WO2006115162A1 - Bearing having rotary sensor - Google Patents

Bearing having rotary sensor Download PDF

Info

Publication number
WO2006115162A1
WO2006115162A1 PCT/JP2006/308294 JP2006308294W WO2006115162A1 WO 2006115162 A1 WO2006115162 A1 WO 2006115162A1 JP 2006308294 W JP2006308294 W JP 2006308294W WO 2006115162 A1 WO2006115162 A1 WO 2006115162A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
ring
bypass
annular member
bearing
Prior art date
Application number
PCT/JP2006/308294
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyoshi Ito
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005123882A external-priority patent/JP4739804B2/en
Priority claimed from JP2005217495A external-priority patent/JP4859409B2/en
Application filed by Ntn Corporation filed Critical Ntn Corporation
Publication of WO2006115162A1 publication Critical patent/WO2006115162A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the present invention relates to a bearing with a rotation sensor incorporated in a motor and used for detecting the rotational speed and direction of the motor.
  • bearings with rotation sensors include an inner ring, an outer ring, and a plurality of rolling elements interposed between the inner ring and the outer ring, and either the inner ring or the outer ring is a rotating side race ring.
  • the other side is defined as the fixed side ring, and a magnetic encoder provided with alternating magnetic poles of different polarities at a constant pitch in the circumferential direction is fixed to the core metal mounted on the rotation side ring and mounted on the fixed side ring.
  • a magnetic sensor facing the magnetic encoder is mounted on a metal core (see Patent Document 1).
  • FIG. 11 shows a state where the conventional bearing 41 with the rotation sensor is incorporated in the motor 42.
  • 43 is a motor spindle
  • 44 is a motor rotor
  • 45 is a motor stator
  • 46 is a motor housing
  • 47 is a magnetic loop of a leakage magnetic field.
  • An annular member 54 is attached to the outer ring 51 of the bearing 41, and a magnetic sensor 53 is mounted on the inner peripheral surface thereof. Further, a core bar 55 facing the annular member 54 is attached to the inner ring 48, and a magnetic encoder 52 facing the magnetic sensor 53 is attached to the core bar 55.
  • a sealing portion 56 extending radially toward the inner ring 48 is provided at a portion where the annular member 54 is attached to the outer ring 51.
  • the magnetic flux generated from the motor stator 45 flows from the motor housing 46 into the outer ring 51.
  • the flow is broadly divided into: outer ring 51 ⁇ ball 49 ⁇ inner ring 48 ⁇ motor spindle 43 ⁇ motor rotor 44 ⁇ flow to stator 45 a and outer ring 51 ⁇ magnetic sensor 53 ⁇ magnetic encoder 52 ⁇ inner ring 48 ⁇ motor spindle 43 ⁇
  • FIG. 12 (a) shows the magnetic waveform A and the output signal B extracted with the value S as the reference, under the influence of the leakage magnetic field.
  • the duty ratio (TpZTn X 100) for output signal B is 50%.
  • Fig. 12 (b) shows the case where the leakage magnetic field is applied in the + direction of the magnetic pole, and the magnetic waveform ⁇ , which is affected by the leakage magnetic field, shows a state where the waveform is offset by + C in the + direction. Show.
  • the duty ratio of the output signal B ′ is much larger than 50%.
  • the value of the duty ratio is relatively large, which means that the influence of the leakage magnetic field is even greater.
  • the magnitude of the offset amount C indicates the magnitude of the leakage magnetic field.
  • the value of the duty ratio is further increased.
  • the output signal is high. — There is no repetition of Low, and the rotation speed cannot be detected.
  • Fig. 12 (c) shows the case where the leakage magnetic field is added to the-side (when the offset is -C).
  • HNBR which is a heat-resistant rubber
  • an annular member 54 is fitted and fixed to an outer ring 51, and a magnetic sensor 53 is attached to a sensor case 58 provided on an inner diameter surface of the annular member 54, and the magnetic sensor 53 is attached to an inner ring 48.
  • a magnetic encoder 52 mounted via a cored bar 55 is disposed to face the cored bar 55.
  • One end portion of the side plate member 59 joined and integrated with the tip end portion of the annular member 54 is brought close to the inner diameter surface of the core metal 55 via a predetermined circuit gap gl.
  • an inverted L-shaped outer peripheral edge of the magnetic bypass ring 57 is press-fitted integrally with the inner end portion of the annular member 54, and the inner peripheral edge is brought close to the core metal 55 via a predetermined bypass gap g2. (Patent Reference 1).
  • the leakage flux ⁇ flowing into the outer ring 51 is divided into ⁇ 1 and ⁇ 2, and ⁇ 1 is derived from the main magnetic circuit, that is, the annular member 54, the side plate member 59, the circuit gap gl, the cored bar 55, and the inner ring 48. (However, there is also a circuit that leads to circuit gap gl ⁇ magnetic encoder 52 ⁇ encoder gap g3 ⁇ magnetic bypass ring 57 ⁇ inner ring 48).
  • ⁇ 2 passes through a no-pass magnetic circuit, that is, a circuit composed of the magnetic binos ring 61 and the bypass gap g2.
  • the main magnetic circuit and the bypass magnetic circuit described above have a function of surrounding the magnetic sensor 53 to shield an external magnetic field to prevent malfunction and to improve the accuracy of the magnetic sensor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-302254
  • Patent Document 2 JP-A-2004-117318
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-174258
  • the present invention enhances the magnetic force by selecting the magnetic material of the magnetic encoder that does not depend on an electric circuit, thereby eliminating the influence of a leakage magnetic field generated by a force such as a motor and improving the detection accuracy by the magnetic sensor. Is the first issue.
  • the annular member 54 in the conventional bearing with a rotation sensor is formed with an L-shaped fixing portion 60 fitted to one end face and the inner face of the outer ring 51 to form a magnetic
  • the bypass ring 57 is formed with an inverted L-shaped outer peripheral edge 61 that is press-fitted into the inner diameter surface of the fixed portion 60.
  • the annular portion 54 and the magnetic bypass ring 57 are independently pressed and then subjected to a process of fitting and integrating with each other, and then assembled to the bearing. Therefore, before assembling to the bearing, a processing step for forming each member by press working and a processing step for fitting and integrating each member are required.
  • the magnetic bypass ring 57 is provided in the vicinity of the magnetic sensor 53, the magnetic flux ⁇ 3 leaked from the magnetic bypass ring 57 may pass through the magnetic sensor 53 and the magnetic encoder 52. It causes a decrease.
  • the present invention solves various problems related to the annular member 54 and the magnetic bypass ring 57, reduces the cost by improving productivity, and the magnetic shielding effect by the magnetic bypass ring 57.
  • the second problem is to improve the detection accuracy of the magnetic sensor 53 by increasing the value.
  • the present invention includes an inner ring and an outer ring 2 and a plurality of balls 6 interposed between the inner ring 1 and the outer ring 2 as shown in FIG.
  • One of the inner ring 1 and the outer ring 2 is defined as a rotation-side raceway, and the other is defined as a fixed-side raceway.
  • the inner ring 1 is defined as the rotating raceway.
  • a magnetic encoder 13 in which magnetic poles of different polarities are alternately formed at a constant pitch in the circumferential direction is attached to a metal core 8 attached to the inner ring 1, and the magnetic encoder 13 is attached to an annular member 9 attached to a stationary raceway.
  • the magnetic material of the magnetic encoder 13 is a rare earth magnetic material, and a fluorine rubber is used as the binder. .
  • a samarium-based material can be used as the rare earth-based magnetic material.
  • a material obtained by kneading the rare earth magnetic material into a rubber material can be used.
  • the present invention comprises an inner ring outer ring 2 and a plurality of balls 6 interposed between the inner ring 1 and the outer ring 2 as shown in FIG.
  • One of the inner ring 1 and the outer ring 2 is defined as a rotation-side raceway, and the other is defined as a fixed-side raceway.
  • the inner ring 1 is defined as the rotating raceway.
  • a magnetic encoder 13 in which magnetic poles of different polarities are alternately formed at a constant pitch in the circumferential direction is attached to the core 8 attached to the inner ring 1, and the annular member 32 attached to the outer ring 1 which is a stationary raceway is attached to the annular member 32.
  • Magnetic sensors 28 and 29 facing the magnetic encoder 13 are mounted, and one end of the side plate member 23 integrated with the tip of the annular member 32 is connected to the inner diameter surface of the core 8 via a predetermined circuit gap gl.
  • the outer peripheral edge of the magnetic bypass part 35 is integrated with the inner end of the annular member 32, and the inner peripheral edge is made to approach the cored bar 8 through a predetermined bypass gap g2.
  • the annular member 32 includes a mounting portion 34 and a magnetic bypass portion 35, and the mounting portion 34 matches the shape of the fitting portion of the outer ring 2.
  • L The magnetic bypass part 35 bends in a V shape from the inner end of the fixed part 33 to the inner surface of the inner ring 1 at a constant angle ⁇ (see FIG. 2) toward the outside of the bearing.
  • a radial direction portion 37 formed by bending an end portion of the inclination portion 36 in the radial direction, and the inner peripheral edge of the radial direction portion 37 is binned with the cored bar 8.
  • a configuration for forming the gap g2 can be adopted.
  • a V-shaped bent portion 38 is formed by the fixed portion 33 and the inclined portion 36 bent at an angle a. Since the leakage flux ⁇ 2 passes through the inclined portion 36 forming the V-shaped bent portion 38, the path of the leakage flux ⁇ 2 is more magnetic than the conventional magnetic binos ring 57 (see Fig. 13). , 29 and further away. For this reason, even if a leakage magnetic field is generated in the bypass portion 35, the influence on the magnetic sensors 28 and 29 is small. The invention's effect
  • the bearing with a rotation sensor according to the present invention uses a rare earth magnetic material such as samarium as the magnetic material of the magnetic encoder, so that a stronger magnetic force than that of a conventional ferrite material can be obtained. .
  • This makes it difficult for the sensor to be affected by the leakage magnetic field generated by the motor's force when it is incorporated into a motor, etc., and prevents malfunction of the sensor. It is.
  • the annular member 54 and the magnetic bypass ring 57 that are configured by separate conventional parts are configured by the annular member 32 that is a single component. Therefore, the following effects can be obtained.
  • FIG. 1 is a sectional view of Example 1.
  • FIG. 2 (a) Cross-sectional view taken along line XI—XI in FIG. 1, (b) Partial cross-sectional view taken along line Y1-Y1 in FIG. 1, (c) Enlarged view of the magnetic pole portion in FIG.
  • the rotation sensor bearing of Example 1 shown in FIGS. 1 and 2 is an inner ring rotating type in which the inner ring 1 is defined as a rotating side race ring and the outer ring 2 is defined as a fixed side race ring.
  • a plurality of balls 6 held by a cage 5 are interposed between the raceway grooves 3 and 4 facing each other.
  • a seal member 7 attached to the stationary outer ring 2 is brought into contact with the inner ring 1 on the rotating side.
  • a rotation sensor 10 is provided at the end opposite to the side where the seal member 7 is provided.
  • the rotation side of the rotation sensor 10 includes an annular core 8 that is press-fitted and fixed to the outer diameter surface of the inner ring 1.
  • the magnetic encoder 13 is attached to the magnetic encoder 13.
  • the metal core 8 is provided with a mounting portion 12 having an L-shaped cross section that is bent in the diameter increasing direction at the outer end of the annular fixing portion 11, and the magnetic encoder 13 is mounted on the outer diameter surface of the mounting portion 12.
  • the magnetic encoder 13 is configured by alternately magnetizing magnetic poles 15 having different polarities with a constant width over the entire circumference at a constant pitch in the circumferential direction.
  • the magnetic flux density of the magnetic encoder 13 tends to decrease and the pitch accuracy tends to decrease as the width of the magnetic pole 15 decreases.
  • the magnetizing width is 0.5 mm or more in the circumferential direction of the magnetic encoder 13 Good things are divided.
  • the annular member 9 constituting the fixed side of the rotation sensor 10 is provided with a mounting portion 17 having an L-shaped cross section at the outer end of the annular fixing portion 16.
  • the portion 17 protrudes longer in the axial direction than the mounting portion 12 on the inner ring 1 side.
  • a seal portion 18 projecting in the radial direction toward the fixed portion 11 on the inner ring 1 side is formed on the entire inner circumference of the fixed portion 16.
  • a sensor holder 19 made of annular grease is mounted on the inner surface of the mounting portion 17 having an L-shaped cross section, and an electric circuit board 21 or the like is inserted into a part of the sensor holder 19. It is fixed integrally by molding or the like.
  • the inner diameter surface of the sensor holder 19 is formed in two steps, the inner diameter being large and the outer diameter being small.
  • the large-diameter inner diameter surface 22 faces the magnetic encoder 13 with a required gap.
  • the cylindrical portion 24 of the side plate member 23 is inserted into the inner diameter side of the mounting portion 12 of the core metal 8.
  • the side plate member 23 is an annular member having a cross-sectional shape and shape, and includes a cylindrical portion 24 and a flange portion 25 formed outward at the outer end thereof.
  • the outer peripheral edge of the collar portion 25 is fixed to the inner peripheral edge of the outer end portion of the mounting portion 17 of the annular member 9.
  • the collar portion 25 covers the outer end surface of the sensor holder 19 including the electric circuit board 21.
  • the cylindrical portion 24 covers the inner peripheral surface of the sensor holder 19 including the electric circuit board 21 and forms a part of the labyrinth gap 26 between the cylindrical portion 24 and the inner peripheral surface of the mounting portion 12 of the core metal 8.
  • the labyrinth clearance 26 is formed between the cylindrical portion 24 and the mounting portion 12, between the outer end surface of the mounting portion 12 and the sensor holder 19, between the magnetic encoder 13 and the sensor holder 19, and between the inner end surface of the mounting portion 12 and the seal. Formed between part 18 and part 18.
  • An electric circuit board 21 is embedded in a portion of the sensor holder 19 on the small-diameter side over a required range in the circumferential direction.
  • An A-phase magnetic sensor 28 and a B-phase magnetic sensor 29 are also provided on the inner surface of the electric circuit board 21 so as to protrude inwardly at regular intervals in the circumferential direction and also have Hall IC iso-forces (see Fig. 1).
  • Each of the magnetic sensors 28 and 29 is exposed to the large-diameter inner surface 22 of the sensor holder 19 and faces the magnetic pole 15 of the magnetic encoder 13 (see FIGS. 2B and 2C).
  • the interval between the magnetic sensors 28 and 29 is set to an odd multiple of the 0.25 pitch of the magnetization pitch as a reference pitch.
  • 31 indicates an output cable.
  • the interval is the same even if the rotation direction of the magnetic encoder 13 is reversed and the arrangement of the magnetic sensors 28 and 29 is reversed.
  • FIG. 3 shows the position of the A-phase magnetic sensor 28 relative to the B-phase magnetic sensor 29 when the magnetic encoder 13 rotates clockwise (see arrow A) as shown in FIG. 2 (a). It shows the relationship of the output waveform when the magnetic encoder 13 is separated by an odd multiple of 0.25 pitch in the rotational direction.
  • N and S indicate the magnetic poles 15 of the magnetic encoder 13.
  • Each magnetic sensor 28, 29 turns OFF when approaching the N pole, and turns ON when approaching the S pole.
  • Magnetic sensor 28 The output waveform is High when 29 is OFF and Low when it is ON.
  • Figure 4 shows the A phase output waveform multiplied by the B phase output waveform. As shown in the figure, the pitch of the output waveform after multiplication is twice that of the output waveform before multiplication.
  • FIG. 5 shows an example in which the magnetic encoder 13 is multiplied while the accumulated pitch error is large. It can be seen that if the pitch error of the output waveform of each phase is large, the pitch accuracy after multiplication will deteriorate.
  • rare earth-based magnetic materials are stronger than conventional ferrite-based materials and can provide magnetic force, so they are less susceptible to the leakage magnetic field generated by motors, etc. Can be avoided.
  • FKM fluorine rubber
  • the magnetic material is kneaded into fluorine rubber and exhibits the properties of magnetic rubber. Compared to conventional HNBR, the tensile strength is approximately double, so even if a large impact force is applied, the magnetic rubber will not be destroyed, so it can be used for power tools.
  • Figs. 6 (a) to 6 (c) show that the detection accuracy of the magnetic sensors 28 and 29 is improved when a strong magnetic field is obtained using a rare earth magnetic material as described above. Based on this explanation.
  • the magnetic waveform A in FIG. 6 (a) shows that the magnetic encoder 13 is affected by the leakage magnetic field when the magnetic force is relatively stronger than the magnetic waveform A in FIG. 12 (a). Indicates no state.
  • the magnetic waveform A in Fig. 6 (b) shows the state where the leakage magnetic field is added in the + direction of the magnetic pole and the magnetic waveform A is offset by C in the + direction.
  • the value of the duty ratio of the output signal is 50%, whereas in Fig.
  • Fig. 6 (c) shows a case where a leakage magnetic field is applied to the-side (when the offset amount is -C).
  • the bearing with a rotation sensor of Example 2 is also an inner ring rotating type in which the inner ring 1 is defined as a rotating raceway and the outer ring 2 is defined as a stationary raceway, and between the raceway grooves 3 and 4 facing the inner ring 1 and the outer ring 2, respectively.
  • a plurality of balls 6 held by the cage 5 are interposed.
  • a rotation sensor 10 is provided on the end surface opposite to the side where the seal member 7 is mounted.
  • the rotation side of the rotation sensor 10 includes an annular core 8 that is press-fitted and fixed to the outer diameter surface of one end of the inner ring 1, and a magnetic encoder 13 that is fixed to the outer diameter surface of the core 8.
  • the metal core 8 is provided with a mounting portion 12 having an L-shaped cross section bent in the diameter-expanding direction at the outer end of the annular fixing portion 11, and the magnetic encoder 13 is mounted on the outer diameter surface of the mounting portion 12.
  • An annular member 32 serving as a fixed side of the rotation sensor 10 is press-fitted and fixed to the inner diameter surface of the outer ring 2.
  • the annular member 32 is provided with a mounting portion 34 having an L-shaped cross section at the outer end of an annular fixing portion 33 for fitting to the inner diameter surface of the end portion of the outer ring 2, and the mounting portion 34 is It protrudes longer in the axial direction than the mounting part 12 of the core 8 on the inner ring 1 side.
  • a magnetic bypass part 35 is provided on the inner end of the fixed part 33.
  • the magnetic bypass portion 35 has an inclined portion 36 which is bent in a V shape with an inner end force of the fixed portion 33 having a certain angle ⁇ (see FIG. 8) and is inclined toward the outside of the bearing, and an end portion of the inclined portion 36 is It has a radial portion 37 that is bent in the direction of the inner ring 1 and formed in the radial direction.
  • the fixed portion 33 and the inclined portion 36 form a V-shaped bent portion 38.
  • the annular member 32 is a single part including the fixing portion 33, the mounting portion 34, and the bypass portion 35, and is processed by press molding.
  • a bypass gap g2 is provided between the inner end of the radial portion 37 and the fixing portion 11 of the cored bar 8.
  • a sensor holder 19 made of annular grease or the like is attached to the inner surface of the mounting portion 34 of the annular member 32, and an electric circuit board embedded in a mold grease 40 in a part of the sensor holder 19 Plate 21 isotropic force S It is fixed together by insert molding.
  • A-phase and B-phase magnetic sensors 28 and 29 mounted on the electric circuit board 21 are embedded in the sensor holder 19, and a part thereof is exposed on the inner peripheral surface of the sensor holder 19, and is attached to the magnetic encoder 13. Oppose each other with the required gap.
  • An L-shaped annular side plate member 23 is coupled to the outer periphery of the mounting portion 34 of the annular member 32.
  • force squeeze portions 39 are provided at several places on the entire circumference, so that reliable contact at the abutting portion between the mounting portion 34 and the side plate member 32 and a required coupling force can be obtained.
  • the side plate member 32 covers the outer end surface and the inner diameter surface of the sensor holder 19, and further faces the fixed portion 11 inner diameter surface of the core metal 8 via a predetermined circuit gap g 1.
  • An axial encoder gear g3 is provided between the magnetic encoder 13 and the magnetic bypass part 35.
  • the annular member 32, the side plate member 23, and the cored bar 8 are formed of magnetic stainless steel sheet metal (thin plate), and are each processed by press molding.
  • a magnetic circuit is formed by these members, the circuit gap g1, the bypass gap g2, and the encoder gap g3.
  • the magnetic circuit through which the leakage flux ⁇ 1 passes is the circuit from the outer ring 2 ⁇ the mounting part 34 ⁇ the side plate member 23 ⁇ the core metal 8 ⁇ the inner ring 1 and the side plate member 23 ⁇ the circuit gap gl ⁇ the magnetic shield. It is a circuit that goes from 1 to 13 ⁇ Encoder gap 8 3 ⁇ Radial part 37 ⁇ Bypass gap g2 ⁇ Fixed part 11 ⁇ Inner ring 1.
  • the magnetic circuit through which the leakage flux ⁇ 2 passes is a circuit extending from the outer ring 2 ⁇ the bypass part 35 (the inclined part 36 ⁇ the radial direction part 37) ⁇ the bypass gap g 2 ⁇ the fixed part 11 ⁇ the inner ring 4.
  • the leakage flux ⁇ that has entered the outer ring 2 passes through the bearing through the magnetic circuit as described above, thereby exerting a shielding effect on the magnetic sensors 28 and 29, and the detection accuracy of the magnetic sensors 28 and 29 is high. Maintained. In particular, due to the presence of the V-shaped bent portion 38, the path of the leakage magnetic flux ⁇ 2 passes through a portion further away from the magnetic sensors 28 and 29, so that the shielding effect is enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)

Abstract

In a bearing having rotary sensor used in a motor, it is possible to prevent erroneous operation of the sensor caused by the affect of magnetic field leak. Rare earths are used as a magnetic material of a magnetic encoder (13) as a member of the bearing having rotary sensor. A fluorine-based rubber is used as their binder so as to generate stronger magnetic force than the conventional ferrite-based material, thereby excluding the affect of the magnetic field leak and improving the shock resistance.

Description

明 細 書  Specification
回転センサ付き軸受  Bearing with rotation sensor
技術分野  Technical field
[0001] この発明は、モータの回転速度や回転方向を検出するために、モータに組み込ん で使用に供される回転センサ付き軸受に関する。  TECHNICAL FIELD [0001] The present invention relates to a bearing with a rotation sensor incorporated in a motor and used for detecting the rotational speed and direction of the motor.
背景技術  Background art
[0002] 従来力 知られている回転センサ付き軸受は、内輪、外輪及び前記内輪と外輪の 間に介在された複数の転動体を備え、前記内輪と外輪のいずれか一方が回転側軌 道輪、他方が固定側軌道輪と定められ、回転側軌道輪に装着された芯金に周方向 に一定ピッチで異極の磁極を交互に設けた磁気エンコーダが固着され、固定側軌道 輪に装着された芯金に前記磁気エンコーダに対向した磁気センサが装着された構 成である (特許文献 1参照)。  [0002] Conventionally known bearings with rotation sensors include an inner ring, an outer ring, and a plurality of rolling elements interposed between the inner ring and the outer ring, and either the inner ring or the outer ring is a rotating side race ring. On the other hand, the other side is defined as the fixed side ring, and a magnetic encoder provided with alternating magnetic poles of different polarities at a constant pitch in the circumferential direction is fixed to the core metal mounted on the rotation side ring and mounted on the fixed side ring. In this configuration, a magnetic sensor facing the magnetic encoder is mounted on a metal core (see Patent Document 1).
[0003] 図 11は、上記従来の回転センサ付きの軸受 41をモータ 42に組み込んだ状態を示 している。同図において、 43はモータ主軸、 44はモータロータ、 45はモータステータ 、 46はモータハウジング、 47は漏洩磁界の磁気ループを示す。軸受 41の外輪 51に 環状部材 54が取り付けられ、その内周面に磁気センサ 53が装着される。また、内輪 48に前記環状部材 54が対向した芯金 55が取り付けられ、その芯金 55に前記磁気 センサ 53に対向した磁気エンコーダ 52が装着される。また、前記環状部材 54の外 輪 51に対する取り付け部分において、内輪 48に向けて半径方向に延び出したシー ル部 56が設けられる。  FIG. 11 shows a state where the conventional bearing 41 with the rotation sensor is incorporated in the motor 42. In this figure, 43 is a motor spindle, 44 is a motor rotor, 45 is a motor stator, 46 is a motor housing, and 47 is a magnetic loop of a leakage magnetic field. An annular member 54 is attached to the outer ring 51 of the bearing 41, and a magnetic sensor 53 is mounted on the inner peripheral surface thereof. Further, a core bar 55 facing the annular member 54 is attached to the inner ring 48, and a magnetic encoder 52 facing the magnetic sensor 53 is attached to the core bar 55. In addition, a sealing portion 56 extending radially toward the inner ring 48 is provided at a portion where the annular member 54 is attached to the outer ring 51.
[0004] 図示のように、モータステータ 45から発生する磁束は、モータハウジング 46から外 輪 51に流れ込む。その流れは大きく分けて、外輪 51→玉 49→内輪 48→モータ主 軸 43→モータロータ 44→ステータ 45へと流れる流れ aと、外輪 51→磁気センサ 53 →磁気エンコーダ 52→内輪 48→モータ主軸 43→モータロータ 44→モータステータ 45へと流れる磁束の流れ bがある。  As shown in the figure, the magnetic flux generated from the motor stator 45 flows from the motor housing 46 into the outer ring 51. The flow is broadly divided into: outer ring 51 → ball 49 → inner ring 48 → motor spindle 43 → motor rotor 44 → flow to stator 45 a and outer ring 51 → magnetic sensor 53 → magnetic encoder 52 → inner ring 48 → motor spindle 43 → There is a magnetic flux b flowing from the motor rotor 44 to the motor stator 45.
[0005] このうち磁束の流れ bは漏洩磁束となって磁気センサ 53を通過するため、磁気セン サ 53の誤動作の原因となる。 [0006] 漏洩磁束の影響を図 12 (a)〜 (c)で説明する。図 12 (a)は漏洩磁界の影響を受け て 、な 、磁気波形 Aと、これを一定のしき 、値 Sを基準として取り出した出力信号 Bを 示す。出力信号 Bにおけるデューティ比 (TpZTn X 100)の値は 50%である。これ に対して図 12 (b)は漏洩磁界が磁極の +方向に付加された場合であり、漏洩磁界 の影響を受けて磁気波形 Α,は波形が +方向に + Cだけオフセットされた状態を示す 。この場合の出力信号 B'のデューティ比の値は 50%よりはるかに大きくなる。デュー ティ比の値が相対的に大き 、ことは漏洩磁界の影響が一層に大き 、ことを意味する。 Of these, the magnetic flux flow b becomes a leakage magnetic flux and passes through the magnetic sensor 53, causing a malfunction of the magnetic sensor 53. [0006] The effect of leakage flux will be described with reference to Figs. 12 (a) to 12 (c). Figure 12 (a) shows the magnetic waveform A and the output signal B extracted with the value S as the reference, under the influence of the leakage magnetic field. The duty ratio (TpZTn X 100) for output signal B is 50%. On the other hand, Fig. 12 (b) shows the case where the leakage magnetic field is applied in the + direction of the magnetic pole, and the magnetic waveform Α, which is affected by the leakage magnetic field, shows a state where the waveform is offset by + C in the + direction. Show. In this case, the duty ratio of the output signal B ′ is much larger than 50%. The value of the duty ratio is relatively large, which means that the influence of the leakage magnetic field is even greater.
[0007] 前記のオフセット量 Cの大きさは漏洩磁界の大きさを示し、オフセット量 Cが図示の 場合よりさらに大きくなると、一層デューティ比の値が大きくなり、最悪の場合、出力信 号の High— Lowの繰返しが無くなり回転速度の検出が不可能になる。なお、図 12 ( c)は漏洩磁界が―側に付加された場合 (オフセット量が― Cの場合)である。  [0007] The magnitude of the offset amount C indicates the magnitude of the leakage magnetic field. When the offset amount C is further increased than in the illustrated case, the value of the duty ratio is further increased. In the worst case, the output signal is high. — There is no repetition of Low, and the rotation speed cannot be detected. Fig. 12 (c) shows the case where the leakage magnetic field is added to the-side (when the offset is -C).
[0008] なお、従来の磁気エンコーダ 52の磁性材料としては、通常は安価な粉末フェライト が使用され、バインダとして耐熱ゴムである HNBRが使用されて!ヽた。  [0008] As a magnetic material of the conventional magnetic encoder 52, inexpensive powder ferrite is usually used, and HNBR, which is a heat-resistant rubber, is used as a binder.
[0009] また、モータ等の漏洩磁束の影響を排除して磁気センサによる検知精度を向上さ せる手段として、円周方向に複数の磁気センサを配置するとともに、それぞれの出力 信号の差動出力手段を 1相分のエンコーダ信号として処理することにより、漏洩磁界 の影響を排除するようにすることも従来力 知られて 、る (特許文献 2参照)。  [0009] Further, as means for eliminating the influence of leakage magnetic flux of a motor or the like and improving detection accuracy by the magnetic sensor, a plurality of magnetic sensors are arranged in the circumferential direction, and differential output means for each output signal Conventionally, it has been known to eliminate the influence of the leakage magnetic field by processing the signal as an encoder signal for one phase (see Patent Document 2).
[0010] 一方、前記図 11のシール部 56を磁気バイパスとして利用することにより、漏洩磁束 の磁気センサ 53に対する影響を防ぐために、図 13に示したように環状部材 54とは別 体の磁気バイパスリング 57を嵌合一体ィ匕した回転センサ付き軸受が従来力も知られ ている(特許文献 3)。  On the other hand, in order to prevent the influence of leakage magnetic flux on the magnetic sensor 53 by using the seal portion 56 of FIG. 11 as a magnetic bypass, a magnetic bypass separate from the annular member 54 as shown in FIG. Conventionally known is a bearing with a rotation sensor in which a ring 57 is fitted and integrated (Patent Document 3).
[0011] この軸受 41は外輪 51に環状部材 54が嵌合固定され、その環状部材 54の内径面 に設けられたセンサケース 58に磁気センサ 53が装着され、前記磁気センサ 53が内 輪 48に芯金 55を介して取り付けられた磁気エンコーダ 52に対向配置される。前記 環状部材 54の先端部に結合一体ィ匕された側板部材 59の一端部を前記芯金 55の 内径面に所定の回路ギャップ glを介して接近せしめている。また、前記環状部材 54 の内端部に磁気バイパスリング 57の逆 L形の外周縁を圧入一体ィ匕するとともに、その 内周縁を前記芯金 55に所定のバイパスギャップ g2を介して接近せしめている(特許 文献 1)。 In this bearing 41, an annular member 54 is fitted and fixed to an outer ring 51, and a magnetic sensor 53 is attached to a sensor case 58 provided on an inner diameter surface of the annular member 54, and the magnetic sensor 53 is attached to an inner ring 48. A magnetic encoder 52 mounted via a cored bar 55 is disposed to face the cored bar 55. One end portion of the side plate member 59 joined and integrated with the tip end portion of the annular member 54 is brought close to the inner diameter surface of the core metal 55 via a predetermined circuit gap gl. In addition, an inverted L-shaped outer peripheral edge of the magnetic bypass ring 57 is press-fitted integrally with the inner end portion of the annular member 54, and the inner peripheral edge is brought close to the core metal 55 via a predetermined bypass gap g2. (Patent Reference 1).
[0012] 前記外輪 51に流入した漏洩磁束 Φは Φ 1と Φ 2に分かれ、その Φ 1は主磁気回路 、即ち、環状部材 54、側板部材 59、回路ギャップ gl、芯金 55及び内輪 48からなる 回路(ただし、回路ギャップ gl→磁気エンコーダ 52→エンコーダギャップ g3→磁気 バイパスリング 57→内輪 48に至る回路もある。)を通過する。また Φ 2はノ ィパス磁気 回路、即ち、磁気バイノ スリング 61とバイパスギャップ g2からなる回路を通過する。  [0012] The leakage flux Φ flowing into the outer ring 51 is divided into Φ 1 and Φ 2, and Φ 1 is derived from the main magnetic circuit, that is, the annular member 54, the side plate member 59, the circuit gap gl, the cored bar 55, and the inner ring 48. (However, there is also a circuit that leads to circuit gap gl → magnetic encoder 52 → encoder gap g3 → magnetic bypass ring 57 → inner ring 48). Φ 2 passes through a no-pass magnetic circuit, that is, a circuit composed of the magnetic binos ring 61 and the bypass gap g2.
[0013] 上記の主磁気回路とバイパス磁気回路は、磁気センサ 53を取り囲むことにより、外 部磁界を遮蔽して誤作動を防ぎ、磁気センサの精度の向上を図る機能をもつもので ある。  [0013] The main magnetic circuit and the bypass magnetic circuit described above have a function of surrounding the magnetic sensor 53 to shield an external magnetic field to prevent malfunction and to improve the accuracy of the magnetic sensor.
特許文献 1:特開 2003 - 302254号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-302254
特許文献 2 :特開 2004— 117318号公報  Patent Document 2: JP-A-2004-117318
特許文献 3:特開 2002— 174258号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-174258
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] し力しながら、磁気エンコーダの材料として従来一般に使用されているフェライト材 を用いたものでは磁力を強くするには限界があり、大きな漏洩磁界の影響を回避す るだけの効果が発揮できない。また前記の差動出力手段を用いたものは、磁気セン サの数が多くなるとともに電気回路が複雑になるためコスト高になる問題がある。  [0014] However, there is a limit to increasing the magnetic force when using a ferrite material that has been used generally as a magnetic encoder material, and it is effective to avoid the influence of a large leakage magnetic field. Can not. The use of the differential output means has a problem that the number of magnetic sensors increases and the electric circuit becomes complicated, resulting in high cost.
[0015] そこで、この発明は電気回路によることなぐ磁気エンコーダの磁性材料の選定によ つて磁力を強め、これによりモータなど力 発生する漏洩磁界の影響を排除し、磁気 センサによる検知精度を高めることを第一の課題とする。  [0015] Therefore, the present invention enhances the magnetic force by selecting the magnetic material of the magnetic encoder that does not depend on an electric circuit, thereby eliminating the influence of a leakage magnetic field generated by a force such as a motor and improving the detection accuracy by the magnetic sensor. Is the first issue.
[0016] また、前記従来の回転センサ付き軸受における環状部材 54は、図 13に示したよう に、外輪 51の一方の端面と内面に嵌合される L形の固定部 60が形成され、磁気バイ パスリング 57は前記固定部 60の内径面に圧入嵌合される逆 L形の外周縁 61が形成 されたものである。環状部 54と磁気バイパスリング 57はそれぞれ独立してプレスカロェ されたのち相互に嵌合一体ィ匕する加工工程が実施され、その後軸受に組み付けら れる。そのため、軸受に組み付ける前に、各部材をプレス加工によって成形する加工 工程と、各部材を嵌合一体ィ匕する加工工程が必要となる。 [0017] また、嵌合一体ィ匕された環状部材 54と磁気バイノ スリング 57を外輪 51に組み付け る際に、磁気バイパスリング 57は更に圧入による圧縮応力を受けるため、軸方向の 位置がずれる場合がある。また、環状部材 54と磁気パイパスリング 57の嵌め合い幅 の寸法を設計上大きくとることができないため、前記の圧入時に磁気バイパスリング 5 7に傾きが発生し易い問題がある。さらに、磁気バイパスリング 57を環状部材 54に嵌 合一体ィ匕する工程に時間がかかり、コストアップの要因となる問題もある。 In addition, as shown in FIG. 13, the annular member 54 in the conventional bearing with a rotation sensor is formed with an L-shaped fixing portion 60 fitted to one end face and the inner face of the outer ring 51 to form a magnetic The bypass ring 57 is formed with an inverted L-shaped outer peripheral edge 61 that is press-fitted into the inner diameter surface of the fixed portion 60. The annular portion 54 and the magnetic bypass ring 57 are independently pressed and then subjected to a process of fitting and integrating with each other, and then assembled to the bearing. Therefore, before assembling to the bearing, a processing step for forming each member by press working and a processing step for fitting and integrating each member are required. [0017] Further, when the annular member 54 and the magnetic bino ring 57, which are integrally fitted, are assembled to the outer ring 51, the magnetic bypass ring 57 is further subjected to compressive stress due to press-fitting, so that the axial position is shifted. There is. Further, since the fitting width between the annular member 54 and the magnetic bypass ring 57 cannot be designed to be large, there is a problem that the magnetic bypass ring 57 tends to be inclined during the press-fitting. Furthermore, the process of fitting and integrating the magnetic bypass ring 57 with the annular member 54 takes time, and there is a problem that increases costs.
[0018] また、磁気バイパスリング 57が磁気センサ 53の近傍に設けられるので、その磁気バ ィパスリング 57から漏出した磁束 Φ 3が磁気センサ 53や磁気エンコーダ 52を通過す ることがあり、検知精度を低下させる原因となる。  [0018] Further, since the magnetic bypass ring 57 is provided in the vicinity of the magnetic sensor 53, the magnetic flux Φ3 leaked from the magnetic bypass ring 57 may pass through the magnetic sensor 53 and the magnetic encoder 52. It causes a decrease.
[0019] そこで、この発明は、前記環状部材 54及び磁気バイパスリング 57に関する諸問題 を解決し、生産性の向上を図ること等によりコストを低減すること、前記磁気バイパスリ ング 57による磁気遮蔽効果を上げることにより磁気センサ 53の検知精度を向上させ ることを第二の課題とする。  Therefore, the present invention solves various problems related to the annular member 54 and the magnetic bypass ring 57, reduces the cost by improving productivity, and the magnetic shielding effect by the magnetic bypass ring 57. The second problem is to improve the detection accuracy of the magnetic sensor 53 by increasing the value.
課題を解決するための手段  Means for solving the problem
[0020] 前記の第一の課題を解決するために、この発明は、図 1に示したように、内輪 外 輪 2及び前記内輪 1と外輪 2の間に介在された複数の玉 6を備え、前記内輪 1と外輪 2のいずれか一方が回転側軌道輪、他方が固定側軌道輪と定められる。図示の場合 内輪 1が回転側軌道輪と定められる。その内輪 1に取り付けられた芯金 8に周方向に 一定ピッチで異極の磁極が交互に形成された磁気エンコーダ 13が装着され、固定 側軌道輪に取り付けられた環状部材 9に前記磁気エンコーダ 13に対向した磁気セン サ 28、 29が装着された回転センサ付き軸受において、前記の磁気エンコーダ 13の 磁性材料が希土類系磁性材料であり、そのバインダとしてフッ素系ゴムが用いられた 構成としたのである。 In order to solve the first problem, the present invention includes an inner ring and an outer ring 2 and a plurality of balls 6 interposed between the inner ring 1 and the outer ring 2 as shown in FIG. One of the inner ring 1 and the outer ring 2 is defined as a rotation-side raceway, and the other is defined as a fixed-side raceway. In the illustrated case, the inner ring 1 is defined as the rotating raceway. A magnetic encoder 13 in which magnetic poles of different polarities are alternately formed at a constant pitch in the circumferential direction is attached to a metal core 8 attached to the inner ring 1, and the magnetic encoder 13 is attached to an annular member 9 attached to a stationary raceway. In the bearing with the rotation sensor mounted with the magnetic sensors 28 and 29 opposite to each other, the magnetic material of the magnetic encoder 13 is a rare earth magnetic material, and a fluorine rubber is used as the binder. .
[0021] なお、前記の希土類系磁性材料としてサマリウム系のものを用いることができる。ま た前記の希土類磁性材料をゴム材に練り込んだものを使用することができる。  [0021] A samarium-based material can be used as the rare earth-based magnetic material. In addition, a material obtained by kneading the rare earth magnetic material into a rubber material can be used.
[0022] 前記の第二の課題を解決するために、この発明は、図 7に示したように、内輪 外 輪 2及び前記内輪 1と外輪 2の間に介在された複数の玉 6を備え、前記内輪 1と外輪 2のいずれか一方が回転側軌道輪、他方が固定側軌道輪と定められる。図示の場合 、内輪 1が回転側軌道輪と定められる。その内輪 1に取り付けられた芯金 8に周方向 に一定ピッチで異極の磁極を交互に形成した磁気エンコーダ 13が装着され、固定 側軌道輪である外輪 1に取り付けられた環状部材 32に前記磁気エンコーダ 13に対 向した磁気センサ 28、 29が装着され、前記環状部材 32の先端部に一体ィ匕した側板 部材 23の一端部を前記芯金 8の内径面に所定の回路ギャップ glを介して対向せし め、前記環状部材 32の内端部に磁気バイパス部 35の外周縁を一体ィ匕するとともに、 その内周縁を前記芯金 8に所定のバイパスギャップ g2を介して接近せしめることによ り、前記環状部材 32、側板部材 23、回路ギャップ gl及び芯金 8を含む磁気回路と、 前記磁気バイパス部 35とバイパスギャップ g2からなるノ ィパス磁気回路を形成して なる回転センサ付き軸受において、前記環状部材 32と前記磁気バイパス部 35とが 単一部品により構成された構成としたものである。 In order to solve the second problem, the present invention comprises an inner ring outer ring 2 and a plurality of balls 6 interposed between the inner ring 1 and the outer ring 2 as shown in FIG. One of the inner ring 1 and the outer ring 2 is defined as a rotation-side raceway, and the other is defined as a fixed-side raceway. In the case of illustration The inner ring 1 is defined as the rotating raceway. A magnetic encoder 13 in which magnetic poles of different polarities are alternately formed at a constant pitch in the circumferential direction is attached to the core 8 attached to the inner ring 1, and the annular member 32 attached to the outer ring 1 which is a stationary raceway is attached to the annular member 32. Magnetic sensors 28 and 29 facing the magnetic encoder 13 are mounted, and one end of the side plate member 23 integrated with the tip of the annular member 32 is connected to the inner diameter surface of the core 8 via a predetermined circuit gap gl. The outer peripheral edge of the magnetic bypass part 35 is integrated with the inner end of the annular member 32, and the inner peripheral edge is made to approach the cored bar 8 through a predetermined bypass gap g2. Thus, in the bearing with a rotation sensor formed by forming a magnetic circuit including the annular member 32, the side plate member 23, the circuit gap gl and the cored bar 8, and a no-pass magnetic circuit including the magnetic bypass portion 35 and the bypass gap g2. ,in front The annular member 32 and the magnetic bypass portion 35 are configured by a single part.
[0023] 前記環状部材 32の一層具体的な構成としては、該環状部材 32が装着部 34と磁気 バイパス部 35とからなり、その装着部 34は外輪 2の嵌合部分の形状に合致する L形 の固定部 33を有し、前記磁気バイパス部 35は前記固定部 33の内端から前記内輪 1 の内径面に対し一定の角度 α (図 2参照)をもって軸受外方に向け V字形に屈曲され た傾斜部 36と、その傾斜部 36の端部を径方向に屈曲して形成された径方向部 37を 有し、その径方向部 37の内周縁が芯金 8との間でバイノ スギャップ g2を形成する構 成をとることができる。 [0023] As a more specific configuration of the annular member 32, the annular member 32 includes a mounting portion 34 and a magnetic bypass portion 35, and the mounting portion 34 matches the shape of the fitting portion of the outer ring 2. L The magnetic bypass part 35 bends in a V shape from the inner end of the fixed part 33 to the inner surface of the inner ring 1 at a constant angle α (see FIG. 2) toward the outside of the bearing. And a radial direction portion 37 formed by bending an end portion of the inclination portion 36 in the radial direction, and the inner peripheral edge of the radial direction portion 37 is binned with the cored bar 8. A configuration for forming the gap g2 can be adopted.
[0024] 前記の固定部 33と、角度 aで屈曲した傾斜部 36によって V字形屈曲部 38が形成 される。この V字形屈曲部 38を形成する傾斜部 36を漏洩磁束 Φ 2が通過するので、 従来の磁気バイノ スリング 57 (図 13参照)を使用する場合に比べ漏洩磁束 Φ 2の通 路が磁気センサ 28、 29から一層離れた部分となる。このため、バイパス部 35におい てたとえ漏洩磁界が生じたとしても、磁気センサ 28、 29に対する影響は少ない。 発明の効果  [0024] A V-shaped bent portion 38 is formed by the fixed portion 33 and the inclined portion 36 bent at an angle a. Since the leakage flux Φ2 passes through the inclined portion 36 forming the V-shaped bent portion 38, the path of the leakage flux Φ2 is more magnetic than the conventional magnetic binos ring 57 (see Fig. 13). , 29 and further away. For this reason, even if a leakage magnetic field is generated in the bypass portion 35, the influence on the magnetic sensors 28 and 29 is small. The invention's effect
[0025] 以上のように、この発明に係る回転センサ付き軸受は、磁気エンコーダの磁性材料 としてサマリウム系等の希土類系磁性材料を用いたことにより、従来のフェライト系の ものより強い磁力が得られる。これによりモータ等に組み込んで用いる際に、センサ がモータ等力 発生する漏洩磁界の影響を受け難くなり、センサの誤動作が防止さ れる。 [0025] As described above, the bearing with a rotation sensor according to the present invention uses a rare earth magnetic material such as samarium as the magnetic material of the magnetic encoder, so that a stronger magnetic force than that of a conventional ferrite material can be obtained. . This makes it difficult for the sensor to be affected by the leakage magnetic field generated by the motor's force when it is incorporated into a motor, etc., and prevents malfunction of the sensor. It is.
[0026] また、前記磁性材料のバインダとしてフッ素系ゴム (FKM)を使用することにより、磁 気エンコーダを構成する磁性ゴムは大きな衝撃力が作用しても破壊されることがなく 信頼性が高い。このため、急激な作動 ·停止を繰り返す電動工具などに適用範囲が 広がる。  [0026] Further, by using fluorine rubber (FKM) as the binder of the magnetic material, the magnetic rubber constituting the magnetic encoder is not broken even when a large impact force is applied, and has high reliability. . This expands the scope of application to power tools that repeatedly start and stop suddenly.
[0027] また、この発明に係る回転センサ付き軸受によれば、従来の別部品により構成され ていた環状部材 54と磁気バイパスリング 57とを単一の部品である環状部材 32により 構成されたものであるから、以下の効果を奏することができる。  [0027] In addition, according to the bearing with a rotation sensor according to the present invention, the annular member 54 and the magnetic bypass ring 57 that are configured by separate conventional parts are configured by the annular member 32 that is a single component. Therefore, the following effects can be obtained.
(1)従来の環状部材 54と磁気バイパスリング 57とが単一の部品である環状部材 32 により構成されるので、材料取りに無駄がなくなり材料費が安くなる。  (1) Since the conventional annular member 54 and the magnetic bypass ring 57 are constituted by the annular member 32 which is a single part, material is not wasted and material costs are reduced.
(2)環状部材 32がプレス成形により製作されるので、装着部 34とバイパス部 35の 同軸度、軸方向の位置精度等の寸法精度が良くなる。  (2) Since the annular member 32 is manufactured by press molding, the dimensional accuracy such as the coaxiality of the mounting portion 34 and the bypass portion 35 and the positional accuracy in the axial direction is improved.
(3)従来必要であった環状部材 54と磁気バイパスリング 57との嵌め合い力を管理 する必要がない。  (3) It is not necessary to manage the fitting force between the annular member 54 and the magnetic bypass ring 57, which was necessary in the past.
(4)環状部材 32の材質を磁性ステンレス鋼とすることにより、外部から浸入する磁 界を効率よく遮蔽することができ、また耐腐食性が向上する。  (4) By using magnetic stainless steel as the material of the annular member 32, the magnetic field entering from the outside can be efficiently shielded, and the corrosion resistance is improved.
(5)軸受に圧入する時点で磁気バイノ ス部 35の位置ずれが生じることが無ぐその 位置が正確となる。  (5) The position of the magnetic bin portion 35 is not displaced when it is press-fitted into the bearing, and the position becomes accurate.
(6)固定部 33と傾斜部 36により V字形屈曲部 38が形成されるので、漏洩磁束 Φ 2 が磁気センサ 28、 29から一層離れた部分を通過する。このため、磁気センサ 28、 29 の検知精度が向上する。  (6) Since the V-shaped bent portion 38 is formed by the fixed portion 33 and the inclined portion 36, the leakage flux Φ 2 passes through a portion further away from the magnetic sensors 28 and 29. For this reason, the detection accuracy of the magnetic sensors 28 and 29 is improved.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]実施例 1の断面図 [0028] FIG. 1 is a sectional view of Example 1.
[図 2] (a)図 1の XI— XI線の断面図、(b)図 1の Y1— Y1線の一部断面図、(c) (b) 図の磁極部分の拡大図  [Fig. 2] (a) Cross-sectional view taken along line XI—XI in FIG. 1, (b) Partial cross-sectional view taken along line Y1-Y1 in FIG. 1, (c) Enlarged view of the magnetic pole portion in FIG.
[図 3]同上のセンサ素子の固定位置と出力波形の関係の説明図  [Figure 3] Explanatory diagram of the relationship between the fixed position of the sensor element and the output waveform
[図 4]同上のセンサ出力 A相及び B相による遁倍の説明図  [Fig.4] Sensor output same as above, explanatory diagram of multiplication by phase A and phase B
[図 5]センサ出力 A相及び B相による遁倍状態の累積ピッチ誤差の影響を受けた場 合の説明図 [Fig.5] Sensor output when affected by accumulated pitch error in doubled state due to phase A and phase B Explanatory drawing
[図 6] (a)〜 (c)同上の磁気波形図と出力信号波形図  [Fig.6] (a) to (c) Magnetic waveform diagram and output signal waveform diagram
[図 7]実施例 2の断面図  [Fig. 7] Sectional view of Example 2
[図 8]同上の環状部材の拡大断面図  [Figure 8] Enlarged sectional view of the annular member
[図 9] (a)同上の縦断正面図、(b)同上の一部縦断正面  [Fig. 9] (a) Same vertical front view, (b) Same vertical front view
[図 10]同上の一部拡大断面図  [Fig.10] Partial enlarged sectional view of the above
[図 11]従来例の使用状態の一部断面図  [Fig. 11] Partial cross-sectional view of the conventional example
[図 12] (a)〜 (c)従来の場合の磁気波形図と出力信号波形図 [Fig. 12] (a) to (c) Conventional magnetic waveform diagram and output signal waveform diagram
[図 13]他の従来例の一部拡大断面図 [Fig.13] Partially enlarged sectional view of another conventional example
符号の説明 Explanation of symbols
1 内輪 1 Inner ring
2 外輪 2 Outer ring
3 軌道溝 3 Track groove
4 軌道溝 4 Track groove
5 保持器 5 Cage
6 玉 6 balls
7 シール部材  7 Seal material
8 芯金  8 cored bar
9 環状部材  9 Ring member
10 回転センサ  10 Rotation sensor
11 固定部  11 Fixed part
12 装着部  12 Mounting part
13 磁気エンコーダ  13 Magnetic encoder
15 磁極  15 magnetic pole
16 固定部  16 Fixed part
17 装着部  17 Mounting part
18 シール部  18 Seal part
19 センサホルダ 21 電気回路基板 19 Sensor holder 21 Electric circuit board
22 内径面  22 ID
23 側板部材  23 Side plate member
24 円筒部  24 Cylindrical part
25 つば部  25 collar
26 ラビリンスすき間  26 Labyrinth clearance
28 A相磁気センサ  28 A phase magnetic sensor
29 B相磁気センサ  29 B-phase magnetic sensor
31 出力ケープノレ  31 Output Cape Nore
32 環状部材  32 Ring member
33 固定部  33 Fixed part
34 装着部  34 Mounting part
35 磁気バイパス部  35 Magnetic bypass section
36 傾斜部  36 Slope
37 径方向部  37 Radial section
38 V字形屈曲部  38 V-shaped bend
39 力シメ部  39 Force squeeze
40 モールド樹脂  40 Mold resin
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、この発明の実施の形態を添付図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
実施例 1  Example 1
[0031] 図 1及び図 2に示した実施例 1の回転センサ付き軸受は、内輪 1を回転側軌道輪、 外輪 2を固定側軌道輪と定めた内輪回転型であり、内輪 1と外輪 2の対向した軌道溝 3、 4の間に保持器 5によって保持された複数の玉 6が介在される。前記内輪 1と外輪 2の一方の側面にお 、て、固定側の外輪 2に装着したシール部材 7を回転側の内輪 1に接触させている。シール部材 7を設けた側と反対側の端部において、回転センサ 10が設けられる。  The rotation sensor bearing of Example 1 shown in FIGS. 1 and 2 is an inner ring rotating type in which the inner ring 1 is defined as a rotating side race ring and the outer ring 2 is defined as a fixed side race ring. A plurality of balls 6 held by a cage 5 are interposed between the raceway grooves 3 and 4 facing each other. On one side surface of the inner ring 1 and the outer ring 2, a seal member 7 attached to the stationary outer ring 2 is brought into contact with the inner ring 1 on the rotating side. A rotation sensor 10 is provided at the end opposite to the side where the seal member 7 is provided.
[0032] 回転センサ 10の回転側は、前記内輪 1の外径面に圧入固定された環状の芯金 8と これに装着された磁気エンコーダ 13とから構成される。芯金 8は環状の固定部 11の 外端に拡径方向に屈曲した L形断面の装着部 12が設けられ、その装着部 12の外径 面に前記の磁気エンコーダ 13が装着される。 The rotation side of the rotation sensor 10 includes an annular core 8 that is press-fitted and fixed to the outer diameter surface of the inner ring 1. The magnetic encoder 13 is attached to the magnetic encoder 13. The metal core 8 is provided with a mounting portion 12 having an L-shaped cross section that is bent in the diameter increasing direction at the outer end of the annular fixing portion 11, and the magnetic encoder 13 is mounted on the outer diameter surface of the mounting portion 12.
[0033] 磁気エンコーダ 13は、図 2に示したように全周にわたり一定幅の異極の磁極 15を 周方向に一定ピッチで交互に着磁配列したものである。磁極 15の幅を小さくするに したがって磁気エンコーダ 13の磁束密度が低下しピッチ精度も低下する傾向にある 力 着磁幅は経験上、磁気エンコーダ 13の周方向の長さで 0. 5mm以上あればよい ことが分力つている。 [0033] As shown in Fig. 2, the magnetic encoder 13 is configured by alternately magnetizing magnetic poles 15 having different polarities with a constant width over the entire circumference at a constant pitch in the circumferential direction. The magnetic flux density of the magnetic encoder 13 tends to decrease and the pitch accuracy tends to decrease as the width of the magnetic pole 15 decreases. Experience shows that the magnetizing width is 0.5 mm or more in the circumferential direction of the magnetic encoder 13 Good things are divided.
[0034] 回転センサ 10の固定側を構成する環状部材 9は、図 1に示したように、環状の固定 部 16の外端に L形断面の装着部 17を設けたものであり、その装着部 17は前記の内 輪 1側の装着部 12よりアキシャル方向に長く突き出している。また、前記の固定部 16 の内径面に内輪 1側の固定部 11に向け半径方向に突き出したシール部 18が全周 に形成される。  As shown in FIG. 1, the annular member 9 constituting the fixed side of the rotation sensor 10 is provided with a mounting portion 17 having an L-shaped cross section at the outer end of the annular fixing portion 16. The portion 17 protrudes longer in the axial direction than the mounting portion 12 on the inner ring 1 side. Further, a seal portion 18 projecting in the radial direction toward the fixed portion 11 on the inner ring 1 side is formed on the entire inner circumference of the fixed portion 16.
[0035] 前記環状部材 9において、その L型断面の装着部 17の内面に環状の榭脂等でな るセンサホルダ 19が装着され、そのセンサホルダ 19の一部に電気回路基板 21等が インサート成形等により一体に固着される。センサホルダ 19の内径面は内側が大径 、外側が小径の 2段に形成される。大径側の内径面 22が磁気エンコーダ 13に所要 のすき間をおいて対向する。  In the annular member 9, a sensor holder 19 made of annular grease is mounted on the inner surface of the mounting portion 17 having an L-shaped cross section, and an electric circuit board 21 or the like is inserted into a part of the sensor holder 19. It is fixed integrally by molding or the like. The inner diameter surface of the sensor holder 19 is formed in two steps, the inner diameter being large and the outer diameter being small. The large-diameter inner diameter surface 22 faces the magnetic encoder 13 with a required gap.
[0036] 前記芯金 8の装着部 12の内径側に側板部材 23の円筒部 24が挿入される。側板部 材 23は、断面形状力 形をなす環状の部材であり、円筒部 24と、その外端に外向き に形成されたつば部 25とからなる。そのつば部 25の外周縁が前記環状部材 9の装 着部 17の外端部内周縁に固着される。  The cylindrical portion 24 of the side plate member 23 is inserted into the inner diameter side of the mounting portion 12 of the core metal 8. The side plate member 23 is an annular member having a cross-sectional shape and shape, and includes a cylindrical portion 24 and a flange portion 25 formed outward at the outer end thereof. The outer peripheral edge of the collar portion 25 is fixed to the inner peripheral edge of the outer end portion of the mounting portion 17 of the annular member 9.
[0037] 前記つば部 25は電気回路基板 21を含むセンサホルダ 19の外端面をカバーする。  The collar portion 25 covers the outer end surface of the sensor holder 19 including the electric circuit board 21.
また円筒部 24は電気回路基板 21を含むセンサホルダ 19の内周面をカバーするとと もに、芯金 8の装着部 12の内周面との間にラビリンスすき間 26の一部を形成する。ラ ビリンスすき間 26は、前記円筒部 24と装着部 12の間、該装着部 12の外端面とセン サホルダ 19の間、磁気エンコーダ 13とセンサホルダ 19との間、該装着部 12内端面 とシール部 18との間に渡り形成される。 [0038] 前記センサホルダ 19の小径側の部分に電気回路基板 21が周方向に所要の範囲 に渡り埋め込まれる。その電気回路基板 21内面には周方向に一定の間隔をおいて ホール IC等力もなる A相磁気センサ 28と B相磁気センサ 29が内向きに突き出して設 けられる(図 1参照)。各磁気センサ 28、 29が前記センサホルダ 19の大径の内径面 2 2に露出し前記の磁気エンコーダ 13の磁極 15 (図 2 (b) (c)参照)と対面する。各磁 気センサ 28、 29の間隔は、着磁ピッチの 0. 25ピッチを基準ピッチとして、その奇数 倍に設定される。図 2 (a) (b)はその間隔を基準ピッチの 9倍( = 2. 25ピッチ)に設定 した例を示す。最大では基準ピッチの 15倍程度まで可能である。なお、図 2 (a)にお いて、 31は出力ケーブルを示す。 The cylindrical portion 24 covers the inner peripheral surface of the sensor holder 19 including the electric circuit board 21 and forms a part of the labyrinth gap 26 between the cylindrical portion 24 and the inner peripheral surface of the mounting portion 12 of the core metal 8. The labyrinth clearance 26 is formed between the cylindrical portion 24 and the mounting portion 12, between the outer end surface of the mounting portion 12 and the sensor holder 19, between the magnetic encoder 13 and the sensor holder 19, and between the inner end surface of the mounting portion 12 and the seal. Formed between part 18 and part 18. [0038] An electric circuit board 21 is embedded in a portion of the sensor holder 19 on the small-diameter side over a required range in the circumferential direction. An A-phase magnetic sensor 28 and a B-phase magnetic sensor 29 are also provided on the inner surface of the electric circuit board 21 so as to protrude inwardly at regular intervals in the circumferential direction and also have Hall IC iso-forces (see Fig. 1). Each of the magnetic sensors 28 and 29 is exposed to the large-diameter inner surface 22 of the sensor holder 19 and faces the magnetic pole 15 of the magnetic encoder 13 (see FIGS. 2B and 2C). The interval between the magnetic sensors 28 and 29 is set to an odd multiple of the 0.25 pitch of the magnetization pitch as a reference pitch. Figures 2 (a) and 2 (b) show examples in which the interval is set to 9 times the reference pitch (= 2.25 pitch). Up to about 15 times the standard pitch is possible. In Fig. 2 (a), 31 indicates an output cable.
[0039] 上記のように、 A相磁気センサ 28と B相磁気センサ 29の間隔を基準ピッチの奇数 倍に設定すると、 A相出力信号と B相出力信号の電気的位相差が 90度となる。  [0039] As described above, when the interval between the A phase magnetic sensor 28 and the B phase magnetic sensor 29 is set to an odd multiple of the reference pitch, the electrical phase difference between the A phase output signal and the B phase output signal becomes 90 degrees. .
[0040] 一方、磁気エンコーダ 13において、その任意の一定位置の磁極 15から着磁ピッチ を増加させて行くに従ってピッチの累積誤差が発生するため、対向する磁気センサ 2 8、 29の間隔 (ピッチ数)が大きくなり、出力信号の位相差の誤差が大きくなる。従つ て、 90度の位相差を精度良く作り出すためには、磁気センサ 28、 29の間隔をできる だけ小さく設定する必要がある。しかし、一定以上小さくすると磁気センサ 28、 29相 互が干渉するため、その間隔を小さくするには制限がある。  [0040] On the other hand, in the magnetic encoder 13, as the magnetization pitch is increased from the magnetic pole 15 at an arbitrary fixed position, an accumulated pitch error occurs, so the interval between the opposing magnetic sensors 28, 29 (number of pitches) ) Increases, and the phase difference error of the output signal increases. Therefore, in order to create a phase difference of 90 degrees with high accuracy, it is necessary to set the interval between the magnetic sensors 28 and 29 as small as possible. However, magnetic sensors 28 and 29 interfere with each other if they are made smaller than a certain level, so there is a limit to reducing the distance between them.
[0041] そこで、磁極の幅が 0. 5mm以上の場合において、最小の間隔は磁気センサ 28、 29の干渉を避けるために必要最小限の間隔(1. 75ピッチ =0. 25ピッチ X 7倍)が 必要である。また、最大の間隔は着磁ピッチの累積誤差の影響を無視できる最大限 の間隔(2. 25ピッチ =0. 25ピッチ X 9倍)に設定することができる。  [0041] Therefore, when the width of the magnetic pole is 0.5 mm or more, the minimum interval is the minimum interval necessary to avoid interference of the magnetic sensors 28 and 29 (1.75 pitch = 0.25 pitch x 7 times) )is required. In addition, the maximum interval can be set to the maximum interval (2.25 pitch = 0.25 pitch x 9 times) that can ignore the influence of the accumulated error of the magnetization pitch.
[0042] なお、前記の間隔は磁気エンコーダ 13の回転方向が逆であっても、また両磁気セ ンサ 28、 29の配置が逆であっても同様である。  It should be noted that the interval is the same even if the rotation direction of the magnetic encoder 13 is reversed and the arrangement of the magnetic sensors 28 and 29 is reversed.
[0043] 図 3は、磁気エンコーダ 13が図 2 (a)のように時計周り方向(矢印 A参照)に回転す る場合において、 B相磁気センサ 29に対して A相磁気センサ 28の位置を磁気ェンコ ーダ 13の回転方向に 0. 25ピッチの奇数倍ごと離した場合の出力波形の関係を示し ている。図 3において、 N及び Sは磁気エンコーダ 13の磁極 15を示す。各磁気セン サ 28、 29は N極への接近で OFFとなり、 S極への接近で ONとなる。磁気センサ 28、 29が OFFの状態で出力波形は Highとなり、 ONの状態で Lowとなる。図 4は A相出 力波形と B相出力波形を遁倍した状態を示す。図示のように、遁倍前の出力波形の ピッチに対して、遁倍後の出力波形のピッチは 2倍となる。 FIG. 3 shows the position of the A-phase magnetic sensor 28 relative to the B-phase magnetic sensor 29 when the magnetic encoder 13 rotates clockwise (see arrow A) as shown in FIG. 2 (a). It shows the relationship of the output waveform when the magnetic encoder 13 is separated by an odd multiple of 0.25 pitch in the rotational direction. In FIG. 3, N and S indicate the magnetic poles 15 of the magnetic encoder 13. Each magnetic sensor 28, 29 turns OFF when approaching the N pole, and turns ON when approaching the S pole. Magnetic sensor 28, The output waveform is High when 29 is OFF and Low when it is ON. Figure 4 shows the A phase output waveform multiplied by the B phase output waveform. As shown in the figure, the pitch of the output waveform after multiplication is twice that of the output waveform before multiplication.
[0044] 図 5に磁気エンコーダ 13の累積ピッチ誤差が大きい状態で遁倍した例を示す。各 相の出力波形のピッチ誤差が大きいと、遁倍後のピッチ精度が悪くなることが分かる FIG. 5 shows an example in which the magnetic encoder 13 is multiplied while the accumulated pitch error is large. It can be seen that if the pitch error of the output waveform of each phase is large, the pitch accuracy after multiplication will deteriorate.
[0045] なお、以上の実施例は内輪回転型の軸受について説明したが、外輪回転型の軸 受にも同様に適用することができる。 [0045] Although the above embodiment has been described for the inner ring rotating type bearing, it can be similarly applied to the outer ring rotating type bearing.
[0046] 前記の磁気エンコーダ 13の磁性材料として希土類系(ネオジゥム系、サマリウム系) を用いることが望まし 、。これらの希土類系磁性材料は従来のフェライト系のものより 強!、磁力が得られるので、モータ等に組み込んで用 、る際にモータ等から発生する 漏洩磁界の影響を受け難くなり、センサの誤動作を避けることができる。  It is desirable to use a rare earth (neodymium, samarium) material as the magnetic material of the magnetic encoder 13. These rare earth-based magnetic materials are stronger than conventional ferrite-based materials and can provide magnetic force, so they are less susceptible to the leakage magnetic field generated by motors, etc. Can be avoided.
[0047] 上記の希土類系磁性材料を用いる場合、そのバインダとしてフッ素系ゴム (FKM) を使用することが望まし 、。前記の磁性材料はフッ素系ゴムに練り込まれ磁性ゴムの 性状を示す。従来の HNBRに比べて、引っ張り強度において約 2倍になるため、大 きな衝撃力が作用しても磁性ゴムが破壊されないため電動工具などに用いることが できる。  [0047] When the above rare earth magnetic material is used, it is desirable to use fluorine rubber (FKM) as the binder. The magnetic material is kneaded into fluorine rubber and exhibits the properties of magnetic rubber. Compared to conventional HNBR, the tensile strength is approximately double, so even if a large impact force is applied, the magnetic rubber will not be destroyed, so it can be used for power tools.
[0048] 前記のように希土類系磁性材料を用い強 、磁界が得られる場合にぉ 、て、前記の 磁気センサ 28、 29の検知精度が向上することを図 6 (a)〜 (c)に基づ 、て説明する。 図 6 (a)の磁気波形 Aは、前述した図 12 (a)の磁気波形 Aの場合に比べて磁力が相 対的に強くなつた場合において、磁気エンコーダ 13が漏洩磁界の影響を受けていな い状態を示す。図 6 (b)の磁気波形 A,は漏洩磁界が磁極の +方向に付加され、磁 気波形 Aが +方向に Cだけオフセットした状態を示す。図 6 (a)においては出力信号 のデューティ比の値が 50%であるのに対し、図 6 (b)においてはその値が 50%よりわ ずかに大きくなつており、前述の図 12 (b)の場合に比べデューティ比の変化量が小 さいことがわかる。これは、磁力を大きくしたことによって磁気波形 Aの角度 αが小さく なったためである。また、同時に磁力を強くしたことによって、オフセットがかかっても 磁気波形 Αの頂点がしきい値とクロスしなくなるのまでの余裕が大きくなる。 [0049] なお、図 6 (c)は漏洩磁界が—側に付加された場合 (オフセット量が— Cの場合)で ある。 [0048] Figs. 6 (a) to 6 (c) show that the detection accuracy of the magnetic sensors 28 and 29 is improved when a strong magnetic field is obtained using a rare earth magnetic material as described above. Based on this explanation. The magnetic waveform A in FIG. 6 (a) shows that the magnetic encoder 13 is affected by the leakage magnetic field when the magnetic force is relatively stronger than the magnetic waveform A in FIG. 12 (a). Indicates no state. The magnetic waveform A in Fig. 6 (b) shows the state where the leakage magnetic field is added in the + direction of the magnetic pole and the magnetic waveform A is offset by C in the + direction. In Fig. 6 (a), the value of the duty ratio of the output signal is 50%, whereas in Fig. 6 (b), the value is slightly larger than 50%. It can be seen that the amount of change in the duty ratio is smaller than in b). This is because the angle α of the magnetic waveform A is reduced by increasing the magnetic force. Also, by increasing the magnetic force at the same time, even if an offset is applied, the margin until the peak of the magnetic waveform な く な る no longer crosses the threshold value increases. [0049] Fig. 6 (c) shows a case where a leakage magnetic field is applied to the-side (when the offset amount is -C).
実施例 2  Example 2
[0050] 次に、図 7から図 10に基づいて実施例 2の回転センサ付き軸受について説明する。  Next, a bearing with a rotation sensor according to a second embodiment will be described with reference to FIGS.
実施例 2の回転センサ付き軸受も、内輪 1を回転側軌道輪、外輪 2を固定側軌道輪と 定めた内輪回転型であり、内輪 1と外輪 2の対向した軌道溝 3、 4の間に保持器 5によ つて保持された複数の玉 6が介在される。前記内輪 1と外輪 2の一方の側面において 、固定側の外輪 2に装着したシール部材 7を回転側の内輪 1に接触させている。シー ル部材 7を装着した側と反対側の端面に回転センサ 10が設けられる。  The bearing with a rotation sensor of Example 2 is also an inner ring rotating type in which the inner ring 1 is defined as a rotating raceway and the outer ring 2 is defined as a stationary raceway, and between the raceway grooves 3 and 4 facing the inner ring 1 and the outer ring 2, respectively. A plurality of balls 6 held by the cage 5 are interposed. On one side surface of the inner ring 1 and the outer ring 2, a seal member 7 attached to the stationary outer ring 2 is brought into contact with the inner ring 1 on the rotating side. A rotation sensor 10 is provided on the end surface opposite to the side where the seal member 7 is mounted.
[0051] 回転センサ 10の回転側は、前記内輪 1の一端部外径面に圧入固定された環状の 芯金 8と、その芯金 8の外径面に固着された磁気エンコーダ 13からなる。芯金 8は環 状の固定部 11の外端に拡径方向に屈曲した L型断面の装着部 12が設けられ、その 装着部 12の外径面に前記の磁気ェンコーダ 13が装着される。  [0051] The rotation side of the rotation sensor 10 includes an annular core 8 that is press-fitted and fixed to the outer diameter surface of one end of the inner ring 1, and a magnetic encoder 13 that is fixed to the outer diameter surface of the core 8. The metal core 8 is provided with a mounting portion 12 having an L-shaped cross section bent in the diameter-expanding direction at the outer end of the annular fixing portion 11, and the magnetic encoder 13 is mounted on the outer diameter surface of the mounting portion 12.
[0052] 回転センサ 10の固定側となる環状部材 32が外輪 2の内径面に圧入固定される。環 状部材 32は、前記外輪 2の端部内径面に嵌合するための環状の固定部 33の外端 に L形断面の装着部 34が設けられたものであり、その装着部 34は前記の内輪 1側の 芯金 8の装着部 12よりアキシャル方向に長く突き出している。  An annular member 32 serving as a fixed side of the rotation sensor 10 is press-fitted and fixed to the inner diameter surface of the outer ring 2. The annular member 32 is provided with a mounting portion 34 having an L-shaped cross section at the outer end of an annular fixing portion 33 for fitting to the inner diameter surface of the end portion of the outer ring 2, and the mounting portion 34 is It protrudes longer in the axial direction than the mounting part 12 of the core 8 on the inner ring 1 side.
[0053] また、前記固定部 33の内端に磁気バイパス部 35がー体に設けられる。磁気バイパ ス部 35は固定部 33の内端力も一定の角度 α (図 8参照)をもって V字状に屈曲され 軸受外方に向かって傾斜する傾斜部 36と、その傾斜部 36の端部を内輪 1の方向に 屈曲して径方向に形成された径方向部 37を有する。前記の固定部 33と傾斜部 36と により V字形屈曲部 38が形成される。環状部材 32は、前記のように、固定部 33、装 着部 34及びバイパス部 35とからなる単一の部品であり、プレス成形により加工される  Further, a magnetic bypass part 35 is provided on the inner end of the fixed part 33. The magnetic bypass portion 35 has an inclined portion 36 which is bent in a V shape with an inner end force of the fixed portion 33 having a certain angle α (see FIG. 8) and is inclined toward the outside of the bearing, and an end portion of the inclined portion 36 is It has a radial portion 37 that is bent in the direction of the inner ring 1 and formed in the radial direction. The fixed portion 33 and the inclined portion 36 form a V-shaped bent portion 38. As described above, the annular member 32 is a single part including the fixing portion 33, the mounting portion 34, and the bypass portion 35, and is processed by press molding.
[0054] なお、前記の径方向部 37の内端と芯金 8の固定部 11との間にバイパスギャップ g2 が設けられる。 Note that a bypass gap g2 is provided between the inner end of the radial portion 37 and the fixing portion 11 of the cored bar 8.
[0055] 前記環状部材 32の装着部 34の内面に環状の榭脂等でなるセンサホルダ 19が装 着され、そのセンサホルダ 19の一部にモールド榭脂 40に埋め込まれた電気回路基 板 21等力 Sインサート成形等により一体に固着される。前記電気回路基板 21に装着さ れた A相及び B相磁気センサ 28、 29が前記センサホルダ 19に埋め込まれ、その一 部が該センサホルダ 19の内周面に露出し、前記磁気ェンコーダ 13に所要のすき間 をおいて対向する。 [0055] A sensor holder 19 made of annular grease or the like is attached to the inner surface of the mounting portion 34 of the annular member 32, and an electric circuit board embedded in a mold grease 40 in a part of the sensor holder 19 Plate 21 isotropic force S It is fixed together by insert molding. A-phase and B-phase magnetic sensors 28 and 29 mounted on the electric circuit board 21 are embedded in the sensor holder 19, and a part thereof is exposed on the inner peripheral surface of the sensor holder 19, and is attached to the magnetic encoder 13. Oppose each other with the required gap.
[0056] 前記環状部材 32の装着部 34の外周縁に断面 L形環状の側板部材 23がー体に結 合される。その結合は全周の数か所において力シメ部 39を設け、これによつて装着 部 34と側板部材 32との突き合わせ部分における確実な接触と、所要の結合力を得 るようにしている。側板部材 32は、前記センサホルダ 19の外端面と内径面をカバー し、更に前記芯金 8の固定部 11内径面に対し所定の回路ギャップ g 1を介して対向す る。なお、磁気エンコーダ 13と磁気バイパス部 35との間に軸方向のエンコーダギヤッ プ g3が設けられる。  [0056] An L-shaped annular side plate member 23 is coupled to the outer periphery of the mounting portion 34 of the annular member 32. For this connection, force squeeze portions 39 are provided at several places on the entire circumference, so that reliable contact at the abutting portion between the mounting portion 34 and the side plate member 32 and a required coupling force can be obtained. The side plate member 32 covers the outer end surface and the inner diameter surface of the sensor holder 19, and further faces the fixed portion 11 inner diameter surface of the core metal 8 via a predetermined circuit gap g 1. An axial encoder gear g3 is provided between the magnetic encoder 13 and the magnetic bypass part 35.
[0057] 前記の環状部材 32、側板部材 23及び芯金 8は、磁性ステンレス鋼の板金 (薄板) により形成され、それぞれプレス成形により加工される。これらの部材と回路ギャップ g 1、バイパスギャップ g2、エンコーダギャップ g3により磁気回路が形成される。  [0057] The annular member 32, the side plate member 23, and the cored bar 8 are formed of magnetic stainless steel sheet metal (thin plate), and are each processed by press molding. A magnetic circuit is formed by these members, the circuit gap g1, the bypass gap g2, and the encoder gap g3.
[0058] いま、図 10に示したように、漏洩磁束 Φが外輪 2に入ったとした場合、漏洩磁束 Φ は漏洩磁束 Φ 1と Φ 2に分かれ、次の 2通りの磁気回路を経て内輪 1に至る。  Now, as shown in FIG. 10, when the leakage flux Φ enters the outer ring 2, the leakage flux Φ is divided into leakage fluxes Φ 1 and Φ 2, and the inner ring 1 passes through the following two magnetic circuits. To.
[0059] 即ち、漏洩磁束 Φ 1が通過する磁気回路は、外輪 2→装着部 34→側板部材 23→ 芯金 8→内輪 1に至る回路と、前記の側板部材 23→回路ギャップ gl→磁気ェンコ一 ダ 13→ェンコーダギャップ 83→径方向部 37→バイパスギャップ g2→固定部 11→内 輪 1に至る回路である。 That is, the magnetic circuit through which the leakage flux Φ 1 passes is the circuit from the outer ring 2 → the mounting part 34 → the side plate member 23 → the core metal 8 → the inner ring 1 and the side plate member 23 → the circuit gap gl → the magnetic shield. It is a circuit that goes from 1 to 13 → Encoder gap 8 3 → Radial part 37 → Bypass gap g2 → Fixed part 11 → Inner ring 1.
[0060] また、漏洩磁束 Φ 2が通過する磁気回路は、外輪 2→バイパス部 35 (傾斜部 36→ 径方向部 37)→バイパスギャップ g2→固定部 11→内輪 4に至る回路である。  Further, the magnetic circuit through which the leakage flux Φ 2 passes is a circuit extending from the outer ring 2 → the bypass part 35 (the inclined part 36 → the radial direction part 37) → the bypass gap g 2 → the fixed part 11 → the inner ring 4.
[0061] 外輪 2に侵入した漏洩磁束 Φが、前記のような磁気回路を経て軸受を通過すること により磁気センサ 28、 29に対する遮蔽効果が発揮され、磁気センサ 28、 29の検知 精度が高度に維持される。特に、 V字形屈曲部 38の存在により、漏洩磁束 Φ 2の通 路が磁気センサ 28、 29から一層離れた部分を通過することになるので、遮蔽効果が 高くなる。  [0061] The leakage flux Φ that has entered the outer ring 2 passes through the bearing through the magnetic circuit as described above, thereby exerting a shielding effect on the magnetic sensors 28 and 29, and the detection accuracy of the magnetic sensors 28 and 29 is high. Maintained. In particular, due to the presence of the V-shaped bent portion 38, the path of the leakage magnetic flux Φ 2 passes through a portion further away from the magnetic sensors 28 and 29, so that the shielding effect is enhanced.

Claims

請求の範囲 The scope of the claims
[1] 内輪、外輪及び前記内輪と外輪の間に介在された複数の転動体を備え、前記内輪 と外輪のいずれか一方が回転側軌道輪、他方が固定側軌道輪と定められ、回転側 軌道輪に取り付けられた芯金に周方向に一定ピッチで異極の磁極が交互に形成さ れた磁気エンコーダが装着され、固定側軌道輪に取り付けられた環状部材に前記磁 気エンコーダに対向した磁気センサが装着された回転センサ付き軸受において、前 記の磁気エンコーダの磁性材料が希土類系磁性材料であり、そのバインダとしてフッ 素系ゴムが用いられたことを特徴とする回転センサ付き軸受。  [1] An inner ring, an outer ring, and a plurality of rolling elements interposed between the inner ring and the outer ring, wherein one of the inner ring and the outer ring is defined as a rotating side race ring, and the other is defined as a fixed side race ring. A magnetic encoder in which magnetic poles of different polarities are alternately formed at a constant pitch in the circumferential direction is mounted on a metal core attached to the raceway, and an annular member attached to the stationary raceway is opposed to the magnetic encoder. A bearing with a rotation sensor equipped with a magnetic sensor, wherein the magnetic material of the magnetic encoder is a rare earth magnetic material, and fluorine rubber is used as a binder.
[2] 前記の希土類系磁性材料がサマリウム系であることを特徴とする請求項 1に記載の 回転センサ付き軸受。  2. The bearing with a rotation sensor according to claim 1, wherein the rare earth-based magnetic material is a samarium-based material.
[3] 前記の希土類磁性材料がフッ素系ゴム材に練りこまれたことを特徴とする請求項 1 又は 2に記載の回転センサ付き軸受。  [3] The bearing with a rotation sensor according to [1] or [2], wherein the rare earth magnetic material is kneaded into a fluorine rubber material.
[4] 内輪、外輪及び前記内輪と外輪の間に介在された複数の転動体を備え、前記内輪 と外輪のいずれか一方が回転側軌道輪、他方が固定側軌道輪と定められ、回転側 軌道輪に取り付けられた芯金に周方向に一定ピッチで異極の磁極を交互に形成さ れた磁気エンコーダが装着され、固定側軌道輪に取り付けられた環状部材に前記磁 気エンコーダに対向した磁気センサが装着され、前記環状部材の先端部に一体化し た側板部材の一端部を前記芯金の内径面に所定の回路ギャップを介して対向せし め、前記環状部材の内端部に磁気バイパス部の外周縁を一体ィ匕するとともに、その 内周縁を前記芯金に所定のバイパスギャップを介して接近せしめることにより、前記 環状部材、側板部材、回路ギャップ及び芯金を含む磁気回路と、前記磁気バイパス 部とバイパスギャップ力もなるバイパス磁気回路を形成してなる回転センサ付き軸受 において、前記環状部材と前記磁気バイパス部とが単一部品により構成されたことを 特徴とする回転センサ付き軸受。  [4] An inner ring, an outer ring, and a plurality of rolling elements interposed between the inner ring and the outer ring, wherein one of the inner ring and the outer ring is defined as a rotating side race ring, and the other is defined as a fixed side race ring. A magnetic encoder in which magnetic poles of different polarities are alternately formed at a constant pitch in the circumferential direction is mounted on a metal core attached to the raceway, and an annular member attached to the stationary raceway is opposed to the magnetic encoder. A magnetic sensor is attached, and one end portion of the side plate member integrated with the tip end portion of the annular member is opposed to the inner diameter surface of the core metal through a predetermined circuit gap, and the inner end portion of the annular member is magnetized. A magnetic circuit including the annular member, the side plate member, the circuit gap, and the cored bar by making the outer peripheral edge of the bypass part integral and bringing the inner peripheral edge closer to the cored bar through a predetermined bypass gap; The magnetic bike In rotation sensor equipped bearing by forming a bypass magnetic circuit also scan unit and the bypass gap force, the rotation sensor with bearings and the annular member and the magnetic bypass portion is characterized in that it is constituted by a single part.
[5] 前記環状部材が磁性ステンレス鋼により形成されたことを特徴とする請求項 4に記 載の回転センサ付き軸受。  5. The bearing with a rotation sensor according to claim 4, wherein the annular member is made of magnetic stainless steel.
[6] 前記環状部材は、環状部とバイパス部とからなり、その環状部は前記固定側軌道 輪に嵌合される固定部を有し、前記バイパス部は前記環状部の固定部内端から一定 の角度をもって軸受外方に向け V字形に屈曲された傾斜部と、その傾斜部の端部を 径方向に屈曲して形成された径方向部を有し、その径方向部の内周縁が前記芯金 との間で前記バイパスギャップを形成することを特徴とする請求項 4又は 5に記載の 回転センサ付き軸受。 [6] The annular member includes an annular part and a bypass part, and the annular part has a fixing part fitted to the stationary-side raceway, and the bypass part is constant from an inner end of the fixing part of the annular part. And an inclined portion bent in a V shape toward the outside of the bearing, and a radial portion formed by bending the end of the inclined portion in the radial direction, and the inner peripheral edge of the radial portion is the aforementioned The bearing with a rotation sensor according to claim 4 or 5, wherein the bypass gap is formed with a cored bar.
PCT/JP2006/308294 2005-04-21 2006-04-20 Bearing having rotary sensor WO2006115162A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-123882 2005-04-21
JP2005123882A JP4739804B2 (en) 2005-04-21 2005-04-21 Bearing with rotation sensor
JP2005-217495 2005-07-27
JP2005217495A JP4859409B2 (en) 2005-07-27 2005-07-27 Bearing with rotation sensor

Publications (1)

Publication Number Publication Date
WO2006115162A1 true WO2006115162A1 (en) 2006-11-02

Family

ID=37214780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308294 WO2006115162A1 (en) 2005-04-21 2006-04-20 Bearing having rotary sensor

Country Status (1)

Country Link
WO (1) WO2006115162A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531987A (en) * 2007-06-30 2010-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Control device with position sensor
WO2013098585A1 (en) * 2011-12-28 2013-07-04 Aktiebolaget Skf Bearing assembly and rotary electric machine comprising such a bearing
WO2013098582A1 (en) * 2011-12-28 2013-07-04 Aktiebolaget Skf Bearing assembly and rotary electric machine comprising such a bearing
CN107017736A (en) * 2017-05-27 2017-08-04 上海昶屹机电科技有限公司 Motor measurement apparatus
WO2022127972A1 (en) * 2020-12-15 2022-06-23 Schaeffler Technologies AG & Co. KG Sensor bearing having a cover and method for manufacturing a sensor bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174258A (en) * 2000-12-06 2002-06-21 Ntn Corp Bearing with rotary sensor and motor using the same
JP2003035565A (en) * 2001-07-25 2003-02-07 Ntn Corp Magnetic encoder and bearing for wheel employing the same
JP2003057070A (en) * 2001-08-17 2003-02-26 Ntn Corp Magnetic encoder and bearing for wheel using the same
JP2003183443A (en) * 2001-12-14 2003-07-03 Nok Corp Rubber composition
JP2003336654A (en) * 2002-05-17 2003-11-28 Ntn Corp Bearing with rotary sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174258A (en) * 2000-12-06 2002-06-21 Ntn Corp Bearing with rotary sensor and motor using the same
JP2003035565A (en) * 2001-07-25 2003-02-07 Ntn Corp Magnetic encoder and bearing for wheel employing the same
JP2003057070A (en) * 2001-08-17 2003-02-26 Ntn Corp Magnetic encoder and bearing for wheel using the same
JP2003183443A (en) * 2001-12-14 2003-07-03 Nok Corp Rubber composition
JP2003336654A (en) * 2002-05-17 2003-11-28 Ntn Corp Bearing with rotary sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531987A (en) * 2007-06-30 2010-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Control device with position sensor
US8208264B2 (en) 2007-06-30 2012-06-26 Robert Bosch Gmbh Control device having a position sensor
WO2013098585A1 (en) * 2011-12-28 2013-07-04 Aktiebolaget Skf Bearing assembly and rotary electric machine comprising such a bearing
WO2013098582A1 (en) * 2011-12-28 2013-07-04 Aktiebolaget Skf Bearing assembly and rotary electric machine comprising such a bearing
CN104115013A (en) * 2011-12-28 2014-10-22 Skf公司 Bearing assembly and rotary electric machine comprising such a bearing
US9371862B2 (en) 2011-12-28 2016-06-21 Aktiebolaget Skf Bearing assembly and rotary electric machine comprising such a bearing
CN107017736A (en) * 2017-05-27 2017-08-04 上海昶屹机电科技有限公司 Motor measurement apparatus
WO2022127972A1 (en) * 2020-12-15 2022-06-23 Schaeffler Technologies AG & Co. KG Sensor bearing having a cover and method for manufacturing a sensor bearing

Similar Documents

Publication Publication Date Title
JP5671255B2 (en) Rotation angle detection device for motor for driving automobile and bearing with rotation angle detection device
US7307414B2 (en) Bearing with integrated rotation sensor
WO2003044381A1 (en) Sensor-equipped rolling bearing, and rotation state detecting device
WO2006115162A1 (en) Bearing having rotary sensor
CN104736869A (en) Sensor-equipped rolling bearing, motor, and actuator
JPH11194009A (en) Rolling bearing with rotational angle sensing device
JP4543306B2 (en) Encoder with cylindrical cover
JP2008175645A (en) Bearing device for wheel with rotational speed detector
JP2005098761A (en) Rotation detector
JP2006177865A (en) Magnetic encoder and bearing for wheel equipped with it
JP4739804B2 (en) Bearing with rotation sensor
JP2006090831A (en) Bearing with rotation sensor
JP2011112471A (en) Magnetic encoder and rotation detecting apparatus
JP2006125594A (en) Bearing device with sensor
JP5321115B2 (en) Rolling bearing with rotation sensor
JP2006112454A (en) Bearing device with sensor
JP4859409B2 (en) Bearing with rotation sensor
JP2005249545A (en) Bearing with rotation sensor
JP6632825B2 (en) Bearing with rotation detector
JP2009052935A (en) Wheel bearing with rotation detection device
JP5161010B2 (en) Rotation detection device and bearing with rotation detection device
JP4443252B2 (en) Bearing with rotation sensor
JP2004258028A (en) Apparatus for coding rotation parameter, anti-friction bearing and electric motor having the apparatus
JP4258862B2 (en) Rotation support device incorporating a rolling bearing unit with a rotation speed detection device
JP2007064328A (en) Rolling bearing unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732152

Country of ref document: EP

Kind code of ref document: A1