WO2006106753A1 - Scroll fluid machine - Google Patents

Scroll fluid machine Download PDF

Info

Publication number
WO2006106753A1
WO2006106753A1 PCT/JP2006/306507 JP2006306507W WO2006106753A1 WO 2006106753 A1 WO2006106753 A1 WO 2006106753A1 JP 2006306507 W JP2006306507 W JP 2006306507W WO 2006106753 A1 WO2006106753 A1 WO 2006106753A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
rotor
unit
armature
spiral groove
Prior art date
Application number
PCT/JP2006/306507
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitaka Koitabashi
Kou Tsukamoto
Tomokazu Naruta
Shigeyuki Koyama
Original Assignee
Sanden Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corporation filed Critical Sanden Corporation
Priority to DE602006018117T priority Critical patent/DE602006018117D1/en
Priority to EP06730455A priority patent/EP1865201B1/en
Priority to US11/887,691 priority patent/US20090148314A1/en
Publication of WO2006106753A1 publication Critical patent/WO2006106753A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor

Definitions

  • the present invention relates to a scroll type fluid machine, and more particularly to a scroll type fluid machine suitable as a scroll compressor used for refrigerant compression in a refrigeration circuit of a vehicle air conditioning system.
  • This type of scroll compressor is driven by a vehicle engine or an electric motor.
  • the electric compressor can easily adjust the refrigerant discharge amount regardless of the engine load, and can control the vehicle's indoor temperature. Preferred.
  • the electric scroll compressor disclosed in Japanese Patent Laid-Open No. 2003-129983 includes one housing common to both the scroll unit and the electric motor, and the scroll unit and the electric motor are included in the common housing. Each armature is contained!
  • the compressor of the above publication includes a cooling path for the armature. This cooling path guides the returned refrigerant to the player in the process of returning the refrigerant toward the scroll unit. Since the temperature of the return refrigerant is sufficiently lower than the ambient temperature, the return refrigerant can cool the armature effectively.
  • the cooling path includes an air gap between the rotor of the armature and the stator, a gap between the stator and the inner peripheral wall of the common housing, and a gap of the stator coil.
  • the cooling path becomes a great resistance to the flow of the refrigerant toward the scroll unit and increases the pressure loss of the refrigerant. For this reason, the scroll unit cannot suck the return refrigerant efficiently, and the suction efficiency of the scroll unit is lowered.
  • a motor matrix disclosed in Japanese Patent Application Laid-Open No. 2002-165406 includes an axial passage that penetrates the rotor and fans attached to both end faces of the rotor. . When these fans are rotated, the refrigerant forcibly flows in one direction in the axial passage and cools the armature.
  • An object of the present invention is to provide a scroll type fluid machine that can increase the suction efficiency of a scroll unit without causing an increase in size and an increase in the number of parts.
  • a scroll type fluid machine includes a housing and a scroll unit accommodated in the housing, and the scroll unit cooperates with each other to provide a working fluid.
  • a scroll unit having a fixed scroll and a movable scroll for compressing the compressor, and a housing accommodated in the housing adjacent to the scroll unit, the rotor including a rotor for rotating the movable scroll, and
  • the rotor has a peripheral surface and both end surfaces, a armature, a fluid flow path that is disposed in the housing and guides the working fluid through the armature toward the scroll unit, and is a spiral formed on the peripheral surface of the rotor.
  • a fluid channel including a groove, the spiral groove having both ends opened at both end faces of the rotor.
  • the scroll unit when the scroll unit is driven by the armature, the scroll unit sucks the working fluid guided through the fluid flow path.
  • the pressure of the drawn working fluid is changed as the working fluid passes through the scroll unit, and then the working fluid is discharged from the scroll unit.
  • the fluid flow path includes a spiral groove formed in the rotor
  • the working fluid guided to the scroll unit mainly flows through the spiral groove.
  • the spiral groove increases the cross-sectional area of the fluid flow path, and does not become a great resistance to the flow of working fluid that the fluid flow path faces the scroll unit. As a result, the pressure loss of the working fluid is reduced and the scroll unit is The working fluid suction efficiency is improved.
  • the spiral groove has a spiral direction that pushes the working fluid in the spiral groove toward the scroll unit when the rotor is rotated.
  • the working fluid in the spiral groove is pushed toward the scroll unit, so that the working fluid is forced to flow toward the scroll unit through the spiral groove, and the pressure loss of the working fluid is further reduced. If it is reduced, the suction efficiency of the scroll unit can be further improved.
  • the scroll unit is a compression unit for the refrigeration circuit, and the fluid flow path guides the refrigerant returned toward the compression unit.
  • the peripheral surface of the rotor having the spiral groove is preferably the outer peripheral surface of the rotor.
  • the refrigerant returned to the compression unit is sufficiently lower than the ambient temperature, the refrigerant effectively cools the armature when the refrigerant flows in the spiral groove of the rotor. Therefore, overheating of the armature is prevented and the performance of the armature is maintained.
  • each electromagnetic steel plate can have a notch for forming a spiral groove on the peripheral edge forming the peripheral surface of the rotor.
  • the spiral groove can be easily formed on the peripheral surface of the rotor.
  • FIG. 1 is a cross-sectional view showing a scroll compressor as a fluid machine.
  • FIG. 2 is a perspective view showing the rotor of FIG.
  • FIG. 3 is a front view showing an electrical steel sheet that constitutes the rotor of FIG. 2.
  • the scroll compressor of FIG. 1 is used as a compressor for a vehicle air conditioning system, that is, a refrigeration circuit.
  • the compressor includes a cylindrical housing 10.
  • the housing 10 includes a unit casing 12, a motor casing 14, and a circuit casing 16 in order from the left as viewed in FIG.
  • the unit casing 12 and the motor casing 14 are connected to each other by a plurality of connecting bolts 18, and the motor casing 14 and the circuit casing 16 are connected to each other by a plurality of connecting bolts 19.
  • the unit casing 12 accommodates the scroll unit 20, and this scroll tube is used.
  • G 20 has a fixed scroll 22 and a movable scroll 24.
  • the fixed scroll 22 is fixed to the end wall 12a via a plurality of fixing bolts 26 in contact with the end wall 12a of the boot casing 12.
  • the movable scroll 24 is positioned on the motor casing 14 side.
  • the fixed and movable scrolls 22 and 24 have spiral walls 22f and 24m, and the spiral walls 22f and 24m are assembled so as to be held together.
  • the swirl of the spiral walls 22f, 24m forms a plurality of compression chambers 28.
  • the unit casing 12 defines a discharge chamber 30 therein, and the inner end wall of the discharge chamber 30 is formed by an end wall 12a of the unit case 12 and an end plate 22a of the fixed scroll 22, respectively.
  • the end wall 22a has a discharge hole 32 in the center thereof, and the discharge hole 32 passes through the end wall 22a.
  • the discharge hole 32 is opened and closed by a discharge valve (not shown).
  • the discharge valve is disposed in the discharge chamber 30 and is fixed to the end wall 22 a of the fixed scroll 22.
  • the end wall 12 a of the unit casing 12 has a discharge port 34.
  • the inner end of the discharge port 34 communicates with the discharge chamber 30, and the outer end of the discharge port 34 is the refrigerant circulation path (not shown) of the refrigeration circuit described above, more specifically, the condensation of the refrigeration circuit via the refrigerant circulation path.
  • a device not shown.
  • a ball coupling 36 is sandwiched between the end plate 24 a of the movable scroll 24 and one end of the motor casing 14. The ball coupling 36 prevents the movable scroll 24 from rotating, and transmits the thrust load from the movable scroll 24 to the motor casing 14.
  • the motor casing 14 accommodates an armature 38 therein
  • the end casing 48 has a motor casing 14 in the unit casing 12 side chamber 13 and the circuit casing 16 side chamber 15.
  • the armature 38 has a rotating shaft 40, which is positioned in the center of the motor casing 14 and extends from one end of the motor casing 14 toward the circuit casing 16. Both ends of the rotating shaft 40 are connected to one end of the motor casing 14 and It is supported by the partition wall 16a in the circuit casing 16 via a ball bearing 42 and a roller bearing 44 so as to rotate.
  • the partition wall 16 a divides the circuit casing 16 into a chamber 17 connected to the motor casing 14 and a circuit chamber 19 separated from the chamber 17.
  • one end of the rotating shaft 40 is formed as a large diameter end portion 46, and the large diameter end portion 46 has an end face facing the end plate of the movable scroll 24.
  • a crankpin 48 protrudes from the end face of the large-diameter end 46 toward the movable scroll 24, and an eccentric bush 50 is attached to the crankpin 48! /.
  • the eccentric bush 50 is rotatably supported on the movable scroll 24 by means of the bush 24a through the one-dollar bearing 52! RU
  • the movable scroll 24 orbits with respect to the fixed scroll 22 with its rotation blocked by the ball coupling 36.
  • the turning radius of the movable scroll 24 is determined by the distance between the axis of the rotary shaft 40 and the axis of the crank pin 48.
  • the armature 38 described above has a rotor 54, and the rotor 54 is attached to the rotating shaft 40.
  • the rotor 54 is surrounded by a stator 56, and the stator 56 is fixed to the inner peripheral wall of the motor casing 14.
  • the circuit casing 16 has a return port 58 on its outer peripheral wall, and the inner end of the return port 58 is located inside the motor casing 14 via the chamber 17 of the circuit casing 16, that is, the chamber described above. Communicate with 15 The other end of the return port 58 is connected to the refrigerant circulation path of the refrigeration circuit, specifically, the evaporator of the refrigeration circuit via the refrigerant circulation path. Therefore, the return refrigerant having also sent the evaporator force flows into the chamber 17 of the circuit casing 16 through the return port 58 and is supplied from this chamber 17 into the motor casing 16.
  • a drive circuit 59 for the armature 38 is disposed in the circuit chamber 19 of the circuit casing 16, and the drive circuit 59 controls the supply of power to the armature 38 and the rotation of the armature 38, respectively.
  • a cooling path is secured in the motor casing 14, and the cooling path guides the return refrigerant supplied in the motor casing 14 into the armature 38.
  • the cooling path includes the air gap Ga between the rotor 54 and the stator 56 and the motor casing 14.
  • a spiral groove that forms the main part of the cooling path is included. Connect chambers 13 and 15 located on both sides of armature 38.
  • the rotor 54 has a laminated structure in which a large number of ring-shaped electromagnetic steel plates 62 are superposed in the axial direction of the rotary shaft 40 as will be apparent from FIG.
  • the spiral groove 64 is formed on the outer peripheral surface of the rotor 54, and both ends of the spiral groove 64 are opened at both end surfaces of the rotor 54. More specifically, when the rotor 54 is rotated, the spiral groove 64 has a spiral direction that moves toward the unit casing 12 side, like a right-hand thread.
  • each electromagnetic steel sheet 62 has a U-shaped notch 66 on its outer peripheral surface.
  • the notches 66 of the adjacent electrical steel sheets 62 overlap each other while being slightly displaced in the circumferential direction of the rotor 54.
  • the notches 66 arranged in the axial direction form the spiral groove 64 described above.
  • spiral groove 64 can also be formed on the outer peripheral surface of the rotor 54 by machining after the rotor 54 is formed of a large number of electromagnetic steel plates 62.
  • a suction chamber 60 for the scroll unit 20 is defined in the unit casing 12, and the suction chamber 60 surrounds the movable scroll 24 of the scroll unit 20, and is fixed from the discharge chamber 30 to the fixed scroll 22.
  • the suction chamber 60 is connected to the chamber 13 in the motor casing 14 through the internal space of the ball coupling 36, the space between the movable scroll 24 and the ball bearing 42, and the internal space of the ball bearing 42.
  • the suction chamber 60 is connected to the return port 58 of the circuit casing 16 through the refrigerant flow path including the cooling path described above. As a result, the return refrigerant flowing into the return port 58 passes through the refrigerant flow path. Supplied to suction chamber 60.
  • the compression chamber 28 moves toward the discharge hole 32 of the fixed scroll 22 by the orbiting motion of the movable scroll 24, and in this process, the volume in the compression chamber 28 is reduced, resulting in the pressure being reduced.
  • the refrigerant sucked into the compression chamber 28 is compressed.
  • the compression chamber 28 reaches the discharge hole 32 and the pressure of the refrigerant in the compression chamber 28 overcomes the cutoff pressure of the discharge valve, the discharge valve is opened, and the compressed refrigerant in the compression chamber 28 passes through the discharge hole 32. Discharged into the discharge chamber 30.
  • the compressed refrigerant in the discharge chamber 30 is sent to the refrigerant circulation path through the discharge port 34, and is supplied toward the condenser of the refrigeration circuit. Thereafter, the compressed refrigerant is supplied to the evaporator through a receiver and an expansion valve in the refrigerant circulation path, and then returns from the evaporator to return to the return port 58. Then, the return port 58 Into the chamber 17 in the circuit casing 16. Further, the return refrigerant is supplied from the chamber 17 to the suction chamber 60 through the above-described refrigerant flow path, that is, the cooling flow path.
  • the temperature of the return refrigerant is sufficiently lower than the ambient temperature! Therefore, the return refrigerant flowing through the cooling path effectively cools the armature 38 and prevents the armature 38 from overheating.
  • the cooling path includes a spiral groove 64 as its main part, and this spiral groove 64 increases the effective channel cross-sectional area of the entire cooling path. Therefore, the cooling path does not become a great resistance to the flow of the return refrigerant directed to the suction chamber 60, and the pressure loss of the return refrigerant is small.
  • the above-described spiral groove 64 prevents the large size of the scroll compressor without increasing the number of parts for the rotor 54 and the number of parts for the armature 38, and further prevents the large size of the scroll compressor. Greatly contributes to weight reduction.
  • the present invention can be variously modified without being limited to the above-described embodiment.
  • the rotor 54 may have a plurality of spiral grooves 64 on its outer peripheral surface.
  • the above spiral groove 64 can be provided.
  • the present invention is equally applicable to a scroll expander instead of a compressor.

Abstract

An electric scroll compressor as a fluid machine, comprising a housing (10) storing both a scroll unit (20) and an armature (38) driving the scroll unit (20) and a refrigerant flow passage disposed in the housing (10) and leading a refrigerant to the scroll unit (20). The refrigerant flow passage partly comprises a spiral groove (64), and the spiral groove (64) is formed in the outer peripheral surface of a rotor (54) of the armature (38) and comprises both ends opened to both end faces of the rotor (54).

Description

明 細 書  Specification
スクロール型流体機械  Scroll type fluid machinery
技術分野  Technical field
[0001] 本発明はスクロール型流体機械に係わり、特に車両用空調システムの冷凍回路に て、冷媒の圧縮に使用されるスクロール圧縮機として好適するスクロール型流体機械 に関する。  The present invention relates to a scroll type fluid machine, and more particularly to a scroll type fluid machine suitable as a scroll compressor used for refrigerant compression in a refrigeration circuit of a vehicle air conditioning system.
背景技術  Background art
[0002] この種のスクロール圧縮機は車両のエンジン又は電動モータにより駆動される。電 動型の圧縮機はエンジンにより駆動される圧縮機に比べ、冷媒の吐出量をエンジン の負荷に拘わらず容易に調整することができ、車両の室内温度をきめ細力べ制御す るうえで好適する。  This type of scroll compressor is driven by a vehicle engine or an electric motor. Compared to an engine driven compressor, the electric compressor can easily adjust the refrigerant discharge amount regardless of the engine load, and can control the vehicle's indoor temperature. Preferred.
[0003] また、この種のスクロール圧縮機は車両に搭載されるため、可能な限りコンパクトな 圧縮機が要求されている。それ故、特開 2003-129983号公報に開示された電動型ス クロール圧縮機は、スクロールユニット及び電動モータの双方に共通の 1つのハウジ ングを含み、この共用ハウジング内にスクロールユニット及び電動モータのァーマチ ャがそれぞれ収容されて!ヽる。  [0003] Further, since this type of scroll compressor is mounted on a vehicle, a compressor as compact as possible is required. Therefore, the electric scroll compressor disclosed in Japanese Patent Laid-Open No. 2003-129983 includes one housing common to both the scroll unit and the electric motor, and the scroll unit and the electric motor are included in the common housing. Each armature is contained!
[0004] 電動モータが回転されているとき、ァーマチヤは発熱する。ァーマチヤの温度が過 度に上昇すれば、モータ性能が低下する。それ故、上記公報の圧縮機はァーマチヤ のための冷却経路を含んでいる。この冷却経路は、冷媒がスクロールユニットに向け て戻る過程にて、この戻り冷媒をァ一マチヤに導く。戻り冷媒の温度は周囲の温度に 比べて十分に低いので、戻り冷媒はァ一マチヤを効果的に冷却することができる。  [0004] When the electric motor is rotated, the armature generates heat. If the temperature of the armature rises excessively, the motor performance will deteriorate. Therefore, the compressor of the above publication includes a cooling path for the armature. This cooling path guides the returned refrigerant to the player in the process of returning the refrigerant toward the scroll unit. Since the temperature of the return refrigerant is sufficiently lower than the ambient temperature, the return refrigerant can cool the armature effectively.
[0005] 具体的には、冷却経路は、ァーマチヤのロータとステータとの間のエア間隙、ステ ータと共用ハウジングの内周壁との間の間隙、そして、ステータコイルの間隙を含む。 しかしながら、これらの間隙は何れも狭いので、冷却経路はスクロールユニットに向か う冷媒の流れにとって大きな抵抗となり、冷媒の圧力損失を増加させる。このため、ス クロールユニットは戻り冷媒を効率良く吸入できなくなり、スクロールユニットの吸入効 率が低下する。 [0006] 上述の不具合を解消するため、特開 2002-165406号公報に開示されたモータのァ 一マチヤは、ロータ内を貫通する軸方向通路及びロータの両端面にそれぞれ取付け られたファンを含む。これらファンが回転されたとき、冷媒は軸方向通路内を一方向 に強制的に流れ、ァーマチヤを冷却する。 [0005] Specifically, the cooling path includes an air gap between the rotor of the armature and the stator, a gap between the stator and the inner peripheral wall of the common housing, and a gap of the stator coil. However, since both of these gaps are narrow, the cooling path becomes a great resistance to the flow of the refrigerant toward the scroll unit and increases the pressure loss of the refrigerant. For this reason, the scroll unit cannot suck the return refrigerant efficiently, and the suction efficiency of the scroll unit is lowered. [0006] In order to solve the above-mentioned problems, a motor matrix disclosed in Japanese Patent Application Laid-Open No. 2002-165406 includes an axial passage that penetrates the rotor and fans attached to both end faces of the rotor. . When these fans are rotated, the refrigerant forcibly flows in one direction in the axial passage and cools the armature.
[0007] し力しながら、スクロール圧縮機に上記公報のァーマチヤを適用した場合、ァーマ チヤはロータが軸方向通路を有する分だけ大形ィ匕するので、スクロール圧縮機の共 用ハウジングの外径や重量もまた増加する。更に、ファンはァーマチヤの部品点数を 増加させ、スクロール圧縮機のコストを上昇させる。  [0007] However, when the armature of the above publication is applied to the scroll compressor while the force is applied, the armature becomes larger because the rotor has an axial passage, so that the outer diameter of the common housing of the scroll compressor is reduced. And weight also increases. Furthermore, the fan increases the number of parts of the armature and increases the cost of the scroll compressor.
発明の開示  Disclosure of the invention
[0008] 本発明の目的は、大形化や部品点数の増加を招くことなぐスクロールユニットの吸 入効率を高めることができるスクロール型流体機械を提供することにある。  An object of the present invention is to provide a scroll type fluid machine that can increase the suction efficiency of a scroll unit without causing an increase in size and an increase in the number of parts.
[0009] 上記の目的を達成するため、本発明のスクロール型流体機械は、ハウジングと、こ のハウジング内に収容されたスクロールユニットであって、このスクロールユニットは互 いに協働して作動流体を圧縮するための固定スクロール及び可動スクロールを有す る、スクロールユニットと、ハウジング内にスクロールユニットに隣接して収容されたァ 一マチヤであって、可動スクロールを回転させるためのロータを含み、且つ、このロー タが周面及び両端面を有する、ァーマチヤと、ハウジング内に配置され、スクロール ユニットに向けてァーマチヤ内を通じて作動流体を導く流体流路であって、ロータの 周面に形成された螺旋溝を含み、この螺旋溝がロータの両端面にて開口した両端を 有する、流体流路とを備える。  In order to achieve the above object, a scroll type fluid machine according to the present invention includes a housing and a scroll unit accommodated in the housing, and the scroll unit cooperates with each other to provide a working fluid. A scroll unit having a fixed scroll and a movable scroll for compressing the compressor, and a housing accommodated in the housing adjacent to the scroll unit, the rotor including a rotor for rotating the movable scroll, and The rotor has a peripheral surface and both end surfaces, a armature, a fluid flow path that is disposed in the housing and guides the working fluid through the armature toward the scroll unit, and is a spiral formed on the peripheral surface of the rotor. A fluid channel including a groove, the spiral groove having both ends opened at both end faces of the rotor.
[0010] 上述したスクロール型流体機械によれば、スクロールユニットがァーマチヤにより駆 動されたとき、スクロールユニットは、流体流路を通じて導かれる作動流体を吸入する 。吸入された作動流体の圧力は、作動流体がスクロールユニット内を通過する過程に て変化され、この後、作動流体はスクロールユニットから吐出される。 According to the scroll type fluid machine described above, when the scroll unit is driven by the armature, the scroll unit sucks the working fluid guided through the fluid flow path. The pressure of the drawn working fluid is changed as the working fluid passes through the scroll unit, and then the working fluid is discharged from the scroll unit.
[0011] 流体流路はロータに形成された螺旋溝を含んでいるので、スクロールユニットに導 かれる作動流体は主として螺旋溝を通じて流れる。螺旋溝は流体流路の断面積を増 加させ、流体流路がスクロールユニットに向力う作動流体の流れにとって大きな抵抗 になることはない。この結果、作動流体の圧力損失が低減され、スクロールユニットに おける作動流体の吸入効率は向上する。 [0011] Since the fluid flow path includes a spiral groove formed in the rotor, the working fluid guided to the scroll unit mainly flows through the spiral groove. The spiral groove increases the cross-sectional area of the fluid flow path, and does not become a great resistance to the flow of working fluid that the fluid flow path faces the scroll unit. As a result, the pressure loss of the working fluid is reduced and the scroll unit is The working fluid suction efficiency is improved.
[0012] 好ましくは、螺旋溝は、ロータが回転されたとき、螺旋溝内の作動流体をスクロール ユニットに向けて押し出す螺旋方向を有する。この場合、ロータの回転中、螺旋溝内 の作動流体はスクロールユニットに向けて押し出されるので、作動流体は、螺旋溝内 を通じてスクロールユニットに向けて強制的に流れ、作動流体の圧力損失が更に低 減されるば力りでなぐスクロールユニットの吸入効率を更に向上することができる。  [0012] Preferably, the spiral groove has a spiral direction that pushes the working fluid in the spiral groove toward the scroll unit when the rotor is rotated. In this case, during the rotation of the rotor, the working fluid in the spiral groove is pushed toward the scroll unit, so that the working fluid is forced to flow toward the scroll unit through the spiral groove, and the pressure loss of the working fluid is further reduced. If it is reduced, the suction efficiency of the scroll unit can be further improved.
[0013] 具体的には、スクロールユニットは、冷凍回路のための圧縮ユニットであり、流体流 路は圧縮ユニットに向けて戻される冷媒を案内する。この場合、螺旋溝を有するロー タの周面はロータの外周面であるのが好ましい。 Specifically, the scroll unit is a compression unit for the refrigeration circuit, and the fluid flow path guides the refrigerant returned toward the compression unit. In this case, the peripheral surface of the rotor having the spiral groove is preferably the outer peripheral surface of the rotor.
[0014] 圧縮ユニットに戻される冷媒の温度は周囲の温度よりも十分に低いので、冷媒がロ ータの螺旋溝内を流れるとき、冷媒はァ一マチヤを効果的に冷却する。それ故、ァー マチヤの過熱が防止され、ァーマチヤの性能が維持される。 [0014] Since the temperature of the refrigerant returned to the compression unit is sufficiently lower than the ambient temperature, the refrigerant effectively cools the armature when the refrigerant flows in the spiral groove of the rotor. Therefore, overheating of the armature is prevented and the performance of the armature is maintained.
[0015] ロータがロータの軸線方向にリング形状の電磁鋼板を積層した積層構造を有する 場合、各電磁鋼板はロータの周面を形成する周縁に螺旋溝を形成するためのノッチ を有することができる。この場合、ロータの周面に螺旋溝を容易に形成することができ る。 [0015] When the rotor has a laminated structure in which ring-shaped electromagnetic steel plates are laminated in the axial direction of the rotor, each electromagnetic steel plate can have a notch for forming a spiral groove on the peripheral edge forming the peripheral surface of the rotor. . In this case, the spiral groove can be easily formed on the peripheral surface of the rotor.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]流体機械としてのスクロール圧縮機を示した断面図である。 FIG. 1 is a cross-sectional view showing a scroll compressor as a fluid machine.
[図 2]図 1のロータを示した斜視図である。  FIG. 2 is a perspective view showing the rotor of FIG.
[図 3]図 2のロータを構成する電磁鋼板を示した正面図である。  3 is a front view showing an electrical steel sheet that constitutes the rotor of FIG. 2. FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 図 1のスクロール圧縮機は、車両用空調システム、即ち、冷凍回路のための圧縮機 として使用される。圧縮機は円筒形状のハウジング 10を備える。図 1でみて左方から 順に、ハウジング 10は、ユニットケーシング 12、モータケ一シング 14及び回路ケーシ ング 16を有する。ユニットケーシング 12及びモータケ一シング 14は複数の連結ボル ト 18により相互に結合され、そして、モータケ一シング 14及び回路ケーシング 16は 複数の連結ボルト 19により相互に結合されて 、る。  The scroll compressor of FIG. 1 is used as a compressor for a vehicle air conditioning system, that is, a refrigeration circuit. The compressor includes a cylindrical housing 10. The housing 10 includes a unit casing 12, a motor casing 14, and a circuit casing 16 in order from the left as viewed in FIG. The unit casing 12 and the motor casing 14 are connected to each other by a plurality of connecting bolts 18, and the motor casing 14 and the circuit casing 16 are connected to each other by a plurality of connecting bolts 19.
[0018] ユニットケーシング 12はスクロールユニット 20を収容しており、このスクロールュ-ッ ト 20は固定スクロール 22及び可動スクロール 24を有する。固定スクロール 22はュ- ットケ一シング 12の端壁 12aに当接した状態で、端壁 12aに複数の固定ボルト 26を 介して固定されている。一方、可動スクロール 24はモータケ一シング 14側に位置付 けられている。 [0018] The unit casing 12 accommodates the scroll unit 20, and this scroll tube is used. G 20 has a fixed scroll 22 and a movable scroll 24. The fixed scroll 22 is fixed to the end wall 12a via a plurality of fixing bolts 26 in contact with the end wall 12a of the boot casing 12. On the other hand, the movable scroll 24 is positioned on the motor casing 14 side.
[0019] 固定及び可動スクロール 22, 24は渦巻壁 22f, 24mを有し、これら渦巻壁 22f, 24 mが互いに嚙み合うように組み付けられている。渦巻壁 22f, 24mの嚙み合いは複数 の圧縮室 28を形成する。可動スクロール 24が固定スクロール 22に対して旋回すると き、圧縮室 28は固定スクロール 22の周方向に沿って螺旋状に移動し、固定スクロー ル 22の中央に向力い、この移動過程にて圧縮室 28の容積は縮小する。  [0019] The fixed and movable scrolls 22 and 24 have spiral walls 22f and 24m, and the spiral walls 22f and 24m are assembled so as to be held together. The swirl of the spiral walls 22f, 24m forms a plurality of compression chambers 28. When the movable scroll 24 turns with respect to the fixed scroll 22, the compression chamber 28 moves spirally along the circumferential direction of the fixed scroll 22, and is directed toward the center of the fixed scroll 22. The volume of chamber 28 is reduced.
[0020] ユニットケーシング 12はその内部に吐出室 30を規定し、この吐出室 30の内端壁は ユニットケース 12の端壁 12a及び固定スクロール 22の端板 22aによりそれぞれ形成 されている。端壁 22aはその中央に吐出孔 32を有し、この吐出孔 32は端壁 22aを貫 通している。吐出孔 32は吐出弁(図示しない)により開閉される。吐出弁は吐出室 30 内に配置され、固定スクロール 22の端壁 22aに固定されている。  The unit casing 12 defines a discharge chamber 30 therein, and the inner end wall of the discharge chamber 30 is formed by an end wall 12a of the unit case 12 and an end plate 22a of the fixed scroll 22, respectively. The end wall 22a has a discharge hole 32 in the center thereof, and the discharge hole 32 passes through the end wall 22a. The discharge hole 32 is opened and closed by a discharge valve (not shown). The discharge valve is disposed in the discharge chamber 30 and is fixed to the end wall 22 a of the fixed scroll 22.
[0021] 更に、ユニットケーシング 12の端壁 12aは吐出ポート 34を有する。この吐出ポート 3 4の内端は吐出室 30に連通し、吐出ポート 34の外端は前述した冷凍回路の冷媒循 環経路(図示しない)、詳しくは、冷媒循環経路を介して冷凍回路の凝縮器 (図示し ない)に接続されている。  Furthermore, the end wall 12 a of the unit casing 12 has a discharge port 34. The inner end of the discharge port 34 communicates with the discharge chamber 30, and the outer end of the discharge port 34 is the refrigerant circulation path (not shown) of the refrigeration circuit described above, more specifically, the condensation of the refrigeration circuit via the refrigerant circulation path. Connected to a device (not shown).
[0022] 可動スクロール 24が旋回運動するとき、可動スクロール 24の自転は阻止されて!ヽ る。より詳しくは、可動スクロール 24の端板 24aとモータケ一シング 14の一端との間 にボールカップリング 36が挟み込まれている。ボールカップリング 36は、可動スクロ ール 24の自転を阻止する一方、可動スクロール 24からのスラスト荷重をモータケ一 シング 14に伝達する。  [0022] When the movable scroll 24 performs a turning motion, the rotation of the movable scroll 24 is prevented! More specifically, a ball coupling 36 is sandwiched between the end plate 24 a of the movable scroll 24 and one end of the motor casing 14. The ball coupling 36 prevents the movable scroll 24 from rotating, and transmits the thrust load from the movable scroll 24 to the motor casing 14.
[0023] 一方、モータケ一シング 14はその内部にァーマチヤ 38を収容しており、了一マチヤ 48はモータケ一シング 14内をユニットケーシング 12側の室 13と、回路ケーシング 16 側の室 15とに区画する。ァーマチヤ 38は回転軸 40を有し、この回転軸 40はモータ ケーシング 14内の中央に位置付けられ、モータケ一シング 14の一端から回路ケーシ ング 16に向かって延びている。回転軸 40の両端はモータケ一シング 14の一端及び 回路ケーシング 16内の隔壁 16aにボール軸受 42及びローラ軸受 44を介して回転自 在に支持されている。隔壁 16aは、回路ケーシング 16内をモータケ一シング 14内に 連なる室 17と、この室 17から分離された回路室 19とに区画する。 On the other hand, the motor casing 14 accommodates an armature 38 therein, and the end casing 48 has a motor casing 14 in the unit casing 12 side chamber 13 and the circuit casing 16 side chamber 15. Partition. The armature 38 has a rotating shaft 40, which is positioned in the center of the motor casing 14 and extends from one end of the motor casing 14 toward the circuit casing 16. Both ends of the rotating shaft 40 are connected to one end of the motor casing 14 and It is supported by the partition wall 16a in the circuit casing 16 via a ball bearing 42 and a roller bearing 44 so as to rotate. The partition wall 16 a divides the circuit casing 16 into a chamber 17 connected to the motor casing 14 and a circuit chamber 19 separated from the chamber 17.
[0024] 更に、図 1から明らかなように回転軸 40の一端は大径端部 46として形成され、この 大径端部 46は可動スクロール 24の端板と対向する端面を有する。大径端部 46の端 面からは可動スクロール 24に向けてクランクピン 48が突出し、このクランクピン 48に 偏心ブッシュ 50が取付けられて!/、る。この偏心ブッシュ 50は可動スクロール 24のボ ス 24aに-一ドル軸受 52を介して回転自在に支持されて!、る。  Further, as is apparent from FIG. 1, one end of the rotating shaft 40 is formed as a large diameter end portion 46, and the large diameter end portion 46 has an end face facing the end plate of the movable scroll 24. A crankpin 48 protrudes from the end face of the large-diameter end 46 toward the movable scroll 24, and an eccentric bush 50 is attached to the crankpin 48! /. The eccentric bush 50 is rotatably supported on the movable scroll 24 by means of the bush 24a through the one-dollar bearing 52! RU
[0025] 回転軸 40が回転されたとき、回転軸 40の回転力はクランクピン 48、偏心ブッシュ 5 0、ニードル軸受 52を介して可動スクロール 24に伝達される。それ故、可動スクロー ル 24はその自転がボールカップリング 36により阻止された状態で、固定スクロール 2 2に対して旋回運動する。可動スクロール 24の旋回半径は回転軸 40の軸線とクラン クピン 48の軸線との間の距離により決定される。  When the rotary shaft 40 is rotated, the rotational force of the rotary shaft 40 is transmitted to the movable scroll 24 via the crank pin 48, the eccentric bush 50, and the needle bearing 52. Therefore, the movable scroll 24 orbits with respect to the fixed scroll 22 with its rotation blocked by the ball coupling 36. The turning radius of the movable scroll 24 is determined by the distance between the axis of the rotary shaft 40 and the axis of the crank pin 48.
[0026] 前述したァーマチヤ 38はロータ 54を有し、このロータ 54は回転軸 40に取付けられ ている。ロータ 54はステータ 56により囲まれており、このステータ 56はモータケーシ ング 14の内周壁に固定されている。  The armature 38 described above has a rotor 54, and the rotor 54 is attached to the rotating shaft 40. The rotor 54 is surrounded by a stator 56, and the stator 56 is fixed to the inner peripheral wall of the motor casing 14.
[0027] 一方、回路ケーシング 16はその外周壁に戻りポート 58を有し、この戻りポート 58の 内端は、回路ケーシング 16の室 17を介してモータケ一シング 14の内部、即ち、前述 した室 15に連通する。戻りポート 58の他端は前述した冷凍回路の冷媒循環経路、詳 しくは、冷媒循環経路を介して冷凍回路の蒸発器に接続されている。それ故、蒸発 器力も送出された戻り冷媒は戻りポート 58を通じて回路ケーシング 16の室 17内に流 入し、そして、この室 17からモータケ一シング 16内に供給される。  On the other hand, the circuit casing 16 has a return port 58 on its outer peripheral wall, and the inner end of the return port 58 is located inside the motor casing 14 via the chamber 17 of the circuit casing 16, that is, the chamber described above. Communicate with 15 The other end of the return port 58 is connected to the refrigerant circulation path of the refrigeration circuit, specifically, the evaporator of the refrigeration circuit via the refrigerant circulation path. Therefore, the return refrigerant having also sent the evaporator force flows into the chamber 17 of the circuit casing 16 through the return port 58 and is supplied from this chamber 17 into the motor casing 16.
[0028] 回路ケーシング 16の回路室 19にはァーマチヤ 38のための駆動回路 59が配置さ れており、この駆動回路 59はァーマチヤ 38への電力の供給及びァーマチヤ 38の回 転をそれぞれ制御する。  [0028] A drive circuit 59 for the armature 38 is disposed in the circuit chamber 19 of the circuit casing 16, and the drive circuit 59 controls the supply of power to the armature 38 and the rotation of the armature 38, respectively.
[0029] モータケ一シング 14内には冷却経路が確保され、この冷却経路は、モータケーシ ング 14内に供給された戻り冷媒をァ一マチヤ 38内に導く。詳しくは、冷却経路は、前 述したようにロータ 54とステータ 56との間のエア間隙 Gaや、モータケ一シング 14の 内周壁とステータ 56の外周壁との間の間隙 Gb及びステータコイル間の間隙(図示し ない)に加えて、冷却経路の主部を形成する螺旋溝を含み、これら間隙及び螺旋溝 は何れも、ァーマチヤ 38の両側に配置された室 13, 15を接続する。 A cooling path is secured in the motor casing 14, and the cooling path guides the return refrigerant supplied in the motor casing 14 into the armature 38. Specifically, as described above, the cooling path includes the air gap Ga between the rotor 54 and the stator 56 and the motor casing 14. In addition to the gap Gb between the inner peripheral wall and the outer peripheral wall of the stator 56 and the gap between the stator coils (not shown), a spiral groove that forms the main part of the cooling path is included. Connect chambers 13 and 15 located on both sides of armature 38.
[0030] 螺旋溝に関して詳述すれば、図 1から明らかなように、ロータ 54は多数のリング状の 電磁鋼板 62を回転軸 40の軸線方向に重ね合わせた積層構造を有する。図 2に示さ れるように、螺旋溝 64はロータ 54の外周面に形成され、螺旋溝 64の両端はロータ 5 4の両端面にてそれぞれ開口する。より詳しくは、ロータ 54が回転されたとき、螺旋溝 64は右ねじと同様に、ュニットケーシング 12側に向けて運動する螺旋方向を有する Referring to FIG. 1 in detail, the rotor 54 has a laminated structure in which a large number of ring-shaped electromagnetic steel plates 62 are superposed in the axial direction of the rotary shaft 40 as will be apparent from FIG. As shown in FIG. 2, the spiral groove 64 is formed on the outer peripheral surface of the rotor 54, and both ends of the spiral groove 64 are opened at both end surfaces of the rotor 54. More specifically, when the rotor 54 is rotated, the spiral groove 64 has a spiral direction that moves toward the unit casing 12 side, like a right-hand thread.
[0031] 一実施例のロータ 54の場合、個々の電磁鋼板 62はその外周面に U字形のノッチ 6 6を有する。ロータ 54が多数の電磁鋼板 62を積層させることで形成されるとき、隣接 する電磁鋼板 62のノッチ 66はロータ 54の周方向に僅かにずれた状態で互いに重な り合い、これにより、ロータ 54の軸線方向に並ぶノッチ 66は前述した螺旋溝 64を形 成する。 [0031] In the case of the rotor 54 of one embodiment, each electromagnetic steel sheet 62 has a U-shaped notch 66 on its outer peripheral surface. When the rotor 54 is formed by laminating a large number of electrical steel sheets 62, the notches 66 of the adjacent electrical steel sheets 62 overlap each other while being slightly displaced in the circumferential direction of the rotor 54. The notches 66 arranged in the axial direction form the spiral groove 64 described above.
[0032] なお、螺旋溝 64は、ロータ 54が多数の電磁鋼板 62から形成された後、ロータ 54の 外周面に機械加工により形成することも可能である。  [0032] It should be noted that the spiral groove 64 can also be formed on the outer peripheral surface of the rotor 54 by machining after the rotor 54 is formed of a large number of electromagnetic steel plates 62.
[0033] 一方、ユニットケーシング 12内にはスクロールユニット 20のための吸入室 60が規定 されており、この吸入室 60はスクロールユニット 20の可動スクロール 24を囲み、前述 した吐出室 30から固定スクロール 22によって分離されて!、る。吸入室 60は前述した モータケ一シング 14内の室 13に対し、前述したボールカップリング 36の内部空間、 可動スクロール 24とボール軸受 42との間の空間及びボール軸受 42の内部空間を 通じて接続されている。それ故、吸入室 60は、前述した冷却経路を含む冷媒流路を 通じて回路ケーシング 16の戻りポート 58に接続されており、この結果、戻りポート 58 に流入する戻り冷媒は冷媒流路を経て吸入室 60に供給される。  On the other hand, a suction chamber 60 for the scroll unit 20 is defined in the unit casing 12, and the suction chamber 60 surrounds the movable scroll 24 of the scroll unit 20, and is fixed from the discharge chamber 30 to the fixed scroll 22. Separated by! The suction chamber 60 is connected to the chamber 13 in the motor casing 14 through the internal space of the ball coupling 36, the space between the movable scroll 24 and the ball bearing 42, and the internal space of the ball bearing 42. Has been. Therefore, the suction chamber 60 is connected to the return port 58 of the circuit casing 16 through the refrigerant flow path including the cooling path described above. As a result, the return refrigerant flowing into the return port 58 passes through the refrigerant flow path. Supplied to suction chamber 60.
[0034] 前述したァーマチヤ 38の回転軸 40が回転されたとき、この回転軸 40の回転はクラ ンプピン 48及び偏心ブッシュ 50を介して可動スクロール 24に伝達される。それ故、 可動スクロール 24はその自転が阻止された状態で、固定スクロール 22に対して旋回 する。可動スクロール 24の旋回運動中、 1つの圧縮室 28が吸入室 60にー且開放さ れたとき、吸入室 60から圧縮室 28内に冷媒が吸入され、そして、圧縮室 28は吸入 室 60から分離される。 When the rotary shaft 40 of the armature 38 described above is rotated, the rotation of the rotary shaft 40 is transmitted to the movable scroll 24 via the clamp pin 48 and the eccentric bush 50. Therefore, the movable scroll 24 turns with respect to the fixed scroll 22 in a state where its rotation is prevented. During the orbiting movement of the movable scroll 24, one compression chamber 28 opens to the suction chamber 60. Then, the refrigerant is sucked into the compression chamber 28 from the suction chamber 60, and the compression chamber 28 is separated from the suction chamber 60.
[0035] この後、圧縮室 28は可動スクロール 24の旋回運動により、固定スクロール 22の吐 出孔 32に向けて移動し、この過程にて、圧縮室 28内の容積が減少される結果、圧 縮室 28内に吸入された冷媒は圧縮される。圧縮室 28が吐出孔 32に到達し、且つ、 圧縮室 28内の冷媒の圧力が吐出弁の締切り圧に打ち勝ったとき、吐出弁は開かれ 、圧縮室 28内の圧縮冷媒は吐出孔 32を通じて吐出室 30に吐出される。  [0035] Thereafter, the compression chamber 28 moves toward the discharge hole 32 of the fixed scroll 22 by the orbiting motion of the movable scroll 24, and in this process, the volume in the compression chamber 28 is reduced, resulting in the pressure being reduced. The refrigerant sucked into the compression chamber 28 is compressed. When the compression chamber 28 reaches the discharge hole 32 and the pressure of the refrigerant in the compression chamber 28 overcomes the cutoff pressure of the discharge valve, the discharge valve is opened, and the compressed refrigerant in the compression chamber 28 passes through the discharge hole 32. Discharged into the discharge chamber 30.
[0036] 吐出室 30内の圧縮冷媒は吐出ポート 34を通じて冷媒循環経路に送出され、冷凍 回路の凝縮器に向けて供給される。この後、圧縮冷媒は、冷媒循環経路中のレシ一 バ及び膨張弁を経て蒸発器に供給され、そして、この蒸発器から戻り冷媒して戻りポ ート 58に戻り、そして、この戻りポート 58から回路ケーシング 16内の室 17に流入する 。更に、戻り冷媒は、室 17から前述した冷媒流路、即ち、冷却流路を経て吸入室 60 に供給される。  [0036] The compressed refrigerant in the discharge chamber 30 is sent to the refrigerant circulation path through the discharge port 34, and is supplied toward the condenser of the refrigeration circuit. Thereafter, the compressed refrigerant is supplied to the evaporator through a receiver and an expansion valve in the refrigerant circulation path, and then returns from the evaporator to return to the return port 58. Then, the return port 58 Into the chamber 17 in the circuit casing 16. Further, the return refrigerant is supplied from the chamber 17 to the suction chamber 60 through the above-described refrigerant flow path, that is, the cooling flow path.
[0037] 前述したように戻り冷媒の温度は周囲の温度よりも十分に低!、ので、冷却経路を流 れる戻り冷媒はァ一マチヤ 38を効果的に冷却し、ァーマチヤ 38の過熱を防止する。 冷却経路はその主部として螺旋溝 64を含んでおり、この螺旋溝 64は冷却経路全 体の有効流路断面積を増加させる。それ故、冷却経路は、吸入室 60に向力う戻り冷 媒の流れにとって大きな抵抗にならず、戻り冷媒の圧力損失は小さ 、。  [0037] As described above, the temperature of the return refrigerant is sufficiently lower than the ambient temperature! Therefore, the return refrigerant flowing through the cooling path effectively cools the armature 38 and prevents the armature 38 from overheating. . The cooling path includes a spiral groove 64 as its main part, and this spiral groove 64 increases the effective channel cross-sectional area of the entire cooling path. Therefore, the cooling path does not become a great resistance to the flow of the return refrigerant directed to the suction chamber 60, and the pressure loss of the return refrigerant is small.
[0038] 更に、螺旋溝 64はロータ 54とともに回転するので、螺旋溝 64内の戻り冷媒をュ- ットケ一シング 12に向けて強制的に押し出し、これにより、螺旋溝 64内にモータハウ ジング 14の室 15から室 13への戻り冷媒の流れが発生する。  [0038] Further, since the spiral groove 64 rotates together with the rotor 54, the return refrigerant in the spiral groove 64 is forcibly pushed toward the boot casing 12, and thus, the motor housing 14 is inserted into the spiral groove 64. A return refrigerant flow from chamber 15 to chamber 13 occurs.
[0039] この結果、ァーマチヤ 38が戻り冷媒の強制的な流れにより効果的に冷却されるば 力りではなぐ吸入室 60への戻り冷媒の過給が達成されるので、スクロールユニット 2 0の吸入効率が高められ、スクロール圧縮機の性能を向上させることができる。  As a result, when the armature 38 is effectively cooled by the forced flow of the return refrigerant, supercharging of the return refrigerant to the suction chamber 60, which is not a force, is achieved. Efficiency is increased and the performance of the scroll compressor can be improved.
[0040] 上述した螺旋溝 64はロータ 54の大径ィ匕や、ァーマチヤ 38のための部品点数を増 カロさせることもなく、スクロール圧縮機の大形ィ匕を阻止し、なおかつ、スクロール圧縮 機の軽量化に大きく貢献する。  [0040] The above-described spiral groove 64 prevents the large size of the scroll compressor without increasing the number of parts for the rotor 54 and the number of parts for the armature 38, and further prevents the large size of the scroll compressor. Greatly contributes to weight reduction.
[0041] 本発明は、上述した一実施例に制約されるものではなぐ種々の変形が可能である 例えば、図 3中、 2点鎖線で示されるように、ロータ 54はその外周面に複数の螺旋 溝 64を有していてもよぐまた、その外周面に代えて、内周面に 1個以上の螺旋溝 64 を有することができる。 [0041] The present invention can be variously modified without being limited to the above-described embodiment. For example, as shown by a two-dot chain line in FIG. 3, the rotor 54 may have a plurality of spiral grooves 64 on its outer peripheral surface. The above spiral groove 64 can be provided.
更に、本発明は、圧縮機ではなくスクロール膨張機にも同様に適用可能である。  Furthermore, the present invention is equally applicable to a scroll expander instead of a compressor.

Claims

請求の範囲 The scope of the claims
[1] ハウジングと、  [1] a housing;
前記ハウジング内に収容されたスクロールユニットであって、このスクロールユニット は互いに協働して作動流体を圧縮するための固定スクロール及び可動スクロールを 有する、スクロールユニットと、  A scroll unit housed in the housing, the scroll unit having a fixed scroll and a movable scroll for compressing the working fluid in cooperation with each other;
前記ハウジング内に前記スクロールユニットに隣接して収容されたァーマチヤであ つて、前記可動スクロールを回転させるためのロータを含み、且つ、このロータが周面 及び両端面を有する、ァーマチヤと、  An armature housed in the housing adjacent to the scroll unit, the rotor including a rotor for rotating the movable scroll, the rotor having a peripheral surface and both end surfaces;
前記ハウジング内に配置され、前記スクロールユニットに向けて前記ァーマチヤ内 を通じて作動流体を導く流体流路であって、前記ロータの前記周面に形成された螺 腿を含み、この螺旋溝が前記ロータの前記両端面にて開口した両端を有する、流 体流路と  A fluid passage that is disposed in the housing and guides a working fluid through the armature toward the scroll unit, and includes a screw formed on the peripheral surface of the rotor. A fluid passage having both ends opened at the both end faces;
を備えるスクロール型流体機械。  A scroll type fluid machine comprising:
[2] 前記螺旋溝は、前記ロータが回転されたとき、前記螺旋溝内の作動流体を前記ス クロールユニットに向けて押し出す螺旋方向を有する、請求項 1に記載のスクロール 型流体機械。  2. The scroll fluid machine according to claim 1, wherein the spiral groove has a spiral direction that pushes the working fluid in the spiral groove toward the scroll unit when the rotor is rotated.
[3] 前記スクロールユニットは、冷凍回路のための圧縮ユニットであり、前記流体流路は 前記圧縮ユニットに向けて戻される冷媒を案内する、請求項 2に記載のスクロール型 流体機械。  3. The scroll type fluid machine according to claim 2, wherein the scroll unit is a compression unit for a refrigeration circuit, and the fluid flow path guides a refrigerant returned toward the compression unit.
[4] 前記ロータの前記周面は、前記ロータの外周面である、請求項 2のスクロール型流 体機械。  4. The scroll type fluid machine according to claim 2, wherein the peripheral surface of the rotor is an outer peripheral surface of the rotor.
[5] 前記スクロールユニットは、冷凍回路のための圧縮ユニットであり、前記流体流路は 前記圧縮ユニットに向けて戻される冷媒を案内する、請求項 4に記載のスクロール型 流体機械。  5. The scroll type fluid machine according to claim 4, wherein the scroll unit is a compression unit for a refrigeration circuit, and the fluid flow path guides a refrigerant returned toward the compression unit.
[6] 前記ロータは、前記ロータの軸線方向にリング形状の電磁鋼板を積層した積層構 造を有し、各電磁鋼板は前記ロータの前記周面を形成する周縁に前記螺旋溝を形 成するためのノッチを有する、請求項 2に記載のスクロール型流体機械。  [6] The rotor has a laminated structure in which ring-shaped electromagnetic steel plates are laminated in the axial direction of the rotor, and each electromagnetic steel plate forms the spiral groove on a peripheral edge forming the peripheral surface of the rotor. The scroll type fluid machine according to claim 2, further comprising a notch.
PCT/JP2006/306507 2005-04-01 2006-03-29 Scroll fluid machine WO2006106753A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602006018117T DE602006018117D1 (en) 2005-04-01 2006-03-29 SPIRAL FLUID MACHINE
EP06730455A EP1865201B1 (en) 2005-04-01 2006-03-29 Scroll fluid machine
US11/887,691 US20090148314A1 (en) 2005-04-01 2006-03-29 Scroll Fluid Machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005106098A JP2006283694A (en) 2005-04-01 2005-04-01 Scroll type fluid machine
JP2005-106098 2005-04-01

Publications (1)

Publication Number Publication Date
WO2006106753A1 true WO2006106753A1 (en) 2006-10-12

Family

ID=37073316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306507 WO2006106753A1 (en) 2005-04-01 2006-03-29 Scroll fluid machine

Country Status (6)

Country Link
US (1) US20090148314A1 (en)
EP (1) EP1865201B1 (en)
JP (1) JP2006283694A (en)
CN (1) CN101151465A (en)
DE (1) DE602006018117D1 (en)
WO (1) WO2006106753A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979877A (en) * 2007-12-18 2011-02-23 株式会社丰田自动织机 Motor-driven compressor
US8152490B2 (en) 2007-12-18 2012-04-10 Kabushiki Kaisha Toyota Jidoshokki Motor driven compressor
WO2019039095A1 (en) * 2017-08-25 2019-02-28 三菱重工サーマルシステムズ株式会社 Scroll compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985590B2 (en) * 2008-09-02 2012-07-25 株式会社豊田自動織機 Electric compressor
CN101619721B (en) * 2009-07-24 2010-11-17 南京银茂压缩机有限公司 Integral electric scroll compressor assembly for vehicle air conditioners
KR101682250B1 (en) * 2010-12-06 2016-12-02 한온시스템 주식회사 Electronic Compressor
KR101358602B1 (en) 2011-08-31 2014-02-04 한라비스테온공조 주식회사 Electric Compressor
JP5867313B2 (en) * 2012-06-28 2016-02-24 株式会社豊田自動織機 Electric compressor
JP6119962B2 (en) 2012-11-15 2017-04-26 株式会社豊田自動織機 Electric compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351196U (en) * 1989-09-26 1991-05-17
JPH05302581A (en) 1992-04-24 1993-11-16 Daikin Ind Ltd Vertical type compressor
JPH0932729A (en) * 1995-07-19 1997-02-04 Mitsubishi Heavy Ind Ltd Motor-driven compressor
JP2002165406A (en) 2000-11-22 2002-06-07 Denso Corp Motor having rotor of eccentric center of gravity
JP2004204791A (en) 2002-12-26 2004-07-22 Fujitsu General Ltd Hermetic compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620205A1 (en) * 1987-09-04 1989-03-10 Zimmern Bernard HERMETIC COMPRESSOR FOR REFRIGERATION WITH ENGINE COOLED BY GAS ECONOMIZER
JP2568915B2 (en) * 1989-07-19 1997-01-08 イビデン株式会社 IC card
JP3870642B2 (en) * 1999-12-21 2007-01-24 株式会社デンソー Electric compressor
JP3475174B2 (en) * 2000-02-10 2003-12-08 東芝テック株式会社 Electric pump
JP4372511B2 (en) * 2003-10-17 2009-11-25 トヨタ自動車株式会社 Supercharger with rotating electric machine having a cylindrical member extending between bearings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351196U (en) * 1989-09-26 1991-05-17
JPH05302581A (en) 1992-04-24 1993-11-16 Daikin Ind Ltd Vertical type compressor
JPH0932729A (en) * 1995-07-19 1997-02-04 Mitsubishi Heavy Ind Ltd Motor-driven compressor
JP2002165406A (en) 2000-11-22 2002-06-07 Denso Corp Motor having rotor of eccentric center of gravity
JP2004204791A (en) 2002-12-26 2004-07-22 Fujitsu General Ltd Hermetic compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1865201A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979877A (en) * 2007-12-18 2011-02-23 株式会社丰田自动织机 Motor-driven compressor
US8152490B2 (en) 2007-12-18 2012-04-10 Kabushiki Kaisha Toyota Jidoshokki Motor driven compressor
WO2019039095A1 (en) * 2017-08-25 2019-02-28 三菱重工サーマルシステムズ株式会社 Scroll compressor
CN111065822A (en) * 2017-08-25 2020-04-24 三菱重工制冷空调系统株式会社 Scroll compressor having a plurality of scroll members
US11143185B2 (en) 2017-08-25 2021-10-12 Mitsubishi Heavy Industries Thermal Systems, Ltd. Scroll compressor
CN111065822B (en) * 2017-08-25 2021-11-09 三菱重工制冷空调系统株式会社 Scroll compressor having a plurality of scroll members

Also Published As

Publication number Publication date
US20090148314A1 (en) 2009-06-11
EP1865201B1 (en) 2010-11-10
JP2006283694A (en) 2006-10-19
CN101151465A (en) 2008-03-26
EP1865201A1 (en) 2007-12-12
DE602006018117D1 (en) 2010-12-23
EP1865201A4 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
WO2006106753A1 (en) Scroll fluid machine
CN101463821B (en) Motor-driven compressor
US20190203709A1 (en) Motor-operated compressor
EP1209362A2 (en) Hermetic compressors
US20030053922A1 (en) Scroll-type fluid machine
US20060073050A1 (en) Complex fluid machine
JP2013217276A (en) Vane-type compressor
EP1967736B1 (en) Compressor
WO2020252026A1 (en) Compressor having suction fitting
JP5459375B1 (en) Rotary compressor
CN113167273B (en) Positive displacement machine according to the spiral principle, in particular a scroll compressor for a vehicle air conditioning system
US6589026B2 (en) Fluid machinery having a helical mechanism with through holes for ventilation
US11549510B2 (en) Motor-operated compressor
JP2010090855A (en) Motor-driven compressor
JP2005344658A (en) Electric gas compressor
JP2007138778A (en) Scroll compressor
KR101279190B1 (en) Electric motor-driven compressor for vehicle
JP4253519B2 (en) Hybrid compressor
WO2004094827A1 (en) Motor driven compressor
WO2021106198A1 (en) Compressor and refrigeration cycle device
KR20230139393A (en) Electric compressor
KR20230142070A (en) Electric compressor
KR20210130861A (en) Compressor and air conditioning system having the same
JP2004340027A (en) Fluid machinery
KR101682252B1 (en) Electric motor-driven compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010110.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006730455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887691

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730455

Country of ref document: EP