_0001
(式中の X 〜X のうち任意の 2つは NHであり、残りの 8つは、 H, CH及び CFから (Any two of X to X in the formula are NH, and the remaining eight are from H, CH and CF.
1 10 2 3 3 なる群から選ばれるいずれ力 1つの基である。また、 R は— O— , — S— , —SO—,  1 10 2 3 3 One force selected from the group consisting of one group. R is — O—, — S—, —SO—,
11 2 CH —, 一 CO—, -C (CH ) 一, C (CF ) —, -O-R O , 一フルォレ 11 2 CH —, one CO—, -C (CH) one, C (CF) —, -O-R O, one fluoride
2 3 2 3 2 12 2 3 2 3 2 12
-ル基—及び直接結合力 なる群力 選ばれるいずれ力 1つである。ただし、 R  -Lu group- and direct bond force are group forces. Where R
12は 炭素数 1以上 5以下のアルキル基及び下記式群 (3)で表される基力 なる群力 選 ばれるいずれ力 1つの基である。  12 is an alkyl group having 1 or more and 5 or less carbon atoms, and a group force which is selected as a group force represented by the following formula group (3).
[化 3]  [Chemical 3]
Figure imgf000033_0002
Figure imgf000033_0002
[7] 前記共重合用ジァミンが 4, 4' -ジアミノジフエ-ルエーテル、 3, 4' -ジアミノジフエ[7] The copolymerized diamine is 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl
-ルエーテル、 2, 2' -ビス(トリフルォロメチル) -4, 4' -ジアミノビフエ-ル、 4, 4' -ジ アミノジフエ-ルスルホン、 1, 5- (4-アミノフエノキシ)ペンタン、 1, 3-ビス (4-アミノフ エノキシ) -2, 2-ジメチルプロパン、 2, 2-ビス (4-ァミノフエノキシフエ-ル)プロパン、 2 , 2-ビス [4- (4 アミノフエノキシ)フエ-ル]へキサフルォロプロパン、ビス [4- (4-アミ ノフエノキシ)フエ-ル]スルホン及びビス [4- (3-アミノフエノキシ)フエ-ル]スルホン 力 なる群力 選ばれる少なくとも 1つのジァミンであることを特徴とする請求項 6記載 の光学部品用ポリイミド。 -Luether, 2,2'-Bis (trifluoromethyl) -4,4'-Diaminobiphenyl, 4,4'-Diaminodiphenylsulfone, 1,5- (4-Aminophenoxy) pentane, 1, 3- Bis (4-aminophenoxy) -2,2-dimethylpropane, 2,2-bis (4-aminophenoxyphenol) propane, 2,2-bis [4- (4 aminophenoxy) phenol] Xafluoropropane, bis [4- (4-aminophenoxy) phenol] sulfone, and bis [4- (3-aminophenoxy) phenol] sulfone power group power of at least one selected diamine The polyimide for optical parts according to claim 6, wherein the polyimide is for optical parts.
[8] 前記テトラカルボン酸二無水物類がフッ素置換基を有するテトラカルボン酸二無水 物を含むことを特徴とする、請求項 1〜7のいずれかに記載の光学部品用ポリイミド。 [8] The polyimide for optical parts according to any one of [1] to [7], wherein the tetracarboxylic dianhydrides include a tetracarboxylic dianhydride having a fluorine substituent.
[9] 前記テトラカルボン酸二無水物類力 2, 2—ビス一((3, 4—ジカルボキシフエ-ル[9] Tetracarboxylic dianhydride analog 2, 2-bis (((3,4-dicarboxyphenyl)
)一へキサフルォロプロパン二無水物)を含むことを特徴とする、請求項 1〜7のいず れかに記載の光学部品用ポリイミド。 The polyimide for optical parts according to any one of claims 1 to 7, characterized in that it comprises (a) hexafluoropropane dianhydride).
[10] 前記テトラカルボン酸二無水物類は、 2, 2—ビス一((3, 4—ジカルボキシフエ-ル[10] The tetracarboxylic dianhydrides are 2, 2-bis (((3,4-dicarboxyphenyl)
)一へキサフルォロプロパン二無水物)及び 1種類以上の共重合用テトラカルボン酸 二無水物を含み、 ) Monohexafluoropropane dianhydride) and one or more types of copolymerized tetracarboxylic dianhydrides,
前記共重合用テトラカルボン酸二無水物が下記式 (4)で表されるテトラカルボン酸 二無水物であることを特徴とする、請求項 1〜 7の 、ずれかに記載の光学部品用ポリ イミド。  The optical component polycarboxylic acid according to any one of claims 1 to 7, wherein the tetracarboxylic dianhydride for copolymerization is a tetracarboxylic dianhydride represented by the following formula (4): Imide.
[化 4]  [Chemical 4]
Figure imgf000034_0001
Figure imgf000034_0001
(式中、 R は—O—, 一 CO— , —SO —及び直接結合力 なる群力 選ばれるいず (In the formula, R is —O—, one CO—, —SO —, and a group force that is a direct bond force.
13 2  13 2
れか 1つである。 )  One of them. )
[11] 前記波長 830nmにおける伝送損失が TEモード、 TMモードともに 0. ldBZcm以 下であることを特徴とする、請求項 1〜10のいずれかに記載の光学部品用ポリイミド  [11] The polyimide for an optical component according to any one of [1] to [10], wherein the transmission loss at the wavelength of 830 nm is 0.1 dBZcm or less in both the TE mode and the TM mode.
[12] 前記波長 633nmにおける伝送損失が TEモード、 TMモードともに 0. ldBZcm以 下であることを特徴とする、請求項 2〜10のいずれかに記載の光学部品用ポリイミド [12] The polyimide for optical parts according to any one of [2] to [10], wherein the transmission loss at the wavelength of 633 nm is 0.1 dBZcm or less in both the TE mode and the TM mode.
[13] 波長 830nmにおける屈折率が TEモード、 TMモードともに 1. 55以上であり、前記[13] The refractive index at a wavelength of 830 nm is 1.55 or more for both TE mode and TM mode,
TEモードと TMモードの屈折率差が 0. 01以下であることを特徴とする、請求項 1〜1The difference in refractive index between the TE mode and the TM mode is 0.01 or less.
2のいずれかに記載の光学部品用ポリイミド。 The polyimide for optical parts according to any one of 2 above.
[14] 波長 633nmにおける屈折率が TEモード、 TMモードともに 1. 55以上であり、前記[14] The refractive index at a wavelength of 633 nm is 1.55 or more in both TE mode and TM mode,
TEモードと TMモードの屈折率差が 0. 01以下であることを特徴とする、請求項 1〜1The difference in refractive index between the TE mode and the TM mode is 0.01 or less.
2のいずれかに記載の光学部品用ポリイミド。 The polyimide for optical parts according to any one of 2 above.
[15] 厚さ 50 /z mのフィルム状にした場合の屈曲半径 0. 38mm、屈曲角度 135° 、荷重 100gでの MIT屈曲試験にぉ 、て 300回以上の屈曲が可能であることを特徴とする 、請求項 1〜14のいずれかに記載の光学部品用ポリイミド。 [15] It is characterized in that it can be bent more than 300 times in the MIT bending test with a bending radius of 0.38 mm, bending angle of 135 ° and load of 100 g when it is formed into a film with a thickness of 50 / zm. The polyimide for optical parts according to any one of claims 1 to 14.
[16] ジォキソラン、ジメチルホルムアミド、 N—メチル 2 ピロリドン、 N, N ジメチルァ セトアミド及びメチルェチルケトン力もなる群力 選ばれる少なくとも 1つの単独溶媒ま たは 2つ以上の混合溶媒への 25°Cでの溶解度が、 20重量%以上であることを特徴 とする、請求項 1〜15のいずれかに記載の光学部品用ポリイミド。  [16] Dioxolane, dimethylformamide, N-methyl-2-pyrrolidone, N, N dimethylacetamide and methylethylketone group strength at least one single solvent or two or more mixed solvents at 25 ° C The polyimide for optical parts according to any one of claims 1 to 15, wherein the solubility of is 20% by weight or more.
[17] 請求項 1〜16のいずれかに記載の光学部品用ポリイミドの前駆体であるポリアミド 酸。  [17] Polyamic acid, which is a precursor of the polyimide for optical parts according to any one of claims 1 to 16.
[18] 請求項 1〜16のいずれかに記載のポリイミド及び Zまたは、請求項 17に記載のポリ アミド酸を含む、光学部品。  [18] An optical component comprising the polyimide according to any one of claims 1 to 16 and Z or the polyamic acid according to claim 17.
[19] 請求項 1〜16のいずれかに記載のポリイミド及び Zまたは、請求項 17に記載のポリ アミド酸を含む、光導波路。 [19] An optical waveguide comprising the polyimide according to any one of claims 1 to 16 and Z or the polyamic acid according to claim 17.
[20] コアとクラッドを有する光導波路において、少なくともフッ素置換基及びフルォレニ ル基を有するジァミンを含むジァミン類とテトラカルボン酸二無水物類とを用いてなる ポリイミドをコアとして用いることを特徴とする、光導波路。 [20] In an optical waveguide having a core and a clad, a polyimide comprising at least a diamine containing diamine having a fluorine substituent and a fluorenyl group and tetracarboxylic dianhydride is used as a core. , Optical waveguide.
[21] 波長 830nmにおける前記光導波路の伝送損失が TEモード、 TMモードともに Id[21] The transmission loss of the optical waveguide at a wavelength of 830 nm is Id for both TE mode and TM mode.
BZcm以下であることを特徴とする、請求項 20に記載の光導波路。 21. The optical waveguide according to claim 20, wherein the optical waveguide is BZcm or less.
[22] 波長 633nmにおける前記光導波路の伝送損失が TEモード、 TMモードともに Id[22] The transmission loss of the optical waveguide at a wavelength of 633 nm is Id for both TE mode and TM mode.
BZcm以下であることを特徴とする、請求項 20または 21に記載の光導波路。 The optical waveguide according to claim 20, wherein the optical waveguide is BZcm or less.
PCT/JP2006/308809 2005-04-28 2006-04-27 Polyimide for optical component, optical component and optical waveguide WO2006118176A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514796A JPWO2006118176A1 (en) 2005-04-28 2006-04-27 Polyimide for optical components, optical components and optical waveguides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-131080 2005-04-28
JP2005131080 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118176A1 true WO2006118176A1 (en) 2006-11-09

Family

ID=37307974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308809 WO2006118176A1 (en) 2005-04-28 2006-04-27 Polyimide for optical component, optical component and optical waveguide

Country Status (2)

Country Link
JP (1) JPWO2006118176A1 (en)
WO (1) WO2006118176A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038584A (en) * 2015-09-30 2017-04-07 코오롱인더스트리 주식회사 Polyamic acid, polyimide films, and display device comprising thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261524A (en) * 1989-02-27 1990-10-24 Air Prod And Chem Inc Polyimido permeable membrane and separation method for mixture gas component using said membrane
JP2000511296A (en) * 1996-05-23 2000-08-29 ミネソタ マイニング アンド マニュファクチャリング カンパニー Polyimide wide-angle layer
JP2003287750A (en) * 2002-01-24 2003-10-10 Nitto Denko Corp Method for manufacturing liquid crystal cell substrate and method for manufacturing liquid crystal panel
JP2004046133A (en) * 2002-05-24 2004-02-12 Nitto Denko Corp Optical film
JP2004046065A (en) * 2002-01-23 2004-02-12 Nitto Denko Corp Optical film, stacked polarizing plate, liquid crystal display using them, and spontaneous light emission type display device
JP2004506795A (en) * 2000-08-21 2004-03-04 スリーエム イノベイティブ プロパティズ カンパニー Cured fluorenyl polyimide
JP2004231946A (en) * 2003-01-10 2004-08-19 Nitto Denko Corp Polyimide film and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261524A (en) * 1989-02-27 1990-10-24 Air Prod And Chem Inc Polyimido permeable membrane and separation method for mixture gas component using said membrane
JP2000511296A (en) * 1996-05-23 2000-08-29 ミネソタ マイニング アンド マニュファクチャリング カンパニー Polyimide wide-angle layer
JP2004506795A (en) * 2000-08-21 2004-03-04 スリーエム イノベイティブ プロパティズ カンパニー Cured fluorenyl polyimide
JP2004046065A (en) * 2002-01-23 2004-02-12 Nitto Denko Corp Optical film, stacked polarizing plate, liquid crystal display using them, and spontaneous light emission type display device
JP2003287750A (en) * 2002-01-24 2003-10-10 Nitto Denko Corp Method for manufacturing liquid crystal cell substrate and method for manufacturing liquid crystal panel
JP2004046133A (en) * 2002-05-24 2004-02-12 Nitto Denko Corp Optical film
JP2004231946A (en) * 2003-01-10 2004-08-19 Nitto Denko Corp Polyimide film and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038584A (en) * 2015-09-30 2017-04-07 코오롱인더스트리 주식회사 Polyamic acid, polyimide films, and display device comprising thereof
KR102251517B1 (en) 2015-09-30 2021-05-12 코오롱인더스트리 주식회사 Polyamic acid, polyimide films, and display device comprising thereof

Also Published As

Publication number Publication date
JPWO2006118176A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US5649045A (en) Polymide optical waveguide structures
JP4986071B2 (en) Resin composition, cured product and optical member
JPH0940774A (en) Polymide and optical part made therefrom
KR20210014533A (en) Laminated film, and composition for preparing same
JP2008088287A (en) Optical polyimide
TW202130706A (en) Polyimide resin, polyimide varnish and polyimide film
JP2004149711A (en) Polyimide optical material, polyimide precursor solution and optical waveguide device
JP5162787B2 (en) Resin composition, cured film and optical member
WO2006118176A1 (en) Polyimide for optical component, optical component and optical waveguide
US6842576B2 (en) Polymer lightguide
JP4967547B2 (en) Fluorinated polyimide for optical parts and optical waveguide using the same
JP5560526B2 (en) Polyimide and optical waveguide using the same
JP3486358B2 (en) Optical polyimide substrate
JP2008063396A (en) Polyimide optical waveguide
JP3506320B2 (en) Polyimide for optical substrate and method for producing the same
JP2010085992A (en) Optical transmission material and optical waveguide using the same
JP2008015096A (en) Polyimide for optical component, optical component, and optical waveguide
JP2009128445A (en) Optical waveguide material using fluorine-containing resin and optical waveguide
JP4931007B2 (en) Polyamic acid and imidized polymer
JP5360074B2 (en) Optical transmission material and optical waveguide using the same
JP2005345702A (en) Light-branching optical waveguide
CN115210292A (en) Polyimide resin, polyimide varnish, and polyimide film
JP2001228301A (en) Polyimide optical member and optical device
US20100322587A1 (en) Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound
JP2002148457A (en) Polymer light guide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514796

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745737

Country of ref document: EP

Kind code of ref document: A1