WO2006117328A1 - Method and device for detecting substances in aqueous gaseous media - Google Patents

Method and device for detecting substances in aqueous gaseous media Download PDF

Info

Publication number
WO2006117328A1
WO2006117328A1 PCT/EP2006/061893 EP2006061893W WO2006117328A1 WO 2006117328 A1 WO2006117328 A1 WO 2006117328A1 EP 2006061893 W EP2006061893 W EP 2006061893W WO 2006117328 A1 WO2006117328 A1 WO 2006117328A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
hydrogen peroxide
concentration
temperature
gas
Prior art date
Application number
PCT/EP2006/061893
Other languages
German (de)
French (fr)
Inventor
Niko Näther
Michael J. Schöning
Hartmut Henkel
Andreas Schneider
Jörg Berger
Rüdiger Emmerich
Original Assignee
Sig Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sig Technology Ag filed Critical Sig Technology Ag
Publication of WO2006117328A1 publication Critical patent/WO2006117328A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/208Hydrogen peroxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • A61L2/28Devices for testing the effectiveness or completeness of sterilisation, e.g. indicators which change colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • G01N25/32Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Definitions

  • the invention relates to a method and a device for the quantitative determination of the concentration of hydrogen peroxide (H2O2) in the gas or vapor phase with at least one sensor, which is brought into direct contact with the medium to be investigated.
  • H2O2 hydrogen peroxide
  • Disinfection procedure among other things crucially related to parameters such as the contact time, the temperature, the pretreatment of the material and the initial concentration of hydrogen peroxide. Therefore, it is necessary to allow the qualitative and quantitative detection of the hydrogen peroxide concentration immediately before contact with the actual sterilization or disinfection, in order to ensure the most accurate adjustment of the hydrogen peroxide concentration after the sterilization or disinfection process at Gut.
  • amperometric and potentiometric detection methods for detecting the H 2 C> 2 concentration in liquids with the aid of enzymes (eg catalase and horseradish peroxidase), special membranes (eg Nafion, poly-HEMA) or porous materials (eg solid-state electrolytes, nanostructured silicon), there are detection methods such as titration, test strip photometry, semiconductor gas sensors and NIR spectroscopy for determining the hydrogen peroxide concentration in the gas phase.
  • enzymes eg catalase and horseradish peroxidase
  • special membranes eg Nafion, poly-HEMA
  • porous materials eg solid-state electrolytes, nanostructured silicon
  • titration for example, a defined amount of gas must be sucked in and cooled, which is then passed into a glass frit, in the a defined amount of bidistilled water is submitted. After this "gas scrubbing", the resulting solution is mixed with 20% sulfuric acid After addition of a certain amount of potassium iodide and ammonium molybdenum solution, titration is carried out with the addition of sodium thiosulfate solution "colorless”. From a resulting equation, the mass of hydrogen peroxide in the solution can then be calculated. This mass specification can be used to calculate the concentration in the intake gas.
  • a disadvantage of this method is the relatively high expenditure on equipment and the "off-line” methodology, which does not allow continuous recording of the hydrogen peroxide concentration (research project: "Durability extension of dairy products by optimizing the activation of germs in food and packaging materials", Technical University of Kunststoff, 2004 ).
  • Another variant describes an apparatus for "on-line" determination of the concentration of hydrogen peroxide vapor during sterilization or disinfection.It is based on the use of known metal-oxide-semiconductor sensors (eg of commercially available Sn ⁇ 2 gas sensors or sensors based on TiO 2 , Fe 2 O 3 , ZnO, etc.) [DE 198 55 120 Al; US Pat. No. 5,608,156; I. Taizo, A. Sinichi, K. Kawamura, J. Pharmaceutical Sci. Technol , 52 (1998) 13] In such semiconductor gas sensors, a heated semiconductor, which is heated to 200 to 400 ° C.
  • metal-oxide-semiconductor sensors eg of commercially available Sn ⁇ 2 gas sensors or sensors based on TiO 2 , Fe 2 O 3 , ZnO, etc.
  • the sensor signal is strongly influenced by the humidity and the Temperature of the analyte and must be corrected with a set of previously recorded and specific correlation data. Consequently, such a sensor can only be used if the environmental variables temperature and humidity are known or measured constantly and / or separately with sensors of a different type and associated other measuring signals. This links the use of a more sophisticated measuring electronics. Furthermore, it is not known in the proposed arrangement how the flow velocity affects the sensor signal.
  • NIR near-infrared
  • test paper known as a test strip photometry method. This procedure is performed by means of a test paper wherein the test paper has been specially treated with a chemical so that it changes color upon contact with H 2 O 2 vapor. By the subsequent optical color detection, the concentration of H 2 ⁇ 2 vapor can be determined.
  • - can be used in vaporous or gaseous media, - can be integrated "on-line" in the process of disinfection or sterilization,
  • a possible transducer principle is the use of a catalytically active material such as platinum, copper, copper-nickel compounds, rhodium, Rhutenium, Hexacyanoferraten etc., in particular a manganese-containing compound, in combination with a physical sensor.
  • a catalytically active material such as platinum, copper, copper-nickel compounds, rhodium, Rhutenium, Hexacyanoferraten etc.
  • a manganese-containing compound in combination with a physical sensor.
  • This used as a detector physical sensor can, for example Thermocouple, resistance thermometer, thermistor, pellistor, NTC, PTC, etc., but in particular a stainless steel sheathed thermocouple or
  • the catalytically active material is deposited or applied to the physical transducer for this purpose.
  • the deposition or binding of the catalytically active material may be physical or chemical nature.
  • the catalytically active material can be separated from the gas phase by known CVD and / or PVD methods.
  • methods of thin-film or thick-film technology can generally be used.
  • the deposition of the catalytically active material from a liquid for example as Precipitation done or by conventional manufacturing techniques such as gluing, soldering, welding or the like. be attached.
  • a calorimetric gas sensor such as a pellistor, NTC, PTC, etc.
  • a hot wire sensor that is suitable for the detection of exothermically reactive gases, despite or because of its insufficient selectivity.
  • a calorimetric sensor exists realized from a heated element, usually by a current flow in a conductor whose conductivity varies depending on the temperature. If under normal conditions in the gas phase exothermically reactive gases are stable, takes place at the heated element, an energy transfer to the single gas molecule, which is sufficient to stimulate the molecule to decay. The heat released in the exothermic decomposition then leads to a temperature increase of the heated element, which in turn leads to a change in conductivity of this element.
  • This conductivity change is used directly as a measurement signal and can be detected according to the above variants as current, voltage, resistance, conductivity change or as a change in frequency, the optical properties, the waveform or as a change in power consumption of the sensor. Since it is dispensed with the additional use of a catalyst, no selective detection of the hydrogen peroxide concentration can take place. On the other hand, taking into account the exact process parameters during the disinfection or sterilization process, it is possible to carry out an indirect qualitative and quantitative calibration of the existing hydrogen peroxide concentration on the basis of a fixed, defined parameter set.
  • thermocouple-like arrangements whose temperature measuring point is in direct contact with the medium to be investigated (H2O2). If one of the metals or both metals of the temperature-sensitive metal pairing of the thermoelement-like arrangement is one or more catalytically active materials, such as Fe / CuNi, NiCr / Ni, PtRh / Pt, NiCr / CuNi, IrRh / Ir, Wo / Ta , NiCrSi / NiSiMg, etc., however, especially around Cu / CuNi, decomposes due to the catalytic effect of the exothermic gas and the heat energy released is detected directly as a temperature increase at the thermocouple.
  • catalytically active materials such as Fe / CuNi, NiCr / Ni, PtRh / Pt, NiCr / CuNi, IrRh / Ir, Wo / Ta , NiCrSi / NiSiMg, etc.
  • This temperature increase can be detected directly in the form of a resistance, conductivity, impedance, voltage, current change or in a change in frequency, the optical properties, the waveform or as a change in power consumption of the detector and qualitatively or (via a calibration ) are quantitatively assigned to the existing hydrogen peroxide concentration.
  • a great advantage of this method is the high temperature resistance of the catalytic arrangement used, ie, the detector can be used even at elevated process temperatures during sterilization in real-time operation. Furthermore, temperature fluctuations in the analyte do not influence the exothermic reaction caused by the catalytic reaction and thus the sensitivity of the sensor.
  • FIG. 1 shows a first embodiment of a device according to the invention in a schematic representation
  • Fig. 2 shows a second embodiment of a device according to the invention in a schematic representation
  • Fig. 3 shows a further embodiment of a device according to the invention in a schematic representation.
  • Spaced sensors 1 and 2 of the previously explained in more detail and thus particularly preferred variants can be mounted according to FIG. 1 in a closed on one side and / or on both sides, partially or completely open vessel 3.
  • either 1 and / or 2 represents an arbitrary sensor of the variants presented.
  • sensor 1 or 2 can also represent a further temperature sensor.
  • the sensors are at a defined distance, in the case of sensor 1 in a defined Li or in the case of Sensor 2 mounted at a defined distance from L 2 of the wall of the vessel 3, or protrude in the illustrated case of the sensor 1 with the defined length Li and of the sensor 2 with the defined length L 2 in the vessel 3 into it.
  • the sensors 1, 2 are arranged at a defined distance from each other.
  • the sensors 1 'and 2' can also be attached to a vessel 3 'closed on one side and / or on both sides, partially or completely opened.
  • the sensors 1 ', 2' are located in cells 4 and / or 5 which are arranged at a defined distance from one another and which are connected to the vessel 3 'via an opening (not shown) of a defined cross-section which ensures a gas exchange are.
  • sensor 1 'and / or sensor 2' can represent a sensor described above in more detail variants or else also a further temperature sensor, as already described for FIG. 1 or as explained below for FIG. 3.
  • the sensors 1 'and / or 2' can protrude significantly into the cells 4 or 5.
  • a compound 6 with a defined cross section between the cells 4 and 5 may be attached.
  • the cells may additionally be equipped with heating elements or channels (not shown) for heating.
  • Fig. 3 corresponds substantially to the embodiment of Fig. 2 with the change that in the case of a flowing medium, the vessel 3 '' includes a change in the diameter of internals 7.
  • This change in diameter is constructed so that the cross section H of the vessel in a defined manner to the cross-section Hi in the region of the cell 4 'and / or on the cross-section H 2 in the region of the cell of the cell 5' reduced.
  • the cells 4 'and 5' again with a connection channel 6 are in communication.
  • a further, not shown exemplary embodiment takes into account that, in addition to the embodiments according to FIG. 1, 2 or 3, an additional reference system with the same structure according to FIG. 1 and / or 2 and / or 3 is constructed, which is acted on by a reference medium.
  • a reference medium eg gas stream
  • the reference arrangement may be constructed as a separate system and / or be integrated into the illustrated embodiments in such a way that an arbitrary sensor of the described variants or a temperature sensor is supplied with a reference gas.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The invention relates to a method and device for quantitatively determining the concentration of hydrogen peroxide (H2O2) in the gas or vapor phase with at least one sensor, which is placed in direct contact with the medium to be analyzed. The aim of the invention is to enable the device and the method to be used for detecting hydrogen peroxide in vapor-containing or gaseous media and to be integrated on-line in the process sequence of the disinfection or sterilization whereby making the detection of the hydrogen peroxide concentration possible even at elevated temperatures, particularly between 100 °C and 300 °C. To this end, the invention provides that the sensor is designed in such a manner that molecules of the hydrogen peroxide are excited until they decompose, and that the sensor uses the heat resulting from this exothermic reaction for determining the H2O2 concentration. To this end, the sensor (1, 2) is provided in the form of a temperature sensor, which directly converts a change in temperature in the form of a change in resistance, voltage, current or power consumption for measuring the qualitative or quantitative hydrogen peroxide concentration.

Description

Verfahren und Vorrichtung zur Detektion von Substanzen in wasserhaltigen, gasförmigen Medien Method and device for the detection of substances in aqueous, gaseous media
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur quantitativen Bestimmung der Konzentration von Wasserstoffperoxid (H2O2) in der Gas- oder Dampfphase mit wenigstens einem Sensor, der mit dem zu untersuchenden Medium in unmittelbaren Kontakt gebracht wird.The invention relates to a method and a device for the quantitative determination of the concentration of hydrogen peroxide (H2O2) in the gas or vapor phase with at least one sensor, which is brought into direct contact with the medium to be investigated.
Zur Sterilisation und Desinfektion in der Gasphase bzw. in Flüssigkeiten eignen sich reaktive Substanzen, insbesondere Wasserstoffperoxid, da hiermit eine vollständige Benetzung des Sterilisations- bzw. Desinfektionsgutes gewährleistet ist. Zur optimalen Sterilisation bzw. Desinfektion mit beispielsweise Wasserstoffperoxid aus der Gasphase wird häufig ein Aerosol aus Luft und Wasserstoffperoxid erhitzt, wobei das Wasserstoffperoxid in die Gasphase übergeht oder das flüssige Wasserstoffperoxid verdampft wird, welches dann mit einem Luftstrom vermischt wird. Danach kommt der gasförmige Strom direkt in Kontakt mit dem zu sterilisierenden Medium. Die erfolgreiche Sterilisation bzw. Desinfektion wird einerseits durch die Temperatur des Sterilisations- bzw. Desinfektionsgemisches und andererseits durch die entstehenden OH-Radikale gewährleistet. Das Sterilisations- bzw.For sterilization and disinfection in the gas phase or in liquids, reactive substances, in particular hydrogen peroxide, since this is a complete wetting of the sterilization or disinfection material is guaranteed. For optimal sterilization or disinfection with, for example, hydrogen peroxide from the gas phase, an aerosol of air and hydrogen peroxide is often heated, wherein the hydrogen peroxide passes into the gas phase or the liquid hydrogen peroxide is evaporated, which is then mixed with an air stream. Thereafter, the gaseous stream comes directly into contact with the medium to be sterilized. The successful sterilization or disinfection is ensured on the one hand by the temperature of the sterilization or disinfection mixture and on the other hand by the resulting OH radicals. The sterilization or
Desinfektionsverfahren mit beispielsweise in der Gasphase auftretendem Wasserstoffperoxid wird heutzutage unter anderem für Nahrungsmittelverpackungen, medizinische Geräte, medizinische Verpackungen, pharmazeutische Produkte und Verpackungen generell verwendet. Ein enormer Vorteil dieser „Gasphasensterilisation bzw. - desinfektion" liegt in der einfachen Entfernung von Resten des Sterilisationsmittels mit Heißdampf.Disinfection method with occurring, for example, in the gas phase hydrogen peroxide is nowadays, inter alia, for food packaging, medical devices, medical packaging, pharmaceutical Products and packaging generally used. An enormous advantage of this "gas phase sterilization or disinfection" lies in the simple removal of residues of the sterilizing agent with superheated steam.
Ein prinzipielles Problem bei solchen Sterilisationsbzw. Desinfektionsprozessen besteht darin, dass die Effektivität der Sterilisations- oderA principal problem with such Sterilisationsbzw. Disinfection processes is that the effectiveness of the sterilization or
Desinfektionsprozedur unter anderem entscheidend von Parametern, wie der Kontaktzeit, der Temperatur, der Vorbehandlung des Gutes und der Anfangskonzentration an Wasserstoffperoxid zusammenhängen. Daher ist es erforderlich, die qualitative und quantitative Erfassung der Wasserstoffperoxidkonzentration unmittelbar vor Kontakt mit dem eigentlichen Sterilisations- bzw. Desinfektionsgut zu ermöglichen, um eine möglichst exakte Einstellung der Wasserstoffperoxidkonzentration nach dem Sterilisations- bzw. Desinfektionsvorgang am Gut zu gewährleisten .Disinfection procedure among other things crucially related to parameters such as the contact time, the temperature, the pretreatment of the material and the initial concentration of hydrogen peroxide. Therefore, it is necessary to allow the qualitative and quantitative detection of the hydrogen peroxide concentration immediately before contact with the actual sterilization or disinfection, in order to ensure the most accurate adjustment of the hydrogen peroxide concentration after the sterilization or disinfection process at Gut.
Neben amperometrischen und potentiometrischen Detektions- Verfahren zum Nachweis der H2C>2-Konzentration in Flüssigkeiten unter zu Hilfenahme von Enzymen (z.B. Katalase und Meerettich-Peroxidase) , speziellen Membranen (z.B. Nafion, poly-HEMA) oder porösen Materialien (z.B. Festkörperelektrolyte, nanostrukturiertes Silizium) , existieren Nachweis-Verfahren wie die Titration, die Teststreifen-Photometrie, Halbleitergassensoren und die NIR-Spektroskopie zur Bestimmung der Wasserstoffperoxidkonzentration in der Gasphase.In addition to amperometric and potentiometric detection methods for detecting the H 2 C> 2 concentration in liquids with the aid of enzymes (eg catalase and horseradish peroxidase), special membranes (eg Nafion, poly-HEMA) or porous materials (eg solid-state electrolytes, nanostructured silicon), there are detection methods such as titration, test strip photometry, semiconductor gas sensors and NIR spectroscopy for determining the hydrogen peroxide concentration in the gas phase.
Bei dem Titrationsverfahren muss beispielsweise eine definierte Menge Gas angesaugt und gekühlt werden, welches dann in eine Glasfritte geleitet wird, in der eine definierte Menge bidestilliertes Wasser vorgelegt ist. Nach dieser „Gaswäsche" wird die entstandene Lösung mit 20%-iger Schwefelsäure versetzt. Nach Zugabe einer bestimmten Menge Kaliumjodid- und Ammonium-Molybdän- Lösung wird unter Zugabe von Natriumthiosulfatlösung nach „farblos" titriert. Nach einer sich daraus ergebenden Gleichung lässt sich dann die Masse an Wasserstoffperoxid in der Lösung berechnen. Mit dieser Masseangabe lässt sich die Konzentration im angesaugten Gas berechnen. Nachteilig an diesem Verfahren ist der relativ hohe apparative Aufwand sowie die „off-line"-Methodik, die keine kontinuierliche Erfassung der Wasserstoffperoxidkonzentration zulässt (Forschungsprojekt: „Haltbarkeitsverlängerung von Milchprodukten durch Optimierung der Keiminaktivierung im Lebensmittel und auf Packstoffen", Technische Universität München, 2004) .In the titration method, for example, a defined amount of gas must be sucked in and cooled, which is then passed into a glass frit, in the a defined amount of bidistilled water is submitted. After this "gas scrubbing", the resulting solution is mixed with 20% sulfuric acid After addition of a certain amount of potassium iodide and ammonium molybdenum solution, titration is carried out with the addition of sodium thiosulfate solution "colorless". From a resulting equation, the mass of hydrogen peroxide in the solution can then be calculated. This mass specification can be used to calculate the concentration in the intake gas. A disadvantage of this method is the relatively high expenditure on equipment and the "off-line" methodology, which does not allow continuous recording of the hydrogen peroxide concentration (research project: "Durability extension of dairy products by optimizing the activation of germs in food and packaging materials", Technical University of Munich, 2004 ).
Eine weitere Variante beschreibt eine Vorrichtung zur „on-line"-Ermittlung der Konzentration von Wasserstoffperoxiddampf während der Sterilisation bzw. Desinfektion. Sie basiert auf dem Einsatz von bekannten Metall-Oxid-Halbleiter-Sensoren (z.B. von kommerziell erhältlichen Snθ2-Gas-Sensoren oder Sensoren auf der Basis von TiO2, Fe2O3, ZnO, etc.) [DE 198 55 120 Al; US Patent 5 608 156; I. Taizo, A. Sinichi, K. Kawamura, J. Pharmaceutical Sei. Technol . , 52 (1998) 13]. Bei solchen Halbleitergassensoren reagiert ein beheizter Halbleiter, der auf 200 bis 400 0C Betriebstemperatur aufgeheizt wird, auf reduzierende bzw. oxidierende Gase mit einer Leitfähigkeitsveränderung. Diese Leitfähigkeitsänderung kann z.B. als Spannungssignal ausgelesen werden. Nachteilig bei diesem Verfahren ist, dass das Sensorsignal stark von der Luftfeuchtigkeit und der Temperatur des Analyten abhängt und mit einem Satz zuvor aufgenommener und bestimmter Korrelationsdaten korrigiert werden muss. Ein solcher Sensor ist folglich nur dann einsetzbar, wenn die Umgebungsvariablen Temperatur und Luftfeuchte bekannt bzw. konstant und/oder separat mit Sensoren anderer Bauart und damit verbundenen anderen Messsignalen, gemessen werden. Damit ist die Verwendung einer aufwändigeren Messelektronik verknüpft. Weiterhin ist bei der vorgeschlagenen Anordnung nicht bekannt, wie sich die Strömungsgeschwindigkeit auf das Sensorsignal auswirkt .Another variant describes an apparatus for "on-line" determination of the concentration of hydrogen peroxide vapor during sterilization or disinfection.It is based on the use of known metal-oxide-semiconductor sensors (eg of commercially available Snθ 2 gas sensors or sensors based on TiO 2 , Fe 2 O 3 , ZnO, etc.) [DE 198 55 120 Al; US Pat. No. 5,608,156; I. Taizo, A. Sinichi, K. Kawamura, J. Pharmaceutical Sci. Technol , 52 (1998) 13] In such semiconductor gas sensors, a heated semiconductor, which is heated to 200 to 400 ° C. operating temperature, reacts to reducing or oxidizing gases with a change in conductivity Procedure is that the sensor signal is strongly influenced by the humidity and the Temperature of the analyte and must be corrected with a set of previously recorded and specific correlation data. Consequently, such a sensor can only be used if the environmental variables temperature and humidity are known or measured constantly and / or separately with sensors of a different type and associated other measuring signals. This links the use of a more sophisticated measuring electronics. Furthermore, it is not known in the proposed arrangement how the flow velocity affects the sensor signal.
Eine weitere Methode repräsentiert die Nah-Infrarot (NIR) - Spektroskopie, bei der ein Lichtstrahl bekannter Wellenlänge und Intensitätsverteilung durch den zu untersuchenden Analyten geleitet wird und dann von einem Detektor in der Art aufgenommen wird, dass die Absorption des Analyten berechnet werden kann. Dieses sehr schnelle Verfahren, welches eine sehr niedrige Nachweisgrenze aufweist, wird z.B. von der Firma GuidedWave in einem „H202-Vapor-Monitor" eingesetzt. Bei diesem Gerät wird das zu untersuchende Gas aus dem Prozess entnommen und dann in einer Messeinheit „off-line" vermessen. Nachteilig an diesem Verfahren ist allerdings die Notwendigkeit von einem hohen und konstenintensiven, apparativen Aufwand sowie der Bedarf an sehr langen Lichtwegen durch den Analyten (nicht selten 10 m) , so dass eine Integration in bestehende Prozessanlagen, die eine zusätzliche Sterilisations- bzw. Desinfektionseinheit beinhalten soll, erschwert wird und zudem eine kontinuierliche „online" Analytik schwer realisierbar macht. Eine weitere Möglichkeit, um H2O2 in der Dampfphase zu bestimmen, ist der Einsatz von Testpapier, bekannt als Teststreifen-Photometrie-Verfahren . Dieses Verfahren wird mittels eines Testpapiers durchgeführt, wobei das Testpapier mit einer Chemikalie speziell behandelt wurde, so dass es seine Farbe bei Kontakt mit H2θ2-Dampf verändert. Durch die nachfolgende optische Farberkennung kann die Konzentration des H2θ2-Dampfes ermittelt werden. Solche Chemoindikatoren oder Teststreifen können jedoch nur für jeweils einen Sterilisationsprozess als „disposable" Sensoren verwendet werden und stellen daher relativ teure Verbrauchsmaterialien dar. Zudem ist es mit ihnen nicht möglich, den Sterilisationsverlauf und somit die zeitabhängige Messung der verschiedenen Parameter bei der Sterilisation festzustellen. Ein weiterer Nachteil ist die Dauer des Farbänderungsprozesses (ca. 1-12 Min. [S. Corveleyn, G.M. R. Vandenbossche, J. P. Remon, Pharmaceutical Research, 14 (1997), 294; V.M. Ostrovskaya, Y.A. Zolotov, A.V. Davydov, J. Anal. Chem. 54 (1999), 764], d.h. die Anpsrechzeit sowie die Tatsache, dass diese Sensoren nicht bei erhöhter Betriebstemperatur (> 100 0C) eingesetzt werden können und dass meistens der erforderliche Konzentrationsbereiche nicht erreiciht wird..Another method represents near-infrared (NIR) spectroscopy, in which a light beam of known wavelength and intensity distribution is passed through the analyte to be examined and then recorded by a detector in such a way that the absorption of the analyte can be calculated. This very fast method, which has a very low detection limit, is used, for example, by the company GuidedWave in an "H 2 O 2 vapor monitor." In this apparatus, the gas to be examined is taken out of the process and then in a measuring unit. " measured off-line. A disadvantage of this method, however, is the need for a high and cost-intensive, equipment and the need for very long light paths through the analyte (not infrequently 10 m), so that an integration into existing process equipment, which include an additional sterilization or disinfection unit is made difficult, and also makes a continuous "online" analytics difficult to realize. Another way to determine vapor phase H 2 O 2 is the use of test paper, known as a test strip photometry method. This procedure is performed by means of a test paper wherein the test paper has been specially treated with a chemical so that it changes color upon contact with H 2 O 2 vapor. By the subsequent optical color detection, the concentration of H 2 θ2 vapor can be determined. However, such chemoindicators or test strips can only be used as "disposable" sensors for one sterilization process and therefore represent relatively expensive consumables. Moreover, it is not possible with them to determine the course of sterilization and thus the time-dependent measurement of the various parameters during sterilization Another disadvantage is the duration of the color change process (about 1-12 min., [S. Corveleyn, GMR Vandenbossche, JP Remon, Pharmaceutical Research, 14 (1997), 294; VM Ostrovskaya, YA Zolotov, AV Davydov, J. Anal 54 (1999), 764], ie the Anpsrechzeit and the fact that these sensors can not be used at elevated operating temperature (> 100 0 C) and that in most cases the required concentration ranges is not reached ..
Es ist deshalb Aufgabe der vorliegenden Erfindung, die oben beschriebenen Nachteile zur Detektion von Wasserstoffperoxid in der Gas- oder Dampfphase zu verringern oder zu vermeiden. Eine entsprechende Vorrichtung bzw. ein Verfahren zur Detektion von Wasserstoffperoxid sollenIt is therefore an object of the present invention to reduce or avoid the disadvantages described above for the detection of hydrogen peroxide in the gas or vapor phase. A corresponding device or a method for the detection of hydrogen peroxide to
- in dampfhaltigen bzw. gasförmigen Medien eingesetzt werden können, - „on-line" in den Prozessablauf der Desinfektion bzw. Sterilisation eingebunden werden können,- can be used in vaporous or gaseous media, - can be integrated "on-line" in the process of disinfection or sterilization,
- den Nachweis der Wasserstoffperoxidkonzentration auch bei erhöhten Temperaturen, insbesondere zwischen- The detection of the hydrogen peroxide concentration even at elevated temperatures, in particular between
100 0C und 300 0C ermöglichen.Allow 100 0 C and 300 0 C.
Die Aufgabe wird gelöst durch ein Verfahren bzw. eine Vorrichtung gemäß der Gesamtheit der Merkmale der Ansprüche 1 bzw. 5. Weitere zweckmäßige oder vorteilhafte Ausführungsformen finden sich in den auf einen dieser Ansprüche rückbezogenen Unteransprüchen.The object is achieved by a method or a device according to the totality of the features of claims 1 and 5, respectively. Further expedient or advantageous embodiments can be found in the subclaims referring back to one of these claims.
Die Erfindung wird nachfolgend anhand von drei unterschiedlichen Transducervarianten zum Nachweis der Wasserstoffperoxidkonzentration in der Dampfphase näher beschrieben:The invention is described in more detail below with reference to three different transducer variants for detecting the hydrogen peroxide concentration in the vapor phase:
Variante 1 :Version 1 :
Ein mögliches Transducerprinzip stellt die Verwendung eines katalytisch aktiven Materials wie beispielsweise Platin, Kupfer, Kupfer-Nickelverbindungen, Rhodium, Rhutenium, Hexacyanoferraten etc., insbesondere einer manganhaltigen Verbindung, in Kombination mit einem physikalischen Sensor dar. Dieser als Detektor eingesetzte physikalisch Sensor kann beispielsweise ein Thermoelement, Widerstandsthermometer, Thermistor, Pellistor, NTC, PTC, etc. sein, insbesondere jedoch ein edelstahlummanteltes Thermoelement oderA possible transducer principle is the use of a catalytically active material such as platinum, copper, copper-nickel compounds, rhodium, Rhutenium, Hexacyanoferraten etc., in particular a manganese-containing compound, in combination with a physical sensor. This used as a detector physical sensor can, for example Thermocouple, resistance thermometer, thermistor, pellistor, NTC, PTC, etc., but in particular a stainless steel sheathed thermocouple or
Widerstandsthermometer. Das katalytisch aktive Material wird hierfür auf dem physikalischen Transducer abgeschieden oder aufgebracht. Die Abscheidung bzw. Bindung des katalytisch aktiven Materials kann physikalischer oder chemischer Natur sein. So kann beispielsweise das katalytisch aktive Material aus der Gasphase mit bekannten CVD- und/oder PVD- Verfahren abgeschieden werden. Daneben können generell Verfahren der Dünnschicht- oder Dickschichttechnik verwendet werden. Alternativ kann die Abscheidung des katalytisch aktiven Materials aus einer Flüssigkeit, z.B. als Precipitation, erfolgen oder mittels herkömmlicher fertigungstechnischer Methoden wie Kleben, Löten, Schweißen oder dgl . befestigt werden.RTDs. The catalytically active material is deposited or applied to the physical transducer for this purpose. The deposition or binding of the catalytically active material may be physical or chemical nature. Thus, for example, the catalytically active material can be separated from the gas phase by known CVD and / or PVD methods. In addition, methods of thin-film or thick-film technology can generally be used. Alternatively, the deposition of the catalytically active material from a liquid, for example as Precipitation done or by conventional manufacturing techniques such as gluing, soldering, welding or the like. be attached.
Gelangt nun ein exotherm reagierendes Gas an die Oberfläche des katalytisch aktiven Materials, wird die Dissoziationsenergie herabgesetzt, so dass beispielsweise Wasserstoffperoxid schon bei Raumtemperatur zerfallen würde. Durch diesen Zerfall wird Wärme freigesetzt, die eine Temperaturerhöhung an dem als physikalischen Transducer fungierenden Temperatursensor bewirkt. Diese Temperaturerhöhung kann direkt in Form einer Widerstands- , Spannungs-, Stromänderung oder in einer Änderung der Leistungsaufnahme des Detektors erfasst werden und qualitativ bzw. (über eine Kalibrierung) quantitativ der vorhandenen Wasserstoffperoxidkonzentration zugeordnet werden. Ein großer Vorteil dieser Methode ist die hohe Temperaturbeständigkeit der verwendeten kataltischen Schicht, d.h. der Detektor kann auch bei erhöhten Prozesstemperaturen während der Sterilisation in Echtzeitbetrieb eingesetzt werden. Weiterhin beeinflussen Temperaturschwankungen im Analyten nicht die durch die katalytische Reaktion hervorgerufene exotherme Reaktion und damit die Empfindlichkeit des Sensors . Variante 2 :If an exothermically reacting gas now reaches the surface of the catalytically active material, the dissociation energy is reduced, so that, for example, hydrogen peroxide would decompose even at room temperature. This decay releases heat which causes a temperature increase on the temperature sensor acting as a physical transducer. This temperature increase can be detected directly in the form of a change in resistance, voltage, current or in a change in the power consumption of the detector and quantitatively or qualitatively (via a calibration) be assigned to the existing hydrogen peroxide concentration. A great advantage of this method is the high temperature resistance of the used cataltic layer, ie the detector can be used even at elevated process temperatures during sterilization in real time operation. Furthermore, temperature fluctuations in the analyte do not influence the exothermic reaction caused by the catalytic reaction and thus the sensitivity of the sensor. Variant 2 :
Ein weiterer möglicher Ansatz stellt die Verwendung eines kalorimetrischen Gassensors, wie beispielsweise eines Pellistors, NTC, PTC, etc., insbesondere eines Hitzdrahtsensors, der trotz oder aufgrund seiner unzureichenden Selektivität für die Detektion exotherm reagierender Gase geeignet ist, dar. Ein solcher kaloriemetrischer Sensor besteht aus einem beheizten Element, meist durch einen Stromfluss in einem Leiter realisiert, dessen Leitfähigkeit sich temperaturabhängig ändert. Sind unter Normalbedingungen in der Gasphase exotherm reagierende Gase stabil, findet an dem erhitzten Element ein Energieübertrag auf das einzelne Gasmolekül statt, welcher ausreicht, um das Molekül zum Zerfall anzuregen. Die bei dem exothermen Zerfall freiwerdende Wärme führt dann zu einer Temperaturerhöhung des beheizten Elements, was wiederum zu einer Leitfähigkeitsänderung dieses Elements führt. Diese Leitfähigkeitsänderung dient direkt als Messsignal und kann entsprechend der oben ausgeführten Varianten als Strom-, Spannungs-, Widerstands-, Leitfähigkeitsänderung oder als Änderung der Frequenz, der optischen Eigenschaften, der Signalform oder als Änderung der Leistungsaufnahme des Sensors detektiert werden. Da hier auf den zusätzlichen Einsatz eines Katalysators verzichtet wird, kann keine selektive Erfassung der Wasserstoffperoxidkonzentration erfolgen. Auf der anderen Seite ist es unter der Kenntnisnahme der exakten Prozessparameter während des Desinfektions- bzw. Sterilisationsprozesses möglich, eine indirekte qualitative und quantitative Kalibration der vorhandenen Wasserstoffperoxidkonzentration aufgrund eines fest vorgegebenen, definierten Parametersatzes durchzuführen. Variante 3 :Another possible approach is to use a calorimetric gas sensor, such as a pellistor, NTC, PTC, etc., particularly a hot wire sensor that is suitable for the detection of exothermically reactive gases, despite or because of its insufficient selectivity. Such a calorimetric sensor exists realized from a heated element, usually by a current flow in a conductor whose conductivity varies depending on the temperature. If under normal conditions in the gas phase exothermically reactive gases are stable, takes place at the heated element, an energy transfer to the single gas molecule, which is sufficient to stimulate the molecule to decay. The heat released in the exothermic decomposition then leads to a temperature increase of the heated element, which in turn leads to a change in conductivity of this element. This conductivity change is used directly as a measurement signal and can be detected according to the above variants as current, voltage, resistance, conductivity change or as a change in frequency, the optical properties, the waveform or as a change in power consumption of the sensor. Since it is dispensed with the additional use of a catalyst, no selective detection of the hydrogen peroxide concentration can take place. On the other hand, taking into account the exact process parameters during the disinfection or sterilization process, it is possible to carry out an indirect qualitative and quantitative calibration of the existing hydrogen peroxide concentration on the basis of a fixed, defined parameter set. Variant 3:
Ein weiterer möglicher Ansatz beinhaltet die Verwendung von thermoelementartigen Anordnungen, deren Temperaturmessstelle mit dem zu untersuchenden Medium (H2O2) in unmittelbarem Kontakt ist. Handelt es sich bei einem der Metalle oder bei beiden Metallen der temperatursensitiven Metallpaarung der thermoelementartigen Anordnung um ein oder mehrere katalytisch aktive Materialien, wie beispielsweise Fe/CuNi, NiCr/Ni, PtRh/Pt, NiCr/CuNi, IrRh/Ir, Wo/Ta, NiCrSi/NiSiMg, etc. insbesondere jedoch um Cu/CuNi, zerfällt aufgrund der katalytischen Wirkung das exotherm reagierende Gas und die dabei freiwerdende Wärmeenergie wird direkt als eine Temperaturerhöhung an dem Thermoelement detektiert. Diese Temperaturerhöhung kann direkt in Form einer Widerstands-, Leitfähigkeits-, Impedanz-, Spannungs-, Stromänderung oder in einer Änderung der Frequenz, der optischen Eigenschaften, der Signalform oder als Änderung der Leistungsaufnahme des Detektors erfasst werden und qualitativ bzw. (über eine Kalibrierung) quantitativ der vorhandenen Wasserstoffperoxidkonzentration zugeordnet werden. Ein großer Vorteil dieser Methode ist die hohe Temperaturbeständigkeit der verwendeten katalytischen Anordnung, d.h., der Detektor kann auch bei erhöhten Prozesstemperaturen während der Sterilisation im Echtzeitbetrieb eingesetzt werden. Weiterhin beeinflussen Temperaturschwankungen im Analyten nicht die durch die katalytische Reaktion hervorgerufene exotherme Reaktion und damit die Empfindlichkeit des Sensors . Die oben genannten Lösungsansätze (Varianten) können einzeln, miteinander verknüpft in Form eines Arrays und/oder zusammen mit einem oder mehreren Temperatursensoren gleicher und/oder anderer Bauweise verwendet werden, um mögliche störende Einflüsse durch die Temperatur oder Feuchtigkeit des Analyten zu kompensieren .Another possible approach involves the use of thermocouple-like arrangements whose temperature measuring point is in direct contact with the medium to be investigated (H2O2). If one of the metals or both metals of the temperature-sensitive metal pairing of the thermoelement-like arrangement is one or more catalytically active materials, such as Fe / CuNi, NiCr / Ni, PtRh / Pt, NiCr / CuNi, IrRh / Ir, Wo / Ta , NiCrSi / NiSiMg, etc., however, especially around Cu / CuNi, decomposes due to the catalytic effect of the exothermic gas and the heat energy released is detected directly as a temperature increase at the thermocouple. This temperature increase can be detected directly in the form of a resistance, conductivity, impedance, voltage, current change or in a change in frequency, the optical properties, the waveform or as a change in power consumption of the detector and qualitatively or (via a calibration ) are quantitatively assigned to the existing hydrogen peroxide concentration. A great advantage of this method is the high temperature resistance of the catalytic arrangement used, ie, the detector can be used even at elevated process temperatures during sterilization in real-time operation. Furthermore, temperature fluctuations in the analyte do not influence the exothermic reaction caused by the catalytic reaction and thus the sensitivity of the sensor. The abovementioned solutions (variants) can be used individually, linked together in the form of an array and / or together with one or more temperature sensors of identical and / or different construction, in order to compensate for possible interfering influences due to the temperature or moisture of the analyte.
Die Erfindung wird nachfolgend anhand von bevorzugten Ausführungsbeispielen näher beschrieben. In der Zeichnung zeigen:The invention will be described in more detail below with reference to preferred embodiments. In the drawing show:
Fig. 1 ein erstes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung in schematischer Darstellung,1 shows a first embodiment of a device according to the invention in a schematic representation,
Fig. 2 ein zweites Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung in schematischer Darstellung undFig. 2 shows a second embodiment of a device according to the invention in a schematic representation and
Fig. 3 ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung in schematischer Darstellung.Fig. 3 shows a further embodiment of a device according to the invention in a schematic representation.
Beabstandet angeordnete Sensoren 1 und 2 der zuvor näher erläuterten und insofern besonders bevorzugten Varianten können nach Fig. 1 in einem an den Seiten ein- und/oder beidseitig geschlossenen, teilweise oder vollständig geöffneten Gefäß 3 angebracht sein. Hierbei stellt entweder 1 und/oder 2 einen beliebigen Sensor der vorgestellten Varianten dar. Darüber hinaus kann Sensor 1 oder 2 auch einen weiteren Temperatursensor darstellen. Die Sensoren sind in einem definierten Abstand, im Falle von Sensor 1 in einem definierten Li oder im Falle von Sensor 2 in einem definierten Abstand von L2 von der Wand des Gefäßes 3 angebracht, bzw. ragen im dargestellten Falle von Sensor 1 mit der definierten Länge Li und von Sensor 2 mit der definierten Länge L2 in das Gefäß 3 hinein. Die Sensoren 1, 2 sind dabei in einem definierten Abstand voneinander entfernt angeordnet.Spaced sensors 1 and 2 of the previously explained in more detail and thus particularly preferred variants can be mounted according to FIG. 1 in a closed on one side and / or on both sides, partially or completely open vessel 3. In this case, either 1 and / or 2 represents an arbitrary sensor of the variants presented. In addition, sensor 1 or 2 can also represent a further temperature sensor. The sensors are at a defined distance, in the case of sensor 1 in a defined Li or in the case of Sensor 2 mounted at a defined distance from L 2 of the wall of the vessel 3, or protrude in the illustrated case of the sensor 1 with the defined length Li and of the sensor 2 with the defined length L 2 in the vessel 3 into it. The sensors 1, 2 are arranged at a defined distance from each other.
Gemäß Fig. 2 können die Sensoren 1' und 2' auch an einem an den Seiten ein- und/oder beidseitig geschlossenen, teilweise oder vollständig geöffneten Gefäß 3' angebracht sein. Die Sensoren 1', 2' befinden sich in Zellen 4 und/oder 5, die in einem definierten Abstand zueinander angeordnet sind, und die über eine (nicht dargestellte) Öffnung eines definierten Querschnittes, der einen Gasaustausch gewährleistet, mit dem Gefäß 3' verbunden sind.According to FIG. 2, the sensors 1 'and 2' can also be attached to a vessel 3 'closed on one side and / or on both sides, partially or completely opened. The sensors 1 ', 2' are located in cells 4 and / or 5 which are arranged at a defined distance from one another and which are connected to the vessel 3 'via an opening (not shown) of a defined cross-section which ensures a gas exchange are.
Auch hier können Sensor 1' und/oder Sensor 2' einen Sensor weiter oben im Detail beschriebenen Varianten oder aber auch einen weiteren Temperatursensor darstellen, wie für Fig. 1 bereits beschrieben oder wie im folgenden zu Fig. 3 ausgeführt. Die Sensoren 1' und/oder 2' können deutlich in die Zellen 4 oder 5 hineinragen. Des weiteren kann eine Verbindung 6 mit einem definierten Querschnitt zwischen den Zellen 4 und 5 angebracht sein. Weiterhin können die Zellen zusätzlich mit (nicht dargestellten) Heizelementen oder Kanälen zur Beheizung ausgestattet sein.Here, too, sensor 1 'and / or sensor 2' can represent a sensor described above in more detail variants or else also a further temperature sensor, as already described for FIG. 1 or as explained below for FIG. 3. The sensors 1 'and / or 2' can protrude significantly into the cells 4 or 5. Furthermore, a compound 6 with a defined cross section between the cells 4 and 5 may be attached. Furthermore, the cells may additionally be equipped with heating elements or channels (not shown) for heating.
Fig. 3 entspricht im wesentlichen der Ausführungsform von Fig. 2 mit der Änderung, dass im Falle eines strömenden Mediums das Gefäß 3' ' über Einbauten 7 eine Veränderung des Durchmessers beinhaltet. Diese Veränderung des Durchmessers ist so aufgebaut, dass sich der Querschnitt H des Gefäßes in definierter Weise auf den Querschnitt Hi im Bereich der Zelle 4' und/oder auf den Querschnitt H2 im Bereich der Zelle der Zelle 5' verkleinert. In oder an den Querschnittsänderungen ist eine Öffnung 8 mit einem definierten Querschnitt Ai im Bereich der Zelle 4' bzw. mit einem definierten Querschnitt A2 im Bereich der Zelle 5' in der Art und Weise angebracht, dass ein Gasaustausch zwischen dem Gefäß 3'' und jeder Zelle 4', 5' stattfinden kann. Auch hier können die Zellen 4' und 5' wieder mit einem Verbindungskanal 6 miteinander in Verbindung stehen.Fig. 3 corresponds substantially to the embodiment of Fig. 2 with the change that in the case of a flowing medium, the vessel 3 '' includes a change in the diameter of internals 7. This change in diameter is constructed so that the cross section H of the vessel in a defined manner to the cross-section Hi in the region of the cell 4 'and / or on the cross-section H 2 in the region of the cell of the cell 5' reduced. In or on the cross-sectional changes, an opening 8 with a defined cross-section Ai in the region of the cell 4 'or with a defined cross-section A 2 in the region of the cell 5' in such a manner that a gas exchange between the vessel 3 '' and each cell 4 ', 5' can take place. Again, the cells 4 'and 5' again with a connection channel 6 are in communication.
Ein weiteres, nicht dargestelltes Ausführungsbeispiel berücksichtigt, dass neben den Ausführungsformen gemäß Fig. 1, 2 oder 3 ein zusätzliches Referenzsystem mit dem gleichen Aufbau gemäß Fig. 1 und/oder 2 und/oder 3 aufgebaut wird, welches mit einem Referenzmedium beaufschlagt wird. Dies erfolgt in der Art und Weise, dass neben der Vorrichtung mit dem zu untersuchenden Medium eine weitere Vorrichtung der Ausführungsformen gemäß Fig. 1 und/oder 2 und/oder 3 aufgebaut ist, in oder durch welche ein Medium (z.B. Gasstrom) anderer Zusammensetzung geleitet wird, so dass aus den Messergebnissen beider Systeme ein Differenzsignal erfasst werden kann. Dabei kann die Referenzanordnung als separates System aufgebaut sein und/oder in die dargestellten Ausführungsformen integriert sein in der Art und Weise, dass ein beliebiger Sensor der geschilderten Varianten oder ein Temperatursensor mit einem Referenzgas beaufschlagt wird. A further, not shown exemplary embodiment takes into account that, in addition to the embodiments according to FIG. 1, 2 or 3, an additional reference system with the same structure according to FIG. 1 and / or 2 and / or 3 is constructed, which is acted on by a reference medium. This is done in such a way that in addition to the device with the medium to be examined another device of the embodiments of FIG. 1 and / or 2 and / or 3 is constructed, in or through which a medium (eg gas stream) passed other composition becomes, so that from the measurement results of both systems, a difference signal can be detected. In this case, the reference arrangement may be constructed as a separate system and / or be integrated into the illustrated embodiments in such a way that an arbitrary sensor of the described variants or a temperature sensor is supplied with a reference gas.

Claims

P A T E N T AN S P R Ü C H E PATENT AT SPRU
1. Verfahren zur quantitativen Bestimmung der Konzentration von Wasserstoffperoxid (H2O2) in der Gas- oder Dampfphase mit wenigstens einem Sensor, der mit dem zu untersuchenden Medium in unmittelbaren Kontakt gebracht wird, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor so ausgebildet ist, dass Moleküle des Wasserstoffperoxids zum Zerfall angeregt werden und dass der Sensor die bei dieser exothermen Reaktion entstehende Wärme zur Bestimmung der H2O2- Konzentration nutzt.A method for the quantitative determination of the concentration of hydrogen peroxide (H2O2) in the gas or vapor phase with at least one sensor, which is brought into direct contact with the medium to be examined, characterized in that the sensor is designed so that molecules of hydrogen peroxide for Decay and that the sensor uses the heat generated during this exothermic reaction to determine the H2O2 concentration.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a s s ein katalytisch aktives Material in die Nähe des wenigstens einen Sensors gebracht wird, welches die Dissoziationsenergie des exotherm reagierenden Gases beim Kontakt mit der Oberfläche herabsetzt, so dass ein Zerfall des Wasserstoffperoxids auch bei niedrigen Temperaturen erfolgen kann.2. The method according to claim 1, characterized in that a catalytically active material is brought in the vicinity of the at least one sensor, which reduces the dissociation energy of the exothermic gas when it comes into contact with the surface, so that a decomposition of the hydrogen peroxide can also be carried out at low temperatures ,
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a s s zur Bestimmung der H2C>2-Konzentration ein aktiver Sensor eingesetzt wird, dessen zugeführte Energie den Zerfall der Moleküle des Wasserstoffperoxids anregt. 3. The method according to claim 1, characterized in that for determining the H 2 C> 2 concentration, an active sensor is used, the energy supplied stimulates the decomposition of the molecules of hydrogen peroxide.
4. Vorrichtung zur quantitativen Bestimmung der Konzentration von Wasserstoffperoxid (H2O2) in der Gas- oder Dampfphase mit wenigstens einem Sensor, der mit dem zu untersuchenden Medium in unmittelbarem Kontakt steht, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2', 1", 2") ein Temperatursensor ist, welcher eine4. An apparatus for the quantitative determination of the concentration of hydrogen peroxide (H2O2) in the gas or vapor phase with at least one sensor which is in direct contact with the medium to be investigated, characterized in that the sensor (1, 2, 1 ', 2' , 1 ", 2") is a temperature sensor, which is a
Temperaturveränderung unmittelbar in eine auswertbare Größe zur Messung der quantitativen bzw. qualitativen Wasserstoffperoxidkonzentration umsetzt .Temperature change immediately converts into an evaluable size for measuring the quantitative or qualitative hydrogen peroxide concentration.
5. Vorrichtung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2', 1", 2") ein Temperatursensor ist, welcher eine Temperaturveränderung unmittelbar in Form einer Änderung des Widerstandes, der Impedanz, der Spannung, des Stroms, der Leistungsaufnahme, der Frequenz, der Signalform oder der optischen Eigenschaften zur Messung der quantitativen bzw. qualitativen Wasserstoffperoxidkonzentration umsetzt.5. The device according to claim 4, characterized in that the sensor (1, 2, 1 ', 2', 1 ", 2") is a temperature sensor, which is a temperature change directly in the form of a change in resistance, impedance, voltage, of the current, the power consumption, the frequency, the signal shape or the optical properties for measuring the quantitative or qualitative hydrogen peroxide concentration.
6. Vorrichtung nach Anspruch 4 oder 5, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2', 1' ' , 2'') in räumlicher Nähe zu einer katalytisch aktiven Substanz angeordnet ist .6. Apparatus according to claim 4 or 5, characterized in that the sensor (1, 2, 1 ', 2', 1 '', 2 '') is arranged in spatial proximity to a catalytically active substance.
7. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2', 1'', 2'') ein Thermoelement ist . 7. The device according to claim 6, characterized in that the sensor (1, 2, 1 ', 2', 1 '', 2 '') is a thermocouple.
8. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2' , 1", 2") ein Widerstandsthermometer ist.8. Device according to claim 6, characterized in that the sensor (1, 2, 1 ', 2', 1 ", 2") is a resistance thermometer.
9. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2', 1", 2") ein Thermistor ist.9. Device according to claim 6, characterized in that the sensor (1, 2, 1 ', 2', 1 ", 2") is a thermistor.
10. Vorrichtung nach einem der Ansprüche 6 bis 9, d a d u r c h g e k e n n z e i c h n e t, d a s s die katalytisch aktive Substanz aus Platin, Kupfer, Kupfer-Nickel-Verbindungen, Rhodium, Rhutenium, Hexacyanoferraten oder einer manganhaltigen Verbindung besteht.10. The device according to claim 6, wherein the catalytically active substance consists of platinum, copper, copper-nickel compounds, rhodium, ruthenium, hexacyanoferrate or a manganese-containing compound.
11. Vorrichtung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2', 1", 2") ein kalorimetrischer Gassensor ist, dessen Leitfähigkeit sich temperaturabhängig ändert.11. Device according to claim 5, characterized in that the sensor (1, 2, 1 ', 2', 1 ", 2") is a calorimetric gas sensor whose conductivity changes as a function of temperature.
12. Vorrichtung nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2', 1", 2") ein Pellistor ist.12. Device according to claim 11, wherein the sensor (1, 2, 1 ', 2', 1 ", 2") is a pellistor.
13. Vorrichtung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, d a s s der Sensor (1, 2, 1', 2', 1", 2") ein Thermoelement ist, wobei eines der Metalle oder beide Metalle der temperatursensitiven Metallpaarung aus einem oder mehreren katalytisch aktiven Materialien bestehen.13. The device according to claim 5, characterized in that the sensor (1, 2, 1 ', 2', 1 ", 2") is a thermocouple, wherein one of the metals or both metals of the temperature-sensitive metal pairing of one or more catalytically active materials.
14. Vorrichtung nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t, d a s s die katalytisch aktiven Materialien CuNi, Fe, Ni, NiCr, Pt, PtRh, NiCr, IrRh, Ir, Wo, Ta, NiSiMg oder NiCrSi sind.14. The device of claim 13, wherein the catalytically active materials are CuNi, Fe, Ni, NiCr, Pt, PtRh, NiCr, IrRh, Ir, Wo, Ta, NiSiMg or NiCrSi.
15. Vorrichtung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, d a s s die Sensoren (1, 2, 1', 2', 1'', 2'') einzeln oder unmittelbar verknüpft in Form eines Arrays verwendet werden.15. Device according to claim 5, characterized in that the sensors (1, 2, 1 ', 2', 1 '', 2 '') are used individually or directly linked in the form of an array.
16. Vorrichtung nach einem der Ansprüche 5 bis 15, d a d u r c h g e k e n n z e i c h n e t, d a s s zwei Sensoren (1, 2, 1', 2', 1'', 2'') vorhanden sind, welche in einem definierten Abstand voneinander im zu untersuchenden Medium angeordnet sind.16. Device according to one of claims 5 to 15, characterized in that two sensors (1, 2, 1 ', 2', 1 '', 2 '') are present, which are arranged at a defined distance from each other in the medium to be examined ,
17. Vorrichtung nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t, d a s s die beiden beabstandet angeordneten Sensoren (1, 2, 1', 2', 1' ' , 2'') in einer wenigstens teilweise geschlossenen Messstrecke (3, 3' , 3' ' ) angeordnet sind.17. The apparatus according to claim 16, characterized in that the two spaced-apart sensors (1, 2, 1 ', 2', 1 '', 2 '') in an at least partially closed measuring section (3, 3 ', 3' ') are arranged.
18. Vorrichtung nach Anspruch 16 oder 17, d a d u r c h g e k e n n z e i c h n e t, d a s s die Anordnung der Sensoren (1, 2, 1', 2', 1'', 2'') so gewählt ist, dass ein zuverlässiger Kontakt mit dem zu untersuchenden Medium erfolgt. 18. Device according to claim 16 or 17, wherein the arrangement of the sensors (1, 2, 1 ', 2', 1 '', 2 '') is chosen such that a reliable contact with the medium to be examined takes place.
PCT/EP2006/061893 2005-04-29 2006-04-27 Method and device for detecting substances in aqueous gaseous media WO2006117328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005020459A DE102005020459A1 (en) 2005-04-29 2005-04-29 Method and device for the detection of substances in aqueous, gaseous media
DE102005020459.7 2005-04-29

Publications (1)

Publication Number Publication Date
WO2006117328A1 true WO2006117328A1 (en) 2006-11-09

Family

ID=36793869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061893 WO2006117328A1 (en) 2005-04-29 2006-04-27 Method and device for detecting substances in aqueous gaseous media

Country Status (2)

Country Link
DE (1) DE102005020459A1 (en)
WO (1) WO2006117328A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932630B2 (en) 2014-05-13 2018-04-03 Rasirc, Inc. Method and system for decontaminating materials
US10150048B2 (en) 2014-10-23 2018-12-11 Rasirc, Inc. Method, system, and device for delivery of process gas
US10994254B2 (en) 2017-03-17 2021-05-04 Rasirc, Inc. System, device, and method for controlling mass flow of a catalytically reactive gas in a mixed gas stream

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3638789A1 (en) * 1986-06-09 1987-12-10 American Sterilizer Co CONCENTRATION SENSOR AND CONCENTRATION CONTROL ARRANGEMENT
WO1991005998A1 (en) * 1989-10-18 1991-05-02 Microsystem Design Specialists Limited Gas monitor
US5167927A (en) * 1989-10-31 1992-12-01 Karlson Eskil L Monitor for ozone, hydrogen peroxide and other gases in fluids
EP0818676A1 (en) * 1996-07-10 1998-01-14 Societe Des Produits Nestle S.A. Device for measuring hydrogen peroxyde concentration
EP1308718A2 (en) * 2001-11-02 2003-05-07 Ethicon, Inc. Apparatus and method for monitoring of oxidative gas or vapor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670693B2 (en) * 1988-11-07 1997-10-29 日本特殊陶業株式会社 Hydrogen peroxide detector
US6451272B1 (en) * 1999-12-21 2002-09-17 Ethicon, Inc. Monitoring of sterilant apparatus and method for monitoring sterilant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3638789A1 (en) * 1986-06-09 1987-12-10 American Sterilizer Co CONCENTRATION SENSOR AND CONCENTRATION CONTROL ARRANGEMENT
WO1991005998A1 (en) * 1989-10-18 1991-05-02 Microsystem Design Specialists Limited Gas monitor
US5167927A (en) * 1989-10-31 1992-12-01 Karlson Eskil L Monitor for ozone, hydrogen peroxide and other gases in fluids
EP0818676A1 (en) * 1996-07-10 1998-01-14 Societe Des Produits Nestle S.A. Device for measuring hydrogen peroxyde concentration
EP1308718A2 (en) * 2001-11-02 2003-05-07 Ethicon, Inc. Apparatus and method for monitoring of oxidative gas or vapor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932630B2 (en) 2014-05-13 2018-04-03 Rasirc, Inc. Method and system for decontaminating materials
US10196685B2 (en) 2014-05-13 2019-02-05 Rasirc, Inc. Methods and systems for delivering process gases to critical process applications
US10150048B2 (en) 2014-10-23 2018-12-11 Rasirc, Inc. Method, system, and device for delivery of process gas
US10994254B2 (en) 2017-03-17 2021-05-04 Rasirc, Inc. System, device, and method for controlling mass flow of a catalytically reactive gas in a mixed gas stream

Also Published As

Publication number Publication date
DE102005020459A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
Sanna et al. Determination of heavy metals in honey by anodic stripping voltammetry at microelectrodes
EP1875233B1 (en) Method and device for recovering and analyzing respiratory condensates
DE19952215C2 (en) Test element analysis system
EP1977225B1 (en) Electrochemical biosensor analysis system
DE2637501A1 (en) DEVICE FOR MEASURING THE CONCENTRATION OF A SUBSTANCE IN THE BLOOD
DE102006021333B4 (en) Improved method for the qualitative and / or quantitative determination of low concentrations of organic trace substances in aqueous systems and an analysis device for carrying out this method
EP1397669B1 (en) Device and method for determining the stability of substances and formulations
EP1517132B1 (en) Contactless measurement of the surface temperature of a probe exposed to artificial weathering
Honório et al. Use of boron-doped diamond electrode pre-treated cathodically for the determination of trace metals in honey by differential pulse voltammetry
EP1212598A2 (en) Method and device for the quantitative gas analysis
AT404514B (en) DEVICE AND METHOD FOR MEASURING THE CONCENTRATION OF SUBSTANCES IN LIQUIDS
WO2005080946A2 (en) Transmission spectrometer for analysing a liquid sample
WO2006117328A1 (en) Method and device for detecting substances in aqueous gaseous media
DE19619169A1 (en) Electrochemical gas sensor
EP2515098B1 (en) Method and device for determining the SO2 content of food and drink
DE69402705T2 (en) DETERMINATION OF GAS CONCENTRATION
EP1982168B1 (en) Sensor apparatus for an electrochemical measuring device and method for carrying out electrochemical measurements
DE69300820T2 (en) MEMBRANE SEPARATOR FOR FLUIDS.
EP0509249B1 (en) Method and apparatus for analysing gases
DE102015219023B3 (en) Apparatus for analyzing biological substances in a test solution, manufacturing method and method of operation
EP0616691A1 (en) Equipment and process for detecting water traces in solid and liquid substances
DE10034879C2 (en) Arrangement for total sulfur determination
EP1093578A1 (en) Micro-flow module for chemical analysis
EP1285266B1 (en) Process for determining SO2 content in wine
EP2277041B1 (en) Device and method for detecting trace gases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06754901

Country of ref document: EP

Kind code of ref document: A1