WO2006112149A1 - Liquid crystal film and laminated film for optical devices - Google Patents

Liquid crystal film and laminated film for optical devices Download PDF

Info

Publication number
WO2006112149A1
WO2006112149A1 PCT/JP2006/303535 JP2006303535W WO2006112149A1 WO 2006112149 A1 WO2006112149 A1 WO 2006112149A1 JP 2006303535 W JP2006303535 W JP 2006303535W WO 2006112149 A1 WO2006112149 A1 WO 2006112149A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
resin layer
acrylic resin
layer
Prior art date
Application number
PCT/JP2006/303535
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Hosaki
Haruyoshi Sato
Junichiro Tanimoto
Tetsuya Uesaka
Takeshi Kataoka
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005102224A external-priority patent/JP2006284736A/en
Priority claimed from JP2005102223A external-priority patent/JP2006284735A/en
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2006112149A1 publication Critical patent/WO2006112149A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials

Definitions

  • the present invention relates to a liquid crystal film useful for various optical elements and a laminated film for an optical element laminated with a polarizing film.
  • liquid crystal display devices have been required to have higher durability in addition to excellent optical performance.
  • liquid crystal display devices for mobile devices such as mobile phones and in-cars are required to pass rigorous environmental tests assuming various book usage conditions.
  • a thin film (film) made of an alignment layer of a liquid crystal compound is used for color compensation and viewing angle compensation for liquid crystal display elements.
  • a film made of a liquid crystal material with a nematic structure, a twisted nematic structure, or a nematic hybrid structure fixed is used for color compensation and viewing angle compensation for liquid crystal display elements.
  • As an element it has excellent performance as an optical rotatory optical element, etc., contributing to higher performance and weight reduction of various display elements.
  • a method for producing these films a method has been proposed in which a layer made of a liquid crystal material formed on an alignment substrate is transferred onto a translucent substrate that also serves as a support substrate (for example, Patent Documents 1 to 3). reference.).
  • an optical element made of a liquid crystal material that does not use a support substrate film is used.
  • a manufacturing method has also been proposed (see, for example, Patent Document 4). According to this manufacturing method, after the layer made of the liquid crystal substance formed on the orientation substrate is transferred to the releasable substrate once through the adhesive, the releasable substrate is peeled off. It became possible to manufacture optical elements consisting of a liquid crystal material layer without a support substrate film.
  • these films are used by being bonded to a polarizing plate or a retardation film.
  • an optical film manufactured from an alignment layer of a liquid crystal compound can be used in, for example, a long cycle test between a high temperature environment test and a high temperature high humidity environment test.
  • the liquid crystal alignment layer cannot easily follow the contraction of the polarizing plate, and appearance abnormalities such as cracks and deformation tend to occur.
  • the molecular weight is balanced with the liquid crystal alignment property.
  • the mechanical strength of the liquid crystal material layer for example by increasing the thickness.
  • Patent Document 1 Japanese Patent Laid-Open No. 4570570
  • Patent Document 2 JP-A-4-177216
  • Patent Document 3 Japanese Patent Laid-Open No. 6-242434
  • Patent Document 4 JP-A-8-278491
  • An object of the present invention is to provide a thin liquid crystal film that does not cause appearance abnormalities such as cracks in a liquid crystal alignment layer even in severe environmental tests such as a cycle test of a high temperature test and a high temperature and high humidity test.
  • the first aspect of the present invention is a liquid crystal film in which a cured acrylic resin layer and a fixed orientation of a liquid crystal material layer and a Z cured acrylic resin layer are laminated in this order, and at least one cured acrylic resin layer is formed.
  • the resin layer has a glass transition temperature (T g) of 50 ° C. or higher and 200 ° C. or lower.
  • a second aspect of the present invention is a liquid crystal film in which a cured acryl-based resin layer Z-aligned liquid crystal material layer Z-cured acryl-based resin layer is laminated in this order, and the Tg of one cured acryl-based resin layer is
  • the present invention relates to a liquid crystal film having a temperature of 50 ° C. or more and 200 ° C. or less and a Tg of another cured acrylic resin layer of 20 ° C. or more and 100 ° C. or less.
  • the third aspect of the present invention is a liquid crystal film obtained by laminating a cured acryl-based resin layer, a liquid crystal substance layer having a fixed Z-orientation, a Z-cured acryl-based resin layer, and a Z-transparent substrate film.
  • the glass transition temperature (T g) of the acrylic resin layer is from 50 ° C to 200 ° C.
  • the fourth aspect of the present invention is a cured acrylic resin layer / a liquid crystal material layer having a fixed Z orientation / A liquid crystal film formed by laminating a cured acryl resin layer / translucent substrate film in this order, and the T g of one cured acryl resin layer is not less than 50 ° C and not more than 200 ° C,
  • the present invention relates to a liquid crystal film, wherein one cured acryl-based resin layer has a T g of 20 ° C. or more and 100 ° C. or less.
  • the liquid crystal material layer having a fixed orientation is composed of a polymer liquid crystal material that aligns liquid crystal at a temperature equal to or higher than the liquid crystal transition point and enters a glass state at a temperature equal to or lower than the liquid crystal transition point. It is related with the above-mentioned liquid crystal film.
  • the liquid crystal film according to the above wherein the liquid crystal material layer in which the alignment is fixed is obtained by photo-crosslinking or heat-crosslinking a low-molecular liquid crystal material having liquid crystal alignment.
  • the seventh aspect of the present invention relates to the liquid crystal film as described above, wherein the translucent substrate film is a triacetyl cellulose (T A C) film.
  • T A C triacetyl cellulose
  • An eighth aspect of the present invention relates to the liquid crystal film as described above, wherein the translucent substrate film is a triacetyl cellulose (T A C) film having a thickness of 50 ⁇ m or less.
  • T A C triacetyl cellulose
  • a ninth aspect of the present invention relates to a laminated film for an optical element, characterized in that the liquid crystal film described above is laminated with a polarizing film via an adhesive.
  • “Z” represents the interface of each layer, and the same shall apply hereinafter.
  • the present invention will be described in detail.
  • the liquid crystal film formed by laminating the cured acryl-based resin layer Z-aligned liquid crystal material layer and the cured acryl-based resin layer in this order is a photo-curing liquid crystal material layer formed on the alignment substrate. It can be obtained by transferring onto a re-peelable substrate via a type acrylic adhesive, and then forming a protective layer made of a cured acryl resin on the surface of the liquid crystal material layer from which the alignment substrate has been removed.
  • the liquid crystal material layer in which the alignment of the liquid crystal used in the present invention is fixed is a layer fixed by using means for fixing the liquid crystal material in the aligned state.
  • the liquid crystal material is cooled rapidly from the orientation state and the gas is Examples include a method of fixing in a glassy state, a method of aligning a low-molecular liquid crystal substance or a high-molecular liquid crystal substance having a reactive functional group, and then reacting the functional group (curing, stretching, etc.) and fixing. It is done.
  • Examples of the reactive functional group include a bur group, a (meth) acryloyl group, a buroxy group, an epoxy group, an oxetanyl group, a carboxyl group, a hydroxyl group, an amino group, an isocyanato group, and an acid anhydride.
  • the reaction is carried out in a suitable way.
  • the liquid crystal material that can be used for the liquid crystal material layer can be selected from a wide range regardless of whether it is a low-molecular liquid crystal material or a high-molecular liquid crystal material, depending on the intended use of the liquid crystal film.
  • Molecular liquid crystal materials are preferred.
  • the molecular shape of the liquid crystal substance may be a rod shape or a disk shape.
  • a discotic liquid crystal compound exhibiting a discotic nematic liquid crystal property can also be used.
  • liquid crystal phase of the liquid crystal material layer before fixation examples include a nematic phase, a twisted nematic phase, a cholesteric phase, a hybrid nematic phase, a hybrid twisted nematic phase, a discotic nematic phase, and a smectic phase.
  • polymer liquid crystal substance various main chain polymer liquid crystal substances, side chain polymer liquid crystal substances, or a mixture thereof can be used.
  • Main chain polymer liquid crystal materials include polyester, polyamide, polycarbonate, polyimide, polyurethane, polybenzimidazole, polybenzoxazole, polybenzthiazole, polyazomethine, polyester.
  • Examples thereof include polymer liquid crystal materials such as amide, polyester carbonate and polyester imide, or a mixture thereof.
  • a skeleton chain having a linear or cyclic structure such as a polyacrylate type, a polymethacrylate type, a polybule type, a polysiloxane type, a polyether type, a polymalonate type, or a polyester type is used.
  • a main chain type polymer liquid crystal substance is preferred because of its ease of synthesis and orientation.
  • Low molecular liquid crystal materials include saturated benzene carboxylic acids, unsaturated benzene carboxylic acids, biphenyl carboxylic acids, aromatic oxycarboxylic acids, Schiff base types, Bisazomethine compounds, azo compounds, azoxy compounds, sylclohexane ester compounds, sterol compounds, etc. having the above-mentioned reactive functional group introduced at the terminal, liquid crystal compounds and liquid crystals among the above compounds Examples thereof include a composition obtained by adding a crosslinkable compound to a compound exhibiting properties.
  • Examples of the discotic liquid crystal compound include triphenylene and torquesen.
  • various compounds having functional groups or sites that can react by heat or a photocrosslinking reaction or the like in the liquid crystal substance may be blended within a range that does not hinder the expression of liquid crystallinity.
  • the functional group capable of undergoing a crosslinking reaction include the various reactive functional groups described above.
  • the liquid crystal material layer in which the alignment of the liquid crystal is fixed is a method in which a composition containing the liquid crystal material and various compounds added as necessary is applied on the alignment S plate in a molten state, Formed by the method of applying the solution on the alignment substrate, etc., and the coating applied on the alignment substrate is dried, subjected to heat treatment (liquid crystal alignment), and if necessary, light irradiation or heat treatment (polymerization, crosslinking) It is formed by fixing the orientation using the means for fixing the above-mentioned orientation.
  • the solvent used for the preparation of the solution is not particularly limited as long as it is a solvent that can dissolve the liquid crystal substance and composition used in the present invention and can be distilled off under appropriate conditions. Generally, acetone, methyl ethyl ketone are used.
  • Ketones such as isophorone, butenosyl alcohol, hexyloxyethyl alcohol, methoxyl 2-propanol, etc., ethylene glycol / resin chinenoyl ether, and glycol ethers such as diethylene glycol dimethyl ether , Esters such as ethyl acetate, methoxypropyl acetate, and ethyl lactate, phenols such as phenol and black mouth phenol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc.
  • a surfactant, an antifoaming agent, a leveling agent, etc. may be added to the solution.
  • dichroic dyes, ordinary dyes, pigments, and the like can be added within a range that does not hinder the expression of liquid crystallinity for the purpose of coloring.
  • the application method is not particularly limited as long as the uniformity of the coating film is ensured.
  • a known method can be employed. Examples thereof include a roll coating method, a dip coating method, a dip coating method, a curtain coating method, and a spin coating method.
  • a solvent removal (drying) step by a method such as a heater or hot air blowing may be added.
  • the thickness of the applied film in the dry state is from 0.1 / zm to 50 / m, preferably from 0.2 ⁇ to 20 / ⁇ , and more preferably from 0.3 ⁇ ! ⁇ 10 ⁇ m. Outside this range, the optical performance of the obtained liquid crystal material layer is insufficient, and the alignment of the liquid crystal material is insufficient.
  • the orientation of the liquid crystal is formed by heat treatment or the like, and then the orientation is fixed.
  • the heat treatment is to align the liquid crystal by the self-orientation ability inherent in the liquid crystal substance by heating to the temperature range where the liquid crystal phase appears.
  • the conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values differ depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal material used, but are usually 10 to 300 ° C, preferably 30 to It is in the range of 2 50 ° C. If the temperature is too low, the alignment of the liquid crystal may not proceed sufficiently, and if the temperature is high, the liquid crystal material may decompose or adversely affect the alignment substrate.
  • the heat treatment time is usually in the range of 3 seconds to 60 minutes, preferably 10 seconds to 30 minutes. If the heat treatment time is shorter than 3 seconds, the alignment of the liquid crystal may not be sufficiently completed, and if the heat treatment time exceeds 60 minutes, the productivity will be extremely deteriorated.
  • the liquid crystal material layer on the alignment substrate is fixed as it is by using means suitable for the liquid crystal material used.
  • alignment substrate examples include polyimide, polyamide, polyimide, polyphenylene sulfide, polyphenylene oxide, polyether ketone, polyether ether ether ketone, polyether ether sulfone, polysulfone, polyethylene terephthalate, polyethylene naphthalate, and polyarylate.
  • examples thereof include films of triacetyl cellulose, epoxy resin, phenol resin and the like.
  • these films exhibit sufficient alignment ability for the liquid crystal material used in the present invention without performing treatment for expressing the alignment ability again depending on the production method, but the alignment ability is insufficient, or When the orientation ability is not exhibited, these films are stretched under moderate heating, the film surface is rubbed in one direction with rayon cloth, etc., so-called rubbing treatment, polyimide, polyvinyl alcohol on the film , Shi Use a film that exhibits alignment ability by providing an alignment film made of a known alignment agent such as a run force pulling agent and performing rubbing treatment, oblique vapor deposition treatment such as silicon oxide, or a combination of these. May be.
  • a metal plate such as aluminum, iron, or copper having various regular fine grooves on the surface, various glass plates, etc. can be used.
  • the alignment treatment direction of the alignment substrate is not particularly limited, and can be appropriately selected by performing each of the above treatments in an arbitrary direction.
  • a predetermined angle is selected with respect to the MD direction of the long continuous film, and an alignment process is performed in an oblique direction as necessary. It is desirable.
  • Examples of the removable substrate used in the present invention include polyethylene, polypropylene, 4-methylpentene_1 resin and other olefin-based resins, polyamides, polyimides, polyamideimides, polyetherimides, polyether ketones, polyether ether-tenol ketones, Polyethersulfone, Polyketonesulfide, Polysulfone, Polystyrene, Polyphenylene sulfide, Polyethylene oxide, Polyethylene terephthalate, Polybutylene terephthalate, Polyarylate, Polyacetal, Uniaxially stretched polyester, Polycarbonate, Polyvinyl alcohol, Polymethyl methacrylate, polyarylate, amorphous polyolefin, norbornene resin, triacetyl cellulose, or epoxy resin Phil beam can be used.
  • transparent and optically isotropic films with excellent optical defect inspection properties include 4-methylpentene-1, polymethyl methacrylate, polystyrene, polycarbonate, polyethersulfone, polyarylate, and amorphous poly Olefin, norbornene resin, triacetyl selellellose, or epoxy
  • a plastic film such as a resin is preferably used.
  • the surface can be coated with silicone in advance, or an organic thin film or an inorganic thin film can be formed.
  • the surface of the plastic film can be subjected to chemical treatment such as saponification treatment or physical treatment such as corona treatment.
  • the plastic film may contain a lubricant or a surface modifier.
  • a lubricant or a surface modifier.
  • the type and amount of the lubricant include fine silica, fine alumina, and the like.
  • the haze value of the removable substrate is usually 50% or less, preferably 30% or less. Good. If the addition amount is too small, the effect of addition is not recognized. On the other hand, if the addition amount is too large, the optical defect inspection property deteriorates, which is not preferable.
  • the peelability of a removable substrate even a releasable substrate manufactured from the same material cannot be determined unconditionally because it changes depending on the manufacturing method, surface condition, wettability with the adhesive used, etc.
  • the peeling force at the interface with the adhesive (1800 ° peeling, peeling speed 30 cm, measured at room temperature) is usually 0.38 to: I 2 N / m, preferably 0. 3 8 to 8.0 NZm is desirable.
  • the peel-off force is too low when the alignment substrate is peeled off after the liquid crystal material layer on the alignment substrate is bonded to the re-release substrate. If the desired peeling state at the desired interface is not obtained, the transfer of the liquid crystal material layer to the removable substrate becomes insufficient, and if the peeling force is too high, the removable substrate is peeled off. At this time, it is not preferable because the liquid crystal material layer is broken or it cannot be peeled off at the interface with the desired layer.
  • the thickness of the removable substrate may affect the releasability, and is preferably 16 to 100 im, particularly preferably 25 to 50 ⁇ m. If the thickness is too thick, the peeling point may not be stable and the peelability may deteriorate. On the other hand, if the thickness is too thin, the mechanical strength of the film cannot be maintained, which may cause problems such as tearing during production. .
  • a photocurable acrylic adhesive is applied to the liquid crystal material layer and then irradiated from the outside. After photo-curing and bonding, the alignment substrate can be peeled off to transfer easily.
  • the cured acrylic resin layer as an adhesive is formed by applying a curable acrylate and curing it.
  • curable acrylate for example, a known photo-curable acryl-based adhesive can be used.
  • polyester acrylate, epoxy acrylate, urethane acrylate, polyether acrylate, silicone acrylate examples thereof include various acryl-based oligomers and monomers such as a monomer alone, a mixture thereof, or a mixture of these with various reactive diluents.
  • the fine particles include fine particles having a refractive index different from that of the compound constituting the adhesive, conductive fine particles for improving antistatic performance without impairing transparency, and fine particles for improving wear resistance.
  • Specific examples include fine silica, fine alumina, ITO (Indium Tin Oxide) fine particles, silver fine particles, and various synthetic resin fine particles.
  • the surface modifier is not particularly limited as long as it has good compatibility with the adhesive and does not affect the curability of the adhesive or the optical performance after curing, and is ionic or nonionic.
  • Water-soluble surfactants, oil-soluble surfactants, polymer surfactants, fluorine-based surfactants, organometallic surfactants such as silicone, reactive surfactants, and the like can be used.
  • the curing method of these curable acryl adhesives is not particularly limited, and examples thereof include heat curing, redox system room temperature curing, anaerobic curing, actinic radiation curing such as ultraviolet rays and electron beams.
  • a preferred curing method is a photocuring method using active rays such as ultraviolet rays and electron beams.
  • the photocuring method is preferable because it generates little or no heat and thus has little influence on the liquid crystal substance layer in which the alignment is fixed.
  • the reaction is performed by adding various known photoinitiators and irradiating light from a light source such as a metal halide lamp, high-pressure mercury lamp, low-pressure mercury lamp, xenon lamp, arc lamp, laser beam, or synchrotron radiation source.
  • the amount of irradiation per unit area (1 square centimeter) is usually in the range of l to 2 0 0 0 mj, preferably 1 to 1 0 0 0 0 m j as the integrated dose It is. However, this is not the case when the absorption region of the photoinitiator and the spectrum of the light source are significantly different, or when the reactive compound itself has the ability to absorb the light source wavelength. In these cases, an appropriate photosensitizer, or a mixture of two or more photoinitiators having different absorption wavelengths can be used.
  • the acceleration voltage in the case of the electron beam curing type is usually 10 kV to 200 kV, and preferably 50 kV to 100 kV.
  • Examples of the photocuring initiator in the case of curing with actinic radiation include, for example, benzoin etherenole, benzoin ethylenoate / res, benzino methinoreketanol, hydroxyphenyl ketone, 1,1-dichloroacetophenol.
  • Non-, thixanthones, or benzophenones in combination with amines are exemplified.
  • the amount used is in the range of 0.1 to: I 0% by weight of the resin.
  • a protective layer made of a cured acrylic resin is formed on the liquid crystal material layer from which the alignment substrate has been removed in order to protect the surface.
  • the protective layer may be a cured acryl-based resin layer itself made of a curable acrylate having optical isotropy, or by adhering a translucent film using a curable acryl resin as an adhesive. Can be configured. In either case, the cured acryl resin layer is formed by applying a curable acrylate to the surface and curing it.
  • curable acrylate used for forming the protective layer those known as an acrylic adhesive, a curable plastic coating agent, or a plastic hard coat agent can be used.
  • polyester acrylate, epoxy acrylate, urethane acrylate examples thereof include various acryl-based oligomers and monomers such as rate, polyether acrylate, and silicone acrylate, mixtures thereof, and mixtures thereof with various reactive diluents.
  • the fine particles include fine particles having a refractive index different from that of the compound constituting the adhesive, conductive fine particles for improving antistatic performance without impairing transparency, and fine particles for improving wear resistance.
  • Specific examples include fine silica, fine alumina, ITO (Indium Tin Oxide) fine particles, silver fine particles, and various synthetic resin fine particles.
  • the surface modifier is not particularly limited as long as it has good compatibility with the adhesive and does not affect the curability of the adhesive or the optical performance after curing. Water-soluble surfactants, oil-soluble surfactants, polymer surfactants, fluorosurfactants, organometallic surfactants such as silicone, reactive surfactants, and the like can be used.
  • the curing method of these curable acrylic resins is not particularly limited, and examples thereof include heat curing, redox room temperature curing, anaerobic curing, active ray curing such as ultraviolet rays and electron beams.
  • a preferable curing method is a photo-curing method using an active ray such as an ultraviolet ray or an electron beam. The photocuring method is preferable because it generates little or no heat and thus has little influence on the liquid crystal substance layer in which the alignment is fixed.
  • the reaction can be performed by adding various known photoinitiators and irradiating light from a light source such as a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, an arc lamp, a laser, or a synchrotron radiation source.
  • a light source such as a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, an arc lamp, a laser, or a synchrotron radiation source.
  • the irradiation dose per unit area (1 square centimeter) is usually in the range of 1 to 200,000 mj, preferably 10 to 100 OmJ, as the integrated irradiation dose. However, this is not the case when the absorption region of the photoinitiator and the spectrum of the light source are significantly different, or when the reactive compound itself has the ability to absorb the light source wavelength.
  • an appropriate photosensitizer, or a mixture of two or more photoinitiators having different absorption wavelengths can be used.
  • the acceleration voltage in the case of the electron beam curing type is usually 10 kV to 200 kV, and preferably 50 kV to 100 kV.
  • Examples of the photocuring initiator in the case of curing with actinic radiation include, for example, benzoin ether, benzoin ether, benzylmethyl ketal, hydroxyphenyl ketone, 1,1-dichloroacetophenone, thixanthones, or Examples include benzophenones in combination with amines.
  • the amount of resin used is 0. A range of ⁇ 10% by weight is employed.
  • a liquid crystal film in which a cured acryl-based resin layer / a liquid crystal material layer in which an orientation is fixed and a cured acryl-based resin layer are laminated in this order is obtained.
  • the re-peelable substrate is peeled off before forming the protective layer or after forming the protective layer.
  • at least one cured acrylic resin layer has a glass transition temperature (Tg) of 50 ° C or higher 200 Use a temperature not higher than ° C, preferably not lower than 60 ° C and not higher than 1550 ° C. If the Tg of the cured acryl resin layer is lower than 50 ° C, abnormal appearance (cracking, deformation, etc.) of the liquid crystal material layer in environmental tests such as high temperature and high humidity, especially in cyclic environmental tests between high temperature and high humidity The effect of preventing is insufficient.
  • Tg glass transition temperature
  • the glass transition temperature is higher than 200 ° C, problems such as insufficient adhesion to the liquid crystal material layer and cracks in the cured acrylic resin layer are likely to occur.
  • both Tg of the cured acryl-based resin layers (A, B) are too high, problems such as cracking at the edges are likely to occur during film cutting and handling.
  • the Tg of the cured acrylic resin layer is 50 ° C to 200 ° C, and the Tg of the other cured acrylic resin layer is 20 ° C to 100 ° C, preferably 30 ° C or more. It is preferably 80 ° C or lower.
  • the thicknesses of the cured acrylic resin layers (A, B) are each 0.1 to 50 ⁇ , preferably 0.5 to 20 ⁇ , and more preferably 1 to I 0 ⁇ m. . If the thickness is too thin, the protective effect of the liquid crystal material layer in the environmental test is insufficient, and if it is too thick, it takes time to cure the acrylic resin layer, and the product thickness becomes unfavorable.
  • a release layer is formed between the liquid crystal substance layer and another layer by using a releasable substrate in which a release layer that can be peeled from the substrate is formed on the surface of the releasable substrate. It is also possible to form.
  • the release layer By forming the release layer, it is possible to obtain a stress blocking effect to suppress the appearance change (for example, wave out) of the thin film liquid crystal material layer during manufacturing and environmental testing.
  • the release layer is not particularly limited, but is preferably an optically isotropic transparent layer. Examples thereof include polymers such as acrylic, methacrylic, nitrocellulose, and epoxy compounds, and mixtures thereof. be able to.
  • the thickness of the release layer is 0.3 ⁇ m or more and 40 ⁇ m or less, preferably 0.5 ⁇ m or more and 10 m or less, and the glass transition point (T g) is 20 ° C.
  • the material is not particularly limited as long as it is an optically isotropic transparent layer at a temperature of ° C or more and does not significantly impair the optical properties of the liquid crystal material layer. If the film thickness and glass transition point are outside this range, Is not preferred from the standpoints of lack of effectiveness and the product becoming too thick.
  • the release layer may be controlled in physical properties by partial crosslinking by adding a crosslinking component, addition of a plasticizer, addition of a lubricant, and the like.
  • the method for forming the release layer is not particularly limited.
  • a material that becomes the release layer having the above-described film thickness is applied on a removable substrate film such as polyethylene, polypropylene, and polyethylene terephthalate.
  • a transfer method in which the layer is formed by a method such as extrusion, this layer is closely adhered via an adhesive layer or a transparent protective layer, and then the removable substrate film is peeled off.
  • the cured acryl-based resin layer is a liquid crystal material layered in the order of a liquid crystal material layer with fixed orientation / cured acryl-based resin layer / translucent substrate film.
  • the layer is transferred onto a light-transmitting substrate film through a photocurable acryl-based adhesive, and then a protective layer made of cured allyl resin is formed on the surface of the liquid crystal material layer from which the alignment substrate has been removed.
  • a protective layer made of cured allyl resin is formed on the surface of the liquid crystal material layer from which the alignment substrate has been removed.
  • the translucent substrate film used in the present invention is not particularly limited as long as it has transparency, optical isotropy, and can support the liquid crystal material layer, but a plastic film is usually used.
  • polyarylates such as polymethyl (meth) acrylate, polystyrene, polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylate, polyethylene sulfide, amorphous polyolefin, triacetyl cellulose, 4-methylpentene-1
  • films include norbornene-based resins and epoxy resins.
  • the translucent substrate film is usually selected from the range of 1 to 100 ⁇ m because the self-supporting property or the supporting property is lost if there is no certain thickness.
  • a light-transmitting substrate film such as polycarbonate that has less shrinkage change due to moisture absorption under the environmental test conditions.
  • a triacetyl cellulose (TAC) film is often used because of its excellent optical properties and versatility.
  • TAC film is necessary to reduce the thickness of the final product.
  • the thickness should be 100 m or less, preferably 50 ⁇ m or less.
  • the liquid crystal material layer is photocured in the same manner as the method for transferring the liquid crystal material layer onto the removable substrate described above.
  • a method of transferring to a translucent substrate film through a type acrylic adhesive can be used.
  • the translucent substrate film is bonded to the liquid crystal material layer with a photo-curable acrylic adhesive, it is photocured by irradiating it with light from the outside, bonded, and then the alignment substrate is peeled off for easy transfer. Is possible.
  • the curable acrylate used as the adhesive a known photo-curing acryl adhesive as described above can be used.
  • various fine particles and surface modifiers can be added to these adhesives as long as the properties are not impaired.
  • the above-described method is used for curing these curable acryl-based resins.
  • a protective layer made of a cured acrylic resin is formed on the liquid crystal material layer from which the alignment substrate has been removed in order to protect the surface.
  • the protective layer can be a cured acryl-based resin layer itself made of a curable acrylate having optical isotropy, or a light-transmitting film can be bonded using the curable acryl resin as an adhesive. Can also be configured. In both cases, the cured acryl resin layer is formed by applying a curable acrylate to the surface and curing it.
  • curable acrylate used for forming the protective layer those known as acrylic adhesives, curable plastic coating agents, or plastic hard coating agents as described above can be used. As described above, various fine particles and surface modifiers can be added to these adhesives as long as the properties are not impaired. In addition, the above-described method is used for curing these curable acryl-based resins.
  • the above method a liquid crystal film in which the liquid crystal material layer / cured acrylic resin layer Z light-transmitting substrate film in which the cured acryl-based resin layer Z orientation is fixed is laminated in this order is obtained.
  • the above-mentioned cured acrylic resin layer (A) liquid crystal material layer in which the orientation is fixed Z cured acrylic resin layer (B) Z is a liquid crystal film in which a Z-transparent substrate film is laminated in this order.
  • at least one cured acrylic resin layer having a glass transition temperature (Tg) of 50 ° C to 200 ° C, preferably 60 ° C to 150 ° C is used.
  • Tg of the cured acrylic resin layer is lower than 50 ° C, abnormal appearance of the liquid crystal material layer (cracking, deformation, etc.) in environmental tests such as high temperature and high humidity, especially in cyclic environmental tests between high temperature and high humidity ) The effect of preventing is insufficient.
  • the glass transition temperature is higher than 200 ° C, problems such as insufficient adhesion to the liquid crystal material layer and easy cracking in the cured acrylic resin layer occur.
  • both Tg of the hardened acrylic resin layers (A, B) are too high, problems such as cracking at the end during film handling are likely to occur.
  • Tg of one cured acrylic resin layer is 50 ° C or more and 200 ° C or less, and Tg of another cured acrylic resin layer is 20 ° C or more and 100 ° C or less, preferably 30 ° C or more
  • the temperature is preferably 80 ° C or lower.
  • the thickness of the cured acrylic resin layer (A, B) is 0.1 to 50 m, preferably 0.5 to 20 ⁇ , more preferably: ⁇ 10 m. If the thickness is too thin, the protective effect of the liquid crystal material layer in the environmental test is insufficient, and if it is too thick, it takes time for the acrylic resin layer to cure or the product thickness increases, which is not preferable. If necessary, the surface protection function can be increased by laminating a transparent protective film that is optically isotropic for surface protection of the surface of the cured acrylic resin layer. When a light-transmitting protective film is further bonded in this manner, the light-transmitting protective film is bonded by using a light-curable resin among the acrylic resins described above as the curable acrylate resin. After laminating the film, it can be cured by applying light from the outside.
  • the translucent protective film is appropriately selected from the materials described in the above translucent substrate and used.
  • the translucent protective film has a thickness of 0.1 to 500 / im, preferably: The range is ⁇ 200 m.
  • the liquid crystal film of the present invention is usually laminated with a polarizing plate when used as a color compensator for a liquid crystal display element or a viewing angle compensator, and further, as necessary, a liquid crystal film or a polymer.
  • a stretched film or the like is also laminated.
  • Polarizing plate Adhesive layer / liquid crystal film Adhesive layer Z polymer stretched film and the like.
  • the polarizing plate is not particularly limited, and a polarizing plate usually used in a liquid crystal display device can be used as appropriate, but a thin film type that has been developed recently is preferable. Specifically, iodine and / or two colors are used for hydrophilic polymer films such as PVA polarizing films such as polybulal alcohol (PVA) and partially acetalized PVA, and partially saponified ethylene-vinyl acetate copolymers.
  • PVA polybulal alcohol
  • PVA polybulal alcohol
  • partially acetalized PVA partially saponified ethylene-vinyl acetate copolymers.
  • a polarizing film formed by adsorbing a photosensitive dye and stretched, or a polarizing film made of a polyene-oriented film such as a PVA dehydrated product or a polychlorinated butyl dehydrochlorinated product can be used.
  • a reflective polarizing film can also be used.
  • the polarizing plate may be used alone, or a polarizing film may be provided with a transparent protective layer or the like on one or both sides of the polarizing film for the purpose of improving strength, improving moisture resistance, improving heat resistance, etc. good.
  • a transparent protective layer a transparent plastic film such as polyester triacetylcellulose is laminated directly or via an adhesive layer, a resin coating layer, an acrylic or epoxy photocurable resin layer, etc. And so on.
  • these transparent protective layers are coated on both sides of the polarizing film, the same transparent protective layer may be provided on both sides, or different transparent protective layers may be provided.
  • stretched polymer film examples include cellulose-based, polycarbonate-based, polyarylate-based, polysulfone-based, polyvinyl alcohol (PVA) -based, polyacrylic-based, polyethersulfone-based, cyclic polyolefin-based uniaxial, Alternatively, a biaxially stretched retardation film can be exemplified. Above all, polycarbonate From the viewpoint of ease of production, film uniformity, and optical properties, cyclic polyolefin-based uniaxially stretched films such as a benzoyl-based and norbornene-based film are preferred.
  • the direction of stretching is not particularly limited, and can be appropriately selected by performing in any direction.
  • it when handling a long polymer stretched film, it is stretched obliquely (obliquely stretched) or TD direction (transversely) at a predetermined angle with respect to the MD direction of the long continuous film. Stretching) It is desirable to be processed.
  • a stretched film is laminated with a liquid crystal film or polarizing plate in an axial arrangement that can exhibit optimal optical characteristics by stretching the film in a predetermined angle direction, it is applied in a state where the MD of the long film is aligned. This is extremely advantageous from the standpoint of enabling bonding (so-called roll-to-roll bonding) or increasing the efficiency of product collection.
  • the optical laminate in which the liquid crystal film of the present invention is bonded to a polarizing plate functions as a compensation member for various liquid crystal display devices, an elliptically polarizing plate, and a circularly polarizing plate, depending on the optical parameters of the liquid crystal material layer. Can do.
  • the liquid crystal material layer constituting the optical laminate is, for example, a liquid crystal material layer in which nematic alignment or twisted nematic alignment is fixed functions as a retardation plate, the optical material of the present invention using the liquid crystal material layer as a constituent member.
  • the laminated body can be used as a compensation plate for transmission or reflection type liquid crystal display devices such as STN type, TN type, OCB type, and HAN type.
  • the liquid crystal material layer in which the nematic hybrid alignment is fixed can be used as a retardation film or a wave plate when viewed from the front, and the orientation of the retardation value (film) By utilizing the asymmetry due to the inclination of the molecular axis in the thickness direction, it can also be used as a viewing angle improving member of a TN type liquid crystal display device.
  • the liquid crystal material layer having a 1Z4 wavelength plate function can be used as an antireflection filter for a circularly polarizing plate, a reflective liquid crystal display device, or an EL display device by combining with a polarizing plate as in the present invention. it can.
  • the phase difference of birefringent light in monochromatic light at 5500 nm is approximately 1/4 wavelength. Birefringent light with plate and monochromatic light at 5500 nm It is generally known that it is effective to stack 1 and 2 wavelength plates with a phase difference of approximately 1 Z 2 wavelengths in a state where their slow axes intersect. Widely used in liquid crystal display devices. That is, if a technique for obtaining a thin optical laminate as in the present invention is used, a thin broadband 14-wave plate that has been difficult with only a conventional high molecular stretched film can be obtained.
  • the retardation value of the 1/4 wavelength plate is usually 70 nm to 80 nm, preferably 90 nm to 160 nm, and particularly preferably 120 nm ⁇ ! It is in the range of ⁇ 1 5 0 n.rn.
  • the retardation value of the 1-wave plate is usually from 1800 nm to 3200 nm, preferably 2 0 0 ⁇ ⁇ ! ⁇ 300 nm, particularly preferably 2 2 O n ⁇ ! It is in the range of ⁇ 280 nm. If the retardation range of the 1/4 wavelength plate and 1 Z 2 wavelength plate deviates from the above, unnecessary coloration may occur in the liquid crystal display device.
  • the retardation value represents the product of birefringence ⁇ n and film thickness d.
  • the liquid crystal material layer constituting the layered body is one in which the cholesteric alignment is fixed to the smectic alignment, a polarizing reflection film for improving brightness, a reflection type color filter, selection It can be used for various anti-counterfeiting elements and decorative films that take advantage of the color change of reflected light depending on the viewing angle due to reflectivity.
  • the present invention it is possible to obtain a thin laminated film for optical elements that has been improved in resistance under severe environmental tests that would cause appearance abnormalities, and therefore when used by being bonded to a liquid crystal display device.
  • the industrial margin is extremely high.
  • phase transition temperature was 250 ° C or higher, and the glass transition temperature by differential scanning calorimetry (DS C) was 1 1 2 ° C.
  • a solution was prepared by dissolving 20 g of Polymer 1 in 80 g of N-methyl-2-pyrrolidone. This solution was applied on a polyimide film (trade name “Kapton”, manufactured by DuPont) that was rubbed with a rayon cloth, and the solvent was removed by drying, followed by heat treatment at 210 ° C for 20 minutes. As a result, a nematic alignment structure was formed. After the heat treatment, the nematic alignment structure was fixed by cooling to room temperature to obtain a liquid crystal material layer uniformly aligned with an actual film thickness of 0.7 ⁇ on the polyimide film (liquid crystal material layer 1). The actual film thickness was measured using a stylus type film thickness meter.
  • the layer 1 was applied, and a polyethylene terephthalate (PET) film 1 having a thickness of 50 ⁇ was laminated thereon, and the acrylic resin layer 1 was cured by UV irradiation of about 60 Om J. After this, the PET film 1 cured acrylic resin layer 1 Z liquid crystal material layer 1
  • the polyimide film is peeled from the laminate in which the polyimide film is integrated to transfer the liquid crystal material layer onto the PET film 1, and PE
  • ⁇ nd of the laminate after peeling the PET film 1 from the laminate (A) is 145 nm.
  • a commercially available uniaxially stretched norbornene film (thickness 80 ⁇ m, A nd 270 nm) in which a pressure-sensitive adhesive layer having a thickness of 25 ⁇ m is previously formed on one side of the cured acrylic resin layer 2 of the laminate (A). JSR Co., Ltd. Arteron) is bonded to obtain a laminate composed of a norbornene film adhesive layer, a cured acrylic resin layer, a 2 liquid crystal material layer, a cured acrylic resin layer 1 and a PET film 1 It was.
  • a commercially available polarizing plate (thickness: about 180 m; SQW-862 manufactured by Sumitomo Chemical Co., Ltd.) with a 25 ⁇ thick adhesive layer formed on one side in advance is bonded, and finally PET film 1 is peeled off.
  • a laminated film for an optical element according to the present invention comprising a polarizing plate / adhesive layer nonorbornene-based film non-adhesive layer / cured acryl-based resin layer 2 Z liquid crystal material layer 1 Z-cured acryl-based resin layer 1 was obtained. .
  • a laminated film for an optical element was obtained in the same manner as in Example 1 except that an adhesive having a T g of 54 ° C. was used as the UV curable acrylic resin layer 1.
  • a laminated film for an optical element was obtained in the same manner as in Example 1 except that an adhesive having a T g of 41 ° C. was used as the UV curable acryl resin layers 1 and 2. Comparative Example 2>
  • a laminated film for an optical element was obtained in the same manner as in Example 1 except that an adhesive having a T g of 224 ° C was used as the UV-curable acryl resin layers 1 and 2.
  • a UV-curable acrylic adhesive with a glass transition temperature of 85 ° C on the liquid crystal material layer 1 (surface opposite to the polyimide film) obtained in the preparation example is 5;
  • the resin layer 3 was applied, and a 40 ⁇ m- thick triacetyl cellulose (TAC) film was laminated thereon, and the acrylic resin layer 3 was cured by UV irradiation of about 60 Om J.
  • TAC triacetyl cellulose
  • the polyimide film is peeled from the laminate in which the TAC film-cured acrylic resin layer 3 Z liquid crystal material layer 1 / polyimide film is integrated to transfer the liquid crystal material layer onto the TAC film.
  • a laminate comprising a TAC film cured acryl-based resin layer 3 and a liquid crystal material layer 1 was obtained.
  • PET polyethylene terephthalate
  • a laminate (A) comprising TAC film / cured acryl resin layer 3 Z liquid crystal material layer 1 cured acryl resin layer 4 was obtained.
  • ⁇ nd of the laminate (A) was 140 nm.
  • the polarizing plate adhesive layer ⁇ A laminated film for optical elements of the present invention comprising a norbornene-based film, an adhesive layer, a cured acryl-based resin layer, a ⁇ liquid crystal material layer, a 1Z-cured acryl-based resin layer, and a ZT AC film was obtained.
  • a laminated film for an optical element was obtained in exactly the same manner as in Example 4, except that an adhesive having a T g of 41 ° C. was used as the UV curable acryl-based resin layer 3.
  • a laminated film for an optical element was obtained in the same manner as in Example 5 except that an adhesive having a T g of 41 ° C. was used as the UV curable acryl-based resin layer 4.
  • a laminated film for an optical element was obtained in the same manner as in Example 4 except that an adhesive having a T g of 224 ° C was used as the UV curable acryl-based resin layer 4.
  • Table 1 summarizes the evaluation results of the high-temperature and high-humidity cycle environmental tests of the laminated films for optical elements obtained in Examples 1 to 3 and Comparative Examples 1 to 3.
  • Table 2 summarizes the evaluation results of the high-temperature and high-humidity cycle environmental tests of the laminated films for optical elements obtained in Examples 4 to 6 and Comparative Examples 4 to 5.
  • the cycle environment test conditions were (1) 24 hours at 80 ° C dry and (2) 30 cycles of cycle test at 60 ° C 90% RH for 24 hours.
  • Examples 1 to 3 and Comparative Examples 1 to 3 are acrylic resins of the obtained laminated film for optical elements. It was carried out in a form in which the surface of layer 1 was bonded to a soda glass having a thickness of 2 mm via an adhesive having a thickness of 25 / zm, and Examples 4 to 6 and Comparative Examples 4 to 5 were obtained. The TAC film surface of the optical element laminated film was bonded to a 2 mm thick soda glass through a 25 ⁇ m thick adhesive.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

A liquid crystal film produced by laminating a cured acrylic resin layer, a liquid crystal layer whose orientation is fixed, and a cured acrylic resin layer in this order, characterized in that at least one of the cured acrylic resin layers has a glass transition temperature (Tg) of 50 to 200˚C. This film is a thin liquid crystal film whose liquid crystal alignment layer does not suffer surface imperfections such as cracking even in a severe environmental test such as a dry-heat/damp-heat cycle test.

Description

液晶フィルムおよび光学素子用積層フィルム  Liquid crystal film and laminated film for optical element
[技術分野] [Technical field]
本発明は、 各種光学素子に有用な液晶フィルムおよび偏光フィルムと積層され た光学素子用積層フィルムに関する。 明  The present invention relates to a liquid crystal film useful for various optical elements and a laminated film for an optical element laminated with a polarizing film. Light
[背景技術]  [Background]
近年、 液晶表示装置に用いられる光学フィルムに対しては、 優れた光学的性能 に加えて、 より高耐久性が要求されている。 とりわけ、 携帯電話などの携帯機器 用や車載用の液晶表示装置に対しては、 各種の書使用条件を想定した厳しい環境試 験に合格することが求められている。  In recent years, optical films used in liquid crystal display devices have been required to have higher durability in addition to excellent optical performance. In particular, liquid crystal display devices for mobile devices such as mobile phones and in-cars are required to pass rigorous environmental tests assuming various book usage conditions.
液晶化合物の配向層からなる薄膜 (フィルム)、 とりわけネマチック構造、 ねじ れネマチック構造、 あるいはネマチックハイプリッド構造を固定化した液晶物質 からなるフィルムは、 液晶表示素子用の色補償や視野角補償用の素子として、 ま た旋光性光学素子等として優れた性能を有し、 各種表示素子の高性能化、 軽量化 に寄与している。 これらのフィルムの製造法としては、 配向性基板上に形成され た液晶物質からなる層を支持基板を兼ねる透光性基板上に転写する方法が提案さ れている (例えば、 特許文献 1〜 3参照。)。  A thin film (film) made of an alignment layer of a liquid crystal compound, especially a film made of a liquid crystal material with a nematic structure, a twisted nematic structure, or a nematic hybrid structure fixed, is used for color compensation and viewing angle compensation for liquid crystal display elements. As an element, it has excellent performance as an optical rotatory optical element, etc., contributing to higher performance and weight reduction of various display elements. As a method for producing these films, a method has been proposed in which a layer made of a liquid crystal material formed on an alignment substrate is transferred onto a translucent substrate that also serves as a support substrate (for example, Patent Documents 1 to 3). reference.).
さらに、 液晶表示用素子に求められる過酷な耐久性試験に耐えるための対策と して、 またより一層の薄型化、 軽量化のために、 支持基板フィルムを用いない液 晶物質からなる光学素子の製造方法も提案されている(例えば、特許文献 4参照。)。 かかる製造法によれば、 配向性基板上に配向形成された液晶物質よりなる層を、 接着剤を介して一旦再剥離性基板に転写させた後に、 該再剥離性基板を剥離する ことにより、 支持基板フィルムのない液晶物質層からなる光学素子の製造が可能 になった。  Furthermore, as a measure to endure the severe durability test required for liquid crystal display elements, and for further reduction in thickness and weight, an optical element made of a liquid crystal material that does not use a support substrate film is used. A manufacturing method has also been proposed (see, for example, Patent Document 4). According to this manufacturing method, after the layer made of the liquid crystal substance formed on the orientation substrate is transferred to the releasable substrate once through the adhesive, the releasable substrate is peeled off. It became possible to manufacture optical elements consisting of a liquid crystal material layer without a support substrate film.
通常、 これらのフィルムは偏光板、 あるいはさらに位相差フィルムと貼り合わ せて使用する。 しかしながら、 液晶化合物の配向層から製造される光学フィルム は、 例えば、 高温環境試験と高温高湿環境試験との長時間のサイクル試験におい て、 偏光板の収縮に追随できずに液晶配向層に割れ (クラック) や変形などの外 観異常が発生しやすいという問題があった。 とりわけ、 配向を固定化した液晶物 質層が、 液晶転移点以上の温度で液晶配向し、 液晶転移点以下の温度でガラス状 態となる高分子液晶の場合、 液晶配向性との兼ね合いから分子量を高めるなどに より、 液晶物質層の機械強度を高めるのには限界があった。 Usually, these films are used by being bonded to a polarizing plate or a retardation film. However, an optical film manufactured from an alignment layer of a liquid crystal compound can be used in, for example, a long cycle test between a high temperature environment test and a high temperature high humidity environment test. As a result, the liquid crystal alignment layer cannot easily follow the contraction of the polarizing plate, and appearance abnormalities such as cracks and deformation tend to occur. In particular, in the case of a polymer liquid crystal in which the liquid crystal material layer in which the alignment is fixed is aligned at a temperature equal to or higher than the liquid crystal transition point and becomes a glassy state at a temperature equal to or lower than the liquid crystal transition point, the molecular weight is balanced with the liquid crystal alignment property. There was a limit to increasing the mechanical strength of the liquid crystal material layer, for example by increasing the thickness.
(1) 特許文献 1 :特開平 4一 57017号公報  (1) Patent Document 1: Japanese Patent Laid-Open No. 4570570
(2) 特許文献 2 :特開平 4— 177216号公報  (2) Patent Document 2: JP-A-4-177216
(3) 特許文献 3 :特開平 6— 242434号公報  (3) Patent Document 3: Japanese Patent Laid-Open No. 6-242434
(4) 特許文献 4 :特開平 8— 278491号公報  (4) Patent Document 4: JP-A-8-278491
[発明の開示] [Disclosure of the Invention]
本発明の目的は、 高温試験と高温高湿試験とのサイクル試験のような厳しい環 境試験においても、 液晶配向層にクラックなどの外観異常を発生させない薄型の 液晶フィルムを提供するものである。  An object of the present invention is to provide a thin liquid crystal film that does not cause appearance abnormalities such as cracks in a liquid crystal alignment layer even in severe environmental tests such as a cycle test of a high temperature test and a high temperature and high humidity test.
本発明者らは、 前記課題について鋭意研究した結果、 本発明を完成するに至つ た。  As a result of earnest research on the above problems, the present inventors have completed the present invention.
すなわち、 本発明の第 1は、 硬化アク リル系樹脂層 配向を固定化した液晶物 質層 Z硬化ァクリル系樹脂層の順に積層されてなる液晶フィルムであって、 少な く とも一層の硬化アクリル系樹脂層のガラス転移温度 (T g) が 50°C以上 20 0°C以下であることを特徴とする液晶フィルムに関する。  That is, the first aspect of the present invention is a liquid crystal film in which a cured acrylic resin layer and a fixed orientation of a liquid crystal material layer and a Z cured acrylic resin layer are laminated in this order, and at least one cured acrylic resin layer is formed. The resin layer has a glass transition temperature (T g) of 50 ° C. or higher and 200 ° C. or lower.
また本発明の第 2は、 硬化ァクリル系樹脂層 Z配向を固定化した液晶物質層 Z 硬化ァクリル系樹脂層の順に積層されてなる液晶フィルムであって、 一層の硬化 ァクリル系樹脂層の Tgが 50°C以上 200°C以下であり、 他の一層の硬化ァク リル系榭脂層の T gが 20°C以上 100°C以下であることを特徴とする液晶フィ ルムに関する。  A second aspect of the present invention is a liquid crystal film in which a cured acryl-based resin layer Z-aligned liquid crystal material layer Z-cured acryl-based resin layer is laminated in this order, and the Tg of one cured acryl-based resin layer is The present invention relates to a liquid crystal film having a temperature of 50 ° C. or more and 200 ° C. or less and a Tg of another cured acrylic resin layer of 20 ° C. or more and 100 ° C. or less.
また本発明の第 3は、 硬化ァクリル系樹脂層 Z配向を固定化した液晶物質層 Z 硬化ァクリル系樹脂層 Z透光性基板フィルムの順に積層されてなる液晶フィルム であって、 少なくとも一層の硬化アクリル系樹脂層のガラス転移温度 (T g) が 50°C以上 200°C以下であることを特徴とする液晶フィルムに関する。  The third aspect of the present invention is a liquid crystal film obtained by laminating a cured acryl-based resin layer, a liquid crystal substance layer having a fixed Z-orientation, a Z-cured acryl-based resin layer, and a Z-transparent substrate film. The glass transition temperature (T g) of the acrylic resin layer is from 50 ° C to 200 ° C.
また本発明の第 4は、 硬化ァクリル系榭脂層 Z配向を固定化した液晶物質層/ 硬化ァクリル系樹脂層/透光性基板フィルムの順に積層されてなる液晶フィルム であって、一層の硬化ァクリル系樹脂層の T gが 5 0 °C以上 2 0 0 °C以下であり、 他の一層の硬化ァクリル系樹脂層の T gが 2 0 °C以上 1 0 0 °C以下であることを 特徴とする液晶フィルムに関する。 The fourth aspect of the present invention is a cured acrylic resin layer / a liquid crystal material layer having a fixed Z orientation / A liquid crystal film formed by laminating a cured acryl resin layer / translucent substrate film in this order, and the T g of one cured acryl resin layer is not less than 50 ° C and not more than 200 ° C, The present invention relates to a liquid crystal film, wherein one cured acryl-based resin layer has a T g of 20 ° C. or more and 100 ° C. or less.
また本発明の第 5は、 配向を固定化した液晶物質層が、 液晶転移点以上の温度 で液晶配向し、 液晶転移点以下の温度でガラス状態となる高分子液晶物質からな ることを特徴とする前記記載の液晶フィルムに関する。  According to a fifth aspect of the present invention, the liquid crystal material layer having a fixed orientation is composed of a polymer liquid crystal material that aligns liquid crystal at a temperature equal to or higher than the liquid crystal transition point and enters a glass state at a temperature equal to or lower than the liquid crystal transition point. It is related with the above-mentioned liquid crystal film.
また本発明の第 6は、 配向を固定化した液晶物質層が、 液晶配向した低分子液 晶物質を光架橋または熱架橋したものであることを特徴とする前記記載の液晶フ イルムに関する。  According to a sixth aspect of the present invention, there is provided the liquid crystal film according to the above, wherein the liquid crystal material layer in which the alignment is fixed is obtained by photo-crosslinking or heat-crosslinking a low-molecular liquid crystal material having liquid crystal alignment.
また本発明の第 7は、透光性基板フィルムがトリァセチルセルロース (T A C ) フィルムであることを特徴とする前記記載の液晶フィルムに関する。  The seventh aspect of the present invention relates to the liquid crystal film as described above, wherein the translucent substrate film is a triacetyl cellulose (T A C) film.
本発明の第 8は、 透光性基板フィルムが厚み 5 0 μ m以下のトリァセチルセル ロース (T A C ) フィルムであることを特徴とする前記記載の液晶フィルムに関 する。  An eighth aspect of the present invention relates to the liquid crystal film as described above, wherein the translucent substrate film is a triacetyl cellulose (T A C) film having a thickness of 50 μm or less.
さらに本発明の第 9は、 前記記載の液晶フィルムが、 粘接着剤を介して偏光フ イルムと積層されてなることを特徴とする光学素子用積層フィルムに関する。 なお、 上記記載において、 「Z」 は各層の界面を表すものであり、 以下同様に表 記するものとする。 以下、 本発明を詳細に説明する。  Furthermore, a ninth aspect of the present invention relates to a laminated film for an optical element, characterized in that the liquid crystal film described above is laminated with a polarizing film via an adhesive. In the above description, “Z” represents the interface of each layer, and the same shall apply hereinafter. Hereinafter, the present invention will be described in detail.
本発明の第 1における硬化ァクリル系樹脂層 Z配向を固定化した液晶物質層ノ 硬化ァクリル系榭脂層の順に積層されてなる液晶フィルムは、 配向基板上に形成 された液晶物質層を光硬化型ァクリル系接着剤を介して再剥離性基板上に移行さ せ、 次いで配向基板が除去された液晶物質層の表面に硬化ァクリル樹脂からなる 保護層を形成させることにより得ることができる。 本発明で用いられる液晶の配向が固定化された液晶物質層は、 配向状態にある 液晶物質を固定化する手段を用いることにより固定化された層である。 液晶の配 向を固定化する手段としては、 高分子液晶物質の場合は配向状態から急冷してガ ラス化状態にして固定する方法、 反応性官能基を有する低分子液晶物質または高 分子液晶物質を配向させた後、 前記官能基を反応せしめ (硬化 ·架撟等) 固定化 する方法などが挙げられる。 In the first aspect of the present invention, the liquid crystal film formed by laminating the cured acryl-based resin layer Z-aligned liquid crystal material layer and the cured acryl-based resin layer in this order is a photo-curing liquid crystal material layer formed on the alignment substrate. It can be obtained by transferring onto a re-peelable substrate via a type acrylic adhesive, and then forming a protective layer made of a cured acryl resin on the surface of the liquid crystal material layer from which the alignment substrate has been removed. The liquid crystal material layer in which the alignment of the liquid crystal used in the present invention is fixed is a layer fixed by using means for fixing the liquid crystal material in the aligned state. As a means of fixing the orientation of the liquid crystal, in the case of a polymer liquid crystal substance, the liquid crystal material is cooled rapidly from the orientation state and the gas is Examples include a method of fixing in a glassy state, a method of aligning a low-molecular liquid crystal substance or a high-molecular liquid crystal substance having a reactive functional group, and then reacting the functional group (curing, stretching, etc.) and fixing. It is done.
前記反応性官能基としては、 ビュル基、 (メタ) ァクリロイル基、 ビュルォキシ 基、 エポキシ基、 ォキセタニル基、 カルボキシル基、 水酸基、 アミノ基、 イソシ アナート基、 酸無水物等が挙げられ、 それぞれの基に適した方法で反応が行われ る。  Examples of the reactive functional group include a bur group, a (meth) acryloyl group, a buroxy group, an epoxy group, an oxetanyl group, a carboxyl group, a hydroxyl group, an amino group, an isocyanato group, and an acid anhydride. The reaction is carried out in a suitable way.
液晶物質層に使用することのできる液晶物質は、 液晶フィルムが目的とする用 途ゃ製造方法により、 低分子液晶物質、 高分子液晶物質を問わず広い範囲から選 定することができるが、 高分子液晶物質が好ましい。 さらに液晶物質の分子形状 は、 棒状であるか円盤状であるかを問わない。 例えば、 ディスコティックネマチ ック液晶性を示すディスコティック液晶化合物も使用することができる。  The liquid crystal material that can be used for the liquid crystal material layer can be selected from a wide range regardless of whether it is a low-molecular liquid crystal material or a high-molecular liquid crystal material, depending on the intended use of the liquid crystal film. Molecular liquid crystal materials are preferred. Furthermore, the molecular shape of the liquid crystal substance may be a rod shape or a disk shape. For example, a discotic liquid crystal compound exhibiting a discotic nematic liquid crystal property can also be used.
固定化前の液晶物質層の液晶相としては、ネマチック相、ねじれネマチック相、 コレステリック相、 ハイブリッドネマチック相、 ハイブリッドねじれネマチック 相、 ディスコティックネマチック相、 スメクチック相等が挙げられる。  Examples of the liquid crystal phase of the liquid crystal material layer before fixation include a nematic phase, a twisted nematic phase, a cholesteric phase, a hybrid nematic phase, a hybrid twisted nematic phase, a discotic nematic phase, and a smectic phase.
前記高分子液晶物質としては、 各種の主鎖型高分子液晶物質、 側鎖型高分子液 晶物質、 またはこれらの混合物を用いることができる。  As the polymer liquid crystal substance, various main chain polymer liquid crystal substances, side chain polymer liquid crystal substances, or a mixture thereof can be used.
主鎖型高分子液晶物質としては、 ポリエステル系、 ポリアミ ド系、 ポリカーボ ネート系、 ポリイミ ド系、 ポリウレタン系、 ポリべンズイミダゾール系、 ポリべ ンズォキサゾール系、 ポリべンズチアゾール系、 ポリアゾメチン系、 ポリエステ ルアミ ド系、 ポリエステルカーボネート系、 ポリエステルイミ ド系等の高分子液 晶物質、 またはこれらの混合物等が挙げられる。  Main chain polymer liquid crystal materials include polyester, polyamide, polycarbonate, polyimide, polyurethane, polybenzimidazole, polybenzoxazole, polybenzthiazole, polyazomethine, polyester. Examples thereof include polymer liquid crystal materials such as amide, polyester carbonate and polyester imide, or a mixture thereof.
また、 側鎖型高分子液晶物質としては、 ポリアクリ レート系、 ポリメタクリ レ 一ト系、ポリビュル系、ポリシロキサン系、 ポリエーテル系、 ポリマロネート系、 ポリエステル系等の直鎖状または環状構造の骨格鎖を有する物質に側鎖としてメ ソゲン基が結合した高分子液晶物質、 またはこれらの混合物が挙げられる。  In addition, as the side chain type polymer liquid crystal substance, a skeleton chain having a linear or cyclic structure such as a polyacrylate type, a polymethacrylate type, a polybule type, a polysiloxane type, a polyether type, a polymalonate type, or a polyester type is used. Examples thereof include a polymer liquid crystal substance in which a mesogen group is bonded as a side chain to a substance having a substance, or a mixture thereof.
これらのなかでも合成や配向の容易さなどから、 主鎖型高分子液晶物質のポリ エステル系が好ましい。  Of these, a main chain type polymer liquid crystal substance is preferred because of its ease of synthesis and orientation.
低分子液晶物質としては、 飽和ベンゼンカルボン酸類、 不飽和ベンゼンカルボ ン酸類、 ビフヱ二ルカルボン酸類、芳香族ォキシカルボン酸類、シッフ塩基型類、 ビスァゾメチン化合物類、 ァゾ化合物類、 ァゾキシ化合物類、 シ'クロへキサンェ ステル化合物類、 ステロール化合物類などの末端に前記反応性官能基を導入した 液晶性を示す化合物や前記化合物類のなかで液晶性を示す化合物に架橋性化合物 を添加した組成物などが挙げられる。 Low molecular liquid crystal materials include saturated benzene carboxylic acids, unsaturated benzene carboxylic acids, biphenyl carboxylic acids, aromatic oxycarboxylic acids, Schiff base types, Bisazomethine compounds, azo compounds, azoxy compounds, sylclohexane ester compounds, sterol compounds, etc. having the above-mentioned reactive functional group introduced at the terminal, liquid crystal compounds and liquid crystals among the above compounds Examples thereof include a composition obtained by adding a crosslinkable compound to a compound exhibiting properties.
また、 ディスコティック液晶化合物としては、 トリフエ二レン系、 トルクセン 系等が挙げられる。  Examples of the discotic liquid crystal compound include triphenylene and torquesen.
さらに、 液晶物質中に熱または光架橋反応等によって反応しうる官能基または 部位を有している各種化合物を液晶性の発現を妨げない範囲で配合しても良い。 架橋反応しうる官能基としては、 前述の各種の反応性官能基などが挙げられる。 液晶の配向が固定化された液晶物質層は、 前記液晶物質や必要に応じて添加さ れる各種の化合物を含む組成物を溶融状態で配向 S板上に塗布する方法や、 該組 成物の溶液を配向基板上に塗布する方法等により形成し、 配向基板上に塗布され た塗膜は乾燥、 熱処理 (液晶の配向) を経て、 必要により光照射おょぴ または 加熱処理 (重合,架橋) 等の前述の配向を固定化する手段を用いて配向を固定化 することにより形成される。  Furthermore, various compounds having functional groups or sites that can react by heat or a photocrosslinking reaction or the like in the liquid crystal substance may be blended within a range that does not hinder the expression of liquid crystallinity. Examples of the functional group capable of undergoing a crosslinking reaction include the various reactive functional groups described above. The liquid crystal material layer in which the alignment of the liquid crystal is fixed is a method in which a composition containing the liquid crystal material and various compounds added as necessary is applied on the alignment S plate in a molten state, Formed by the method of applying the solution on the alignment substrate, etc., and the coating applied on the alignment substrate is dried, subjected to heat treatment (liquid crystal alignment), and if necessary, light irradiation or heat treatment (polymerization, crosslinking) It is formed by fixing the orientation using the means for fixing the above-mentioned orientation.
前記溶液の調製に用いる溶媒に関しては、 本発明に使用される液晶物質や組成 物を溶解でき、 適当な条件で留去できる溶媒であれば特に制限は無く、 一般的に アセトン、 メチルェチルケトン、 イソホロンなどのケトン類、 ブトキシェチルァ ルコール、 へキシルォキシエチルアルコール、 メ トキシー 2—プロパノールなど のエーテノレアノレコ一/レ類、 エチレングリコーノレジメチノレエ一テノレ、 ジエチレング リコールジメチルエーテルなどのグリコールエーテル類、 酢酸ェチル、 酢酸メ ト キシプロピル、 乳酸ェチルなどのエステル類、 フエノール、 クロ口フエノールな どのフエノール類、 N , N—ジメチルホルムアミ ド、 N , N—ジメチルァセトァ ミ ド、 N—メチルピロリ ドンなどのァミ ド類、 クロ口ホルム、 テトラクロロエタ ン、 ジク口口ベンゼンなどのハロゲン化炭化水素類などやこれらの混合系が好ま しく用いられる。また、配向基板上に均一な塗膜を形成するために、界面活性剤、 消泡剤、 レべリング剤等を溶液に添加しても良い。 さらに、 着色を目的として液 晶性の発現を妨げない範囲内で二色性染料や通常の染料や顔料等を添加すること もできる。  The solvent used for the preparation of the solution is not particularly limited as long as it is a solvent that can dissolve the liquid crystal substance and composition used in the present invention and can be distilled off under appropriate conditions. Generally, acetone, methyl ethyl ketone are used. , Ketones such as isophorone, butenosyl alcohol, hexyloxyethyl alcohol, methoxyl 2-propanol, etc., ethylene glycol / resin chinenoyl ether, and glycol ethers such as diethylene glycol dimethyl ether , Esters such as ethyl acetate, methoxypropyl acetate, and ethyl lactate, phenols such as phenol and black mouth phenol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc. Midoids, black mouth form, tetrachrome Ethanone down, halogenated hydrocarbons such or a mixture of these systems, such as Axis every mouth benzene is used properly preferred. Further, in order to form a uniform coating film on the alignment substrate, a surfactant, an antifoaming agent, a leveling agent, etc. may be added to the solution. Furthermore, dichroic dyes, ordinary dyes, pigments, and the like can be added within a range that does not hinder the expression of liquid crystallinity for the purpose of coloring.
塗布方法については、 塗膜の均一性が確保される方法であれば、 特に限定され ることはなく公知の方法を採用することができる。 例えば、 ロールコート法、 ダ ィコート法、 ディップコート法、 カーテンコート法、 スピンコート法などを挙げ ることができる。 塗布の後に、 ヒーターや温風吹きつけなどの方法による溶媒除 去 (乾燥) 工程を入れても良い。 塗布された膜の乾燥状態における膜厚は、 0 . l /z m〜5 0 / m、 好ましくは 0 . 2 μ πι〜2 0 / πι、 さらに好ましくは 0 . 3 μ π!〜 1 0 μ mである。 この範囲外では、 得られる液晶物質層の光学性能が不足 したり、 液晶物質の配向が不十分になるなどして好ましくない。 The application method is not particularly limited as long as the uniformity of the coating film is ensured. A known method can be employed. Examples thereof include a roll coating method, a dip coating method, a dip coating method, a curtain coating method, and a spin coating method. After application, a solvent removal (drying) step by a method such as a heater or hot air blowing may be added. The thickness of the applied film in the dry state is from 0.1 / zm to 50 / m, preferably from 0.2 μπι to 20 / πι, and more preferably from 0.3 μπ! ~ 10 μm. Outside this range, the optical performance of the obtained liquid crystal material layer is insufficient, and the alignment of the liquid crystal material is insufficient.
続いて、 必要なら熱処理などにより液晶の配向を形成した後、 配向の固定化を 行う。 熱処理は液晶相発現温度範囲に加熱することにより、 液晶物質が本来有す る自己配向能により液晶を配向させるものである。 熱処理の条件としては、 用い る液晶物質の液晶相挙動温度 (転移温度) により最適条件や限界値が異なるため 一概には言えないが、 通常 1 0〜3 0 0 °C、 好ましくは 3 0〜2 5 0 °Cの範囲で ある。 あまり低温では、 液晶の配向が十分に進行しないおそれがあり、 また高温 では、 液晶物質が分解したり配向基板に悪影響を与えるおそれがある。 また、 熱 処理時間については、 通常 3秒〜 6 0分、 好ましくは 1 0秒〜 3 0分の範囲であ る。 3秒よりも短い熱処理時間では、 液晶の配向が十分に完成しないおそれがあ り、 また 6 0分を超える熱処理時間では、 生産性が極端に悪くなるため、 どちら の場合も好ましくない。液晶物質が熱処理などにより液晶の配向が完成したのち、 そのままの状態で配向基板上の液晶物質層を、 使用した液晶物質に適した手段を 用いて固定化する。  Subsequently, if necessary, the orientation of the liquid crystal is formed by heat treatment or the like, and then the orientation is fixed. The heat treatment is to align the liquid crystal by the self-orientation ability inherent in the liquid crystal substance by heating to the temperature range where the liquid crystal phase appears. The conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values differ depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal material used, but are usually 10 to 300 ° C, preferably 30 to It is in the range of 2 50 ° C. If the temperature is too low, the alignment of the liquid crystal may not proceed sufficiently, and if the temperature is high, the liquid crystal material may decompose or adversely affect the alignment substrate. The heat treatment time is usually in the range of 3 seconds to 60 minutes, preferably 10 seconds to 30 minutes. If the heat treatment time is shorter than 3 seconds, the alignment of the liquid crystal may not be sufficiently completed, and if the heat treatment time exceeds 60 minutes, the productivity will be extremely deteriorated. After the alignment of the liquid crystal material is completed by heat treatment or the like, the liquid crystal material layer on the alignment substrate is fixed as it is by using means suitable for the liquid crystal material used.
前記配向基板としては、 ポリイミ ド、 ポリアミ ド、 ポリアミ ドイミ ド、 ポリフ ェニレンスルフイ ド、 ポリフエ二レンォキシド、 ポリエーテルケトン、 ポリエー テノレエーテルケトン、 ポリエーテノレスルフォン、 ポリスルフォン、 ポリエチレン テレフタレート、 ポリエチレンナフタレート、 ポリアリ レート、 トリァセチルセ ルロース、 エポキシ榭脂、 フエノール樹脂等のフィルムが例示できる。  Examples of the alignment substrate include polyimide, polyamide, polyimide, polyphenylene sulfide, polyphenylene oxide, polyether ketone, polyether ether ether ketone, polyether ether sulfone, polysulfone, polyethylene terephthalate, polyethylene naphthalate, and polyarylate. Examples thereof include films of triacetyl cellulose, epoxy resin, phenol resin and the like.
これらのフィルムは製造方法によっては改めて配向能を発現させるための処理 を行わなくとも本発明に使用される液晶物質に対して十分な配向能を示すものも あるが、 配向能が不十分、 または配向能を示さない等の場合には、 これらのフィ ルムを適度な加熱下に延伸する、 フィルム面をレーヨン布等で一方向に擦るいわ ゆるラビング処理を行う、 フィルム上にポリイミ ド、 ポリビニルアルコール、 シ ラン力ップリング剤等の公知の配向剤からなる配向膜を設けてラビング処理を行 う、 酸化珪素等の斜方蒸着処理、 あるいはこれらを適宜組み合わせるなどして配 向能を発現させたフィルムを用いても良い。 Some of these films exhibit sufficient alignment ability for the liquid crystal material used in the present invention without performing treatment for expressing the alignment ability again depending on the production method, but the alignment ability is insufficient, or When the orientation ability is not exhibited, these films are stretched under moderate heating, the film surface is rubbed in one direction with rayon cloth, etc., so-called rubbing treatment, polyimide, polyvinyl alcohol on the film , Shi Use a film that exhibits alignment ability by providing an alignment film made of a known alignment agent such as a run force pulling agent and performing rubbing treatment, oblique vapor deposition treatment such as silicon oxide, or a combination of these. May be.
また配向基板として、 表面に規則的な微細溝を多数設けたアルミニウム、 鉄、 銅などの金属板や各種ガラス板等も使用することができる。  Also, as the alignment substrate, a metal plate such as aluminum, iron, or copper having various regular fine grooves on the surface, various glass plates, etc. can be used.
ここで、 配向基板の配向処理方向としては特に限定されず、 上記の各処理を任 意の方向に行うことにより適宜選択できる。 とりわけ、 長尺の配向基板上に形成 された液晶フィルムを极う場合には、 その長尺な連続フィルムの MD方向に対し て所定の角度を選択し、必要に応じて斜め方向に配向処理されることが望ましい。 所定の角度方向に配向処理することにより、 液晶フィルムを最適な光学特性が発 揮できるような軸配置で積層する際に、 長尺フィルムの MDを揃えた状態での貼 合 (いわゆるロール t oロール貼合) が可能になる、 あるいは製品の取り効率が 高まるなどの点から極めてメリットがある。 次に、 配向基板上に形成された液晶物質層を再剥離性基板上に移行させる方法 について述べる。  Here, the alignment treatment direction of the alignment substrate is not particularly limited, and can be appropriately selected by performing each of the above treatments in an arbitrary direction. In particular, when a liquid crystal film formed on a long alignment substrate is used, a predetermined angle is selected with respect to the MD direction of the long continuous film, and an alignment process is performed in an oblique direction as necessary. It is desirable. By laminating the liquid crystal film in an axial arrangement that allows optimal optical characteristics to be achieved by aligning the film in a predetermined angle direction, bonding in a state where the MD of the long film is aligned (so-called roll-to-roll This is extremely advantageous in that it can be bonded) or the efficiency of product collection increases. Next, a method for transferring the liquid crystal material layer formed on the alignment substrate onto the removable substrate will be described.
本発明に使用される再剥離性基板としては、 ポリエチレン、 ポリプロピレン、 4ーメチルペンテン _ 1樹脂等のォレフィン系榭脂、 ポリアミ ド、 ポリイミ ド、 ポリアミ ドイミ ド、 ポリエーテルィミ ド、 ポリエーテルケトン、 ポリエーテルエ —テノレケトン、ポリエーテルスルホン、ポリケトンサルフアイ ド、ポリスルホン、 ポリスチレン、 ポリフエ二レンサルファイ ド、 ポリフエ二レンオキサイ ド、 ポリ エチレンテレフタレー ト、 ポリブチレンテレフタレート、 ポリアリ レート、 ポリ ァセタール、一軸延伸ポリエステル、ポリカーボネート、ポリ ビニルアルコール、 ポリメチルメタクリ レート、 ポリアリ レート、 アモルファスポリオレフイン、 ノ ルボルネン系樹脂、 トリァセチルセルロース、 あるいはエポキシ樹脂等のフィル ムが使用できる。  Examples of the removable substrate used in the present invention include polyethylene, polypropylene, 4-methylpentene_1 resin and other olefin-based resins, polyamides, polyimides, polyamideimides, polyetherimides, polyether ketones, polyether ether-tenol ketones, Polyethersulfone, Polyketonesulfide, Polysulfone, Polystyrene, Polyphenylene sulfide, Polyethylene oxide, Polyethylene terephthalate, Polybutylene terephthalate, Polyarylate, Polyacetal, Uniaxially stretched polyester, Polycarbonate, Polyvinyl alcohol, Polymethyl methacrylate, polyarylate, amorphous polyolefin, norbornene resin, triacetyl cellulose, or epoxy resin Phil beam can be used.
とりわけ、 光学的欠陥の検査性に優れる透明性で光学的に等方性のフィルムと しては、 4—メチルペンテン一 1、 ポリメチルメタタ リ レート、 ポリスチレン、 ポリカーボネート、 ポリエーテルスルホン、 ポリアリ レート、 アモルファスポリ ォレフィン、 ノルボルネン系樹脂、 トリァセチルセノレロース、 あるいはエポキシ 樹脂などのプラスチックフィルムが好ましく使用される。 In particular, transparent and optically isotropic films with excellent optical defect inspection properties include 4-methylpentene-1, polymethyl methacrylate, polystyrene, polycarbonate, polyethersulfone, polyarylate, and amorphous poly Olefin, norbornene resin, triacetyl selellellose, or epoxy A plastic film such as a resin is preferably used.
これらのプラスチックフィルムには、 適度な再剥離性を持たせるために、 予め その表面にシリコーンをコートしておくことができ、 あるいは有機薄膜又は無機 薄膜を形成しておくことができる。 また、 同様な目的で、 プラスチックフィルム の表面にけん化処理などの化学処理を施すか、 あるいはコロナ処理のような物理 的処理を施しておくこともできる。  In order to give these plastic films appropriate removability, the surface can be coated with silicone in advance, or an organic thin film or an inorganic thin film can be formed. For the same purpose, the surface of the plastic film can be subjected to chemical treatment such as saponification treatment or physical treatment such as corona treatment.
また、 再剥離性基板の剥離性を調整するために、 上記のプラスチックフィルム に滑剤や表面改質剤を含有させることもできる。 前記滑剤としては、 光学的欠陥 の検査性や剥離性に悪影響を及ぼさない範囲であれば、 種類、 添加量に特に制限 は無い。 滑剤の具体例としては、 微細シリカ、 微細アルミナ等が挙げられ、 添加 量の指標としては、再剥離性基板のヘイズ値が通常 5 0 %以下、好ましくは 3 0 % 以下となるようにすればよい。 添加量が少なすぎると添加効果が認められず、 一 方、 多すぎる場合には、 光学的欠陥の検査性が悪化し好ましくない。  Further, in order to adjust the peelability of the releasable substrate, the plastic film may contain a lubricant or a surface modifier. There are no particular limitations on the type and amount of the lubricant as long as it does not adversely affect the inspection and releasability of optical defects. Specific examples of the lubricant include fine silica, fine alumina, and the like. As an indicator of the amount of addition, the haze value of the removable substrate is usually 50% or less, preferably 30% or less. Good. If the addition amount is too small, the effect of addition is not recognized. On the other hand, if the addition amount is too large, the optical defect inspection property deteriorates, which is not preferable.
また、必要に応じてその他の公知の各種添加剤、例えば、プロッキング防止剤、 酸化防止剤、 帯電防止剤、 熱安定剤、 耐衝撃性改良剤などを含有させてもよい。 再剥離性基板の剥離力に関しては、 同一材料から製造される再剥離性基板であ つても製造方法、 表面状態や使用される接着剤との濡れ性などにより変化するた め一概には決定できないが、 接着剤との界面での剥離力 (1 8 0 ° 剥離、 剥離速 度 3 0 c mノ分、 室温下測定) は、 通常 0 . 3 8〜: I 2 N/m, 好ましくは 0 . 3 8〜8 . 0 NZmであることが望ましい。 剥離力がこの値より低い場合には、 配向基板上の液晶物質層を再剥離性基板と接着後、 配向基板を剥離する際、 剥離 力が低すぎ、 再剥離性基板に浮きが見られたりして所望する界面での良好な剥離 状態が得られず、 再剥離性基板への液晶物質層の転写が不十分になる、 また剥離 力が高すぎる場合には、 再剥離性基板を剥離する際、 液晶物質層の破壊、 あるい は、 所望する層との界面で剥離ができないなどして好ましくない。  Further, if necessary, other known various additives such as a blocking inhibitor, an antioxidant, an antistatic agent, a heat stabilizer, and an impact resistance improving agent may be contained. Regarding the peelability of a removable substrate, even a releasable substrate manufactured from the same material cannot be determined unconditionally because it changes depending on the manufacturing method, surface condition, wettability with the adhesive used, etc. However, the peeling force at the interface with the adhesive (1800 ° peeling, peeling speed 30 cm, measured at room temperature) is usually 0.38 to: I 2 N / m, preferably 0. 3 8 to 8.0 NZm is desirable. If the peel force is lower than this value, the peel-off force is too low when the alignment substrate is peeled off after the liquid crystal material layer on the alignment substrate is bonded to the re-release substrate. If the desired peeling state at the desired interface is not obtained, the transfer of the liquid crystal material layer to the removable substrate becomes insufficient, and if the peeling force is too high, the removable substrate is peeled off. At this time, it is not preferable because the liquid crystal material layer is broken or it cannot be peeled off at the interface with the desired layer.
また、 再剥離性基板の厚みも剥離性に影響する場合があり、 望ましくは 1 6〜 1 0 0 i m , 特に望ましくは 2 5〜5 0 μ mがよい。 厚みが厚すぎると剥離ボイ ントが安定せず剥離性が悪化する恐れがあり、 一方薄すぎるとフイルムの機械強 度が保てなくなるため、 製造中に引き裂かれるなどのトラブルが生じる恐れがあ る。 配向基板上に形成ざれた液晶物質層を上述のような再剥離性基板上に移行させ るには、 光硬化型アクリル系接着剤を液晶物質層に付与後、 これを外側から光照 射することにより光硬化させて接着後、 配向基板を剥離すれば容易に転写が可能 である。 接着剤としての硬化アクリル樹脂層は硬化性のァクリ レートを塗布し、 これを硬化させることにより形成させる。 Also, the thickness of the removable substrate may affect the releasability, and is preferably 16 to 100 im, particularly preferably 25 to 50 μm. If the thickness is too thick, the peeling point may not be stable and the peelability may deteriorate. On the other hand, if the thickness is too thin, the mechanical strength of the film cannot be maintained, which may cause problems such as tearing during production. . In order to transfer the liquid crystal material layer formed on the alignment substrate onto the re-peelable substrate as described above, a photocurable acrylic adhesive is applied to the liquid crystal material layer and then irradiated from the outside. After photo-curing and bonding, the alignment substrate can be peeled off to transfer easily. The cured acrylic resin layer as an adhesive is formed by applying a curable acrylate and curing it.
使用される硬化性のァクリレートは、 例えば光硬化型ァクリル系接着剤として 公知のものが使用でき、 たとえばポリエステルアタリ レート、 エポキシアタリ レ ート、 ウレタンアタリレート、 ポリエーテルァクリ レート、 シリコーンアタリ レ 一トなどの各種ァクリル系オリゴマーまたはモノマーなどの単独、 これらの混合 物、 またはこれらと各種反応性希釈剤との混合物が例示される。  As the curable acrylate used, for example, a known photo-curable acryl-based adhesive can be used. For example, polyester acrylate, epoxy acrylate, urethane acrylate, polyether acrylate, silicone acrylate Examples thereof include various acryl-based oligomers and monomers such as a monomer alone, a mixture thereof, or a mixture of these with various reactive diluents.
また、 これらの接着剤にはその特性を損なわない範囲で、 各種微粒子等や表面 改質剤を添加することもできる。  In addition, various fine particles and surface modifiers can be added to these adhesives as long as the properties are not impaired.
前記微粒子としては、 接着剤を構成する化合物とは屈折率の異なる微粒子、 透 明性を損なわず帯電防止性能向上のための導電性微粒子、 耐摩耗性向上のための 微粒子等が例示でき、より具体的には、微細シリカ、微細アルミナ、 I T O (Indium Tin Oxide)微粒子、 銀微粒子、 各種合成樹脂微粒子などが挙げられる。  Examples of the fine particles include fine particles having a refractive index different from that of the compound constituting the adhesive, conductive fine particles for improving antistatic performance without impairing transparency, and fine particles for improving wear resistance. Specific examples include fine silica, fine alumina, ITO (Indium Tin Oxide) fine particles, silver fine particles, and various synthetic resin fine particles.
また、 前記表面改質剤としては、 接着剤との相溶性がよく接着剤の硬化性や硬 化後の光学性能に影響を及ぼさない限り特に限定されず、 イオン性または非ィォ ン性の水溶性界面活性剤、 油溶性界面活性剤、 高分子界面活性剤、 フッ素系界面 活性剤、 シリコーン等の有機金属系界面活性剤、 反応性界面活性剤等が使用でき る。  Further, the surface modifier is not particularly limited as long as it has good compatibility with the adhesive and does not affect the curability of the adhesive or the optical performance after curing, and is ionic or nonionic. Water-soluble surfactants, oil-soluble surfactants, polymer surfactants, fluorine-based surfactants, organometallic surfactants such as silicone, reactive surfactants, and the like can be used.
これらの硬化性ァクリル系接着剤の硬化方法は特に限定されないが、 例えば、 加熱硬化、 レドックス系常温硬化、 嫌気硬化、 紫外線、 電子線などの活性線硬化 などが例示される。 好ましい硬化方法は、 紫外線、 電子線などの活性線による光 硬化法である。 光硬化法では、 熱の発生が無いか又は少ないので配向を固定化さ れた液晶物質層への影響が少なく好ましい。 反応は、 各種の公知の光開始剤を添 加し、 メタルハライ ドランプ、 高圧水銀灯、 低圧水銀灯、 キセノンランプ、 ァー クランプ、 レーザ一、 シンクロ トロン放射光源などの光源からの光を照射して行 うことができる。 単位面積 (1平方センチメートル) 当たりの照射量としては、 積算照射量として通常 l〜2 0 0 0 m j、 好ましくは 1 0〜1 0 0 0 m Jの範囲 である。ただし、光開始剤の吸収領域と光源のスぺク トルが著しく異なる場合や、 あるいは反応性の化合物自身に光源波長の吸収能がある場合などはこの限りでは ない。 これらの場合には、 適当な光増感剤や、 あるいは吸収波長の異なる 2種以 上の光開始剤を混合して用いるなどの方法を採ることも出来る。 電子線硬化型の 場合の加速電圧は、 通常 1 0 k V〜 2 0 0 k V、 好ましくは 5 0 k V〜 1 0 0 k Vである。 The curing method of these curable acryl adhesives is not particularly limited, and examples thereof include heat curing, redox system room temperature curing, anaerobic curing, actinic radiation curing such as ultraviolet rays and electron beams. A preferred curing method is a photocuring method using active rays such as ultraviolet rays and electron beams. The photocuring method is preferable because it generates little or no heat and thus has little influence on the liquid crystal substance layer in which the alignment is fixed. The reaction is performed by adding various known photoinitiators and irradiating light from a light source such as a metal halide lamp, high-pressure mercury lamp, low-pressure mercury lamp, xenon lamp, arc lamp, laser beam, or synchrotron radiation source. be able to. The amount of irradiation per unit area (1 square centimeter) is usually in the range of l to 2 0 0 0 mj, preferably 1 to 1 0 0 0 0 m j as the integrated dose It is. However, this is not the case when the absorption region of the photoinitiator and the spectrum of the light source are significantly different, or when the reactive compound itself has the ability to absorb the light source wavelength. In these cases, an appropriate photosensitizer, or a mixture of two or more photoinitiators having different absorption wavelengths can be used. The acceleration voltage in the case of the electron beam curing type is usually 10 kV to 200 kV, and preferably 50 kV to 100 kV.
また、 活性線により硬化させる場合の、 光硬化開始剤としては、 例えば、 ベン ゾインエーテノレ、 ベンゾインェチノレエーテ/レ、 ベンジノレメチノレケターノレ、 ヒ ドロ キシフエ二ルケトン、 1 , 1—ジクロロアセトフエノン、 チォキサントン類、 あ るいはァミン併用のベンゾフエノン類などが例示される。その使用量は樹脂の 0 . 1〜: I 0重量%の範囲が採用される。 次に、 配向基板が除去された液晶物質層上に、 その表面を保護するために硬化 アク リル樹脂からなる保護層を形成させる。 該保護層は、 光学的等方性を有する 硬化性ァクリ レートからなる硬化ァクリル系樹脂層自体とすることもできるし、 また硬化性ァクリル樹脂を接着剤として透光性フィルムを接着することによって も構成することができる。 いずれも硬化ァクリル樹脂層は硬化性のァクリレート を表面に塗布し、 これを硬化させることにより形成される。  Examples of the photocuring initiator in the case of curing with actinic radiation include, for example, benzoin etherenole, benzoin ethylenoate / res, benzino methinoreketanol, hydroxyphenyl ketone, 1,1-dichloroacetophenol. Non-, thixanthones, or benzophenones in combination with amines are exemplified. The amount used is in the range of 0.1 to: I 0% by weight of the resin. Next, a protective layer made of a cured acrylic resin is formed on the liquid crystal material layer from which the alignment substrate has been removed in order to protect the surface. The protective layer may be a cured acryl-based resin layer itself made of a curable acrylate having optical isotropy, or by adhering a translucent film using a curable acryl resin as an adhesive. Can be configured. In either case, the cured acryl resin layer is formed by applying a curable acrylate to the surface and curing it.
保護層形成に使用される硬化性のァクリレートは、 ァクリル系接着剤、 硬化性 プラスチックコーティング剤、 またはプラスチックハードコート剤として公知の ものが使用でき、 たとえばポリエステルァクリ レート、 エポキシァクリレート、 ウレタンァク リ レート、 ポリエーテルアタ リ レート、 シリ コーンァク リ レートな どの各種ァクリル系オリゴマーまたはモノマーなどの単独、 これらの混合物、 ま たはこれらと各種反応性希釈剤との混合物が例示される。  As the curable acrylate used for forming the protective layer, those known as an acrylic adhesive, a curable plastic coating agent, or a plastic hard coat agent can be used. For example, polyester acrylate, epoxy acrylate, urethane acrylate. Examples thereof include various acryl-based oligomers and monomers such as rate, polyether acrylate, and silicone acrylate, mixtures thereof, and mixtures thereof with various reactive diluents.
また、 これらの接着剤にはその特性を損なわない範囲で、 各種微粒子等や表面 改質剤を添加することもできる。  In addition, various fine particles and surface modifiers can be added to these adhesives as long as the properties are not impaired.
前記微粒子としては、 接着剤を構成する化合物とは屈折率の異なる微粒子、 透 明性を損なわず帯電防止性能向上のための導電性微粒子、 耐摩耗性向上のための 微粒子等が例示でき、より具体的には、微細シリカ、微細アルミナ、 I T O(Indium Tin Oxide)微粒子、 銀微粒子、 各種合成樹脂微粒子などが挙げられる。 また、 前記表面改質剤としては、 接着剤との相溶性がよく接着剤の硬化性や硬 化後の光学性能に影響を及ぼさない限り特に限定されず、 ィオン性または非ィォ ン性の水溶性界面活性剤、 油溶性界面活性剤、 高分子界面活性剤、 フッ素系界面 活性剤、 シリ コーン等の有機金属系界面活性剤、 反応性界面活性剤等が使用でき る。 Examples of the fine particles include fine particles having a refractive index different from that of the compound constituting the adhesive, conductive fine particles for improving antistatic performance without impairing transparency, and fine particles for improving wear resistance. Specific examples include fine silica, fine alumina, ITO (Indium Tin Oxide) fine particles, silver fine particles, and various synthetic resin fine particles. The surface modifier is not particularly limited as long as it has good compatibility with the adhesive and does not affect the curability of the adhesive or the optical performance after curing. Water-soluble surfactants, oil-soluble surfactants, polymer surfactants, fluorosurfactants, organometallic surfactants such as silicone, reactive surfactants, and the like can be used.
これらの硬化性アクリル系樹脂の硬化方法は特に限定されないが、 例えば、 加 熱硬化、 レドックス系常温硬化、 嫌気硬化、 紫外線、 電子線などの活性線硬化な どが例示される。 好ましい硬化方法は、 紫外線、 電子線などの活性線による光硬 化法である。 光硬化法では、 熱の発生が無いか又は少ないので配向を固定化され た液晶物質層への影響が少なく好ましい。 反応は、 各種の公知の光開始剤を添加 し、 メタルハライ ドランプ、 高圧水銀灯、 低圧水銀灯、 キセノンランプ、 アーク ランプ、 レーザー、 シンクロ トロン放射光源などの光源からの光を照射して行う ことができる。 単位面積 (1平方センチメートル) 当たりの照射量としては、 積 算照射量として通常 1〜2 0 0 0 m j、 好ましくは 1 0〜 1 0 0 O m Jの範囲で ある。 ただし、 光開始剤の吸収領域と光源のスペク トルが著しく異なる場合や、 あるいは反応性の化合物自身に光源波長の吸収能がある場合などはこの限りでは ない。 これらの場合には、 適当な光増感剤や、 あるいは吸収波長の異なる 2種以 上の光開始剤を混合して用いるなどの方法を採ることも出来る。 電子線硬化型の 場合の加速電圧は、 通常 1 0 k V〜 2 0 0 k V、 好ましくは 5 0 k V〜 1 0 0 k Vである。  The curing method of these curable acrylic resins is not particularly limited, and examples thereof include heat curing, redox room temperature curing, anaerobic curing, active ray curing such as ultraviolet rays and electron beams. A preferable curing method is a photo-curing method using an active ray such as an ultraviolet ray or an electron beam. The photocuring method is preferable because it generates little or no heat and thus has little influence on the liquid crystal substance layer in which the alignment is fixed. The reaction can be performed by adding various known photoinitiators and irradiating light from a light source such as a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, an arc lamp, a laser, or a synchrotron radiation source. The irradiation dose per unit area (1 square centimeter) is usually in the range of 1 to 200,000 mj, preferably 10 to 100 OmJ, as the integrated irradiation dose. However, this is not the case when the absorption region of the photoinitiator and the spectrum of the light source are significantly different, or when the reactive compound itself has the ability to absorb the light source wavelength. In these cases, an appropriate photosensitizer, or a mixture of two or more photoinitiators having different absorption wavelengths can be used. The acceleration voltage in the case of the electron beam curing type is usually 10 kV to 200 kV, and preferably 50 kV to 100 kV.
また、 活性線により硬化させる場合の、 光硬化開始剤としては、 例えば、 ベン ゾインエーテル、 ベンゾインェチルエーテル、 ベンジルメチルケタール、 ヒ ドロ キシフエ二ルケ トン、 1 , 1ージクロロアセ トフエノン、 チォキサントン類、 あ るいはァミン併用のベンゾフエノン類などが例示される。その使用量は樹脂の 0 . :!〜 1 0重量%の範囲が採用される。  Examples of the photocuring initiator in the case of curing with actinic radiation include, for example, benzoin ether, benzoin ether, benzylmethyl ketal, hydroxyphenyl ketone, 1,1-dichloroacetophenone, thixanthones, or Examples include benzophenones in combination with amines. The amount of resin used is 0. A range of ˜10% by weight is employed.
以上の方法により、 硬化ァクリル系樹脂層/配向を固定化した液晶物質層 硬 化ァクリル系樹脂層がこの順で積層されてなる液晶フィルムが得られる。 なお、 再剥離性基板は保護層形成前あるいは保護層形成後に剥離される。 ここで本発明では、 上述の硬化アクリル系樹脂層 (A) ノ配向を固定化した液 晶物質層ノ硬化アク リル系樹脂層 (B) がこの順で積層されてなる液晶フィルム のうち、 少なく とも一層の硬化ァクリル系樹脂層として、 ガラス転移温度 (T g) が 50°C以上 200°C以下、 望ましくは 60°C以上 1 50°C以下のものを使用す る。硬化ァクリル系樹脂層の T gが 50°Cより低いと高温、高湿などの環境試験、 とりわけ高温と高湿の間でのサイクル環境試験において液晶物質層への外観異常 (割れ、変形など) を防止する効果が不足する。一方、ガラス転移温度が 200°C よりも高すぎると、 液晶物質層との密着力が不足したり、 硬化アクリル系樹脂層 に割れが発生し易くなるなどの問題が生じる。また、該硬化ァクリル系樹脂層(A, B) の両層とも T gが高くなりすぎると、 フィルムカット時やハンドリング時に も端部にクラックが発生するなどの問題が生じやすくなるため、 一層の硬化ァク リル系樹脂層の T gを 50°C以上 200°C以下とし、 他の一層の硬化ァクリル系 榭脂層の T gを 20°C以上 100°C以下、 望ましくは 30°C以上 80°C以下とす るのが好ましい。 By the above-described method, a liquid crystal film in which a cured acryl-based resin layer / a liquid crystal material layer in which an orientation is fixed and a cured acryl-based resin layer are laminated in this order is obtained. The re-peelable substrate is peeled off before forming the protective layer or after forming the protective layer. Here, in the present invention, the above-mentioned cured acrylic resin layer (A) liquid in which no orientation is fixed Among the liquid crystal films in which the crystal material layer and the cured acrylic resin layer (B) are laminated in this order, at least one cured acrylic resin layer has a glass transition temperature (Tg) of 50 ° C or higher 200 Use a temperature not higher than ° C, preferably not lower than 60 ° C and not higher than 1550 ° C. If the Tg of the cured acryl resin layer is lower than 50 ° C, abnormal appearance (cracking, deformation, etc.) of the liquid crystal material layer in environmental tests such as high temperature and high humidity, especially in cyclic environmental tests between high temperature and high humidity The effect of preventing is insufficient. On the other hand, if the glass transition temperature is higher than 200 ° C, problems such as insufficient adhesion to the liquid crystal material layer and cracks in the cured acrylic resin layer are likely to occur. In addition, if both Tg of the cured acryl-based resin layers (A, B) are too high, problems such as cracking at the edges are likely to occur during film cutting and handling. The Tg of the cured acrylic resin layer is 50 ° C to 200 ° C, and the Tg of the other cured acrylic resin layer is 20 ° C to 100 ° C, preferably 30 ° C or more. It is preferably 80 ° C or lower.
また、 該硬化アク リル系樹脂層 (A, B) の厚みは、 いずれもそれぞれ 0. 1 〜50 μπι、 望ましくは 0. 5〜20 μηι、 さらに望ましくは 1〜: I 0 μ mであ る。 厚みがこれ以上薄すぎると、 環境試験における液晶物質層の保護効果が不足 し、 また厚すぎるとアクリル系樹脂層の硬化に時間がかかったり、 製品厚みが厚 くなるため好ましくない。 また本発明では、 再剥離性基板面に予め該基板上から剥離可能な離型層を形成 した再剥離性基板を使用することにより、 液晶物質層と他の層との間に離型層を 形成することも可能である。 離型層を形成することにより、 製造時や環境試験時 における薄膜の液晶物質層の外観変化 (例えば、 波うちなど) を抑えるための応 力遮断効果が得られる。 なお、 ここで離型層としては、 特に限定されないが光学 的に等方性の透明層が好ましく、 例えばアクリル系、 メタクリル系、 ニトロセル ロース系、 エポキシ系化合物等の重合体およびこれらの混合物を挙げることがで きる。 離型層の膜厚としては 0. 3 μ m以上 40 μ m以下、 好ましくは 0. 5 μ m以上 10 m以下であり、 ガラス転移点 (T g) が 20°C以上、 好ましくは 5 0°C以上の光学的に等方性の透明層であって、 液晶物質層の光学的特性を著しく 損なわなければ、 材質に特に限定はない。 膜厚及びガラス転移点がこの範囲外で はその効果が不足したり、 製品が厚くなりすぎるなどの観点から好ましくない。 また前記離型層は、 架橋成分の添加による部分架橋、 可塑剤の添加、 滑剤の添 加等により、 物性の制御を行っても良い。 The thicknesses of the cured acrylic resin layers (A, B) are each 0.1 to 50 μπι, preferably 0.5 to 20 μηι, and more preferably 1 to I 0 μm. . If the thickness is too thin, the protective effect of the liquid crystal material layer in the environmental test is insufficient, and if it is too thick, it takes time to cure the acrylic resin layer, and the product thickness becomes unfavorable. In the present invention, a release layer is formed between the liquid crystal substance layer and another layer by using a releasable substrate in which a release layer that can be peeled from the substrate is formed on the surface of the releasable substrate. It is also possible to form. By forming the release layer, it is possible to obtain a stress blocking effect to suppress the appearance change (for example, wave out) of the thin film liquid crystal material layer during manufacturing and environmental testing. Here, the release layer is not particularly limited, but is preferably an optically isotropic transparent layer. Examples thereof include polymers such as acrylic, methacrylic, nitrocellulose, and epoxy compounds, and mixtures thereof. be able to. The thickness of the release layer is 0.3 μm or more and 40 μm or less, preferably 0.5 μm or more and 10 m or less, and the glass transition point (T g) is 20 ° C. or more, preferably 50 The material is not particularly limited as long as it is an optically isotropic transparent layer at a temperature of ° C or more and does not significantly impair the optical properties of the liquid crystal material layer. If the film thickness and glass transition point are outside this range, Is not preferred from the standpoints of lack of effectiveness and the product becoming too thick. The release layer may be controlled in physical properties by partial crosslinking by adding a crosslinking component, addition of a plasticizer, addition of a lubricant, and the like.
さらに離型層の形成方法についても特に限定されるものではないが、 例えば、 ポリエチレン、 ポリプロピレン、 ポリエチレンテレフタレート等の再剥離性基板 フィルム上に予め上記膜厚を有する離型層となる材料を、 塗布、 押し出し等の方 法により形成しておき、 この層を粘 ·接着剤層や透明保護層を介して密着し、 そ の後再剥離性基板フィルムを剥離する転写法などが挙げられる。 本発明の第 3における硬化ァクリル系樹脂層 配向を固定化した液晶物質層/ 硬化ァクリル系樹脂層/透光性基板フィルムの順に積層されてなる液晶フィルム は、 配向基板上に形成された液晶物質層を光硬化型ァクリル系接着剤を介して透 光性基板フィルム上に移行させ、 次いで配向基板が除去された液晶物質層の表面 に硬化アタリル榭脂からなる保護層を形成させることにより得ることができる。 本発明において用いられる透光性基板フィルムとしては、 透明性おょぴ光学的 等方性を有し、 液晶物質層を支持できるものならば特に限定されないが、 通常、 プラスチックフィルムが用いられる。 例えば、 ポリメチル (メタ) アタリレート などのポリアタリ レート、 ポリスチレン、 ポリカーボネート、 ポリエーテルスル フォン、 ポリフエ二レンサルファイ ド、 ポリアリ レート、 ポリエチレンサルファ イ ド、 アモルファスポリオレフイン、 トリァセチルセルロース、 4—メチルペン テン一 1、 ノルボルネン系樹脂、 あるいはエポキシ樹脂などの各フィルムが例示 できる。  Furthermore, the method for forming the release layer is not particularly limited. For example, a material that becomes the release layer having the above-described film thickness is applied on a removable substrate film such as polyethylene, polypropylene, and polyethylene terephthalate. Examples thereof include a transfer method in which the layer is formed by a method such as extrusion, this layer is closely adhered via an adhesive layer or a transparent protective layer, and then the removable substrate film is peeled off. In the third aspect of the present invention, the cured acryl-based resin layer is a liquid crystal material layered in the order of a liquid crystal material layer with fixed orientation / cured acryl-based resin layer / translucent substrate film. The layer is transferred onto a light-transmitting substrate film through a photocurable acryl-based adhesive, and then a protective layer made of cured allyl resin is formed on the surface of the liquid crystal material layer from which the alignment substrate has been removed. Can do. The translucent substrate film used in the present invention is not particularly limited as long as it has transparency, optical isotropy, and can support the liquid crystal material layer, but a plastic film is usually used. For example, polyarylates such as polymethyl (meth) acrylate, polystyrene, polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylate, polyethylene sulfide, amorphous polyolefin, triacetyl cellulose, 4-methylpentene-1, Examples of such films include norbornene-based resins and epoxy resins.
透光性基板フィルムはある程虔の厚みがないと自立性または支持性が失われる ことから、 通常 1〜 1 0 0 0 μ mの範囲から選択される。  The translucent substrate film is usually selected from the range of 1 to 100 μm because the self-supporting property or the supporting property is lost if there is no certain thickness.
液晶フィルムの環境試験における耐性を高めるには、 環境試験条件下において 吸湿による収縮変化のより少ないポリカーボネートなどの透光性基板フィルムを 用いることが望ましい。 一方で、 通常はその優れた光学特性、 汎用性などの面か ら トリアセチルセルロース (T A C ) フィルムが用いられることが多い。 T A C フィルムを透光性基板フィルムとして用いる場合には、 最終製品の薄型化の観点 に加え、できるだけ環境試験条件下での T A Cフィルムの収縮変化を抑える為に、 厚みを 1 0 0 m以下、 望ましくは 5 0 μ m以下にすると良い。 In order to increase the resistance of the liquid crystal film in the environmental test, it is desirable to use a light-transmitting substrate film such as polycarbonate that has less shrinkage change due to moisture absorption under the environmental test conditions. On the other hand, a triacetyl cellulose (TAC) film is often used because of its excellent optical properties and versatility. When using a TAC film as a translucent substrate film, it is necessary to reduce the thickness of the final product. In addition, in order to suppress the change in shrinkage of the TAC film under environmental test conditions as much as possible, the thickness should be 100 m or less, preferably 50 μm or less.
配向基板上に形成された液晶物質層を透光性基板フィルム上に移行させる方法 としては、 前述した液晶物質層を再剥離性基板上に移行させる方法と同様に、 液 晶物質層を光硬化型ァクリル系接着剤を介して透光性基板フィルム上に移行させ る方法を用いることができる。  As a method for transferring the liquid crystal material layer formed on the alignment substrate onto the translucent substrate film, the liquid crystal material layer is photocured in the same manner as the method for transferring the liquid crystal material layer onto the removable substrate described above. A method of transferring to a translucent substrate film through a type acrylic adhesive can be used.
すなわち、 透光性基板フィルムを光硬化型ァクリル系接着剤により液晶物質層 に貼合後、 これを外側から光照射することにより光硬化させて接着後、 配向基板 を剥離すれば容易に転写が可能である。  That is, after the translucent substrate film is bonded to the liquid crystal material layer with a photo-curable acrylic adhesive, it is photocured by irradiating it with light from the outside, bonded, and then the alignment substrate is peeled off for easy transfer. Is possible.
接着剤として使用される硬化性のァクリレートは、 前述したような公知の光硬 化型ァクリル系接着剤が使用できる。 また前述したようにこれらの接着剤にはそ の特性を損なわない範囲で、各種微粒子等や表面改質剤を添加することもできる。 またこれらの硬化性ァクリル系樹脂の硬化方法についても前述した方法が用いら れる。  As the curable acrylate used as the adhesive, a known photo-curing acryl adhesive as described above can be used. In addition, as described above, various fine particles and surface modifiers can be added to these adhesives as long as the properties are not impaired. In addition, the above-described method is used for curing these curable acryl-based resins.
次に配向基板が除去された液晶物質層上に、 その表面を保護するために硬化ァ クリル樹脂からなる保護層を形成させる。 該保護層は、 光学的等方性を有する硬 化性ァクリ レートからなる硬化ァクリル系樹脂層自体とすることもできるし、 ま た硬化性ァクリル樹脂を接着剤として透光性フィルムを接着することによつても 構成することができる。 いずれも硬化ァクリル樹脂層は硬化性のァクリ レートを 表面に塗布し、 これを硬化させることにより形成される。  Next, a protective layer made of a cured acrylic resin is formed on the liquid crystal material layer from which the alignment substrate has been removed in order to protect the surface. The protective layer can be a cured acryl-based resin layer itself made of a curable acrylate having optical isotropy, or a light-transmitting film can be bonded using the curable acryl resin as an adhesive. Can also be configured. In both cases, the cured acryl resin layer is formed by applying a curable acrylate to the surface and curing it.
保護層形成に使用される硬化性のァクリレートは、 前述したようなアク リル系 接着剤、 硬化性プラスチックコーティング剤、 またはプラスチックハードコート 剤として公知のものが使用できる。 また前述したようにこれらの接着剤にはその 特性を損なわない範囲で、 各種微粒子等や表面改質剤を添加することもできる。 またこれらの硬化性ァクリル系樹脂の硬化方法についても前述した方法が用いら れる。  As the curable acrylate used for forming the protective layer, those known as acrylic adhesives, curable plastic coating agents, or plastic hard coating agents as described above can be used. As described above, various fine particles and surface modifiers can be added to these adhesives as long as the properties are not impaired. In addition, the above-described method is used for curing these curable acryl-based resins.
以上の方法により、 硬化ァクリル系樹脂層 Z配向を固定化した液晶物質層/硬 化アク リル系樹脂層 Z透光性基板フィルムがこの順で積層されてなる液晶フィル ムが得られる。 本発明では、 上述の硬化アクリル系樹脂層 (A) ノ配向を固定化した液晶物質 層 Z硬化アク リル系樹脂層 (B) Z透光性基板フィルムがこの順に積層されてな る液晶フィルムのうち、 少なくとも一層の硬化アクリル系榭脂層として、 ガラス 転移温度 (T g) が 50°C以上 200°C以下、 望ましくは 60°C以上 1 50°C以 下のものを使用する。 硬化アク リル系樹脂層の T gが 50°Cより低いと高温、 高 湿などの環境試験、 とりわけ高温と高湿の間でのサイクル環境試験において液晶 物質層への外観異常 (割れ、 変形など) を防止する効果が不足する。 一方、 ガラ ス転移温度が 200°Cよりも高すぎると、 液晶物質層との密着力が不足したり、 硬化アク リル系樹脂層に割れが発生し易くなるなどの問題が生じる。 また、 該硬 化アクリル系樹脂層 (A, B) の両層とも T gが高くなりすぎると、 フィルム力 ッ ト時ゃハンドリング時にも端部にクラックが発生するなどの問題が生じやすく なるため、 一層の硬化ァクリル系樹脂層の T gを 50°C以上 200°C以下とし、 他の一層の硬化ァクリル系樹脂層の T gを 20°C以上 100°C以下、 望ましくは 30°C以上 80°C以下とするのが好ましい。 By the above method, a liquid crystal film in which the liquid crystal material layer / cured acrylic resin layer Z light-transmitting substrate film in which the cured acryl-based resin layer Z orientation is fixed is laminated in this order is obtained. In the present invention, the above-mentioned cured acrylic resin layer (A) liquid crystal material layer in which the orientation is fixed Z cured acrylic resin layer (B) Z is a liquid crystal film in which a Z-transparent substrate film is laminated in this order. Of these, at least one cured acrylic resin layer having a glass transition temperature (Tg) of 50 ° C to 200 ° C, preferably 60 ° C to 150 ° C is used. If the Tg of the cured acrylic resin layer is lower than 50 ° C, abnormal appearance of the liquid crystal material layer (cracking, deformation, etc.) in environmental tests such as high temperature and high humidity, especially in cyclic environmental tests between high temperature and high humidity ) The effect of preventing is insufficient. On the other hand, if the glass transition temperature is higher than 200 ° C, problems such as insufficient adhesion to the liquid crystal material layer and easy cracking in the cured acrylic resin layer occur. In addition, if both Tg of the hardened acrylic resin layers (A, B) are too high, problems such as cracking at the end during film handling are likely to occur. Tg of one cured acrylic resin layer is 50 ° C or more and 200 ° C or less, and Tg of another cured acrylic resin layer is 20 ° C or more and 100 ° C or less, preferably 30 ° C or more The temperature is preferably 80 ° C or lower.
また、 該硬化アクリル系樹脂層 (A, B) の厚みは、 いずれもそれぞれ 0. 1 〜 50 m、 望ましくは 0. 5〜20 μπι、 さらに望ましくは:!〜 1 0 mであ る。 厚みがこれ以上薄すぎると、 環境試験における液晶物質層の保護効果が不足 し、 また厚すぎるとアク リル系樹脂層の硬化に時間がかかったり、 製品厚みが厚 くなるため好ましくない。 また、 必要に応じて硬化アクリル樹脂層の表面をさらに表面保護のために光学 的に等方性である透光性保護フィルムを貼合することにより表面保護機能を増大 させることができる。 このようにさらに透光性の保護フィルムの貼合を行なう場 合、 硬化性アタリ レート樹脂として、 前述のアク リル系硬化性樹脂のうち光硬化 性樹脂を使用して接着し透光性の保護フィルムを貼合した後に、 外側から光を照 射して硬化させることができる。  Further, the thickness of the cured acrylic resin layer (A, B) is 0.1 to 50 m, preferably 0.5 to 20 μπι, more preferably: ~ 10 m. If the thickness is too thin, the protective effect of the liquid crystal material layer in the environmental test is insufficient, and if it is too thick, it takes time for the acrylic resin layer to cure or the product thickness increases, which is not preferable. If necessary, the surface protection function can be increased by laminating a transparent protective film that is optically isotropic for surface protection of the surface of the cured acrylic resin layer. When a light-transmitting protective film is further bonded in this manner, the light-transmitting protective film is bonded by using a light-curable resin among the acrylic resins described above as the curable acrylate resin. After laminating the film, it can be cured by applying light from the outside.
該透光性保護フィルムとしては、 前述の透光性基板において説明した材料の中 から適宜に選択され使用される。 この透光性保護フィルムの厚さは、 0. 1〜5 00 /im、 好ましくは:!〜 200 mの範囲である。 本発明の液晶フィルムは、 液晶表示素子用の色補償板や視野角補償用などとし て使用される時には通常、 偏光板と積層され、 さらに必要に応じて位相差板とし て液晶フィルムや高分子延伸フィルムなども積層される。 ここで、 偏光板、 液晶 フィルム、 高分子延伸フィルムなどの積層においても、 公知の透光性の粘接着剤 を介して積層することができる。 こうして得られる積層体としては、 例えば、The translucent protective film is appropriately selected from the materials described in the above translucent substrate and used. The translucent protective film has a thickness of 0.1 to 500 / im, preferably: The range is ~ 200 m. The liquid crystal film of the present invention is usually laminated with a polarizing plate when used as a color compensator for a liquid crystal display element or a viewing angle compensator, and further, as necessary, a liquid crystal film or a polymer. A stretched film or the like is also laminated. Here, also in lamination | stacking of a polarizing plate, a liquid crystal film, a polymer stretched film, etc., it can laminate | stack via a well-known translucent adhesive agent. As a laminated body thus obtained, for example,
( 1 ) 偏光板 Z粘接着剤層 液晶フィルム (1) Polarizing plate Z Adhesive layer Liquid crystal film
( 2 ) 偏光板 粘接着剤層/高分子延伸フィルム Z粘接着剤層 液晶フィルム (2) Polarizing plate Adhesive layer / Polymer stretched film Z Adhesive layer Liquid crystal film
( 3 ) 偏光板 Z粘接着剤層/液晶フィルム Z粘接着剤層/液晶フィルム (3) Polarizing plate Z adhesive layer / liquid crystal film Z adhesive layer / liquid crystal film
( 4 ) 偏光板 粘接着剤層/液晶フィルム 粘接着剤層 Z高分子延伸フィルム などが例示される。 前記偏光板としては、 特に限定されず、 液晶表示装置に通常用いられる偏光板 を適宜使用することができるが、 好ましくは近年開発上巿された薄膜型のものが 望ましい。 具体的には、 ポリビュルアルコール (P V A) や部分ァセタール化 P V Aのような P V A系偏光フィルム、 エチレン一酢酸ビニル共重合体の部分ケン 化物等からなる親水性高分子フィルムにヨウ素および/または 2色性色素を吸着 して延伸した偏光フィルム、 P V Aの脱水処理物ゃポリ塩化ビュルの脱塩酸処理 物のようなポリエン配向フィルムなどからなる偏光フィルムなどを使用すること ができる。 また、 反射型の偏光フィルムも使用することができる。  (4) Polarizing plate Adhesive layer / liquid crystal film Adhesive layer Z polymer stretched film and the like. The polarizing plate is not particularly limited, and a polarizing plate usually used in a liquid crystal display device can be used as appropriate, but a thin film type that has been developed recently is preferable. Specifically, iodine and / or two colors are used for hydrophilic polymer films such as PVA polarizing films such as polybulal alcohol (PVA) and partially acetalized PVA, and partially saponified ethylene-vinyl acetate copolymers. For example, a polarizing film formed by adsorbing a photosensitive dye and stretched, or a polarizing film made of a polyene-oriented film such as a PVA dehydrated product or a polychlorinated butyl dehydrochlorinated product can be used. A reflective polarizing film can also be used.
偏光板は、 偏光フィルム単独で使用しても良いし、 強度向上、 耐湿性向上、 耐 熱性の向上等の目的で偏光フィルムの片面または両面に透明な保護層等を設けた ものであっても良い。 透明な保護層としては、 ポリエステルゃトリアセチルセル ロース等の透明プラスチックフィルムを直接または接着剤層を介して積層したも の、 樹脂の塗布層、 アク リル系やエポキシ系等の光硬化型樹脂層などが挙げられ る。 これら透明な保護層を偏光フィルムの両面に被覆する場合、 両面に同じ透明 な保護層を設けても良いし、 また異なる透明な保護層を設けても良い。  The polarizing plate may be used alone, or a polarizing film may be provided with a transparent protective layer or the like on one or both sides of the polarizing film for the purpose of improving strength, improving moisture resistance, improving heat resistance, etc. good. As the transparent protective layer, a transparent plastic film such as polyester triacetylcellulose is laminated directly or via an adhesive layer, a resin coating layer, an acrylic or epoxy photocurable resin layer, etc. And so on. When these transparent protective layers are coated on both sides of the polarizing film, the same transparent protective layer may be provided on both sides, or different transparent protective layers may be provided.
前記の高分子延伸フィルムとしては、 セルロース系、 ポリカーボネート系、 ポ リアリ レート系、 ポリスルフォン系、 ポリ ビニルアルコール (P V A ) 系、 ポリ ァクリル系、ポリエーテルスルフォン系、環状ポリオレフィン系等からなる 1軸、 または 2軸延伸位相差フィルムを例示することができる。 中でもポリカーボネー ト系、 ノルボルネン系などの環状ポリオレフイン系の 1軸延伸フィルムが製造の 容易さやフィルムの均一性、 あるいは光学特性面から好ましい。 Examples of the stretched polymer film include cellulose-based, polycarbonate-based, polyarylate-based, polysulfone-based, polyvinyl alcohol (PVA) -based, polyacrylic-based, polyethersulfone-based, cyclic polyolefin-based uniaxial, Alternatively, a biaxially stretched retardation film can be exemplified. Above all, polycarbonate From the viewpoint of ease of production, film uniformity, and optical properties, cyclic polyolefin-based uniaxially stretched films such as a benzoyl-based and norbornene-based film are preferred.
ここで、 延伸の方向としては特に限定されず、 任意の方向に行うことにより適 宜選択できる。 とりわけ、 長尺の高分子延伸フィルムを扱う場合には、 その長尺 な連続フィルムの M D方向に対して所定の角度で必要に応じて斜め方向 (斜め延 伸)、 あるいは T D方向に延伸 (横延伸) 処理されることが望ましい。 所定の角度 の方向に延伸処理することにより、 延伸フィルムを液晶フィルムや偏光板と最適 な光学特性が発揮できるような軸配置で積層する際に、 長尺フィルムの MDを揃 えた状態での貼合 (いわゆるロール toロール貼合) が可能になる、 あるいは製品 の取り効率が高まるなどの点から極めてメリットがある。 本発明の液晶フィルムを偏光板と貼合した光学積層体は、 液晶物質層の光学パ ラメ一ターに応じて、 各種液晶表示装置の補償部材、 楕円偏光板、 円偏光板とし て機能することができる。  Here, the direction of stretching is not particularly limited, and can be appropriately selected by performing in any direction. In particular, when handling a long polymer stretched film, it is stretched obliquely (obliquely stretched) or TD direction (transversely) at a predetermined angle with respect to the MD direction of the long continuous film. Stretching) It is desirable to be processed. When a stretched film is laminated with a liquid crystal film or polarizing plate in an axial arrangement that can exhibit optimal optical characteristics by stretching the film in a predetermined angle direction, it is applied in a state where the MD of the long film is aligned. This is extremely advantageous from the standpoint of enabling bonding (so-called roll-to-roll bonding) or increasing the efficiency of product collection. The optical laminate in which the liquid crystal film of the present invention is bonded to a polarizing plate functions as a compensation member for various liquid crystal display devices, an elliptically polarizing plate, and a circularly polarizing plate, depending on the optical parameters of the liquid crystal material layer. Can do.
すなわち光学積層体を構成する液晶物質層が、 例えばネマチック配向、 ねじれ ネマチック配向を固定化した液晶物質層は位相差板として機能することから、 当 該液晶物質層を構成部材とする本発明の光学積層体は、 S T N型、 T N型、 O C B型、 H A N型等の透過または反射型液晶表示装置の補償板として使用すること ができる。  That is, since the liquid crystal material layer constituting the optical laminate is, for example, a liquid crystal material layer in which nematic alignment or twisted nematic alignment is fixed functions as a retardation plate, the optical material of the present invention using the liquid crystal material layer as a constituent member. The laminated body can be used as a compensation plate for transmission or reflection type liquid crystal display devices such as STN type, TN type, OCB type, and HAN type.
またネマチックハイプリッド配向を固定化した液晶物質層は、 正面から見たと きのリタ一デーシヨンを利用して、 位相差フィルムや波長板として利用すること ができ、 またリタ一デーシヨン値の向き (フィルム厚さ方向の分子軸の傾き) に よる非対称性を生かして T N型液晶表示装置の視野角改善部材などにも利用する ことができる。 また 1 Z 4波長板機能を有する液晶物質層は、 本発明の如く偏光板と組み合わ せることにより、 円偏光板や反射型の液晶表示装置や E L表示装置の反射防止フ ィルター等として用いることができる。 とりわけ、 可視光領域の広帯域にわたつ て機能する広帯域 1 4波長板を得る為には、 5 5 0 n mの単色光での複屈折光 の位相差が略 1 4波長である 1 / 4波長板と 5 5 0 n mの単色光での複屈折光 の位相差が略 1 Z 2波長である 1ノ 2波長板とを、 それらの遅相軸が交差した状 態で積層することが有効であることが一般に知られており、 実際に反射型の液晶 表示装置などで広く用いられている。 すなわち、 本発明のように薄肉の光学積層体を得る技術を用いれば、 従来の高 分子延伸フィルムだけでは困難であった薄型の広帯域 1 4波長板が得られるこ とになる。 ここで、 1 / 4波長板のリタ一デーシヨン値は、 通常 7 0 n m〜l 8 0 n m、 好ましくは 9 0 n m〜 1 6 0 n m、 特に好ましくは 1 2 0 η π!〜 1 5 0 n.rnの範囲である。 また、 1ノ 2波長板のリタ一デーシヨン値は、 通常 1 8 0 n m〜3 2 0 n m、 好ましくは 2 0 0 η π!〜 3 0 0 n m、 特に好ましくは 2 2 O n π!〜 2 8 0 n mの範囲である。 1 / 4波長板と 1 Z 2波長板のリターデーション 範囲が上記から外れた場合、液晶表示装置に不必要な色付きが生じる恐れがある。 なお、 リターデーシヨン値とは複屈折 Δ nと膜厚 dとの積を表わす。 In addition, the liquid crystal material layer in which the nematic hybrid alignment is fixed can be used as a retardation film or a wave plate when viewed from the front, and the orientation of the retardation value (film) By utilizing the asymmetry due to the inclination of the molecular axis in the thickness direction, it can also be used as a viewing angle improving member of a TN type liquid crystal display device. In addition, the liquid crystal material layer having a 1Z4 wavelength plate function can be used as an antireflection filter for a circularly polarizing plate, a reflective liquid crystal display device, or an EL display device by combining with a polarizing plate as in the present invention. it can. In particular, in order to obtain a broadband 14 wavelength plate that functions over a wide range in the visible light region, the phase difference of birefringent light in monochromatic light at 5500 nm is approximately 1/4 wavelength. Birefringent light with plate and monochromatic light at 5500 nm It is generally known that it is effective to stack 1 and 2 wavelength plates with a phase difference of approximately 1 Z 2 wavelengths in a state where their slow axes intersect. Widely used in liquid crystal display devices. That is, if a technique for obtaining a thin optical laminate as in the present invention is used, a thin broadband 14-wave plate that has been difficult with only a conventional high molecular stretched film can be obtained. Here, the retardation value of the 1/4 wavelength plate is usually 70 nm to 80 nm, preferably 90 nm to 160 nm, and particularly preferably 120 nm ηπ! It is in the range of ~ 1 5 0 n.rn. In addition, the retardation value of the 1-wave plate is usually from 1800 nm to 3200 nm, preferably 2 0 0 η π! ~ 300 nm, particularly preferably 2 2 O n π! It is in the range of ~ 280 nm. If the retardation range of the 1/4 wavelength plate and 1 Z 2 wavelength plate deviates from the above, unnecessary coloration may occur in the liquid crystal display device. The retardation value represents the product of birefringence Δn and film thickness d.
さらに本発明の光学積層体においては、 当該積層体を構成する液晶物質層がコ レステリック配向ゃスメクチック配向を固定化したものであれば、 輝度向上用の 偏光反射フィルム、 反射型のカラーフィルター、 選択反射能に基因する視角によ る反射光の色変化を生かした各種偽造防止素子や装飾フィルムなどに利用するこ とができる。  Further, in the optical layered body of the present invention, if the liquid crystal material layer constituting the layered body is one in which the cholesteric alignment is fixed to the smectic alignment, a polarizing reflection film for improving brightness, a reflection type color filter, selection It can be used for various anti-counterfeiting elements and decorative films that take advantage of the color change of reflected light depending on the viewing angle due to reflectivity.
[産業上の利用可能性] [Industrial applicability]
本発明により、 従来は外観異常が発生するような厳しい環境試験下での耐性を 高めた薄型の光学素子用積層フィルムを得ることができることから、 液晶表示装 置に貼合して使用される際のスペックマージンを広げることができる等、 極めて 工業的価値が高い。  According to the present invention, it is possible to obtain a thin laminated film for optical elements that has been improved in resistance under severe environmental tests that would cause appearance abnormalities, and therefore when used by being bonded to a liquid crystal display device. The industrial margin is extremely high.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明を実施例および比較例によりさらに詳細に説明するが、 本発明は これらに限定されるものではなレ、。なお、本実施例におけるリターデ一ション(複 屈折 Δ nと膜厚 dとの積) は特に断りのない限り波長 5 5 0 n mにおける値であ る。 ぐ調製例 > EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these. Note that the retardation (product of birefringence Δn and film thickness d) in this example is a value at a wavelength of 5500 nm unless otherwise specified. Preparation Examples>
テレフタル酸 50 mm o 1、 2, 6—ナフタレンジカルボン酸 50 mm o 1、 メチノレヒ ドロキノンジァセテート 40 mm o 1、 力テコーノレジァセテート 60 m mo 1および N—メチルイミダゾ一ル 6 Om gを用いて窒素雰囲気下、 270 °C で 12時間重縮合を行った。 次に得られた反応生成物をテトラクロロェタンに溶 解した後、 メタノールで再沈殿を行って精製し、 液晶性ポリエステル 1 4. 6 g を得た。 この液晶性ポリエステル (ポリマー 1) の対数粘度 (フエノール Zテト ラクロロェタン (6 4 質量比) 混合溶媒: 30°C) は 0. l e d l /g、 液 晶相としてネマチック相を持ち、 等方相一液晶相転移温度は 250°C以上、 示差 走査熱量計 (DS C) によるガラス転移温度は 1 1 2°Cであった。  Terephthalic acid 50 mm o 1, 2, 6—Naphthalenedicarboxylic acid 50 mm o 1, methinohydroquinone diacetate 40 mm o 1, force teconoresicetate 60 m mo 1 and N-methylimidazole 6 Om g was used for polycondensation at 270 ° C for 12 hours in a nitrogen atmosphere. Next, the obtained reaction product was dissolved in tetrachloroethane, and then purified by reprecipitation with methanol to obtain 14.6 g of a liquid crystalline polyester. The logarithmic viscosity of this liquid crystalline polyester (Polymer 1) (phenol Z tetrachloroethane (64 mass ratio) mixed solvent: 30 ° C) is 0. ledl / g, it has a nematic phase as a liquid crystal phase, isotropic liquid crystal The phase transition temperature was 250 ° C or higher, and the glass transition temperature by differential scanning calorimetry (DS C) was 1 1 2 ° C.
20 gのポリマー 1を 80 gの N—メチル一 2—ピロリ ドンに溶解させ溶液を 調製した。この溶液を、 レーヨン布にてラビング処理したポリイミ ドフィルム(商 品名 「カプトン」、 デュポン社製) 上にスピナ一にて塗布し、 溶媒を乾燥除去した 後、 2 1 0°Cで 20分熱処理することでネマチック配向構造を形成させた。 熱処 理後、 室温下まで冷却してネマチック配向構造を固定化し、 ポリイミ ドフィルム 上に実膜厚 0. 7 μπιの均一に配向した液晶物質層を得た (液晶物質層 1)。 実膜 厚は触針式膜厚計を用いて測定した。  A solution was prepared by dissolving 20 g of Polymer 1 in 80 g of N-methyl-2-pyrrolidone. This solution was applied on a polyimide film (trade name “Kapton”, manufactured by DuPont) that was rubbed with a rayon cloth, and the solvent was removed by drying, followed by heat treatment at 210 ° C for 20 minutes. As a result, a nematic alignment structure was formed. After the heat treatment, the nematic alignment structure was fixed by cooling to room temperature to obtain a liquid crystal material layer uniformly aligned with an actual film thickness of 0.7 μπι on the polyimide film (liquid crystal material layer 1). The actual film thickness was measured using a stylus type film thickness meter.
<実施例 1 > <Example 1>
調製例で得られた液晶物質層 1の上 (ポリイミ ドフイルムと反対側の面) にガ ラス転移温度が 1 05°Cの UV硬化型ァクリル系接着剤を 5 z mの厚さにァクリ ル系樹脂層 1 として塗布し、 この上に厚さ 50 μπιのポリエチレンテレフタレー ト (PET) フィルム 1をラミネートし、 約 60 Om Jの UV照射により該ァク リル系樹脂層 1を硬化させた。 この後、 PETフィルム 1 硬化アクリル系樹脂 層 1Z液晶物質層 1 ポリイミ ドフィルムが一体となった積層体からポリイミ ド フィルムを剥離することにより液晶物質層を P ETフィルム 1上に転写し、 PE A UV curable acrylic adhesive with a glass transition temperature of 105 ° C on the liquid crystal material layer 1 (surface opposite to the polyimide film) obtained in the preparation example to a thickness of 5 zm. The layer 1 was applied, and a polyethylene terephthalate (PET) film 1 having a thickness of 50 μπι was laminated thereon, and the acrylic resin layer 1 was cured by UV irradiation of about 60 Om J. After this, the PET film 1 cured acrylic resin layer 1 Z liquid crystal material layer 1 The polyimide film is peeled from the laminate in which the polyimide film is integrated to transfer the liquid crystal material layer onto the PET film 1, and PE
Tフィルム 1Z硬化ァクリル系樹脂層 1ノ液晶物質層 1からなる積層体を得た。 さらに、 該積層体の液晶物質層 1の上に T g = 1 1 0°Cの UV硬化型ァクリル 系接着剤を 5 jumの厚さにァクリル系樹脂層 2として塗布し、 この上に厚さ 38 μ mのポリエチレンテレフタレート (PET) フィルム 2をラミネートし、 約 6 0 Om Jの UV照射により該ァクリル系樹脂層 2を硬化させた。 この積層体から PETフィルム 2を剥離することにより、 PETフィルム 1 硬化ァク リル系榭 脂層 1/液晶物質層 1Z硬化アク リル系樹脂層 2からなる積層体 (A) を得た。 ここで、 積層体 (A) から PETフィルム 1を剥離した後の積層体の Δ n dは 1 45 n mであつ 7こ。 A laminate comprising a T film, a 1Z cured acryl-based resin layer, and a 1 liquid crystal material layer was obtained. Further, a UV curable acryl-based adhesive having a Tg = 110 ° C. was applied as a acryl-based resin layer 2 to a thickness of 5 jum on the liquid crystal material layer 1 of the laminate, and the thickness was further increased. 38 A μm polyethylene terephthalate (PET) film 2 was laminated, and the acrylic resin layer 2 was cured by UV irradiation of about 60 Om J. By peeling the PET film 2 from this laminate, a laminate (A) comprising PET film 1 cured acrylic resin layer 1 / liquid crystal material layer 1Z cured acrylic resin layer 2 was obtained. Here, Δ nd of the laminate after peeling the PET film 1 from the laminate (A) is 145 nm.
該積層体 (A) の硬化アクリル系樹脂層 2の面に、 予め片面に厚み 25 ^ mの 粘着剤層を形成した市販の一軸延伸されたノルボルネン系フィルム (厚み 80 μ m、 A n d 270 nm ; J SR (株) 製ァートン) を貼合することにより、 ノル ボルネン系フィルム 粘着剤層 硬化ァクリル系樹脂層 2ノ液晶物質層 1 硬化 ァクリル系樹脂層 1 /PETフィルム 1からなる積層体を得た。  A commercially available uniaxially stretched norbornene film (thickness 80 μm, A nd 270 nm) in which a pressure-sensitive adhesive layer having a thickness of 25 ^ m is previously formed on one side of the cured acrylic resin layer 2 of the laminate (A). JSR Co., Ltd. Arteron) is bonded to obtain a laminate composed of a norbornene film adhesive layer, a cured acrylic resin layer, a 2 liquid crystal material layer, a cured acrylic resin layer 1 and a PET film 1 It was.
さらに、 予め片面に厚み 25 μπιの粘着剤層を形成した市販の偏光板 (厚み約 1 80 m;住友化学 (株) 製 SQW—862) を貼合し、 最後に PETフィル ム 1を剥離することにより、 偏光板/粘着剤層ノノルボルネン系フィルムノ粘着 剤層/硬化ァクリル系樹脂層 2 Z液晶物質層 1 Z硬化ァクリル系樹脂層 1からな る本発明の光学素子用積層フィルムを得た。  In addition, a commercially available polarizing plate (thickness: about 180 m; SQW-862 manufactured by Sumitomo Chemical Co., Ltd.) with a 25 μπι thick adhesive layer formed on one side in advance is bonded, and finally PET film 1 is peeled off. Thus, a laminated film for an optical element according to the present invention comprising a polarizing plate / adhesive layer nonorbornene-based film non-adhesive layer / cured acryl-based resin layer 2 Z liquid crystal material layer 1 Z-cured acryl-based resin layer 1 was obtained. .
<実施例 2 > <Example 2>
UV硬化型アクリル系樹脂層 1として T g = 54°Cの接着剤を用いた以外は、 実施例 1と全く同様にして、 光学素子用積層フィルムを得た。  A laminated film for an optical element was obtained in the same manner as in Example 1 except that an adhesive having a T g of 54 ° C. was used as the UV curable acrylic resin layer 1.
<実施例 3 > <Example 3>
UV硬化型ァクリル系樹脂層 1 として T g = 1 08°Cの接着剤、 および UV硬 化型ァクリル系樹脂層 2として T g = 6 2 °Cの接着剤を用いた以外は、 実施例 1 と全く同様にして、 光学素子用積層フィルムを得た。 ぐ比較例 1 >  Example 1 except that an adhesive of T g = 10 08 ° C was used as the UV curable acrylic resin layer 1 and an adhesive of T g = 62 ° C was used as the UV curable acrylic resin layer 2. In the same manner as above, a laminated film for optical elements was obtained. Comparative Example 1>
UV硬化型ァクリル系樹脂層 1、 2として T g = 4 1°Cの接着剤を用いた以外 は、 実施例 1と全く同様にして、 光学素子用積層フィルムを得た。 く比較例 2 > A laminated film for an optical element was obtained in the same manner as in Example 1 except that an adhesive having a T g of 41 ° C. was used as the UV curable acryl resin layers 1 and 2. Comparative Example 2>
UV硬化型ァクリル系樹脂層 1として T g = 4 1°Cの接着剤、 UV硬化型ァク リル系榭脂層 2として T g = 224 °Cの接着剤を用いた以外は、 実施例 1と全く 同様にして、 光学素子用積層フィルムを得た。 ぐ比較例 3 >  Example 1 except that an adhesive of T g = 41 ° C was used as the UV curable acrylic resin layer 1 and an adhesive of T g = 224 ° C was used as the UV curable acrylic resin layer 2. In the same manner as above, a laminated film for optical elements was obtained. Comparative Example 3>
UV硬化型ァクリル系榭脂層 1、 2として T g = 224°Cの接着剤を用いた以 外は、 実施例 1と全く同様にして、 光学素子用積層フィルムを得た。  A laminated film for an optical element was obtained in the same manner as in Example 1 except that an adhesive having a T g of 224 ° C was used as the UV-curable acryl resin layers 1 and 2.
<実施例 4 > <Example 4>
調製例で得られた液晶物質層 1の上 (ポリイミ ドフィルムと反対側の面) にガ ラス転移温度が 8 5°Cの UV硬化型ァクリル系接着剤を 5; umの厚さにァクリル 系榭脂層 3として塗布し、 この上に厚さ 40 μ mのトリァセチルセルロース (T AC) フィルムをラミネートし、 約 60 Om Jの UV照射により該アクリル系榭 脂層 3を硬化させた。 この後、 T ACフィルムノ硬化アク リル系樹脂層 3 Z液晶 物質層 1/ポリイミ ドフィルムが一体となった積層体からポリイミ ドフィルムを 剥離することにより液晶物質層を T ACフィルム上に転写し、 T ACフィルム 硬化ァクリル系樹脂層 3 液晶物質層 1からなる積層体を得た。 A UV-curable acrylic adhesive with a glass transition temperature of 85 ° C on the liquid crystal material layer 1 (surface opposite to the polyimide film) obtained in the preparation example is 5; The resin layer 3 was applied, and a 40 μm- thick triacetyl cellulose (TAC) film was laminated thereon, and the acrylic resin layer 3 was cured by UV irradiation of about 60 Om J. After this, the polyimide film is peeled from the laminate in which the TAC film-cured acrylic resin layer 3 Z liquid crystal material layer 1 / polyimide film is integrated to transfer the liquid crystal material layer onto the TAC film. A laminate comprising a TAC film cured acryl-based resin layer 3 and a liquid crystal material layer 1 was obtained.
さらに、 該積層体の液晶物質層 1の上 (T ACフィルムと反対側の面) に T g = 1 1 0°Cの UV硬化型ァクリル系接着剤を 5 μπιの厚さにァクリル系樹脂層 4 として塗布し、 この上に厚さ 38 μ mのポリエチレンテレフタレート (PET) フィルムをラミネートし、 約 60 Om Jの UV照射により該ァクリル系樹脂層 4 を硬化させた。 この積層体から PETフィルムを剥離することにより、 TACフ ィルム/硬化ァクリル系樹脂層 3 Z液晶物質層 1 硬化ァクリル系樹脂層 4から なる積層体 (A) を得た。 ここで、積層体 (A) の Δ n dは 1 40 nmであった。 該積層体 (A) の硬化アクリル系樹脂層 4の面に、 予め片面に厚み 25 mの 粘着剤層を形成した市販の一軸延伸されたノルボルネン系フィルム (厚み 80 μ m、 A n d 2 75 nm ; J SR (株) 製アートン) を貼合することにより、 ノル ボルネン系フィルム 粘着剤層 Z硬化ァクリル系樹脂層 4 Z液晶物質層 1Z硬化 アタリル系樹脂層 3 ZT A Cフィルムからなる積層体を得た。 さらに、 予め片面に厚み 25 μ mの粘着剤層を形成した市販の偏光板 (厚み約 1 80 μπι;住友化学 (株) 製 SQW— 862) を貼合することにより、 偏光板 粘着剤層 Ζノルボルネン系フィルム Ζ粘着剤層 Ζ硬化ァクリル系樹脂層 4 ζ液 晶物質層 1Z硬化ァクリル系樹脂層 3 ZT ACフィルムからなる本発明の光学素 子用積層フィルムを得た。 Further, a UV curable acryl adhesive of T g = 110 ° C is applied on the liquid crystal material layer 1 of the laminate (the surface opposite to the TAC film) to a thickness of 5 μπι. 4 and a polyethylene terephthalate (PET) film having a thickness of 38 μm was laminated thereon, and the acrylic resin layer 4 was cured by UV irradiation of about 60 Om J. By peeling the PET film from this laminate, a laminate (A) comprising TAC film / cured acryl resin layer 3 Z liquid crystal material layer 1 cured acryl resin layer 4 was obtained. Here, Δnd of the laminate (A) was 140 nm. Commercially available uniaxially stretched norbornene film (thickness 80 μm, A nd 2 75 nm) in which a pressure-sensitive adhesive layer having a thickness of 25 m is formed on one side in advance on the surface of the cured acrylic resin layer 4 of the laminate (A). JSR Co., Ltd. Arton) is bonded to obtain a laminate composed of norbornene film adhesive layer Z cured acryl resin layer 4 Z liquid crystal material layer 1Z cured attaryl resin layer 3 ZT AC film It was. Further, by sticking a commercially available polarizing plate (thickness: about 180 μπι; SQW-862, manufactured by Sumitomo Chemical Co., Ltd.) having a 25 μm thick adhesive layer formed on one side in advance, the polarizing plate adhesive layer 偏光板A laminated film for optical elements of the present invention comprising a norbornene-based film, an adhesive layer, a cured acryl-based resin layer, a ζ liquid crystal material layer, a 1Z-cured acryl-based resin layer, and a ZT AC film was obtained.
<実施例 5 > <Example 5>
UV硬化型ァクリル系樹脂層 3として T g = 4 1°Cの接着剤を用いた以外は、 実施例 4と全く同様にして、 光学素子用積層フィルムを得た。  A laminated film for an optical element was obtained in exactly the same manner as in Example 4, except that an adhesive having a T g of 41 ° C. was used as the UV curable acryl-based resin layer 3.
<実施例 6 > <Example 6>
UV硬化型ァクリル系榭脂層 3として T g = 1 07°Cの接着剤、 および UV硬 化型ァクリル系樹脂層 4として T g = 4 1°Cの接着剤を用いた以外は、 実施例 4 と全く同様にして、 光学素子用積層フィルムを得た。  Except for using UV-curable acrylic resin layer 3 with an adhesive of T g = 10 07 ° C and UV-curable acrylic resin layer 4 with an adhesive of T g = 4 1 ° C. In the same manner as in No. 4, a laminated film for optical elements was obtained.
<比較例 4 > <Comparative Example 4>
UV硬化型ァクリル系樹脂層 4として T g = 4 1°Cの接着剤を用いた以外は、 実施例 5と全く同様にして、 光学素子用積層フィルムを得た。  A laminated film for an optical element was obtained in the same manner as in Example 5 except that an adhesive having a T g of 41 ° C. was used as the UV curable acryl-based resin layer 4.
<比較例 5 > <Comparative Example 5>
UV硬化型ァクリル系樹脂層 4として T g = 224°Cの接着剤を用いた以外は、 実施例 4と全く同様にして、 光学素子用積層フィルムを得た。 実施例 1〜 3及び比較例 1〜 3で得られた光学素子用積層フィルムの高温と高 湿のサイクル環境試験の評価結果を表 1にまとめた。 また実施例 4〜 6及び比較 例 4〜 5で得られた光学素子用積層フィルムの高温と高湿のサイクル環境試験の 評価結果を表 2にまとめた。 ここで、 サイクル環境試験条件は、 (1) 80°Cドラ ィで 24時間保持と (2) 60°C90%RHで 24時間保持の両条件の間でのサ ィクル試験を 30サイクル行なった。 また、 試験形態としては、 実施例 1〜3及 ぴ比較例 1〜3については、 得られた光学素子用積層フィルムのァクリル系樹脂 層 1の面を厚み 2 5 /z mの粘着剤を介して厚み 2 mmのソーダガラスに貼合した 形態にて実施し、 実施例 4〜 6及ぴ比較例 4〜 5については、 得られた光学素子 用積層フィルムの T A Cフィルム面を厚み 2 5 μ mの粘着剤を介して厚み 2 m m のソーダガラスに貼合した形態にて実施した。 A laminated film for an optical element was obtained in the same manner as in Example 4 except that an adhesive having a T g of 224 ° C was used as the UV curable acryl-based resin layer 4. Table 1 summarizes the evaluation results of the high-temperature and high-humidity cycle environmental tests of the laminated films for optical elements obtained in Examples 1 to 3 and Comparative Examples 1 to 3. Table 2 summarizes the evaluation results of the high-temperature and high-humidity cycle environmental tests of the laminated films for optical elements obtained in Examples 4 to 6 and Comparative Examples 4 to 5. Here, the cycle environment test conditions were (1) 24 hours at 80 ° C dry and (2) 30 cycles of cycle test at 60 ° C 90% RH for 24 hours. Further, as test forms, Examples 1 to 3 and Comparative Examples 1 to 3 are acrylic resins of the obtained laminated film for optical elements. It was carried out in a form in which the surface of layer 1 was bonded to a soda glass having a thickness of 2 mm via an adhesive having a thickness of 25 / zm, and Examples 4 to 6 and Comparative Examples 4 to 5 were obtained. The TAC film surface of the optical element laminated film was bonded to a 2 mm thick soda glass through a 25 μm thick adhesive.
表 1 table 1
Figure imgf000024_0001
表 2
Figure imgf000024_0001
Table 2
Figure imgf000024_0002
Figure imgf000024_0002

Claims

請 求 の 範 囲 The scope of the claims
1. 硬化ァクリル系樹脂層 配向を固定化した液晶物質層 硬化ァクリ ル系樹脂層の順に積層されてなる液晶フィルムであって、 少なくとも一層の硬化 アクリル系樹脂層のガラス転移温度 (T g) が 50°C以上 200°C以下であるこ とを特徴とする液晶フィルム。 1. Cured acrylic resin layer Liquid crystal material layer in which orientation is fixed A liquid crystal film laminated in the order of a cured acrylic resin layer, wherein the glass transition temperature (T g) of at least one cured acrylic resin layer is A liquid crystal film characterized by being 50 ° C or higher and 200 ° C or lower.
2. 硬化ァクリル系樹脂層/配向を固定化した液晶物質層 Z硬化ァクリ, ル系樹脂層の順に積層されてなる液晶フィルムであって、 一層の硬化ァクリル系 樹脂層の T gが 50°C以上 200°C以下であり、 他の一層の硬化ァクリル系樹脂 層の Tgが 20°C以上 100°C以下であることを特徴とする液晶フィルム。 2. Cured acrylic resin layer / Liquid crystal material layer with fixed orientation Z A liquid crystal film in which the cured acrylic resin layer is laminated in this order, and the Tg of the cured acrylic resin layer is 50 ° C. A liquid crystal film having a temperature of 200 ° C or lower and a Tg of another cured acryl-based resin layer of 20 ° C or higher and 100 ° C or lower.
3. 硬化ァクリル系樹脂層 配向を固定化した液晶物質層 硬化ァクリ ル系榭脂層/透光性基板フィルムの順に積層されてなる液晶フィルムであって、 少なくとも一層の硬化アクリル系樹脂層のガラス転移温度 (T g) が 50°C以上 200°C以下であることを特徴とする液晶フィルム。 3. Cured acrylic resin layer Liquid crystal material layer in which orientation is fixed A liquid crystal film in which a cured acrylic resin layer / translucent substrate film are laminated in this order, comprising at least one cured acrylic resin layer glass A liquid crystal film having a transition temperature (T g) of 50 ° C or higher and 200 ° C or lower.
4. 硬化ァクリル系樹脂層 Z配向を固定化した液晶物質層/硬化ァクリ ル系樹脂層/透光性基板フィルムの順に積層されてなる液晶フィルムであって、 一層の硬化ァクリル系樹脂層の Tgが 50°C以上 200°C以下であり、 他の一層 の硬化ァクリル系樹脂層の T gが 20°C以上 100°C以下であることを特徴とす る液晶フィルム。 4. Cured acrylic resin layer A liquid crystal film in which a Z-alignment fixed liquid crystal material layer / cured acrylic resin layer / translucent substrate film is laminated in this order, and the Tg of one cured acrylic resin layer A liquid crystal film characterized by having a Tg of not less than 50 ° C and not more than 200 ° C, and the Tg of another cured acryl-based resin layer being not less than 20 ° C and not more than 100 ° C.
5. 配向を固定化した液晶物質層が、 液晶転移点以上の温度で液晶配向 し、 液晶転移点以下の温度でガラス状態となる高分子液晶物質からなることを特 徴とする第 1項〜第 4項のいずれかに記載の液晶フィルム。 5. The liquid crystal material layer in which the alignment is fixed is composed of a polymer liquid crystal material that aligns liquid crystal at a temperature equal to or higher than the liquid crystal transition point and enters a glass state at a temperature equal to or lower than the liquid crystal transition point. 5. The liquid crystal film according to any one of items 4.
6. 配向を固定化した液晶物質層が、 液晶配向した低分子液晶物質を光 架橋または熱架橋したものであることを特徴とする第 1項〜第 4項のいずれかに 記載の液晶フィルム。 6. The liquid crystal film according to any one of items 1 to 4, wherein the liquid crystal material layer in which the alignment is fixed is obtained by photo-crosslinking or heat-crosslinking a liquid crystal-aligned low-molecular liquid crystal material.
7. 透光性基板フィルムがトリァセチルセルロース (TAC) フィルム であることを特徴とする第 4項〜第 6項のいずれかに記載の液晶フィルム。 7. The liquid crystal film according to any one of Items 4 to 6, wherein the translucent substrate film is a triacetyl cellulose (TAC) film.
8. 透光性基板フィルムが厚み 50 μ m以下のトリァセチルセルロース (TAC) フィルムであることを特徴とする第 7項に記載の液晶フィルム。 8. The liquid crystal film according to item 7, wherein the translucent substrate film is a triacetyl cellulose (TAC) film having a thickness of 50 μm or less.
9. 第 1項〜第 8項のいずれかに記載の液晶フィルムが、 粘接着剤を介 して偏光フィルムと積層されてなることを特徴とする光学素子用積層フィルム。 9. A laminated film for an optical element, wherein the liquid crystal film according to any one of items 1 to 8 is laminated with a polarizing film via an adhesive.
PCT/JP2006/303535 2005-03-31 2006-02-21 Liquid crystal film and laminated film for optical devices WO2006112149A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005102224A JP2006284736A (en) 2005-03-31 2005-03-31 Liquid crystal film and laminated film for optical element
JP2005102223A JP2006284735A (en) 2005-03-31 2005-03-31 Liquid crystal film and laminated film for optical element
JP2005-102223 2005-03-31
JP2005-102224 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006112149A1 true WO2006112149A1 (en) 2006-10-26

Family

ID=37114887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303535 WO2006112149A1 (en) 2005-03-31 2006-02-21 Liquid crystal film and laminated film for optical devices

Country Status (2)

Country Link
KR (1) KR20080012857A (en)
WO (1) WO2006112149A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122387A1 (en) * 2014-02-12 2015-08-20 Jx日鉱日石エネルギー株式会社 Retardation plate, laminated polarizing plate using retardation plate, and display device using retardation plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048917A (en) * 2000-05-23 2002-02-15 Nippon Mitsubishi Oil Corp Circularly polarizing plate and liquid crystal display device
JP2003075636A (en) * 2001-09-04 2003-03-12 Nippon Oil Corp Elliptically polarizing plate and liquid crystal display device
JP2003337218A (en) * 2002-05-21 2003-11-28 Nippon Oil Corp Laminated body for transfer
JP2005070771A (en) * 2003-08-07 2005-03-17 Nitto Denko Corp Optical compensation plate and polarizing plate using the same, and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048917A (en) * 2000-05-23 2002-02-15 Nippon Mitsubishi Oil Corp Circularly polarizing plate and liquid crystal display device
JP2003075636A (en) * 2001-09-04 2003-03-12 Nippon Oil Corp Elliptically polarizing plate and liquid crystal display device
JP2003337218A (en) * 2002-05-21 2003-11-28 Nippon Oil Corp Laminated body for transfer
JP2005070771A (en) * 2003-08-07 2005-03-17 Nitto Denko Corp Optical compensation plate and polarizing plate using the same, and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122387A1 (en) * 2014-02-12 2015-08-20 Jx日鉱日石エネルギー株式会社 Retardation plate, laminated polarizing plate using retardation plate, and display device using retardation plate
JPWO2015122387A1 (en) * 2014-02-12 2017-03-30 Jxエネルギー株式会社 Retardation plate, laminated polarizing plate using retardation plate, and display device using retardation plate

Also Published As

Publication number Publication date
KR20080012857A (en) 2008-02-12

Similar Documents

Publication Publication Date Title
TWI235256B (en) Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device
JP2004226752A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body
JP2007114270A (en) Manufacturing method of optical film
TW201447399A (en) Optical film, polarizing plate, image display device, and optical film fabrication method
JP2008183812A (en) Manufacturing process of liquid crystal film and lamination film for optical device
JP2006284736A (en) Liquid crystal film and laminated film for optical element
JP2003075636A (en) Elliptically polarizing plate and liquid crystal display device
JP2004226753A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate comprising the layered body and liquid crystal display
JP2006284735A (en) Liquid crystal film and laminated film for optical element
JP6718685B2 (en) Photocurable adhesive, polarizing plate using the same, laminated optical member and liquid crystal display device
TWI236552B (en) Method for producing an optical device; elliptical and circular polarizers comprising the optical device; and liquid crystal device
KR100746806B1 (en) Manufacturing Method Of Optical Laminate, And Oval Elliptic Polarization Plate, Circular Polarization Plate And Liquid Crystal Device Consisting Of The Optical Laminate
WO2004029679A1 (en) Liquid crystal film and elliptical polarizing plate production method
WO2006112149A1 (en) Liquid crystal film and laminated film for optical devices
JP4335484B2 (en) Method for producing liquid crystal film and elliptically polarizing plate
KR100746807B1 (en) Manufacturing method of optical laminate, and elliptic polarizing plate and circular polarizing plate composed of the laminate, and liquid crystal display apparatus
JP2017122881A (en) Photo-curable adhesive, and polarizing plate and laminate optical member using the same
JP2004226758A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate, and liquid crystal display comprising the layered body
JP2004226754A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body
JP2004226762A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body
JP2004226757A (en) Method for manufacturing optical layered body, elliptically polarizing plate and circularly polarizing plate comprising the layered body, and liquid crystal display
WO2004036274A1 (en) Method for preparing liquid crystalline film and elliptically polarizing plate
JP2004226763A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body
KR100746808B1 (en) Manufacturing method of optical laminate, and elliptic polarizing plate and circular polarizing plate composed of the laminate, and liquid crystal display apparatus
JP2004226756A (en) Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate and liquid crystal display comprising the layered body

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009813.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077025087

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714672

Country of ref document: EP

Kind code of ref document: A1