WO2006112823A1 - Method to eliminate undulations in a composite panel - Google Patents

Method to eliminate undulations in a composite panel Download PDF

Info

Publication number
WO2006112823A1
WO2006112823A1 PCT/US2005/012699 US2005012699W WO2006112823A1 WO 2006112823 A1 WO2006112823 A1 WO 2006112823A1 US 2005012699 W US2005012699 W US 2005012699W WO 2006112823 A1 WO2006112823 A1 WO 2006112823A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
placing
stringer
container
panel
Prior art date
Application number
PCT/US2005/012699
Other languages
French (fr)
Inventor
Doan D. Pham
Michael A. Lee
Original Assignee
The Boeing Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Boeing Company filed Critical The Boeing Company
Priority to PCT/US2005/012699 priority Critical patent/WO2006112823A1/en
Publication of WO2006112823A1 publication Critical patent/WO2006112823A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0227Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using pressure vessels, e.g. autoclaves, vulcanising pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/472Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/474Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81455General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps being a fluid inflatable bag or bladder, a diaphragm or a vacuum bag for applying isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/064Stringers; Longerons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73751General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being uncured, i.e. non cross-linked, non vulcanized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73755General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being fully cured, i.e. fully cross-linked, fully vulcanized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • B29K2105/246Uncured, e.g. green
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • B29L2031/3085Wings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • one method of vacuum-bag molding may comprise placing an uncured object such as a wing panel 12 or tail panel into a substantially gas-impermeable container or bag 18 and removing air or a gas, from the gas-impermeable bag 18 with a pump (not shown).
  • a breather material 20 and a release film 22 may be applied between the gas-impermeable bag 18 and the wing panel 12 to prevent the gas-impermeable bag 18 from adhering to the wing panel 12 while the wing panel is curing.
  • the gas-impermeable bag 18 and wing panel 12 are then placed on a lay-up mandrel 32 and cure in an auto-clave.
  • the auto-clave may apply pressure and heat to consolidate layers of the curing wing panel 12 so as to remove entrapped air and volatiles, and to cure the wing panel 12.
  • the gas- impermeable bag 18 generally has a skin tight fit to the wing panel 12, and thus translates the auto-clave pressure to the wing panel 12 such that there are relatively no undesired undulations of the wing layers.
  • This lower pressure volume 28 may cause an undulation 30 in a wing layer.
  • a cause for the low pressure volume is the bridging 26 of the gas-impermeable bag 18 over the base 24 of the stringer 10 to the curing wing panel 12, such that the auto-clave pressure does not translate to the curing wing panel 12.
  • This problem may occur, but is not limited to, where one or more curing objects have a geometry that causes bridging.
  • Undulations in a layer of a composite object reduce the tensile strength of an object. Undulations also increase production time and costs, as specially prepared shims may be required to mate parts to the object with undulations; for example mating a rib to a wing panel.
  • each object may be uncured. Curing an object within an auto-clave may be an expensive and time consuming process as the auto-clave is typically reheated and repressurized during each curing cycle. Joining and curing two uncured objects together would eliminate one auto-clave cycle by combing two separate cycles into one. However, each object may be composed of a different resin and if each object is uncured, the resins of each object may mix, causing undesired properties. [005] As can be seen, there is a need for applying a pressure to all surfaces of an object while it is curing. Also, there is a need for coupling two or more curing objects such that there is no mixing of dissimilar resins. Moreover, there is a need for producing a part that has a predictable geometry so that the part may be joined to other parts without shimming.
  • a method of curing comprises providing a first object, providing a second object, placing a first side of a sheet adjacent to a malleable portion of the first object, placing a second side of the sheet adjacent to a non-malleable portion of the second object, placing the first object, second object and sheet into a container, and removing gas from the container where bridging occurs, where the bridging extends from the second object to the sheet.
  • a method of curing comprises providing a first object having a malleable portion, providing a second object having a non-malleable portion, placing a first side of a sheet adjacent to the malleable portion of the first object, placing a second side of the sheet adjacent to the non-malleable portion of the second object, placing the first object, second object and sheet into a container, and removing gas from the container where bridging occurs, where the bridging extends from the second object to the first object.
  • a method of curing an object comprises providing an object having a malleable portion, placing a first side of a sheet adjacent to the malleable portion of the object, coupling the sheet to the object, placing the object and the sheet into a container, and removing gas from the container where bridging occurs, where the sheet provides pressure to the malleable portion.
  • a method of joining a stringer and a panel, and curing portions of the panel comprises providing the stringer; providing the panel; placing a first side of a sheet adjacent to an uncured portion of the panel; placing a second side of the sheet adjacent to a cured portion of the stringer; placing the stringer, panel and sheet into a nylon bag; and removing gas from the nylon bag where bridging occurs.
  • an article of manufacture comprises a first composite object having a resin portion and a fiber portion, a second composite object having a resin portion and a fiber portion coupled to the first object, and a sheet disposed between the first composite object and the second composite object, where the sheet lies adjacent to the resin portion of the first composite object and the resin portion of the second composite object.
  • an airplane wing comprises a stringer having a resin portion, a wing panel having a resin portion and coupled to the stringer, and a sheet disposed between the stringer and the wing panel, where the sheet lies adjacent to the resin portion of the stringer and the resin portion of the wing panel.
  • Figure 1 is a cross-sectional view from the side of a stringer and wing panel within a vacuum bag
  • Figure 2 is a fragmentary view taken along line 2 of the stringer, wing panel and vacuum bag in Figure 1 ;
  • Figure 3 is cross-sectional view from the side of a stringer, wing panel and vacuum bag according to one embodiment of the present invention;
  • Figure 4 is a fragmentary view taken along line 4 of the stringer, wing panel and vacuum bag in Figure 3, according to one embodiment of the present invention
  • Figure 5 is a fragmentary view of a stringer, wing panel and vacuum bag according to an embodiment of the present invention.
  • Figure 6 is a cross-sectional side view of a stringer and wing panel, according to one embodiment of the present invention.
  • the present invention provides a method for curing a resin on a composite object such that low pressure areas caused by bridging of a gas-impermeable container or bag over the object, do not cause undulations in a layer of the curing resin. Such method may be used, for example, in an auto-clave.
  • the present invention also provides an article of manufacture that is produced by the described method. The method may be used to produce articles such as airplane wings or tails.
  • a substantially unmalleable object such as a cured composite stringer 10
  • a malleable object such as an uncured composite object.
  • the uncured composite object may be a wing panel 12.
  • Each composite object may be composed of resin and fiber.
  • a sheet 14, such as titanium foil, is placed on a portion of the panel 12 where the stringer 10 is joined with the uncured wing panel 12.
  • the sheet 14 may also comprise a metallic material, a non- metallic material and a material having a low coefficient thermal expansion, such as, but not limited to, less than 13.7 x10 "6 inches/inches degrees Fahrenheit (in/in * F).
  • the thickness of the sheet 14 may be, but not limited to, 0.005 to 0.010 inches.
  • the cured composite stringer 10 is then coupled to the sheet 14 using an adhesive film such as Sol-gel.
  • Sol-gel is described in U.S. Patent Numbers 5,814,137, 5,849,110, 5,869,140, 5,869,141 , 5,939,197, 5,958,578, and 6,037,060, and each patent is herein incorporated by reference.
  • the Sol-gel may be first applied to the sheet 14 by immersing, spraying, or drenching the sheet 14 with the Sol-gel.
  • the sheet 14 may then be coupled to the stringer 10 before the Sol-gel has dried.
  • the sheet 14 is then coupled to the uncured wing panel.
  • the sheet 14 may extend from the base of the stringer 10 by, but is not limited to, between 0.25 inch and 0.50 inch.
  • the coupled cured composite stringer 10, the sheet 14 and uncured wing panel 12 are then placed within a gas-impermeable container or bag 18, the air or gas within the gas-impermeable bag 18 is pumped out, and the gas-impermeable bag 18 sealed.
  • the gas-impermeable bag 18 may be constructed of nylon.
  • the pressure within the gas-impermeable bag 18 may at a pressure typically below ambient atmospheric pressure such as for example, but not limited to, between 25 inches of mercury to 29 inches of mercury.
  • the gas-impermeable bag 18 and its contents are then placed within an auto- clave.
  • the pressure within the auto-clave may be elevated above ambient atmospheric pressure, for example, but not limited to, between 45 and 150 pounds per square inch.
  • the temperature within the auto-clave may be raised above ambient temperature, for example, but not limited to, between 250 to 450 degrees Fahrenheit.
  • the pressure differential between the inside of the gas-impermeable bag 18 and the pressure within the auto-clave causes the gas-impermeable bag 18 to have a skin tight fit over the cured composite stringer 10, the sheet 14 and the curing wing panel 12.
  • the gas-impermeable bag 18 is in contact with the sheet 14 such that the gas- impermeable bag 18 applies a force on the sheet 14 towards the curing wing panel 12.
  • the sheet 14 extends from the stringer base 24 to the gas-impermeable bag 18 along the surface 34 of the wing panel.
  • the pressure differential between the auto-clave pressure and the pressure within the gas-impermeable bag 18 causes the gas- impermeable bag 18 to exert force on the sheet 14 towards the curing wing panel 12.
  • the sheet 14 resists bending by the low-pressure volume 28 contained within the bridging, such that the sheet 14 applies pressure on the curing wing panel 12.
  • the sheet 14 prevents undulations - such as the undulation 30 shown in Figure 2 - from occurring in the curing wing panel 12.
  • the gas-impermeable bag 18 does not contact the sheet 14 during the curing process, such that the gas-impermeable bag 18 does not apply a force on the sheet 14 towards the curing wing panel 12.
  • the thickness of the sheet 14 is sufficient to resist bending by the low-pressure volume 28 contained within the bridging 26, such that the sheet 14 applies pressure on the wing panel 12 as the wing panel 12 cures.
  • an uncured stringer 10 is coupled, for example, using adhesive Sol-gel, to an uncured wing panel 12.
  • the Sol-gel may be first applied to the sheet 14 by immersing, spraying, or drenching the sheet 14 with the Sol-gel.
  • the sheet 14 may then be placed between the uncured stringer 10 and uncured wing panel 12 as the sheet 14 and uncured stringer 10 are coupled.
  • the sheet 14 prevents the mixing of the resins of the uncured stringer 10 and the uncured wing panel 12.
  • uncured stringer 10, sheet 14 and uncured wing panel 12 are then placed within a gas-impermeable bag 18, and the gas-impermeable bag 18 is placed within an auto-clave to cure the stringer 10 and wing panel 12.
  • pre-preg material such as a partially cured stringer 10 is coupled to an uncured wing panel 12.
  • a sheet 14 is placed between the partially cured stringer 10 and uncured wing panel 14. The partial curing reduces the possibility of the mixing of the resins of the stringer 10 and the wing panel 12.
  • the partially cured stringer 10, sheet 14 and uncured wing panel 12 are then placed within a gas-impermeable bag 18, and the gas-impermeable bag 18 is placed within an auto-clave to cure the stringer 10 and wing panel 12.
  • a non- composite material such as a titanium stringer 10 is coupled to an uncured wing panel 12.
  • a sheet 14 is placed between the titanium stringer 10 and uncured wing panel 12.
  • the titanium stringer 10, sheet 14 and uncured wing panel 12 are then placed within a gas-impermeable bag 18, and the gas-impermeable bag 18 is placed within an autoclave.
  • the sheet 14 applies pressure to the uncured wing panel 12 and prevents undulations from forming during curing.
  • FIG. 6 illustrates one embodiment of a finished article, produced by, for example, the method illustrated in FIGS. 3 and 4, where a cured stringer 10 is coupled to a sheet 14 using a film of Sol-gel 16 and the sheet 14 is connected to a cured wing panel 12.
  • the coupled stringer 10 and wing panel 14 may then be used, along with other wing elements such as rib chords, to form a wing.

Abstract

A method and article of manufacture of joining a stringer to a wing or tail panel and curing a wing or tail panel is disclosed. A sheet of titanium is placed between a cured stringer and an uncured wing or tail panel. The stringer, wing or tail panel and sheet are then placed within a vacuum bag, and gas is pumped out of the bag. The bag is then placed in an auto-clave to cure the wing or tail panel.

Description

METHOD TO ELIMINATE UNDULATIONS IN A COMPOSITE PANEL
BACKGROUND OF THE INVENTION
[001] The present invention generally relates to vacuum bag molding and, more particularly, to curing resins using the vacuum bag molding process. [002] Referring to Figures 1 and 2, one method of vacuum-bag molding may comprise placing an uncured object such as a wing panel 12 or tail panel into a substantially gas-impermeable container or bag 18 and removing air or a gas, from the gas-impermeable bag 18 with a pump (not shown). A breather material 20 and a release film 22 may be applied between the gas-impermeable bag 18 and the wing panel 12 to prevent the gas-impermeable bag 18 from adhering to the wing panel 12 while the wing panel is curing. The gas-impermeable bag 18 and wing panel 12 are then placed on a lay-up mandrel 32 and cure in an auto-clave. The auto-clave may apply pressure and heat to consolidate layers of the curing wing panel 12 so as to remove entrapped air and volatiles, and to cure the wing panel 12. The gas- impermeable bag 18 generally has a skin tight fit to the wing panel 12, and thus translates the auto-clave pressure to the wing panel 12 such that there are relatively no undesired undulations of the wing layers. [003] However, as best shown in Figure 2, there may be a low-pressure volume 28 interacting with the surface 34 of the curing wing panel 12, where the pressure is lower than the ambient pressure produced by the auto-clave. This lower pressure volume 28 may cause an undulation 30 in a wing layer. A cause for the low pressure volume is the bridging 26 of the gas-impermeable bag 18 over the base 24 of the stringer 10 to the curing wing panel 12, such that the auto-clave pressure does not translate to the curing wing panel 12. This problem may occur, but is not limited to, where one or more curing objects have a geometry that causes bridging. Undulations in a layer of a composite object reduce the tensile strength of an object. Undulations also increase production time and costs, as specially prepared shims may be required to mate parts to the object with undulations; for example mating a rib to a wing panel.
[004] Also, it may be desirable when two objects are joined, that each object be uncured. Curing an object within an auto-clave may be an expensive and time consuming process as the auto-clave is typically reheated and repressurized during each curing cycle. Joining and curing two uncured objects together would eliminate one auto-clave cycle by combing two separate cycles into one. However, each object may be composed of a different resin and if each object is uncured, the resins of each object may mix, causing undesired properties. [005] As can be seen, there is a need for applying a pressure to all surfaces of an object while it is curing. Also, there is a need for coupling two or more curing objects such that there is no mixing of dissimilar resins. Moreover, there is a need for producing a part that has a predictable geometry so that the part may be joined to other parts without shimming.
SUMMARY OF THE INVENTION
[006] In one aspect of the present invention, a method of curing comprises providing a first object, providing a second object, placing a first side of a sheet adjacent to a malleable portion of the first object, placing a second side of the sheet adjacent to a non-malleable portion of the second object, placing the first object, second object and sheet into a container, and removing gas from the container where bridging occurs, where the bridging extends from the second object to the sheet. [007] In another aspect of the present invention, a method of curing comprises providing a first object having a malleable portion, providing a second object having a non-malleable portion, placing a first side of a sheet adjacent to the malleable portion of the first object, placing a second side of the sheet adjacent to the non-malleable portion of the second object, placing the first object, second object and sheet into a container, and removing gas from the container where bridging occurs, where the bridging extends from the second object to the first object.
[008] In another aspect of the present invention, a method of curing an object comprises providing an object having a malleable portion, placing a first side of a sheet adjacent to the malleable portion of the object, coupling the sheet to the object, placing the object and the sheet into a container, and removing gas from the container where bridging occurs, where the sheet provides pressure to the malleable portion.
[009] In another aspect of the present invention, a method of joining a stringer and a panel, and curing portions of the panel, comprises providing the stringer; providing the panel; placing a first side of a sheet adjacent to an uncured portion of the panel; placing a second side of the sheet adjacent to a cured portion of the stringer; placing the stringer, panel and sheet into a nylon bag; and removing gas from the nylon bag where bridging occurs.
[010] In another aspect of the present invention, an article of manufacture comprises a first composite object having a resin portion and a fiber portion, a second composite object having a resin portion and a fiber portion coupled to the first object, and a sheet disposed between the first composite object and the second composite object, where the sheet lies adjacent to the resin portion of the first composite object and the resin portion of the second composite object. [012] In another aspect of the present invention, an airplane wing comprises a stringer having a resin portion, a wing panel having a resin portion and coupled to the stringer, and a sheet disposed between the stringer and the wing panel, where the sheet lies adjacent to the resin portion of the stringer and the resin portion of the wing panel. [032] These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[013] Figure 1 is a cross-sectional view from the side of a stringer and wing panel within a vacuum bag;
[014] Figure 2 is a fragmentary view taken along line 2 of the stringer, wing panel and vacuum bag in Figure 1 ; [015] Figure 3 is cross-sectional view from the side of a stringer, wing panel and vacuum bag according to one embodiment of the present invention;
[016] Figure 4 is a fragmentary view taken along line 4 of the stringer, wing panel and vacuum bag in Figure 3, according to one embodiment of the present invention;
[017] Figure 5 is a fragmentary view of a stringer, wing panel and vacuum bag according to an embodiment of the present invention; and
[018] Figure 6 is a cross-sectional side view of a stringer and wing panel, according to one embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION
[019] The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims. [020] The present invention provides a method for curing a resin on a composite object such that low pressure areas caused by bridging of a gas-impermeable container or bag over the object, do not cause undulations in a layer of the curing resin. Such method may be used, for example, in an auto-clave. The present invention also provides an article of manufacture that is produced by the described method. The method may be used to produce articles such as airplane wings or tails. [021] Referring to FIGS. 3 and 4, in an embodiment, a substantially unmalleable object such as a cured composite stringer 10, is joined with a malleable object such as an uncured composite object. The uncured composite object may be a wing panel 12. Each composite object may be composed of resin and fiber. A sheet 14, such as titanium foil, is placed on a portion of the panel 12 where the stringer 10 is joined with the uncured wing panel 12. The sheet 14 may also comprise a metallic material, a non- metallic material and a material having a low coefficient thermal expansion, such as, but not limited to, less than 13.7 x10"6 inches/inches degrees Fahrenheit (in/in *F). The thickness of the sheet 14 may be, but not limited to, 0.005 to 0.010 inches. The cured composite stringer 10 is then coupled to the sheet 14 using an adhesive film such as Sol-gel. Sol-gel is described in U.S. Patent Numbers 5,814,137, 5,849,110, 5,869,140, 5,869,141 , 5,939,197, 5,958,578, and 6,037,060, and each patent is herein incorporated by reference. The Sol-gel may be first applied to the sheet 14 by immersing, spraying, or drenching the sheet 14 with the Sol-gel. The sheet 14 may then be coupled to the stringer 10 before the Sol-gel has dried. The sheet 14 is then coupled to the uncured wing panel. The sheet 14 may extend from the base of the stringer 10 by, but is not limited to, between 0.25 inch and 0.50 inch. [022] The coupled cured composite stringer 10, the sheet 14 and uncured wing panel 12 are then placed within a gas-impermeable container or bag 18, the air or gas within the gas-impermeable bag 18 is pumped out, and the gas-impermeable bag 18 sealed. The gas-impermeable bag 18 may be constructed of nylon. The pressure within the gas-impermeable bag 18 may at a pressure typically below ambient atmospheric pressure such as for example, but not limited to, between 25 inches of mercury to 29 inches of mercury.
[023] The gas-impermeable bag 18 and its contents are then placed within an auto- clave. The pressure within the auto-clave may be elevated above ambient atmospheric pressure, for example, but not limited to, between 45 and 150 pounds per square inch. The temperature within the auto-clave may be raised above ambient temperature, for example, but not limited to, between 250 to 450 degrees Fahrenheit. The pressure differential between the inside of the gas-impermeable bag 18 and the pressure within the auto-clave causes the gas-impermeable bag 18 to have a skin tight fit over the cured composite stringer 10, the sheet 14 and the curing wing panel 12. There is bridging 26 of the gas-permeable bag from the base 24 of the stringer to the sheet 14, where the gas-permeable bag 24 does not transfer auto-clave pressure to either the sheet 14 or the curing wing panel 12. [024] The gas-impermeable bag 18 is in contact with the sheet 14 such that the gas- impermeable bag 18 applies a force on the sheet 14 towards the curing wing panel 12. The sheet 14 extends from the stringer base 24 to the gas-impermeable bag 18 along the surface 34 of the wing panel. The pressure differential between the auto-clave pressure and the pressure within the gas-impermeable bag 18 causes the gas- impermeable bag 18 to exert force on the sheet 14 towards the curing wing panel 12. The sheet 14 resists bending by the low-pressure volume 28 contained within the bridging, such that the sheet 14 applies pressure on the curing wing panel 12. Thus, the sheet 14 prevents undulations - such as the undulation 30 shown in Figure 2 - from occurring in the curing wing panel 12. [025] Referring to FIG. 5, in another embodiment, the gas-impermeable bag 18 does not contact the sheet 14 during the curing process, such that the gas-impermeable bag 18 does not apply a force on the sheet 14 towards the curing wing panel 12. The thickness of the sheet 14 is sufficient to resist bending by the low-pressure volume 28 contained within the bridging 26, such that the sheet 14 applies pressure on the wing panel 12 as the wing panel 12 cures.
[026] In another embodiment, similar to that shown in Figures 3 through 5, an uncured stringer 10 is coupled, for example, using adhesive Sol-gel, to an uncured wing panel 12. The Sol-gel may be first applied to the sheet 14 by immersing, spraying, or drenching the sheet 14 with the Sol-gel. The sheet 14 may then be placed between the uncured stringer 10 and uncured wing panel 12 as the sheet 14 and uncured stringer 10 are coupled. The sheet 14 prevents the mixing of the resins of the uncured stringer 10 and the uncured wing panel 12. The uncured stringer 10, sheet 14 and uncured wing panel 12 are then placed within a gas-impermeable bag 18, and the gas-impermeable bag 18 is placed within an auto-clave to cure the stringer 10 and wing panel 12. [027] In another embodiment, similar to that shown in Figures 3 through 5, pre-preg material such as a partially cured stringer 10 is coupled to an uncured wing panel 12. A sheet 14 is placed between the partially cured stringer 10 and uncured wing panel 14. The partial curing reduces the possibility of the mixing of the resins of the stringer 10 and the wing panel 12. The partially cured stringer 10, sheet 14 and uncured wing panel 12 are then placed within a gas-impermeable bag 18, and the gas-impermeable bag 18 is placed within an auto-clave to cure the stringer 10 and wing panel 12. [028] In another embodiment, similar to that shown in Figures 3 through 5, a non- composite material such as a titanium stringer 10 is coupled to an uncured wing panel 12. A sheet 14 is placed between the titanium stringer 10 and uncured wing panel 12. The titanium stringer 10, sheet 14 and uncured wing panel 12 are then placed within a gas-impermeable bag 18, and the gas-impermeable bag 18 is placed within an autoclave. The sheet 14 applies pressure to the uncured wing panel 12 and prevents undulations from forming during curing.
[029] FIG. 6 illustrates one embodiment of a finished article, produced by, for example, the method illustrated in FIGS. 3 and 4, where a cured stringer 10 is coupled to a sheet 14 using a film of Sol-gel 16 and the sheet 14 is connected to a cured wing panel 12. The coupled stringer 10 and wing panel 14 may then be used, along with other wing elements such as rib chords, to form a wing.
[030] It should be understood, of course, that the foregoing relates to preferred embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.

Claims

WE CLAIM:
1. A method of curing comprising: providing a first object; providing a second object; placing a first side of a sheet adjacent to a malleable portion of said first object; placing a second side of said sheet adjacent to a non-malleable portion of said second object; placing said first object, second object and sheet into a container; and removing gas from said container where bridging occurs; where said bridging extends from said second object to said sheet.
2. The method of Claim 1 where said step of placing said first object, second object and sheet into a container comprises: placing a sheet having coefficient of thermal expansion less than 13.7 x10" 6 inch/inch degree Fahrenheit per inch into said container.
3. The method of Claim 1 where said step of removing gas from said container where bridging occurs comprises: attaching a pump to said container; removing gas from said container; and providing a pressure within said container between 25 inches of mercury to 29 inches of mercury.
4. The method of Claim 1 , further comprising: placing said container into an auto-clave; and providing a pressure between 45 pounds per square inch and 150 pounds per square inch on the outer surface of said container.
5. The method of Claim 1 , further comprising: placing said container into an auto-clave; and providing a temperature between 250 degrees Fahrenheit and 450 degrees Fahrenheit.
6. The method of Claim 1 , further comprising: positioning said sheet where said sheet extends between 0.25 inches to 0.50 inches from said second object.
7. A product of the process defined in Claim 1.
8. A method of curing comprising: providing a first object having a malleable portion; providing a second object having a non-malleable portion; placing a first side of a sheet adjacent to said malleable portion of said first object; placing a second side of said sheet adjacent to said non-malleable portion of said second object; placing said first object, second object and sheet into a container; and removing gas from said container where bridging occurs; where said bridging extends from said second object to said first object.
9. The method of Claim 8 where said step of placing a first side of a sheet adjacent to said malleable portion of said first object comprises: placing a first side of a titanium sheet adjacent to said malleable portion of said first object.
10. The method of Claim 8 where said step of placing a first side of a sheet adjacent to said malleable portion of said first object comprises: placing a first side of said sheet adjacent to an uncured stringer.
11. The method of Claim 8, where said step of placing a second side of said sheet adjacent to said non-malleable portion of said second object comprises: placing a second side of said sheet adjacent to a stringer.
12. The method of Claim 8, further comprising: placing said container into an auto-clave; and providing a temperature above ambient atmospheric temperature.
13. The method of Claim 8 where said step of placing a second side of said sheet adjacent to said non-malleable portion of said second object comprises: positioning said sheet where said sheet extends between a quarter inch and a half inch from said second object.
14. The method of Claim 8 where said step of placing a first side of a sheet adjacent to said malleable portion of said first object comprises: placing a sheet of titanium foil having a thickness between five thousandth of an inch and ten thousandth of an inch adjacent to an uncured wing panel.
15. A product of the process defined in Claim 8.
16. A method of curing an object comprising: providing an object having a malleable portion; placing a first side of a sheet adjacent to said malleable portion of said object; coupling said sheet to said object; placing said object and said sheet into a container; and removing gas from said container where bridging occurs; where said sheet provides pressure to said malleable portion.
17. The method of Claim 16 where said step of removing gas from said container where bridging occurs comprises: lowering pressure within said container where said bridging extends from a portion of said object to said sheet.
18. The method of Claim 16 where said step of removing gas from said container where bridging occurs comprises: lowering pressure within said container where said bridging extends from a first portion of said object to a second portion of said object.
19. The method of Claim 16 where said step of coupling said sheet to said object comprises: applying Sol-gel to said first side of said sheet; and coupling said sheet to said object.
20. A product of the process defined in Claim 16.
21. A method of joining a stringer and a panel, and curing portions of said panel, comprising: providing said stringer; providing said panel; placing a first side of a sheet adjacent to an uncured portion of said wing panel; placing a second side of said sheet adjacent to a cured portion of said stringer; placing said stringer, panel and sheet into a nylon bag; and removing gas from said nylon bag where bridging occurs. (
22. The method of. Claim 21 , where said bridging extends from said stringer to said sheet.
23. The method of Claim 21 , where said bridging extends from said stringer to said panel.
24. The method of Claim 21 where said step of placing a first side of a sheet adjacent to an uncured portion of said panel comprises: applying a film of Sol-gel between said first side of said sheet and said uncured portion of said panel, and; joining said sheet to said uncured portion of said panel.
25. The method of Claim 21 where said step of placing said stringer, panel and sheet into a nylon bag comprises: applying breather material between said stringer and said sheet.
26. The method of Claim 21 where said step of placing said stringer, panel and sheet into a nylon bag comprises: applying a release film between said stringer and said sheet.
27. The method of Claim 21 where said step of placing a first side of a sheet adjacent to an uncured portion of said panel comprises: placing a first side of a sheet of titanium having a thickness between 0. 005 inches and 0. 010 inches, adjacent to an uncured portion of said wing panel.
28. An article of manufacture comprising: a first composite object having a resin portion and a fiber portion; a second composite object having a resin portion and a fiber portion coupled to said first object; and a sheet disposed between said first composite object and said second composite object, where said sheet lies adjacent to said resin portion of said first composite object and said resin portion of said second composite object.
29. The article of manufacture of Claim 28 where said sheet has a coefficient of thermal expansion less than 13.7 x10'6 inch/inch degree Fahrenheit.
30. The article of manufacture of Claim 28 where said sheet extends between
0.25 inches and 0.50 inches from said second composite object.
31. The article of manufacture of Claim 28 where said sheet has a thickness between 0.005 inches and 0.010 inches.
32. An airplane wing comprising: a stringer having a resin portion; a wing panel having a resin portion coupled to said stringer; and a sheet disposed between said stringer and said wing panel; where said sheet lies adjacent to said resin portion of said stringer and said resin portion of said wing panel.
33. The airplane wing of Claim 32 where said sheet has a coefficient of thermal expansion less than 13.7 x10'6 inch/inch degrees Fahrenheit.
34. The airplane wing of Claim 32 where said sheet extends between a quarter inch and a half inch from said second composite object.
35. The airplane wing of Claim 32 where said sheet has a thickness between 0.005 inches and 0.010 inches.
PCT/US2005/012699 2005-04-13 2005-04-13 Method to eliminate undulations in a composite panel WO2006112823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2005/012699 WO2006112823A1 (en) 2005-04-13 2005-04-13 Method to eliminate undulations in a composite panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/012699 WO2006112823A1 (en) 2005-04-13 2005-04-13 Method to eliminate undulations in a composite panel

Publications (1)

Publication Number Publication Date
WO2006112823A1 true WO2006112823A1 (en) 2006-10-26

Family

ID=35385811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/012699 WO2006112823A1 (en) 2005-04-13 2005-04-13 Method to eliminate undulations in a composite panel

Country Status (1)

Country Link
WO (1) WO2006112823A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036349A1 (en) * 2008-08-05 2010-02-11 Airbus Deutschland Gmbh Method and device for producing a structure, in particular an aircraft structure made of a fiber composite material
RU2457113C2 (en) * 2007-03-30 2012-07-27 Эйрбас Оператионс Гмбх Method of producing structural element
CN102814979A (en) * 2011-06-08 2012-12-12 新疆永昌新材料科技股份有限公司 Reinforcing rib process of fixed cabin cover
US8932427B2 (en) 2009-12-11 2015-01-13 Airbus Operations, S.L. Compaction process of a piece of composite materials
US10293559B2 (en) 2014-03-04 2019-05-21 Bombardier Inc. Method and apparatus for forming a composite laminate stack using a breathable polyethylene vacuum film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951808A (en) * 1996-01-29 1999-09-14 Societe Nationale Industrielle Et Aerospatiale Method for producing high dimensional precision composite elements using ionization polymerization and elements produced by said method
US6037060A (en) * 1996-11-04 2000-03-14 The Boeing Company Sol for bonding expoxies to aluminum or titanium alloys
EP1134070A1 (en) * 2000-03-07 2001-09-19 Construcciones Aeronauticas, S.A. Process for manufacturing pre-cured parts of composite material with green-applied stiffeners
US20050112394A1 (en) * 2003-11-21 2005-05-26 The Boeing Company Method to eliminate undulations in a composite panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951808A (en) * 1996-01-29 1999-09-14 Societe Nationale Industrielle Et Aerospatiale Method for producing high dimensional precision composite elements using ionization polymerization and elements produced by said method
US6037060A (en) * 1996-11-04 2000-03-14 The Boeing Company Sol for bonding expoxies to aluminum or titanium alloys
EP1134070A1 (en) * 2000-03-07 2001-09-19 Construcciones Aeronauticas, S.A. Process for manufacturing pre-cured parts of composite material with green-applied stiffeners
US20050112394A1 (en) * 2003-11-21 2005-05-26 The Boeing Company Method to eliminate undulations in a composite panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457113C2 (en) * 2007-03-30 2012-07-27 Эйрбас Оператионс Гмбх Method of producing structural element
DE102008036349A1 (en) * 2008-08-05 2010-02-11 Airbus Deutschland Gmbh Method and device for producing a structure, in particular an aircraft structure made of a fiber composite material
US8192674B2 (en) 2008-08-05 2012-06-05 Airbus Operations Gmbh Process and apparatus for the production of a structure, in particular an aircraft structure, from a fiber composite material
DE102008036349B4 (en) * 2008-08-05 2016-08-04 Airbus Operations Gmbh Method and device for producing a structure, in particular an aircraft structure made of a fiber composite material
US8932427B2 (en) 2009-12-11 2015-01-13 Airbus Operations, S.L. Compaction process of a piece of composite materials
CN102814979A (en) * 2011-06-08 2012-12-12 新疆永昌新材料科技股份有限公司 Reinforcing rib process of fixed cabin cover
US10293559B2 (en) 2014-03-04 2019-05-21 Bombardier Inc. Method and apparatus for forming a composite laminate stack using a breathable polyethylene vacuum film

Similar Documents

Publication Publication Date Title
US7052573B2 (en) Method to eliminate undulations in a composite panel
EP2402134B1 (en) A method of making a collapsible mandrel employing reinforced fluoroelastomeric bladder
JP5745081B2 (en) Method for forming an integral composite part using an SMP apparatus
US6964723B2 (en) Method for applying pressure to composite laminate areas masked by secondary features
JP2014504218A5 (en)
JP6325545B2 (en) Apparatus for manufacturing a flanged component and its manufacturing method
US8197625B2 (en) Process of manufacturing composite structures with embedded precured tools
US20120021196A1 (en) Smooth composite structure
WO2007120187A2 (en) Corner-consolidating inflatable apparatus and method for manufacturing composite structures
WO2013001458A2 (en) Preforming pre-preg
EP2569142B1 (en) Method of making a composite sandwich structure
JP2011523990A (en) Turbine blade half manufacturing method, turbine blade half, turbine blade manufacturing method, and turbine blade
JP5151668B2 (en) Manufacturing method of FRP
EP0904929A1 (en) Method for forming a caul plate during moulding of a part
KR101882535B1 (en) Methods and systems for co-bonding or co-curing composite parts using a rigid/malleable smp apparatus
KR20120021824A (en) Manufacturing method of the metalcomposite hybrid wheel for vehicles
WO2006112823A1 (en) Method to eliminate undulations in a composite panel
JP2014502223A5 (en)
US8778117B2 (en) Method for producing an integral, reinforced fibre composite component as well as a hollow fibre composite component
US10744724B2 (en) Composite aircraft manufacturing tooling and methods using articulating mandrels
CA2813893C (en) Contour caul with expansion region
US4878979A (en) Method of reusably sealing a silicone rubber vacuum bag to a mold for composite manufacture
JP3690744B2 (en) Manufacturing method of fiber reinforced plastic parts
US11034431B2 (en) Composite article with fly-away bag carrier
EP4122682A1 (en) Method of manufacturing a composite box structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05735521

Country of ref document: EP

Kind code of ref document: A1