WO2006115211A1 - シクロデキストリン含有ポリエステル系重合体及びその製造方法 - Google Patents
シクロデキストリン含有ポリエステル系重合体及びその製造方法 Download PDFInfo
- Publication number
- WO2006115211A1 WO2006115211A1 PCT/JP2006/308436 JP2006308436W WO2006115211A1 WO 2006115211 A1 WO2006115211 A1 WO 2006115211A1 JP 2006308436 W JP2006308436 W JP 2006308436W WO 2006115211 A1 WO2006115211 A1 WO 2006115211A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclodextrin
- polyester polymer
- poly
- derivative
- polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0009—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
- C08B37/0012—Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/16—Cyclodextrin; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D105/00—Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
- C09D105/16—Cyclodextrin; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
Definitions
- the present invention relates to a composition comprising a cyclodextrin-containing polyester polymer and a thermoplastic resin, a film material comprising the composition, a cyclodextrin-containing polyester polymer, a coating composition comprising
- the present invention relates to a method for producing a dextrin-containing polyester polymer.
- cyclodextrins can include various substances (for example, fragrances, medicines, insecticides, etc.) and can immobilize or stabilize these substances.
- polymers for example, fragrances, medicines, insecticides, etc.
- Patent Document 1 describes an attempt to apply a material in which cyclodextrin is bonded to a terminal of a biodegradable polymer such as poly-strength prolatatatone to a pharmaceutical composition or a diagnostic composition.
- Patent Documents 2 and 3 describe materials in which cyclodextrin is bonded to the terminal of polyhydroxyalkanoate.
- a cyclodextrin-containing polyester polymer is produced by reacting a cyclodextrin in which a part of the hydroxyl group is deprotonated with a polyester polymer
- the cyclodextrin is the main chain of the polyester polymer. Since it reacts with an ester bond to cleave the ester bond to obtain a polyester polymer bonded with cyclodextrin, the molecular weight of the product tends to be lower than that of the starting polyester polymer. It is difficult to obtain a mass.
- Non-Patent Document 1 a cyclodextrin-containing polyester polymer is produced by polymerizing a cyclic ester compound starting from cyclodextrin (for example, Non-Patent Document 1), the high molecular weight has sufficient material strength. It is very difficult to obtain a body, for example, having a molecular weight of about 100,000 or more.
- the conventional technology does not provide a polyester polymer in which cyclodextrin is bonded to the terminal, which is excellent in strength when used as a molding material such as a film material, and achieves both a cyclodextrin content and material strength. It was an unresolved issue.
- cyclodextrin with high molecular weight such as epichlorohydrin has been studied for use as an adsorbent of harmful substances. This is usually a cross-linked product, so it is insoluble in organic solvents. It is difficult to form a coating that is not thermoplastic.
- a method of using a composition in which cyclodextrin is mixed with thermoplastic rosin as a coating composition is also conceivable, it is difficult to uniformly disperse cyclodextrin, and since cyclodextrin is not bound to rosin, There is a problem that cyclodextrin bleeds and easily changes over time. In some cases, cyclodextrin may elute.
- Patent Document 4 and Patent Document 5 describe attempts to bind cyclodextrin to a polyester-based polymer, and these include cyclodextrin derivatives.
- a method is described in which cyclodextrin is bonded to a main chain skeleton by copolymerizing with a dicarboxylic acid derivative or the like (cyclodextrin is not bonded to the terminal of the polyester polymer). According to this method, the cyclodextrin content in the polyester main chain can be increased.
- the reaction for introducing a substituent into the hydroxyl group of cyclodextrin may be an unreacted cyclodextrin having a low selectivity, a cyclodextrin having a different number of hydroxyl groups substituted, or a group having the same number of hydroxyl groups substituted. Is obtained as a mixture of cyclodextrins with different substitution positions. Therefore, a cyclodextrin derivative in which only a desired number of hydroxyl groups are substituted must be isolated by a method such as column chromatography. Without such an operation, the polyester polymer obtained by copolymerization is crosslinked, and a polymer soluble in a solvent cannot be obtained.
- Non-Patent Document 1 describes that polylatatone having cyclodextrin bonded to the terminal can be obtained by heating and polymerizing cyclodextrin and latatones in the absence of a solvent.
- the polycarboxylic acid prolatatone is activated with N-hydroxysuccinimide ester or carbodiimidazole and reacted with cyclodextrin to produce polyprolactonone with cyclodextrin fixed at the terminal.
- Patent Document 1 describes that polylatatone having cyclodextrin bonded to the terminal can be obtained by heating and polymerizing cyclodextrin and latatones in the absence of a solvent.
- the polycarboxylic acid prolatatone is activated with N-hydroxysuccinimide ester or carbodiimidazole and reacted with cyclodextrin to produce polyprolactonone with cyclodextrin fixed at the terminal.
- Non-Patent Document 1 has a problem that the types of ratatones that can be polymerized with high yield are limited to the types of cyclodextrins.
- the method described in Patent Document 1 cannot be applied to a polyester polymer having a carboxylic acid group at the terminal, and it is necessary to activate the terminal of the carboxylic acid group in advance. is there.
- Patent Documents 2 and 3 describe poly (hydroxyalkanoate) that has been hydrolyzed to have a low molecular weight.
- a method for producing PHA in which (PHA) is reacted with cyclodextrin or the like and cyclodextrin or the like is bonded to the terminal is disclosed.
- the molecular weight of the PHA to be reduced in molecular weight is controlled by the reaction temperature and reaction time, it is not easy to control the balance between the molecular weight of the product and the reactivity with cyclodextrin.
- Patent Document 1 Japanese Translation of Special Publication 2005-503476
- Patent Document 2 US Patent No. 5191016
- Patent Document 3 US Patent No. 5268422
- Patent Document 4 JP-A-5-86103
- Patent Document 5 Special Table 2002-519482
- Non-Patent Literature 1 Journal of the American Chemical Society, 126 ⁇ , 1358 8-13589, 2004
- the object of the present invention is to provide a composition comprising a cyclodextrin-containing polyester polymer and a thermoplastic resin, and a film material comprising the composition. And a coating composition comprising a cyclodextrin-containing polyester polymer, a production method capable of easily obtaining a polyester polymer bound with cyclodextrin or a derivative thereof, and the ability of the production method. It is to provide a polymer.
- the present inventor has obtained a composition obtained by blending a polyester polymer having cyclodextrin or a derivative thereof bonded to a terminal and a thermoplastic resin, as a molding material. As a result, the present invention was completed. Further, a coating composition obtained by coating a base material with a polyester-based polymer having cyclodextrin or a derivative thereof bonded to a terminal is used. The present invention has been completed.
- a cyclodextrin-containing polyester polymer can be easily obtained by reacting a cyclodextrin in which a part of the hydroxyl group is deprotonated or a derivative thereof with a polyester polymer. It came to complete.
- the present invention relates to (a) 99 to 0.1% by weight of a polyester polymer having cyclodextrin or a derivative thereof bonded to the terminal, (b) 1 to 99.9% by weight of thermoplastic resin, A cyclodextrin-containing polyester polymer composition characterized in that (Claim 1).
- cyclodextrin-containing polyester polymer composition according to claim 1, wherein the cyclodextrin is ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, or a mixture thereof (claim 2). ).
- aliphatic polyester strength poly strength prolatatone polybutylene adipate, polybutylene succinate, polyethylene adipate, polyethylene succinate, polylactic acid, polyglycololeic acid, poly ( 3 -hydroxybutyrate), poly ( 3- hydroxy 4.
- the cyclodextrin-containing polyester polymer composition according to claim 3 which is a valerate), poly ( 3- hydroxyhexanoate), a copolymer of these components, or a mixture thereof.
- the component (a) is obtained by a production method characterized in that a part of the hydroxyl group is deprotonated and the cyclodextrin or a derivative thereof is reacted with a polyester polymer.
- a film material comprising the cyclodextrin-containing polyester polymer composition according to any one of claims 1 to 6 (claim 7).
- the present invention is a coating composition (Claim 8) comprising a polyester polymer having cyclodextrin or a derivative thereof bonded to the terminal.
- a polyester polymer in which cyclodextrin or a derivative thereof is bonded to a terminal is provided.
- the coating composition according to any one of claims 8 to: LO, wherein the coating composition contains an organic solvent (claim 11).
- polyester-based polymer strength poly force prolataton, polybutylene adipate, polybutylene succinate, polyethylene adipate, polyethylene succinate, polylactic acid, polyglycololeic acid, poly ( 3 -hydroxybutyrate), poly ( 3- hydroxy Valerate), poly (
- the coating body according to claim 14, wherein the base material is a polymer, metal, glass, or a composite material thereof (claim 15).
- a cyclodextrin-containing polyester characterized by reacting a cyclodextrin in which a part of the hydroxyl group is deprotonated or a derivative thereof with a polyester polymer. This is a method for producing a polymer (Claim 16).
- polyester-based polymer strength poly strength prolataton polybutylene adipate, polybutylene succinate, polyethylene adipate, polyethylene succinate, polylactic acid, polyglycololeic acid, poly ( 3 -hydroxybutyrate), poly ( 3- hydroxytohe 21.
- the present invention is characterized in that cyclodextrin in which a part of the hydroxyl group is deprotonated or a derivative thereof and a polyester polymer are reacted in a temperature range of -20 ° C to 150 ° C. Item 22.
- cyclodextrin in which a part of the hydroxyl group is deprotonated or a derivative thereof 24.
- the method for producing a cyclodextrin-containing polyester polymer according to claim 23, wherein the polyester polymer is reacted in a temperature range of ⁇ 20 ° C. or more and 70 ° C. or less (claim 24).
- a polyester-based polymer having cyclodextrin or a derivative thereof bonded to the terminal is characterized by comprising (a) 99 to 0.1% by weight of a polyester-based polymer having cyclodextrin or a derivative thereof bonded to the terminal, and (b) 1 to 99.9% by weight of a thermoplastic resin.
- a method for producing a cyclodextrin-containing polyester polymer composition, wherein ( a ) comprises reacting a cyclodextrin in which a part of hydroxyl groups are deprotonated or a derivative thereof with a polyester polymer.
- a method for producing a cyclodextrin-containing polyester polymer composition characterized in that it is obtained by a production method characterized by the above (claim 27).
- the present invention relates to a method for producing a coating composition
- a method for producing a coating composition comprising a polyester polymer having cyclodextrin or a derivative thereof bonded to a terminal, wherein the polyester polymer has a part of hydroxyl groups deprotonated.
- a method for producing a coating composition having a cyclodextrin-containing polyester-based polymer strength, which is obtained by reacting a cyclodextrin or a derivative thereof with a polyester-based polymer (claim 30).
- the composition of the present invention can be suitably used as a film material and the like because the strength of the molding material is excellent even when compared with a single material containing the same degree of cyclodextrin.
- cyclodextrin is uniformly dispersed and the cyclodextrin is not dissolved because the polyester polymer is bound to cyclodextrin.
- the molecular weight of the cyclodextrin-containing polyester polymer obtained by the production method of the present invention can be adjusted as necessary.
- the first of the present invention is (a) 99 to 0.1% by weight of a polyester-based polymer having cyclodextrin or a derivative thereof bonded to the terminal, and (b) 1 to 99.9% by weight of a thermoplastic resin.
- the composition is characterized in that it also has power.
- the ratio of the component (a) and the component (b) should be within the above range.
- the strength and various physical properties of the obtained composition, or the viewpoint power such as the content of cyclodextrin can be selected as the optimal composition ratio. If mention is made of a preferred range, the component (a) may be 90 to 0.2% by weight, or the component (a) may be 80 to 0.5% by weight.
- the component of the present invention (a) A polyester polymer in which cyclodextrin or a derivative thereof is bonded to the terminal means "bonded to the terminal" means a hydroxyl group or substituent of the cyclodextrin or a derivative thereof and a polyester-based polymer. This means that the polymerization ends of the polymer are chemically bonded directly or via various spacers.
- the linear polyester-based polymer has one end of a cyclodextrin or a derivative thereof bonded to the both ends, or one end of a branched polyester-based polymer. To which cyclodextrin or a derivative thereof is bound, or one cyclodextrin or a derivative thereof And those having a plurality of polyester polymer ends bonded to the conductor.
- the cyclodextrin or a derivative thereof used in the present invention is not particularly limited.
- a-cyclodextrin, j8-cyclodextrin, ⁇ -cyclodextrin, or some hydrogen atoms of hydroxyl groups of cyclodextrin Is a derivative substituted with a linear or branched alkyl group, a linear or branched alkyl group, a linear or branched hydroxyalkyl group, a hydroxyaryl group, an acyl group, a glycosyl group, a maltosyl group, an imidazolyl group, etc.
- Branched cyclodextrins, dimers or multimers of cyclodextrins can be used.
- cyclodextrin analogs having 5 or less or 9 or more glucose units can also be used. These can be used alone or in combination of two or more.
- a-cyclodextrin, j8-cyclodextrin, ⁇ -cyclodextrin, or a mixture thereof is preferably used in view of cost.
- the polyester-based polymer of component (a) of the present invention is not particularly limited. Strength from the viewpoint of ease of production, etc. An aliphatic polyester is preferable.
- Examples of the aliphatic polyester include polylatatatones such as polypropiolatatatone, polypetitoratalatato, polyvalerolatataton, polyforce prolatathone; poly (3-hydroxybutyrate), poly (3-hydroxyvalerate), poly (3- Poly (hydroxyalkanoates) such as 3-hydroxyhexanoate); polylactic acid; polyglycolic acid; aliphatic polyvalent carboxylic acids and fats such as polyethylene adipate, polyethylene succinate, polybutylene adipate, polybutylene succinate Aliphatic polyesters mainly composed of aliphatic polyhydric alcohols, and the like, and those obtained by copolymerizing these components may also be used.
- poly force prolatatone polybutylene adipate, polybutylene succinate, polyethylene adipate, polyethylene succinate, polylactic acid, polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxyvalerate), poly (3-hydroxyhexanoate), a copolymer of each of these components, or a mixture thereof is preferable.
- poly force prolatatone, polylactic acid, polylactic acid repeating unit and polyglycolic acid repeating unit force poly (lactic acid-codecholic acid), poly (3-hydroxybutyrate), poly (3-hydroxybutyrate) Repeating unit and poly (3-hydroxyhexanoate) repeating unit Poly ([(3-hydroxybutyrate) -co (3-hydroxyhexanoate)]], or a mixture of these.
- component (a) is appropriately selected from the viewpoints of ease of production, cost, and structure of the resulting cyclodextrin-containing polyester polymer, without particular limitations.
- a cyclodextrin-containing polyester polymer comprising a cyclodextrin in which a part of the hydroxyl group is deprotonated or a derivative thereof is reacted with a polyester polymer.
- a polyester polymer not containing cyclodextrin may be produced as a by-product along with the cyclodextrin-containing polyester polymer.
- the resulting product is a cyclodextrin-containing polyester polymer and a polyester. It can be a mixture (composition) of a polymer.
- composition of the present invention does not use the polyester polymer by-produced during the production of the component (a) as the component (b), but does not contain a separate cyclodextrin, and the component (b) thermoplastic resin. Addition and blending to make a composition.
- a cyclic ester compound for example, ratatones, lactide, etc.
- a method of polymerizing can also be used.
- the content of cyclodextrin in component (a) is preferably 0.1 to 60% by weight, more preferably 0.5 to 50% by weight, based on 100% by weight of component (a).
- Measurement of cyclodextrin content The method is not particularly limited. / It is appropriately selected according to the type and molecular weight of the polyester polymer. Usually, it can be measured by NMR or gel permeation chromatography (GPC).
- the molecular weight of component (a) is not particularly limited! /, But the number average molecular weight (Mn) is low and the polymer, for example, the number average molecular weight is 100,000 or less, and further 50,000 or less. The effect of the present invention tends to be high with respect to this polymer.
- the lower limit of the molecular weight of the component (a) that can be applied is not particularly limited, but if mentioning a preferable lower limit, the number average molecular weight may be 1500 or more, or 2000 or more.
- Component of the present invention (b) The type of thermoplastic resin is not particularly limited.
- Polyolefin resins such as olefins; Ethylene copolymer resins such as ethylene butyl acetate copolymer, ethylene butyl alcohol copolymer, ethylene ethyl acetate copolymer; Poly salt vinyl Chlorinated resins such as polyvinylidene and chlorinated polyethylene;
- Poly (meth) acrylic resins such as polymethylmethacrylate and polybutylacrylate; polystyrene, styrene 'acrylonitrile copolymer, styrene ⁇ acrylonitrile ⁇ Stille such as butadiene copolymer, styrene 'methyl methacrylate copolymer
- Polyolefins such as olefins; Styre
- thermoplastic resin compatible with a polyester polymer having cyclodextrins or derivatives thereof bonded to the terminals is preferred.
- poly-strength prolatatone, polybutylene adipate, polybutylene succinate, polyethylene adipate, polyethylene succinate, polylactic acid, polydaricholic acid, poly (3-hydroxybutyrate), poly (3 -Hydroxyvalerate), poly (3-hydroxyhexanoate), copolymers of these components, or mixtures thereof are more preferred.
- the component (b) is preferably a polyester rosin, and it is more preferable that both the components (a) and (b) are aliphatic polyesters.
- the cyclodextrin content in the composition can be appropriately adjusted based on various physical properties and costs of the entire composition, and is not limited, but includes component (a) and component ( b) It is preferable that the content is 0.2 to 40% by weight, more preferably 0.3 to 30% by weight.
- the ratio of the molecular weight (number average) of component (a) to component (b) is not particularly limited, but the molecular weight of component (b) is greater than the molecular weight of component (a)! / However, the effects of the present invention tend to be obtained.
- the molecular weight of component (a) is 70% or less, more than 50%, more than 0.1%, and further 0.2% of the molecular weight of thermoplastic resin used as component (b) in terms of material strength. % Or more is preferable.
- the method for producing the yarn and composition having the component (a) and the component (b) force there is no particular limitation on the method for producing the yarn and composition having the component (a) and the component (b) force, and a normal method capable of mixing both components may be used.
- a method in which component (a) and component (b) are mixed using a roll, press, extruder, mill, Brabender, Banbury mixer, etc., a method in which both components are dissolved in a solvent, etc. can be illustrated.
- composition of the present invention can be used with other organic materials and inorganic materials other than the component (a) and the component (b).
- the other organic materials or inorganic materials include various thermosetting resins, plasticizers, lubricants, nucleating agents, flame retardants, drugs having medicinal effects, organic or inorganic compounds having optical functions, dyes, pigments, Examples thereof include metals and semiconductor fine particles, organic or inorganic fillers, fillers, stabilizers, foaming agents, foaming aids, and inorganic salts.
- the composition of the present invention does not contain a thermoplastic resin and is excellent in strength when formed into a molding material as compared with a single material, and therefore can be suitably used as a film material. Moreover, since it is excellent in strength, it can be used as a sheet material, a fiber material, a foam material, etc. in addition to a film material.
- a second aspect of the present invention is the composition according to the first aspect of the present invention (containing a cyclodextrin characterized by comprising a polyester polymer having a cyclodextrin or a derivative thereof bonded to a terminal and a thermoplastic resin.
- Polyester polymer composition A film material.
- the film material of the present invention is superior in strength to a film made solely from a polyester polymer in which cyclodextrin or a derivative thereof is bonded to the terminal, and can further satisfy both cyclodextrin content and film strength. is there.
- the method for producing the film material of the present invention can be obtained by a known method without particular limitation.
- a method of casting by dissolving in a solvent or the like examples thereof include a method using a hot press or a roll, a melt extrusion method, an inflation method, and the like.
- a third aspect of the present invention is a coating composition characterized in that it also has a polyester polymer strength in which cyclodextrin or a derivative thereof is bonded to the terminal.
- cyclodextrin or a derivative thereof is bonded to the terminal, it is soluble in a wide variety of organic solvents and has thermoplasticity, so that it is advantageously used as a coating composition.
- bound to the end of the polyester in which the cyclodextrin or its derivative used in the present invention is bound to the end means that the hydroxyl group or substituent of the cyclodextrin or its derivative and the polymerization end of the polyester polymer are used. Means that they are chemically bonded directly or through various spacers. This is because a cyclodextrin or a derivative thereof is bonded to one end of a linear polyester polymer or bonded to both ends, and a cyclodextrin or a derivative thereof is attached to some ends of a branched polyester polymer. And those having a plurality of polyester polymer ends bonded to one cyclodextrin or a derivative thereof.
- Polyesters to which cyclodextrin or a derivative thereof used in the present invention is bonded at the terminal can be produced by several methods.
- One is the reaction of cyclodextrin or a derivative thereof in which a part of the hydroxyl group is deprotonated with a polyester polymer.
- a cyclic ester compound is polymerized starting from a hydroxyl group of cyclodextrin or a moiety obtained by converting a hydroxyl group of cyclodextrin to another substituent (for example, Non-Patent Document 1). Method).
- polylatathone having cyclodextrin bonded to the terminal can be obtained.
- a method for obtaining a polyester polymer in which cyclodextrin or a derivative thereof is bonded to the terminal is not particularly limited, but cyclodextrin or a derivative thereof and a polyester polymer in which a part of the hydroxyl group is deprotonated.
- the reaction method of A commercially available polyester polymer can be used, and the polyester polymer does not require any special modification of cyclodextrin and is optimal in that it is an industrially advantageous production method.
- the cyclodextrin or a derivative thereof used in the present invention is not particularly limited as long as it has at least one hydroxyl group per molecule.
- ⁇ -cyclodextrin, / 3-cyclodextrin, and ⁇ -cyclodextrin are preferably used from the viewpoint of cost. It is also possible to replace some of the hydrogen atoms of the cyclodextrin hydroxyl groups in the polyester polymer having cyclodextrin bonded to the terminal used in the coating composition of the present invention.
- cyclodextrin or derivative thereof bonded to the terminal used in the present invention
- cyclodextrin or Part of the hydroxyl group of the derivative is deprotonated.
- the hydroxyl group to be deprotonated may be a hydroxyl group directly bonded to cyclodextrin or a hydroxyl group present in a substituent bonded to cyclodextrin.
- a basic compound In order to deprotonate the hydroxyl group of cyclodextrin or a derivative thereof, it is preferable to use a basic compound.
- the basic compound is not particularly limited, and examples thereof include lithium hydroxide, potassium hydroxide, sodium hydroxide, lithium hydride, sodium hydride, lithium carbonate, potassium carbonate, sodium carbonate and potassium.
- Alkali metal compounds such as methoxide, sodium methoxide, potassium t-butoxide, sodium t-butoxide, or the like Hydrates and the like can be used. These basic compounds may be used as they are, or may be used as a solution diluted in a solvent.
- the amount of the basic compound used is not particularly limited, but is preferably 0.01 to 10 molar equivalents per 1 mol of cyclodextrin or a derivative thereof. If the amount of the basic compound used is too small, unreacted cyclodextrin or its derivative may remain, and if the amount used is too large, a crosslinking reaction occurs or the polyester polymer is cleaved more than necessary. There is fear and it is not preferable. Therefore, the preferred use amount of the basic compound is about 0.05 to 5 mole equivalents per mole of cyclodextrin or a derivative thereof.
- the deprotonation of cyclodextrin or a derivative thereof can be performed before or after contacting cyclodextrin or a derivative thereof with a polyester polymer. It is preferable to deprotonate before contacting with the polyester polymer.
- the polyester polymer used in the production method is not particularly limited, and a commercially available polyester polymer can be used as it is. It is also possible to synthesize and use a polyester polymer having characteristics such as a desired monomer type, monomer composition ratio, molecular weight and the like.
- polylatatotones such as polypropiolatatatone, polybutyrolatathone, polyvalerolatataton, polyforce prolatatatone; poly ( 3 -hydroxybutyrate), poly ( 3- hydroxyhexanoate) and other poly ( 3- hydroxyhexanoate) 3-hydroxyalkanoates); polyglycolic acid; polylactic acid; polyethylene adipate, polyethylene succinate, polybutylene adipate, polybutylene succinate and other aliphatic polyhydric carboxylic acid and aliphatic polyhydric alcohol Aliphatic polyesters; aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; unsaturated polyesters mainly composed of unsaturated aliphatic polycarboxylic acid and aliphatic polyhydric alcohol, etc. Raised Is, may be one of these components were copolymerised.
- poly force prolatatone polybutylene adipate, polybutylene succinate, polyethylene
- polymer selected from dipate, polyethylene succinate, polylactic acid, polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxyvalerate), poly (3-hydroxyhexanoate), force, A copolymer or a mixture of these (co) polymers is preferred.
- poly (prolacton), poly (lactic acid), poly (lactic acid) repeating unit and poly (glycolic acid) repeating unit force poly (lactic acid-codecholic acid), poly (3-hydroxybutyrate) repeating unit and poly (3- Poly ((3-hydroxybutanoate)), which also has a repeating unit force (3-hydroxyhexanoate), is preferably selected.
- the reaction of cyclodextrin or a derivative thereof with a polyester polymer, in which part of the hydroxyl group is deprotonated can be carried out in the presence or absence of a solvent.
- a solvent When the reaction is carried out in the presence of a solvent, the reaction is expected to proceed uniformly.
- the solvent to be used is not particularly limited, but in order to react uniformly, cyclodextrin or a derivative thereof in which a part of the hydroxyl group is deprotonated, or a polyester polymer is dissolved during the reaction. , Prefer to be.
- the solvent include sulfoxides such as dimethyl sulfoxide; amides such as dimethylformamide, dimethylacetamide, and N-methyl-2-pyrrolidone; ethylene carbonate, propylene carbonate, butylene carbonate, and jetino.
- Carbonates such as carbonate, dimethyl carbonate and ethyl methyl carbonate; sulfolanes such as sulfolane and methyl sulfolane; ethers such as dioxane, dixolane, jetyl ether, tetrahydrofuran and methylbutyl ether; acetonitrile, propio- -Tolyls such as tolyl, benzonitrile and succino-tolyl; -toro compounds such as nitromethane; and nitrogen compounds such as dichloromethane, chlorohonolem, 1,2-dichloroethane and black benzene Ketones such as acetone and methyl butyl ketone; aromatic compounds such as benzene, toluene and xylene; hydrocarbons such as hexane, heptane, cyclohexane and methylcyclohexane. These can be used alone or in combination of two or more.
- the temperature and time for the reaction of cyclodextrin or a derivative thereof with the polyester polymer after a part of the hydroxyl group is deprotonated are not particularly limited. Depending on factors such as the amount and ratio of each component to be used and the type of reactor, the force is appropriately selected. Usually, it is in the range of -20 ° C to 350 ° C and 1 second to 48 hours.
- a polyester polymer in which cyclodextrin or a derivative thereof is bonded to the terminal is obtained, but cyclodextrin or a derivative thereof is bonded to one terminal of the polyester polymer depending on reaction conditions or the like.
- Two or more polyester polymers are bonded to one end, one bound to both ends, one that has cyclodextrin or its derivative bound to either end, or one cyclodextrin or its derivative. May be obtained as a mixture.
- the coating composition of the present invention may contain a polymer not containing cyclodextrin or a derivative thereof.
- blended is not specifically limited.
- the polymer which does not contain cyclodextrin or a derivative thereof mentioned here may be a by-product produced in the production of a polyester polymer having cyclodextrin or a derivative thereof bonded to the terminal, or may be added separately. It may be blended.
- polyurethane polyvinyl chloride, other bully polymers, polycarbonate, polystyrene, nylon, polyester and polyacrylate, polyimide, polyethylene, polypropylene, polybutylene, fluorine resin, polybulassetal, Any polymer such as latex rubber or other rubber, natural or synthetic elastomers, silicones, or any of these copolymers can be used to obtain a uniform coating.
- a polymer or copolymer that is compatible with the polyester polymer bound to the.
- the cyclodextrin or derivative thereof used in the coating composition of the present invention is terminated at the terminal.
- the ratio of the polyester-based polymer and the polymer not containing cyclodextrin is not particularly limited, but usually 1% by weight or more of the polyester-based polymer having cyclodextrin or its derivative bonded to the terminal. , Preferably 5% by weight or more, more preferably 10% by weight or more.
- the organic solvent used in the coating composition of the present invention is not particularly limited. However, in order to obtain a uniform coating body, a polyester polymer in which cyclodextrin or a derivative thereof is bonded to the terminal is coated.
- the organic solvent is preferably an organic solvent which can be dissolved at a high temperature and can be evaporated quickly and sufficiently.
- sulfoxides such as dimethyl sulfoxide; amides such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone; ethylene carbonate, propylene carbonate, butylene carbonate, gethinore carbonate, dimethylol carbonate Carbonates such as ethylmethyl carbonate; sulfolanes such as sulfolane and methylsulfolane; ethers such as dioxane, dioxolane, jetyl ether, tetrahydrofuran and methylbutyl ether; acetonitrile, propio-tolyl, benzonitryl, succino-tolyl, etc.
- -Tolyl compounds such as nitromethane; halogen compounds such as dichloromethane, chloroform, 1,2-dichloroethane, chloroform, etc .; Ketones such as butylbutyl ketone; aromatic compounds such as benzene, toluene and xylene; hydrocarbons such as hexane, heptane, cyclohexane and methylcyclohexane. These can be used alone or in combination of two or more.
- the ratio of the polyester polymer to which the cyclodextrin or derivative thereof is bonded to the terminal and the organic solvent constituting the coating composition of the present invention is not particularly limited. It can be appropriately selected depending on conditions such as the viscosity of the coating composition.
- a coating can be formed by forming a film on the surface of the substrate.
- a fourth aspect of the present invention is a coated body obtained by coating a substrate with the coating composition of the present invention.
- the substrate to be coated with the coating composition of the present invention is not particularly limited. Force Polyurethane, polyvinyl chloride, other bull polymers, polycarbonate, polystyrene Natural or synthetic elastomers such as silicone, nylon, polyester and polyacrylate, polyimide, polyethylene, polypropylene, polybutylene, fluorocarbon resin, polybulacetal, latex rubber or other rubber, polymers such as silicone or the like
- a substrate that is not affected by the temperature and pressure at the time of coating and the organic solvent used is particularly preferred, such as a copolymer, metal, glass, ceramics, or a composite thereof.
- the substrate can be precoated by pretreatment to ensure adhesion of the coating composition, and it is more preferred to have such a substrate coat!
- Examples of the shape of the substrate that can be coated with the coating composition of the present invention include a film shape, a sheet shape, a fiber shape, a cylindrical shape, and a spherical shape, but are not particularly limited, and may vary. Shapes can be used as the substrate.
- the method of coating the substrate with the coating composition of the present invention is not particularly limited. Bar coating, die coating, curtain flow coating, Ronore coating, gravure coating Further, coating methods such as mano coat, comma coat, spray coat, spin coat, dip coat, and brush coating can be used.
- the film thickness of the coating film thus obtained is not particularly limited, but is preferably 0.01 m to 2000 ⁇ m, more preferably 0.02 ⁇ m to 200 ⁇ m! / ⁇ .
- the coating composition or coating body of the present invention has a polyester polymer strength in which cyclodextrin or its derivative is bonded to the terminal, and the coating body has good adhesion to the substrate.
- cyclodextrin due to the polyester polymer bound to cyclodextrin or its derivative, cyclodextrin is uniformly dispersed in the coating and elution of cyclodextrin from the coating is suppressed.
- the coating composition or coating body of the present invention contains cyclodextrin bonded to the terminal of the polyester polymer, various organic molecules can be included. Utilizing its inclusion ability, it can also be used as a functional coating having, for example, a coating on a drug delivery substrate, an organic molecule stabilizing effect, and a deodorizing effect by adsorption of malodorous substances.
- a fifth aspect of the present invention includes a cyclodextrin containing a cyclodextrin characterized by reacting a cyclodextrin in which a part of the hydroxyl group is deprotonated or a derivative thereof. This is a method for producing a polyester-based polymer.
- cyclodextrin or a derivative thereof when cyclodextrin or a derivative thereof is reacted with a polyester polymer, a part of the hydroxyl groups of cyclodextrin or a derivative thereof is deprotonated.
- the hydroxyl group to be deprotonated may be a hydroxyl group directly bonded to cyclodextrin, or a hydroxyl group present in a substituent bonded to cyclodextrin.
- Deprotonated cyclodextrins or their derivatives are more reactive than those that are not deprotonated.
- the deprotonation of the cyclodextrin or a derivative thereof can be performed before the cyclodextrin or the derivative thereof and the polyester polymer are brought into contact with each other or at the same time or after the contact. It is desirable to deprotonate in advance before contacting with the polyester polymer.
- a step of deprotonating a part of the hydroxyl group of cyclodextrin or a derivative thereof a step of reacting a cyclodextrin or a derivative thereof partially hydroxylated with a polyester polymer, and a force Is preferred.
- the cyclodextrin in which a part of the hydroxyl group is deprotonated or a derivative thereof may be taken out and then reacted with the polyester polymer or may be reacted with the polyester polymer without taking it out.
- the cyclodextrin or a derivative thereof used in the present invention is not particularly limited as long as it has at least one hydroxyl group per molecule.
- Cyclodextrin analogues having 5 or less or 9 or more glucose units can also be used. These can be used alone or in combination of two or more. Of these, ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin are preferably used from the viewpoint of cost.
- cyclodextrin-containing After obtaining the polyester polymer it is also possible to replace some of the hydrogen atoms of the hydroxyl groups of cyclodextrin bonded to the polyester polymer with the above groups.
- a basic compound In order to deprotonate the hydroxyl group of cyclodextrin or a derivative thereof, it is preferable to use a basic compound.
- the basic compound is not particularly limited, but an alkali metal compound or an amine compound is preferable.
- the alkali metal compound include lithium hydroxide, potassium hydroxide, sodium hydroxide, lithium hydride, sodium hydride, lithium carbonate, potassium carbonate, sodium carbonate, potassium methoxide, sodium methoxide, Potassium t-butoxide, sodium t-butoxide and the like can be used.
- the amine compound 1,8-diazabicyclo [5, 4, 0] undecene 1-7 (DBU) can be used.
- alkali metal compound one or more alkali metal compounds selected from lithium hydroxide, potassium hydroxide, sodium hydroxide, sodium methoxide, or amines may be used in order to balance reactivity and cost. More preferable from the viewpoint
- the amount of the basic compound used is not particularly limited, but is usually 0.01 to 10 molar equivalents per 1 mol of cyclodextrin or a derivative thereof. If the amount of the basic compound used is too small, unreacted cyclodextrin or its derivative may remain. If the amount used is too large, a crosslinking reaction occurs or the polyester polymer is cut more than necessary. There is fear and it is not preferable. Therefore, the preferred amount of the basic compound used is about 5 mole equivalent of 0.05 mole equivalent force per mole of cyclodextrin or its derivative.
- the molecular weight of the obtained cyclodextrin-containing polyester polymer can be adjusted by the amount of cyclodextrin or a derivative thereof used. That is, if a large amount of cyclodextrin or a derivative thereof is used for the polyester polymer, a low molecular weight cyclodextrin-containing polyester polymer can be obtained, while a small amount of cyclodextrin or a derivative thereof can be obtained. If used, a cyclodextrin-containing polyester polymer having a high molecular weight can be obtained.
- the amount of cyclodextrin or a derivative thereof may be adjusted so as to have a desired molecular weight.
- the molecular weight of the obtained cyclodextrin-containing polyester polymer tends to be lower than the molecular weight of the polyester polymer before the reaction unless the molecular weight of the cyclodextrin moiety is taken into consideration. It is in.
- the polyester polymer used in the present invention does not need to have a reactive group.
- a carboxylic acid group and a Z or hydroxyl group are present at the terminal of the polyester polymer, and it is not necessary to activate these. That is, in the production method of the present invention, the hydroxyl group of cyclodextrin or a derivative thereof deprotonated reacts with the main chain ester bond of the polyester polymer to cleave the ester bond, and the cyclodextrin or derivative thereof is bonded.
- a carboxylic acid group and Z or a hydroxyl group are added at the end, there is a special problem. Absent.
- the polyester polymer used in the present invention is not particularly limited, and a commercially available polyester polymer can be used as it is. It is also possible to synthesize and use a polyester polymer having characteristics such as a desired monomer type, monomer composition ratio, molecular weight and the like.
- poly force prolatatone polybutylene adipate, polybutylene succinate, polyethylene
- it is a dipate, polyethylene succinate, polylactic acid, polyglycolic acid, poly (3-hydroxy propylate), poly (3-hydroxy hexanoate), a copolymer of these components, or a mixture thereof. Better! /.
- poly (prolactaton), poly (lactic acid), poly (lactic acid) repeating unit and poly (glycolic acid) repeating unit force poly (lactic acid-codecholic acid), poly (3-hydroxybutyrate) repeating unit and poly (3- 3-hydroxyhexanoate) is a poly [(3-hydroxybutyrate) -co-one (3-hydroxyhexanoate)], or a mixture thereof.
- the polyester polymer used in the present invention is not particularly limited. Strength from the viewpoint of ease of production, etc. Aliphatic polyester is preferable. It is also possible to synthesize and use a polyester polymer having characteristics such as desired monomer species, monomer composition ratio, molecular weight and the like.
- polyratiotones such as polypropiolatatatone, polybutyrolatatatone, polyvalerolatatatone, polyforce prolatatatone; poly ( 3 -hydroxybutyrate), poly ( 3- hydroxyhexanoate) and other poly ( 3- hydroxyhexanoate) 3-hydroxyalkanoates); polyglycolic acid; polylactic acid; polyethylene adipate, polyethylene succinate, polybutylene adipate, polybutylene succinate and other aliphatic polyhydric carboxylic acid and aliphatic polyhydric alcohol Aliphatic polyesters to be used, and those obtained by copolymerizing these components may also be used.
- Polyester in which part of the hydroxyl group is deprotonated and the cyclodextrin or derivative thereof is allowed to react with the polyester polymer is not particularly limited.
- the force which is appropriately selected depending on factors such as the type of polymer, the amount and ratio of each component used, and the type of reactor, is usually in the range of 1 second to 48 hours.
- the reaction temperature is preferably 70 ° C or lower, more preferably 50 ° C or lower.
- the lower limit of the reaction temperature is not particularly limited, but if the temperature is too low, the reaction between the deprotonated cyclodextrin or its derivative and the polyester polymer becomes slow, or the viscosity of the reaction system becomes high. It is not preferable. Accordingly, the preferred temperature range is ⁇ 20 ° C. to 150 ° C., more preferably ⁇ 20 ° C. to 70 ° C., further preferably 0 ° C. to 50 ° C., and particularly preferably 20 ° C. to 50 ° C. be able to.
- Polyesters such as polylactic acid, polylactic acid repeating unit and polyglycolic acid repeating unit force poly (lactic acid coder holic acid) are preferred to have a low temperature, for example, a temperature range of -20 ° C to 70 ° C or 0 ° C ⁇ 50 ° C is preferred!
- the production method of the present invention is a polyester system in which cyclodextrin produced by hydrolysis is not bound by carrying out the reaction of a deprotonylated cyclodextrin or a derivative thereof with a polyester polymer at 70 ° C or lower. Formation of the polymer is suppressed. Therefore, it is possible to easily obtain a polyester polymer to which cyclodextrin is bonded with good yield. And it can use for each invention of this invention. In order to react a cyclodextrin in which a part of the hydroxyl group is deprotonated or a derivative thereof with a polyester polymer, it can be carried out in the presence or absence of a solvent.
- the solvent to be used is not particularly limited, but in order to perform a uniform reaction, cyclodextrin or a derivative thereof in which a part of the hydroxyl group is deprotonated, or a polyester polymer is used. It is preferable to dissolve under pressure! /.
- the solvent include sulfoxides such as dimethyl sulfoxide; amides such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone; ethylene carbonate, propylene carbonate, butylene carbonate, and jetino.
- Carbonates such as carbonate, dimethyl carbonate and ethyl methyl carbonate; sulfolanes such as sulfolane and methyl sulfolane; ethers such as dioxane, dixolane, jetyl ether, tetrahydrofuran and methylbutyl ether; acetonitrile, propio- -Tolyls such as tolyl, benzonitrile and succino-tolyl; -toro compounds such as nitromethane; and nitrogen compounds such as dichloromethane, chlorohonolem, 1,2-dichloroethane and black benzene Ketones such as acetone and methyl butyl ketone; aromatic compounds such as benzene, toluene and xylene; hydrocarbons such as hexane, heptane, cyclohexane and methylcyclohexane. These can be used alone or in combination of two or more.
- the sixth aspect of the present invention is a cyclodextrin-containing polyester polymer obtained by the production method of the present invention.
- a force in which a cyclodextrin-containing polyester polymer is obtained.
- a compound in which cyclodextrin or a derivative thereof is bonded to one end of the polyester polymer, or to both ends depending on reaction conditions. or a mixture in which cyclodextrin or a derivative thereof is not bonded to the terminal of the slip, or in which two or more polyester polymers are bonded to one cyclodextrin or a derivative thereof. is there.
- These can be separated by operations such as force chromatography, solvent fractionation, and crystallization. Moreover, you may use it as a mixture.
- the ratio between the cyclodextrin-containing polyester polymer and the cyclodextrin-containing polyester polymer is not particularly limited, but usually the cyclodextrin-containing polyester polymer is 1% by weight or more, Preferably 5% by weight or more, more preferably It shall contain 10% by weight or more.
- the cyclodextrin-containing polyester polymer of the present invention can be used alone or in combination with other organic materials or inorganic materials. Examples of the other organic materials or inorganic materials include various thermoplastic resins, plasticizers, lubricants, flame retardants, drugs having medicinal effects, organic or inorganic compounds having optical functions, dyes, pigments, metals and semiconductors. Fine particles, organic or inorganic fillers, fillers, stabilizers, inorganic salts and the like can be mentioned.
- the cyclodextrin-containing polyester polymer of the present invention can be applied to a wide range of products.
- biocompatible materials for example, biocompatible materials, base materials for drug delivery systems, medical materials, various coating agents, functional separation membranes, paints, additives to various types of resin products, and the like can be mentioned.
- Example 2 The same reaction as in Example 1 except that the amount of j8-cyclodextrin used in Example 1 was changed to 271 mg (0.24 mmol) and the amount of lithium hydroxide used was changed to 5.6 mg (0.23 mmol). The solid soluble in dichloromethane was obtained.
- the molecular weight of the polyforce prolataton bound to the cyclodextrin was measured by GPC. As a result, the Mp in terms of polystyrene was 21,900, and the Mn was 10,800. The molecular weight was higher than that of the cyclodextrin-containing polylatathone obtained in Example 1.
- the solid was filtered and dried to obtain poly-force prolatatanes with terminally attached j8-cyclodextrin (CDP3).
- CDP3 poly-force prolatatanes with terminally attached j8-cyclodextrin
- Mn in terms of polystyrene was 4,400.
- the cyclodextrin content estimated from the NMR spectrum was about 38% by weight.
- the amount of ⁇ -cyclodextrin used is 4.5 g (4 mmol)
- the amount of lithium hydroxide used is 97 mg (4 mmol)
- the amount of polyprolacton used is 40 g
- the total amount of dimethylformamide used is 308 Except that the volume was mL, in the same manner as in Example 3, policaprolatatone having / 3-cyclodextrin bound to the end was obtained (CDP4).
- the polystyrene-converted Mn measured by GPC was 22,400, and the cyclodextrin content estimated from the NMR spectrum was about 12% by weight.
- a polymer can be easily obtained.
- the molecular weight (cyclodextrin content) of the cyclodextrin-containing polyester polymer obtained by the production method of the present invention can be adjusted as necessary.
- Example 5 In the same manner as in Example 3 except that dimethylacetamide was used instead of dimethylformamide, a polyforce prolatatone having cyclodextrin bonded to the end was obtained (CDP5).
- the polystyrene equivalent Mn measured by GPC was 3,700, and the cyclodextrin content estimated from the NMR spectrum was about 39% by weight.
- Example 6 In the same manner as in Example 3 except that dimethyl sulfoxide was used in place of dimethylformamide, a polyforce prolatatone having cyclodextrin bound to the end was obtained (CDP6).
- the polystyrene equivalent Mn measured by GPC was 3,000, and the cyclodextrin content estimated from the NMR spectrum was approximately 38 weight 0 /. Met.
- the molecular weight of the polylactic acid bound with the cyclodextrin was measured by GPC.
- polystyrene-converted Mp values were 40,700 and Mn22,200, which were lower than the polylactic acid Mpl92,000 and Mnl58,400 before the reaction.
- the cyclodextrin content was about 5% by weight.
- Cyclodextrin was bound to the end in the same manner as in Example 8, except that the amount of ⁇ -cyclodextrin used was 0.45 g (0.4 mmol) and the amount of lithium hydroxide used was 9.5 mg (0.4 mmol).
- Polylactic acid was obtained (CDP9).
- the polystyrene equivalent Mn measured by GPC was 22,600, and the cyclodextrin content was about 5% by weight.
- the molecular weights of the raw polylactic acid (before reaction) and the cyclodextrin-containing polylactic acid were measured by gel “permeation” chromatography (GPC). Table 1 shows the number average molecular weight before the reaction, 3 hours after the start of the reaction, and 5 hours after the start of the reaction.
- the ability to easily obtain a polyester polymer When a cyclodextrin in which a part of the hydroxyl group is not deprotonated is used as in Comparative Example 1, a polyester polymer to which a cyclodextrin is bonded cannot be obtained.
- Table 2 shows the polyester polymers (CDP1, CDP3, CDP4, CDP8, and CDP9, respectively) having cyclodextrins bonded to the ends prepared in Examples 1, 3, 4, 8, and 9 as components (a). It was dissolved in dichloromethane or tetrahydrofuran (Examples 14 and 17, Comparative Example 2) together with various thermoplastic resins of component (b) in proportion (parts by weight) and cast on a polyethylene terephthalate (PET) film. After sufficiently drying dichloromethane and the like, the obtained cast film of about 50 microns was peeled off from the PET film. The strength of the film was judged as ⁇ when it was not peeled after being peeled off, ⁇ when it was folded and cracked, and X when it was broken when peeled off. The results are shown in Table 2.
- the number average molecular weight (Mn) of the thermoplastic rosin used as component (b) is as follows: poly force prolatathone (PCL): 138, 000, poly succinic acid (PLA): 158, 000, poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] (PHBH): 98, 500, poly (lactic acid mono-co-colic acid) (PLGA): 53,000 (more in terms of polystyrene)
- PCL poly force prolatathone
- PDA poly succinic acid
- PHBH poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)]
- PHBH poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)]
- PHBH poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)]
- PHBH poly [(3-hydroxybutyrate) -co- (3-hydroxy
- Example 12 As shown in 18, the molded product that also obtained the composition strength of the present invention has high strength. ⁇ It does not crack when it is peeled off from the film. It ’s nasty. Therefore, the composition of the present invention can be suitably used as a film material.
- a single material that does not contain thermoplastic resin is used (Comparative Example )
- the composition of the present invention is superior in material strength compared to a single material containing the same degree of cyclodextrin, and can achieve both a cyclodextrin content and a material strength that are difficult with a single material. Become. Furthermore, the film made of the composition with poly (vinyl chloride) prepared in Example 17 and the film having the composition with the cellulose propionate made in Example 18 are not only excellent in film strength but also highly transparent. Had the characteristics.
- Table 3 shows polyester polymers (CDP4, CDP8), poly-force prolataton (manufactured by Aldrich), and polylactic acid (Mr. It was dissolved in dichloromethane at a ratio (parts by weight) shown in FIG. 1 and applied onto a polyethylene terephthalate (PET) film using a bar coater. Dichloromethane was sufficiently dried to obtain a coating.
- the polyester-based polymer (CDP1) having the terminally bonded cyclodextrin prepared in Example 1 was dissolved in dichloromethane and applied onto a glass substrate (Example 22) and a stainless steel substrate (Example 23). .
- Dichloromethane was sufficiently dried to obtain a coating. In each case, a uniform coating film was obtained, and it was visually confirmed that the cyclodextrin was uniformly dispersed.
- the cyclodextrin is uniformly dispersed, and the adhesion to the substrate is good. Furthermore, since the polymer is bonded to cyclodextrin, elution of cyclodextrin can be prevented from the coating film of the present invention.
- P L A Polylactic acid (Lacia H 4 0 0 manufactured by Mitsui Chemicals, Inc.)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Paints Or Removers (AREA)
Abstract
本発明のシクロデキストリン含有ポリエステル系重合体と熱可塑性樹脂からなる組成物は成形材料の強度に優れるため、フィルム材料として好適に使用できる。さらに本発明のコーティング組成物又はコーティング体は、シクロデキストリンが均一に分散しており、かつシクロデキストリンにポリエステル系重合体が結合しているためにシクロデキストリンの溶出が起こらない。また、水酸基の一部が脱プロトン化されているシクロデキストリン又はその誘導体をポリエステル系重合体に反応させることにより、シクロデキストリン含有ポリエステル系重合体を製造する。
Description
明 細 書
シクロデキストリン含有ポリエステル系重合体及びその製造方法 技術分野
[0001] 本発明は、シクロデキストリン含有ポリエステル系重合体と熱可塑性榭脂からなる組 成物、該組成物カゝらなるフィルム材料、シクロデキストリン含有ポリエステル系重合体 力 なるコーティング組成物、及びシクロデキストリン含有ポリエステル系重合体の製 造方法に関する。
背景技術
[0002] シクロデキストリンは種々の物質 (例えば、香料、薬品、殺虫剤など)を包接し、これ らの物質を固定化、あるいは安定ィ匕させることができることが良く知られており、シクロ デキストリンをポリマーに結合させる試みがある。特にポリエステル系重合体の末端に シクロデキストリンを結合させた材料は、シクロデキストリンの包接機能を有するポリマ 一材料として、医療材料用途、医薬品組成物用途などへの応用が検討されている。 例えば、特許文献 1にはポリ力プロラタトンなどの生分解可能なポリマーの末端にシク ロデキストリンを結合させた材料を医薬組成物や診断組成物へ適用する試みが記載 されている。特許文献 2及び 3にはポリヒドロキシアルカノエートの末端にシクロデキス トリンを結合させた材料が記載されて ヽる。
[0003] しかしシクロデキストリンが末端に結合していることに起因して、シクロデキストリンの 含有量を大きくするためには結合させるポリエステル系重合体の分子量を小さくする 必要がある。その結果、シクロデキストリン含有量を向上させるために低分子量ィ匕さ せたポリエステル系重合体を使用すると、成形材料にした場合の強度が不足し、実 際の使用に耐えうるような材料が得られないといった問題が生じる。即ち、シクロデキ ストリン含有量と材料強度を両立させることは非常に難しい。
[0004] 一方、シクロデキストリン含有量を低くしてでも、高分子量のシクロデキストリン含有 ポリエステル系重合体を得ようとする場合もあり得る。し力しながら、例えばポリエステ ル系重合体の活性な末端にシクロデキストリンを反応させて、シクロデキストリン含有 ポリエステル系重合体を製造する場合には、高い分子量のものを使用すると反応で
きる末端濃度が相当に小さくなるため、充分な収率でシクロデキストリンを結合させる ことは困難である。
[0005] また水酸基の一部が脱プロトンィ匕されているシクロデキストリンをポリエステル系重 合体に反応させて、シクロデキストリン含有ポリエステル系重合体を製造する場合に は、シクロデキストリンがポリエステル重合体の主鎖エステル結合に反応し、エステル 結合を開裂させて、シクロデキストリンが結合したポリエステル系重合体が得られるた め、原料のポリエステル系重合体よりも生成物の分子量が低くなる傾向があり、高分 子量体を得ることは困難である。
[0006] さらにシクロデキストリンを開始点として環状エステル系化合物を重合して、シクロデ キストリン含有ポリエステル系重合体を製造する場合 (例えば非特許文献 1)でも、充 分な材料強度を有するような高分子量体、例えば 100, 000程度以上の分子量のも のを得ることは非常に難しい。
[0007] 従って、従来の技術ではフィルム材料などの成形材料にした場合の強度に優れる シクロデキストリンが末端に結合したポリエステル系重合体は得られておらず、シクロ デキストリン含有量と材料強度とを両立させることは未解決の課題であった。
[0008] またシクロデキストリンの機能を利用した用途の一つとして機能性のコーティング等 が考えられる力 シクロデキストリンは有機溶剤に不溶で、加熱により溶融しないので 、コーティングすることは難しぐたとえコーティングできたとしても、均一かつ基材に 密着したコーティング体を得ることはできな 、。
[0009] また、シクロデキストリンをェピクロロヒドリン等により高分子量ィ匕したものは有害物質 の吸着体としての利用が検討されている力 これは通常架橋体であるために有機溶 剤に不溶で熱可塑性ではなぐコーティングを形成することは困難である。シクロデキ ストリンを熱可塑性榭脂に混合した組成物をコーティング組成物として使用する方法 も考えられるが、シクロデキストリンを均一に分散させることは難しぐさらにシクロデキ ストリンが榭脂と結合していないために、シクロデキストリンがブリードしやすぐ経時 変化しやす 、と 、う問題がある。ひど 、場合はシクロデキストリンが溶出してしまう可 能性がある。
[0010] 従って、シクロデキストリンが溶出せず、均一にコーティングさせることは困難であつ
た。
[0011] シクロデキストリンをポリマーに結合させる試みとしては、例えば、特許文献 4及び特 許文献 5に、ポリエステル系重合体にシクロデキストリンを結合させる試みが記載され ており、これらには、シクロデキストリン誘導体をジカルボン酸誘導体等と共重合して、 主鎖骨格中にシクロデキストリンを結合させる方法が記載されて 、る(シクロデキストリ ンがポリエステル系重合体の末端に結合したものではない)。この方法によれば、ポリ エステル主鎖中のシクロデキストリン含有量を高くすることができる。しかし、この方法 においては、あら力じめ、シクロデキストリンが有する多数の水酸基のうち 2つだけが 反応するように活性ィ匕 (あるいは他の水酸基を保護)しておく必要がある。一般に、シ クロデキストリンの水酸基に置換基を導入する反応は選択性が低ぐ未反応のシクロ デキストリンや異なる数の水酸基が置換されたシクロデキストリン、あるいは同じ数の 水酸基が置換されたものでも、それぞれの置換位置が異なるシクロデキストリンの混 合物として得られる。従って、カラムクロマトグラフィー等の方法によって、所望の数' 位置の水酸基だけが置換されたシクロデキストリン誘導体を単離しなければならない 。このような操作をしなければ、共重合して得られるポリエステル系重合体は架橋して しまい、溶媒に可溶な重合体は得られない。
[0012] また、シクロデキストリンが末端に結合したポリエステル系重合体を製造する試みも ある。例えば、非特許文献 1には、シクロデキストリンとラタトン類とを溶媒の非存在下 で加熱 ·重合することにより、シクロデキストリンが末端に結合したポリラタトンが得られ ることが記載されている。また、ポリ力プロラタトンのカルボン酸基末端を N—ヒドロキシ スクシンイミドエステル又はカルボ-ルジイミダゾールで活性化して、シクロデキストリ ンと反応させ、シクロデキストリンを末端に固定ィ匕したポリ力プロラタトンを製造する方 法もある(特許文献 1)。しかしながら、非特許文献 1に記載の方法では、収率良く重 合するラタトンの種類ゃシクロデキストリンの種類が限定されるという問題がある。また 、特許文献 1に記載の方法は、末端にカルボン酸基を有するポリエステル系重合体 にし力適用することはできず、さらにカルボン酸基末端をあら力じめ活性ィ匕しておく必 要がある。
[0013] 特許文献 2及び 3には、加水分解して低分子量化したポリ(ヒドロキシアルカノエート
) (PHA)をシクロデキストリン等と反応させて、シクロデキストリン等が末端に結合した PHAを製造する方法が開示されて ヽる。この方法では低分子量ィ匕させる PHAの分 子量を反応温度や反応時間によって制御するため、生成物の分子量とシクロデキス トリンとの反応性のバランスを制御することは容易でない。
[0014] 従って、特別な反応性基を有しな!/ヽポリエステル系重合体の末端に容易にシクロデ キストリンを結合させ、さらに生成物の分子量をも容易に制御することは未解決な課 題であった。
特許文献 1:特表 2005 - 503476号公報
特許文献 2 :米国特許 5191016号公報
特許文献 3:米国特許 5268422号公報
特許文献 4:特開平 5— 86103号公報
特許文献 5:特表 2002— 519482号公報
非特許文献 1 Journal of the American Chemical Society, 126卷、 1358 8〜13589ページ、 2004年
発明の開示
発明が解決しょうとする課題
[0015] 上記のような従来技術の実情と問題点に鑑みて、本発明の目的は、シクロデキスト リン含有ポリエステル系重合体と熱可塑性榭脂からなる組成物、該組成物からなるフ イルム材料、及びシクロデキストリン含有ポリエステル系重合体カゝらなるコーティング 組成物、シクロデキストリン又はその誘導体が結合したポリエステル系重合体を容易 に得ることができる製造方法、該製造方法力 得られるシクロデキストリン含有ポリェ ステル系重合体を提供することにある。
課題を解決するための手段
[0016] 本発明者は、上記の課題を解決すべく鋭意検討した結果、シクロデキストリン又は その誘導体が末端に結合したポリエステル系重合体と熱可塑性榭脂をブレンドした 組成物が、成形材料にした場合の強度に優れることを見出し、本発明を完成した。さ らにシクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体をコ 一ティング組成物、又はこれを基材にコートすることにより得られるコーティング体とし
て利用することを見出し、本発明を完成した。また、水酸基の一部が脱プロトン化され ているシクロデキストリン又はその誘導体をポリエステル系重合体に反応させることに より、シクロデキストリン含有ポリエステル系重合体を容易に得ることができることを見 出し、本発明を完成するに至った。
[0017] すなわち本願発明は、(a)シクロデキストリン又はその誘導体が末端に結合したポリ エステル系重合体 99〜0. 1重量%、(b)熱可塑性榭脂 1〜99. 9重量%、力もなる ことを特徴とするシクロデキストリン含有ポリエステル系重合体組成物(請求項 1)であ る。
[0018] また、シクロデキストリンが、 α—シクロデキストリン、 β—シクロデキストリン、 γ—シ クロデキストリン、あるいはこれらの混合物である請求項 1記載のシクロデキストリン含 有ポリエステル系重合体組成物(請求項 2)である。
[0019] また、成分 (a)のポリエステル系重合体及び又は成分 (b)の熱可塑性榭脂が、脂肪 族ポリエステルである請求項 1あるいは 2いずれかに記載のシクロデキストリン含有ポ リエステル系重合体組成物(請求項 3)である。
[0020] また、脂肪族ポリエステル力 ポリ力プロラタトン、ポリブチレンアジペート、ポリブチ レンサクシネート、ポリエチレンアジペート、ポリエチレンサクシネート、ポリ乳酸、ポリ グリコーノレ酸、ポリ(3ーヒドロキシブチレート)、ポリ(3ーヒドロキシバレレート)、ポリ(3 ーヒドロキシへキサノエート)、これらの各成分の共重合体、あるいはこれらの混合物 である請求項 3記載のシクロデキストリン含有ポリエステル系重合体組成物(請求項 4 )である。
[0021] また、成分 (a)のポリエステル系重合体力 ポリ力プロラタトン、ポリ乳酸、ポリ乳酸繰 り返し単位とポリグリコール酸繰り返し単位力もなるポリ(乳酸—コ―グリコール酸)、ポ リ(3—ヒドロキシブチレート)、ポリ(3—ヒドロキシブチレート)繰り返し単位とポリ(3— ヒドロキシへキサノエート)繰り返し単位力もなるポリ [ (3—ヒドロキシブチレート)—コ 一(3—ヒドロキシへキサノエ一ト)]、あるいはこれらの混合物である請求項 4記載のシ クロデキストリン含有ポリエステル系重合体組成物(請求項 5)である。
[0022] また、成分 (a)力 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はそ の誘導体をポリエステル系重合体に反応させることを特徴とする製造方法により得ら
れる、請求項 1〜5 、ずれかに記載のシクロデキストリン含有ポリエステル系重合体組 成物(請求項 6)である。
[0023] また、請求項 1〜6いずれかに記載のシクロデキストリン含有ポリエステル系重合体 組成物からなるフィルム材料 (請求項 7)である。
[0024] また、シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体か らなるコーティング組成物(請求項 8)である。
[0025] また、シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体が
、水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体とポリエ ステル系重合体の反応により得られることを特徴とする請求項 8に記載のコーティン グ組成物(請求項 9)である。
[0026] また、コーティング組成物力 シクロデキストリン又はその誘導体を含有しな 、重合 体を含む請求項 8あるいは 9に記載のコーティング組成物(請求項 10)である。
[0027] また、コーティング組成物が、有機溶剤を含む請求項 8〜: LO ヽずれかに記載のコ 一ティング組成物(請求項 11)である。
[0028] また、シクロデキストリンが、 α—シクロデキストリン、 β—シクロデキストリン、 γ—シ クロデキストリン、あるいはこれらの混合物である請求項 8〜1 、ずれかに記載のコ 一ティング組成物(請求項 12)である。
[0029] また、ポリエステル系重合体力 ポリ力プロラタトン、ポリブチレンアジペート、ポリブ チレンサクシネート、ポリエチレンアジペート、ポリエチレンサクシネート、ポリ乳酸、ポ リグリコーノレ酸、ポリ(3ーヒドロキシブチレート)、ポリ(3ーヒドロキシバレレート)、ポリ(
3—ヒドロキシへキサノエート)、これらの各成分の共重合体、あるいはこれらの混合物 である請求項 8〜12いずれかに記載のコーティング組成物(請求項 13)である。
[0030] また、請求項 8〜13いずれかに記載のコーティング組成物を基材にコートすること によって得られるコーティング体 (請求項 14)である。
[0031] また、基材が、重合体、金属、ガラス、あるいはこれらの複合材カもなる請求項 14に 記載のコーティング体 (請求項 15)である。
[0032] また、水酸基の一部が脱プロトンィ匕されているシクロデキストリン又はその誘導体を ポリエステル系重合体に反応させることを特徴とするシクロデキストリン含有ポリエステ
ル系重合体の製造方法 (請求項 16)である。
[0033] また、シクロデキストリン又はその誘導体の水酸基の一部を脱プロトンィ匕する工程、 水酸基の一部が脱プロトン化されたシクロデキストリン又はその誘導体をポリエステル 系重合体に反応させる工程、力もなることを特徴とする請求項 16記載のシクロデキス トリン含有ポリエステル系重合体の製造方法 (請求項 17)である。
[0034] また、シクロデキストリンが、 α—シクロデキストリン、 β—シクロデキストリン、 γ—シ クロデキストリン、あるいはこれらの混合物である請求項 16あるいは 17に記載の製造 方法 (請求項 18)である。
[0035] また、シクロデキストリン又はその誘導体を塩基性ィ匕合物で脱プロトン化することを 特徴とする請求項 16〜18いずれかに記載のシクロデキストリン含有ポリエステル系 重合体の製造方法 (請求項 19)である。
[0036] また、塩基性ィ匕合物がアルカリ金属化合物であることを特徴とする請求項 19記載 のシクロデキストリン含有ポリエステル系重合体の製造方法 (請求項 20)である。
[0037] また、ポリエステル系重合体力 ポリ力プロラタトン、ポリブチレンアジペート、ポリブ チレンサクシネート、ポリエチレンアジペート、ポリエチレンサクシネート、ポリ乳酸、ポ リグリコーノレ酸、ポリ(3ーヒドロキシブチレート)、ポリ(3ーヒドロキシへキサノエート)、 これらの各成分の共重合体、あるいはこれらの混合物である請求項 16〜20いずれ かに記載の製造方法 (請求項 21 )である。
[0038] また、ポリエステル系重合体力 ポリ力プロラタトン、ポリ乳酸、ポリ乳酸繰り返し単位 とポリグリコール酸繰り返し単位力 なるポリ(乳酸—コーダリコール酸)、ポリ(3—ヒド ロキシプチレート)繰り返し単位とポリ(3—ヒドロキシへキサノエート)繰り返し単位から なるポリ [ (3—ヒドロキシブチレート)ーコ一(3—ヒドロキシへキサノエ一ト)]、あるいは これらの混合物である請求項 21に記載の製造方法 (請求項 22)である。
[0039] また、水酸基の一部が脱プロトンィ匕されているシクロデキストリン又はその誘導体と ポリエステル系重合体とを— 20°C以上 150°C以下の温度範囲で反応させることを特 徴とする請求項 16〜22いずれかに記載のシクロデキストリン含有ポリエステル系重 合体の製造方法 (請求項 23)である。
[0040] また、水酸基の一部が脱プロトンィ匕されているシクロデキストリン又はその誘導体と
ポリエステル系重合体とを— 20°C以上 70°C以下の温度範囲で反応させることを特 徴とする請求項 23記載のシクロデキストリン含有ポリエステル系重合体の製造方法( 請求項 24)である。
[0041] また、水酸基の一部が脱プロトンィ匕されているシクロデキストリン又はその誘導体と ポリエステル系重合体との反応を有機溶媒の存在下で行う請求項 16〜24いずれか に記載のシクロデキストリン含有ポリエステル系重合体の製造方法 (請求項 25)であ る。
[0042] また、請求項 16〜25いずれかに記載の製造方法により得られたシクロデキストリン 含有ポリエステル系重合体 (請求項 26)である。
[0043] また、(a)シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合 体 99〜0. 1重量%、(b)熱可塑性榭脂 1〜99. 9重量%、からなることを特徴とする シクロデキストリン含有ポリエステル系重合体組成物の製造方法であって、(a)が水 酸基の一部が脱プロトン化されているシクロデキストリン又はその誘導体をポリエステ ル系重合体に反応させることを特徴とする製造方法により得られることを特徴とするシ クロデキストリン含有ポリエステル系重合体組成物の製造方法 (請求項 27)である。
[0044] また、シクロデキストリンが、 α—シクロデキストリン、 β—シクロデキストリン、 γ—シ クロデキストリン、あるいはこれらの混合物である請求項 27記載のシクロデキストリン 含有ポリエステル系重合体組成物の製造方法 (請求項 28)である。
[0045] また、シクロデキストリン又はその誘導体をアルカリ金属化合物で脱プロトン化する ことを特徴とする請求項 27あるいは 28記載のシクロデキストリン含有ポリエステル系 重合体組成物の製造方法 (請求項 29)である。
[0046] また、シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体か らなるコーティング組成物の製造方法であって、前記ポリエステル系重合体が、水酸 基の一部が脱プロトン化されているシクロデキストリン又はその誘導体をポリエステル 系重合体に反応させて得られることを特徴とするシクロデキストリン含有ポリエステル 系重合体力もなるコーティング組成物の製造方法 (請求項 30)である。
[0047] また、コーティング組成物が、有機溶剤を含む請求項 30記載のコーティング組成物 の製造方法 (請求項 31)である。
[0048] また、シクロデキストリン又はその誘導体をアルカリ金属化合物で脱プロトン化する ことを特徴とする請求項 30ある 、は 31記載のコーティング組成物の製造方法 (請求 項 32)である。
発明の効果
[0049] 本発明の組成物は、同程度のシクロデキストリンを含有する単独材料と比較しても 成形材料の強度に優れるため、フィルム材料などとして好適に使用することができる 。本発明のコーティング組成物はシクロデキストリンが均一に分散しており、かつシク ロデキストリンにポリエステル系重合体が結合しているためにシクロデキストリンの溶 出が起こらない。本発明の製造方法では、ポリエステル系重合体が特別な反応性基 を有する必要はなぐさらにあらかじめ活性化させておく必要もない。従って商業的に 生産されているポリエステル系重合体をそのまま使用して、シクロデキストリンが結合 したポリエステル系重合体を容易に得ることができる。また本発明の製造方法により 得られるシクロデキストリン含有ポリエステル系重合体の分子量は必要に応じて調整 することが可能である。
発明を実施するための最良の形態
[0050] 本発明の第一は、(a)シクロデキストリン又はその誘導体が末端に結合したポリエス テル系重合体 99〜0. 1重量%、(b)熱可塑性榭脂 1〜99. 9重量%、力もなることを 特徴とする組成物である。成分 (a)と成分 (b)の比率は、上記範囲内であれば良ぐ 得られる組成物の強度や各種物性、あるいはシクロデキストリンの含有量などの観点 力も最適な組成比を選択できるが、好ましい範囲をあえて言及すれば、成分 (a)が 9 0〜0. 2重量%、あるいは成分(a)が 80〜0. 5重量%をあげることができる。
[0051] 本発明の成分 (a)シクロデキストリン又はその誘導体が末端に結合したポリエステル 系重合体、の「末端に結合した」とはシクロデキストリン又はその誘導体の水酸基ある いは置換基とポリエステル系重合体の重合端が直接あるいは各種スぺーサーを介し て化学的に結合していることを意味している。本発明の成分 (a)としては、直鎖状ポリ エステル系重合体の片末端にシクロデキストリン又はその誘導体が結合したもの又は 両末端に結合したもの、分岐状ポリエステル系重合体のいくつかの末端にシクロデキ ストリン又はその誘導体が結合したもの、あるいは 1つのシクロデキストリン又はその誘
導体に複数のポリエステル系重合体末端が結合したものなど、を含む。
[0052] 本発明で使用されるシクロデキストリン又はその誘導体としては、特に限定されない 力 例えば、 a—シクロデキストリン、 j8—シクロデキストリン、 γ—シクロデキストリン、 又はシクロデキストリンの水酸基のうち一部の水素原子が直鎖又は分岐のアルキル 基、直鎖又は分岐のァルケ-ル基、直鎖又は分岐のヒドロキシアルキル基、ヒドロキ シァリール基、ァシル基、グリコシル基、マルトシル基、イミダゾリル基などで置換され た誘導体、分岐シクロデキストリン、シクロデキストリンの 2量体あるいは多量体、など を使用することができる。またグルコース単位が 5以下又は 9以上のシクロデキストリン 類縁体も同様に使用可能である。これらは単独又は 2種以上を組み合わせて使用可 能である。これらの中でも a—シクロデキストリン、 j8—シクロデキストリン、 γ—シクロ デキストリン、あるいはこれらの混合物がコストなどの観点力 好ましく使用される。
[0053] 本発明の成分 (a)のポリエステル系重合体としては、特に制限されるものではない 力 製造の容易さ等の観点力 脂肪族ポリエステルが好ましい。
[0054] 脂肪族ポリエステルとしては、例えば、ポリプロピオラタトン、ポリプチ口ラタトン、ポリ バレロラタトン、ポリ力プロラタトンなどのポリラタトン類;ポリ(3—ヒドロキシブチレート) 、ポリ(3—ヒドロキシバレレート)、ポリ(3—ヒドロキシへキサノエート)などのポリ(ヒドロ キシアルカノエート)類;ポリ乳酸;ポリグリコール酸;ポリエチレンアジペート、ポリェチ レンサクシネート、ポリブチレンアジペート、ポリブチレンサクシネートなどの脂肪族多 価カルボン酸と脂肪族多価アルコールを主たる構成成分とする脂肪族ポリエステル 類などが挙げられ、これらの各成分を共重合体したものでも良い。
[0055] これらは単独又は 2種以上を組み合わせて使用することができる。これらの中でも、 ポリ力プロラタトン、ポリブチレンアジペート、ポリブチレンサクシネート、ポリエチレンァ ジペート、ポリエチレンサクシネート、ポリ乳酸、ポリグリコール酸、ポリ(3—ヒドロキシ ブチレート)、ポリ(3—ヒドロキシバレレート)、ポリ(3—ヒドロキシへキサノエート)、こ れらの各成分の共重合体、あるいはこれらの混合物であることが好ましい。さらに好ま しくは、ポリ力プロラタトン、ポリ乳酸、ポリ乳酸繰り返し単位とポリグリコール酸繰り返し 単位力 なるポリ(乳酸—コーダリコール酸)、ポリ(3—ヒドロキシブチレート)、ポリ(3 ーヒドロキシブチレート)繰り返し単位とポリ(3—ヒドロキシへキサノエート)繰り返し単
位からなるポリ [ (3—ヒドロキシブチレート)ーコー(3—ヒドロキシへキサノエ一ト)]、あ るいはこれらの混合物である。
[0056] 成分 (a)の製造方法としては、特に制限はなぐ製造の容易さ、コスト、得られるシク ロデキストリン含有ポリエステル系重合体の構造、などの観点から適宜選択されるも のである。
[0057] 例えば、成分 (a)の製造方法として、水酸基の一部が脱プロトンィ匕されているシクロ デキストリン又はその誘導体をポリエステル系重合体に反応させることを特徴とするシ クロデキストリン含有ポリエステル系重合体の製造方法を用いると製造の容易さ、コス トなどの観点力も好まし 、。この製造方法によればシクロデキストリン含有ポリエステ ル重合体とともに、シクロデキストリンを含まないポリエステル系重合体も副生する可 能性があり、この場合、得られる生成物はシクロデキストリン含有ポリエステル重合体 とポリエステル系重合体の混合物 (組成物)となり得る。しかし本発明の組成物は、成 分 (a)の製造時に副生するポリエステル系重合体を成分 (b)とするのではなく、別途 シクロデキストリンを含有しな 、成分 (b)熱可塑性榭脂を添加 ·ブレンドして組成物と することを意味する。
[0058] 成分 (a)の製造方法として、非特許文献 1に記載されて 、るような、シクロデキストリ ン又はその誘導体を開始点として環状エステル系化合物(例えば、ラタトン類、ラクチ ドなど)を重合させる方法を用いることもできる。
[0059] 成分(a)中のシクロデキストリン含有量は成分(a) 100重量%中 0. 1重量%〜60重 量%、更には 0. 5重量%〜50重量%が好ましい。シクロデキストリン含有量の測定 手法は特に限定されるものではなぐ結合して!/ヽるポリエステル系重合体の種類や分 子量などによって適宜選択されるものである。通常は、 NMRやゲル'パーミエーショ ン ·クロマトグラフィー(GPC)などによって測定することができる。
[0060] 成分 (a)の分子量は特に制限される訳ではな!/、が、数平均分子量 (Mn)が低 、重 合体、例えば数平均分子量が 100, 000以下、更には 50, 000以下の重合体に対し て本発明の効果が高くなる傾向がある。適用できる成分 (a)の分子量の下限は特に 限定はないが、好ましい下限をあえて言及すれば数平均分子量 1500以上、あるい は 2000以上をあげることができる。
[0061] 本発明の成分 (b)熱可塑性榭脂の種類は特に限定されるものではなぐ例えば、ポ リエチレン、ポリプロピレン、エチレン.プロピレン共重合体、ポリイソブチレン、ポリブタ ジェン、ポリイソプレン、ポリシクロォレフィンなどのポリオレフイン系榭脂;エチレン '酢 酸ビュル共重合体、エチレン 'ビュルアルコール共重合体、エチレン.ェチルアタリレ ート共重合体などのエチレン系共重合榭脂;ポリ塩ィ匕ビニル、ポリ塩ィ匕ビユリデン、塩 素化ポリエチレンなどの塩素系榭脂;ポリメチルメタタリレート、ポリブチルアタリレート などのポリ(メタ)アクリル系榭脂;ポリスチレン、スチレン'アクリロニトリル共重合体、ス チレン ·アクリロニトリル ·ブタジエン共重合体、スチレン'メチルメタタリレート共重合体 などのスチレン系榭脂;スチレン系熱可塑性エラストマ一類;ポリウレタン類;ポリェチ レンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどの芳香 族ポリエステル類;ポリ力プロラタトン、ポリ乳酸、ポリダルコール酸、ポリブチレンサク シネート、ポリ(3—ヒドロキシアルカノエート)などの脂肪族ポリエステル類;ポリアミド 類;ポリカーボネート;ポリアセタール;ポリフエ-レンエーテル;ポリサルホン;ポリフエ -レンスルフイド;ポリエーテルスルホン;ポリエーテルケトン類;液晶性ポリマー;熱可 塑性ポリイミド;ポリシロキサン系ポリマー類;フッ素含有重合体類;セルロース類、デ ンプン類、キチン、キトサンなどの多糖類に熱可塑性を付与したもの;ポリフエノール 類などを挙げることができ、これらの各成分を共重合体したものでも良い。
[0062] これらは単独又は 2種以上を組み合わせて使用することができる。シクロデキストリ ン又はその誘導体が末端に結合したポリエステル系重合体と相溶性がある熱可塑性 榭脂が好ましい。これらの中でも、脂肪族ポリエステルが好ましぐポリ力プロラタトン、 ポリブチレンアジペート、ポリブチレンサクシネート、ポリエチレンアジペート、ポリェチ レンサクシネート、ポリ乳酸、ポリダリコール酸、ポリ(3—ヒドロキシブチレート)、ポリ(3 ーヒドロキシバレレート)、ポリ(3—ヒドロキシへキサノエート)、これらの各成分の共重 合体、あるいはこれらの混合物であることがさらに好ましい。
[0063] また成分 (b)がポリエステル榭脂であることが好ましく、(a)、 (b)両成分が!/ヽずれも 脂肪族ポリエステルであることがさらに好ましい。
[0064] また、組成物中のシクロデキストリン含有量は、組成物全体の各種物性やコスト等か ら適切に調整され得るものであり、限定される訳ではないが、成分 (a)と成分 (b)を合
わせた組成物中に 0. 2〜40重量%、更には 0. 3〜30重量%であることが好ましい。
[0065] 成分 (a)と成分 (b)の分子量 (数平均)の比率は特に限定はな 、が、成分 (a)の分 子量よりも成分 (b)の分子量が大き!/、場合に本発明の効果が得られやす 、傾向にあ る。通常、成分 (a)の分子量は、材料強度の観点力も成分 (b)として用いる熱可塑性 榭脂の分子量の 70%以下、更には 50%以下、また 0. 1%以上、更には 0. 2%以上 が好ましい。
[0066] 本発明にお 、ては、成分 (a)と成分 (b)力もなる糸且成物を製造する方法に特に限定 はなぐ両成分が混合できる通常の方法を用いればよい。例えば、成分 (a)と成分 (b )をロール、プレス、押出機、ミル、ブラベンダー、バンバリ一ミキサーなどを用いて混 合する方法、両成分を溶媒などに溶解して混合する方法、などを例示することができ る。
[0067] 本発明の組成物は、成分 (a)および成分 (b)以外の他の有機材料や無機材料とと も〖こ用いることができる。上記他の有機材料又は無機材料としては、例えば、各種熱 硬化性樹脂、可塑剤、滑剤、核剤、難燃剤、薬効作用を有する薬剤、光学機能を有 する有機又は無機化合物、染料、顔料、金属や半導体微粒子、有機又は無機フイラ 一、充填剤、安定剤、発泡剤、発泡助剤、無機塩等を挙げることができる。
[0068] 本発明の組成物は、熱可塑性榭脂を含まな 、単独材料と比較して成形材料にした 場合の強度に優れるため、フィルム材料として好適に使用できる。また強度に優れる ことからフィルム材料の他、シート材料、繊維材料、発泡材料などとして使用すること も可能である。
[0069] 本発明の第二は、本発明の第一に係る組成物 (シクロデキストリン又はその誘導体 が末端に結合したポリエステル系重合体と熱可塑性榭脂からなることを特徴とするシ クロデキストリン含有ポリエステル系重合体組成物)カゝらなるフィルム材料である。本 発明のフィルム材料はシクロデキストリン又はその誘導体が末端に結合したポリエス テル系重合体単独で作成したフィルムよりも強度に優れており、さらにシクロデキスト リン含有量とフィルム強度を両立することが可能である。
[0070] 本発明のフィルム材料の製造方法は特に限定されることなぐ公知の方法により得 ることができる。例えば、溶媒などに溶解してキャストする方法、スピンコートする方法
、熱プレスあるいはロールによる方法、溶融押出法、インフレーション法、などを挙げ ることがでさる。
[0071] 本発明の第三は、シクロデキストリン又はその誘導体が末端に結合したポリエステ ル系重合体力もなることを特徴とするコーティング組成物である。シクロデキストリン又 はその誘導体が末端に結合していると、幅広い種類の有機溶剤に可溶であり、かつ 熱可塑性も有するので、コーティング組成物として有利に使用される。
[0072] 本発明で使用されるシクロデキストリン又はその誘導体が末端に結合したポリエステ ルの「末端に結合した」とは、シクロデキストリン又はその誘導体の水酸基あるいは置 換基とポリエステル系重合体の重合端が直接あるいは各種スぺーサーを介して化学 的に結合していることを意味している。これは、直鎖状ポリエステル系重合体の片末 端にシクロデキストリン又はその誘導体が結合したもの又は両末端に結合したもの、 分岐状ポリエステル系重合体のいくつかの末端にシクロデキストリン又はその誘導体 が結合したもの、あるいは 1つのシクロデキストリン又はその誘導体に複数のポリエス テル系重合体末端が結合したものなど、を含む。
[0073] 本発明で使用されるシクロデキストリン又はその誘導体が末端に結合したポリエステ ルは幾つかの方法で製造されうる。一つは、水酸基の一部が脱プロトンィ匕されている シクロデキストリン又はその誘導体とポリエステル系重合体の反応が挙げられる。他に は、シクロデキストリンの水酸基、又はシクロデキストリンの水酸基を他の置換基に変 換した部分を開始点として環状エステルイ匕合物を重合すると!/、う方法もある(例えば 、非特許文献 1に記載の方法)。
[0074] 例えば、シクロデキストリンとラタトン類とを溶媒の非存在下で加熱 ·重合することに より、シクロデキストリンが末端に結合したポリラタトンが得られる。また、ポリエステル 系重合体の末端をあらかじめ活性化させ、シクロデキストリンの水酸基と反応させるこ とによって、ポリエステル系重合体とシクロデキストリンとを結合させるという方法もある
[0075] シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体を得る 方法は特に限定するものではないが、水酸基の一部が脱プロトンィ匕されているシクロ デキストリン又はその誘導体とポリエステル系重合体の反応による方法が、広範な巿
販のポリエステル系重合体を用いることができ、ポリエステル系重合体ゃシクロデキス トリンの特別な修飾を必要とせず、工業的に有利な製造方法であるという点で最適で ある。
[0076] 本発明で使用されるシクロデキストリン又はその誘導体としては、 1分子当たり少なく とも 1つの水酸基を有するものであれば特に限定されないが、例えば、 α—シクロデ キストリン、 13—シクロデキストリン、 γ—シクロデキストリン、又はシクロデキストリンの 水酸基のうち一部の水素原子が直鎖又は分岐のアルキル鎖、直鎖又は分岐のアル ケ-ル基、直鎖又は分岐のヒドロキシアルキル基、ヒドロキシァリール基、ァシル基、 グリコシル基、マルトシル基、イミダゾリル基などで置換された誘導体、分岐シクロデキ ストリン、シクロデキストリンの 2量体あるいは多量体、などを使用することができる。ま たグルコース単位が 5以下又は 9以上のシクロデキストリン類縁体も同様に使用可能 である。
[0077] これらは単独又は 2種以上を組み合わせて使用可能である。これらの中でも α—シ クロデキストリン、 /3—シクロデキストリン、 γ—シクロデキストリンがコストなどの観点か ら好ましく使用される。なお、本発明のコーティング組成物で使用されるシクロデキス トリンが末端に結合したポリエステル系重合体の、シクロデキストリンの水酸基のうち 一部の水素原子を上記基などにより置換することも可能である。
[0078] 本発明で使用されるシクロデキストリン又はその誘導体が末端に結合したポリエステ ル系重合体の製造においては、上記シクロデキストリン又はその誘導体をポリエステ ル系重合体と反応させる際に、シクロデキストリン又はその誘導体の水酸基の一部を 脱プロトン化する。脱プロトン化する水酸基は、シクロデキストリンに直接結合している 水酸基でも良ぐあるいはシクロデキストリンに結合した置換基に存在する水酸基でも 良い。
[0079] シクロデキストリン又はその誘導体の水酸基を脱プロトンィ匕するためには、塩基性化 合物を使用することが好ましい。塩基性ィ匕合物としては、特に制限はないが、例えば 、水酸化リチウム、水酸ィ匕カリウム、水酸化ナトリウム、水素化リチウム、水素化ナトリウ ム、炭酸リチウム、炭酸カリウム、炭酸ナトリウム、カリウムメトキシド、ナトリウムメトキシド 、カリウム t—ブトキシド、ナトリウム t—ブトキシドなどのアルカリ金属化合物、又はその
水和物などを使用することができる。これらの塩基性ィ匕合物はそのまま使用しても良 いが、溶媒などに希釈した溶液として使用しても良 、。
[0080] 塩基性ィ匕合物の使用量としては、特に制限はないが、通常シクロデキストリン又は その誘導体 1モルに対して、 0. 01モル当量〜 10モル当量が好ましい。塩基性化合 物の使用量が少なすぎると未反応のシクロデキストリン又はその誘導体が残る可能性 があり、使用量が多すぎると架橋反応が起こったり、必要以上にポリエステル系重合 体が切断されてしまう恐れがあり、好ましくない。従って、好ましい塩基性化合物の使 用量としては、シクロデキストリン又はその誘導体 1モルに対して 0. 05モル当量から 5モル当量程度である。
[0081] 前記シクロデキストリン又はその誘導体の脱プロトンィ匕は、シクロデキストリン又はそ の誘導体とポリエステル系重合体とを接触させる前に、接触させると同時に、あるい は接触させた後に実施可能である力 ポリエステル系重合体と接触させる前にあらか じめ脱プロトンィ匕しておくことが好まし 、。
[0082] 該製造方法で使用されるポリエステル系重合体は、特に限定されるものではなぐ 商業的に生産されているポリエステル系重合体をそのまま使用することができる。ま た所望のモノマー種、モノマー組成比、分子量などの特性を有するポリエステル系重 合体を合成して使用することも可能である。
[0083] 具体例としては、ポリプロピオラタトン、ポリブチロラタトン、ポリバレロラタトン、ポリ力 プロラタトンなどのポリラタトン類;ポリ(3ーヒドロキシブチレート)、ポリ(3ーヒドロキシ へキサノエート)などのポリ(3—ヒドロキシアルカノエート)類;ポリグリコール酸;ポリ乳 酸;ポリエチレンアジペート、ポリエチレンサクシネート、ポリブチレンアジペート、ポリ ブチレンサクシネートなどの脂肪族多価カルボン酸と脂肪族多価アルコールを主たる 構成成分とする脂肪族ポリエステル類;ポリエチレンテレフタレート、ポリブチレンテレ フタレート、ポリエチレンナフタレートなどの芳香族ポリエステル類;不飽和脂肪族多 価カルボン酸と脂肪族多価アルコールを主たる構成成分とする不飽和ポリエステル 類、などが挙げられ、これらの各成分を共重合体したものでも良い。
[0084] これらは単独又は 2種以上を組み合わせて使用することができる。これらの中でも、 ポリ力プロラタトン、ポリブチレンアジペート、ポリブチレンサクシネート、ポリエチレンァ
ジペート、ポリエチレンサクシネート、ポリ乳酸、ポリグリコール酸、ポリ(3—ヒドロキシ ブチレート)、ポリ(3—ヒドロキシバレレート)、ポリ(3—ヒドロキシへキサノエート)、力 ら選ばれる少なくとも 1種の重合体、共重合体、あるいはこれら(共)重合体の混合物 であることが好ましい。
[0085] さらに好ましくは、ポリ力プロラタトン、ポリ乳酸、ポリ乳酸繰り返し単位とポリグリコー ル酸繰り返し単位力 なるポリ(乳酸—コーダリコール酸)、ポリ(3—ヒドロキシブチレ ート)繰り返し単位とポリ(3—ヒドロキシへキサノエート)繰り返し単位力もなるポリ [ (3 —ヒドロキシブチレート)一コ一(3—ヒドロキシへキサノエ一ト)]、力も選ばれることが 好ましい。
[0086] 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体とポリエ ステル系重合体の反応は、溶媒の存在下又は非存在下で実施可能である。溶媒の 存在下で反応させる場合は、均一に反応が進行することが期待される。使用される溶 媒としては、特に限定されないが、均一に反応させるためには、水酸基の一部が脱プ ロトンィ匕されているシクロデキストリン又はその誘導体、あるいはポリエステル系重合 体が反応時に溶解して 、ることが好ま 、。
[0087] 具体的な溶媒としては、ジメチルスルホキシドなどのスルホキシド類;ジメチルホルム アミド、ジメチルァセトアミド、 N—メチル—2—ピロリドンなどのアミド類;エチレンカー ボネート、プロピレンカーボネート、ブチレンカーボネート、ジェチノレカーボネート、ジ メチルカーボネート、ェチルメチルカーボネートなどのカーボネート類;スルホラン、メ チルスルホランなどのスルホラン類;ジォキサン、ジォキソラン、ジェチルエーテル、テ トラヒドロフラン、メチルブチルエーテルなどのエーテル類;ァセトニトリル、プロピオ- トリル、ベンゾニトリル、サクシノ-トリルなどの-トリル類;ニトロメタンなどの-トロ化合 物;ジクロロメタン、クロロホノレム、 1, 2—ジクロロエタン、クロ口ベンゼンなどのノヽロゲ ン化合物;アセトン、メチルブチルケトンなどのケトン類;ベンゼン、トルエン、キシレン などの芳香族化合物類;へキサン、ヘプタン、シクロへキサン、メチルシクロへキサン などの炭化水素類などが挙げられる。これらは単独又は 2種以上を組み合わせて使 用することができる。
[0088] 溶媒の非存在下で反応させる場合は、溶媒の除去 ·回収などの操作が不要になり
、低コストで製造できることが期待される。この場合、ポリエステル系重合体を溶融状 態で反応させることが好まし 、。
[0089] 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体とポリエ ステル系重合体の反応を行う温度及び時間は特に限定されるものではなぐポリエス テル系重合体の種類、使用する各成分の量や比率、反応装置の種類などの要因に よって、適宜選択されるものである力 通常は— 20°C〜350°C、 1秒〜 48時間の範 囲である。
[0090] 該製造方法によって、シクロデキストリン又はその誘導体が末端に結合したポリエス テル系重合体が得られるが、反応条件などによって、シクロデキストリン又はその誘導 体がポリエステル系重合体の片末端に結合したもの、両末端に結合したもの、いず れの末端にもシクロデキストリン又はその誘導体が結合して ヽな 、もの、あるいは 1つ のシクロデキストリン又はその誘導体に 2本以上のポリエステル系重合体が結合した もの、などの混合物として得られることがある。
[0091] これらは、カラムクロマトグラフィー、溶媒分別、晶析などの操作を行うことによって分 離することが可能である。また、混合物のまま使用しても良い。
[0092] 本発明のコーティング組成物には、シクロデキストリン又はその誘導体を含有しない 重合体を配合することができる。配合できる重合体は、特に限定されるものではない 。ここで言うシクロデキストリン又はその誘導体を含有しない重合体は、シクロデキスト リン又はその誘導体が末端に結合したポリエステル系重合体を製造する際に副生す るものであっても良ぐ又は別途添加'ブレンドするものであっても良い。
[0093] これらは例えば、ポリウレタン、ポリ塩化ビニル、他のビュルポリマー、ポリカーボネ ート、ポリスチレン、ナイロン、ポリエステルおよびポリアタリレート、ポリイミド、ポリェチ レン、ポリプロピレン、ポリブチレン、フッ素榭脂、ポリビュルァセタール、ラテックスゴ ム又は他のゴムのような天然又は合成エラストマ一、シリコーンなどのあらゆる重合体 又はこれらの共重合体を用いることができる力 均一なコーティング体が得られるため 、シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体と相溶 性がある重合体又は共重合体が特に好ま 、。
[0094] 本発明のコーティング組成物に用いるシクロデキストリン又はその誘導体が末端に
結合したポリエステル系重合体と、シクロデキストリンを含有しな 、重合体の比率は特 に限定されるものではないが、通常シクロデキストリン又はその誘導体が末端に結合 したポリエステル系重合体が 1重量%以上、好ましくは 5重量%以上、より好ましくは 1 0重量%以上を含むものとする。
[0095] 本発明のコーティング組成物に用いる有機溶剤は、特に限定されるものではないが 、均一なコーティング体を得るためには、シクロデキストリン又はその誘導体が末端に 結合したポリエステル系重合体がコーティングの際の温度 '圧力において溶解し、迅 速かつ十分に蒸発し得る有機溶剤であることが特に好ましい。
[0096] 例えば、ジメチルスルホキシドなどのスルホキシド類;ジメチルホルムアミド、ジメチル ァセトアミド、 N—メチルー 2—ピロリドンなどのアミド類;エチレンカーボネート、プロピ レンカーボネート、ブチレンカーボネート、ジェチノレカーボネート、ジメチノレカーボネ ート、ェチルメチルカーボネートなどのカーボネート類;スルホラン、メチルスルホラン などのスルホラン類;ジォキサン、ジォキソラン、ジェチルエーテル、テトラヒドロフラン 、メチルブチルエーテルなどのエーテル類;ァセトニトリル、プロピオ-トリル、ベンゾ 二トリル、サクシノ-トリルなどの-トリル類;ニトロメタンなどの-トロ化合物;ジクロロメ タン、クロ口ホルム、 1, 2—ジクロロエタン、クロ口ベンゼンなどのハロゲン化合物;ァセ トン、メチルブチルケトンなどのケトン類;ベンゼン、トルエン、キシレンなどの芳香族 化合物類;へキサン、ヘプタン、シクロへキサン、メチルシクロへキサンなどの炭化水 素類などが挙げられる。これらは単独又は 2種以上を組み合わせて使用することがで きる。
[0097] 本発明のコーティング組成物を構成する、シクロデキストリン又はその誘導体が末 端に結合したポリエステル系重合体と有機溶剤の比率は特に限定されるものではな V、。コーティング組成物の粘度等の条件で適宜選択することができる。
[0098] 本発明のコーティング組成物を基材にコートすることにより、基材表面に皮膜を形 成させてコーティング体とすることができる。本発明の第四は、本発明のコーティング 組成物を基材にコートすることによって得られるコーティング体である。
[0099] 本発明のコーティング組成物によりコートされる基材は、特に限定するものではない 力 ポリウレタン、ポリ塩化ビニル、他のビュルポリマー、ポリカーボネート、ポリスチレ
ン、ナイロン、ポリエステルおよびポリアタリレート、ポリイミド、ポリエチレン、ポリプロピ レン、ポリブチレン、フッ素榭脂、ポリビュルァセタール、ラテックスゴム又は他のゴム のような天然又は合成エラストマ一、シリコーンなどの重合体又はこれらの共重合体、 金属、ガラス、セラミックス、又はこれらの複合体などが挙げられる力 コーティングの 際の温度や圧力、用いる有機溶剤によって影響を受けない基体が特に好ましい。
[0100] 基体はコーティング組成物の接着を確実にするために、前処理による下地コートを することができ、このような下地コートをする方がより好まし!/、。
[0101] 本発明のコーティング組成物によりコートされうる基材の形状としては、フィルム状、 シート状、繊維状、筒状、球状のものなどが挙げられるが、特に限定はされず、あらゆ る形状のものが基材として使用可能である。
[0102] 本発明のコーティング体を得るために、基材に本発明のコーティング組成物をコー トする方法は特に限定されるものではなぐバーコート、ダイコート、カーテンフローコ ート、ローノレコート、グラビアコート、マノレチコート、コンマコート、スプレーコート、スピ ンコート、ディップコート、刷毛塗り等のコーティング方法を用いることができる。これに よって得られたコーティング被膜の膜厚は特に限定されるものではないが、 0. 01 m〜2000 μ m、更には 0. 02 μ m〜200 μ mが好まし!/ヽ。
[0103] 本発明のコーティング組成物又はコーティング体は、シクロデキストリン又はその誘 導体が末端に結合したポリエステル系重合体力 なり、そのコーティング体は基材と の密着性が良好である。また、シクロデキストリン又はその誘導体にはポリエステル重 合体が結合していることに起因して、シクロデキストリンがコーティング中に均一に分 散し、コーティング体からのシクロデキストリンの溶出も抑制される。
[0104] 本発明のコーティング組成物又はコーティング体はポリエステル系重合体の末端に 結合したシクロデキストリンを含有するため、様々な有機分子を包接することも可能で ある。その包接能を利用して、例えば、ドラッグデリバリー用基材へのコーティング、 有機分子の安定化効果や悪臭物質の吸着による脱臭効果を有する機能性コーティ ングとして利用することも可能である。
[0105] 本発明の第五は、水酸基の一部が脱プロトンィ匕されているシクロデキストリン又はそ の誘導体をポリエステル系重合体に反応させることを特徴とするシクロデキストリン含
有ポリエステル系重合体の製造方法である。
[0106] 本発明においては、シクロデキストリン又はその誘導体をポリエステル系重合体と反 応させる際に、シクロデキストリン又はその誘導体の水酸基の一部を脱プロトン化する 。脱プロトン化する水酸基は、シクロデキストリンに直接結合している水酸基でも良ぐ あるいはシクロデキストリンに結合した置換基に存在する水酸基でも良い。脱プロトン 化されたシクロデキストリン又はその誘導体は、脱プロトン化されていないものと比較 して反応性が高くなる。
[0107] 前記シクロデキストリン又はその誘導体の脱プロトンィ匕は、シクロデキストリン又はそ の誘導体とポリエステル系重合体とを接触させる前に、接触させると同時に、あるい は接触させた後に実施可能である力 ポリエステル系重合体と接触させる前にあらか じめ脱プロトンィ匕しておくことが望ま 、。
[0108] 即ち、シクロデキストリン又はその誘導体の水酸基の一部を脱プロトンィ匕する工程、 水酸基の一部が脱プロトン化されたシクロデキストリン又はその誘導体をポリエステル 系重合体に反応させる工程、力もなることが好ましい。水酸基の一部が脱プロトンィ匕 されたシクロデキストリン又はその誘導体はー且取り出してから、ポリエステル系重合 体と反応させても良ぐ又は取り出すことなぐ引き続きポリエステル系重合体と反応さ せても良い。
[0109] 本発明で使用されるシクロデキストリン又はその誘導体としては、 1分子当たり少なく とも 1つの水酸基を有するものであれば特に限定されないが、例えば、 α—シクロデ キストリン、 13—シクロデキストリン、 γ—シクロデキストリン、又はシクロデキストリンの 水酸基のうち一部の水素原子が直鎖又は分岐のアルキル基、直鎖又は分岐のアル ケ-ル基、直鎖又は分岐のヒドロキシアルキル基、ヒドロキシァリール基、ァシル基、 グリコシル基、マルトシル基、イミダゾリル基などで置換された誘導体、分岐シクロデキ ストリン、シクロデキストリンの 2量体あるいは多量体、などを使用することができる。
[0110] またグルコース単位が 5以下又は 9以上のシクロデキストリン類縁体も同様に使用可 能である。これらは単独又は 2種以上を組み合わせて使用可能である。これらの中で も α—シクロデキストリン、 β—シクロデキストリン、 γ—シクロデキストリンがコストなど の観点力 好ましく使用される。本発明の製造方法によって、シクロデキストリン含有
ポリエステル系重合体を得た後に、ポリエステル系重合体に結合したシクロデキストリ ンの水酸基のうち一部の水素原子を上記基などにより置換することも可能である。
[0111] シクロデキストリン又はその誘導体の水酸基を脱プロトンィ匕するためには、塩基性化 合物を使用することが好ましい。塩基性ィ匕合物としては、特に制限はないが、アル力 リ金属化合物あるいはアミンィ匕合物が好ましい。アルカリ金属化合物としては、例え ば、水酸化リチウム、水酸ィ匕カリウム、水酸化ナトリウム、水素化リチウム、水素化ナトリ ゥム、炭酸リチウム、炭酸カリウム、炭酸ナトリウム、カリウムメトキシド、ナトリウムメトキ シド、カリウム t—ブトキシド、ナトリウム t—ブトキシドなどを使用することができる。アミ ン化合物としては、 1, 8—ジァザビシクロ [5, 4, 0]ゥンデセン一 7 (DBU)などを使 用することができる。
[0112] これらの塩基性ィ匕合物はそのまま使用しても良いが、溶媒などに希釈した溶液とし て使用しても良い。アルカリ金属化合物としては、水酸化リチウム、水酸化カリウム、 水酸ィ匕ナトリウム、ナトリウムメトキシドから選ばれる 1種以上のアルカリ金属化合物、 あるいはアミン類であることが、反応性やコスト等のバランスの観点からさらに好ましい
[0113] 塩基性ィ匕合物の使用量としては、特に制限はないが、通常シクロデキストリン又は その誘導体 1モルに対して 0. 01モル当量〜 10モル当量である。塩基性化合物の使 用量が少なすぎると未反応のシクロデキストリン又はその誘導体が残る可能性があり 、使用量が多すぎると架橋反応が起こったり、必要以上にポリエステル系重合体が切 断されてしまう恐れがあり、好ましくない。従って好ましい塩基性ィ匕合物の使用量とし ては、シクロデキストリン又はその誘導体 1モルに対して 0. 05モル当量力ら 5モル当 量程度である。
[0114] 本発明の製造方法では、シクロデキストリン又はその誘導体の使用量によって、得 られるシクロデキストリン含有ポリエステル系重合体の分子量を調整することができる 。即ち、ポリエステル系重合体に対して多量のシクロデキストリン又はその誘導体を使 用すれば、分子量の低 ヽシクロデキストリン含有ポリエステル系重合体を得ることがで き、一方、少量のシクロデキストリン又はその誘導体を使用すれば、分子量の高いシ クロデキストリン含有ポリエステル系重合体を得ることができる。
[0115] 従って、所望の分子量になるようにシクロデキストリン又はその誘導体の使用量を調 整すれば良い。また本発明の製造方法では、反応前のポリエステル系重合体の分子 量に対して、得られるシクロデキストリン含有ポリエステル系重合体の分子量は、シク ロデキストリン部分の分子量を考慮しなければ、低くなる傾向にある。
[0116] 本発明で使用されるポリエステル系重合体は反応性基を有している必要はない。
通常ポリエステル系重合体の末端にはカルボン酸基及び Z又は水酸基が存在する 力 これらを特別に活性ィ匕しておく必要もない。即ち、本発明の製造方法では、脱プ ロトンィ匕されているシクロデキストリン又はその誘導体の水酸基がポリエステル系重合 体の主鎖エステル結合に反応し、エステル結合を開裂させ、シクロデキストリン又は その誘導体が結合したポリエステル系重合体が生じることに特徴があるので、末端に カルボン酸基及び Z又は水酸基を必要とはしな 、が、末端にカルボン酸基及び Z 又は水酸基があつたとしても特段の問題はない。
[0117] 本発明で使用されるポリエステル系重合体は、特に限定されるものではなぐ商業 的に生産されているポリエステル系重合体をそのまま使用することができる。また所 望のモノマー種、モノマー組成比、分子量などの特性を有するポリエステル系重合体 を合成して使用することも可能である。
[0118] 具体例としては、ポリプロピオラタトン、ポリブチロラタトン、ポリバレロラタトン、ポリ力 プロラタトンなどのポリラタトン類;ポリ(3ーヒドロキシブチレート)、ポリ(3ーヒドロキシ バレレート)、ポリ(3—ヒドロキシへキサノエート)などのポリ(3—ヒドロキシアル力ノエ ート)類;ポリグリコール酸;ポリ乳酸;ポリエチレンアジペート、ポリエチレンサクシネー ト、ポリブチレンアジペート、ポリブチレンサクシネートなどの脂肪族多価カルボン酸と 脂肪族多価アルコールを主たる構成成分とする脂肪族ポリエステル類;ポリエチレン テレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどの芳香族ポ リエステル類;不飽和脂肪族多価カルボン酸と脂肪族多価アルコールを主たる構成 成分とする不飽和ポリエステル類、などが挙げられ、これらの各成分を共重合体した ものでも良い。
[0119] これらは単独又は 2種以上を組み合わせて使用することができる。これらの中でも、 ポリ力プロラタトン、ポリブチレンアジペート、ポリブチレンサクシネート、ポリエチレンァ
ジペート、ポリエチレンサクシネート、ポリ乳酸、ポリグリコール酸、ポリ(3—ヒドロキシ プチレート)、ポリ(3—ヒドロキシへキサノエート)、これらの各成分の共重合体、ある いはこれらの混合物であることが好まし!/、。
[0120] さらに好ましくは、ポリ力プロラタトン、ポリ乳酸、ポリ乳酸繰り返し単位とポリグリコー ル酸繰り返し単位力 なるポリ(乳酸—コーダリコール酸)、ポリ(3—ヒドロキシブチレ ート)繰り返し単位とポリ(3—ヒドロキシへキサノエート)繰り返し単位力もなるポリ [ (3 ーヒドロキシブチレート)ーコ一(3—ヒドロキシへキサノエ一ト)]、あるいはこれらの混 合物である。
[0121] また、本発明で使用されるポリエステル系重合体は、特に限定されるものではない 力 製造の容易さ等の観点力 脂肪族ポリエステルが好ましい。また所望のモノマー 種、モノマー組成比、分子量などの特性を有するポリエステル系重合体を合成して使 用することも可能である。
[0122] 具体例としては、ポリプロピオラタトン、ポリブチロラタトン、ポリバレロラタトン、ポリ力 プロラタトンなどのポリラタトン類;ポリ(3ーヒドロキシブチレート)、ポリ(3ーヒドロキシ へキサノエート)などのポリ(3—ヒドロキシアルカノエート)類;ポリグリコール酸;ポリ乳 酸;ポリエチレンアジペート、ポリエチレンサクシネート、ポリブチレンアジペート、ポリ ブチレンサクシネートなどの脂肪族多価カルボン酸と脂肪族多価アルコールを主たる 構成成分とする脂肪族ポリエステル類、などが挙げられ、これらの各成分を共重合体 したものでも良い。
[0123] これらは単独又は 2種以上を組み合わせて使用することができる。これらの中でも、 ポリ力プロラタトン、ポリブチレンアジペート、ポリブチレンサクシネート、ポリエチレンァ ジペート、ポリエチレンサクシネート、ポリ乳酸、ポリグリコール酸、ポリ(3—ヒドロキシ プチレート)、ポリ(3—ヒドロキシへキサノエート)、これらは単独又は 2種以上を組み 合わせて得られた重合体、共重合体、あるいはこれら(共)重合体の混合物であること が好ましい。さらに好ましくは、ポリ乳酸、ポリ乳酸繰り返し単位とポリグリコール酸繰り 返し単位力もなるポリ(乳酸一コ一グリコール酸)、力も選ばれることが好ましい。
[0124] 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体をポリエ ステル系重合体に反応させる際の時間は特に限定されるものではなぐポリエステル
系重合体の種類、使用する各成分の量や比率、反応装置の種類などの要因によつ て、適宜選択されるものである力 通常は 1秒〜 48時間の範囲である。
[0125] 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体をポリエ ステル系重合体に反応させる際の温度も制限されることはなぐポリエステル系重合 体の種類、使用する各成分の量や比率、反応装置の種類などの要因によって、適宜 選択されるものであるが、通常は 350°C以下で反応させる。反応温度が高すぎると使 用するポリエステル系重合体が分解することがあり、好ましくない。従って、あえて好 ましい温度範囲に言及すれば、 200°C以下、より好ましくは 150°C以下である。
[0126] 特にポリエステル系重合体の加水分解反応を抑制するためには、反応温度が 70 °C以下であることが好ましぐ 50°C以下であることがさらに好ましい。反応温度の下限 は本来特に制限されるものではな 、が、低温にし過ぎると脱プロトンィ匕されたシクロデ キストリン又はその誘導体とポリエステル系重合体との反応が遅くなつたり、反応系の 粘度が高くなつたりして好ましくない。従って、好ましい温度範囲は— 20°C〜150°C 、より好ましくは— 20°C〜70°C、さらに好ましくは 0°C〜50°C、特に好ましくは 20°C 〜50°Cを挙げることができる。
[0127] また、ポリ乳酸、ポリ乳酸繰り返し単位とポリグリコール酸繰り返し単位力 なるポリ( 乳酸 コーダリコール酸)などのポリエステル系重合体については低い温度が好まし ぐ例えば温度範囲が— 20°C〜 70°Cさらには 0°C〜 50°Cが好まし!/、。
[0128] 本発明の製造方法は、脱プロトンィ匕シクロデキストリン又はその誘導体とポリエステ ル系重合体の反応を 70°C以下で行うことにより、加水分解により生成するシクロデキ ストリンが結合していないポリエステル系重合体の生成が抑制される。従って、シクロ デキストリンが結合したポリエステル系重合体を容易にかつ収率良く得ることができる 。そして、本願発明の各発明に用いることができる。 水酸基の一部が脱プロトン化さ れているシクロデキストリン又はその誘導体をポリエステル系重合体に反応させるに は、溶媒の存在下又は非存在下で実施可能である。溶媒の存在下で反応させる場 合は、均一に反応が進行することが期待され、好ましい。使用される溶媒としては、特 に限定されないが、均一に反応させるためには、水酸基の一部が脱プロトンィ匕されて いるシクロデキストリン又はその誘導体、あるいはポリエステル系重合体が反応温度 ·
圧力にお 、て溶解して 、ることが好まし!/、。
[0129] 具体的な溶媒としては、ジメチルスルホキシドなどのスルホキシド類;ジメチルホルム アミド、ジメチルァセトアミド、 N—メチル—2—ピロリドンなどのアミド類;エチレンカー ボネート、プロピレンカーボネート、ブチレンカーボネート、ジェチノレカーボネート、ジ メチルカーボネート、ェチルメチルカーボネートなどのカーボネート類;スルホラン、メ チルスルホランなどのスルホラン類;ジォキサン、ジォキソラン、ジェチルエーテル、テ トラヒドロフラン、メチルブチルエーテルなどのエーテル類;ァセトニトリル、プロピオ- トリル、ベンゾニトリル、サクシノ-トリルなどの-トリル類;ニトロメタンなどの-トロ化合 物;ジクロロメタン、クロロホノレム、 1, 2—ジクロロエタン、クロ口ベンゼンなどのノヽロゲ ン化合物;アセトン、メチルブチルケトンなどのケトン類;ベンゼン、トルエン、キシレン などの芳香族化合物類;へキサン、ヘプタン、シクロへキサン、メチルシクロへキサン などの炭化水素類などが挙げられる。これらは単独又は 2種以上を組み合わせて使 用することができる。
[0130] 溶媒の非存在下で反応させる場合は、溶媒の除去 ·回収などの操作が不要になり 、低コストで製造できることが期待される。この場合、ポリエステル系重合体を溶融状 態で反応させることが好まし 、。
[0131] 本発明の第六は、上記本発明の製造方法によって得られることを特徴とするシクロ デキストリン含有ポリエステル系重合体である。本発明の製造方法によれば、シクロ デキストリン含有ポリエステル系重合体が得られる力 反応条件などによって、シクロ デキストリン又はその誘導体がポリエステル系重合体の片末端に結合したもの、両末 端に結合したもの、 、ずれの末端にもシクロデキストリン又はその誘導体が結合して いないもの、あるいは 1つのシクロデキストリン又はその誘導体に 2本以上のポリエス テル系重合体が結合したもの、などの混合物として得られることがある。これらは、力 ラムクロマトグラフィー、溶媒分別、晶析などの操作を行うことによって分離することが 可能である。また、混合物のまま使用しても良い。
[0132] シクロデキストリン含有ポリエステル系重合体とシクロデキストリンを含有しな 、ポリエ ステル系重合体との比率は特に限定されるものではないが、通常シクロデキストリン 含有ポリエステル系重合体が 1重量%以上、好ましくは 5重量%以上、より好ましくは
10重量%以上を含むものとする。 本発明のシクロデキストリン含有ポリエステル系重 合体は単独で、あるいは他の有機材料や無機材料とともに用いることができる。上記 他の有機材料又は無機材料としては、例えば、各種熱可塑性榭脂、可塑剤、滑剤、 難燃剤、薬効作用を有する薬剤、光学機能を有する有機又は無機化合物、染料、顔 料、金属や半導体微粒子、有機又は無機フィラー、充填剤、安定剤、無機塩等を挙 げることができる。
[0133] 本発明のシクロデキストリン含有ポリエステル系重合体は、幅広い製品へ応用する ことができる。例えば、生体適合性材料、ドラッグデリバリーシステム用基材、医療用 材料、各種コーティング剤、分離機能膜、塗料、各種榭脂製品への添加剤などを挙 げることができる。
実施例
[0134] 以下、本発明を実施例で更に詳しく説明するが、本発明は実施例により何ら限定さ れるものではない。
[0135] (実施例 1)
ガラス製容器に j8—シクロデキストリン 544mg (0. 48mmol)、水酸化リチウム 11. 4mg (0. 48mmol)を入れ、ジメチルホルムアミド 20mLをカ卩えて、窒素雰囲気下で 1 時間 100°Cに加熱して、 j8—シクロデキストリンの水酸基の一部を脱プロトンィ匕させた 。ここへにポリ力プロラタトン (Aldrich社製) 2gをカ卩えて、 100°Cで 2時間 30分加熱し た。得られた溶液を室温まで放冷した後、少量の酢酸を添加し、溶媒を留去した。残 留物をジクロロメタンに溶解させ、濾過した後、 n キサンに投入して固体を析出さ せた。なお、 β—シクロデキストリン自体は常温でジクロロメタンには溶解しないので、 得られた固体には未反応の β—シクロデキストリンは混入していない。
[0136] 上記固体を重水素化ジメチルスルホキシドに溶解して、 — NMR ^ベクトルを測 定したところ、 β—シクロデキストリンに由来するシグナルとポリ力プロラタトンに由来 するシグナルが観測されたので、 j8—シクロデキストリンが末端に結合したポリ力プロ ラタトン(CDP1)が生成していることが確認された。 NMR ^ベクトルから見積もったシ クロデキストリン含有量は約 23重量%であった。
[0137] ゲル'パーミエーシヨン'クラマトグラフィー(GPC)により、上記シクロデキストリンが
末端に結合したポリ力プロラタトンの分子量を測定した。その結果、ポリスチレン換算 のピーク分子量(Mp)は 12, 900、数平均分子量(Mn)は 7, 100であり、反応前の ポリ力プロラタトンの Mpl46, 100、 Mn90, 900よりも低い値であった。
[0138] (実施例 2)
実施例 1の j8—シクロデキストリンの使用量を 271mg (0. 24mmol)に、水酸化リチ ゥムの使用量を 5. 6mg (0. 23mmol)に変更した以外は、実施例 1と同様の反応を 行い、ジクロロメタンに可溶な固体を得た。
[0139] 上記固体を重水素化ジメチルスルホキシドに溶解して、 — NMR ^ベクトルを測 定したところ、 β—シクロデキストリンに由来するシグナルとポリ力プロラタトンに由来 するシグナルが観測されたので、 j8—シクロデキストリンが末端に結合したポリ力プロ ラタトン(CDP2)が生成していることが確認された。 NMR ^ベクトルから見積もったシ クロデキストリン含有量は約 15重量%であった。
[0140] GPCにより、上記シクロデキストリンが結合したポリ力プロラタトンの分子量を測定し た。その結果、ポリスチレン換算の Mpは 21, 900、 Mnは 10, 800であり、実施例 1 で得られたシクロデキストリン含有ポリラタトンよりも分子量が高力つた。
[0141] (実施例 3)
ガラス製容器に j8—シクロデキストリン 8. 0g (7mmol)、水酸化リチウム 166mg (7 mmol)を入れ、ジメチルホルムアミド 120mLをカ卩えて、 100°Cで 80分加熱して、 β —シクロデキストリンの水酸基の一部を脱プロトンィ匕させた。この溶液を、ポリ力プロラ タトン (Aldrich社製) 8gを含むジメチルホルムアミド溶液 60mLに加えて、 100°Cで 2 時間加熱した。得られた溶液を室温まで放冷した後、少量の酢酸を添加し、反応溶 液を水に投入して固体を析出させた。固体を濾過 '乾燥させて、 j8—シクロデキストリ ンが末端に結合したポリ力プロラタトンを得た (CDP3)。この生成物の分子量を GPC で測定したところ、ポリスチレン換算の Mnは 4, 400であった。また NMRスペクトルか ら見積もったシクロデキストリン含有量は約 38重量%であった。
[0142] (実施例 4)
βーシクロデキストリン使用量を 4. 5g (4mmol)、水酸化リチウム使用量を 97mg ( 4mmol)、ポリ力プロラタトン使用量を 40g、ジメチルホルムアミド使用量の合計を 308
mLにした以外は実施例 3と同様にして、 /3—シクロデキストリンが末端に結合したポ リカプロラタトンを得た(CDP4)。 GPCで測定したポリスチレン換算の Mnは 22, 400 、 NMRスペクトルから見積もったシクロデキストリン含有量は約 12重量%であった。
[0143] 実施例 1〜実施例 4に示したように、本発明の製造方法によれば、商業的に生産さ れているポリエステル系重合体をそのまま使用して、シクロデキストリンが結合したポリ エステル系重合体を容易に得ることができる。また本発明の製造方法により得られる シクロデキストリン含有ポリエステル系重合体の分子量 (シクロデキストリン含有量)は 必要に応じて調整することが可能である。
[0144] (実施例 5)
ジメチルホルムアミドの代わりに、ジメチルァセトアミドを使用した以外は実施例 3と 同様にして、シクロデキストリンが末端に結合したポリ力プロラタトンを得た (CDP5)。 GPCで測定したポリスチレン換算の Mnは 3, 700、 NMRスペクトルから見積もった シクロデキストリン含有量は約 39重量%であった。
[0145] (実施例 6)
ジメチルホルムアミドの代わりに、ジメチルスルホキシドを使用した以外は実施例 3と 同様にして、シクロデキストリンが末端に結合したポリ力プロラタトンを得た (CDP6)。 GPCで測定したポリスチレン換算の Mnは 3, 000、 NMRスペクトルから見積もった シクロデキストリン含有量は約 38重量0 /。であった。
[0146] (実施例 7)
ガラス製容器に j8—シクロデキストリン 294mg (0. 26mmol)、水酸化リチウム 6. 5 mg (0. 27mmol)を入れ、ジメチルホルムアミド 40mLをカ卩えて、窒素雰囲気下、 10 0°Cで 1時間加熱して、 —シクロデキストリンの水酸基の一部を脱プロトンィ匕させた 。ここへポリ乳酸 (三井ィ匕学株式会社製、レイシァ H400) 4g、及びジメチルホルムァ ミド 20mLをカ卩えて、 100°Cで 2時間 30分加熱した。得られた溶液を室温まで放冷し た後、少量の酢酸を添加し、溶媒を留去した。残留物をジクロロメタンに溶解させ、濾 過した後、 n—へキサンに投入して固体を析出させた。 β—シクロデキストリン自体は 常温でジクロロメタンには溶解しないので、得られた固体には未反応の j8—シクロデ キストリンは混入して 、な!/、。
[0147] 上記固体を重水素化ジメチルスルホキサイドに溶解して、 — NMR ^ベクトルを 測定したところ、 β—シクロデキストリンに由来するシグナルとポリ乳酸に由来するシ グナルが観測されたので、 j8—シクロデキストリンが末端に結合したポリ乳酸 (CDP7 )が生成して 、ることが確認された。
[0148] GPCにより、上記シクロデキストリンが結合したポリ乳酸の分子量を測定した。その 結果、ポリスチレン換算の Mpは 40, 700、 Mn22, 200であり、反応前のポリ乳酸の Mpl92, 000、 Mnl58, 400よりも低い値であった。またシクロデキストリン含有量は 約 5重量%であった。
[0149] (実施例 8)
ガラス製容器に j8—シクロデキストリン 0. 9g (0. 8mmol)、水酸化リチウム 22mg ( 0. 9mmol)を入れ、ジメチルホルムアミド 20mLをカ卩えて、 100°Cで 90分加熱して、 β—シクロデキストリンの水酸基の一部を脱プロトンィ匕させた。この溶液を、ポリ乳酸( 三井ィ匕学株式会社製レイシァ Η400) 9gを含むジメチルホルムアミド溶液 60mLにカロ えて、 100°Cで 6時間加熱した。得られた溶液を室温まで放冷した後、少量の酢酸を 添加し、反応溶液を水に投入して固体を析出させた。固体を濾過 '乾燥させて、 β - シクロデキストリンが末端に結合したポリ乳酸を得た (CDP8)。この生成物の分子量 を GPCで測定したところ、ポリスチレン換算の Μηは 8, 900、シクロデキストリン含有 量は約 13重量%であった。
[0150] (実施例 9)
β—シクロデキストリン使用量を 0. 45g (0. 4mmol)、水酸化リチウム使用量を 9. 5mg (0. 4mmol)にした以外は実施例 8と同様にして、シクロデキストリンが末端に結 合したポリ乳酸を得た(CDP9)。 GPCで測定したポリスチレン換算の Mnは 22, 600 、シクロデキストリン含有量は約 5重量%であった。
[0151] (実施例 10)
ガラス製容器に j8—シクロデキストリン 0. 91g (0. 80mmol)、水酸化リチウム 19. 2mg (0. 80mmol)を入れ、 N, N—ジメチルホルムアミド 40mLをカ卩えて、窒素雰囲 気下で 100°Cで 1時間加熱した後、 25°Cになるまで放冷した。この溶液を、ポリ乳酸 (三井化学製、レイシァ H— 400) 8. lgを N, N—ジメチルホルムアミド lOOmLに溶
解させた溶液に加えて、 25°Cで撹拌し反応を開始した。反応開始 3時間後、 5時間 後にサンプリングし、少量の酢酸を添加し、大量の純水中へ投入した。析出した白色 固体を濾取し、減圧乾燥させて、 )8—シクロデキストリン含有ポリ乳酸を得た。(それ ぞれ CDP10— 1、 CDP10- 2)
また、ガラス製容器に j8—シクロデキストリン 0. 91g (0. 80mmol)、水酸化リチウム 22. lmg (0. 92mmol)を入れ、 N, N—ジメチルホルムアミド 20mLをカロえて、窒素 雰囲気下で 100°Cで 1時間加熱した後、この溶液を、ポリ乳酸 (三井ィ匕学製、レイシ ァ H— 400) 9. Ogを N, N—ジメチルホルムアミド 60mLに溶解させた溶液に加え て、 100°Cで撹拌し反応を開始した。反応開始 3時間後、 5時間後にサンプリングし、 少量の酢酸を添加し、大量の純水中へ投入した。析出した白色固体を濾取し、減圧 乾燥させて、 j8—シクロデキストリン含有ポリ乳酸を得た。(それぞれ CDP10— 3、C DP10-4)
ゲル'パーミエーシヨン'クロマトグラフィー(GPC)により、原料のポリ乳酸 (反応前) 、上記シクロデキストリン含有ポリ乳酸の分子量を測定した。反応前と反応開始 3時間 後、 5時間後の数平均分子量を表 1に示した。
[表 1]
表 1に示すように、 25°Cで反応を行った場合には反応開始 3時間後と 5時間後の分 子量はほとんど同じであり、この条件では加水分解による分子量低下が起こっていな いことが分力つた。一方、 100°Cで反応を行った場合には反応時間が経過するに従 つて分子量がさらに低下する傾向が見られ、加水分解が起こっていることがわ力つた 。 反応開始 3時間後にサンプリングした溶液力 ジメチルホルムアミドをエバポレー シヨンして得られる固体は、ジクロロメタンに完全に溶解するため、どちらの場合もこの 時点で未反応のシクロデキストリンは残っていないと考えられる。従って、 70°C以下(
例えば 25°C)で反応させた場合には、ポリエステル系重合体の加水分解反応を抑制 することができ、収率良くシクロデキストリン含有ポリエステル重合体を得ることができ る。
[0154] (実施例 11)
ガラス製容器に j8—シクロデキストリン 114mg (0. lmmol)、水酸化リチウム 2. 4m g (0. lmmol)を入れ、ジメチルホルムアミド 15mLをカ卩えて、 100°Cで 1時間加熱し て、 β—シクロデキストリンの水酸基の一部を脱プロトンィ匕させた。この溶液を、ポリ( 乳酸—コーダリコール酸)(Aldrich社製) 1. 5gを含むジメチルホルムアミド溶液 20 mLにカ卩えて、 100°Cで 1時間加熱した。得られた溶液を室温まで放冷した後、少量 の酢酸を添加し、溶媒を留去した。
[0155] 固体をジクロロメタンに溶解後、 n—へキサンに投入して再沈殿させ、水で洗浄して から濾過'乾燥させて、 β—シクロデキストリンが末端に結合したポリ(乳酸—コ—ダリ コール酸)を得た (CDP 11)。この生成物の分子量を GPCで測定したところ、ポリスチ レン換算の Μηは 10, 300、シクロデキストリン含有量は約 11重量0 /0であった。
[0156] (比較例 1)
ガラス製容器に j8—シクロデキストリン 0. 33g (0. 29mmol)を入れ、ジメチルホル ムアミド 15mLを加えて 50分間攪拌した。この際、水酸化リチウムのような塩基性物質 を添カ卩しな力つたので、 β—シクロデキストリンの水酸基の一部は脱プロトンィ匕されて いない。この溶液を、ポリ乳酸 (三井ィ匕学株式会社製レイシァ Η400) 2. Ogを含むジ メチルホルムアミド溶液 15mLに加えて、 3時間攪拌した。反応溶液を水に投入して 固体を析出させ、固体の分析を行ったが、 β—シクロデキストリンが末端に結合した ポリ乳酸は得られな力つた。
[0157] 実施例 1〜: L 1に記載したように、水酸基の一部が脱プロトンィ匕されているシクロデキ ストリンをポリエステル系重合体に反応させる本発明の製造方法では、シクロデキスト リンが結合したポリエステル系重合体が容易に得られる力 比較例 1のように水酸基 の一部が脱プロトン化されていないシクロデキストリンを使用すると、シクロデキストリン が結合したポリエステル系重合体は得られな 、。
[0158] (実施例 12〜18)
上記実施例 1、 3、 4、 8、 9で製造したシクロデキストリンが末端に結合したポリエス テル系重合体(それぞれ CDP1、 CDP3、 CDP4、 CDP8、 CDP9)を成分(a)とし、 表 2に示す割合 (重量部)で成分 (b)の各種熱可塑性榭脂とともにジクロロメタン又は テトラヒドロフラン (実施例 14、 17、比較例 2)に溶解させ、ポリエチレンテレフタレート (PET)フィルム上にキャストした。ジクロロメタン等を充分に乾燥させた後、得られた 約 50ミクロンのキャストフィルムを PETフィルムから引き剥がした。フィルムの強度は、 引き剥がした後に折り曲げても割れないものを〇、折り曲げて割れるものを△、引き 剥がす際に割れてしまうものを Xと判定した。結果を表 2に示した。
[0159] 尚、成分 (b)として使用した熱可塑性榭脂の数平均分子量 (Mn)は、ポリ力プロラタ トン(PCL) : 138, 000、ポリ孚し酸(PLA) : 158, 000、ポリ〔(3—ヒドロキシブチレート )—コ一(3—ヒドロキシへキサノエ一ト)〕 (PHBH) : 98, 500、ポリ(乳酸一コーダリコ ール酸)(PLGA) : 53, 000 (以上ポリスチレン換算)であり、ポリ塩化ビュル(PVC) の平均重合度は約 680である。
[0160] (比較例 2〜3)
上記実施例 4、 9で製造したシクロデキストリンが末端に結合したポリエステル系重 合体 (それぞれ CDP4、 CDP9)だけをジクロロメタンに溶解し、実施例と同様にして P ETフィルム上にキャストしてフィルムを得た。フィルム強度の結果を上記実施例と合 わせて表 2に示した。
[0161] [表 2]
実施例 12 18に示したように、本発明の組成物力も得た成形物は強度が高ぐ Ρ ΕΤフィルムから引き剥がす際に割れることなぐさらに引き剥がして得たフィルムを折 り曲げても割れなカゝつた。従って、本発明の組成物はフィルム材料として好適に使用 することができる。一方、熱可塑性榭脂を含まない単独材料を使用した場合 (比較例
)、シクロデキストリン含有量を少なくしても成形物の強度は低ぐフィルム材料には適 していないことが分力つた。本発明の組成物は、同程度のシクロデキストリンを含有す る単独材料と比較しても材料強度に優れており、単独材料では困難なシクロデキスト リン含有量と材料強度の両立することが可能となる。さらに実施例 17で作成したポリ 塩化ビュルとの組成物からなるフィルム、及び実施例 18で作成したセルロースプロピ ォネートとの組成物力もなるフィルムは、フィルム強度に優れるだけでなく透明性も高 いという特徴を有していた。
[0163] (実施例 19〜21)
上記実施例 4、 8で製造したシクロデキストリンが末端に結合したポリエステル系重 合体 (それぞれ CDP4、 CDP8)、ポリ力プロラタトン (Aldrich社製)、ポリ乳酸(三井 化学株式会社製レイシァ H400)を表 3に示す割合 (重量部)でジクロロメタンに溶解 させ、ポリエチレンテレフタレート(PET)フィルム上にバーコ一ターを用いて塗布した 。ジクロロメタンを十分に乾燥させてコーティング体を得た。
[0164] 実施例 19〜21で作成したこれらの PETフィルムを PET面側を直径 7mmのガラス 棒にあてて、 180度折り曲げた場合、全てのコーティング体のコーティング被膜には 割れが発生しておらず、本願発明のコーティング被膜は PETフィルムと密着性が良 好であることを目視により確認した。また、全て均一なコーティング被膜が得られ、シ クロデキストリンは均一に分散して ヽることを目視で確認した。
[0165] (実施例 22、 23)
実施例 1で製造した製造したシクロデキストリンが末端に結合したポリエステル系重 合体 (CDP1)をジクロロメタンに溶解させ、ガラス基材 (実施例 22)、ステンレス基材( 実施例 23)の上に塗布した。ジクロロメタンを十分に乾燥させてコーティング体を得た 。いずれも均一なコーティング被膜が得られ、シクロデキストリンは均一に分散してい ることを目視で確認した。
[0166] (比較例 4)
β—シクロデキストリン (和光純薬株式会社製)をジメチルホルムアミドに溶解して、 PETフィルム上に塗布してジメチルホルムアミドを乾燥させたが、均一なコ一ティング 被膜は得られず、 PETフィルムからシクロデキストリンが剥がれてしまった。
[0167] (比較例 5)
トリァセチルイ匕 β—シクロデキストリン (東京化成株式会社製)をジクロロメタン〖こ溶 解して、 PETフィルム上に塗布してジメチルホルムアミドを乾燥させた力 均一なコー ティング被膜は得られず、 PETフィルムカもシクロデキストリンが剥がれてしまった。
[0168] 本発明のシクロデキストリンが末端に結合したポリエステル系重合体力もなるコーテ イング組成物は、シクロデキストリンが均一に分散しており、基材との密着性も良好で ある。さらにシクロデキストリンにポリマーが結合しているため、本発明のコーティング 皮膜からは、シクロデキストリンの溶出が防止できる。
[0169] [表 3]
P C L : ポリカプロラタ トン (A l d r i c h社製)
P L A:ボリ乳酸 (三井化学株式会社製レイシァ H 4 0 0 )
β -CO —シクロデキストリン (和光純薬株式会社製)
Α- β— CD トリァセチル化 —シクロデキストリン (東京化成株式会社製)
Claims
[1] (a)シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体 99
〜0. 1重量%、(b)熱可塑性榭脂 1〜99. 9重量%、からなることを特徴とするシクロ デキストリン含有ポリエステル系重合体組成物。
[2] シクロデキストリンが、 at—シクロデキストリン、 13—シクロデキストリン、 γ—シクロデ キストリン、あるいはこれらの混合物である請求項 1記載のシクロデキストリン含有ポリ エステル系重合体組成物。
[3] 成分 (a)のポリエステル系重合体及び又は成分 (b)の熱可塑性榭脂が、脂肪族ポリ エステルである請求項 1あるいは 2いずれかに記載のシクロデキストリン含有ポリエス テル系重合体組成物。
[4] 脂肪族ポリエステル力 ポリ力プロラタトン、ポリブチレンアジペート、ポリブチレンサ クシネート、ポリエチレンアジペート、ポリエチレンサクシネート、ポリ乳酸、ポリグリコー ル酸、ポリ(3—ヒドロキシブチレート)、ポリ(3—ヒドロキシバレレート)、ポリ(3—ヒドロ キシへキサノエート)、これらの各成分の共重合体、あるいはこれらの混合物である請 求項 3記載のシクロデキストリン含有ポリエステル系重合体組成物。
[5] 成分 (a)のポリエステル系重合体力 ポリ力プロラタトン、ポリ乳酸、ポリ乳酸繰り返し 単位とポリグリコール酸繰り返し単位力もなるポリ(乳酸—コ―グリコール酸)、ポリ(3 ーヒドロキシブチレート)、ポリ(3—ヒドロキシブチレート)繰り返し単位とポリ(3—ヒドロ キシへキサノエート)繰り返し単位力もなるポリ [ (3—ヒドロキシプチレート)一コ一(3 ーヒドロキシへキサノエ一ト)]、あるいはこれらの混合物である請求項 4記載のシクロ デキストリン含有ポリエステル系重合体組成物。
[6] 成分 (a)力 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘 導体をポリエステル系重合体に反応させることを特徴とする製造方法により得られる、 請求項 1〜5いずれかに記載のシクロデキストリン含有ポリエステル系重合体組成物
[7] 請求項 1〜6 、ずれかに記載のシクロデキストリン含有ポリエステル系重合体組成 物からなるフィルム材料。
[8] シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体力 なる
コーティング組成物。
[9] シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体力 水 酸基の一部が脱プロトン化されているシクロデキストリン又はその誘導体とポリエステ ル系重合体の反応により得られることを特徴とする請求項 8に記載のコーティング組 成物。
[10] コーティング組成物力 シクロデキストリン又はその誘導体を含有しない重合体を含 む請求項 8あるいは 9に記載のコーティング組成物。
[11] コーティング組成物力 有機溶剤を含む請求項 8〜 10いずれかに記載のコーティ ング組成物。
[12] シクロデキストリンが、 at—シクロデキストリン、 13—シクロデキストリン、 γ—シクロデ キストリン、あるいはこれらの混合物である請求項 8〜1 、ずれかに記載のコーティン グ組成物。
[13] ポリエステル系重合体力 ポリ力プロラタトン、ポリブチレンアジペート、ポリブチレン サクシネート、ポリエチレンアジペート、ポリエチレンサクシネート、ポリ乳酸、ポリグリコ ール酸、ポリ(3—ヒドロキシブチレート)、ポリ(3—ヒドロキシバレレート)、ポリ(3—ヒド ロキシへキサノエート)、これらの各成分の共重合体、あるいはこれらの混合物である 請求項 8〜12いずれかに記載のコーティング組成物。
[14] 請求項 8〜13いずれかに記載のコーティング組成物を基材にコートすることによつ て得られるコーティング体。
[15] 基材が、重合体、金属、ガラス、あるいはこれらの複合材カもなる請求項 14に記載 のコーティング体。
[16] 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体をポリエ ステル系重合体に反応させることを特徴とするシクロデキストリン含有ポリエステル系 重合体の製造方法。
[17] シクロデキストリン又はその誘導体の水酸基の一部を脱プロトン化する工程、水酸 基の一部が脱プロトン化されたシクロデキストリン又はその誘導体をポリエステル系重 合体に反応させる工程、力 なることを特徴とする請求項 16記載のシクロデキストリン 含有ポリエステル系重合体の製造方法。
[18] シクロデキストリンが、 at—シクロデキストリン、 13—シクロデキストリン、 γ—シクロデ キストリン、あるいはこれらの混合物である請求項 16あるいは 17に記載の製造方法。
[19] シクロデキストリン又はその誘導体を塩基性ィ匕合物で脱プロトンィ匕することを特徴と する請求項 16〜18いずれかに記載のシクロデキストリン含有ポリエステル系重合体 の製造方法。
[20] 塩基性ィ匕合物がアルカリ金属化合物であることを特徴とする請求項 19記載のシク ロデキストリン含有ポリエステル系重合体の製造方法。
[21] ポリエステル系重合体力 ポリ力プロラタトン、ポリブチレンアジペート、ポリブチレン サクシネート、ポリエチレンアジペート、ポリエチレンサクシネート、ポリ乳酸、ポリグリコ ール酸、ポリ(3—ヒドロキシブチレート)、ポリ(3—ヒドロキシへキサノエート)、これら の各成分の共重合体、あるいはこれらの混合物である請求項 16〜20いずれかに記 載の製造方法。
[22] ポリエステル系重合体力 ポリ力プロラタトン、ポリ乳酸、ポリ乳酸繰り返し単位とポリ グリコール酸繰り返し単位力もなるポリ(乳酸—コ―グリコール酸)、ポリ(3—ヒドロキシ プチレート)繰り返し単位とポリ(3—ヒドロキシへキサノエート)繰り返し単位力もなるポ リ [ (3—ヒドロキシブチレート)ーコー(3—ヒドロキシへキサノエート) ]、あるいはこれら の混合物である請求項 21に記載の製造方法。
[23] 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体とポリエ ステル系重合体とを— 20°C以上 150°C以下の温度範囲で反応させることを特徴とす る請求項 16〜22いずれかに記載のシクロデキストリン含有ポリエステル系重合体の 製造方法。
[24] 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体とポリエ ステル系重合体とを— 20°C以上 70°C以下の温度範囲で反応させることを特徴とす る請求項 23記載のシクロデキストリン含有ポリエステル系重合体の製造方法。
[25] 水酸基の一部が脱プロトンィ匕されて 、るシクロデキストリン又はその誘導体とポリエ ステル系重合体との反応を有機溶媒の存在下で行う請求項 16〜24いずれかに記 載のシクロデキストリン含有ポリエステル系重合体の製造方法。
[26] 請求項 16〜25いずれかに記載の製造方法により得られたシクロデキストリン含有
ポリエステル系重合体。
[27] (a)シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体 99 〜0. 1重量%、(b)熱可塑性榭脂 1〜99. 9重量%、からなることを特徴とするシクロ デキストリン含有ポリエステル系重合体組成物の製造方法であって、 (a)が水酸基の 一部が脱プロトンィ匕されているシクロデキストリン又はその誘導体をポリエステル系重 合体に反応させることを特徴とする製造方法により得られることを特徴とするシクロデ キストリン含有ポリエステル系重合体組成物の製造方法。
[28] シクロデキストリンが、 at—シクロデキストリン、 13—シクロデキストリン、 γ—シクロデ キストリン、あるいはこれらの混合物である請求項 27記載のシクロデキストリン含有ポ リエステル系重合体組成物の製造方法。
[29] シクロデキストリン又はその誘導体をアルカリ金属化合物で脱プロトンィ匕することを 特徴とする請求項 27あるいは 28記載のシクロデキストリン含有ポリエステル系重合体 組成物の製造方法。
[30] シクロデキストリン又はその誘導体が末端に結合したポリエステル系重合体力 なる コーティング組成物の製造方法であって、前記ポリエステル系重合体が、水酸基の 一部が脱プロトンィ匕されているシクロデキストリン又はその誘導体をポリエステル系重 合体に反応させて得られることを特徴とするシクロデキストリン含有ポリエステル系重 合体からなるコーティング組成物の製造方法。
[31] コーティング組成物力 有機溶剤を含む請求項 30記載のコーティング組成物の製 造方法。
[32] シクロデキストリン又はその誘導体をアルカリ金属化合物で脱プロトンィ匕することを 特徴とする請求項 30あるいは 31記載のコーティング組成物の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007514679A JPWO2006115211A1 (ja) | 2005-04-25 | 2006-04-21 | シクロデキストリン含有ポリエステル系重合体及びその製造方法 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005125869 | 2005-04-25 | ||
JP2005-125869 | 2005-04-25 | ||
JP2005259573 | 2005-09-07 | ||
JP2005-259573 | 2005-09-07 | ||
JP2005-312793 | 2005-10-27 | ||
JP2005312793 | 2005-10-27 | ||
JP2005316730 | 2005-10-31 | ||
JP2005-316730 | 2005-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006115211A1 true WO2006115211A1 (ja) | 2006-11-02 |
Family
ID=37214827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/308436 WO2006115211A1 (ja) | 2005-04-25 | 2006-04-21 | シクロデキストリン含有ポリエステル系重合体及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2006115211A1 (ja) |
WO (1) | WO2006115211A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012046558A (ja) * | 2010-08-24 | 2012-03-08 | Kao Corp | ポリ乳酸樹脂組成物 |
CN107531856A (zh) * | 2015-04-22 | 2018-01-02 | Dic株式会社 | 自由基聚合性树脂组合物和土木建筑用底漆 |
CN111201284A (zh) * | 2017-11-29 | 2020-05-26 | 东丽株式会社 | 树脂组合物、成型品及其制造方法 |
CN114736498A (zh) * | 2022-05-26 | 2022-07-12 | 泉州永悦新材料有限公司 | 一种触变型不饱和树脂的合成方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003020231A2 (en) * | 2001-08-31 | 2003-03-13 | The Procter & Gamble Company | Deodorant composition |
WO2003104308A1 (en) * | 2002-06-05 | 2003-12-18 | Cellresin Technologies, Llc | Reducing concentration of organic materials with substituted cyclodextrin compound in polyester packaging materials |
WO2004032862A2 (en) * | 2002-10-09 | 2004-04-22 | Insert Therapeutics, Inc. | Cyclodextrin-based materials, compositions and uses related thereto |
JP2005120263A (ja) * | 2003-10-17 | 2005-05-12 | Osaka Industrial Promotion Organization | 有機高分子化合物の製造方法 |
-
2006
- 2006-04-21 WO PCT/JP2006/308436 patent/WO2006115211A1/ja active Application Filing
- 2006-04-21 JP JP2007514679A patent/JPWO2006115211A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003020231A2 (en) * | 2001-08-31 | 2003-03-13 | The Procter & Gamble Company | Deodorant composition |
WO2003104308A1 (en) * | 2002-06-05 | 2003-12-18 | Cellresin Technologies, Llc | Reducing concentration of organic materials with substituted cyclodextrin compound in polyester packaging materials |
WO2004032862A2 (en) * | 2002-10-09 | 2004-04-22 | Insert Therapeutics, Inc. | Cyclodextrin-based materials, compositions and uses related thereto |
JP2005120263A (ja) * | 2003-10-17 | 2005-05-12 | Osaka Industrial Promotion Organization | 有機高分子化合物の製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012046558A (ja) * | 2010-08-24 | 2012-03-08 | Kao Corp | ポリ乳酸樹脂組成物 |
CN107531856A (zh) * | 2015-04-22 | 2018-01-02 | Dic株式会社 | 自由基聚合性树脂组合物和土木建筑用底漆 |
CN107531856B (zh) * | 2015-04-22 | 2021-03-23 | Dic株式会社 | 自由基聚合性树脂组合物和土木建筑用底漆 |
CN111201284A (zh) * | 2017-11-29 | 2020-05-26 | 东丽株式会社 | 树脂组合物、成型品及其制造方法 |
JPWO2019106986A1 (ja) * | 2017-11-29 | 2020-10-01 | 東レ株式会社 | 樹脂組成物、成形品およびその製造方法 |
JP7200676B2 (ja) | 2017-11-29 | 2023-01-10 | 東レ株式会社 | 樹脂組成物、成形品およびその製造方法 |
CN111201284B (zh) * | 2017-11-29 | 2023-06-02 | 东丽株式会社 | 树脂组合物、成型品及其制造方法 |
CN114736498A (zh) * | 2022-05-26 | 2022-07-12 | 泉州永悦新材料有限公司 | 一种触变型不饱和树脂的合成方法 |
CN114736498B (zh) * | 2022-05-26 | 2023-07-25 | 泉州永悦新材料有限公司 | 一种触变型不饱和树脂的合成方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006115211A1 (ja) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nabar et al. | Production of starch foams by twin-screw extrusion: Effect of maleated poly (butylene adipate-co-terephthalate) as a compatibilizer | |
Noivoil et al. | Oligo (lactic acid)-grafted starch: A compatibilizer for poly (lactic acid)/thermoplastic starch blend | |
García-Astrain et al. | Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels | |
Taresco et al. | Variation in structure and properties of poly (glycerol adipate) via control of chain branching during enzymatic synthesis | |
Yang et al. | Two step extrusion process: from thermal recycling of PHB to plasticized PLA by reactive extrusion grafting of PHB degradation products onto PLA chains | |
Almeida et al. | Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution | |
Luckachan et al. | Chitosan/oligo L-lactide graft copolymers: Effect of hydrophobic side chains on the physico-chemical properties and biodegradability | |
Espino-Pérez et al. | Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis | |
Ninago et al. | Enhancement of thermoplastic starch final properties by blending with poly (ɛ-caprolactone) | |
Suchao-in et al. | Starch grafted poly (butylene succinate) via conjugating reaction and its role on enhancing the compatibility | |
Volokhova et al. | Polysaccharide-containing block copolymers: Synthesis and applications | |
Hu et al. | Novel bioresorbable hydrogels prepared from chitosan‐graft‐polylactide copolymers | |
Goffin et al. | New organic–inorganic nanohybrids via ring opening polymerization of (di) lactones initiated by functionalized polyhedral oligomeric silsesquioxane | |
Liu et al. | Preparation of chitosan-g-polylactide graft copolymers via self-catalysis of phthaloylchitosan and their complexation with DNA | |
Yang et al. | Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites | |
WO2007026577A1 (ja) | 疎水性直鎖状分子ポリロタキサン及び架橋ポリロタキサン | |
Mincheva et al. | Binary mixed homopolymer brushes tethered to cellulose nanocrystals: a step towards compatibilized polyester blends | |
Haroun et al. | Encapsulation of bovine serum albumin within β-cyclodextrin/gelatin-based polymeric hydrogel for controlled protein drug release | |
Michalski et al. | Controlling polylactide stereocomplex (sc-PLA) self-assembly: From microspheres to nanoparticles | |
Akopova et al. | A novel approach to design chitosan‐polyester materials for biomedical applications | |
Liu et al. | Self-healable and pH-sensitive high-strength water-soluble chitosan/chemically cross-linked polyvinyl alcohol semi-IPN hydrogel | |
WO2006115211A1 (ja) | シクロデキストリン含有ポリエステル系重合体及びその製造方法 | |
Luzardo‐Álvarez et al. | Preparation and characterization of β‐cyclodextrin‐linked chitosan microparticles | |
Li et al. | Poly (L-lactic acid) bio-composites reinforced by oligo (D-lactic acid) grafted chitosan for simultaneously improved ductility, strength and modulus | |
Yao et al. | Novel cellulose-gelatin composite films made from self-dispersed microgels: Structure and properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007514679 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06745567 Country of ref document: EP Kind code of ref document: A1 |