WO2006106594A1 - Air ion conveyance device and air ion conveyance system - Google Patents

Air ion conveyance device and air ion conveyance system Download PDF

Info

Publication number
WO2006106594A1
WO2006106594A1 PCT/JP2005/020626 JP2005020626W WO2006106594A1 WO 2006106594 A1 WO2006106594 A1 WO 2006106594A1 JP 2005020626 W JP2005020626 W JP 2005020626W WO 2006106594 A1 WO2006106594 A1 WO 2006106594A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
ions
ion
duct
air ion
Prior art date
Application number
PCT/JP2005/020626
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Yamaguchi
Yukinori Fuse
Tsutomu Ansaka
Masaya Tachibana
Takashi Kurihara
Satoshi Takahashi
Ryoichi Sugioka
Original Assignee
Shimizu Corporation
Sharp Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005107531A external-priority patent/JP2006280787A/en
Priority claimed from JP2005199058A external-priority patent/JP2007017085A/en
Application filed by Shimizu Corporation, Sharp Corporation filed Critical Shimizu Corporation
Publication of WO2006106594A1 publication Critical patent/WO2006106594A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an air ion transport device and an air ion transport system for supplying air ions in which negative ions (minus ions) and positive ions (plus ions) are contained in air at a desired location.
  • This device is provided with a chamber-one blower configured to supply air from an air supply box by a blower and to suck air into the exhaust box by the blower.
  • a large number of duct holes are arranged in the chamber / blower, and dedicated air ducts and exhaust ducts dedicated to each room are provided so that the duct holes are directly connected to the air supply and exhaust ports of each room. It is arranged.
  • negative ion (negative ion) generating means is arranged in the air supply box of the chamber-one blower or its duct hole, and further, air volume adjusting means is arranged in each duct hole (for example, Patent Document 1). reference).
  • an air conditioner outside device that prevents floating substances from adhering to the inner wall surface of the air conveyance path and prevents the floating substances from contaminating the air flowing into the air conveyance path.
  • This device is arranged to face the high voltage application electrode and the high voltage application electrode, the air supply means for supplying air and removing the dust contained in the air and then blowing the air to the air conveyance path.
  • a negative ion generating means for supplying negative ions to the air blown by the blowing means and having a ground electrode, and floating substances contained in the air negatively charged by the negative ions supplied by the negative ion generating device
  • Surface potential generating means for negatively charging the inner wall surface of the air conveyance path so as not to adhere to the inner wall surface of the conveyance path (see, for example, Patent Document 2).
  • an indoor forced ventilation system that can supply negative ions indoors and can ventilate indoors while effectively humidifying them.
  • This system is equipped with Leonard-type negative ion generation means, and the air exhausted indoors and outdoors, The heat exchange element that exchanges heat with the air supplied indoors is provided, and the negative ions generated by the negative ion generation means are supplied to the air supply passage that connects the heat exchange element and the indoor air inlet. (See, for example, Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-97836
  • Patent Document 2 JP 2002-277010 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-116970
  • the present invention provides a pneumatic ion transport apparatus that can supply ions uniformly to each room without attenuating the amount of ions generated.
  • air is supplied to the interior of a building, such as an air conveyance system such as a ventilation system or an air conditioning system, which is configured with power such as an air supply fan unit, an air exhaust fan unit, a duct, an air supply port, and an exhaust port
  • an air conveyance system such as a ventilation system or an air conditioning system
  • power such as an air supply fan unit, an air exhaust fan unit, a duct, an air supply port, and an exhaust port
  • an air supply fan unit such as a ventilation system or an air conditioning system
  • a duct such as a ventilator unit
  • an air supply port such as a duct, an air supply port, and an exhaust port
  • exhaust In the case of exhaust, it is desired to suppress microorganisms and viruses and to reduce allergens that can affect the human body.
  • the present invention provides sterilization and anti-virus for each component of the apparatus.
  • the second object of the present invention is to provide an air ion transport device capable of performing an antiallergen action.
  • Patent Document 1 has an air volume adjusting means for adjusting the air volume, there is a problem that the amount of generated negative ions cannot be controlled. In addition, ions are attenuated in the transport of ducts, but there are problems that do not take into account these countermeasures.
  • the present invention provides an air ion transport capable of arbitrarily adjusting the amount of air ions including negative ions, positive ions, or both ions according to the requirements of each room.
  • the third purpose is to provide a system.
  • the present invention provides an air ion transport system capable of stably transporting air ions while maintaining an effective concentration of air ions including negative ions and positive ions.
  • the fourth purpose is to provide it.
  • the air ion transport device is an air in which negative ions, positive ions, or both ions are included in air supplied from the outside.
  • a plurality of ion generators are installed at least 0.1 cm apart.
  • a plurality of air ion generators may be installed via a partition plate or the like.
  • the air ion transport device according to claim 2 of the present invention is the external device according to claim 1 described above. And a ventilator for introducing air through a blower, and a plurality of air ion generators are evenly arranged at regular intervals in the ventilator.
  • the air ion transport device according to claim 3 of the present invention is characterized in that, in the above-mentioned claim 2, a plurality of air ion generation devices are arranged on the air blower side.
  • the air ion transport device according to claim 4 of the present invention is characterized in that, in the above-mentioned claim 2, a plurality of air ion generation devices are arranged on the outlet side of the blower.
  • the air ion transport device is characterized in that, in the above-mentioned claim 2, air ion generators of different ion types are adjacent to the blower outlet side of the blower. .
  • the air ion transport device according to claim 6 of the present invention is the air ion transport device according to claim 2, wherein a plurality of air ion generation devices are arranged between the blower side and the outlet side of the blower. It is characterized by becoming.
  • An air ion transport device is the air ion transport device according to any one of claims 2 to 6, wherein the air ion generator includes an air ion generator or positive ions containing negative ions. Any one of the air ion generators to be included is provided.
  • the air ion transport device according to claim 8 of the present invention is the air ion transport device according to any one of claims 2 to 6, wherein the air ion generator includes an air ion generator or positive ions containing negative ions. It is characterized by comprising a mixed arrangement of air ion generators to be included.
  • An air ion transport device is the air ion transport device according to any one of claims 2 to 6, wherein the air ion generator includes an air ion generator or positive ions containing negative ions. It is characterized in that either or both of the air ion generators to be included, or both of them, and an air ion generator that simultaneously generates negative ions and positive ions are disposed in a mixed manner.
  • the air ion transport device according to claim 10 of the present invention is connected to a joint provided on the outlet side of the air blower according to claim 2, and is individually air-conditioned to one or more rooms.
  • An air ion transport device is the air ion transport device according to claim 2, which is connected to a joint provided on the blower outlet side of the blower, and is individually connected to one or more rooms.
  • An air duct that transports air ions, and a partition part corresponding to the outside of the air duct is disposed in the ventilation device, and air ions are generated in the partition part to simultaneously generate negative ions and positive ions.
  • a device is provided.
  • An air ion transport device is the air ion transport device according to any one of claims 2 to 11: further comprising a rectifying plate that guides an air blowing direction from the blower. And features.
  • An air ion transport device is connected to a ventilator that introduces air from the outside via a blower and a joint provided on the outlet side of the blower.
  • the outside of the air duct that individually conveys air to two or more rooms is provided, and a partition portion that is expanded from the blower toward the air duct side is provided, and the amount of blown air is temporarily reduced to the blower side.
  • a throttle part is formed, and an air ion generator for containing negative ions, positive ions, or both of these ions is provided in the throttle part.
  • An air ion transport device is connected to a ventilator that introduces air from the outside via a blower and a joint provided on a blower outlet side of the blower, and 1 or
  • the outside of the air duct that individually conveys air to two or more rooms is provided, and a partition portion that is expanded from the blower toward the air duct side is provided, and the amount of blown air is temporarily reduced to the blower side.
  • a throttle part is formed, and an air ion generator for simultaneously generating negative ions and positive ions is provided in the throttle part.
  • the air ion transport device according to claim 15 of the present invention is characterized in that, in the above-mentioned claim 13 or 14, a plurality of air ion generators are installed at least 0.1 cm apart. A plurality of air ion generators may be installed via a partition plate or the like.
  • the air ion transport device includes air blowing means for blowing air and negative ions, positive ions, or both of these ions.
  • Air ion transport device having air ion generating means for generating air ions
  • the air ion generating means is arranged on the windward side of a desired target part.
  • the air ion transport device is the component in the above-mentioned claim 16, wherein the target part is a ventilation system that replaces air in a predetermined area or an air conditioning system that performs air adjustment in a predetermined area. It is characterized by being.
  • the air ion transport device is characterized in that, in the above-mentioned claim 16, the air blowing means has a blower, and the air ion generating means is arranged on the air suction side of the blower.
  • An air ion transport device is the air ion transport device according to claim 16, further comprising cleaning means for cleaning air, wherein the air ion generating means is disposed on the inlet side of the cleaning means.
  • the air ion transport device according to claim 20 of the present invention is the air ion transport device according to claim 16, further comprising a cleaning means for cleaning air, wherein the air ion generating means is disposed on the outlet side of the cleaning means.
  • the air ion transport device according to claim 21 of the present invention is the air ion transport device according to claim 16, further comprising an air outlet that blows air toward a predetermined area by blowing air from the blowing means.
  • the air ion generating means is arranged in the vicinity.
  • the air ion transport device according to claim 22 of the present invention is the air ion transfer device according to claim 16, wherein the air ion transport device has an outer portion connected to the air blowing means, and the air ion generating means is disposed within the outer portion of the da. It is characterized by.
  • the air ion transport device according to claim 23 of the present invention is the air ion transport device according to claim 16, further comprising an intake duct that takes in outside air by blowing air from the blowing means, and generating the air ions in the intake duct.
  • the means is arranged.
  • the air ion transport device according to claim 24 of the present invention according to claim 16, further comprising an exhaust duct that exhausts air in a predetermined area to the outside air by blowing air from the blowing means,
  • the air ion generating means is arranged in the above.
  • the air ion transport device according to claim 25 of the present invention is the air ion transport device according to claim 16, further comprising a coil for heat exchange of air, and the air ion generating means arranged on the inlet side of the coil. It is characterized by placing.
  • the air ion transport device according to claim 26 of the present invention is the air ion transfer device according to claim 16, wherein the air ion transfer device has a coil for exchanging heat of air, and the air ion generating means is arranged on the outlet side of the coil. It is characterized by.
  • An air ion transport device is characterized in that, in any one of claims 16 to 26, a charge removing means is provided at a site for transporting air ions.
  • an air ion transport system is provided in a housing of a ventilator, and negative ions or positive ions are supplied to air supplied from outside.
  • An air ion generator that includes ions or both of these ions, an air duct that is connected to a joint provided in the housing and conveys air to one or more rooms, and the air ion generator.
  • a control device that controls the presence or absence of air ions or the amount of air ions generated by the control device according to the demand of each room.
  • the air ion transport system according to claim 29 of the present invention is the air ion transport system according to claim 28, wherein a partition portion corresponding to an air duct is disposed in the housing, and an air ion generator is provided in the partition portion. Is provided.
  • the air ion transport system according to claim 30 of the present invention is characterized in that, in the above-mentioned claim 28, an air ion generator is disposed in the joint.
  • the air ion transport system according to claim 31 of the present invention is characterized in that, in the above-mentioned claim 28, an introduction device for introducing air ions to the outside of the air chamber is provided in the casing. .
  • the air ion transport system according to claim 32 of the present invention is the air ion transport system according to claim 28, wherein the air ion neutralizing member that neutralizes air ions is provided in any one of the joint, the air duct, and the air supply outlet.
  • the air ion transport amount is individually adjusted by neutralizing the air ions.
  • the air ion transport system according to Claim 33 of the present invention is the air ion transport system according to Claim 32, wherein the air ion neutralizing member is a shirter, a rod-shaped member, a partition member, or a comb shape. It is a member, and is characterized in that the amount of air ions transported is individually adjusted in accordance with the degree of the restriction of the shirter or the insertion of a bar-like member, the insertion of a partition member or the insertion of a comb-like member.
  • the air ion transport system according to Claim 34 of the present invention is the air ion transport system according to Claim 28, wherein a discharge device is disposed outside the air chamber, and the discharge device is individually provided according to the discharge amount of the discharge device. It is characterized by adjusting the transport amount of air ions.
  • the air ion transport system according to claim 35 of the present invention is the air ion transport system according to claim 28, wherein the louver angle of the air supply blow-out portion in each room is adjusted to individually blow out air ions, It is characterized by adjusting the direction.
  • the air ion transport system according to claim 36 of the present invention is the air ion transport system according to any one of claims 28 to 35, wherein the joint or the air duct has an uncharged structure or a low chargeable structure. It is characterized by having.
  • the air ion transport system according to claim 37 of the present invention is the air ion transport system according to any one of claims 28 to 35, wherein the joint or the air duct is made of a non-chargeable material or a low chargeable material. It is characterized by being formed of a material.
  • an air ion transport system includes an air transport means for blowing and transporting air, and air transported by the air transport means.
  • the air ion transport system according to claim 39 of the present invention is the air ion transport system according to claim 38, wherein the conductive structure includes at least a portion in contact with the transported air made of a conductive metal material or a carbon resin material. It is characterized by that.
  • the conductive structure in the above-described claim 38 or 39, includes a conductive member that connects the conductive portion to the nonconductive portion. It is characterized by.
  • An air ion transport system according to claim 41 of the present invention is characterized in that, in any one of claims 38 to 40, a charge removing means is provided in a path for transporting air.
  • the air ion generation device is disposed at a predetermined interval, and therefore, high-concentration air with less attenuation of air ions. Ions can be supplied. In addition, air ions can be supplied uniformly. Moreover, since the partition part corresponding to an air duct is provided and an air ion generator is arrange
  • the air ion generating means is arranged on the windward side, so that a desired target site located on the leeward side of the air ion transporting device reaches there. Sterilization, antiviral and antiallergenic action.
  • the effect of air ions can be maintained for a long time and air ions can be transported to a predetermined area with high efficiency.
  • the air ion generating means is disposed on the air suction side of the blower of the blower means, sterilization, antiviral and antiallergen action of the blower and its downstream components can be performed.
  • the cleaning means can be sterilized, anti-winorless and anti-allergen action, so that the replacement time of the cleaning means such as filters can be extended.
  • the air ion generating means is arranged on the outlet side of the cleaning means, the air ions can be included in the air without being attenuated.
  • the air ion generating means is arranged in the vicinity of the air outlet that blows out toward a predetermined area, it is possible to fly air ions further away.
  • air ion generating means is arranged in the duct, sterilization, antiviral and antiallergen action in the data can be performed.
  • an air ion generating means is arranged in the intake duct for taking in the outside air, the taken-out outside air can be sterilized, antiviral and antiallergenic. Further, if an air ion generating means is arranged in an exhaust duct that exhausts air in a predetermined area to the outside air, exhaust sterilization, anti-virus and anti-allergen action can be performed. In addition, air ion generation means is provided on the inlet side of the coil that performs heat exchange of air. If arranged, coil sterilization, anti-virus and anti-allergen action can be performed, so coil replacement time can be extended.
  • an air ion generating means is disposed on the exit side of the coil that performs heat exchange of air, the air ion can be included in the air without being attenuated.
  • an antistatic means is provided at the site where the air ions are transported, the air ion transport efficiency at the site where the air ions are transported can be improved, and the sterilization, anti-virus and anti-allergen effects are enhanced. At the same time, the distance of air ions can be increased.
  • air ion transport system of the present invention that achieves the third object, it is possible to control the presence or absence of ion supply, the adjustment of the ion amount, and the change of ion species in each room.
  • air ions can be individually supplied into the air duct by disposing an air ion generator in the partition or the joint. Further, by providing an introduction device for introducing air ions, air ions can be supplied only to a desired room. Further, by providing an air ion neutralizing member for neutralizing air ions in any one of the joint, the air duct, or the supply air blowing portion, it is possible to individually adjust the air ion transport amount.
  • the air ion transport system according to the present invention that achieves the fourth object described above is provided with a conductive structure that maintains conductivity through a path that transports air, thereby preventing charging of the path, and thus effective concentration.
  • a conductive structure that maintains conductivity through a path that transports air, thereby preventing charging of the path, and thus effective concentration.
  • FIG. 1 is a schematic configuration diagram showing an air ion transport device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 3 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 4 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 5 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 6 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 7 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 8 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 9 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 10 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 11 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 12 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
  • FIG. 13 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention. is there.
  • FIG. 14 is a schematic configuration diagram showing an example of a ventilation system to which the air ion transport system according to the present invention is applied.
  • FIG. 15-1 is a schematic configuration diagram showing a preferred arrangement example of the air ion generator.
  • FIG. 15-2 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
  • FIG. 15-3 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
  • Fig. 15-4 is a schematic configuration diagram showing a preferred arrangement example of the air ion generator.
  • FIG. 15-5 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
  • FIG. 15-6 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
  • FIG. 15-7 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
  • FIG. 15-8 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
  • FIG. 15-9 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
  • FIG. 15-10 is a schematic configuration diagram showing a preferred arrangement example of the air ion generator.
  • Fig. 15-11 is a schematic configuration diagram showing a preferred arrangement example of the air ion generator.
  • FIG. 16_1 is a schematic configuration diagram showing an example of poor arrangement of the air ion generator.
  • FIG. 16_2 is a schematic configuration diagram showing an example of poor arrangement of the air ion generator.
  • FIG. 16_3 is a schematic configuration diagram showing an example of poor arrangement of the air ion generator.
  • FIG. 17 is a schematic diagram showing an air ion transport unit as an air ion transport device according to the second embodiment of the present invention.
  • FIG. 18 is a schematic view showing an air ion transport unit as an air ion transport device according to the present invention.
  • FIG. 19 is a schematic diagram showing an air ion transport unit as an air ion transport device according to the present invention.
  • FIG. 20 is a schematic diagram showing an air ion transport unit as an air ion transport device according to the present invention.
  • FIG. 21 is a schematic diagram showing an air ion transport unit as an air ion transport device according to the present invention.
  • FIG. 22 is a schematic diagram showing an air ion transport system as an air ion transport device according to the present invention.
  • FIG. 23 is a schematic diagram showing an air ion transport system as an air ion transport device according to the present invention.
  • FIG. 24 is a schematic view showing an air ion transport system as an air ion transport device according to the present invention.
  • FIG. 25 is a schematic configuration diagram showing an air ion transport system according to the third embodiment of the present invention.
  • FIG. 26 is a schematic configuration diagram showing another embodiment of the air ion transport system according to the present invention.
  • FIG. 27 is a schematic configuration diagram showing another embodiment of the air ion transport system according to the present invention.
  • FIG. 28 is a schematic configuration diagram showing another embodiment of the air ion transport system according to the present invention.
  • FIG. 29 is a schematic configuration diagram showing another embodiment of the air ion transport system according to the present invention.
  • FIG. 30 is a schematic configuration diagram showing another form of the air ion transport system according to the present invention.
  • FIG. 31 is a schematic configuration diagram showing an embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • Fig. 32-1 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • Fig. 32-2 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • FIG. 33-1 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • FIG. 33-2 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • Fig. 33-3 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • FIG. 34-1 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • FIG. 34-2 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • Fig. 34-3 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
  • FIG. 35 is a schematic configuration diagram showing an embodiment of a discharge device for an air ion transport system according to the present invention.
  • FIG. 36 is a schematic configuration diagram showing an embodiment of the air supply blow-out unit of the air ion transport system according to the present invention.
  • FIG. 37 is a schematic diagram showing an air ion transport system according to Embodiment 4 of the present invention.
  • FIG. 38 is a schematic diagram showing the conductive structure of the air ion transport system shown in FIG.
  • FIG. 39 is a diagram comparing the air ion transport system according to the present invention with a conventional system.
  • FIG. 40 is a schematic diagram showing a modification of the air ion transport system shown in FIG. 37. 41]
  • FIG. 41 is a schematic diagram showing an application example of the air ion transport system shown in FIG. 42]
  • FIG. 42 is a schematic diagram showing an application example of the air ion transport system shown in FIG. 43]
  • FIG. 43 is a schematic diagram showing an application example of the air ion transport system shown in FIG.
  • FIG. 44 is a schematic diagram showing an air ion transport device according to Embodiment 5 of the present invention.
  • FIG. 1 A first figure.
  • FIG. 45 is a cross-sectional view showing an example of delivery means.
  • FIG. 46 is a cross-sectional view showing another example of delivery means.
  • FIG. 47 is a cross-sectional view showing still another example of delivery means.
  • FIG. 48 shows the relationship between air ion concentration and distance.
  • FIG. 1 is a schematic configuration diagram showing an air conditioning system to which an air ion transport device according to Embodiment 1 of the present invention is applied.
  • the air conditioning system that is effective in the present embodiment is employed in, for example, an air conditioning facility and transports air ions to a room such as a house.
  • a centralized ventilation device 101 The positive ion generator (air ion generator) 104a and negative ion generator (air ion generator) that generate negative ions in the air 103 supplied from the outside, which generates positive ions in the air 103 ) 104b and the air ion generator unit 104 alternately arranged with a predetermined interval d, and the joint provided in the casing 102 (four in this embodiment) are connected to 1 05-1-105 -4, Air duct 106 that conveys air individually to multiple rooms (4 rooms in this embodiment).
  • reference numeral 108 denotes a blow-out unit that blows air into the room.
  • the air ion generator unit 104 which is effective in the present embodiment, alternately has a positive ion generator 104a that generates positive ions and a negative ion generator 104b that generates negative ions alternately with a predetermined interval d.
  • the interval d is preferably at least 0.1 cm or more, preferably 0.5 cm or more, more preferably 1 cm or more.
  • a plurality of air ion generators may be installed through a partition plate or the like.
  • the air ion generator By thus disposing the air ion generator at least 0.1 lcm or more apart, the attenuation of the generated ions is drastically reduced.
  • the optimum distance d varies depending on the size of the casing 102, the number of installed air ion generators and the generation capacity thereof. For example, if the width of case 102 is 50 cm and four air ion generators are installed, the ion attenuation can be reduced by installing them at least 1 cm to 5 cm apart (preferably more). could be prevented.
  • the force with four ducts is not limited to this, and the present invention can be applied to a case where a single duct is supplied to one room. If the room is large or the humidity or dirt is severe, it can be adjusted appropriately according to the conditions of the room.
  • a blower 120 is disposed inside the housing 102 of the centralized ventilation device 101. Further, various air cleaning devices 109 may be provided on the air supply side as necessary.
  • the air purifier includes, for example, a HEPA filter (High Efficiency Particulate Air Filter), and mainly removes dust in the air supplied by the operation of the blower 120. This air purifier uses a filter that removes relatively coarse contaminants according to the air supply condition, NO-SO, chemical substances, pollen, etc.
  • filters such as pre-filters and dust-removing filters whose ions are often attenuated when passing through the filter are desirably installed upstream of the air ion generator.
  • the generated ions are not attenuated when the filter itself is charged, it can be installed downstream of the air ion generator.
  • the air ion transport device transports air ions to each room, and includes a blower 120, an air purifier 109 provided as necessary, and an air ion generator 104. And air duct 106—! ⁇ It consists of 106—4.
  • the air ion generator unit 104 has a high voltage generation unit and an ion generation unit arranged to face each other and applies a high voltage from the high voltage generation unit to the ion generation unit.
  • oxygen or water in the air receives energy by ionization and ionizes, and H + (HO) (m is an arbitrary natural number) and ⁇ (HO) (n is an arbitrary natural number)
  • is one of the active species, indicating radical ⁇ .
  • Positive and negative ions react chemically with the active species hydrogen peroxide ( ⁇ ⁇ ) or hydroxyl radicals ( ⁇ ) as shown in the following formulas (1) to (3) on the cell surface of floating bacteria. ⁇ ) is generated.
  • m, m ′, ⁇ , and ⁇ ′ are arbitrary natural numbers.
  • suspended bacteria such as viruses are destroyed by the action of decomposing active species. Therefore, airborne bacteria in the air can be inactivated and sterilized efficiently.
  • the air ion generator is described as having a box shape.
  • the present invention is not limited to this, and there are various types such as an electrode shape, a rod shape, a needle shape, and the like.
  • the air ion generator of the form can be used.
  • the air ion generator unit 104 composed of the positive ion generator 104a and the negative ion generator 104b arranged with a predetermined interval d is generated.
  • Positive ions and negative ions can be sent out of the main body. And, by the action of these positive ions and negative ions, it is possible to sterilize the microorganisms in the air.
  • positive ions and negative ions have a function to inactivate wines such as Coxsackie virus and poliovirus, and can prevent contamination due to contamination of these viruses. It has also been confirmed that positive ions and negative ions have a function of separating molecules that cause odors, and can be used for deodorizing spaces.
  • positive ions and negative ions have the effect of encapsulating allergens that affect the human body (substances that cause allergies such as dust, mites, molds, and pollen) to suppress their effects.
  • the arrangement of the air duct is not limited to that arranged in the same direction.
  • the air duct 106-5 and the air duct 106-6 are connected to the casing 102.
  • positive ions and negative ions generated by the air ion generator unit 104 composed of the positive ion generator 104a and the negative ion generator 104b arranged with a predetermined interval d are used. Can be sent out of the main body.
  • the branch chamber The air ion generator unit 104 may be arranged at a predetermined interval in 132.
  • the common duct 131 is used for design reasons, and air ions are generated by the branch chamber 132 arranged at a predetermined place. It can be supplied while preventing a decrease in attenuation.
  • partition portions 121— :! to 121-3 for introducing air corresponding to the air ducts 106-1 to 106-6-4 are arranged in the housing 102.
  • four positive / negative ion generators 104c that generate positive ions and negative ions at the same time may be arranged in the partition part 121- :! to 121-3.
  • the current plate 122—! ⁇ 122-4 are arranged at predetermined intervals, and the air from the blower 120 is stably supplied to the first air duct 106-1 and the fourth air duct 106-4.
  • the current plate 122 When 122-4 is not installed, the air from the blower 120 is concentrated in the second air duct 106-2 and the third air duct 106-3. It is effective when the second air duct 106-2 and the third air duct 106-3 are lengthened after taking attenuation into account, or when a large amount of ions are supplied to a room that enhances the ion effect. is there.
  • the partition part 121 introduces air into the housing 102 corresponding to the air ducts 106-1 to: 106-4.
  • ⁇ 121-3 are arranged and the partition 121-! ⁇ 121-3, a pair of positive ion generator 104a and negative ion generator 104b may be arranged with a predetermined interval d.
  • different types of air ion generators are arranged at a predetermined interval d on the blower side.
  • one positive ion generator 104a and two negative ion generators 104b are arranged on both sides of the positive ion generator 104a to increase the amount of negative ions generated in the housing 102.
  • the positive ion generator 104a and the negative ion generator 104b have the same number as a pair.
  • the number of the negative ion generator 104b is positive. More than the number of ion generators 104a.
  • the number of positive ions and negative ions can be adjusted to be the same in each room. .
  • the arrangement of the air ion generator is not limited to the blower side or the duct side.
  • the positive ion generator 104a is placed on the blower side, and the blower side and the duct are arranged. You may make it arrange
  • the air ion generation device may include an arrangement in the height direction (the heel direction), which is not limited to a planar arrangement (X_Y direction).
  • the combination of air ion generators can be changed as appropriate depending on the amount of ions required, the shape and size of the housing, the number of outlets, and the like. Also, install an optimal air ion generator according to the wind speed from the blower 120 and the required ion supply concentration.
  • a positive ion generator 104a, a negative ion generator 104b, and a positive / negative ion generator (air ion generator) 104c may be mixed.
  • the installation distance d is not necessarily uniform as long as it is at least 0.1 cm apart.
  • the positive ion generator 104a and the negative ion generator 104b are disposed at both sides of the positive / negative ion generator 104c at a predetermined interval d, and the positive ion
  • a negative ion generator 104b is disposed outside the generator 104a, and a positive ion generator 104a is disposed outside the negative ion generator 104b at a predetermined interval d.
  • the central portion of the positive ion generator 104a and the negative ion generator 104b is set at a predetermined interval d, and arranged at a predetermined interval d on both sides thereof.
  • the air ion generator is installed so that the air blowing direction is substantially the same as the air blowing direction.
  • the air ion generating device is not limited to this, but is orthogonal to the air blowing direction. It may be installed in various directions such as the direction to be generated, the vertical direction, the direction in which the generation surfaces face each other, or the direction in which the generation surfaces become back-to-back.
  • FIGS. 15-1 to 15-11 show various other suitable arrangement examples of the air ion generator, but the present invention is not limited to these.
  • FIG. 15-1 shows an example in which the negative ion generators 104b are arranged back to back.
  • FIG. 15-2 is an example in which the positive ion generators 104a are arranged back to back.
  • Figure 15-3 shows an example in which the negative ion generator 104b and the positive ion generator 104a are placed back to back.
  • Figure 15-4 shows an example in which the positive and negative ion generators 104c are placed back to back in line symmetry.
  • Figure 15-5 shows an example in which positive and negative ion generators 104c are placed back-to-back symmetrically with dotted lines.
  • FIG. 15_6 shows an example in which the negative ion generator 104b and the positive ion generator 104a are arranged side by side.
  • Figure 15-7 shows an example of negative ion generators 104b arranged side by side.
  • FIG. 15_8 shows an example in which the positive ion generator 104a and the negative ion generator 104b are arranged side by side.
  • Fig. 15-9 shows an example in which positive and negative ion generators 104c are arranged side by side in line symmetry.
  • Fig. 15-10 shows an example in which positive and negative ion generators 104c are arranged side by side in order.
  • Figure 15-11 generates positive and negative ion generator 104c This is an example in which the surfaces are arranged in vertical positions as different surfaces.
  • the fan is expanded from the blower 120 side toward the air duct 106 side.
  • a partition part 133 is provided, and a throttle part 134 for temporarily restricting a passage of wind is formed on the blower 120 side, and an air ion generator is provided in the throttle part 134. Moyore. In addition, you may make it raise a wind speed temporarily.
  • a plurality of positive and negative ion generators 104c that generate positive and negative ions may be provided with a force S provided in the throttle unit 134.
  • the speed of the air passing through the surface or side surface of the air ion generator that generates ions is high, and in this case, the ion attenuation is such that there is no ion retention area. There will be less stuff. Furthermore, the ion concentration to be supplied can be increased by increasing the air volume by switching the notch of the fan of the blower 120.
  • the interval between the ion generators cannot be set to a predetermined interval due to the size of the housing. In such a case, a reduction effect due to the cancellation of ions appears. Therefore, it may be installed under various conditions so that an optimum air ion generator is installed.
  • the joint 105 and the air duct 106 have an uncharged structure or a structure with low chargeability.
  • the non-charged structure or the structure with low chargeability is a structure that is not charged or difficult to be charged.
  • a structure in which each air duct is grounded or at least the inner surface outside the air duct is not covered.
  • the power of constructing a chargeable shape is considered S.
  • the non-chargeable material include a metal material such as aluminum or a resin material.
  • a resin material for example, in the case of a duct that conveys air containing negative ions, a resin material that is not positively charged or hardly charged is adopted. However, in the case of a duct that carries air containing positive ions, a resin material that is not negatively charged or hardly charged may be employed.
  • the non-chargeable configuration there are a bellows shape, a pitch of a wire in the air duct, or a method of bonding an inner surface material of the air duct.
  • a plurality of air ducts are provided for the casing 102 provided with the air ion generator unit 104 or the branch chamber 132 provided with the air ion generator unit 104 as described above.
  • 106— :! ⁇ 106-6 shows an air ion transport system that supplies ions individually to multiple rooms by connecting them.
  • a large-diameter duct 131 supplies ions to a predetermined location all at once, and a branch duct 131a branched from the duct 131 is used as shown in FIG. It is also possible to use an air ion transport system that supplies multiple room cation.
  • the air ion transport system of the present invention can be applied to a first or second type ventilation system in which air is supplied by a fan.
  • FIG. 14 shows an example of a centralized ventilation system to which the air ion transport system of the present invention is applied.
  • the present invention is applied to a system that replaces indoor air (inside air) and outside air (outside air) in a highly airtight and highly insulated house.
  • the house of the floor plan of 1 floor 3LDK is shown as an example.
  • a living room 201a there are a living room 201a, a Japanese-style room 201b, a first Western room 201c, and a second Western room 201d.
  • Japanese-style room 201b leads to living room 201a through a tub.
  • This living room 201a has a kitchen 201e.
  • the living room 201a, the first western room 201c, and the second western room 201d communicate with the corridor 201f through doors, respectively.
  • the corridor 201f is connected with a toilet 201g through a door. Furthermore, a dressing room 201h is connected to the corridor 20 ⁇ via a door, and a bathroom 201i is connected to the back of the dressing room 201h via a door.
  • ventilation means 202 is arranged on the back of the ceiling or the like.
  • the ventilation means 202 performs first type ventilation, and an air supply side blower (not shown) is provided inside the air supply side case 202A, and an exhaust side blower (not shown) is provided inside the exhaust side case 202B. There is.
  • the supply side housing 202A has an outside air intake port 203a and an air supply port 203b, while the exhaust side housing 202B has an inside air intake port 203c and an exhaust port 203d.
  • the outside air intake port 203a and the exhaust port 203d are connected to the outdoor side, and the air supply port 203b and the inside air intake port 203c are connected to the indoor side.
  • the air supply side blower takes in outdoor air from the outside air intake port 203a into the inside of the housing 202A and supplies the air to the indoor side from the air supply port 203b.
  • the exhaust-side blower takes in indoor air from the inside air intake port 203c into the housing 202B and exhausts the air from the exhaust port 203d to the outdoor side.
  • an unillustrated check and filter are provided at the position of the outside air intake port 203a of the supply side casing 202A.
  • This filter is preferably a HEPA filter, for example. These filters mainly collect pollen, odors and NO.
  • an air supply system air duct is connected to the outside air intake port 203a and the air supply port 203b, and the inside air intake port 203c and the air outlet port 20 3d. Is connected to an exhaust air duct.
  • an air supply duct 210a leading to the outdoor side is connected to the outside air inlet 203a.
  • An air supply air duct 210b that leads to the indoor side is connected to the air supply port 203b.
  • An exhaust air duct 21 la leading to the indoor side is connected to the inside air intake port 203c.
  • An exhaust air duct 21 lb leading to the outdoor side is connected to the exhaust port 203d.
  • the supply air duct 210a is provided from the outside air intake port 203a toward the entrance 212 on the outdoor side shown in FIG.
  • a supply air inlet 213 is provided at an end where the supply air duct 210a reaches the entrance 212 and the like.
  • the air supply air duct 210b passes through the air supply opening 203b through the ceiling behind the room, and the like.
  • Each of the indoor rooms shown in FIG. 14 is a living room 201a, a kitchen room 201b, a first western room 201c, and a second room. It is branched off towards Western room 201d. Further, an air supply outlet 214 force S is provided at the end where the supply air duct 210b reaches the rooms 201a, 201b, 201c, 201d.
  • the exhaust air duct 21 la is branched from the inside air intake port 203c to the toilet 201g and the bathroom 201i which are indoor rooms shown in FIG. It is. Further, an exhaust suction port 215 is provided at an end where the exhaust air duct 21 la reaches the toilet 201g and the bathroom 201i.
  • the exhaust air duct 211b is provided from the exhaust port 203d to the building outer wall 216 on the outdoor side shown in FIG. Further, an exhaust outlet 217 is provided at the end where the exhaust air duct 21 lb reaches the building outer wall 216 and the like.
  • a ventilation means 218 through which the air supply outlet 214 and the exhaust air inlet 215 are passed is provided indoors.
  • This ventilating means 218 is a garage that leads from the Japanese-style room 201b to the living room 201a, a door undercut that leads from the living room 201a to the corridor 20th, a door undercut that leads from the first Western-style room 201c to the corridor 2 Olf, and the second western-style room 201d to the corridor 201f.
  • the air ion transport device as shown in FIGS. 1 to 12 described above is applied to the ventilation means 202.
  • the air ion generator can be moved independently of the operation of the air supply side fan and the exhaust side air blower of the ventilation means 202, independently of each switch 201a, 201b, 201c, 201d. It is possible to control ON / OFF and air ion generation amount by 221.
  • the ion amount and air volume of each room may be controlled, for example, by concentrating on one room such as a bedroom or living room to exert the sterilization effect.
  • the air ion transport device can be applied not only to a house but also to buildings of all uses such as an office, a medical facility, a health facility, an accommodation facility, an educational facility, or a museum, etc. .
  • the air ion transport device in the present embodiment is a ventilation system that replaces air in a predetermined area such as an apartment house, a medical-care facility, an office, or a factory, or an air conditioning system that performs air conditioning in a predetermined area, such as a building facility. It is applied to air conditioning systems that regulate air in various building applications and vehicles (passenger cars, buses, trains, etc.).
  • the air ion transport device shown in FIG. 17 constitutes an air ion transport unit having an air blowing means 301 and an air ion generating means 302.
  • the blower unit 301 includes a box-shaped casing 311 and a blower 312 accommodated in the casing 311.
  • An air suction port 311a is provided in a portion of the casing 311 on the air suction side of the blower 312.
  • an air outlet 31 lb is provided in a portion of the casing 311 which is on the air outlet side of the blower 312.
  • One to a plurality of air outlets 31 lb (four in the present embodiment) are provided toward a predetermined area for carrying air ions.
  • the air outlet 31 lb may be connected with a duct 304 leading to a predetermined area.
  • a filter 303 as a cleaning means for cleaning air is provided in the casing 311 on the air blowing side of the blower 312.
  • the finoleta 303 is the same as the air cleaning device 109 in the first embodiment described above, and mainly removes dust in the air passing from the inlet side to the outlet side by the operation of the blower 312.
  • Air ion generating means 302 is a positive ion generating device that generates positive ions in the surrounding air, a negative ion generating device that generates negative ions in the surrounding air, or positive ions and negative ions in the surrounding air. Includes positive and negative ion generators that generate both. That is, the air ion generating means 302 includes a positive ion generator only, a negative ion generator only, a combination of a positive ion generator and a negative ion generator, and a positive / negative ion generator.
  • Figure 17 shows an example of arranging four of these ion generators.
  • the positive ion generator and the negative ion generator are arranged at a predetermined interval.
  • the predetermined interval is, for example, 0.1 cm or more, preferably 0.5 cm or more, and more preferably 1 cm or more.
  • Air ion generating means 302 configured by a positive ion generator, a negative ion generator, or a positive / negative ion generator is the same as air ion generator unit 104 in the first embodiment described above.
  • the air ion generating means 302 can generate air ions (positive ions and negative ions) by means of the Renard effect or plasma.
  • the air ion generating means 302 is disposed inside the casing 311 on the air blowing side of the blower 312 and on the outlet side of the filter 303.
  • the air ion transport device configured as shown in FIG. 17 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312.
  • the air sucked into the casing 311 is cleaned by the filter 303.
  • Air ions generated by the air ion generating means 302 are included in the purified air.
  • clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311.
  • the air ion generation means 302 is a desired target portion arranged on the windward side, and the air blowout port 311b and the predetermined area (duct 304) shown in FIG. Performs virus and antiallergen action.
  • the air ion generating means 302 is arranged on the windward side, so that the air ion generating means 302, which is a desired target part on the leeward side, and the leeward side,
  • the air ion transport unit such as 31 lb of air outlet and a predetermined area (duct 304), and performs sterilization, anti-virus and anti-allergen action by air ions reaching there.
  • the effect of air ions is maintained for a long time with high efficiency. It is possible to carry air ions to the area.
  • air ions are adsorbed by fine particles in the air, if air ions are included in the air after passing through the filter 303 as in the air ion transport device shown in FIG. It is possible to carry air ions to a predetermined area with high efficiency while maintaining the effect longer.
  • the air ion transport device shown in FIG. 18 constitutes an air ion transport unit having an air blowing means 301 and an air ion generating means 302.
  • the air ion transfer device shown in FIG. 18 is basically the same as the configuration shown in FIG. 17, and the arrangement of the air ion generating means 302 is different.
  • the air ion generating means 302 is disposed inside a casing 311 that is on the air suction side of the blower 312.
  • the air ion transport apparatus configured as shown in FIG. 18 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312. Air ions generated by the air ion generating means 302 are included in the air sucked into the casing 311. Air containing air ions is cleaned by the filter 303. Then, clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311. As a result, the air ion generating means 302 is a desired target portion arranged on the windward side, and the air ions such as the blower 312, the filter 303, the air outlet 31 lb and the predetermined area (duct 304) shown in FIG. The surroundings of the generating means 302 and the leeward part are sterilized, antiviral and antiallergenic by air ions reaching there.
  • the air ion generating means 302 is arranged on the windward side, so that the blower 312, the filter 30 3, and the air outlet 31 that are the desired target parts on the leeward side are provided.
  • Includes components of the air ion transport unit such as the circumference of the air ion generating means 302 such as lb and a predetermined area (duct 304), and the leeward part, and the air ions that reach the sterilization, antiviral and antiallergen action Do.
  • the sterilization, anti-virus and anti-allergen action of the filter 303 is performed by air ions, so that the effect of removing the microorganism of the filter 303 is increased and this effect is further prolonged. It becomes possible.
  • the air ion transport device shown in FIG. 19 includes a blowing means 301 and an air ion generating means 302. An air ion transport unit is provided.
  • the air ion transport device shown in FIG. 19 is basically the same as the configuration shown in FIG. 17, and the arrangement of the filter 303 and the air ion generating means 302 is different.
  • the finlet 303 is disposed inside a casing 311 that is the air suction side of the blower 312.
  • the air ion generating means 302 is disposed on the air suction side of the blower 312 and on the inlet side of the filter 303.
  • the air ion transport device configured as shown in FIG. 19 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312. Air ions generated by the air ion generating means 302 are included in the air sucked into the casing 311. Air containing air ions is cleaned by the filter 303. Then, clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311. As a result, the air ion generation means 302 is a desired target portion arranged on the windward side, and generates air ions such as the finole 303, the blower 312, the air outlet 311b, and the predetermined area (duct 304) shown in FIG. The surroundings of the means 302 and the windward part are sterilized, antiviral and antiallergenic by air ions reaching there.
  • the air ion transport device shown in FIG. 19 by arranging the air ion generating means 302 on the windward side, the blower 312, the filter 30 3, and the air outlet 31, which are desired target parts on the leeward side.
  • the sterilization, anti-virus and anti-allergen action of the filter 303 is performed by air ions, so that the effect of removing the microorganism of the filter 303 is increased and this effect is further prolonged. It becomes possible.
  • the air ion transport device shown in FIG. 20 constitutes an air ion transport unit having an air blowing means 301 and an air ion generating means 302.
  • the air ion transport device shown in FIG. 20 is basically the same as the configuration shown in FIG. 17, and the air ion generating means 302 is further disposed.
  • the air ion generating means 302 sends air as shown in FIG.
  • the casing 311 which is the air blowing side of the air blower 312 and which is the outlet side of the filter 303, it is further arranged inside the casing 311 which is the air suction side of the blower 312.
  • the air ion transport apparatus configured as shown in FIG. 20 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312. Air ions generated by the air ion generating means 302 are included in the air sucked into the casing 311. Air containing air ions is cleaned by the filter 303. Air ions generated by the air ion generating means 302 are further included in the clean air containing air ions. Then, clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311.
  • the air ion generating means 30 2 is a desired target portion arranged on the windward side, and air ions such as the blower 312, the filter 30 3, the air outlet 31 lb and the predetermined area (duct 304) shown in FIG.
  • the periphery of the generating means 302 and the windward part are sterilized, antiviral and antiallergenic by air ions reaching there.
  • the air ion transport device shown in FIG. 20 is provided with the air ion generating means 302 on the outlet side and the inlet side of the filter 303, so that the air that has passed through the filter can further contain air ions.
  • the air ion generating means 302 is arranged on the windward side, so that the blower 312, the filter 30 3, and the air outlet 31 that are the desired target parts on the leeward side are provided.
  • Includes components of the air ion transport unit such as the circumference of the air ion generating means 302 such as lb and a predetermined area (duct 304), and the leeward part, and the air ions that reach the sterilization, antiviral and antiallergen action Do.
  • the air ions can be transported to a predetermined area with high efficiency while maintaining the effect of air ions for a long time.
  • the sterilization, anti-virus and anti-allergen action of the filter 303 is performed by air ions, so that the effect of removing the microorganism of the filter 303 is increased and this effect is further prolonged. It becomes possible. Further, by adding air ions to the air that has passed through the filter 303, even if the air ions are attenuated when passing through the filter 303, the amount of air ions can be assisted.
  • the air ion transport device shown in FIG. 21 includes a blowing means 301 and an air ion generating means 302. An air ion transport unit is provided.
  • the air ion transfer device shown in FIG. 21 is basically the same as the configuration shown in FIG. 17, and the arrangement of the air ion generating means 302 is different. Specifically, the air ion generating means 302 is disposed in the vicinity of the air outlet 311b as shown in FIG. Although not shown in the drawing, the air ion generating means 302 may be installed inside the duct 304.
  • the air ion transport device configured as shown in FIG. 21 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312.
  • the air sucked into the casing 311 is cleaned by the filter 303.
  • Air ions generated by the air ion generating means 302 are included in the purified air.
  • clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311.
  • the air ion generating means 302 is a desired target portion arranged on the windward side, such as the air outlet 31 lb and the predetermined area (duct 304) shown in FIG.
  • the air ions that reach it cause sterilization, antiviral and antiallergen action.
  • the air ion generating means 302 is arranged on the windward side, so that the air blowout port 31 lb that is a desired target site on the leeward side and a predetermined area ( It includes the components of the air ion transport unit such as the duct 304) and the air ion generating unit 302, such as the periphery of the air ion and the windward part, and performs sterilization, antiviral and antiallergen action by the air ions reaching there.
  • air ions can be transported to a predetermined area with high efficiency while maintaining the effect of air ions for a long time.
  • the air ion generating means 302 in the vicinity of the air outlet 31 lb, the air ion can be blown away from the air outlet 31 lb.
  • the air ion transport device shown in FIG. 22 constitutes an air ion transport system (ventilation system) having a blowing means 301 and an air ion generating means 302.
  • the air blowing means 301 has an air supply fan 312a and an exhaust air fan 312b.
  • the air supply blower 312a is connected to an intake duct 304a whose air suction side communicates with the outside air, and its air discharge side is connected to an air supply duct 304b connected to the room 305 as a predetermined area.
  • An air supply port 306 is provided at a portion where the air supply duct 304b is connected to the room 305.
  • Exhaust blower 312b has its air suction The side is connected to a return duct 304c that leads to the room 305, and the air outlet side is connected to an exhaust duct 304d that leads to the outside air.
  • An exhaust port 307 is provided at a portion where the return duct 304c is connected to the room 305.
  • the air ion generating means 302 has the same configuration as described above, and is arranged in at least one (one, a plurality, or all) of the following parts. Specifically, as shown in Fig. 22, the locations where the air ion generating means 302 is arranged are the intake duct 304a (A), the supply duct 304b, the vicinity of the supply blower 312a (B), and the supply air of the supply duct 304b. The vicinity of the opening 306 (C), the vicinity of the exhaust port 307 of the return duct 304c (D), and the exhaust duct 304d (E).
  • the air ion transport apparatus configured as shown in Fig. 22 takes in outside air from the intake duct 304a by operating the air supply blower 312a, and supplies the air through the air supply duct 304b. Supply outside air.
  • air ions generated by the air ion generating means 302 (A) arranged in the intake duct 304a are included in the outside air taken in from the intake duct 304a. That is, air ions reach the supply air blower 312a.
  • air ions generated by the air ion generating means 302 (B) disposed in the vicinity of the air supply fan 312a of the air supply duct 304b are included in the air blown by the air supply fan 312a.
  • air ions reach the supply duct 304b.
  • the air passing through the air supply duct 304b includes air ions generated by the air ion generating means 302 (C) disposed in the vicinity of the air supply port 306 of the air supply duct 304b. That is, air ions reach the room 305 through the air supply port 306.
  • the air ion generating means 302 is a desired target portion arranged on the windward side, and reaches the air supply fan 312a, the air supply duct 304b, the air supply port 306, and the room 305 shown in FIG. Sterilization, antiviral and antiallergenic action by air ions.
  • the air ion transport apparatus configured as shown in Fig. 22 operates the exhaust blower 312b to take the air in the room 305 into the return duct 304c through the exhaust port 307, and the exhaust duct 304d.
  • the air in the room 305 is exhausted to the outside through the air.
  • air ions generated by the air ion generating means 302 (D) disposed near the exhaust port 307 of the return duct 304c are included in the air in the room 305 taken in from the exhaust port 307. That is, air ions reach the return duct 304c and the exhaust fan 312b.
  • air ion generating means 3 disposed in the exhaust duct 304d with respect to the air passing through the exhaust data 304d. 02 Includes air ions generated by (E). That is, air ions reach the outside air.
  • the air ion generating means 302 is a desired target portion arranged on the windward side, and is sterilized and antiviral by the return air 304c, the exhaust blower 312b and the outside air shown in FIG. And anti-allergen action.
  • the air ion generating means 302 is arranged on the windward side, whereby the air supply blower 312a, the air supply duct 304b, It includes components of the air ion transport unit such as the mouth 306, the room 305, the return duct 304c, the exhaust air blower 312b, and the outside air, and performs sterilization, antiviral and antiallergen action by the air ions reaching there.
  • the air ion transport unit such as the mouth 306, the room 305, the return duct 304c, the exhaust air blower 312b, and the outside air, and performs sterilization, antiviral and antiallergen action by the air ions reaching there.
  • the air ions to a predetermined area with high efficiency while maintaining the effect of air ions for a long time.
  • the surrounding environment can be improved by sterilizing the exhausted air and performing antiviral and antiallergenic effects.
  • the air ion transport apparatus shown in FIG. 23 constitutes an air ion transport system (heat exchange air-conditioning system) having a blowing means 301 and an air ion generating means 302.
  • the air blowing means 301 includes an air supply fan 312a and an exhaust fan 312b.
  • the air supply blower 312a is connected to an intake duct 304a whose air suction side leads to the outside air, and its air outlet side is connected to an air supply duct 304b connected to a room 305 as a predetermined area.
  • a casing 309 having a filter 303 and a coil 308 for exchanging heat of air is provided in the vicinity of the supply air blower 312a of the intake duct 304a.
  • An air supply port 306 is provided at a portion where the air supply duct 304 b is connected to the room 305.
  • the exhaust blower 312b has an air suction side connected to a return duct 304c connected to the room 305, and an air blower side connected to an exhaust duct 304d communicating with the outside air. Further, the air blowing side of the exhaust blower 312b is branched from the exhaust duct 304d and connected to the filter 303 side of the casing 309.
  • An exhaust port 307 is provided at a part where the return duct 304c is connected to the room 300.
  • a heat exchanger 310 is interposed between the air supply duct 304b and the exhaust duct 304d.
  • the air ion generating means 302 has the same configuration as described above, and is arranged in at least one (one, a plurality, or all) of the following parts. Specifically, the part where the air ion generating means 302 is arranged is as shown in FIG. 23, the inlet of the heat exchanger 310 of the intake duct 304a.
  • the air ion transport apparatus configured as shown in FIG. 23 operates after the supply air blower 312a is operated to take outside air from the intake duct 304a and pass through the heat exchanger 310, the filter 303, and the coil 308. Then, outside air is supplied from the supply port 306 to the room 305 through the supply duct 304b. At this time, air ions generated by the air ion generating means 302 (F) arranged on the inlet side of the heat exchanger 310 of the intake duct 304a are included in the outside air taken in from the intake duct 304a. That is, air ions reach the heat exchanger 310.
  • air ions generated by the air ion generating means 302 (G) disposed on the outlet side of the heat exchanger 310 of the intake duct 304a are included in the air that has passed through the heat exchanger 310. That is, air ions reach the finole 303 side of the casing 309. Further, air ions generated by the air ion generating means 302 (H) arranged on the inlet side of the filter 303 in the casing 309 are included in the air in the casing 309. That is, air ions reach the filter 303. Further, the air in the casing 309 includes air ions generated by the air ion generating means 302 (1) disposed on the filter 303 outlet side in the casing 309 and on the coil 308 inlet side.
  • air ions reach the coil 308.
  • air ions generated by the air ion generating means 302 J) arranged on the outlet side of the coil 308 in the casing 309 are included in the air in the casing 309. That is, air ions reach the supply air blower 312a.
  • air ions generated by the air ion generating means 302 (K) disposed in the vicinity of the air supply fan 312a of the air supply duct 304b are included in the air blown by the air supply fan 312a. That is, air ions reach the supply duct 304b.
  • air ions generated by the air ion generating means 302 (L) arranged near the air inlet 306 of the air supply duct 304b are included in the air passing through the air supply duct 304b. That is, air ions reach the room 305 through the air supply port 306.
  • a desired target portion in which the air ion generating means 302 is arranged on the windward side Fig. 23 ⁇ shows heat exchanger 310, gating 309, finoleta 303, inole 308, air blower 312a, air duct 304b, air inlet 306, and room 305. Performs allergen action.
  • the air ion transport apparatus configured as shown in FIG. 23 operates the exhaust fan 312b to take the air in the room 305 into the return duct 304c through the exhaust port 307, and the exhaust duct 304d.
  • the air in the room 305 is exhausted to the outside through the air.
  • the exhaust fan 312b by operating the exhaust fan 312b, the air in the room 305 is taken into the return duct 304c through the exhaust port 307, and the air is returned from the branch portion to the casing 309.
  • air ions generated by the air ion generating means 302 (M) disposed near the exhaust port 307 of the return duct 304c are included in the air in the room 305 taken in from the exhaust port 307.
  • air ions reach the return duct 304c and the exhaust fan 312b.
  • air ions generated by the air ion generating means 302 (N) disposed on the blowout side of the exhaust blower 312b are included in the air passing through the blowout side of the exhaust blower 312b. That is, the air ion reaches the heat exchanger 310 and the filter 303 side of the casing 309.
  • air ions generated by the air ion generating means 302 (0) disposed on the outlet side of the heat exchanger 310 of the exhaust duct 304d are included in the air passing through the exhaust duct 304d. That is, air ions reach the outside air.
  • the air ion generating means 302 is disposed on the windward side, and the return duct 304c, the exhaust blower 312b, the heat exchanger 310, the casing 309 and the outside air shown in FIG.
  • the air ions that reach it cause sterilization, antiviral and antiallergenic effects.
  • the exhausted air can be sterilized, antiviral and antiallergenic. To improve the surrounding environment.
  • air containing air ions to the heat exchanger 310, it is possible to extend the various parts replacement time of the heat exchanger 310.
  • the air ion transport device shown in FIG. 24 constitutes an air ion transport system (total heat exchange air-conditioning system) having an air blowing means 301 and an air ion generating means 302.
  • the blower means 301 has an air supply blower 312a and an exhaust blower 312b.
  • the supply air blower 312a is arranged in one area 3l id of the casing 311 divided into two by the partition wall 311c, and the intake duct 304a in which the air suction side of the one area 31 Id communicates with the outside air.
  • the air outlet side is connected to an air supply duct 304b connected to a room 305 as a predetermined area.
  • One region 31 Id in the casing 311 is provided with a coil 308 for heat exchange of air, and one region 31 Id in the casing 311 is provided with a filter 303.
  • the exhaust blower 312b is arranged in the other region 31 le of the casing 311 divided into two by the partition wall 311c, and the air suction side of the other region 31 le is connected to the return duct 304c connected to the room 305.
  • the air blowing side is connected to an exhaust duct 304 d communicating with the outside air.
  • a filter 303 is provided in the other region 31 le in the casing 311.
  • the air ion generating means 302 has the same configuration as described above, and is arranged in at least one (one, a plurality, or all) of the following parts. Specifically, as shown in FIG. 24, the part where the air ion generating means 302 is disposed is the intake duct 304a (P), one region 31 in the casing 311 31 Id filter 303 inlet side (Q), the casing 31 1 One area of the filter 3 L id filter 303 outlet side and coil 308 inlet side (R), air supply duct 304b supply air blower 312a vicinity or casing 311 supply air blower 312a discharge side (S), Near the air inlet 306 of the air supply duct 304b (T), near the exhaust air outlet 307 of the return duct 304c (U), the other region 31le in the casing 311 31le filter 303 inlet side (V), and the exhaust duct 304d Or an exhaust blower 312b outlet side (W) in the casing 311.
  • P the intake duct
  • the air ion transport apparatus configured as shown in FIG. 24 takes in outside air from the intake duct 304a by operating the air supply blower 312a, and in one region 31 Id of the casing 311 the filter 303 and After passing the coil 308, outside air is supplied from the air supply port 306 to the room 305 through the air supply duct 304b. At this time, the outside air taken in from the intake duct 304a In contrast, air ions generated by the air ion generating means 302 (P) disposed in the intake duct 304a are included. That is, air ions reach the casing 311 from the intake duct 304a.
  • air ions generated by the air ion generating means 302 (Q) disposed on the filter 303 inlet side of one region 311d in the casing 311 are included. That is, air ions reach the filter 303 in one region 31 Id in the casing 311.
  • air ions generated by the air ion generating means 302 (R) arranged on the filter 303 outlet side of the one region 31 Id in the casing 311 on the coil 308 inlet side are included. That is, air ions reach the coil 308.
  • air generated by the air ion generating means 302 (S) arranged near the air supply fan 312a of the air supply duct 304b or the air supply fan 312a in the casing 311 with respect to the air blown by the air supply fan 312a Include ions. That is, air ions reach the supply duct 304b.
  • air ions generated by the air ion generating means 302 (T) arranged near the air inlet 306 of the air supply duct 304b are included in the air passing through the air supply duct 304b. That is, air ions reach the room 305 through the air supply port 306.
  • the air ion generating means 302 is arranged on the windward side, and the intake duct 304a, one region 31ld in the casing 311, shown in FIG. 24, the finlet 303, the coinlet 308,
  • the air blower 312a, the air supply duct 304b, the air supply port 306, and the Ashiya 305 are sterilized, antiviral and antiallergenic by the air ions that reach them.
  • the air ion transport apparatus configured as shown in FIG. 24 operates the exhaust fan 312b to take the air in the room 305 into the return duct 304c through the exhaust port 307, and the other region of the casing 311.
  • the air in the room 305 is exhausted to the outside air through the exhaust duct 304d.
  • air ions generated by the air ion generating means 302 (U) disposed in the vicinity of the exhaust port 307 of the return duct 304c are included in the air in the room 305 taken from the exhaust port 307. That is, air ions reach the other area 31 le in the return duct 304 c and the casing 311.
  • the air in the other region 31 le in the casing 311 includes air ions generated by the air ion generating means 302 (V) disposed on the filter 303 inlet side in the other region 31 le in the casing 311. . That is, air ions are in the other region in the casing 311. In 311e, it reaches the filter 303 and the exhaust fan 312b. Further, the air blown by the exhaust blower 312b includes air ions generated by the air ion generating means 302 (W) disposed on the exhaust duct 304d or the exhaust blower 312b blowing side in the casing 311. That is, air ions reach the outside air.
  • the air ion generating means 302 is a desired target portion arranged on the windward side, and is provided for the return duct 304c, the other region 311e in the casing 311 shown in FIG. Then, the air ions that reach the area perform sterilization, antiviral and antiallergenic effects.
  • the surrounding environment can be improved by sterilizing the exhausted air and performing antiviral and antiallergenic effects.
  • the air ion generating means 302 in the casing 311 constituting the total heat exchanger the filter 303 and the coil 308 in the total heat exchanger can be sterilized, and antiviral and antiallergenic actions can be performed. Therefore, it is possible to extend the time for replacing various parts of the total heat exchanger.
  • the air ions are often attenuated when passing through the filter 303 and the heat exchanger 310, and various filters and heat exchangers such as a prefilter and a dust filter are used for the air ion generating means 302.
  • various filters and heat exchangers such as a prefilter and a dust filter are used for the air ion generating means 302.
  • it is desirable to install it on the leeward side if the generated ions that are not charged by the filter or heat exchanger itself are not attenuated, install the filter or heat exchanger on the leeward side of the air ion generator 302. Can do.
  • the coil 308 is also installed on the windward side of the air ion generating means 302.
  • FIGS. 17 to 24 explain the ventilation system by 1S “ ⁇ A” and “RA”. Air conditioning, humidification, dehumidification, adsorption and decomposition of chemical substances, bacteria, etc. It is possible to apply the air ion transport device to an air conditioning (air conditioning) system that removes dust.
  • air ions are transported to the parts that transport air ions, such as the casings 311, 309, the ducts 304 (304a, 304b, 304c, 304d).
  • a non-Z low-charge material such as metal or conductivity for the part that carries air ions, or use a charge removal device or ground to remove the charged charge. It is preferable to prepare a charge removing means such as installing a place. As a result, it is possible to improve the efficiency of air ion transport, to enhance the sterilization, antiviral and anti-allergen effects, and to increase the air ion transport distance.
  • a rectifying plate, a partition plate, etc. are arranged on the windward side of the air ion generating means 302 to adjust the direction and air volume of the generated air ions. You can do it.
  • various buildings and vehicles such as houses, offices, various facilities (food, medical, health care, education, accommodations, etc.), factories, etc.
  • the combination of the installation positions of the air ion generating means 302 at the desired target site may be determined.
  • a plurality of air ion generating means 302 may be provided on the windward side of the target site where sterilization, antiviral and antiallergen actions are to be performed with priority.
  • FIG. 25 is a schematic configuration diagram showing an air ion transport system according to the third embodiment of the present invention.
  • the air ion transport system 400 of the present invention is employed in, for example, an air conditioner and transports air ions to a room such as a house.
  • the air ion transport system 400 is provided in the housing 402 of the centralized ventilation device 401 and is externally provided.
  • Supply air 403 to negative ions, positive ions, or both An air duct that is connected to an air ion generator 404 containing ions and a joint 405 provided in the casing and individually conveys air to a plurality of rooms (four rooms in this embodiment).
  • reference numeral 408 denotes a blow-out unit that blows air into the room.
  • an air ion generation device 404 is provided at a position facing the air duct hole of the air duct 406.
  • each air ion generation device 404 is arbitrarily set. By adjusting, it is possible to centrally manage various adjustments such as adjustment of operation and stop according to the demand of each room, adjustment of increase / decrease of ion amount.
  • the force with four ducts is not limited to this, and the present invention can be applied to a case where one duct is supplied to one room. If the room is large or the humidity or dirt is severe, it can be adjusted appropriately according to the conditions of the room.
  • a blower 420 is disposed inside the housing 402 of the centralized ventilation device 401. Further, various air cleaning devices may be provided on the air supply side as necessary.
  • the air purifier is the same as the air purifier 109 in the first embodiment described above, and mainly removes dust and the like in the air supplied by the operation of the blower 420. By collecting dust with this air purifier, air ions in the duct can be more efficiently transported.
  • the air ion generator 404 is the same as the air ion generator unit 104 in the first embodiment described above.
  • the air ion generator is described as having a box shape.
  • the present invention is not limited to this, and there are various types such as an electrode shape, a rod shape, a needle shape, and the like.
  • the air ion generator of the form can be used. Therefore, by driving the blower 420, positive ions and negative ions generated by the air ion generator 404 can be sent out of the main body. And, the action of these positive ions and negative ions makes it possible to sterilize the microorganisms in the air.
  • positive ions and negative ions also act to inactivate wines such as Coxsackie virus and poliovirus, and can prevent contamination due to contamination of these viruses.
  • positive ions and negative ions have a function of separating molecules that cause odors, and can be used to deodorize spaces.
  • Air ion generators 404-1 to 404 _4 may be arranged.
  • the air ions generated by the air ion generators are reliably fed into the air ducts 406-1 to 406_4, and the adjustment in each room is ensured.
  • the branch chamber 432 is filled with the air.
  • the air ion generator 404— :! to 404—4 may be installed in the partition portion 421— :! to 421-3 that is provided.
  • an air ion generator 404— :! to 404-4 may be disposed in each joint 405— :! to 405-4 of the casing 402. .
  • the arrangement of the air duct is not limited to the arrangement in the same direction.
  • the air duct 406-1 and the air duct 406-4 are connected to the housing 402. Even when it is arranged on the side wall, each joint 405—!
  • the air ion generator 404— :! to 404-4 is installed in the ⁇ 405-4, so that the supply of air ions is ensured.
  • an introduction device 422 for introducing air is provided, and the introduction device Air ions may be supplied to an arbitrary air duct by adjusting 422.
  • the introduction device 422 includes a flexible partition 423 corresponding to the air duct, and the partition.
  • Reference numeral 425 is a fixed introduction member.
  • the number of installed air ion generators may be appropriately increased or decreased according to the capacity of the air ion generator and the capacity of the supply destination.
  • the wing member 424 by moving the wing member 424, for example, the inlet of the first air duct 4 06_1 is closed, and the movement of the air to the first air duct 406_1 is controlled. And then lay it. Thereby, the duct which conveys air ion can be changed suitably.
  • an air ion neutralizing member 436 for neutralizing air ions as shown in FIG. 31, for example, is provided in any one of the joint 405, the air duct 406, or the supply air blowing unit 408. It may be arranged.
  • a force S for individually adjusting the amount of air ions transported in a specific air duct can be achieved.
  • the air ion concentration in a specific room can be adjusted in advance.
  • a certain concentration of air ions is generated inside the housing 402, but by installing the air ion neutralizing member 436 as appropriate, the distance of the air duct and the size of each room Depending on the situation, the air ion concentration in each room can be adjusted to a predetermined concentration.
  • the material of the air ion neutralizing member 436 is not particularly limited as long as it is a material that can reduce air ions by neutralization or the like. Examples thereof include resin materials, various non-woven fabrics, metals (electrodes, etc.), and the like.
  • the air ion neutralizing member 436 is not limited to the installation type, but may be a variable type.
  • the air ion neutralizing member is of a shatter type consisting of a plurality of wings 437, and the wings 437 are squeezed by an operating member (not shown).
  • the amount of air ions transported is adjusted individually according to the degree of opening and closing. In this case, the amount of air transport can also be adjusted. The adjustment should be done automatically or manually.
  • the diaphragm may have a diaphragm structure from the outside of the duct that is not limited to the inside as shown in FIGS. 32-1 and 32-2.
  • variable type air ion neutralizing member is not limited to the wing type, but is a partition member 433 that can be inserted into a duct as shown in FIGS. 33-1 and 32-2, for example. Even if you do it. Adjust this insertion amount to the desired amount of air ions.
  • FIG. 33-3 shows a case where a partition member 433 is arbitrarily inserted into the air duct 406 in the vicinity of the air supply / outlet part 408 in each room. In this case, the amount of air ions can be adjusted in each room.
  • a net-like member 433a as shown in Fig. 34-1, a mesh-like member 433b as shown in Fig. 34-2, and a film-like shape as shown in Fig. 34-3 The member 433c can be used.
  • the air ion neutralizing member is not limited to the partition member, and may be, for example, a rod-shaped member, a comb-shaped member, or the like. Even if you change the amount of neutralization as appropriate.
  • a discharge device 435 is provided in the air duct 406, and the amount of air ions transported is individually adjusted in accordance with the amount of discharge by the discharge device 435. It may be.
  • the joint 405 and the air duct 406 preferably have an uncharged structure or a structure with low chargeability.
  • Non-charged structures or structures with low chargeability are structures that are not charged or difficult to be charged, and there is a structure in which each air duct is provided with a ground although not shown in the figure.
  • the non-charging structure it is conceivable that at least the inner surface such as the outside of the air duct is formed of a non-charging material, or at least the inner surface of the air duct or the like is formed in a non-charging shape.
  • the non-chargeable material include a metal material such as aluminum or a resin material.
  • resin materials that are not positively charged or resin materials that are difficult to be charged are used to carry air containing positive ions.
  • a resin material that is not negatively charged or hardly charged may be used.
  • the non-charging structure there are a bellows shape, a pitch of a support such as a wire in an air duct, or a method of bonding an inner surface material of an air duct.
  • a pitch of a support such as a wire in an air duct
  • a method of bonding an inner surface material of an air duct it is important to provide a structure in which the inner surface of the air duct that is in contact with air is not charged or is not easily charged.
  • the concentration of air ions transported in the air duct may be controlled.
  • the air ion transport system of the present invention can be applied to a first or second type ventilation system that supplies air with a fan.
  • a first or second type ventilation system that supplies air with a fan.
  • FIG. 14 an example of a centralized ventilation system to which the air ion transport system of the present invention is applied is shown in FIG. 14 described in the first embodiment.
  • each switch B 201a, 201b, 201c, 201d 221 can control ONZOFF and air ion generation amount. You can also concentrate on one room, such as a living room, to control the amount of ions and air in each room.
  • air ions can be transported according to the demands of each room, so that air ion generation means are not provided individually in each room. Therefore, there is no design restriction in each room.
  • air ion generation means it is not necessary to provide air ion generation means at the air supply port provided in each room, so the influence of moisture in the water circulation area and other special rooms (freezing room, refrigeration room, high temperature room, factory and medical care) Since there is no direct influence on the means for generating air ions in the room where the drug is used or fumigated in the facility, etc., it is possible to supply air ions continuously and stably.
  • air ions are transported by the air duct, the inside of the duct can be sterilized and deodorized at all times. For this reason, the air ion transport device can be applied not only to a house but also to buildings of all uses such as an office, a medical facility, a health facility, an accommodation facility, an educational facility, or a museum, etc. .
  • air is cleaned before including negative ions and positive ions by providing an air cleaning device. For this reason, it is possible to prevent negative ions and positive ions from adsorbing to dust in the air when transporting the air ions to a room or the like, and to transport the air ions while maintaining an effective concentration of air ions. It becomes possible.
  • the air ion transport device is provided with a non-charged structure in each joint or air duct for delivering air ions, or the outside of each air duct is formed by including a non-chargeable material. is there. For this reason, when air ions are transported to a room or the like, negative ions and positive ions are prevented from being adsorbed to each air duct by static electricity, and the air ions can be transported while maintaining an effective concentration of air ions. It becomes possible.
  • FIG. 37 is a schematic view showing an embodiment of an air ion transport system according to the present invention.
  • the air ion transport system in the present embodiment relates to all uses for introducing air conditioning equipment and ventilation equipment, for example, buildings such as apartment houses, offices, medical facilities, health facilities, accommodation facilities, educational facilities, museums, factories, etc. Applications such as vehicles (passenger cars, buses, trains, etc.) And so on.
  • the air ion transport system includes air transport means 501 that blows and transports air, and air ions that use negative ions, positive ions, or air ions containing both of these ions. And generating means 502.
  • the air conveying means 501 has a blower unit 511, a duct 512, an air intake port portion 513, an air discharge port portion 514, a joint 515, and a fall pipe 516 (changing the pipe diameter).
  • the blower unit 511 mainly includes a box-shaped casing 51 la and a blower 51 lb accommodated in the casing 51 la. That is, the blower unit 511 sucks air into the casing 51 la by the operation of the blower 511b, and blows out the sucked air to the outside of the casing 51la. Further, in the casing 511a, a filter 511c as a cleaning means for cleaning air is provided on the air blowing side of the blower 5 ib.
  • the filter 511 c is the same as the air purifier 109 in Embodiment 1 described above, and mainly removes dust in the air passing from the inlet side to the outlet side by the operation of the blower 5 l ib. It is.
  • the duct 512 is a pipe through which air sucked into the casing 51la from the outside of the casing 51la is passed and air blown out of the casing 51la is passed through a predetermined area.
  • the air intake 513 is provided at the end of the duct 512 on the suction side, and serves as a port for taking outside air into the duct 512. Note that the air intake 513 may be used as a port for taking in air from a predetermined area for ventilation in addition to outside air.
  • the air outlet 514 is provided at the end of the duct 512 on the outlet side, and forms an outlet for blowing out air in a predetermined area.
  • the joint 515 is provided between the ducts 512, or between the casing 51la and the duct 512, and connects each other.
  • the joint 515 connects the large-diameter duct 512 and the small-diameter duct 512 provided with the air outlet 514 as shown in FIG. 37 to change the pipe diameter of the mutual duct 512. It is also a thing.
  • the canopy pipe 516 is for changing the pipe diameter of the duct 512.
  • the air outlet 514 is attached to the end of the large-diameter duct 512, the duct 512 and the air outlet 514 Between It arranges in.
  • the air conveying means 501 is a predetermined area (such as a room) for the outside air (air) taken in from the air inlet 513 by operating the blower 51 lb of the blower unit 511 from each air outlet 514 through the duct 512. To blow out.
  • a plurality of (four) joints 515 are interposed between the large-diameter ducts 512 and a plurality of small-diameter ducts 512 are connected to blow out air to a plurality of predetermined areas. It is constituted as follows. Note that the air conveying means 501 described above includes a single air intake portion 513, and is not limited to this.
  • the air transfer means 501 has a plurality of air intake portions 513, and each air intake portion 513 includes a plurality of air intake portions 513. It may be connected to the air blowing unit 511 via the duct 512. Further, the air conveying means 1 described above is a force having five (several) air outlets 514, but is not limited to this, and the air outlet 514 may be one.
  • the air ion generating means 502 is a positive ion generating device that generates positive ions in the surrounding air, a negative ion generating device that generates negative ions in the surrounding air, or positive ions and negative ions in the surrounding air. Includes positive and negative ion generators that generate both. That is, the air ion generation means 502 includes a positive ion generator only, a negative ion generator only, a combination of a positive ion generator and a negative ion generator, and a positive / negative ion generator.
  • FIG. 37 shows an example in which four of these ion generators are arranged inside the casing 511a of the air supply unit 511 in the air conveying means 501 and on the outlet side of the filter 511c.
  • the positive ion generator and the negative ion generator are arranged at a predetermined interval.
  • the predetermined interval is, for example, 0.1 cm or more, preferably 0.5 cm or more, and more preferably 1 cm or more.
  • Air ion generating means 502 configured with a positive ion generator, a negative ion generator, or a positive / negative ion generator is the same as air ion generator unit 104 in the first embodiment described above.
  • the air ion generating means 502 can generate air ions (positive ions and negative ions) by means of the Renard effect or plasma.
  • the outside air (air) taken in from the air intake port 513 in the air transport means 501 includes negative ions, positive ions, or both of these ions by the air ion generation means 502.
  • air ions air ions are blown out from each air outlet 514 to a predetermined area (such as a room) through the duct 512.
  • the above-described air ion transport system includes a conductive structure that maintains conductivity through a path for transporting air.
  • components such as the blower unit 511, the duct 512, the air inlet 513, the air outlet 514, the joint 515, and the bleed pipe 516 that form the air conveying means 501 are made conductive. It consists of conductive materials such as metal materials or carbon resin materials, and maintains conductivity through each component.
  • the blower unit 511, the duct 512, the air inlet part 513, the air outlet part 514, the joint 515, and the bleed pipe 516 that form the air conveying means 501 is in contact (for example, the inner part)
  • the wall surface may be made of a conductive metal material or carbon resin material, and the conductivity may be maintained through each component.
  • the hatched portion in FIG. 38 is made of a conductive metal material or carbon resin material.
  • the surface that comes into contact with air is made of a resin made by kneading a metal or carbon resin material, the paint made by kneading a metal or carbon resin material on the surface that comes into contact with air, or an antistatic paint. Apply an agent.
  • the end portion of the duct 512, the joint 515, and the like may be configured as non-conductive portions that are difficult to configure with a conductive member in order to achieve a connection form in which air does not leak.
  • the non-conductive portion is connected to the other conductive portion by a conductive member 503 constituted by a cable or the like to maintain conductivity.
  • the conductive member 503 maintains conductivity through a path for conveying air.
  • the conductive member 503 is conductive. Try to connect the parts together to increase conductivity.
  • a charge removing means in addition to the conductive structure.
  • a grounding unit 504 is connected to a blower unit 511, a duct 512, an air inlet part 513, an air outlet part 514, a joint 515, and a bleed pipe 516 forming an air conveying means 501 Provide.
  • an electrification removing device 505 is provided in the air blowing unit 511, the duct 512, the air inlet portion 513, the air outlet portion 514, the joint 515, and the fall pipe 516 that constitute the air carrying means 501.
  • the static eliminator 505 includes, for example, an AC type static eliminator, a high-frequency corona static eliminator, a blower type static eliminator, a light irradiation static eliminator, an ultrasoft X-ray static eliminator, a vacuum ultraviolet static eliminator, an atmospheric pressure glow discharge type static eliminator. Devices, and dry fog neutralization devices.
  • the air conveying means 1 is provided with the charge removing means, thereby further preventing the air conveying means 1 from being charged.
  • negative ions, positive ions, or air ions containing both of these ions are not adsorbed, making it possible to more stably transport air ions while maintaining an effective concentration. .
  • FIG. 39 is a diagram comparing the air ion transport system described above with a conventional system.
  • Fig. 39 when the entire system is uncharged by the conductive structure (and the charge removing means) (ii), air ions are stably transported.
  • (ii) is the air ion transport efficiency of 100%
  • the existing (previous) system that is not uncharged (iii) the air ion is adsorbed by charging, so the air ion transport efficiency is almost 0%. It becomes.
  • Air blower unit 511 (casing 51 la, blower 51 lb), duct 51 2, air inlet 513, air outlet 514, joint 515, and bleed pipe 516, etc., forming air conveying means 1
  • the air ion transport efficiency becomes unstable because there is a part where air ions are adsorbed by charging.
  • FIG. 40 is a schematic diagram showing a modification of the air ion transport system shown in FIG. 41 to 43 are schematic views showing application examples of the air ion transport system shown in FIG.
  • the air ion generating means 502 is configured separately from the air blowing unit 511 of the air transport means 501.
  • the air ion generating means 502 has the same configuration as described above, and FIG. 40 shows an example in which four ion generating devices are arranged inside the casing 502a connected between the ducts 512 of the air conveying means 501.
  • the air ion generating means 502 may be configured separately from the air blowing unit 511.
  • the joint 515 is not shown, but the joint 515 may be used as shown in FIG. 37, and the air outlet port portion is connected via the joint 515 and the duct 512.
  • a plurality of 514 may be provided. Note that, in FIG. 40, a force illustrating a form in which the casing 502a in which the air ion generating means 502 is arranged is arranged on the downstream side of the blower unit 511 is not limited thereto, and the casing 502a in which the air ion generating means 502 is arranged is blown. It may be arranged upstream of the unit 511.
  • the air ion transfer system shown in FIG. 41 constitutes a total heat exchange air conditioning system.
  • the blower unit 511 of the air conveying means 1 has an air supply blower 51 lb and an exhaust blower 51 lb inside the casing 511a.
  • the supply air blower 51 lb is arranged in one region 511A of the casing 511a divided into two by the partition wall 51Id.
  • the air suction side of one area 511A is connected to a duct 512 that leads to an air inlet 513, and the air outlet side of the area 511A is a duct that leads to an air outlet 514 that opens into a room 517 as a predetermined area 51 2 Is connected to.
  • a coil 51le and a filter 511c for performing heat exchange of air are provided in one region 511A of the casing 511a.
  • the exhaust blower 51 lb is arranged in the other region 511B of the casing 511a divided into two by the partition wall 51 Id.
  • the air suction side of the other region 511B is connected to a return duct 512 that leads to an air suction port 518 provided in a room 517 that is a predetermined region, and the air discharge port that opens to the outside air.
  • a filter 511c is provided in the other region 511B.
  • the blower unit 511, the duct 512, the air inlet 513, the air outlet 514, the air inlet 518, and the air outlet 519 are electrically conductive metals. It has a conductive structure made of a material or a carbon resin material. Figure Although not explicitly shown, the above-described joint 515 and canopy pipe 516 may be provided, and are made of a conductive metal material or carbon grease. Further, the conductive member 503 described above is provided between the casing 51 la and the duct 512, between the air outlet 514 and the duct 512, and between the air inlet 518 and the duct 512. In addition to the conductive structure, the air conveying means 501 is provided with the above-described charge removing means (the ground 504 and the charge removing device 505).
  • the air ion generation means 502 is the same as that described above, and is arranged on the outlet side of the air supply blower 511b in the casing 511a as shown in FIG.
  • the air ion generating means 502 includes a duct 512 leading to the air inlet 513, a filter 511c inlet side of one region 511A, a filter 511c outlet side of one region 511A, and a coil. 511e inlet side, duct 512 leading to the air outlet 514, duct 512 leading to the air inlet 518, filter 511c inlet side of the other region 511B, and duct 512 leading to the air outlet 519 Good.
  • the air ion transfer system shown in Fig. 41 is configured to take in outside air from the air intake port 513 through the duct 512 by operating the air supply blower 51 lb, and in one region 511A of the casing 511a, the filter 51 1c and the coil After passing 51 le, the air is blown out from the air outlet 514 into the room 517 through the duct 512.
  • the exhaust blower 511b by operating the exhaust blower 511b, the air in the room 517 is passed through the duct 512 from the air suction port 518, passed through the filter 511c in the other region 511B of the casing 51 la, and then exhausted through the duct 512. Exhaust air from outlet 519.
  • the air ion generating means 502 converts the air conveyed by the air conveying means 501 into air ions containing ions. Since these air ions are transported by the air transport means 501 that is prevented from being charged by the conductive structure and the charge removing means, they are stably transported in a state where the effective concentration is maintained, and are sterilized, anti-virus and anti-virus. Performs allergen action.
  • the air ion transport system in the present embodiment can be applied to a total heat exchange air conditioning system.
  • the air ion transport system shown in Fig. 42 constitutes an air conditioning system for a building 600 such as an office building.
  • a building 600 such as an office building.
  • cold / hot water is circulated from a cooling tower 602 through a heat source (such as a cooling heat pump chiller and a boiler) 603.
  • Air conditioner 601 The outside air taken in from the air inlet 513 through the duct 512 is blown out from the air outlet 514 to the room 517 on each floor in the building 600 through the duct 512.
  • the air conditioner 601 sucks the air in the room 517 from the air inlet 518 through the duct 512, adjusts this air, and blows out again from the air outlet 514 to the room 517 through the duct 512.
  • the air in the room 517 is discharged to the outside air from the air discharge port 519 ′ through the air suction port 518 ′ and the duct 512 ′ provided separately from the air conditioning system.
  • the air ion generation means 502 is provided in the air conditioning system, and a conductive structure and a charge removing means are provided in a path for transporting the air ions as necessary.
  • a conductive structure and a charge removing means are provided in a path for transporting the air ions as necessary.
  • an air ion generating means 502 is provided in an air conditioner 601 and a conductive structure is provided in an air conditioner 601, an air outlet 514, and a duct 512 leading from the air conditioner 601 to the air outlet 514.
  • a charge removing means (ground 504) is provided.
  • the air ion generation means 502 is not limited to the air conditioner 601 but may include a duct 512, 512 ′, an air inlet 513, an air inlet 518, 518 ′, or an air outlet 519 ′. It may be provided at a site where the effect of air ions is desired.
  • the air ion transport system shown in FIG. 43 constitutes the air conditioning system of the building 600 in the same manner as the air ion transport system shown in FIG.
  • the air conditioner 601 cold / hot water is circulated from a cooling tower 602 through a heat source (such as a cooling heat pump chiller and a boiler) 603.
  • the air conditioner 601 blows the outside air taken in from the air inlet 513 through the duct 512 from the air outlet 514 to the room 517 on each floor in the building 600 through the duct 512.
  • the air conditioner 601 sucks air in the room 517 from the air suction port 518 through the duct 512 and discharges it from the air discharge port 519 to the outside air through the duct 512.
  • the air conditioner 601 sucks the air in the room 517 from the air inlet 518 through the duct 512, adjusts this air, and again passes through the duct 512 from the air outlet 514 to the room 517. Blow out.
  • the air ion generation means 502 described above is provided in the air conditioning system, and a conductive structure and a charge removing means are provided in a path for conveying the air ions as necessary.
  • a conductive structure and a charge removing means are provided in a path for conveying the air ions as necessary.
  • an air ion generating means 502 is provided in the air conditioner 601 and a conductive structure is provided in the air conditioner 601, the air outlet 514, and the duct 512 leading from the air conditioner 601 to the air outlet 514.
  • a charge removing means (ground 504) is provided.
  • air ions are supplied to the air conditioner 601, cooling tower 602, heat source 603, duct 512, air inlet 513, air outlet 514, air inlet 518, air outlet 519, etc.
  • a conductive structure and a charge removing means may be provided in the path. In this way, it is possible to construct an air ion transport system as necessary.
  • the air ion generating means 502 obtained the effect of air ions as necessary, such as a duct 512, an air intake port 513, an air suction port 518, or an air discharge port 519. Let ’s put it on the part.
  • the conductive structure is provided and the conductivity is maintained through the path for transporting air ions, thereby preventing the charging of the path, so that the effective concentration is maintained. It becomes possible to carry air ions stably.
  • air ions are adsorbed by various charged objects and attenuated in the order of several meters, but air ions can be conveyed at an effective concentration from 10 m to several tens of meters.
  • the components of the air transport means 1 are easily charged, but this is prevented so that air ions can be transported continuously at a stable effective concentration throughout the year. become.
  • air ion generating means 502 since it is possible to stably transport air ions while maintaining an effective concentration, conventionally, air ion generating means 502 must be attached to the air outlet of each room. Although there are restrictions, it is possible to freely set the mounting position of the air ion generating means 502. For example, when the air ion generating means 502 is attached to the blower unit 511 or the air conditioner 601 as described above, various operating conditions can be set as air ions are generated. In addition, air ions are generated at the outlet of each room.
  • a charge removing means is provided to further prevent charging of the path for carrying air ions.
  • negative ions, positive ions, or air ions containing both of these ions cannot be adsorbed, so that air ions can be transported more stably while maintaining an effective concentration. become.
  • air ion transport system described above has been described for air conditioning systems, ventilation systems, and the like, it can also be applied to systems that transport gases other than air.
  • FIG. 44 is a schematic configuration diagram showing an air ion transport device according to Embodiment 5 of the present invention
  • FIG. 45 is a cross-sectional view showing an example of the delivery means
  • FIG. 46 is a cross-sectional view showing another example of the delivery means
  • 47 is a sectional view showing still another example of the delivery means
  • FIG. 48 is a diagram showing the relationship between the ion concentration of air ions and the transport distance.
  • the air ion transport apparatus of the present invention is employed in, for example, an air conditioner and transports air ions to a room such as a house, and includes a blowing means 701, an air purifying means 702, and an air ion generating means. 703 and delivery means 704 are provided.
  • the air blowing means 701 is composed of a blower or the like, and is disposed inside a casing 705 having an air supply port 751 and an air exhaust port 752. Inside the casing 705, the air passages 754a and 754b divided into two via the separator 753 are formed. Each ventilation path 754a, 754b is provided between the air supply port 751 and the exhaust port 752. In this embodiment, the air supply port 751 is provided in common for each ventilation path 754a, 754b, and the non-air supply 752 force S is provided for each ventilation path 754a, 754b.
  • the air blowing means 701 is disposed in each of the ventilation paths 754a and 754b.
  • Each of the air blowing means 701 causes the air supplied from the air supply port 751 to the inside of the casing 705 by its operation to pass through the respective ventilation paths 754a and 754b inside the casing 705, respectively, and from the respective air outlets 752 to the casing Exhaust outside 705.
  • the air blowing means 701 is not provided in each of the ventilation paths 754a and 754b, but is provided alone at the position of the air supply port 751, and the interior of the casing 705 is separated on the exhaust port 752 side.
  • a configuration may be adopted in which the air supplied to the ventilation paths 754a and 754b divided into two by the circulator 753 is exhausted and the air is exhausted from the exhaust ports 752 to the outside of the casing 705.
  • Air purifying means 702 is the same as air purifying apparatus 109 in Embodiment 1 described above, and air is supplied from air supply port 751 to the inside of casing 705 (respective ventilation paths 754a and 754b) by operating air blowing means 701. It mainly removes the dust in the air.
  • the air ion generating means 703 is provided in each of the ventilation paths 754a and 754b inside the casing 705. Each air ion generation means 703 is the same as the air ion generation device unit 104 in the first embodiment described above.
  • positive ions and negative ions also act to inactivate wines such as Coxsackie virus and poliovirus, and can prevent contamination due to contamination of these viruses.
  • positive ions and negative ions have a function of separating molecules that cause odors, and can be used to deodorize spaces.
  • each air ion generating means 703 provided in each ventilation path 754a, 754b generates individual ions in each ventilation path 754a, 754b.
  • negative ions are generated in the ventilation path 754a
  • positive ions are generated in the ventilation path 754b.
  • the generated negative ions and positive ions are included in the air passing through the ventilation paths 754a and 754b by the air blowing means 701, respectively.
  • the air ion generating means 703 may be provided outside the casing 705, for example, at the position of the exhaust port 752, other than being provided inside the casing 705 as described above.
  • the delivery means 704 extends from the exhaust port 752 of the casing 705 to the outside of the casing 705, and passes the air exhausted from the exhaust ports 752 through the ventilation paths 754a and 754b.
  • each has separate pipes 741a and 741b.
  • Each of the pipe lines 741a and 741b is composed of a ventilation duct or the like, for example, piped together in a manner leading to a room such as a house.
  • the first air containing negative ions and the second air containing positive ions are individually delivered to the room.
  • the delivery means 704 in the present embodiment is configured such that the pipes 741a and 741b are independently piped, so that the first air containing negative ions and the second air containing positive ions are contained. Air is delivered separately. Further, in another example of the delivery means 704, as shown in FIG. 46, each pipe line 741a, 741b is formed by dividing the inside of the single pipe line 740 so that the first air containing negative ions and the positive ions The second air containing is delivered separately. In another example of the delivery means 704, as shown in FIG.
  • a heavy pipe is formed by the pipe lines 741a and 741b, and the first air, which is an air ion including negative ions, and positive ions are
  • the second air which is the air ion containing, is delivered separately.
  • a means for mixing negative ions and positive ions is provided on the outlet side of the delivery means 704, and positive and negative ions are mixed and released into the room, so that the sterilizing effect in the room is further improved.
  • Each of the pipes 741a and 741b has an uncharged structure.
  • the uncharged structure is a structure that is not charged or difficult to be charged, and there is a structure in which a ground is provided in each of the pipelines 741a and 741b, although not shown in the figure.
  • the non-charging structure at least the inner surface of each of the pipes 741a and 741b is made of a non-charging material, or at least the inner surface of each of the pipes 741a and 741b is formed in a non-charging shape. Can be considered.
  • Non-chargeable materials include metals such as aluminum or resin materials.
  • the resin material is a resin material that is not positively charged or difficult to be charged in the case of a pipeline that carries the first air containing negative ions.
  • resin materials that are not negatively charged or difficult to be charged are used.
  • the non-electrostatic configuration there are an accordion shape, a pitch of a numbered wire in the pipes 741a and 741b, or a bonding method of an inner surface material of the pipes 741a and 741b.
  • the air ion transport device is operated by the air ion generating means 703.
  • the negative air and positive ions are included in the air supplied to the inside of the 705, and the first air containing negative ions and the second air containing positive ions are delivered individually by the delivery means 704. .
  • FIG. 48 for example, an air ion (shown by a broken line in FIG. 48) containing both negative ions and positive ions generated by one air ion generating means 703 and a pipe containing only negative ions.
  • the air ion generation means 703 is provided in the casing 705 provided with the air blowing means 701 or at the position of the external exhaust port 752, and conveys the air ions while maintaining the effective concentration of air ions. Therefore, for example, the air ion generation means 703 may not be provided at the air supply port provided in each room of the house. As a result, various operating conditions can be set for ion generation in relation to the blowing means 701.
  • the air ion transport device described above can be applied not only to houses but also to buildings of various uses such as offices, medical facilities, health facilities, accommodation facilities, educational facilities, or museums. is there. [0230]
  • the air ion transport device cleans the air before it contains negative ions and positive ions by the air cleaning means 702. For this reason, when air ions are transported to a room or the like, negative ions and positive ions are prevented from adsorbing to dust in the air, and the air ions can be transported while maintaining the effective concentration of air ions. It becomes possible.
  • each of the pipelines 741a and 741b for delivering air ions is provided with an uncharged structure, or each of the pipelines 741a and 741b includes an unchargeable material. is there. This prevents negative ions and positive ions from adsorbing to the pipes 741a and 741b due to static electricity when transporting air ions to a room, etc., and transports the air ions while maintaining the effective concentration of air ions. It becomes possible to do.
  • the air ion transport device has a configuration in which the first air containing negative ions and the second air containing positive ions are individually delivered. Negative air and positive ions may be included in the air supplied to the inside of the casing 705, and the first air containing negative ions and the second air containing positive ions may be conveyed together. In this case, it is possible to prevent the negative ions and positive ions from being combined and neutralized immediately after generation, and to transport the air ions while maintaining the effective concentration of air ions.
  • FIG. 48 for example, an air ion in a pipeline containing both negative ions and positive ions generated together by one air ion generation means 703 (shown by a broken line in FIG.
  • the air ion transport device has a configuration in which the first air containing negative ions and the second air containing positive ions are separately delivered. Separately from the other air, the third air containing both negative ions and positive ions generated is delivered separately from other air through a pipe (not shown) separate from the pipes 74 la and 741b. May be. Further, in the above-described air ion transport device, the fourth air is not included in the air containing negative ions and positive ions. You may deliver separately with other air by another piping (not shown). The fourth air includes air for diluting air ions from fresh air, and other air (such as scented air or high oxygen air).
  • each ventilation path is formed from the exhaust port 752 of each ventilation path to the outside of the casing 705.
  • One or four pipe lines are provided, and the first air, the second air, and the third air are separately delivered, and the first air, the second air, and the fourth air are separately provided. It is also possible to obtain a configuration in which the first air, the second air, the third air, and the fourth air are separately distributed.
  • each pipe can be an independent pipe (see Fig. 45), a divided pipe inside the single pipe 740 (see Fig. 46), or a pipe with a heavy pipe (see Fig. 47). Is possible.
  • tube which has another pipe line inside the pipe line in any one of each pipe line may be sufficient.
  • the air ion transport device may include ion concentration varying means that varies the concentrations of negative ions and positive ions contained in the first air to the third air.
  • ion concentration varying means that varies the concentrations of negative ions and positive ions contained in the first air to the third air.
  • there are means such as increasing or decreasing the generation capacity of negative ions or positive ions, or intermittently generating negative ions or positive ions.
  • this ion concentration varying means for example, first, approximately equal amounts of negative ions and positive ions are released into the room to sterilize and inactivate floating bacteria such as fungi and viruses that migrate into the room air.
  • the air ion transport device may further include an air flow rate varying unit that varies the air flow rates of the first air to the fourth air.
  • the air flow rate varying means there are means such as increasing or decreasing the operation of the air blowing means 701 or changing the inner diameter of each pipe line. This air flow variable means According to this, it becomes possible to change the amount of air transport.
  • the present invention is useful for supplying air ions in which negative ions (minus ions) or positive ions (plus ions) are contained in air at desired locations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

An air ion conveyance device used, for example, for an air conditioning facility and conveys air ions to rooms of a house etc. The air ion conveyance device has an air ion production device unit, air ducts, and a control device. The air ion production device unit is provided in a housing of a centralized ventilation device and has positive ion production devices and negative ion production devices that are alternately arranged with a spacing in between, the positive ion production devices generating positive ions in air fed from the outside, the negative ion production devices generating negative ions in the air. The air ducts are connected to joints provided at the housing and individually conveys air to rooms. The control device controls the air ion production device unit. The control device regulates, according to a request from each room, whether or not to produce air ions or the amount of production of ions.

Description

明 細 書  Specification
空気イオン搬送装置および空気イオン搬送システム  Air ion transfer device and air ion transfer system
技術分野  Technical field
[0001] 本発明は、所望箇所に負イオン (マイナスイオン)や正イオン (プラスイオン)を空気 に含ませた空気イオンを供給する空気イオン搬送装置および空気イオン搬送システ ムに関するものである。  The present invention relates to an air ion transport device and an air ion transport system for supplying air ions in which negative ions (minus ions) and positive ions (plus ions) are contained in air at a desired location.
背景技術  Background art
[0002] 近年、例えば高気密'高断熱の住宅などにおいて、屋内の空気が屋外の空気と十 分に置換できないため、各々の部屋ごとに積極的に換気を行うようにした換気装置が ある。この装置は、送風機によって給気ボックスから空気の供給を行い、送風機によ つて排気ボックスに空気を吸引するように構成したチャンバ一送風機を備えている。 チャンバ一送風機には、多数のダクト孔を開口配置し、当該ダクト孔と各部屋の給気 口および排気口とを個別に直接連結するように部屋ごと専用の給気ダ外および排 気ダクトを配置してある。そして、チャンバ一送風機の給気ボックス乃至そのダクト孔 には、負イオン (マイナスイオン)発生手段を配置してあり、さらに各ダクト孔に風量調 整手段を配置してある(例えば、特許文献 1参照)。  [0002] In recent years, for example, in highly airtight and highly insulated houses, indoor air cannot be sufficiently replaced with outdoor air, and therefore there is a ventilator that actively ventilates each room. This device is provided with a chamber-one blower configured to supply air from an air supply box by a blower and to suck air into the exhaust box by the blower. A large number of duct holes are arranged in the chamber / blower, and dedicated air ducts and exhaust ducts dedicated to each room are provided so that the duct holes are directly connected to the air supply and exhaust ports of each room. It is arranged. Further, negative ion (negative ion) generating means is arranged in the air supply box of the chamber-one blower or its duct hole, and further, air volume adjusting means is arranged in each duct hole (for example, Patent Document 1). reference).
[0003] また、空気搬送路の内壁面に浮遊物が付着することを防ぎ、空気搬送路に流れ込 む空気を浮遊物が汚染することがない空調ダ外装置がある。この装置は、空気を給 気するとともに空気に含まれる塵や埃を除去した後に空気を空気搬送路に送風する 送風手段と、高電圧印加電極と当該高電圧印加電極に対向して配置された接地電 極とを有して送風手段が送風した空気に負イオンを供給する負イオン発生手段と、 負イオン発生装置が供給した負イオンによって負極性に帯電した空気に含まれる浮 遊物が空気搬送路の内壁面に付着しないように空気搬送路の内壁面を負極性に帯 電させる表面電位発生手段とを備えている (例えば、特許文献 2参照)。  [0003] In addition, there is an air conditioner outside device that prevents floating substances from adhering to the inner wall surface of the air conveyance path and prevents the floating substances from contaminating the air flowing into the air conveyance path. This device is arranged to face the high voltage application electrode and the high voltage application electrode, the air supply means for supplying air and removing the dust contained in the air and then blowing the air to the air conveyance path. A negative ion generating means for supplying negative ions to the air blown by the blowing means and having a ground electrode, and floating substances contained in the air negatively charged by the negative ions supplied by the negative ion generating device Surface potential generating means for negatively charging the inner wall surface of the air conveyance path so as not to adhere to the inner wall surface of the conveyance path (see, for example, Patent Document 2).
[0004] また、屋内に負イオンを供給し、しかも、冬期には屋内を効果的に加湿しながら換 気することができる屋内強制換気システムがある。このシステムは、レナード式による 負イオン発生手段が備えられるとともに、屋内から屋外に排出される空気と、屋外か ら屋内に供給される空気とを熱交換させる熱交換素子が備えられ、負イオン発生手 段で発生させた負イオンが、熱交換素子と屋内給気口とを結ぶ給気通路に供給され るようになされてレ、る(例えば、特許文献 3参照)。 [0004] In addition, there is an indoor forced ventilation system that can supply negative ions indoors and can ventilate indoors while effectively humidifying them. This system is equipped with Leonard-type negative ion generation means, and the air exhausted indoors and outdoors, The heat exchange element that exchanges heat with the air supplied indoors is provided, and the negative ions generated by the negative ion generation means are supplied to the air supply passage that connects the heat exchange element and the indoor air inlet. (See, for example, Patent Document 3).
[0005] 特許文献 1 :特開 2003— 97836号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2003-97836
特許文献 2 :特開 2002— 277010号公報  Patent Document 2: JP 2002-277010 A
特許文献 3:特開 2004— 116970号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-116970
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところで、近年では、負イオン(マイナスイオン)および正イオン(プラスイオン)を共 に発生して空気に含ませた空気イオンによって、カビ菌およびウィルスなどの空気中 に浮遊する細菌を殺菌、不活化することが知られてレ、る。  [0006] By the way, in recent years, bacteria floating in the air, such as fungi and viruses, are sterilized by air ions that generate negative ions (negative ions) and positive ions (plus ions) and include them in the air. Les, known to inactivate.
[0007] し力 ながら、図 16— 1に示すように正イオンを発生する正イオン発生装置 104aと 負イオンを発生する負イオン発生装置 104bとを直接当接した状態で設置する場合 には、イオンの発生量が相殺される、という問題がある。これは、図 16— 2に示すよう に正イオンを発生する正イオン発生装置 104a同士であっても、図 16— 3に示すよう に、負イオンを発生する負イオン発生装置 104b同士であっても同様であるので、ィ オン発生量が激減しなレ、ことが切望されてレ、る。  However, when the positive ion generator 104a that generates positive ions and the negative ion generator 104b that generates negative ions are installed in direct contact with each other as shown in FIG. 16-1, There is a problem that the amount of ions generated is offset. This is because even between the positive ion generators 104a that generate positive ions as shown in FIG. 16-2, the negative ion generators 104b generate negative ions as shown in FIG. 16-3. This is the same, so it is hoped that the amount of ion generation will decrease drastically.
[0008] さらに、集中換気装置から複数の部屋に空気イオンを供給する場合には、各部屋 に均等にイオンを供給することが必要となり、複数の給気口でのイオン量に片寄りが ないことが望まれている。  [0008] Furthermore, when air ions are supplied from a centralized ventilator to a plurality of rooms, it is necessary to supply ions evenly to each room, and there is no deviation in the amount of ions at a plurality of air supply ports. It is hoped that.
[0009] そこで、本発明は、上記実情に鑑みて、イオンの発生量が減衰することなぐしかも 各部屋に均一にイオンを供給することができる空気イオン搬送装置を提供することを 第 1の目的とする。 Accordingly, in view of the above circumstances, the present invention provides a pneumatic ion transport apparatus that can supply ions uniformly to each room without attenuating the amount of ions generated. And
[0010] また、給気用送風機ユニット、排気用送風機ユニット、ダクト、給気口、排気口など 力 構成される換気システムや空調システムなどの空気搬送システムのように建物内 に空気を給気および排気する場合においては、微生物やウィルスの抑制や、人体に 影響を与え得るアレルゲンの低減を行うことが望まれている。  [0010] In addition, air is supplied to the interior of a building, such as an air conveyance system such as a ventilation system or an air conditioning system, which is configured with power such as an air supply fan unit, an air exhaust fan unit, a duct, an air supply port, and an exhaust port In the case of exhaust, it is desired to suppress microorganisms and viruses and to reduce allergens that can affect the human body.
[0011] そこで、本発明は、上記実情に鑑みて、装置の各構成部に対して除菌、抗ウィルス および抗アレルゲン作用を行うことができる空気イオン搬送装置を提供することを第 2 の目的とする。 Therefore, in view of the above circumstances, the present invention provides sterilization and anti-virus for each component of the apparatus. The second object of the present invention is to provide an air ion transport device capable of performing an antiallergen action.
[0012] また、特許文献 1にかかる技術では、空気量を調整する風量調節手段があるものの 、発生させた負イオンの量を制御することができなレ、、という問題がある。また、ダクト 搬送におけるイオンの減衰が発生するが、このイオン減衰対策を考慮していなレ、、と レ、う問題がある。  [0012] Further, although the technique according to Patent Document 1 has an air volume adjusting means for adjusting the air volume, there is a problem that the amount of generated negative ions cannot be controlled. In addition, ions are attenuated in the transport of ducts, but there are problems that do not take into account these countermeasures.
[0013] さらに、近年の高層住宅などにおいては、集中して換気システムを制御することが 望まれており、また各部屋における個別に要求に応じてイオンの量を任意に調整す ること力 s要望されてレ、る。  [0013] Further, in recent high-rise houses and the like, it is desired to control the ventilation system in a centralized manner, and the ability to arbitrarily adjust the amount of ions according to individual requirements in each room s It is requested.
[0014] そこで、本発明は、上記実情に鑑みて、各部屋の要求に応じた負イオンまたは正ィ オンまたは両イオンを含む空気イオン量などを任意に調整することができる空気ィォ ン搬送システムを提供することを第 3の目的とする。  Therefore, in view of the above circumstances, the present invention provides an air ion transport capable of arbitrarily adjusting the amount of air ions including negative ions, positive ions, or both ions according to the requirements of each room. The third purpose is to provide a system.
[0015] また、負イオンおよび正イオンは、給気ダクトや空気搬送路を経ている間に種々の 帯電している物体に吸着される。すなわち、空気中での空気イオンの寿命は短ぐィ オン発生装置の出口から数 m程度で減衰してしまう。このため、人の居住空間(部屋 )に供給されたときには空気イオンのイオン濃度が低下してしまうので、十分な空気ィ オンの効果を得ることが難しい。この結果、空調機や空気清浄装置から部屋へ空気 イオンを供給する場合には、吹出口にイオン発生装置を取り付けなくてはならず、設 計上の制約をうけることになる。  [0015] Further, negative ions and positive ions are adsorbed by various charged objects while passing through the air supply duct and the air conveyance path. In other words, the lifetime of air ions in the air is short and decays within a few meters from the outlet of the ion generator. For this reason, since the ion concentration of air ions is lowered when supplied to a human living space (room), it is difficult to obtain a sufficient air ion effect. As a result, when air ions are supplied to the room from an air conditioner or air purifier, an ion generator must be installed at the outlet, which imposes design restrictions.
[0016] そこで、本発明は、上記実情に鑑みて、負イオン'正イオンを含む空気イオンの有 効濃度を維持した状態で当該空気イオンを安定して搬送することができる空気イオン 搬送システムを提供することを第 4の目的とする。  Therefore, in view of the above circumstances, the present invention provides an air ion transport system capable of stably transporting air ions while maintaining an effective concentration of air ions including negative ions and positive ions. The fourth purpose is to provide it.
課題を解決するための手段  Means for solving the problem
[0017] 上記第 1の目的を達成するために、本発明の請求項 1に係る空気イオン搬送装置 は、外部から給気した空気に、負イオンまたは正イオンまたはこれらの両イオンを含ま せる空気イオン発生装置を少なくとも 0. 1cm以上離して複数設置してなることを特徴 とする。なお、仕切り板などを介して空気イオン発生装置を複数設置してもよい。  In order to achieve the first object, the air ion transport device according to claim 1 of the present invention is an air in which negative ions, positive ions, or both ions are included in air supplied from the outside. A plurality of ion generators are installed at least 0.1 cm apart. A plurality of air ion generators may be installed via a partition plate or the like.
[0018] 本発明の請求項 2に係る空気イオン搬送装置は、上記請求項 1において、外部か ら送風機を介して空気を導入する換気装置を有し、該換気装置内に一定間隔を有し て均等に複数の空気イオン発生装置を配設してなることを特徴とする。 [0018] The air ion transport device according to claim 2 of the present invention is the external device according to claim 1 described above. And a ventilator for introducing air through a blower, and a plurality of air ion generators are evenly arranged at regular intervals in the ventilator.
[0019] 本発明の請求項 3に係る空気イオン搬送装置は、上記請求項 2において、前記送 風機側に複数の空気イオン発生装置を配設してなることを特徴とする。  [0019] The air ion transport device according to claim 3 of the present invention is characterized in that, in the above-mentioned claim 2, a plurality of air ion generation devices are arranged on the air blower side.
[0020] 本発明の請求項 4に係る空気イオン搬送装置は、上記請求項 2において、前記送 風機の吹出し口側に複数の空気イオン発生装置を配設してなることを特徴とする。 [0020] The air ion transport device according to claim 4 of the present invention is characterized in that, in the above-mentioned claim 2, a plurality of air ion generation devices are arranged on the outlet side of the blower.
[0021] 本発明の請求項 5に係る空気イオン搬送装置は、上記請求項 2において、前記送 風機の吹出し口側にイオンの種類の異なる空気イオン発生装置を隣接してなること を特徴とする。 [0021] The air ion transport device according to claim 5 of the present invention is characterized in that, in the above-mentioned claim 2, air ion generators of different ion types are adjacent to the blower outlet side of the blower. .
[0022] 本発明の請求項 6に係る空気イオン搬送装置は、上記請求項 2において、前記送 風機の送風機側と吹出し口側との間のいずれかに、複数の空気イオン発生装置を配 設してなることを特徴とする。  [0022] The air ion transport device according to claim 6 of the present invention is the air ion transport device according to claim 2, wherein a plurality of air ion generation devices are arranged between the blower side and the outlet side of the blower. It is characterized by becoming.
[0023] 本発明の請求項 7に係る空気イオン搬送装置は、上記請求項 2〜6のいずれか一 つにおいて、前記空気イオン発生装置が、負イオンを含ませる空気イオン発生装置 または正イオンを含ませる空気イオン発生装置のいずれか一種を配設してなることを 特徴とする。  [0023] An air ion transport device according to claim 7 of the present invention is the air ion transport device according to any one of claims 2 to 6, wherein the air ion generator includes an air ion generator or positive ions containing negative ions. Any one of the air ion generators to be included is provided.
[0024] 本発明の請求項 8に係る空気イオン搬送装置は、上記請求項 2〜6のいずれか一 つにおいて、前記空気イオン発生装置が、負イオンを含ませる空気イオン発生装置 または正イオンを含ませる空気イオン発生装置を混在配設してなることを特徴とする  [0024] The air ion transport device according to claim 8 of the present invention is the air ion transport device according to any one of claims 2 to 6, wherein the air ion generator includes an air ion generator or positive ions containing negative ions. It is characterized by comprising a mixed arrangement of air ion generators to be included.
[0025] 本発明の請求項 9に係る空気イオン搬送装置は、上記請求項 2〜6のいずれか一 つにおいて、前記空気イオン発生装置が、負イオンを含ませる空気イオン発生装置 または正イオンを含ませる空気イオン発生装置のレ、ずれか一方または両方と、負ィォ ンと正イオンとを同時に発生する空気イオン発生装置とを混在配設してなることを特 徴とする。 [0025] An air ion transport device according to claim 9 of the present invention is the air ion transport device according to any one of claims 2 to 6, wherein the air ion generator includes an air ion generator or positive ions containing negative ions. It is characterized in that either or both of the air ion generators to be included, or both of them, and an air ion generator that simultaneously generates negative ions and positive ions are disposed in a mixed manner.
[0026] 本発明の請求項 10に係る空気イオン搬送装置は、上記請求項 2において、前記送 風機の吹出し口側に設けられた継手に接続され、 1または 2以上の部屋へ個別に空 気を搬送する空気ダクトを設けてなり、前記換気装置内に空気ダ外に対応した仕切 り部を配設してなり、該仕切り部内に負イオンと正イオンとを同時に発生する空気ィォ ン発生装置を隣接してなることを特徴とする。 [0026] The air ion transport device according to claim 10 of the present invention is connected to a joint provided on the outlet side of the air blower according to claim 2, and is individually air-conditioned to one or more rooms. An air duct that conveys the air, and a partition corresponding to the outside of the air duct in the ventilation device. And an air ion generator for simultaneously generating negative ions and positive ions in the partition.
[0027] 本発明の請求項 11に係る空気イオン搬送装置は、上記請求項 2において、前記送 風機の吹出し口側に設けられた継手に接続され、 1または 2以上の部屋へ個別に空 気を搬送する空気ダクトを設けてなり、前記換気装置内に空気ダ外に対応した仕切 り部を配設してなり、該仕切り部内に負イオンと正イオンとを同時に発生する空気ィォ ン発生装置を設けてなることを特徴とする。  [0027] An air ion transport device according to claim 11 of the present invention is the air ion transport device according to claim 2, which is connected to a joint provided on the blower outlet side of the blower, and is individually connected to one or more rooms. An air duct that transports air ions, and a partition part corresponding to the outside of the air duct is disposed in the ventilation device, and air ions are generated in the partition part to simultaneously generate negative ions and positive ions. A device is provided.
[0028] 本発明の請求項 12に係る空気イオン搬送装置は、上記請求項 2〜: 11のいずれか 一つにおいて、前記送風機からの空気送風方向を案内する整流板を配設してなるこ とを特徴とする。  [0028] An air ion transport device according to claim 12 of the present invention is the air ion transport device according to any one of claims 2 to 11: further comprising a rectifying plate that guides an air blowing direction from the blower. And features.
[0029] 本発明の請求項 13に係る空気イオン搬送装置は、外部から送風機を介して空気を 導入する換気装置と、前記送風機の吹出し口側に設けられた継手に接続され、 1ま たは 2以上の部屋へ個別に空気を搬送する空気ダ外を設けてなり、前記送風機から 空気ダクト側に向かって拡開した仕切り部を設けてなると共に、前記送風機側に送風 量を一時的に絞る絞り部を形成してなり、前記絞り部内に負イオンまたは正イオンま たはこれらの両イオンを含ませる空気イオン発生装置を設けてなることを特徴とする。  [0029] An air ion transport device according to claim 13 of the present invention is connected to a ventilator that introduces air from the outside via a blower and a joint provided on the outlet side of the blower. The outside of the air duct that individually conveys air to two or more rooms is provided, and a partition portion that is expanded from the blower toward the air duct side is provided, and the amount of blown air is temporarily reduced to the blower side. A throttle part is formed, and an air ion generator for containing negative ions, positive ions, or both of these ions is provided in the throttle part.
[0030] 本発明の請求項 14に係る空気イオン搬送装置は、外部から送風機を介して空気を 導入する換気装置と、前記送風機の吹出し口側に設けられた継手に接続され、 1ま たは 2以上の部屋へ個別に空気を搬送する空気ダ外を設けてなり、前記送風機から 空気ダクト側に向かって拡開した仕切り部を設けてなると共に、前記送風機側に送風 量を一時的に絞る絞り部を形成してなり、前記絞り部内に負イオンと正イオンとを同 時に発生する空気イオン発生装置を設けてなることを特徴とする。  [0030] An air ion transport device according to claim 14 of the present invention is connected to a ventilator that introduces air from the outside via a blower and a joint provided on a blower outlet side of the blower, and 1 or The outside of the air duct that individually conveys air to two or more rooms is provided, and a partition portion that is expanded from the blower toward the air duct side is provided, and the amount of blown air is temporarily reduced to the blower side. A throttle part is formed, and an air ion generator for simultaneously generating negative ions and positive ions is provided in the throttle part.
[0031] 本発明の請求項 15に係る空気イオン搬送装置は、上記請求項 13または 14におい て、空気イオン発生装置を少なくとも 0. 1cm以上離して複数設置してなることを特徴 とする。なお、仕切り板などを介して空気イオン発生装置を複数設置してもよい。  [0031] The air ion transport device according to claim 15 of the present invention is characterized in that, in the above-mentioned claim 13 or 14, a plurality of air ion generators are installed at least 0.1 cm apart. A plurality of air ion generators may be installed via a partition plate or the like.
[0032] 上記第 2の目的を達成するために、本発明の請求項 16に係る空気イオン搬送装置 は、空気を送風する送風手段と、負イオンまたは正イオンまたはこれらの両イオンを 含ませた空気イオンを発生する空気イオン発生手段とを有した空気イオン搬送装置 におレ、て、前記空気イオン発生手段を所望とする対象部位の風上に配置したことを 特徴とする。 [0032] In order to achieve the second object, the air ion transport device according to claim 16 of the present invention includes air blowing means for blowing air and negative ions, positive ions, or both of these ions. Air ion transport device having air ion generating means for generating air ions In addition, the air ion generating means is arranged on the windward side of a desired target part.
[0033] 本発明の請求項 17に係る空気イオン搬送装置は、上記請求項 16において、前記 対象部位は所定域の空気を入れ換える換気システム、あるいは所定域の空気調節 を行う空調システムにおける構成部であることを特徴とする。  [0033] The air ion transport device according to claim 17 of the present invention is the component in the above-mentioned claim 16, wherein the target part is a ventilation system that replaces air in a predetermined area or an air conditioning system that performs air adjustment in a predetermined area. It is characterized by being.
[0034] 本発明の請求項 18に係る空気イオン搬送装置は、上記請求項 16において、前記 送風手段は送風機を有し、当該送風機の空気吸込側に前記空気イオン発生手段を 配置したことを特徴とする。 [0034] The air ion transport device according to claim 18 of the present invention is characterized in that, in the above-mentioned claim 16, the air blowing means has a blower, and the air ion generating means is arranged on the air suction side of the blower. And
[0035] 本発明の請求項 19に係る空気イオン搬送装置は、上記請求項 16において、空気 を清浄する清浄手段を有し、当該清浄手段の入口側に前記空気イオン発生手段を 配置したことを特徴とする。 [0035] An air ion transport device according to claim 19 of the present invention is the air ion transport device according to claim 16, further comprising cleaning means for cleaning air, wherein the air ion generating means is disposed on the inlet side of the cleaning means. Features.
[0036] 本発明の請求項 20に係る空気イオン搬送装置は、上記請求項 16において、空気 を清浄する清浄手段を有し、当該清浄手段の出口側に前記空気イオン発生手段を 配置したことを特徴とする。 [0036] The air ion transport device according to claim 20 of the present invention is the air ion transport device according to claim 16, further comprising a cleaning means for cleaning air, wherein the air ion generating means is disposed on the outlet side of the cleaning means. Features.
[0037] 本発明の請求項 21に係る空気イオン搬送装置は、上記請求項 16において、前記 送風手段の送風によって空気を所定域に向けて吹出す空気吹出口を有し、当該空 気吹出口近傍に前記空気イオン発生手段を配置したことを特徴とする。 [0037] The air ion transport device according to claim 21 of the present invention is the air ion transport device according to claim 16, further comprising an air outlet that blows air toward a predetermined area by blowing air from the blowing means. The air ion generating means is arranged in the vicinity.
[0038] 本発明の請求項 22に係る空気イオン搬送装置は、上記請求項 16において、前記 送風手段に接続したダ外を有し、当該ダ外内に前記空気イオン発生手段を配置し たことを特徴とする。 [0038] The air ion transport device according to claim 22 of the present invention is the air ion transfer device according to claim 16, wherein the air ion transport device has an outer portion connected to the air blowing means, and the air ion generating means is disposed within the outer portion of the da. It is characterized by.
[0039] 本発明の請求項 23に係る空気イオン搬送装置は、上記請求項 16において、前記 送風手段の送風によって外気を取り入れる取入ダクトを有し、当該取入ダクト内に前 記空気イオン発生手段を配置したことを特徴とする。  [0039] The air ion transport device according to claim 23 of the present invention is the air ion transport device according to claim 16, further comprising an intake duct that takes in outside air by blowing air from the blowing means, and generating the air ions in the intake duct. The means is arranged.
[0040] 本発明の請求項 24に係る空気イオン搬送装置は、上記請求項 16において、前記 送風手段の送風によって所定域の空気を外気に排気する排気ダクトを有し、当該排 気ダ外内に前記空気イオン発生手段を配置したことを特徴とする。  [0040] The air ion transport device according to claim 24 of the present invention according to claim 16, further comprising an exhaust duct that exhausts air in a predetermined area to the outside air by blowing air from the blowing means, The air ion generating means is arranged in the above.
[0041] 本発明の請求項 25に係る空気イオン搬送装置は、上記請求項 16において、空気 の熱交換を行うコイルを有し、当該コイルの入口側に前記空気イオン発生手段を配 置したことを特徴とする。 [0041] The air ion transport device according to claim 25 of the present invention is the air ion transport device according to claim 16, further comprising a coil for heat exchange of air, and the air ion generating means arranged on the inlet side of the coil. It is characterized by placing.
[0042] 本発明の請求項 26に係る空気イオン搬送装置は、上記請求項 16において、空気 の熱交換を行うコイルを有し、当該コイルの出口側に前記空気イオン発生手段を配 置したことを特徴とする。  [0042] The air ion transport device according to claim 26 of the present invention is the air ion transfer device according to claim 16, wherein the air ion transfer device has a coil for exchanging heat of air, and the air ion generating means is arranged on the outlet side of the coil. It is characterized by.
[0043] 本発明の請求項 27に係る空気イオン搬送装置は、上記請求項 16〜26のいずれ か一つにおいて、空気イオンを搬送する部位に帯電除去手段を設けたことを特徴と する。 [0043] An air ion transport device according to claim 27 of the present invention is characterized in that, in any one of claims 16 to 26, a charge removing means is provided at a site for transporting air ions.
[0044] 上記第 3の目的を達成するために、本発明の請求項 28に係る空気イオン搬送シス テムは、換気装置の筐体内に設けられ、外部から給気した空気に、負イオンまたは正 イオンまたはこれらの両イオンを含ませる空気イオン発生装置と、前記筐体に設けら れた継手に接続され、 1または 2以上の部屋へ空気を搬送する空気ダクトと、前記空 気イオン発生装置を制御する制御装置とを具備してなり、各部屋の要求に応じて空 気イオンの発生の有無または空気イオン発生量を制御装置により調節してなることを 特徴とする。  [0044] In order to achieve the third object, an air ion transport system according to claim 28 of the present invention is provided in a housing of a ventilator, and negative ions or positive ions are supplied to air supplied from outside. An air ion generator that includes ions or both of these ions, an air duct that is connected to a joint provided in the housing and conveys air to one or more rooms, and the air ion generator. And a control device that controls the presence or absence of air ions or the amount of air ions generated by the control device according to the demand of each room.
[0045] 本発明の請求項 29に係る空気イオン搬送システムは、上記請求項 28において、 前記筐体内に空気ダクトに対応した仕切り部を配設してなり、該仕切り部内に空気ィ オン発生装置を配設してなることを特徴とする。  [0045] The air ion transport system according to claim 29 of the present invention is the air ion transport system according to claim 28, wherein a partition portion corresponding to an air duct is disposed in the housing, and an air ion generator is provided in the partition portion. Is provided.
[0046] 本発明の請求項 30に係る空気イオン搬送システムは、上記請求項 28において、 前記継手内に空気イオン発生装置を配設してなることを特徴とする。 [0046] The air ion transport system according to claim 30 of the present invention is characterized in that, in the above-mentioned claim 28, an air ion generator is disposed in the joint.
[0047] 本発明の請求項 31に係る空気イオン搬送システムは、上記請求項 28において、 前記筐体内に空気ダ外へ空気イオンを導入する導入装置を配設してなることを特 徴とする。 [0047] The air ion transport system according to claim 31 of the present invention is characterized in that, in the above-mentioned claim 28, an introduction device for introducing air ions to the outside of the air chamber is provided in the casing. .
[0048] 本発明の請求項 32に係る空気イオン搬送システムは、上記請求項 28において、 継手または空気ダクトまたは給気吹出し部のいずれかに、空気イオンを中和する空 気イオン中和部材を配設してなり、該空気イオンを中和することにより、個別に空気ィ オンの搬送量を調整してなることを特徴とする。  [0048] The air ion transport system according to claim 32 of the present invention is the air ion transport system according to claim 28, wherein the air ion neutralizing member that neutralizes air ions is provided in any one of the joint, the air duct, and the air supply outlet. The air ion transport amount is individually adjusted by neutralizing the air ions.
[0049] 本発明の請求項 33に係る空気イオン搬送システムは、上記請求項 32において、 前記空気イオン中和部材が、シャツタまたは棒状部材または仕切り部材またはくし状 部材であり、該シャツタの絞りまたは棒状部材の挿入または仕切り部材の挿入または くし状部材の挿入の程度に応じて、個別に空気イオンの搬送量を調整してなることを 特徴とする。 [0049] The air ion transport system according to Claim 33 of the present invention is the air ion transport system according to Claim 32, wherein the air ion neutralizing member is a shirter, a rod-shaped member, a partition member, or a comb shape. It is a member, and is characterized in that the amount of air ions transported is individually adjusted in accordance with the degree of the restriction of the shirter or the insertion of a bar-like member, the insertion of a partition member or the insertion of a comb-like member.
[0050] 本発明の請求項 34に係る空気イオン搬送システムは、上記請求項 28において、 前記空気ダ外内に放電装置を配設してなり、該放電装置の放電量に応じて、個別 に空気イオンの搬送量を調整してなることを特徴とする。  [0050] The air ion transport system according to Claim 34 of the present invention is the air ion transport system according to Claim 28, wherein a discharge device is disposed outside the air chamber, and the discharge device is individually provided according to the discharge amount of the discharge device. It is characterized by adjusting the transport amount of air ions.
[0051] 本発明の請求項 35に係る空気イオン搬送システムは、上記請求項 28において、 前記各部屋の給気吹出し部のルーバーの角度を調整し、個別に空気イオンの吹出 し量や、その向きを調整してなることを特徴とする。 [0051] The air ion transport system according to claim 35 of the present invention is the air ion transport system according to claim 28, wherein the louver angle of the air supply blow-out portion in each room is adjusted to individually blow out air ions, It is characterized by adjusting the direction.
[0052] 本発明の請求項 36に係る空気イオン搬送システムは、上記請求項 28〜35のいず れか一つにおいて、前記継手または空気ダクトは、非帯電構造あるいは帯電性の低 レ、構造を有してレ、ることを特徴とする。 [0052] The air ion transport system according to claim 36 of the present invention is the air ion transport system according to any one of claims 28 to 35, wherein the joint or the air duct has an uncharged structure or a low chargeable structure. It is characterized by having.
[0053] 本発明の請求項 37に係る空気イオン搬送システムは、上記請求項 28〜35のいず れか一つにおいて、前記継手または空気ダクトは、非帯電性の材料あるいは帯電性 の低レ、材料で形成してあることを特徴とする。 [0053] The air ion transport system according to claim 37 of the present invention is the air ion transport system according to any one of claims 28 to 35, wherein the joint or the air duct is made of a non-chargeable material or a low chargeable material. It is characterized by being formed of a material.
[0054] 上記第 4の目的を達成するために、本発明の請求項 38に係る空気イオン搬送シス テムは、空気を送風して搬送する空気搬送手段と、当該空気搬送手段によって搬送 する空気を負イオンまたは正イオンまたはこれらの両イオンを含ませた空気イオンと する空気イオン発生手段とを有した空気イオン搬送システムであって、空気を搬送す る経路を通じて導電性を維持する導電構造を備えたことを特徴する。 [0054] In order to achieve the fourth object, an air ion transport system according to claim 38 of the present invention includes an air transport means for blowing and transporting air, and air transported by the air transport means. An air ion transport system having negative ions, positive ions, or air ion generation means that includes air ions containing both of these ions, and includes a conductive structure that maintains conductivity through a path for transporting air. It is characterized by that.
[0055] 本発明の請求項 39に係る空気イオン搬送システムは、上記請求項 38において、 前記導電構造は、少なくとも搬送する空気が接する部位を、導電性を有する金属材 または炭素樹脂材などで構成したことを特徴とする。 [0055] The air ion transport system according to claim 39 of the present invention is the air ion transport system according to claim 38, wherein the conductive structure includes at least a portion in contact with the transported air made of a conductive metal material or a carbon resin material. It is characterized by that.
[0056] 本発明の請求項 40に係る空気イオン搬送システムは、上記請求項 38または 39に おいて、前記導電構造は、非導電性部に対して導電性部を接続する導電部材を有 してなることを特徴とする。 [0056] In the air ion transport system according to claim 40 of the present invention, in the above-described claim 38 or 39, the conductive structure includes a conductive member that connects the conductive portion to the nonconductive portion. It is characterized by.
[0057] 本発明の請求項 41に係る空気イオン搬送システムは、上記請求項 38〜40のいず れか一つにおいて、空気を搬送する経路に帯電除去手段を設けたことを特徴とする 発明の効果 [0057] An air ion transport system according to claim 41 of the present invention is characterized in that, in any one of claims 38 to 40, a charge removing means is provided in a path for transporting air. The invention's effect
[0058] 上記第 1の目的を達成する本発明に係る空気イオン搬送装置によれば、所定間隔 をもって空気イオン発生装置を配設してなるので、空気イオンの減衰が少なぐ高濃 度の空気イオンを供給することができる。また、空気イオンを均一に供給することが可 能となる。また、空気ダクトに対応するような仕切り部を設け、該仕切り部内に空気ィ オン発生装置を配設するので、空気イオンを均一に供給することができる。また、整 流板を配設することで、空気ダクトに供給する空気イオンを均一とすることができる。 また、絞り部を設け、該絞り部内に空気イオン発生装置を配設することで、空気イオン が溜まることがなぐ減衰率が低減する。さらに、送風機のファンのノッチ切換により風 量を上昇させることにより、供給するイオン濃度を上げることができる。  [0058] According to the air ion transport device of the present invention that achieves the first object, the air ion generation device is disposed at a predetermined interval, and therefore, high-concentration air with less attenuation of air ions. Ions can be supplied. In addition, air ions can be supplied uniformly. Moreover, since the partition part corresponding to an air duct is provided and an air ion generator is arrange | positioned in this partition part, air ion can be supplied uniformly. Further, by arranging the current plate, the air ions supplied to the air duct can be made uniform. Further, by providing a throttle part and disposing an air ion generation device in the throttle part, the attenuation rate at which air ions do not accumulate is reduced. Furthermore, the ion concentration to be supplied can be increased by increasing the air volume by switching the notch of the fan of the blower.
[0059] 上記第 2の目的を達成する本発明に係る空気イオン搬送装置は、空気イオン発生 手段を風上に配置したことで、その風下にある所望の対象部位を、そこに至る空気ィ オンによって除菌、抗ウィルスおよび抗アレルゲン作用を行う。この結果、空気イオン の効果を長く維持して高効率で所定域に空気イオンを搬送することができる。例えば 、送風手段の送風機の空気吸込側に空気イオン発生手段を配置すれば、送風機お よびその風下の構成部の除菌、抗ウィルスおよび抗アレルゲン作用が行える。また、 清浄手段の入口側に空気イオン発生手段を配置すれば、清浄手段の除菌、抗ウイ ノレスおよび抗アレルゲン作用が行えるので、フィルタ類などの清浄手段の部品交換 時期を延長できる。また、清浄手段の出口側に空気イオン発生手段を配置すれば、 空気イオンを減衰させることなく空気に含ませることができる。また、所定域に向けて 吹出す空気吹出口近傍に前記空気イオン発生手段を配置すれば、より遠方に空気 イオンを飛ばすことができる。また、ダクト内に空気イオン発生手段を配置すれば、ダ タト内の除菌、抗ウィルスおよび抗アレルゲン作用が行える。また、外気を取り入れる 取入ダクトに空気イオン発生手段を配置すれば、取り入れた外気の除菌、抗ウィルス および抗アレルゲン作用が行える。また、所定域の空気を外気に排気する排気ダクト に空気イオン発生手段を配置すれば、排気の除菌、抗ウィルスおよび抗アレルゲン 作用が行える。また、空気の熱交換を行うコイルの入口側に空気イオン発生手段を 配置すれば、コイルの除菌、抗ウィルスおよび抗アレルゲン作用が行えるので、コィ ルの部品交換時期を延長できる。また、空気の熱交換を行うコイルの出口側に空気 イオン発生手段を配置すれば、空気イオンを減衰させることなく空気に含ませること 力 Sできる。さらに、空気イオンを搬送する部位に帯電除去手段を設ければ、空気ィォ ンを搬送する部位における空気イオンの搬送効率を向上することができ、除菌、抗ゥ ィルスおよび抗アレルゲン効果を高めるとともに、空気イオンの搬送距離を長くするこ とができる。 [0059] In the air ion transport device according to the present invention that achieves the second object, the air ion generating means is arranged on the windward side, so that a desired target site located on the leeward side of the air ion transporting device reaches there. Sterilization, antiviral and antiallergenic action. As a result, the effect of air ions can be maintained for a long time and air ions can be transported to a predetermined area with high efficiency. For example, if the air ion generating means is disposed on the air suction side of the blower of the blower means, sterilization, antiviral and antiallergen action of the blower and its downstream components can be performed. In addition, if the air ion generating means is arranged on the inlet side of the cleaning means, the cleaning means can be sterilized, anti-winorless and anti-allergen action, so that the replacement time of the cleaning means such as filters can be extended. Further, if the air ion generating means is arranged on the outlet side of the cleaning means, the air ions can be included in the air without being attenuated. In addition, if the air ion generating means is arranged in the vicinity of the air outlet that blows out toward a predetermined area, it is possible to fly air ions further away. In addition, if air ion generating means is arranged in the duct, sterilization, antiviral and antiallergen action in the data can be performed. In addition, if an air ion generating means is arranged in the intake duct for taking in the outside air, the taken-out outside air can be sterilized, antiviral and antiallergenic. Further, if an air ion generating means is arranged in an exhaust duct that exhausts air in a predetermined area to the outside air, exhaust sterilization, anti-virus and anti-allergen action can be performed. In addition, air ion generation means is provided on the inlet side of the coil that performs heat exchange of air. If arranged, coil sterilization, anti-virus and anti-allergen action can be performed, so coil replacement time can be extended. In addition, if an air ion generating means is disposed on the exit side of the coil that performs heat exchange of air, the air ion can be included in the air without being attenuated. Furthermore, if an antistatic means is provided at the site where the air ions are transported, the air ion transport efficiency at the site where the air ions are transported can be improved, and the sterilization, anti-virus and anti-allergen effects are enhanced. At the same time, the distance of air ions can be increased.
[0060] 上記第 3の目的を達成する本発明に係る空気イオン搬送システムによれば、各々 の部屋毎におけるイオンの供給の有無、イオン量の調節やイオン種の変更が可能と なる。また、仕切り部や継手内に空気イオン発生装置を配設することで、空気ダクト内 に個別に空気イオンを供給することができる。また、空気イオンを導入する導入装置 を配設することで、所望の部屋のみに空気イオンを供給することができる。また、前記 継手または空気ダクトまたは給気吹出し部のいずれかに、空気イオンを中和する空 気イオン中和部材を配設することにより、個別に空気イオンの搬送量を調整すること ができる。また、前記空気ダクト内に放電部材を配設することで、該放電量に応じて、 個別に空気イオンの搬送量を調整することができる。また、前記各部屋の給気吹出し 部のルーバーの角度を調整することで、個別に空気イオンの吹出し量や向きなどを 調整すること力 Sできる。また、空気ダ外を非帯電構造または非帯電性材料、もしくは 帯電性の低い構造または材料とすることで、空気イオンを部屋などに搬送する際に 負イオン及び正イオンが静電気によって配送手段に吸着する事態を防ぎ、空気ィォ ンの有効濃度を維持した状態で当該空気イオンを搬送することができる。  [0060] According to the air ion transport system of the present invention that achieves the third object, it is possible to control the presence or absence of ion supply, the adjustment of the ion amount, and the change of ion species in each room. In addition, air ions can be individually supplied into the air duct by disposing an air ion generator in the partition or the joint. Further, by providing an introduction device for introducing air ions, air ions can be supplied only to a desired room. Further, by providing an air ion neutralizing member for neutralizing air ions in any one of the joint, the air duct, or the supply air blowing portion, it is possible to individually adjust the air ion transport amount. In addition, by disposing a discharge member in the air duct, it is possible to individually adjust the transport amount of air ions according to the discharge amount. Further, by adjusting the louver angle of the air supply / outlet part of each room, it is possible to individually adjust the amount and direction of air ions blown out. In addition, by using a non-charged structure or non-chargeable material or a structure or material with low chargeability outside the air, negative ions and positive ions are adsorbed to the delivery means by static electricity when air ions are transported to the room. The air ions can be transported while maintaining the effective concentration of air ions.
[0061] 上記第 4の目的を達成する本発明に係る空気イオン搬送システムは、空気を搬送 する経路を通じて導電性を維持する導電構造を備えたことにより、経路の帯電を防止 するので、有効濃度を維持した状態で安定して空気イオンを搬送することができる。 この結果、従前では、空気イオンが種々の帯電している物体に吸着されて数 m程度 で減衰してしまうが、 10mから数十 m以上のレベルまで空気イオンを有効濃度で搬 送できる。また、導電構造に加えて、帯電除去手段を設けたことにより、空気イオンを 搬送する経路の帯電をさらに防止する。この結果、空気イオンが吸着されることがな いので、有効濃度を維持した状態で空気イオンをさらに安定して搬送することができ る。 [0061] The air ion transport system according to the present invention that achieves the fourth object described above is provided with a conductive structure that maintains conductivity through a path that transports air, thereby preventing charging of the path, and thus effective concentration. Thus, air ions can be stably conveyed while maintaining As a result, in the past, air ions are adsorbed by various charged objects and attenuated by several meters, but air ions can be transported at an effective concentration from 10 m to several tens of meters. In addition to the conductive structure, charging removal means is further provided to further prevent charging of the path for carrying air ions. As a result, air ions are not adsorbed. Therefore, air ions can be more stably transported while maintaining an effective concentration.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の実施の形態 1である空気イオン搬送装置を示す概略構成図で ある。 FIG. 1 is a schematic configuration diagram showing an air ion transport device according to a first embodiment of the present invention.
[図 2]図 2は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図であ る。  FIG. 2 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 3]図 3は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図であ る。  FIG. 3 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 4]図 4は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図であ る。  FIG. 4 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 5]図 5は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図であ る。  FIG. 5 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 6]図 6は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図であ る。  FIG. 6 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 7]図 7は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図であ る。  FIG. 7 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 8]図 8は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図であ る。  FIG. 8 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 9]図 9は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図であ る。  FIG. 9 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 10]図 10は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図で ある。  FIG. 10 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 11]図 11は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図で ある。  FIG. 11 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 12]図 12は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図で ある。  FIG. 12 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention.
[図 13]図 13は、本発明に係る空気イオン搬送装置の他の形態を示す概略構成図で ある。 FIG. 13 is a schematic configuration diagram showing another embodiment of the air ion transport device according to the present invention. is there.
[図 14]図 14は、本発明に係る空気イオン搬送システムを適用した換気システムの例 を示す概略構成図である。  FIG. 14 is a schematic configuration diagram showing an example of a ventilation system to which the air ion transport system according to the present invention is applied.
[図 15-1]図 15— 1は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。  [FIG. 15-1] FIG. 15-1 is a schematic configuration diagram showing a preferred arrangement example of the air ion generator.
[図 15-2]図 15— 2は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。  [FIG. 15-2] FIG. 15-2 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
[図 15-3]図 15— 3は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。  [FIG. 15-3] FIG. 15-3 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
園 15-4]図 15— 4は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。 Fig. 15-4 is a schematic configuration diagram showing a preferred arrangement example of the air ion generator.
[図 15-5]図 15— 5は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。  [FIG. 15-5] FIG. 15-5 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
[図 15-6]図 15— 6は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。  [FIG. 15-6] FIG. 15-6 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
[図 15-7]図 15— 7は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。  [FIG. 15-7] FIG. 15-7 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
[図 15-8]図 15— 8は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。  [FIG. 15-8] FIG. 15-8 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
[図 15-9]図 15— 9は、空気イオン発生装置の好適な配置例を示す概略構成図であ る。  [FIG. 15-9] FIG. 15-9 is a schematic configuration diagram showing a preferable arrangement example of the air ion generator.
園 15- 10]図 15— 10は、空気イオン発生装置の好適な配置例を示す概略構成図で ある。 15-15] FIG. 15-10 is a schematic configuration diagram showing a preferred arrangement example of the air ion generator.
園 15- 11]図 15— 11は、空気イオン発生装置の好適な配置例を示す概略構成図で ある。 Fig. 15-11 is a schematic configuration diagram showing a preferred arrangement example of the air ion generator.
園 16-1]図 16 _ 1は、空気イオン発生装置の悪い配置例を示す概略構成図である。 園 16-2]図 16 _ 2は、空気イオン発生装置の悪い配置例を示す概略構成図である。 園 16-3]図 16 _ 3は、空気イオン発生装置の悪い配置例を示す概略構成図である。 園 17]図 17は、本発明の実施の形態 2である空気イオン搬送装置としての空気ィォ ン搬送ユニットを示す概略図である。 16-1] FIG. 16_1 is a schematic configuration diagram showing an example of poor arrangement of the air ion generator. 16-2] FIG. 16_2 is a schematic configuration diagram showing an example of poor arrangement of the air ion generator. 16-3] FIG. 16_3 is a schematic configuration diagram showing an example of poor arrangement of the air ion generator. FIG. 17 is a schematic diagram showing an air ion transport unit as an air ion transport device according to the second embodiment of the present invention.
[図 18]図 18は、本発明に係る空気イオン搬送装置としての空気イオン搬送ユニットを 示す概略図である。  FIG. 18 is a schematic view showing an air ion transport unit as an air ion transport device according to the present invention.
園 19]図 19は、本発明に係る空気イオン搬送装置としての空気イオン搬送ユニットを 示す概略図である。 FIG. 19 is a schematic diagram showing an air ion transport unit as an air ion transport device according to the present invention.
[図 20]図 20は、本発明に係る空気イオン搬送装置としての空気イオン搬送ユニットを 示す概略図である。  FIG. 20 is a schematic diagram showing an air ion transport unit as an air ion transport device according to the present invention.
園 21]図 21は、本発明に係る空気イオン搬送装置としての空気イオン搬送ユニットを 示す概略図である。 FIG. 21 is a schematic diagram showing an air ion transport unit as an air ion transport device according to the present invention.
園 22]図 22は、本発明に係る空気イオン搬送装置としての空気イオン搬送システム を示す概略図である。 FIG. 22 is a schematic diagram showing an air ion transport system as an air ion transport device according to the present invention.
園 23]図 23は、本発明に係る空気イオン搬送装置としての空気イオン搬送システム を示す概略図である。 FIG. 23 is a schematic diagram showing an air ion transport system as an air ion transport device according to the present invention.
[図 24]図 24は、本発明に係る空気イオン搬送装置としての空気イオン搬送システム を示す概略図である。  FIG. 24 is a schematic view showing an air ion transport system as an air ion transport device according to the present invention.
園 25]図 25は、本発明の実施の形態 3である空気イオン搬送システムを示す概略構 成図である。 FIG. 25 is a schematic configuration diagram showing an air ion transport system according to the third embodiment of the present invention.
園 26]図 26は、本発明に係る空気イオン搬送システムの他の形態を示す概略構成 図である。 FIG. 26 is a schematic configuration diagram showing another embodiment of the air ion transport system according to the present invention.
園 27]図 27は、本発明に係る空気イオン搬送システムの他の形態を示す概略構成 図である。 FIG. 27 is a schematic configuration diagram showing another embodiment of the air ion transport system according to the present invention.
園 28]図 28は、本発明に係る空気イオン搬送システムの他の形態を示す概略構成 図である。 28] FIG. 28 is a schematic configuration diagram showing another embodiment of the air ion transport system according to the present invention.
園 29]図 29は、本発明に係る空気イオン搬送システムの他の形態を示す概略構成 図である。 FIG. 29 is a schematic configuration diagram showing another embodiment of the air ion transport system according to the present invention.
[図 30]図 30は、本発明に係る空気イオン搬送システムの他の形態を示す概略構成 図である。 園 31]図 31は、本発明に係る空気イオン搬送システムの空気イオン中和部材の実施 の形態を示す概略構成図である。 FIG. 30 is a schematic configuration diagram showing another form of the air ion transport system according to the present invention. FIG. 31 is a schematic configuration diagram showing an embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
園 32-1]図 32— 1は、本発明に係る空気イオン搬送システムの空気イオン中和部材 の他の形態を示す概略構成図である。 Fig. 32-1 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
園 32-2]図 32— 2は、本発明に係る空気イオン搬送システムの空気イオン中和部材 の他の形態を示す概略構成図である。 Fig. 32-2 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
園 33-1]図 33— 1は、本発明に係る空気イオン搬送システムの空気イオン中和部材 の他の形態を示す概略構成図である。 33-1] FIG. 33-1 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
園 33-2]図 33— 2は、本発明に係る空気イオン搬送システムの空気イオン中和部材 の他の形態を示す概略構成図である。 FIG. 33-2 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
園 33-3]図 33— 3は、本発明に係る空気イオン搬送システムの空気イオン中和部材 の他の形態を示す概略構成図である。 Fig. 33-3 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
園 34-1]図 34— 1は、本発明に係る空気イオン搬送システムの空気イオン中和部材 の他の形態を示す概略構成図である。 3-4] FIG. 34-1 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
園 34-2]図 34— 2は、本発明に係る空気イオン搬送システムの空気イオン中和部材 の他の形態を示す概略構成図である。 3-4] FIG. 34-2 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
園 34-3]図 34— 3は、本発明に係る空気イオン搬送システムの空気イオン中和部材 の他の形態を示す概略構成図である。 Fig. 34-3 is a schematic configuration diagram showing another embodiment of the air ion neutralizing member of the air ion transport system according to the present invention.
[図 35]図 35は、本発明に係る空気イオン搬送システムの放電装置の実施の形態を 示す概略構成図である。  FIG. 35 is a schematic configuration diagram showing an embodiment of a discharge device for an air ion transport system according to the present invention.
園 36]図 36は、本発明に係る空気イオン搬送システムの給気吹出し部の実施の形 態を示す概略構成図である。 36] FIG. 36 is a schematic configuration diagram showing an embodiment of the air supply blow-out unit of the air ion transport system according to the present invention.
園 37]図 37は、本発明の実施の形態 4である空気イオン搬送システムを示す概略図 である。 37] FIG. 37 is a schematic diagram showing an air ion transport system according to Embodiment 4 of the present invention.
園 38]図 38は、図 37に示す空気イオン搬送システムの導電構造を示す概略図であ る。 38] FIG. 38 is a schematic diagram showing the conductive structure of the air ion transport system shown in FIG.
園 39]図 39は、本発明に係る空気イオン搬送システムと従前のシステムとを比較した 図である。 [図 40]図 40は、図 37に示す空気イオン搬送システムの変形例を示す概略図である。 園 41]図 41は、図 37に示す空気イオン搬送システムの適用例を示す概略図である。 園 42]図 42は、図 37に示す空気イオン搬送システムの適用例を示す概略図である。 園 43]図 43は、図 37に示す空気イオン搬送システムの適用例を示す概略図である。 39] FIG. 39 is a diagram comparing the air ion transport system according to the present invention with a conventional system. FIG. 40 is a schematic diagram showing a modification of the air ion transport system shown in FIG. 37. 41] FIG. 41 is a schematic diagram showing an application example of the air ion transport system shown in FIG. 42] FIG. 42 is a schematic diagram showing an application example of the air ion transport system shown in FIG. 43] FIG. 43 is a schematic diagram showing an application example of the air ion transport system shown in FIG.
 Yes
[図 44]図 44は、本発明の実施の形態 5である空気イオン搬送装置を示す概略構成 FIG. 44 is a schematic diagram showing an air ion transport device according to Embodiment 5 of the present invention.
1  1
図である。 FIG.
園 45]図 45は、配送手段の例を示す断面図である。 FIG. 45 is a cross-sectional view showing an example of delivery means.
[図 46]図 46は、配送手段の別の例を示す断面図である。  FIG. 46 is a cross-sectional view showing another example of delivery means.
園 47]図 47は、配送手段のさらに別の例を示す断面図である。 47] FIG. 47 is a cross-sectional view showing still another example of delivery means.
園 48]図 48は、空気イオンの濃度と距離との関係を示す図である。 48] FIG. 48 shows the relationship between air ion concentration and distance.
符号の説明 Explanation of symbols
100 空気イオン搬送システム  100 Air ion transport system
101 集中換気装置  101 Centralized ventilation system
102 筐体  102 housing
103 空気  103 air
104 空気イオン発生装置ュニ  104 Air ion generator
104a 正イオン発生装置  104a Positive ion generator
104b 負イオン発生装置  104b Negative ion generator
104c 正負イオン発生装置  104c Positive / negative ion generator
105 - 105-
106 - 1〜: 106— 4 空気ダクト 106-1 to: 106—4 Air duct
108 給気吹出し部  108 Air supply outlet
d 間隔  d interval
301 送風手段  301 Air blowing means
311 ケーシング  311 casing
311a 空気吸込口  311a Air inlet
311b 空気吹出口  311b Air outlet
311c 隔辟 d 一方の領域311c d one area
e 他方の領域 e The other area
送風機 Blower
a 給気送風機a Air supply blower
b 排気送風機 b Exhaust blower
空気イオン発生手段  Air ion generation means
フィルタ  Filters
ダクト duct
a 取入ダクトa Intake duct
b 給気ダクトb Air supply duct
c リターンタ "タトc Return value
d 排気ダクト d Exhaust duct
部屋  Room
給気口  Air inlet
排気口  exhaust port
コィノレ  Coinole
ケーシング  casing
熱交換器  Heat exchanger
空気イオン搬送  Air ion transport
Sky
, 404 404— 4 空気イオン発, 405 405— 4 継手, 406 406— 4 空気ダクト 制御装置 , 404 404— 4 Air ion generation, 405 405— 4 Fittings, 406 406— 4 Air duct controller
給気吹出し部  Supply air outlet
空気搬送手段 511 送風ユニット Air conveying means 511 Blower unit
511a ケーシング  511a casing
511b 送風機  511b blower
511c フィルタ  511c filter
511d 隔壁  511d Bulkhead
51 1 e コィノレ  51 1 e
511A 一方の領域  511A One area
511B 他方の領域  511B other area
512 ダクト  512 duct
513 空気取入口部  513 Air intake
514 空気吹出口部  514 Air outlet
515 継手  515 Fitting
516 片落管  516 cantilever
517 部屋  517 rooms
518 空気吸込口部  518 Air inlet
519 空気排出口部  519 Air outlet
502 空気イオン発生  502 Air ion generation
502a ケーシング  502a casing
503 導電部材  503 Conductive member
504 アース  504 Earth
505 帯電除去装置  505 Electrostatic removal device
600 建物  600 buildings
601 空調機  601 air conditioner
602 冷却塔  602 Cooling tower
603 熱源  603 heat source
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照して、本発明に係る空気イオン搬送装置および空気イオン 搬送システムの好適な実施の形態を詳細に説明する。なお、この実施の形態によりこ の発明が限定されるものではない。 Exemplary embodiments of an air ion transport device and an air ion transport system according to the present invention will be described below in detail with reference to the accompanying drawings. Note that this embodiment However, the invention is not limited.
[0065] <実施の形態 1 >  <Embodiment 1>
図 1は本発明の実施の形態 1である空気イオン搬送装置を適用した空調システムを 示す概略構成図である。  FIG. 1 is a schematic configuration diagram showing an air conditioning system to which an air ion transport device according to Embodiment 1 of the present invention is applied.
[0066] 図 1に示すように、本実施の形態に力、かる空調システムは、例えば空調設備などに 採用されて住宅などの部屋に空気イオンを搬送するものであり、例えば集中換気装 置 101の筐体 102内に設けられ、外部から給気した空気 103に正イオンを発生させ る正イオン発生装置(空気イオン発生装置) 104aと負イオンを発生させる負イオン発 生装置 (空気イオン発生装置) 104bとを所定間隔 dをもって交互に配した空気イオン 発生装置ユニット 104と、前記筐体 102に設けられた継手 (本実施の形態では 4本) 1 05 - 1 - 105 -4に接続され、複数部屋 (本実施の形態では 4部屋)へ個別に空気 を搬送する空気ダクト 106—:!〜 106— 4と、前記空気イオン発生装置を制御する図 示しない制御装置とを具備してなり、各部屋の要求に応じて空気イオンの発生の有 無またはイオン発生量を制御装置により調節してなるものである。なお、図 1中、符号 108は部屋内に空気を噴出す吹出し部を図示する。  [0066] As shown in FIG. 1, the air conditioning system that is effective in the present embodiment is employed in, for example, an air conditioning facility and transports air ions to a room such as a house. For example, a centralized ventilation device 101 The positive ion generator (air ion generator) 104a and negative ion generator (air ion generator) that generate negative ions in the air 103 supplied from the outside, which generates positive ions in the air 103 ) 104b and the air ion generator unit 104 alternately arranged with a predetermined interval d, and the joint provided in the casing 102 (four in this embodiment) are connected to 1 05-1-105 -4, Air duct 106 that conveys air individually to multiple rooms (4 rooms in this embodiment). ~ 106-4 and a control device (not shown) for controlling the air ion generation device, and the control device adjusts the presence or absence of the generation of air ions or the ion generation amount according to the demand of each room. It will be. In FIG. 1, reference numeral 108 denotes a blow-out unit that blows air into the room.
[0067] また、本実施の形態に力かる空気イオン発生装置ユニット 104は、正イオンを発生 させる正イオン発生装置 104aと負イオンを発生させる負イオン発生装置 104bとを所 定間隔 dをもって交互に配してなるものであり、その間隔 dは少なくとも 0. 1cm以上、 好ましくは 0. 5cm以上、さらに好ましくは lcm以上とするのがよい。なお、図には明 示しないが、仕切り板などを介して空気イオン発生装置を複数設置してもよい。  [0067] In addition, the air ion generator unit 104, which is effective in the present embodiment, alternately has a positive ion generator 104a that generates positive ions and a negative ion generator 104b that generates negative ions alternately with a predetermined interval d. The interval d is preferably at least 0.1 cm or more, preferably 0.5 cm or more, more preferably 1 cm or more. Although not shown in the figure, a plurality of air ion generators may be installed through a partition plate or the like.
[0068] このように空気イオン発生装置を少なくとも 0. lcm以上離して設置することにより、 発生したイオンの減衰が激減する。なお、間隔 dは、筐体 102の大きさ、空気イオン 発生装置の設置数およびその発生能力により、最適な間隔は適宜変化する。例えば 筐体 102の横幅が 50cmの場合に、空気イオン発生装置を 4台設置する場合には、 少なくとも 1 cm〜5cm程度(望ましくはそれ以上)離して設置することにより、イオンの 減衰量の低下を防止することができた。  [0068] By thus disposing the air ion generator at least 0.1 lcm or more apart, the attenuation of the generated ions is drastically reduced. Note that the optimum distance d varies depending on the size of the casing 102, the number of installed air ion generators and the generation capacity thereof. For example, if the width of case 102 is 50 cm and four air ion generators are installed, the ion attenuation can be reduced by installing them at least 1 cm to 5 cm apart (preferably more). Could be prevented.
[0069] また、送風機 120側に空気イオン発生装置ユニット 104を設置することにより、筐体 内で負イオンと正イオンとが均一に混合され、継手 105— 1〜: 105— 4から各々の部 屋に空気ダクト 106—:!〜 106— 4を介して、均一な空気イオンを供給することが可能 となる。 [0069] Also, by installing the air ion generator unit 104 on the blower 120 side, negative ions and positive ions are uniformly mixed in the casing, and each part from the joint 105-1 to: 105-4 Air duct 106—! It is possible to supply uniform air ions via ~ 106-4.
[0070] なお、本実施の形態では、ダクトを 4本としている力 本発明はこれに限定されるも のではなぐ 1本のダクトとして一部屋に供給するような場合においてもできる。また大 部屋や湿気や汚れがひどい場合には部屋の条件などに応じて適宜調整することが できる。  [0070] In the present embodiment, the force with four ducts is not limited to this, and the present invention can be applied to a case where a single duct is supplied to one room. If the room is large or the humidity or dirt is severe, it can be adjusted appropriately according to the conditions of the room.
[0071] ここで、前記集中換気装置 101の筐体 102の内部には送風機 120が配設されてい る。また、必要に応じて給気側に種々の空気清浄装置 109を設けるようにしてもよい 。前記空気清浄装置としては、例えば HEPAフィルタ(High Efficiency Particul ate Air Filter)などからなり、送風機 120の稼働によって給気される空気中の塵埃 などを主に除去するものである。この空気清浄装置は、給気する空気の状態に応じ て比較的粗大な汚染物を除去するフィルタや、 NO - SOや化学物質や花粉などを  Here, a blower 120 is disposed inside the housing 102 of the centralized ventilation device 101. Further, various air cleaning devices 109 may be provided on the air supply side as necessary. The air purifier includes, for example, a HEPA filter (High Efficiency Particulate Air Filter), and mainly removes dust in the air supplied by the operation of the blower 120. This air purifier uses a filter that removes relatively coarse contaminants according to the air supply condition, NO-SO, chemical substances, pollen, etc.
X X  X X
除去するフィルタなどを適宜採用するようにしてもよい。この空気清浄装置により集塵 することにより、ダクト内空気イオンはさらに効率良く搬送することができるようになる。  You may make it employ | adopt suitably the filter etc. which are removed. By collecting dust with this air purifier, air ions in the duct can be more efficiently transported.
[0072] なお、イオンはフィルタ通過時に減衰するものが多ぐプレフィルタ、除塵フィルタな どの各種フィルタは空気イオン発生装置の上流側に設置することが望ましい。但し、 フィルタそのものに荷電などがなぐ発生したイオンが減衰されない場合には、空気ィ オン発生装置の下流側に設置することができる。  [0072] It should be noted that various filters such as pre-filters and dust-removing filters whose ions are often attenuated when passing through the filter are desirably installed upstream of the air ion generator. However, if the generated ions are not attenuated when the filter itself is charged, it can be installed downstream of the air ion generator.
[0073] このように、本実施の形態にかかる空気イオン搬送装置は、各部屋に空気イオンを 搬送するものであり、送風機 120、必要に応じて設けられる空気清浄装置 109、空気 イオン発生装置 104および空気ダクト 106—:!〜 106— 4から構成されている。  [0073] As described above, the air ion transport device according to the present embodiment transports air ions to each room, and includes a blower 120, an air purifier 109 provided as necessary, and an air ion generator 104. And air duct 106—! ~ It consists of 106—4.
[0074] 前記空気イオン発生装置ユニット 104は、図には明示しないが、高電圧発生部とィ オン発生部とを対向配置し、高電圧発生部からイオン発生部に高電圧を印加するこ とによってコロナ放電により、空気中の酸素ないしは水分が電離によりエネルギーを 受けてイオンィ匕し、 H+ (H O) (mは任意の自然数)と〇― (H O) (nは任意の自然数 [0074] Although not clearly shown in the drawing, the air ion generator unit 104 has a high voltage generation unit and an ion generation unit arranged to face each other and applies a high voltage from the high voltage generation unit to the ion generation unit. By corona discharge, oxygen or water in the air receives energy by ionization and ionizes, and H + (HO) (m is an arbitrary natural number) and 〇− (HO) (n is an arbitrary natural number)
2 m 2 2 η  2 m 2 2 η
)とを主体とした正負のイオン (プラスイオンとマイナスイオン)を生成し、これらをファ ンなどにより空間に放出させる。これら、 Η+ (Η Ο) および〇 (Η Ο) は、浮遊菌の表 ) And positive ions (positive ions and negative ions) are generated, and these are released into the space by fans. These Η + (Η Ο) and 〇 (Η Ο) are the table of planktonic bacteria.
2 m 2 2 η  2 m 2 2 η
面に付着し、化学反応して活性種である過酸化水素(Η〇)または水酸基ラジカル( •OH)を生成する。 H〇または · OHは、極めて強力な活性を示すため、これらにより Attached to the surface and chemically reacts with the active species hydrogen peroxide (Η〇) or hydroxyl radical ( • OH) is generated. H ○ or · OH shows extremely strong activity,
2 2  twenty two
、空気中の浮遊細菌を取り込んで不活化することができる。ここで、 ·〇Ηは活性種の 1種であり、ラジカルの ΟΗを示している。  It can inactivate airborne bacteria by ingesting them. Here, ΗΗ is one of the active species, indicating radical ΟΗ.
[0075] 正負のイオンは、浮遊細菌の細胞表面で下記式(1)〜式(3)に示すように化学反 応して、活性種である過酸化水素(Η Ο )または水酸基ラジカル(·〇Η)を生成する。 [0075] Positive and negative ions react chemically with the active species hydrogen peroxide (Η Ο) or hydroxyl radicals (·) as shown in the following formulas (1) to (3) on the cell surface of floating bacteria. 〇Η) is generated.
2 2  twenty two
ここで、式(1)〜式(3)において、 m、 m' 、η、η' は任意の自然数である。これによ り、活性種の分解作用によってウィルスなどの浮遊細菌が破壊される。したがって、効 率的に空気中の浮遊細菌を不活化、殺菌することができる。  Here, in the formulas (1) to (3), m, m ′, η, and η ′ are arbitrary natural numbers. As a result, suspended bacteria such as viruses are destroyed by the action of decomposing active species. Therefore, airborne bacteria in the air can be inactivated and sterilized efficiently.
[0076] Η+(ΗΟ) +〇—(Η〇)→·〇Η+1/2〇 + (m+n)H〇…式(1) [0076] Η + (ΗΟ) + 〇— (Η〇) → ・ 〇Η + 1 / 2〇 + (m + n) H〇… Formula (1)
2 m 2 2 η 2 2  2 m 2 2 η 2 2
Η+(Η〇) +Η+(Η Ο) ! +〇—(Η〇) +〇_(Η〇) / →2·ΟΗ + 0 + (m + mΗ + (Η〇) + Η + (Η Ο) ! + 〇— (Η〇) + 〇_ (Η〇) / → 2 · ΟΗ + 0 + (m + m
2 m 2 m 2 2 η 2 2 η 22 m 2 m 2 2 η 2 2 η 2
, +η+η, )Η〇…式(2) , + Η + η,) Η〇… Formula (2)
2  2
Η+(Η〇) +Η+(Η〇) ! +〇—(Η〇) +0— (Η〇) ! →Η Ο +0 + (m + m'Η + (Η〇) + Η + (Η〇) ! + 〇— (Η〇) + 0— (Η〇) ! → Η Ο +0 + (m + m '
2 m 2 m 2 2 η 2 2 η 2 2 2 2 m 2 m 2 2 η 2 2 η 2 2 2
+η+η )Η〇…式(3)  + η + η) Η〇… Formula (3)
2  2
以上のメカニズムにより、前記正負イオンの放出により浮遊菌などの殺菌効果を得 ること力 sできる。  With the above mechanism, it is possible to obtain a bactericidal effect such as airborne bacteria by releasing the positive and negative ions.
[0077] また、前記式(1)〜式(3)は、空気中の有害物質表面でも同様の作用を生じさせる ことができるため、活性種である過酸化水素(Η Ο )または水酸基ラジカル(·ΟΗ)が  [0077] Further, since the above formulas (1) to (3) can cause the same action even on the surface of harmful substances in the air, hydrogen peroxide (Η Ο) or hydroxyl radicals (active species) · ΟΗ)
2 2  twenty two
、有害物質を酸化もしくは分解して、ホルムアルデヒドやアンモニアなどの化学物質 を、二酸化炭素や、水、窒素などの無害な物質に変換することにより、実質的に無害 化することが可能である。  It can be made virtually harmless by oxidizing or decomposing harmful substances and converting chemical substances such as formaldehyde and ammonia into harmless substances such as carbon dioxide, water and nitrogen.
[0078] なお、本実施の形態では、空気イオン発生装置を箱型形状のもので説明するが、 本発明はこれに限定さるものではなぐ例えば電極形状のもの、棒形状または針形状 などの種々の形態の空気イオン発生装置を用いることができる。  In the present embodiment, the air ion generator is described as having a box shape. However, the present invention is not limited to this, and there are various types such as an electrode shape, a rod shape, a needle shape, and the like. The air ion generator of the form can be used.
[0079] したがって、送風機 120を駆動することにより、所定間隔 dを持って配設された正ィ オン発生装置 104aおよび負イオン発生装置 104bからなる空気イオン発生装置ュニ ット 104によって発生させた正イオンと負イオンとを本体外に送り出すことができる。そ して、これらの正イオンと負イオンの作用により空気中の力ビゃ菌の微生物を殺菌す ること力 Sできる。 [0080] その他、正イオンと負イオンには、コクサツキ一ウィルス、ポリオウイルス、などのウイ ノレス類も不活化する働きがあり、これらウィルスの混入による汚染が防止できる。また 、正イオンと負イオンには、臭いの元となる分子を分離する働きがあることも確かめら れており、空間の脱臭にも利用できる。また、正イオンと負イオンには、人体に影響を 与えるアレルゲン (ノヽウスダスト、ダニ、カビ、花粉などアレルギーを引き起こす物質) を包み込んでその作用を抑制する作用もある。 [0079] Therefore, by driving the blower 120, the air ion generator unit 104 composed of the positive ion generator 104a and the negative ion generator 104b arranged with a predetermined interval d is generated. Positive ions and negative ions can be sent out of the main body. And, by the action of these positive ions and negative ions, it is possible to sterilize the microorganisms in the air. [0080] In addition, positive ions and negative ions have a function to inactivate wines such as Coxsackie virus and poliovirus, and can prevent contamination due to contamination of these viruses. It has also been confirmed that positive ions and negative ions have a function of separating molecules that cause odors, and can be used for deodorizing spaces. In addition, positive ions and negative ions have the effect of encapsulating allergens that affect the human body (substances that cause allergies such as dust, mites, molds, and pollen) to suppress their effects.
[0081] また、空気ダクトの配置は同一方向に向かって配置するものに限定されるものでは なぐ例えば図 2に示すように、空気ダクト 106— 5と空気ダクト 106— 6とを筐体 102 の側壁に設けるような配置とする場合においても、所定間隔 dをもって配設された正 イオン発生装置 104aおよび負イオン発生装置 104bからなる空気イオン発生装置ュ ニット 104によって発生させた正イオンと負イオンとを本体外に送り出すことができる。  [0081] In addition, the arrangement of the air duct is not limited to that arranged in the same direction. For example, as shown in Fig. 2, the air duct 106-5 and the air duct 106-6 are connected to the casing 102. Even in the case of the arrangement provided on the side wall, positive ions and negative ions generated by the air ion generator unit 104 composed of the positive ion generator 104a and the negative ion generator 104b arranged with a predetermined interval d are used. Can be sent out of the main body.
[0082] また、図 3に示す装置において、大径のダクト 131により、所定個所まで一括して外 気を給気し、分岐チャンバ一 132にて各部屋に分岐する際に、該分岐チャンバ一 13 2内に所定間隔をもって空気イオン発生装置ユニット 104を配設するようにしてもよい これにより、設計の関係上共通ダクト 131を用い、所定場所に配置した分岐チャン バー 132によつて空気イオンの減衰量の低下を防止して供給することができる。  Further, in the apparatus shown in FIG. 3, when the outside air is collectively supplied to a predetermined location by the large-diameter duct 131 and branched into each room by the branch chamber 132, the branch chamber The air ion generator unit 104 may be arranged at a predetermined interval in 132. Thereby, the common duct 131 is used for design reasons, and air ions are generated by the branch chamber 132 arranged at a predetermined place. It can be supplied while preventing a decrease in attenuation.
[0083] また、図 4に示すように、筐体 102内に空気ダクト 106— 1〜: 106— 4に対応して空 気を導入する仕切り部 121—:!〜 121— 3を配設し、該仕切り部 121—:!〜 121— 3 内に正イオンと負イオンを同時に発生する正負イオン発生装置 104cを 4箇所配設す るようにしてもよい。 [0083] Further, as shown in FIG. 4, partition portions 121— :! to 121-3 for introducing air corresponding to the air ducts 106-1 to 106-6-4 are arranged in the housing 102. In addition, four positive / negative ion generators 104c that generate positive ions and negative ions at the same time may be arranged in the partition part 121- :! to 121-3.
これにより、各空気ダクト 106—:!〜 106—4内に正負の空気イオンが確実に送給さ れることとなり、各部屋に均一にイオンを供給することが確実となる。  As a result, each air duct 106—! The positive and negative air ions are surely sent into ~ 106-4, which ensures that the ions are uniformly supplied to each room.
[0084] また、本実施の形態では、整流板 122—:!〜 122— 4が所定間隔をもって配設され ており、第 1の空気ダクト 106— 1および第 4の空気ダクト 106— 4に送風機 120から の空気を安定供給するようにしてレ、る。 In the present embodiment, the current plate 122—! ˜122-4 are arranged at predetermined intervals, and the air from the blower 120 is stably supplied to the first air duct 106-1 and the fourth air duct 106-4.
すなわち、整流板 122—:!〜 122— 4を配設しない場合には、第 2空気ダクト 106— 2および第 3の空気ダクト 106— 3に送風機 120からの空気が集中することとなるが、 減衰を考慮した上で第 2空気ダクト 106— 2および第 3の空気ダクト 106— 3を長くし たり、またはイオン効果を高める部屋へイオンを多量に供給したりする場合には、効 果的である。 That is, the current plate 122—! When 122-4 is not installed, the air from the blower 120 is concentrated in the second air duct 106-2 and the third air duct 106-3. It is effective when the second air duct 106-2 and the third air duct 106-3 are lengthened after taking attenuation into account, or when a large amount of ions are supplied to a room that enhances the ion effect. is there.
[0085] また、図 5に示すように、筐体 102内に空気ダクト 106— 1〜: 106— 4に対応して空 気を導入する仕切り部 121—:!〜 121— 3を配設し、該仕切り部 121—:!〜 121— 3 内に正イオン発生装置 104aと負イオン発生装置 104bとを所定間隔 dを有して一対 配設するようにしてもよい。  [0085] Further, as shown in FIG. 5, the partition part 121—: introduces air into the housing 102 corresponding to the air ducts 106-1 to: 106-4. ~ 121-3 are arranged and the partition 121-! ˜121-3, a pair of positive ion generator 104a and negative ion generator 104b may be arranged with a predetermined interval d.
これにより、所定間隔 dをもって異なるイオンの発生装置が配設されているので、発 生したイオンの減衰が抑制され、し力、も各空気ダクト 106— 1〜: 106— 4内には、正負 の空気イオンが確実に送給されることとなり、各部屋に均一にイオンを供給することが 確実となる。なお、整流板を設置する効果は図 2に示す実施の形態の場合と同様で ある。  As a result, since different ion generators are arranged at a predetermined interval d, the attenuation of the generated ions is suppressed, and the force is also positive and negative in each air duct 106-1 to 106-6-4. The air ions are reliably delivered, and it is ensured that the ions are uniformly supplied to each room. The effect of installing the current plate is the same as that of the embodiment shown in FIG.
[0086] また、図 6に示すように、送風機側に種類の異なる空気イオン発生装置が所定間隔 dをもって配設されている。本実施の形態では、正イオン発生装置 104aを 1台とその 両側に負イオン発生装置 104bを 2台配設しており、筐体 102内における負イオンの 発生量を増大させている。これは、通常は正イオン発生装置 104aと負イオン発生装 置 104bとは一対として同数とするのが好ましいが、例えば負イオンの量を増大させ たい場合には負イオン発生装置 104bの数を正イオン発生装置 104aの数よりも多く している。これにより、コストの関係から例えば負イオンが減衰し易い部材ゃ材料を多 用したダクトなどを用いる場合において、各部屋においては、正イオンと負イオンとが 同数とするなどに調整することができる。  [0086] Further, as shown in FIG. 6, different types of air ion generators are arranged at a predetermined interval d on the blower side. In the present embodiment, one positive ion generator 104a and two negative ion generators 104b are arranged on both sides of the positive ion generator 104a to increase the amount of negative ions generated in the housing 102. In general, it is preferable that the positive ion generator 104a and the negative ion generator 104b have the same number as a pair. For example, when it is desired to increase the amount of negative ions, the number of the negative ion generator 104b is positive. More than the number of ion generators 104a. As a result, for example, when using a duct that uses a material such as a member that easily attenuates negative ions because of cost, the number of positive ions and negative ions can be adjusted to be the same in each room. .
[0087] また、空気イオン発生装置の配設は送風機側またはダクト側に何ら限定されるもの ではなぐ例えば図 7に示すように、正イオン発生装置 104aを送風機側に、そして送 風機側とダクト側の中間域に負イオン発生装置を配設するようにしてもよい。なお、そ れらには素子面の向きの配置も含まれる。また、空気イオン発生装置は、平面的 (X _Y方向)な配置に限定されるものではなぐ高さ方向(Ζ方向)における配置も含む ようにしてもよい。必要なイオン量の多寡、筐体の形状や大きさ、吹出し口の数などに よって、空気イオン発生装置の組合せを適宜変更することができる。 また、送風機 120からの風速、必要なイオン供給濃度などにより最適な空気イオン 発生装置の設置を行うようにすればょレ、。 The arrangement of the air ion generator is not limited to the blower side or the duct side. For example, as shown in FIG. 7, the positive ion generator 104a is placed on the blower side, and the blower side and the duct are arranged. You may make it arrange | position a negative ion generator in the intermediate area of the side. These include the arrangement of the orientation of the element surface. In addition, the air ion generation device may include an arrangement in the height direction (the heel direction), which is not limited to a planar arrangement (X_Y direction). The combination of air ion generators can be changed as appropriate depending on the amount of ions required, the shape and size of the housing, the number of outlets, and the like. Also, install an optimal air ion generator according to the wind speed from the blower 120 and the required ion supply concentration.
[0088] また、図 8に示すように、正イオン発生装置 104aと負イオン発生装置 104bと正負ィ オン発生装置(空気イオン発生装置) 104cとを混在させるようにしてもよい。なお、こ の場合における設置間隔 dは少なくとも 0. 1cm以上離していれば、均等でなくともよ レ、。本実施の形態の場合には、正負イオン発生装置 104cの両側に正イオン発生装 置 104aと負イオン発生装置 104bとを所定間隔 dで配設すると共に、前記正イオン Also, as shown in FIG. 8, a positive ion generator 104a, a negative ion generator 104b, and a positive / negative ion generator (air ion generator) 104c may be mixed. In this case, the installation distance d is not necessarily uniform as long as it is at least 0.1 cm apart. In the case of the present embodiment, the positive ion generator 104a and the negative ion generator 104b are disposed at both sides of the positive / negative ion generator 104c at a predetermined interval d, and the positive ion
1  1
発生装置 104aの外側には負イオン発生装置 104bを、負イオン発生装置 104bの外 側には正イオン発生装置 104aを各々所定間隔 dで配設するようにしている。  A negative ion generator 104b is disposed outside the generator 104a, and a positive ion generator 104a is disposed outside the negative ion generator 104b at a predetermined interval d.
2  2
[0089] また、図 9に示すように、正イオン発生装置 104aと負イオン発生装置 104bとを中心 部分は所定間隔 dとしその両側には所定間隔 dで配設するようにしている。  Also, as shown in FIG. 9, the central portion of the positive ion generator 104a and the negative ion generator 104b is set at a predetermined interval d, and arranged at a predetermined interval d on both sides thereof.
3 4  3 4
[0090] また、前述した実施の形態においては、空気イオン発生装置は空気の送風方向と 略同一方向となるように設置している力 これに限定されるものではなぐ例えば空気 の送風方向と直交する方向、上下方向、発生面が向かい合わせとなる方向、または 発生面が背中合わせとなる方向など種々設置するようにしてもよい。図 15— 1〜図 1 5—11におレ、て、空気イオン発生装置の種々のその他の好適な配置例を示すが、 本発明はこれらに限定されるものではない。  [0090] In the above-described embodiment, the air ion generator is installed so that the air blowing direction is substantially the same as the air blowing direction. For example, the air ion generating device is not limited to this, but is orthogonal to the air blowing direction. It may be installed in various directions such as the direction to be generated, the vertical direction, the direction in which the generation surfaces face each other, or the direction in which the generation surfaces become back-to-back. FIGS. 15-1 to 15-11 show various other suitable arrangement examples of the air ion generator, but the present invention is not limited to these.
図 15— 1は、負イオン発生装置 104b同士を背中合わせに配置した例である。図 1 5— 2は、正イオン発生装置 104a同士を背中合わせに配置した例である。図 15— 3 は、負イオン発生装置 104bおよび正イオン発生装置 104aを背中合わせに配置した 例である。図 15— 4は、正負イオン発生装置 104cを線対称に背中合わせに配置し た例である。図 15— 5は、正負イオン発生装置 104cを点線対称に背中合わせに配 置した例である。図 15 _ 6は、負イオン発生装置 104bおよび正イオン発生装置 104 aを横並びに配置した例である。図 15— 7は、負イオン発生装置 104b同士を横並び に配置した例である。図 15 _ 8は、正イオン発生装置 104aおよび負イオン発生装置 104bを横並びに配置した例である。図 15— 9は、正負イオン発生装置 104c同士を 線対称に横並びに配置した例である。図 15— 10は、正負イオン発生装置 104c同士 を順に横並びに配置した例である。図 15— 11は、正負イオン発生装置 104cを発生 面が異なる面として縦位置に配置した例である。 Fig. 15-1 shows an example in which the negative ion generators 104b are arranged back to back. FIG. 15-2 is an example in which the positive ion generators 104a are arranged back to back. Figure 15-3 shows an example in which the negative ion generator 104b and the positive ion generator 104a are placed back to back. Figure 15-4 shows an example in which the positive and negative ion generators 104c are placed back to back in line symmetry. Figure 15-5 shows an example in which positive and negative ion generators 104c are placed back-to-back symmetrically with dotted lines. FIG. 15_6 shows an example in which the negative ion generator 104b and the positive ion generator 104a are arranged side by side. Figure 15-7 shows an example of negative ion generators 104b arranged side by side. FIG. 15_8 shows an example in which the positive ion generator 104a and the negative ion generator 104b are arranged side by side. Fig. 15-9 shows an example in which positive and negative ion generators 104c are arranged side by side in line symmetry. Fig. 15-10 shows an example in which positive and negative ion generators 104c are arranged side by side in order. Figure 15-11 generates positive and negative ion generator 104c This is an example in which the surfaces are arranged in vertical positions as different surfaces.
[0091] また、図 10に示すように、外部から送風機 120を介して空気を導入する集中換気 装置 101の筐体 102内において、前記送風機 120側から空気ダクト 106側に向かつ て拡開した仕切り部 133を設けてなると共に、前記送風機 120側に風の通り道を一 時的に絞る絞り部 134を形成してなり、前記絞り部 134内に空気イオン発生装置を設 けてなるようにしてもよレ、。なお、風速を一時的に上昇させるようにしてもよい。  Further, as shown in FIG. 10, in the casing 102 of the centralized ventilation device 101 that introduces air from the outside via the blower 120, the fan is expanded from the blower 120 side toward the air duct 106 side. A partition part 133 is provided, and a throttle part 134 for temporarily restricting a passage of wind is formed on the blower 120 side, and an air ion generator is provided in the throttle part 134. Moyore. In addition, you may make it raise a wind speed temporarily.
本実施の形態では、正負イオンを発生する正負イオン発生装置 104cを、前記絞り 部 134内に 1台設けている力 S、複数であってもよい。  In the present embodiment, a plurality of positive and negative ion generators 104c that generate positive and negative ions may be provided with a force S provided in the throttle unit 134.
送風機 120からの送風量が同一の場合において、空気イオン発生装置のイオンを 発生する表面や側面を通過する風速が速レ、場合には、イオンの滞留域が存在するこ とがなぐイオンの減衰が少なレ、ものとなる。さらに、送風機 120のファンのノッチ切換 により風量を上昇させることにより、供給するイオン濃度を上げることができる。  When the air flow from the blower 120 is the same, the speed of the air passing through the surface or side surface of the air ion generator that generates ions is high, and in this case, the ion attenuation is such that there is no ion retention area. There will be less stuff. Furthermore, the ion concentration to be supplied can be increased by increasing the air volume by switching the notch of the fan of the blower 120.
[0092] また、図 11に示すように、種類の異なる空気イオン発生装置を一対以上設ける場 合にも、絞り部 134内に所定間隔をもって配設するようにすればよい。また、図 12に 示すように、正イオン発生装置 104aと負イオン発生装置 104bとを一対とし、これらを 3組設置する場合にも、所定間隔とすると共に、仕切り部 133を設けることにより、滞 留域を少なくしてイオンの減衰をさらに抑制するようにしている。  In addition, as shown in FIG. 11, even when a pair of different types of air ion generators are provided, they may be arranged in the throttle section 134 with a predetermined interval. In addition, as shown in FIG. 12, even when a pair of positive ion generator 104a and negative ion generator 104b is installed and three sets thereof are installed, a predetermined interval is provided and a partition 133 is provided so that a delay occurs. The range is reduced to further suppress the attenuation of ions.
[0093] 基本的には、空気イオン発生装置の設置数は多いほうがイオンの発生量が多くな るが、筐体の大きさによりイオンの発生装置を設置する間隔が所定間隔とすることが できない場合には、イオンの相殺による低減効果が出現するので、最適な空気ィォ ン発生装置の設置となるように種々の条件により設置するようにすればよい。  [0093] Basically, the larger the number of installed air ion generators, the greater the amount of ions generated. However, the interval between the ion generators cannot be set to a predetermined interval due to the size of the housing. In such a case, a reduction effect due to the cancellation of ions appears. Therefore, it may be installed under various conditions so that an optimum air ion generator is installed.
[0094] また、前記継手 105および空気ダクト 106は、非帯電構造あるいは帯電性の低い構 造とするのが好ましい。非帯電構造あるいは帯電性の低い構造としては、帯電しない 、あるいは帯電しにくい構造であり、図には明示しないが各空気ダクトなどにアースを 設ける構造、もしくは前記空気ダ外などの少なくとも内面を非帯電性の形状に構成 すること力 S考えられる。非帯電性の材料としては、アルミニウムなどの金属材料、また は樹脂系材料などがある。なお、樹脂系材料としては、例えば負イオンを含む空気を 搬送するダクトの場合には正に帯電しなレ、、あるいは帯電しにくい樹脂系材料を採用 し、正イオンを含む空気を搬送するダクトの場合には負に帯電しなレ、、あるいは帯電 しにくい樹脂系材料を採用するようにすればよい。 [0094] Further, it is preferable that the joint 105 and the air duct 106 have an uncharged structure or a structure with low chargeability. The non-charged structure or the structure with low chargeability is a structure that is not charged or difficult to be charged. Although not clearly shown in the figure, a structure in which each air duct is grounded or at least the inner surface outside the air duct is not covered. The power of constructing a chargeable shape is considered S. Examples of the non-chargeable material include a metal material such as aluminum or a resin material. In addition, as a resin material, for example, in the case of a duct that conveys air containing negative ions, a resin material that is not positively charged or hardly charged is adopted. However, in the case of a duct that carries air containing positive ions, a resin material that is not negatively charged or hardly charged may be employed.
[0095] また、非帯電性の構成としては、蛇腹形状、空気ダクト内での番線のピッチ、または 空気ダクトの内面材の接着方法などがある。すなわち、非帯電構造では、空気ダクト におレ、て空気が触れる内面に対して帯電しなレ、、あるいは帯電しにくい構造を備える ことが重要である。  [0095] Further, as the non-chargeable configuration, there are a bellows shape, a pitch of a wire in the air duct, or a method of bonding an inner surface material of the air duct. In other words, in the non-charged structure, it is important to provide a structure in which the air duct is not charged with respect to the inner surface that is in contact with the air or is not easily charged.
[0096] なお、図 1乃至図 12では、上述したように空気イオン発生装置ユニット 104を設け た筐体 102、もしくは空気イオン発生装置ユニット 104を設けた分岐チャンバ一 132 に対して複数の空気ダクト 106—:!〜 106— 6を接続することによって、複数部屋へ 個別にイオンを供給する空気イオン搬送システムを示している。これに限らず、例え ば図 13に示すように、筐体 102から大径のダクト 131により、所定個所まで一括して イオンを供給し、当該ダクト 131から分岐する分岐ダクト 131 aを用レ、て複数部屋ヘイ オンを供給する空気イオン搬送システムとしてもよい。  1 to 12, a plurality of air ducts are provided for the casing 102 provided with the air ion generator unit 104 or the branch chamber 132 provided with the air ion generator unit 104 as described above. 106— :! ~ 106-6 shows an air ion transport system that supplies ions individually to multiple rooms by connecting them. For example, as shown in FIG. 13, a large-diameter duct 131 supplies ions to a predetermined location all at once, and a branch duct 131a branched from the duct 131 is used as shown in FIG. It is also possible to use an air ion transport system that supplies multiple room cation.
[0097] 次に、本発明の空気イオン搬送システムはファンにより給気する第一種または第二 種などの換気システムに適用することができる。次に、本発明の空気イオン搬送シス テムを適用した集中換気システムの一例を図 14に示す。  [0097] Next, the air ion transport system of the present invention can be applied to a first or second type ventilation system in which air is supplied by a fan. Next, FIG. 14 shows an example of a centralized ventilation system to which the air ion transport system of the present invention is applied.
[0098] 図 14に示すように、高気密 ·高断熱の住宅などにおいて、屋内の空気(内気)と屋 外の空気(外気)とを置換するシステムに適用したものである。なお、図 14では、 1フ ロア 3LDKの間取りの住宅を一例として示している。具体的には、部屋としてリビング 201a,和室 201b、第 1洋室 201cおよび第 2洋室 201dがある。和室 201bは襖を介 してリビング 201aに通じている。このリビング 201aには、台所 201eがある。また、リビ ング 201 a、第 1洋室 201cおよび第 2洋室 201dは、それぞれドアを介して廊下 201f に通じている。また、廊下 201fには、ドアを介してトイレ 201gが通じている。さらに、 廊下 20Πには、ドアを介して脱衣所 201hが通じ、当該脱衣所 201hの奥にはドアを 介して浴室 201iが通じている。  As shown in FIG. 14, the present invention is applied to a system that replaces indoor air (inside air) and outside air (outside air) in a highly airtight and highly insulated house. In addition, in FIG. 14, the house of the floor plan of 1 floor 3LDK is shown as an example. Specifically, there are a living room 201a, a Japanese-style room 201b, a first Western room 201c, and a second Western room 201d. Japanese-style room 201b leads to living room 201a through a tub. This living room 201a has a kitchen 201e. In addition, the living room 201a, the first western room 201c, and the second western room 201d communicate with the corridor 201f through doors, respectively. The corridor 201f is connected with a toilet 201g through a door. Furthermore, a dressing room 201h is connected to the corridor 20Π via a door, and a bathroom 201i is connected to the back of the dressing room 201h via a door.
[0099] 図 14に示すように本換気システムは、天井裏などに換気手段 202を配置してある。  As shown in FIG. 14, in this ventilation system, ventilation means 202 is arranged on the back of the ceiling or the like.
前記換気手段 202は、第一種換気を行うものであり、給気側筐体 202Aの内部に図 示しない給気側送風機と、排気側筐体 202B内部に図示しなし排気側送風機とを設 けてある。 The ventilation means 202 performs first type ventilation, and an air supply side blower (not shown) is provided inside the air supply side case 202A, and an exhaust side blower (not shown) is provided inside the exhaust side case 202B. There is.
前記給気側筐体 202Aは、外気取込口 203a、給気口 203bを有しており、一方、排 気側筐体 202Bは、内気取込口 203cおよび排気口 203dを有している。また、前記 外気取込口 203aおよび排気口 203dは屋外側に通じ、給気口 203bおよび内気取 込口 203cは屋内側に通じる。  The supply side housing 202A has an outside air intake port 203a and an air supply port 203b, while the exhaust side housing 202B has an inside air intake port 203c and an exhaust port 203d. The outside air intake port 203a and the exhaust port 203d are connected to the outdoor side, and the air supply port 203b and the inside air intake port 203c are connected to the indoor side.
前記給気側送風機は、その稼働によって外気取込口 203aから筐体 202Aの内部 に屋外側の空気を取り込み、当該空気を給気口 203bから屋内側に給気する。  The air supply side blower takes in outdoor air from the outside air intake port 203a into the inside of the housing 202A and supplies the air to the indoor side from the air supply port 203b.
前記排気側送風機は、その稼働によって内気取込口 203cから筐体 202Bの内部 に屋内側の空気を取り込み、当該空気を排気口 203dから屋外側に排気する。  The exhaust-side blower takes in indoor air from the inside air intake port 203c into the housing 202B and exhausts the air from the exhaust port 203d to the outdoor side.
[0100] また、給気側筐体 202Aの外気取込口 203aの位置には、図示しなレ、フィルタが設 けてある。このフィルタは、例えば HEPAフィルタが好ましレ、。これらのフィルタは、主 に花粉や臭いや N〇などを集塵する。 [0100] In addition, an unillustrated check and filter are provided at the position of the outside air intake port 203a of the supply side casing 202A. This filter is preferably a HEPA filter, for example. These filters mainly collect pollen, odors and NO.
X  X
[0101] 図 14に示すように前記構成の換気手段 202に関して、外気取込口 203aおよび給 気口 203bには給気系空気ダクトが接続してあり、内気取込口 203cおよび排気口 20 3dには排気系空気ダクトが接続してある。具体的に、外気取込口 203aには、屋外側 に通じる給気空気ダクト 210aが接続してある。また、給気口 203bには、屋内側に通 じる給気空気ダクト 210bが接続してある。また、内気取込口 203cには、屋内側に通 じる排気空気ダクト 21 laが接続してある。また、排気口 203dには、屋外側に通じる 排気空気ダクト 21 lbが接続してある。  As shown in FIG. 14, with respect to the ventilating means 202 having the above-described configuration, an air supply system air duct is connected to the outside air intake port 203a and the air supply port 203b, and the inside air intake port 203c and the air outlet port 20 3d. Is connected to an exhaust air duct. Specifically, an air supply duct 210a leading to the outdoor side is connected to the outside air inlet 203a. An air supply air duct 210b that leads to the indoor side is connected to the air supply port 203b. An exhaust air duct 21 la leading to the indoor side is connected to the inside air intake port 203c. An exhaust air duct 21 lb leading to the outdoor side is connected to the exhaust port 203d.
[0102] 給気空気ダクト 210aは、外気取込口 203aから室内の天井裏などを経由して図 14 で示す屋外側となる玄関 212などに向けて設けてある。また、給気空気ダクト 210aが 玄関 212などに至る端部には、給気吸込口 213が設けてある。  [0102] The supply air duct 210a is provided from the outside air intake port 203a toward the entrance 212 on the outdoor side shown in FIG. In addition, a supply air inlet 213 is provided at an end where the supply air duct 210a reaches the entrance 212 and the like.
[0103] 前記給気空気ダクト 210bは、給気口 203bから室内の天井裏などを経由して図 14 で示す屋内の各部屋であるリビング 201a、禾ロ室 201b、第 1洋室 201cおよび第 2洋 室 201dに向けて分岐して設けてある。また、給気空気ダクト 210bが前記各部屋 201 a, 201b, 201c, 201dに至る端咅 こは、給気吹出口 214力 S設けてある。  [0103] The air supply air duct 210b passes through the air supply opening 203b through the ceiling behind the room, and the like. Each of the indoor rooms shown in FIG. 14 is a living room 201a, a kitchen room 201b, a first western room 201c, and a second room. It is branched off towards Western room 201d. Further, an air supply outlet 214 force S is provided at the end where the supply air duct 210b reaches the rooms 201a, 201b, 201c, 201d.
[0104] 前記排気空気ダクト 21 laは、内気取込口 203cから室内の天井裏などを経由して 図 14で示す屋内の各部屋であるトイレ 201gおよび浴室 201iに向けて分岐して設け てある。また、排気空気ダクト 21 laが前記トイレ 201gおよび浴室 201iに至る端部に は、排気吸込口 215が設けてある。 [0104] The exhaust air duct 21 la is branched from the inside air intake port 203c to the toilet 201g and the bathroom 201i which are indoor rooms shown in FIG. It is. Further, an exhaust suction port 215 is provided at an end where the exhaust air duct 21 la reaches the toilet 201g and the bathroom 201i.
[0105] 排気空気ダクト 211bは、排気口 203dから室内の天井裏などを経由して図 14で示 す屋外側である建物外壁 216などに向けて設けてある。また、排気空気ダクト 21 lb が建物外壁 216などに至る端部には、排気吹出口 217が設けてある。  [0105] The exhaust air duct 211b is provided from the exhaust port 203d to the building outer wall 216 on the outdoor side shown in FIG. Further, an exhaust outlet 217 is provided at the end where the exhaust air duct 21 lb reaches the building outer wall 216 and the like.
[0106] また、屋内には、前記給気吹出口 214と排気吸込口 215とを通じさせる通風手段 2 18が設けてある。この通風手段 218は、和室 201bからリビング 201aに通じる襖ガラ リ、リビング 201aから廊下 20Πに通じるドアアンダーカット、第 1洋室 201cから廊下 2 Olfに通じるドアアンダーカット、第 2洋室 201dから廊下 201fに通じるドアアンダー力 ット、廊下 201fからトイレ 201gに通じるドアアンダーカット、廊下 201fから脱衣所 20 lhに通じるドアアンダーカット、および脱衣所 201hから浴室 201iに通じるドアガラリ などがある。  [0106] In addition, a ventilation means 218 through which the air supply outlet 214 and the exhaust air inlet 215 are passed is provided indoors. This ventilating means 218 is a garage that leads from the Japanese-style room 201b to the living room 201a, a door undercut that leads from the living room 201a to the corridor 20th, a door undercut that leads from the first Western-style room 201c to the corridor 2 Olf, and the second western-style room 201d to the corridor 201f. There is a door under force that leads to the toilet 201g from the corridor 201f, a door undercut that leads from the corridor 201f to the dressing room 20 lh, and a door gallery that leads from the dressing room 201h to the bathroom 201i.
[0107] ところで、前記の構成に関して、前記換気手段 202に前述した図 1乃至図 12に示 すような空気イオン搬送装置が適用されている。この結果、イオン発生の減衰が防止 され、また、各部屋に均一に空気イオンの供給を可能としている。なお、空気イオン 発生装置の可動は、図 14に示すように換気手段 202の給気側送風機および排気側 送風機の稼働とは別に各々独立して各部屋 201a, 201b, 201c, 201dに配置した スィッチ 221によって ON/OFFおよび空気イオン発生量を制御することが可能であ る。また寝室、リビングなど一室に集中して除菌効果を発揮させるなど、各部屋のィォ ン量、風量を制御するようにしてもよい。  By the way, with respect to the above-described configuration, the air ion transport device as shown in FIGS. 1 to 12 described above is applied to the ventilation means 202. As a result, attenuation of ion generation is prevented, and air ions can be supplied uniformly to each room. As shown in FIG. 14, the air ion generator can be moved independently of the operation of the air supply side fan and the exhaust side air blower of the ventilation means 202, independently of each switch 201a, 201b, 201c, 201d. It is possible to control ON / OFF and air ion generation amount by 221. In addition, the ion amount and air volume of each room may be controlled, for example, by concentrating on one room such as a bedroom or living room to exert the sterilization effect.
[0108] 以上のように、空気イオン搬送システムによれば、各部屋の要求に応じた空気ィォ ンの搬送が可能となるので、各部屋に個別に空気イオン発生装置を設けなくてもよい ため、各部屋での設計上の制約を受けることがない。  [0108] As described above, according to the air ion transport system, air ions can be transported according to the requirements of each room, so that it is not necessary to provide an air ion generator individually in each room. Therefore, there are no design restrictions in each room.
また、各部屋に設けた空気供給口に空気イオン発生装置を設けなくてもよいため、 水廻り部での湿気の影響やその他特殊な部屋 (冷凍室、冷蔵室、高温室、工場や医 療施設で薬剤使用あるいは薬剤薫蒸する部屋など)での空気イオン発生装置への 直接的な影響がなレ、ので、継続的で安定した空気イオンの供給が可能になる。 そして、空気ダクトによる空気イオンの搬送なので常時ダクト内の殺菌や脱臭が可 能である。このため、前記空気イオン搬送装置は、住宅に限らず、オフィス、医療施 設、老健施設、宿泊施設、教育施設あるいは美術館などの配管空調システム導入の あらゆる用途の建物に適応することが可能である。 In addition, since it is not necessary to provide an air ion generator at the air supply port provided in each room, the influence of moisture in the water circulation area and other special rooms (freezer room, refrigerator room, high temperature room, factory and medical care) Since there is no direct impact on the air ion generator in a room where chemicals are used or fumigated, etc., it is possible to supply air ions continuously and stably. And since air ions are transported by the air duct, sterilization and deodorization in the duct are always possible. Noh. For this reason, the air ion transport device can be applied not only to a house but also to buildings of all uses such as an office, a medical facility, a health facility, an accommodation facility, an educational facility, or a museum, etc. .
[0109] ぐ実施の形態 2 >  [0109] Embodiment 2>
図 17〜図 24は本発明の実施の形態 2である空気イオン搬送装置を示す概略図で ある。また、本実施の形態における空気イオン搬送装置は、例えば集合住宅、医療- 老健施設、オフィス、工場など所定域の空気を入れ換える換気システム、あるいは所 定域の空気調節を行う空調システム '建築設備などの様々な建物用途や車両 (乗用 車、バス、電車など)の空気調節を行う空調システムに適用されるものである。  17 to 24 are schematic views showing an air ion transport device according to Embodiment 2 of the present invention. In addition, the air ion transport device in the present embodiment is a ventilation system that replaces air in a predetermined area such as an apartment house, a medical-care facility, an office, or a factory, or an air conditioning system that performs air conditioning in a predetermined area, such as a building facility. It is applied to air conditioning systems that regulate air in various building applications and vehicles (passenger cars, buses, trains, etc.).
[0110] 図 17に示す空気イオン搬送装置は、送風手段 301と空気イオン発生手段 302とを 有した空気イオン搬送ユニットを構成してある。送風手段 301は、箱状のケーシング 3 11、および当該ケーシング 311に収容した送風機 312を有している。ケーシング 311 において送風機 312の空気吸込側となる部位には、空気吸込口 311aが設けてある 。また、ケーシング 311において送風機 312の空気吹出側となる部位には空気吹出 口 31 lbが設けてある。空気吹出口 31 lbは、空気イオンを搬送する所定域に向けて 1〜複数 (本実施の形態では 4つ)設けてある。なお、空気吹出口 31 lbには、所定域 に繋がるダクト 304を接続してもよレ、。  The air ion transport device shown in FIG. 17 constitutes an air ion transport unit having an air blowing means 301 and an air ion generating means 302. The blower unit 301 includes a box-shaped casing 311 and a blower 312 accommodated in the casing 311. An air suction port 311a is provided in a portion of the casing 311 on the air suction side of the blower 312. Further, an air outlet 31 lb is provided in a portion of the casing 311 which is on the air outlet side of the blower 312. One to a plurality of air outlets 31 lb (four in the present embodiment) are provided toward a predetermined area for carrying air ions. The air outlet 31 lb may be connected with a duct 304 leading to a predetermined area.
[0111] また、図 17に示すように送風機 312の空気吹出側であるケーシング 311の内部に は、空気を清浄する清浄手段としてのフィルタ 303が設けてある。フイノレタ 303は、上 述した実施の形態 1における空気清浄装置 109と同じであり、送風機 312の稼働によ つてその入口側から出口側に通過する空気中の塵埃などを主に除去するものである  Further, as shown in FIG. 17, a filter 303 as a cleaning means for cleaning air is provided in the casing 311 on the air blowing side of the blower 312. The finoleta 303 is the same as the air cleaning device 109 in the first embodiment described above, and mainly removes dust in the air passing from the inlet side to the outlet side by the operation of the blower 312.
[0112] 空気イオン発生手段 302は、周囲の空気に正イオンを発生させる正イオン発生装 置、周囲の空気に負イオンを発生させる負イオン発生装置、あるいは周囲の空気に 正イオンおよび負イオンを共に発生させる正負イオン発生装置などを含む。すなわち 、空気イオン発生手段 302としては、正イオン発生装置のみ、負イオン発生装置のみ 、正イオン発生装置および負イオン発生装置の組み合わせ、正負イオン発生装置で の構成がある。図 17ではこれらのイオン発生装置を 4つ配置した例を示す。 [0113] 正イオン発生装置および負イオン発生装置を組み合わせた構成の場合には、正ィ オン発生装置と負イオン発生装置とを所定間隔をおいて配置する。所定間隔は、例 えば 0. 1cm以上、好ましくは 0. 5cm以上、さらに好ましくは lcm以上とするのがよい 。このようにイオン発生装置を少なくとも 0. lcm以上離して設置することにより、発生 したイオンの減衰が激減する。なお、所定間隔は、イオン発生装置の配置される部位 の容積、設置数またはイオン発生能力により、最適な間隔は適宜変化する。また、図 には明示しないが正イオン発生装置と負イオン発生装置との間に仕切部を設けても よい。さらに、正イオン Z負イオンを共に発生させる装置を複数設置する場合も同様 である。 [0112] Air ion generating means 302 is a positive ion generating device that generates positive ions in the surrounding air, a negative ion generating device that generates negative ions in the surrounding air, or positive ions and negative ions in the surrounding air. Includes positive and negative ion generators that generate both. That is, the air ion generating means 302 includes a positive ion generator only, a negative ion generator only, a combination of a positive ion generator and a negative ion generator, and a positive / negative ion generator. Figure 17 shows an example of arranging four of these ion generators. [0113] In the case of a configuration in which a positive ion generator and a negative ion generator are combined, the positive ion generator and the negative ion generator are arranged at a predetermined interval. The predetermined interval is, for example, 0.1 cm or more, preferably 0.5 cm or more, and more preferably 1 cm or more. By placing the ion generator at least 0.1 lcm apart in this way, the attenuation of the generated ions is drastically reduced. Note that the optimum interval is appropriately changed depending on the volume of the portion where the ion generator is disposed, the number of installation, or the ion generation capability. Further, although not clearly shown in the figure, a partition may be provided between the positive ion generator and the negative ion generator. The same applies when multiple devices that generate both positive ions and negative ions are installed.
[0114] 正イオン発生装置または負イオン発生装置または正負イオン発生装置で構成した 空気イオン発生手段 302は、上述した実施の形態 1における空気イオン発生装置ュ ニット 104と同じである。なお、空気イオン発生手段 302としては、上記以外にも、レ ナード効果やプラズマなどによって空気イオン (正イオン,負イオン)を発生させること ができる。この空気イオン発生手段 302は、図 17に示すように送風機 312の空気吹 出側であって、フィルタ 303の出口側であるケーシング 311の内部に配置してある。  [0114] Air ion generating means 302 configured by a positive ion generator, a negative ion generator, or a positive / negative ion generator is the same as air ion generator unit 104 in the first embodiment described above. In addition to the above, the air ion generating means 302 can generate air ions (positive ions and negative ions) by means of the Renard effect or plasma. As shown in FIG. 17, the air ion generating means 302 is disposed inside the casing 311 on the air blowing side of the blower 312 and on the outlet side of the filter 303.
[0115] 図 17に示すように構成した空気イオン搬送装置は、送風機 312を稼働することによ つて空気吸込口 311 aからケーシング 311の内部に空気を吸込む。ケーシング 311 の内部に吸込まれた空気をフィルタ 303によって清浄する。清浄された空気に対して 空気イオン発生手段 302によって発生した空気イオンを含ませる。そして、空気ィォ ンを含む清浄空気を、空気吹出口 31 lbからケーシング 311の外部の所定域 (ダクト 304)に吹出す。この結果、空気イオン発生手段 302を風上に配置した所望の対象 部位であって、図 17に示す空気吹出口 311bおよび所定域 (ダクト 304)に対し、そこ に至る空気イオンによって除菌、抗ウィルスおよび抗アレルゲン作用を行う。  The air ion transport device configured as shown in FIG. 17 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312. The air sucked into the casing 311 is cleaned by the filter 303. Air ions generated by the air ion generating means 302 are included in the purified air. Then, clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311. As a result, the air ion generation means 302 is a desired target portion arranged on the windward side, and the air blowout port 311b and the predetermined area (duct 304) shown in FIG. Performs virus and antiallergen action.
[0116] したがって、図 17に示す空気イオン搬送装置では、空気イオン発生手段 302を風 上に配置したことで、その風下にある所望の対象部位である空気イオン発生手段 30 2の周辺や風下、さらに空気吹出口 31 lbおよび所定域 (ダクト 304)など空気イオン 搬送ユニットの構成部を含み、そこに至る空気イオンによって除菌、抗ウィルスおよび 抗アレルゲン作用を行う。この結果、空気イオンの効果を長く維持して高効率で所定 域に空気イオンを搬送することが可能になる。また、空気イオンは、空気中の微粒子 に吸着するので、図 17に示す空気イオン搬送装置のごとくフィルタ 303を通過した後 の空気に空気イオン発生手段 302によって空気イオンを含ませれば、空気イオンの 効果をより長く維持して高効率で所定域に空気イオンを搬送することが可能になる。 Therefore, in the air ion transport device shown in FIG. 17, the air ion generating means 302 is arranged on the windward side, so that the air ion generating means 302, which is a desired target part on the leeward side, and the leeward side, In addition, it includes components of the air ion transport unit, such as 31 lb of air outlet and a predetermined area (duct 304), and performs sterilization, anti-virus and anti-allergen action by air ions reaching there. As a result, the effect of air ions is maintained for a long time with high efficiency. It is possible to carry air ions to the area. Further, since air ions are adsorbed by fine particles in the air, if air ions are included in the air after passing through the filter 303 as in the air ion transport device shown in FIG. It is possible to carry air ions to a predetermined area with high efficiency while maintaining the effect longer.
[0117] 図 18に示す空気イオン搬送装置は、送風手段 301と空気イオン発生手段 302とを 有した空気イオン搬送ユニットを構成してある。なお、図 18に示す空気イオン搬送装 置は、図 17に示す構成と基本的に同様であり、空気イオン発生手段 302の配置が異 なる。具体的に、空気イオン発生手段 302は、図 18に示すように送風機 312の空気 吸込側であるケーシング 311の内部に配置してある。  The air ion transport device shown in FIG. 18 constitutes an air ion transport unit having an air blowing means 301 and an air ion generating means 302. The air ion transfer device shown in FIG. 18 is basically the same as the configuration shown in FIG. 17, and the arrangement of the air ion generating means 302 is different. Specifically, as shown in FIG. 18, the air ion generating means 302 is disposed inside a casing 311 that is on the air suction side of the blower 312.
[0118] 図 18に示すように構成した空気イオン搬送装置は、送風機 312を稼働することによ つて空気吸込口 311 aからケーシング 311の内部に空気を吸込む。ケーシング 311 の内部に吸込まれた空気に対して空気イオン発生手段 302によって発生した空気ィ オンを含ませる。空気イオンを含む空気をフィルタ 303によって清浄する。そして、空 気イオンを含む清浄空気を、空気吹出口 31 lbからケーシング 311の外部の所定域( ダクト 304)に吹出す。この結果、空気イオン発生手段 302を風上に配置した所望の 対象部位であって、図 18に示す送風機 312、フィルタ 303、空気吹出口 31 lbおよ び所定域 (ダクト 304)などの空気イオン発生手段 302の周辺や風下部に対し、そこ に至る空気イオンによって除菌、抗ウィルスおよび抗アレルゲン作用を行う。  The air ion transport apparatus configured as shown in FIG. 18 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312. Air ions generated by the air ion generating means 302 are included in the air sucked into the casing 311. Air containing air ions is cleaned by the filter 303. Then, clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311. As a result, the air ion generating means 302 is a desired target portion arranged on the windward side, and the air ions such as the blower 312, the filter 303, the air outlet 31 lb and the predetermined area (duct 304) shown in FIG. The surroundings of the generating means 302 and the leeward part are sterilized, antiviral and antiallergenic by air ions reaching there.
[0119] したがって、図 18に示す空気イオン搬送装置では、空気イオン発生手段 302を風 上に配置したことで、その風下にある所望の対象部位である送風機 312、フィルタ 30 3、空気吹出口 31 lbおよび所定域 (ダクト 304)などの空気イオン発生手段 302の周 辺や風下部など空気イオン搬送ユニットの構成部を含み、そこに至る空気イオンによ つて除菌、抗ウィルスおよび抗アレルゲン作用を行う。この結果、空気イオンの効果を 長く維持して高効率で所定域に空気イオンを搬送することが可能になる。また、空気 イオンによってフィルタ 303の除菌、抗ウィルスおよび抗アレルゲン作用を行うことで、 フィルタ 303の微生物除去効果を上げ、さらにこの効果を延命するので、フイノレタ 30 3の交換時期を延長することが可能になる。  Therefore, in the air ion transport device shown in FIG. 18, the air ion generating means 302 is arranged on the windward side, so that the blower 312, the filter 30 3, and the air outlet 31 that are the desired target parts on the leeward side are provided. Includes components of the air ion transport unit such as the circumference of the air ion generating means 302 such as lb and a predetermined area (duct 304), and the leeward part, and the air ions that reach the sterilization, antiviral and antiallergen action Do. As a result, air ions can be transported to a predetermined area with high efficiency while maintaining the effect of air ions for a long time. In addition, the sterilization, anti-virus and anti-allergen action of the filter 303 is performed by air ions, so that the effect of removing the microorganism of the filter 303 is increased and this effect is further prolonged. It becomes possible.
[0120] 図 19に示す空気イオン搬送装置は、送風手段 301と空気イオン発生手段 302とを 有した空気イオン搬送ユニットを構成してある。なお、図 19に示す空気イオン搬送装 置は、図 17に示す構成と基本的に同様であり、フィルタ 303および空気イオン発生 手段 302の配置が異なる。具体的に、フイノレタ 303は、図 19に示すように送風機 312 の空気吸込側であるケーシング 311の内部に配置してある。そして、空気イオン発生 手段 302は、送風機 312の空気吸込側であってフィルタ 303の入口側に配置してあ る。 [0120] The air ion transport device shown in FIG. 19 includes a blowing means 301 and an air ion generating means 302. An air ion transport unit is provided. The air ion transport device shown in FIG. 19 is basically the same as the configuration shown in FIG. 17, and the arrangement of the filter 303 and the air ion generating means 302 is different. Specifically, as illustrated in FIG. 19, the finlet 303 is disposed inside a casing 311 that is the air suction side of the blower 312. The air ion generating means 302 is disposed on the air suction side of the blower 312 and on the inlet side of the filter 303.
[0121] 図 19に示すように構成した空気イオン搬送装置は、送風機 312を稼働することによ つて空気吸込口 311 aからケーシング 311の内部に空気を吸込む。ケーシング 311 の内部に吸込まれた空気に対して空気イオン発生手段 302によって発生した空気ィ オンを含ませる。空気イオンを含む空気をフィルタ 303によって清浄する。そして、空 気イオンを含む清浄空気を、空気吹出口 31 lbからケーシング 311の外部の所定域( ダクト 304)に吹出す。この結果、空気イオン発生手段 302を風上に配置した所望の 対象部位であって、図 19に示すフイノレタ 303、送風機 312、空気吹出口 311bおよ び所定域 (ダクト 304)などの空気イオン発生手段 302の周辺や風下部に対し、そこ に至る空気イオンによって除菌、抗ウィルスおよび抗アレルゲン作用を行う。  The air ion transport device configured as shown in FIG. 19 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312. Air ions generated by the air ion generating means 302 are included in the air sucked into the casing 311. Air containing air ions is cleaned by the filter 303. Then, clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311. As a result, the air ion generation means 302 is a desired target portion arranged on the windward side, and generates air ions such as the finole 303, the blower 312, the air outlet 311b, and the predetermined area (duct 304) shown in FIG. The surroundings of the means 302 and the windward part are sterilized, antiviral and antiallergenic by air ions reaching there.
[0122] したがって、図 19に示す空気イオン搬送装置では、空気イオン発生手段 302を風 上に配置したことで、その風下にある所望の対象部位である送風機 312、フィルタ 30 3、空気吹出口 31 lbおよび所定域 (ダクト 304)などの空気イオン発生手段 302の周 辺や風下部など空気イオン搬送ユニットの構成部を含み、そこに至る空気イオンによ つて除菌、抗ウィルスおよび抗アレルゲン作用を行う。この結果、空気イオンの効果を 長く維持して高効率で所定域に空気イオンを搬送することが可能になる。また、空気 イオンによってフィルタ 303の除菌、抗ウィルスおよび抗アレルゲン作用を行うことで、 フィルタ 303の微生物除去効果を上げ、さらにこの効果を延命するので、フイノレタ 30 3の交換時期を延長することが可能になる。  Accordingly, in the air ion transport device shown in FIG. 19, by arranging the air ion generating means 302 on the windward side, the blower 312, the filter 30 3, and the air outlet 31, which are desired target parts on the leeward side. Includes components of the air ion transport unit such as the circumference of the air ion generating means 302 such as lb and a predetermined area (duct 304), and the leeward part, and the air ions that reach the sterilization, antiviral and antiallergen action Do. As a result, air ions can be transported to a predetermined area with high efficiency while maintaining the effect of air ions for a long time. In addition, the sterilization, anti-virus and anti-allergen action of the filter 303 is performed by air ions, so that the effect of removing the microorganism of the filter 303 is increased and this effect is further prolonged. It becomes possible.
[0123] 図 20に示す空気イオン搬送装置は、送風手段 301と空気イオン発生手段 302とを 有した空気イオン搬送ユニットを構成してある。なお、図 20に示す空気イオン搬送装 置は、図 17に示す構成と基本的に同様であり、空気イオン発生手段 302をさらにカロ えて配置してある。具体的に、空気イオン発生手段 302は、図 20に示すように送風 機 312の空気吹出側であって、フィルタ 303の出口側であるケーシング 311の内部 に配置してある他、さらに加えて送風機 312の空気吸込側であるケーシング 311の 内部に配置してある。 The air ion transport device shown in FIG. 20 constitutes an air ion transport unit having an air blowing means 301 and an air ion generating means 302. The air ion transport device shown in FIG. 20 is basically the same as the configuration shown in FIG. 17, and the air ion generating means 302 is further disposed. Specifically, the air ion generating means 302 sends air as shown in FIG. In addition to being arranged inside the casing 311 which is the air blowing side of the air blower 312 and which is the outlet side of the filter 303, it is further arranged inside the casing 311 which is the air suction side of the blower 312.
[0124] 図 20に示すように構成した空気イオン搬送装置は、送風機 312を稼働することによ つて空気吸込口 311 aからケーシング 311の内部に空気を吸込む。ケーシング 311 の内部に吸込まれた空気に対して空気イオン発生手段 302によって発生した空気ィ オンを含ませる。空気イオンを含む空気をフィルタ 303によって清浄する。空気イオン を含む清浄空気に対して空気イオン発生手段 302によって発生した空気イオンをさ らに含ませる。そして、空気イオンを含む清浄空気を、空気吹出口 31 lbからケーシ ング 311の外部の所定域 (ダクト 304)に吹出す。この結果、空気イオン発生手段 30 2を風上に配置した所望の対象部位であって、図 20に示す送風機 312、フィルタ 30 3、空気吹出口 31 lbおよび所定域 (ダクト 304)などの空気イオン発生手段 302の周 辺や風下部に対し、そこに至る空気イオンによって除菌、抗ウィルスおよび抗アレル ゲン作用を行う。特に図 20に示す空気イオン搬送装置は、フィルタ 303の出口側お よび入口側に空気イオン発生手段 302が設けてあるので、フィルタを通過した空気に さらに空気イオンを含ませることが可能である。  The air ion transport apparatus configured as shown in FIG. 20 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312. Air ions generated by the air ion generating means 302 are included in the air sucked into the casing 311. Air containing air ions is cleaned by the filter 303. Air ions generated by the air ion generating means 302 are further included in the clean air containing air ions. Then, clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311. As a result, the air ion generating means 30 2 is a desired target portion arranged on the windward side, and air ions such as the blower 312, the filter 30 3, the air outlet 31 lb and the predetermined area (duct 304) shown in FIG. The periphery of the generating means 302 and the windward part are sterilized, antiviral and antiallergenic by air ions reaching there. In particular, the air ion transport device shown in FIG. 20 is provided with the air ion generating means 302 on the outlet side and the inlet side of the filter 303, so that the air that has passed through the filter can further contain air ions.
[0125] したがって、図 20に示す空気イオン搬送装置では、空気イオン発生手段 302を風 上に配置したことで、その風下にある所望の対象部位である送風機 312、フィルタ 30 3、空気吹出口 31 lbおよび所定域 (ダクト 304)などの空気イオン発生手段 302の周 辺や風下部など空気イオン搬送ユニットの構成部を含み、そこに至る空気イオンによ つて除菌、抗ウィルスおよび抗アレルゲン作用を行う。この結果、空気イオンの効果を 長く維持して高効率で所定域に空気イオンを搬送することが可能になる。また、空気 イオンによってフィルタ 303の除菌、抗ウィルスおよび抗アレルゲン作用を行うことで、 フィルタ 303の微生物除去効果を上げ、さらにこの効果を延命するので、フイノレタ 30 3の交換時期を延長することが可能になる。また、フィルタ 303を通過した空気にさら に空気イオンを含ませることにより、フィルタ 303通過時に空気イオンが減衰しても、 空気イオンの量を補助することが可能である。  Accordingly, in the air ion transport device shown in FIG. 20, the air ion generating means 302 is arranged on the windward side, so that the blower 312, the filter 30 3, and the air outlet 31 that are the desired target parts on the leeward side are provided. Includes components of the air ion transport unit such as the circumference of the air ion generating means 302 such as lb and a predetermined area (duct 304), and the leeward part, and the air ions that reach the sterilization, antiviral and antiallergen action Do. As a result, air ions can be transported to a predetermined area with high efficiency while maintaining the effect of air ions for a long time. In addition, the sterilization, anti-virus and anti-allergen action of the filter 303 is performed by air ions, so that the effect of removing the microorganism of the filter 303 is increased and this effect is further prolonged. It becomes possible. Further, by adding air ions to the air that has passed through the filter 303, even if the air ions are attenuated when passing through the filter 303, the amount of air ions can be assisted.
[0126] 図 21に示す空気イオン搬送装置は、送風手段 301と空気イオン発生手段 302とを 有した空気イオン搬送ユニットを構成してある。なお、図 21に示す空気イオン搬送装 置は、図 17に示す構成と基本的に同様であり、空気イオン発生手段 302の配置が異 なる。具体的に、空気イオン発生手段 302は、図 21に示すように空気吹出口 311b 近傍に配置してある。また、図には明示しないが空気イオン発生手段 302をダクト 30 4内部に設置する場合もある。 The air ion transport device shown in FIG. 21 includes a blowing means 301 and an air ion generating means 302. An air ion transport unit is provided. The air ion transfer device shown in FIG. 21 is basically the same as the configuration shown in FIG. 17, and the arrangement of the air ion generating means 302 is different. Specifically, the air ion generating means 302 is disposed in the vicinity of the air outlet 311b as shown in FIG. Although not shown in the drawing, the air ion generating means 302 may be installed inside the duct 304.
[0127] 図 21に示すように構成した空気イオン搬送装置は、送風機 312を稼働することによ つて空気吸込口 311 aからケーシング 311の内部に空気を吸込む。ケーシング 311 の内部に吸込まれた空気をフィルタ 303によって清浄する。清浄された空気に対して 空気イオン発生手段 302によって発生した空気イオンを含ませる。そして、空気ィォ ンを含む清浄空気を、空気吹出口 31 lbからケーシング 311の外部の所定域 (ダクト 304)に吹出す。この結果、空気イオン発生手段 302を風上に配置した所望の対象 部位であって、図 21に示す空気吹出口 31 lbおよび所定域 (ダクト 304)などの空気 イオン発生手段 302の周辺や風下部に対し、そこに至る空気イオンによって除菌、抗 ウィルスおよび抗アレルゲン作用を行う。  The air ion transport device configured as shown in FIG. 21 sucks air into the casing 311 from the air suction port 311 a by operating the blower 312. The air sucked into the casing 311 is cleaned by the filter 303. Air ions generated by the air ion generating means 302 are included in the purified air. Then, clean air containing air ions is blown out from the air outlet 31 lb to a predetermined area (duct 304) outside the casing 311. As a result, the air ion generating means 302 is a desired target portion arranged on the windward side, such as the air outlet 31 lb and the predetermined area (duct 304) shown in FIG. On the other hand, the air ions that reach it cause sterilization, antiviral and antiallergen action.
[0128] したがって、図 21に示す空気イオン搬送装置では、空気イオン発生手段 302を風 上に配置したことで、その風下にある所望の対象部位である空気吹出口 31 lbおよ び所定域 (ダクト 304)などの空気イオン発生手段 302の周辺や風下部など空気ィォ ン搬送ユニットの構成部を含み、そこに至る空気イオンによって除菌、抗ウィルスおよ び抗アレルゲン作用を行う。この結果、空気イオンの効果を長く維持して高効率で所 定域に空気イオンを搬送することが可能になる。また、空気イオン発生手段 302を空 気吹出口 31 lb近傍に配置したことによって、空気吹出口 31 lbから遠方に空気ィォ ンを飛ばすことが可能である。  Therefore, in the air ion transport device shown in FIG. 21, the air ion generating means 302 is arranged on the windward side, so that the air blowout port 31 lb that is a desired target site on the leeward side and a predetermined area ( It includes the components of the air ion transport unit such as the duct 304) and the air ion generating unit 302, such as the periphery of the air ion and the windward part, and performs sterilization, antiviral and antiallergen action by the air ions reaching there. As a result, air ions can be transported to a predetermined area with high efficiency while maintaining the effect of air ions for a long time. Further, by arranging the air ion generating means 302 in the vicinity of the air outlet 31 lb, the air ion can be blown away from the air outlet 31 lb.
[0129] 図 22に示す空気イオン搬送装置は、送風手段 301と空気イオン発生手段 302とを 有した空気イオン搬送システム(換気システム)を構成してある。送風手段 301は、給 気送風機 312aと排気送風機 312bとを有している。給気送風機 312aは、その空気 吸込側が外気に通じる取入ダクト 304aに接続してあり、その空気吹出側が所定域と しての部屋 305に繋がる給気ダクト 304bに接続してある。給気ダクト 304bが部屋 30 5に繋がる部位には給気口 306が設けてある。排気送風機 312bは、その空気吸込 側が部屋 305に繋がるリターンダクト 304cに接続してあり、その空気吹出側が外気 に通じる排気ダクト 304dに接続してある。リターンダクト 304cが部屋 305に繋がる部 位には排気口 307が設けてある。 The air ion transport device shown in FIG. 22 constitutes an air ion transport system (ventilation system) having a blowing means 301 and an air ion generating means 302. The air blowing means 301 has an air supply fan 312a and an exhaust air fan 312b. The air supply blower 312a is connected to an intake duct 304a whose air suction side communicates with the outside air, and its air discharge side is connected to an air supply duct 304b connected to the room 305 as a predetermined area. An air supply port 306 is provided at a portion where the air supply duct 304b is connected to the room 305. Exhaust blower 312b has its air suction The side is connected to a return duct 304c that leads to the room 305, and the air outlet side is connected to an exhaust duct 304d that leads to the outside air. An exhaust port 307 is provided at a portion where the return duct 304c is connected to the room 305.
[0130] 空気イオン発生手段 302は、上述した構成と同様であって、以下の部位の少なくと も 1箇所(1箇所または複数または全て)に配置してある。具体的に空気イオン発生手 段 302を配置する部位は、図 22に示すように取入ダクト 304a (A)、給気ダクト 304b の給気送風機 312a近傍 (B)、給気ダクト 304bの給気口 306近傍(C)、リターンダク ト 304cの排気口 307近傍(D)、および排気ダクト 304d (E)である。  [0130] The air ion generating means 302 has the same configuration as described above, and is arranged in at least one (one, a plurality, or all) of the following parts. Specifically, as shown in Fig. 22, the locations where the air ion generating means 302 is arranged are the intake duct 304a (A), the supply duct 304b, the vicinity of the supply blower 312a (B), and the supply air of the supply duct 304b. The vicinity of the opening 306 (C), the vicinity of the exhaust port 307 of the return duct 304c (D), and the exhaust duct 304d (E).
[0131] 図 22に示すように構成した空気イオン搬送装置は、給気送風機 312aを稼働するこ とによって取入ダクト 304aから外気を取入れ、給気ダクト 304bを介して給気口 306 力 部屋 305に外気を給気する。この際、取入ダクト 304aから取入れた外気に対し て取入ダクト 304aに配置した空気イオン発生手段 302 (A)が発生した空気イオンを 含ませる。すなわち、空気イオンが給気送風機 312aに至る。また、給気送風機 312a が送風する空気に対して給気ダクト 304bの給気送風機 312a近傍に配置した空気ィ オン発生手段 302 (B)が発生した空気イオンを含ませる。すなわち、空気イオンが給 気ダクト 304bに至る。また、給気ダクト 304bを通過する空気に対して給気ダクト 304 bの給気口 306近傍に配置した空気イオン発生手段 302 (C)が発生した空気イオン を含ませる。すなわち、空気イオンが給気口 306を介して部屋 305に至る。この結果 、空気イオン発生手段 302を風上に配置した所望の対象部位であって、図 22に示 す給気送風機 312a、給気ダクト 304b、給気口 306および部屋 305に対し、そこに至 る空気イオンによって除菌、抗ウィルスおよび抗アレルゲン作用を行う。  [0131] The air ion transport apparatus configured as shown in Fig. 22 takes in outside air from the intake duct 304a by operating the air supply blower 312a, and supplies the air through the air supply duct 304b. Supply outside air. At this time, air ions generated by the air ion generating means 302 (A) arranged in the intake duct 304a are included in the outside air taken in from the intake duct 304a. That is, air ions reach the supply air blower 312a. Further, air ions generated by the air ion generating means 302 (B) disposed in the vicinity of the air supply fan 312a of the air supply duct 304b are included in the air blown by the air supply fan 312a. That is, air ions reach the supply duct 304b. Further, the air passing through the air supply duct 304b includes air ions generated by the air ion generating means 302 (C) disposed in the vicinity of the air supply port 306 of the air supply duct 304b. That is, air ions reach the room 305 through the air supply port 306. As a result, the air ion generating means 302 is a desired target portion arranged on the windward side, and reaches the air supply fan 312a, the air supply duct 304b, the air supply port 306, and the room 305 shown in FIG. Sterilization, antiviral and antiallergenic action by air ions.
[0132] 一方、図 22に示すように構成した空気イオン搬送装置は、排気送風機 312bを稼 働することによって排気口 307を介して部屋 305内の空気をリターンダクト 304cに取 入れ、排気ダクト 304dを介して部屋 305内の空気を外気に排気する。この際、排気 口 307から取入れた部屋 305内の空気に対してリターンダクト 304cの排気口 307近 傍に配置した空気イオン発生手段 302 (D)が発生した空気イオンを含ませる。すな わち、空気イオンがリターンダクト 304cおよび排気送風機 312bに至る。また、排気ダ タト 304dを通過する空気に対して排気ダクト 304dに配置した空気イオン発生手段 3 02 (E)が発生した空気イオンを含ませる。すなわち、空気イオンが外気に至る。この 結果、空気イオン発生手段 302を風上に配置した所望の対象部位であって、図 22 に示すリターンダクト 304c、排気送風機 312bおよび外気に対して、そこに至る空気 イオンによって除菌、抗ウィルスおよび抗アレルゲン作用を行う。 [0132] On the other hand, the air ion transport apparatus configured as shown in Fig. 22 operates the exhaust blower 312b to take the air in the room 305 into the return duct 304c through the exhaust port 307, and the exhaust duct 304d. The air in the room 305 is exhausted to the outside through the air. At this time, air ions generated by the air ion generating means 302 (D) disposed near the exhaust port 307 of the return duct 304c are included in the air in the room 305 taken in from the exhaust port 307. That is, air ions reach the return duct 304c and the exhaust fan 312b. Also, air ion generating means 3 disposed in the exhaust duct 304d with respect to the air passing through the exhaust data 304d. 02 Includes air ions generated by (E). That is, air ions reach the outside air. As a result, the air ion generating means 302 is a desired target portion arranged on the windward side, and is sterilized and antiviral by the return air 304c, the exhaust blower 312b and the outside air shown in FIG. And anti-allergen action.
[0133] したがって、図 22に示す空気イオン搬送装置では、空気イオン発生手段 302を風 上に配置したことで、その風下にある所望の対象部位である給気送風機 312a、給気 ダクト 304b、給気口 306、部屋 305、リターンダクト 304c、排気送風機 312bおよび 外気など空気イオン搬送ユニットの構成部を含み、そこに至る空気イオンによって除 菌、抗ウィルスおよび抗アレルゲン作用を行う。この結果、空気イオンの効果を長く維 持して高効率で所定域に空気イオンを搬送することが可能になる。また、排気する空 気に空気イオンを含ませることによって、排気した空気の除菌、抗ウィルスおよび抗ァ レルゲン作用を行って周囲の環境の改善も行える。 Therefore, in the air ion transport device shown in FIG. 22, the air ion generating means 302 is arranged on the windward side, whereby the air supply blower 312a, the air supply duct 304b, It includes components of the air ion transport unit such as the mouth 306, the room 305, the return duct 304c, the exhaust air blower 312b, and the outside air, and performs sterilization, antiviral and antiallergen action by the air ions reaching there. As a result, it is possible to transport air ions to a predetermined area with high efficiency while maintaining the effect of air ions for a long time. In addition, by including air ions in the exhausted air, the surrounding environment can be improved by sterilizing the exhausted air and performing antiviral and antiallergenic effects.
[0134] 図 23に示す空気イオン搬送装置は、送風手段 301と空気イオン発生手段 302とを 有した空気イオン搬送システム (熱交換空調システム)を構成してある。送風手段 30 1は、給気送風機 312aと排気送風機 312bとを有している。給気送風機 312aは、そ の空気吸込側が外気に通じる取入ダクト 304aに接続してあり、その空気吹出側が所 定域としての部屋 305に繋がる給気ダクト 304bに接続してある。取入ダクト 304aの 給気送風機 312a近傍には、フィルタ 303および空気の熱交換を行うコイル 308を有 したケーシング 309が設けてある。給気ダクト 304bが部屋 305に繋がる部位には給 気口 306が設けてある。排気送風機 312bは、その空気吸込側が部屋 305に繋がる リターンダクト 304cに接続してあり、その空気吹出側が外気に通じる排気ダクト 304d に接続してある。さらに、排気送風機 312bの空気吹出側は、排気ダクト 304dから分 岐してケーシング 309のフィルタ 303側に接続してある。リターンダクト 304cが部屋 3 05に繋がる部位には排気口 307が設けてある。給気ダクト 304bおよび排気ダクト 30 4dには、熱交換器 310が相互に介在して設けてある。  The air ion transport apparatus shown in FIG. 23 constitutes an air ion transport system (heat exchange air-conditioning system) having a blowing means 301 and an air ion generating means 302. The air blowing means 301 includes an air supply fan 312a and an exhaust fan 312b. The air supply blower 312a is connected to an intake duct 304a whose air suction side leads to the outside air, and its air outlet side is connected to an air supply duct 304b connected to a room 305 as a predetermined area. A casing 309 having a filter 303 and a coil 308 for exchanging heat of air is provided in the vicinity of the supply air blower 312a of the intake duct 304a. An air supply port 306 is provided at a portion where the air supply duct 304 b is connected to the room 305. The exhaust blower 312b has an air suction side connected to a return duct 304c connected to the room 305, and an air blower side connected to an exhaust duct 304d communicating with the outside air. Further, the air blowing side of the exhaust blower 312b is branched from the exhaust duct 304d and connected to the filter 303 side of the casing 309. An exhaust port 307 is provided at a part where the return duct 304c is connected to the room 300. A heat exchanger 310 is interposed between the air supply duct 304b and the exhaust duct 304d.
[0135] 空気イオン発生手段 302は、上述した構成と同様であって、以下の部位の少なくと も 1箇所(1箇所または複数または全て)に配置してある。具体的に空気イオン発生手 段 302を配置する部位は、図 23に示すように取入ダクト 304aの熱交換器 310入口 側の風上部(F)、取入ダクト 304aの熱交換器 310出口側(G)、ケーシング 309内の フィルタ 303入口側(H)、ケーシング 309内のフィルタ 303出口側であってコイル 30 8入口側(1)、ケーシング 309内のコイル 308出口側ひ)、給気ダクト 304bの給気送 風機 312a近傍 (K)、給気ダクト 304bの給気口 306近傍 (L)、リターンダクト 304cの 排気口 307近傍 (M)、排気送風機 312bの吹出側(N)、および排気ダクト 304dの熱 交換器 310出口側(O)である。 [0135] The air ion generating means 302 has the same configuration as described above, and is arranged in at least one (one, a plurality, or all) of the following parts. Specifically, the part where the air ion generating means 302 is arranged is as shown in FIG. 23, the inlet of the heat exchanger 310 of the intake duct 304a. Side windward (F), intake duct 304a heat exchanger 310 outlet side (G), filter 303 inlet side (H) in casing 309, filter 303 outlet side in casing 309 coil 30 8 inlet Side (1), coil in casing 309, exit side of coil 308, air supply duct 304b, near air supply fan 312a (K), air supply duct 304b, air supply port 306 vicinity (L), return duct 304c exhaust The vicinity of the port 307 (M), the blower side (N) of the exhaust fan 312b, and the outlet side (O) of the heat exchanger 310 of the exhaust duct 304d.
図 23に示すように構成した空気イオン搬送装置は、給気送風機 312aを稼働するこ とによって取入ダクト 304aから外気を取入れ、熱交換器 310、フィルタ 303およびコ ィル 308を通過させた後、給気ダクト 304bを介して給気口 306から部屋 305に外気 を給気する。この際、取入ダクト 304aから取入れた外気に対して取入ダクト 304aの 熱交換器 310入口側に配置した空気イオン発生手段 302 (F)が発生した空気イオン を含ませる。すなわち、空気イオンが熱交換器 310に至る。また、熱交換器 310を経 た空気に対して取入ダクト 304aの熱交換器 310出口側に配置した空気イオン発生 手段 302 (G)が発生した空気イオンを含ませる。すなわち、空気イオンがケーシング 309のフイノレタ 303側に至る。また、ケーシング 309内の空気に対してケーシング 30 9内のフィルタ 303入口側に配置した空気イオン発生手段 302 (H)が発生した空気 イオンを含ませる。すなわち、空気イオンがフィルタ 303に至る。また、ケーシング 30 9内の空気に対してケーシング 309内のフィルタ 303出口側であってコイル 308入口 側に配置した空気イオン発生手段 302 (1)が発生した空気イオンを含ませる。すなわ ち、空気イオンがコイル 308に至る。また、ケーシング 309内の空気に対してケーシン グ 309内のコイル 308出口側に配置した空気イオン発生手段 302 J)が発生した空 気イオンを含ませる。すなわち、空気イオンが給気送風機 312aに至る。また、給気送 風機 312aが送風する空気に対して給気ダクト 304bの給気送風機 312a近傍に配置 した空気イオン発生手段 302 (K)が発生した空気イオンを含ませる。すなわち、空気 イオンが給気ダクト 304bに至る。また、給気ダクト 304bを通過する空気に対して給 気ダクト 304bの給気口 306近傍に配置した空気イオン発生手段 302 (L)が発生した 空気イオンを含ませる。すなわち、空気イオンが給気口 306を介して部屋 305に至る 。この結果、空気イオン発生手段 302を風上に配置した所望の対象部位であって、 図 23ίこ示す熱交換器 310、ゲーシング 309、フイノレタ 303、 ィノレ 308、給気送風機 312a,給気ダクト 304b、給気口 306および部屋 305に対し、そこに至る空気イオン によって除菌、抗ウィルスおよび抗アレルゲン作用を行う。 The air ion transport apparatus configured as shown in FIG. 23 operates after the supply air blower 312a is operated to take outside air from the intake duct 304a and pass through the heat exchanger 310, the filter 303, and the coil 308. Then, outside air is supplied from the supply port 306 to the room 305 through the supply duct 304b. At this time, air ions generated by the air ion generating means 302 (F) arranged on the inlet side of the heat exchanger 310 of the intake duct 304a are included in the outside air taken in from the intake duct 304a. That is, air ions reach the heat exchanger 310. Further, air ions generated by the air ion generating means 302 (G) disposed on the outlet side of the heat exchanger 310 of the intake duct 304a are included in the air that has passed through the heat exchanger 310. That is, air ions reach the finole 303 side of the casing 309. Further, air ions generated by the air ion generating means 302 (H) arranged on the inlet side of the filter 303 in the casing 309 are included in the air in the casing 309. That is, air ions reach the filter 303. Further, the air in the casing 309 includes air ions generated by the air ion generating means 302 (1) disposed on the filter 303 outlet side in the casing 309 and on the coil 308 inlet side. In other words, air ions reach the coil 308. In addition, air ions generated by the air ion generating means 302 J) arranged on the outlet side of the coil 308 in the casing 309 are included in the air in the casing 309. That is, air ions reach the supply air blower 312a. Further, air ions generated by the air ion generating means 302 (K) disposed in the vicinity of the air supply fan 312a of the air supply duct 304b are included in the air blown by the air supply fan 312a. That is, air ions reach the supply duct 304b. In addition, air ions generated by the air ion generating means 302 (L) arranged near the air inlet 306 of the air supply duct 304b are included in the air passing through the air supply duct 304b. That is, air ions reach the room 305 through the air supply port 306. As a result, a desired target portion in which the air ion generating means 302 is arranged on the windward side, Fig. 23ί shows heat exchanger 310, gating 309, finoleta 303, inole 308, air blower 312a, air duct 304b, air inlet 306, and room 305. Performs allergen action.
[0137] 一方、図 23に示すように構成した空気イオン搬送装置は、排気送風機 312bを稼 働することによって排気口 307を介して部屋 305内の空気をリターンダクト 304cに取 入れ、排気ダクト 304dを介して部屋 305内の空気を外気に排気する。あるいは、排 気送風機 312bを稼働することによって排気口 307を介して部屋 305内の空気をリタ ーンダクト 304cに取入れ、分岐部からケーシング 309に空気を戻す。この際、排気 口 307から取入れた部屋 305内の空気に対してリターンダクト 304cの排気口 307近 傍に配置した空気イオン発生手段 302 (M)が発生した空気イオンを含ませる。すな わち、空気イオンがリターンダクト 304cおよび排気送風機 312bに至る。また、排気 送風機 312bの吹出側を通過する空気に対して排気送風機 312bの吹出側に配置し た空気イオン発生手段 302 (N)が発生した空気イオンを含ませる。すなわち、空気ィ オンが熱交換器 310およびケーシング 309のフィルタ 303側に至る。また、排気ダクト 304dを通過する空気に対して排気ダクト 304dの熱交換器 310出口側に配置した空 気イオン発生手段 302 (0)が発生した空気イオンを含ませる。すなわち、空気イオン が外気に至る。この結果、空気イオン発生手段 302を風上に配置した所望の対象部 位であって、図 23に示すリターンダクト 304c、排気送風機 312b、熱交換器 310、ケ 一シング 309および外気に対して、そこに至る空気イオンによって除菌、抗ウィルス および抗アレルゲン作用を行う。  On the other hand, the air ion transport apparatus configured as shown in FIG. 23 operates the exhaust fan 312b to take the air in the room 305 into the return duct 304c through the exhaust port 307, and the exhaust duct 304d. The air in the room 305 is exhausted to the outside through the air. Alternatively, by operating the exhaust fan 312b, the air in the room 305 is taken into the return duct 304c through the exhaust port 307, and the air is returned from the branch portion to the casing 309. At this time, air ions generated by the air ion generating means 302 (M) disposed near the exhaust port 307 of the return duct 304c are included in the air in the room 305 taken in from the exhaust port 307. That is, air ions reach the return duct 304c and the exhaust fan 312b. In addition, air ions generated by the air ion generating means 302 (N) disposed on the blowout side of the exhaust blower 312b are included in the air passing through the blowout side of the exhaust blower 312b. That is, the air ion reaches the heat exchanger 310 and the filter 303 side of the casing 309. Further, air ions generated by the air ion generating means 302 (0) disposed on the outlet side of the heat exchanger 310 of the exhaust duct 304d are included in the air passing through the exhaust duct 304d. That is, air ions reach the outside air. As a result, it is a desired target portion where the air ion generating means 302 is disposed on the windward side, and the return duct 304c, the exhaust blower 312b, the heat exchanger 310, the casing 309 and the outside air shown in FIG. The air ions that reach it cause sterilization, antiviral and antiallergenic effects.
[0138] したがって、図 23に示す空気イオン搬送装置では、空気イオン発生手段 302を風 上に配置したことで、その風下にある所望の対象部位である熱交換器 310、ケーシン グ 309、フィノレタ 303、 ィノレ 308、給気送風機 312a、給気ダクト 304b、給気口 306 および部屋 305、リターンダクト 304c、排気送風機 312bおよび外気など空気イオン 搬送ユニットの構成部を含み、そこに至る空気イオンによって除菌、抗ウィルスおよび 抗アレルゲン作用を行う。この結果、空気イオンの効果を長く維持して高効率で所定 域に空気イオンを搬送することが可能になる。また、排気する空気に空気イオンを含 ませることによって、排気した空気の除菌、抗ウィルスおよび抗アレルゲン作用を行つ て周囲の環境の改善も行える。また、熱交換器 310に空気イオンを含ませた空気を 送ることによって、熱交換器 310の各種部品交換時期を延長することが可能である。 Therefore, in the air ion transport device shown in FIG. 23, by arranging the air ion generating means 302 on the windward side, the heat exchanger 310, the casing 309, and the finoleta 303, which are desired target parts on the leeward side, are provided. Inlet 308, air supply fan 312a, air supply duct 304b, air supply port 306 and room 305, return duct 304c, exhaust air blower 312b, outside air, etc. Performs antiviral and antiallergenic effects. As a result, air ions can be transported to a predetermined region with high efficiency while maintaining the effect of air ions for a long time. In addition, by containing air ions in the exhausted air, the exhausted air can be sterilized, antiviral and antiallergenic. To improve the surrounding environment. In addition, by sending air containing air ions to the heat exchanger 310, it is possible to extend the various parts replacement time of the heat exchanger 310.
[0139] 図 24に示す空気イオン搬送装置は、送風手段 301と空気イオン発生手段 302とを 有した空気イオン搬送システム (全熱交換空調システム)を構成してある。送風手段 3 01は、給気送風機 312aと排気送風機 312bとを有している。給気送風機 312aは、 隔壁 311cで 2つに区画されたケーシング 311の一方の領域 3 l id内に配置してあつ て、当該一方の領域 31 Idの空気吸込側が外気に通じる取入ダクト 304aに接続して あり、その空気吹出側が所定域としての部屋 305に繋がる給気ダクト 304bに接続し てある。ケーシング 311内の一方の領域 31 Idには、空気の熱交換を行うコイル 308 が設けてあり、ケーシング 311内の一方の領域 31 Idには、フィルタ 303が設けてある 。排気送風機 312bは、隔壁 311cで 2つに区画されたケーシング 311の他方の領域 31 le内に配置してあって、当該他方の領域 31 leの空気吸込側が部屋 305に繋が るリターンダクト 304cに接続してあり、その空気吹出側が外気に通じる排気ダクト 304 dに接続してある。ケーシング 311内の他方の領域 31 leには、フィルタ 303が設けて ある。 The air ion transport device shown in FIG. 24 constitutes an air ion transport system (total heat exchange air-conditioning system) having an air blowing means 301 and an air ion generating means 302. The blower means 301 has an air supply blower 312a and an exhaust blower 312b. The supply air blower 312a is arranged in one area 3l id of the casing 311 divided into two by the partition wall 311c, and the intake duct 304a in which the air suction side of the one area 31 Id communicates with the outside air. The air outlet side is connected to an air supply duct 304b connected to a room 305 as a predetermined area. One region 31 Id in the casing 311 is provided with a coil 308 for heat exchange of air, and one region 31 Id in the casing 311 is provided with a filter 303. The exhaust blower 312b is arranged in the other region 31 le of the casing 311 divided into two by the partition wall 311c, and the air suction side of the other region 31 le is connected to the return duct 304c connected to the room 305. The air blowing side is connected to an exhaust duct 304 d communicating with the outside air. A filter 303 is provided in the other region 31 le in the casing 311.
[0140] 空気イオン発生手段 302は、上述した構成と同様であって、以下の部位の少なくと も 1箇所(1箇所または複数または全て)に配置してある。具体的に空気イオン発生手 段 302を配置する部位は、図 24に示すように取入ダクト 304a (P)、ケーシング 311 内の一方の領域 31 Idのフィルタ 303入口側(Q)、ケーシング 31 1内の一方の領域 3 l idのフィルタ 303出口側であってコイル 308入口側(R)、給気ダクト 304bの給気送 風機 312a近傍もしくはケーシング 311内の給気送風機 312a吹出側(S)、給気ダクト 304bの給気口 306近傍 (T)、リターンダクト 304cの排気口 307近傍(U)、ケーシン グ 311内の他方の領域 31 leのフィルタ 303入口側(V)、および排気ダクト 304dもし くはケーシング 311内の排気送風機 312b吹出側 (W)である。  [0140] The air ion generating means 302 has the same configuration as described above, and is arranged in at least one (one, a plurality, or all) of the following parts. Specifically, as shown in FIG. 24, the part where the air ion generating means 302 is disposed is the intake duct 304a (P), one region 31 in the casing 311 31 Id filter 303 inlet side (Q), the casing 31 1 One area of the filter 3 L id filter 303 outlet side and coil 308 inlet side (R), air supply duct 304b supply air blower 312a vicinity or casing 311 supply air blower 312a discharge side (S), Near the air inlet 306 of the air supply duct 304b (T), near the exhaust air outlet 307 of the return duct 304c (U), the other region 31le in the casing 311 31le filter 303 inlet side (V), and the exhaust duct 304d Or an exhaust blower 312b outlet side (W) in the casing 311.
[0141] 図 24に示すように構成した空気イオン搬送装置は、給気送風機 312aを稼働するこ とによって取入ダクト 304aから外気を取入れ、ケーシング 311の一方の領域 31 Idに おいてフィルタ 303およびコイル 308を通過させた後、給気ダクト 304bを介して給気 口 306から部屋 305に外気を給気する。この際、取入ダクト 304aから取入れた外気 に対して取入ダクト 304aに配置した空気イオン発生手段 302 (P)が発生した空気ィ オンを含ませる。すなわち、空気イオンが取入ダクト 304aからケーシング 31 1に至る 。また、ケーシング 311内の一方の領域 311dのフィルタ 303入口側に配置した空気 イオン発生手段 302 (Q)が発生した空気イオンを含ませる。すなわち、空気イオンが ケーシング 311内の一方の領域 31 Idにおいてフィルタ 303に至る。また、ケーシン グ 311内の一方の領域 31 Idのフィルタ 303出口側であってコイル 308入口側に配 置した空気イオン発生手段 302 (R)が発生した空気イオンを含ませる。すなわち、空 気イオンがコイル 308に至る。また、給気送風機 312aが送風する空気に対して給気 ダクト 304bの給気送風機 312a近傍もしくはケーシング 311内の給気送風機 312a吹 出側に配置した空気イオン発生手段 302 (S)が発生した空気イオンを含ませる。す なわち、空気イオンが給気ダクト 304bに至る。また、給気ダクト 304bを通過する空気 に対して給気ダクト 304bの給気口 306近傍に配置した空気イオン発生手段 302 (T) が発生した空気イオンを含ませる。すなわち、空気イオンが給気口 306を介して部屋 305に至る。この結果、空気イオン発生手段 302を風上に配置した所望の対象部位 であって、図 24に示す取入ダクト 304a、ケーシング 31 1内の一方の領域 31 ld、フィ ノレタ 303、 コィノレ 308、給気送風機 312a、給気ダクト 304b、給気口 306および咅屋 305に対し、そこに至る空気イオンによって除菌、抗ウィルスおよび抗アレルゲン作用 を行う。 [0141] The air ion transport apparatus configured as shown in FIG. 24 takes in outside air from the intake duct 304a by operating the air supply blower 312a, and in one region 31 Id of the casing 311 the filter 303 and After passing the coil 308, outside air is supplied from the air supply port 306 to the room 305 through the air supply duct 304b. At this time, the outside air taken in from the intake duct 304a In contrast, air ions generated by the air ion generating means 302 (P) disposed in the intake duct 304a are included. That is, air ions reach the casing 311 from the intake duct 304a. In addition, air ions generated by the air ion generating means 302 (Q) disposed on the filter 303 inlet side of one region 311d in the casing 311 are included. That is, air ions reach the filter 303 in one region 31 Id in the casing 311. In addition, air ions generated by the air ion generating means 302 (R) arranged on the filter 303 outlet side of the one region 31 Id in the casing 311 on the coil 308 inlet side are included. That is, air ions reach the coil 308. In addition, air generated by the air ion generating means 302 (S) arranged near the air supply fan 312a of the air supply duct 304b or the air supply fan 312a in the casing 311 with respect to the air blown by the air supply fan 312a Include ions. That is, air ions reach the supply duct 304b. In addition, air ions generated by the air ion generating means 302 (T) arranged near the air inlet 306 of the air supply duct 304b are included in the air passing through the air supply duct 304b. That is, air ions reach the room 305 through the air supply port 306. As a result, it is a desired target portion where the air ion generating means 302 is arranged on the windward side, and the intake duct 304a, one region 31ld in the casing 311, shown in FIG. 24, the finlet 303, the coinlet 308, The air blower 312a, the air supply duct 304b, the air supply port 306, and the Ashiya 305 are sterilized, antiviral and antiallergenic by the air ions that reach them.
一方、図 24に示すように構成した空気イオン搬送装置は、排気送風機 312bを稼 働することによって排気口 307を介して部屋 305内の空気をリターンダクト 304cに取 入れ、ケーシング 311の他方の領域 31 leにおいてフィルタ 303を通過させた後、排 気ダクト 304dを介して部屋 305内の空気を外気に排気する。この際、排気口 307か ら取入れた部屋 305内の空気に対してリターンダクト 304cの排気口 307近傍に配置 した空気イオン発生手段 302 (U)が発生した空気イオンを含ませる。すなわち、空気 イオンがリターンダクト 304cおよびケーシング 311内の他方の領域 31 leに至る。ま た、ケーシング 311内の他方の領域 31 leの空気に対してケーシング 311内の他方 の領域 31 leのフィルタ 303入口側に配置した空気イオン発生手段 302 (V)が発生 した空気イオンを含ませる。すなわち、空気イオンがケーシング 311内の他方の領域 311eにおいてフィルタ 303および排気送風機 312bに至る。また、排気送風機 312b が送風する空気に対して排気ダクト 304dもしくはケーシング 311内の排気送風機 31 2b吹出側に配置した空気イオン発生手段 302 (W)が発生した空気イオンを含ませる 。すなわち、空気イオンが外気に至る。この結果、空気イオン発生手段 302を風上に 配置した所望の対象部位であって、図 24に示すリターンダクト 304c、ケーシング 31 1内の他方の領域 311e、フイノレタ 303、排気送風機 312bおよび外気に対して、そこ に至る空気イオンによって除菌、抗ウィルスおよび抗アレルゲン作用を行う。 On the other hand, the air ion transport apparatus configured as shown in FIG. 24 operates the exhaust fan 312b to take the air in the room 305 into the return duct 304c through the exhaust port 307, and the other region of the casing 311. After passing the filter 303 at 31 le, the air in the room 305 is exhausted to the outside air through the exhaust duct 304d. At this time, air ions generated by the air ion generating means 302 (U) disposed in the vicinity of the exhaust port 307 of the return duct 304c are included in the air in the room 305 taken from the exhaust port 307. That is, air ions reach the other area 31 le in the return duct 304 c and the casing 311. In addition, the air in the other region 31 le in the casing 311 includes air ions generated by the air ion generating means 302 (V) disposed on the filter 303 inlet side in the other region 31 le in the casing 311. . That is, air ions are in the other region in the casing 311. In 311e, it reaches the filter 303 and the exhaust fan 312b. Further, the air blown by the exhaust blower 312b includes air ions generated by the air ion generating means 302 (W) disposed on the exhaust duct 304d or the exhaust blower 312b blowing side in the casing 311. That is, air ions reach the outside air. As a result, the air ion generating means 302 is a desired target portion arranged on the windward side, and is provided for the return duct 304c, the other region 311e in the casing 311 shown in FIG. Then, the air ions that reach the area perform sterilization, antiviral and antiallergenic effects.
[0143] したがって、図 24に示す空気イオン搬送装置では、空気イオン発生手段 302を風 上に配置したことで、その風下にある所望の対象部位であるケーシング 311内の一 方の領域 311d、フィノレタ 303、 ィノレ 308、給気送風機 312a、給気ダクト 304b、給 気口 306、部屋 305、リターンダクト 304c、ケーシング 311内の他方の領域 31 le、 排気送風機 312bおよび外気など空気イオン搬送ユニットの構成部を含み、そこに至 る空気イオンによって除菌、抗ウィルスおよび抗アレルゲン作用を行う。この結果、空 気イオンの効果を長く維持して高効率で所定域に空気イオンを搬送することが可能 になる。また、排気する空気に空気イオンを含ませることによって、排気した空気の除 菌、抗ウィルスおよび抗アレルゲン作用を行って周囲の環境の改善も行える。また、 全熱交換器を構成するケーシング 311内に空気イオン発生手段 302を設けたことに よって、全熱交換器内のフィルタ 303やコイル 308の除菌、抗ウィルスおよび抗ァレ ルゲン作用が行えるので、全熱交換器の各種部品交換時期を延長することが可能で ある。 Therefore, in the air ion transport device shown in FIG. 24, by arranging the air ion generating means 302 on the windward side, a region 311d in the casing 311 that is a desired target part on the leeward side, the finoletas 303, Inole 308, Air supply blower 312a, Air supply duct 304b, Air supply port 306, Room 305, Return duct 304c, Other area 313 in casing 311, Exhaust air blower 312b and components of air ion transport unit such as outside air It is sterilized, antiviral and antiallergenic by air ions that reach it. As a result, air ions can be transported to a predetermined area with high efficiency while maintaining the effect of air ions for a long time. In addition, by including air ions in the exhausted air, the surrounding environment can be improved by sterilizing the exhausted air and performing antiviral and antiallergenic effects. In addition, by providing the air ion generating means 302 in the casing 311 constituting the total heat exchanger, the filter 303 and the coil 308 in the total heat exchanger can be sterilized, and antiviral and antiallergenic actions can be performed. Therefore, it is possible to extend the time for replacing various parts of the total heat exchanger.
[0144] なお、上述した実施の形態において、空気イオンはフィルタ 303や熱交換器 310通 過時に減衰するものが多ぐプレフイノレタ、除塵フィルタなどの各種フィルタや熱交換 器は空気イオン発生手段 302の風上側に設置することが望ましいが、フィルタや熱交 換器そのものに荷電などがなぐ発生したイオンが減衰されない場合には、フィルタ あるいは熱交換器を空気イオン発生手段 302の風下側に設置することができる。また 、コイル 308も同様に空気イオン発生手段 302の風上側に設置することが望ましいが 、コイル 308そのものに荷電などがなぐ発生したイオンが減衰されない場合には、コ ィル 308を空気イオン発生手段 302の風下側に設置することができる。 [0145] 上述した実施の形態において、図 17〜図 24までは、換気システムの説明であった 1S 「〇A」 「RA」に冷暖房や加湿や除湿、化学物質などの吸着や分解、細菌'塵 埃などの除去を行う空気調和 (空調)システムに対して空気イオン搬送装置を同様に 応用すること力 Sできる。 [0144] In the above-described embodiment, the air ions are often attenuated when passing through the filter 303 and the heat exchanger 310, and various filters and heat exchangers such as a prefilter and a dust filter are used for the air ion generating means 302. Although it is desirable to install it on the leeward side, if the generated ions that are not charged by the filter or heat exchanger itself are not attenuated, install the filter or heat exchanger on the leeward side of the air ion generator 302. Can do. Similarly, it is desirable that the coil 308 is also installed on the windward side of the air ion generating means 302. However, if the generated ions that are charged by the coil 308 itself are not attenuated, the coil 308 is used as the air ion generating means. It can be installed on the leeward side of 302. [0145] In the above-described embodiment, FIGS. 17 to 24 explain the ventilation system by 1S “〇A” and “RA”. Air conditioning, humidification, dehumidification, adsorption and decomposition of chemical substances, bacteria, etc. It is possible to apply the air ion transport device to an air conditioning (air conditioning) system that removes dust.
[0146] また、上述した実施の形態において、ケーシング 311, 309、ダクト 304 (304a、 30 4b、 304c, 304d)などの空気イオンを搬送する部位には、これらの帯電によって空 気イオンの搬送効率が低下するので、図には明示しないが空気イオンを搬送する部 位に金属や導電性などのある非 Z低帯電材料を用いる、または帯電した電荷を除去 するための電荷除去装置やアースを行う場所を設置するなど帯電除去手段を用意 することが好ましい。この結果、空気イオンの搬送効率を向上することが可能になり、 除菌、抗ウィルスおよび抗アレルゲン効果を高めるとともに、空気イオンの搬送距離 を長くすることが可能になる。  [0146] In the above-described embodiment, air ions are transported to the parts that transport air ions, such as the casings 311, 309, the ducts 304 (304a, 304b, 304c, 304d). Although not shown in the figure, use a non-Z low-charge material such as metal or conductivity for the part that carries air ions, or use a charge removal device or ground to remove the charged charge. It is preferable to prepare a charge removing means such as installing a place. As a result, it is possible to improve the efficiency of air ion transport, to enhance the sterilization, antiviral and anti-allergen effects, and to increase the air ion transport distance.
[0147] なお、図には明示しないが上述した全ての実施の形態において、空気イオン発生 手段 302の風上に整流板、仕切板などを配置し、発生する空気イオンの向きや風量 を調整するようにしてもよレ、。  [0147] Although not explicitly shown in the figure, in all the embodiments described above, a rectifying plate, a partition plate, etc. are arranged on the windward side of the air ion generating means 302 to adjust the direction and air volume of the generated air ions. You can do it.
[0148] また、住宅、オフィス、各種施設 (食品、医療、老健、教育、宿泊施設など)、その他 工場など、種々の建物や車両 (乗用車、バス、電車など)用途や対象室の使用目的 や周囲環境状況などに応じて、その所望とする対象部位への空気イオン発生手段 3 02の設置位置の組み合わせを決めてもよい。また、空気イオン発生手段 302を全て の箇所に設置する必要はない。さらに、重点的に除菌、抗ウィルスおよび抗アレルゲ ン作用を行いたい対象部位の風上には、 目的に合わせて複数個の空気イオン発生 手段 302を設けてもよい。  [0148] In addition, various buildings and vehicles (passenger cars, buses, trains, etc.) such as houses, offices, various facilities (food, medical, health care, education, accommodations, etc.), factories, etc. Depending on the surrounding environment and the like, the combination of the installation positions of the air ion generating means 302 at the desired target site may be determined. Moreover, it is not necessary to install the air ion generating means 302 at all locations. Furthermore, a plurality of air ion generating means 302 may be provided on the windward side of the target site where sterilization, antiviral and antiallergen actions are to be performed with priority.
[0149] ぐ実施の形態 3 >  [Embodiment 3]>
図 25は本発明の実施の形態 3である空気イオン搬送システムを示す概略構成図で ある。  FIG. 25 is a schematic configuration diagram showing an air ion transport system according to the third embodiment of the present invention.
[0150] 本発明の空気イオン搬送システム 400は、例えば空調設備などに採用されて住宅 などの部屋に空気イオンを搬送するものであり、集中換気装置 401の筐体 402内に 設けられ、外部から給気した空気 403に、負イオンまたは正イオンまたはこれらの両 イオンを含ませる空気イオン発生装置 404と、前記筐体に設けられた継手 405に接 続され、複数部屋 (本実施の形態では 4部屋)へ個別に空気を搬送する空気ダクト 4 06 -:!〜 406 -4と、前記空気イオン発生装置を制御する制御装置 407とを具備し てなり、各部屋の要求に応じて空気イオンの発生の有無またはイオン発生量を制御 装置により調節してなるものである。なお、図 25中、符号 408は部屋内に空気を噴出 する吹出し部を図示する。 [0150] The air ion transport system 400 of the present invention is employed in, for example, an air conditioner and transports air ions to a room such as a house. The air ion transport system 400 is provided in the housing 402 of the centralized ventilation device 401 and is externally provided. Supply air 403 to negative ions, positive ions, or both An air duct that is connected to an air ion generator 404 containing ions and a joint 405 provided in the casing and individually conveys air to a plurality of rooms (four rooms in this embodiment). 406-4, and a control device 407 for controlling the air ion generation device, wherein the presence or absence of air ions or the amount of ion generation is adjusted by the control device according to the requirements of each room. It is. In FIG. 25, reference numeral 408 denotes a blow-out unit that blows air into the room.
[0151] 図 25に示す実施の形態では、空気ダクト 406の空気ダクト孔に対向する位置に空 気イオン発生装置 404を設けており、制御装置 407において、各空気イオン発生装 置 404を任意に調整することで、各部屋の要求に応じた作動'停止の調整、イオン量 の増減の調整などの各種調整を集中して管理することができる。  In the embodiment shown in FIG. 25, an air ion generation device 404 is provided at a position facing the air duct hole of the air duct 406. In the control device 407, each air ion generation device 404 is arbitrarily set. By adjusting, it is possible to centrally manage various adjustments such as adjustment of operation and stop according to the demand of each room, adjustment of increase / decrease of ion amount.
[0152] これにより、負イオン、正イオンまたは両者のイオンの発生量や交互'間欠運転など により、各室内での負イオン、正イオンの混合比(濃度)を変化させることが可能となる 。また、必要に応じて、負イオンのみ、あるいは正イオンのみの発生も可能となる。  [0152] This makes it possible to change the mixing ratio (concentration) of negative ions and positive ions in each chamber by the generation amount of negative ions, positive ions, or both ions, or alternate and intermittent operation. Moreover, only negative ions or only positive ions can be generated as required.
[0153] なお、本実施の形態では、ダクトを 4本としている力 本発明はこれに限定されるも のではなぐ 1本のダクトとして一部屋に供給するような場合においてもできる。また大 部屋や湿気や汚れがひどい場合には部屋の条件などに応じて適宜調整することが できる。  In the present embodiment, the force with four ducts is not limited to this, and the present invention can be applied to a case where one duct is supplied to one room. If the room is large or the humidity or dirt is severe, it can be adjusted appropriately according to the conditions of the room.
[0154] ここで、前記集中換気装置 401の筐体 402の内部には送風機 420が配設されてい る。また、必要に応じて給気側に種々の空気清浄装置を設けるようにしてもよい。前 記空気清浄装置としては、上述した実施の形態 1における空気清浄装置 109と同じ であり、送風機 420の稼働によって給気される空気中の塵埃等を主に除去するもの である。この空気清浄装置により集塵することにより、ダクト内空気イオンはさらに効率 良く搬送することができるようになる。  Here, a blower 420 is disposed inside the housing 402 of the centralized ventilation device 401. Further, various air cleaning devices may be provided on the air supply side as necessary. The air purifier is the same as the air purifier 109 in the first embodiment described above, and mainly removes dust and the like in the air supplied by the operation of the blower 420. By collecting dust with this air purifier, air ions in the duct can be more efficiently transported.
[0155] 前記空気イオン発生装置 404は、上述した実施の形態 1における空気イオン発生 装置ユニット 104と同じである。  The air ion generator 404 is the same as the air ion generator unit 104 in the first embodiment described above.
[0156] なお、本実施の形態では、空気イオン発生装置を箱型形状のもので説明するが、 本発明はこれに限定さるものではなぐ例えば電極形状のもの、棒形状または針形状 などの種々の形態の空気イオン発生装置を用いることができる。 [0157] したがって、送風機 420を駆動することにより、空気イオン発生装置 404によって発 生させた正イオンと負イオンとを本体外に送り出すことができる。そして、これらの正ィ オンと負イオンの作用により空気中の力ビゃ菌の微生物を殺菌することができる。 その他、正イオンと負イオンには、コクサツキ一ウィルス、ポリオウイルス、などのウイ ノレス類も不活化する働きがあり、これらウィルスの混入による汚染が防止できる。 また、正イオンと負イオンには、臭いの元となる分子を分離する働きがあることも確 かめられており、空間の脱臭にも利用できる。 [0156] In the present embodiment, the air ion generator is described as having a box shape. However, the present invention is not limited to this, and there are various types such as an electrode shape, a rod shape, a needle shape, and the like. The air ion generator of the form can be used. Therefore, by driving the blower 420, positive ions and negative ions generated by the air ion generator 404 can be sent out of the main body. And, the action of these positive ions and negative ions makes it possible to sterilize the microorganisms in the air. In addition, positive ions and negative ions also act to inactivate wines such as Coxsackie virus and poliovirus, and can prevent contamination due to contamination of these viruses. In addition, it has been confirmed that positive ions and negative ions have a function of separating molecules that cause odors, and can be used to deodorize spaces.
[0158] また、図 26に示すように、筐体 402内に空気ダクト 406—:!〜 406— 4に対応して空 気を導入する仕切り部 421 _:!〜 421 _ 3を配設し、該仕切り部 421 _:!〜 421 _ 3 内に空気イオン発生装置 404 - 1〜404 _4を配設するようにしてもよレ、。  In addition, as shown in FIG. 26, the air duct 406—! ~ 406— The partition that introduces air corresponding to 4 421 _ :! ~ 421_3 is arranged, the partition part 421_ :! ~ 421 _ 3 Air ion generators 404-1 to 404 _4 may be arranged.
これにより、各空気ダクト 406 - 1〜406 _4内に各空気イオン発生装置で発生した 空気イオンが確実に送給されることとなり、各部屋における調整が確実となる。  As a result, the air ions generated by the air ion generators are reliably fed into the air ducts 406-1 to 406_4, and the adjustment in each room is ensured.
[0159] また、図 27に示す装置において、大径のダクト 431により、所定個所まで一括して 給気し、分岐チャンバ一 432にて各部屋に分岐する際に、該分岐チャンバ一 432内 に設けた該仕切り部 421—:!〜 421— 3内に空気イオン発生装置 404— :!〜 404— 4 を酉己設するようにしてもよレ、。  In addition, in the apparatus shown in FIG. 27, when a large-diameter duct 431 is used to collectively supply air to a predetermined place and branch into each room at the branch chamber 432, the branch chamber 432 is filled with the air. The air ion generator 404— :! to 404—4 may be installed in the partition portion 421— :! to 421-3 that is provided.
これにより、設計の関係上共通ダクト 431用いて外気を所定場所において分岐する 分岐チャンバ一 432にて空気イオンが各部屋に確実に供給することができる。  Thereby, air ions can be reliably supplied to each room in the branch chamber 432 that branches the outside air at a predetermined location using the common duct 431 for design reasons.
[0160] また、図 28に示すように、筐体 402の各継手 405— :!〜 405— 4内に空気イオン発 生装置 404—:!〜 404— 4を配設するようにしてもよい。  Further, as shown in FIG. 28, an air ion generator 404— :! to 404-4 may be disposed in each joint 405— :! to 405-4 of the casing 402. .
これにより、各空気ダクト 406 - 1〜406—4内に空気イオンが確実に送給されるこ ととなり、各部屋における調整が確実となる。  As a result, air ions are reliably fed into the air ducts 406-1 to 406-4, and the adjustment in each room is ensured.
[0161] また、空気ダクトの配置は同一方向に向かって配置するものに限定されるものでは なぐ例えば図 29に示すように、空気ダクト 406— 1と空気ダクト 406— 4とを筐体 402 の側壁に設けるような配置とする場合においても、各継手 405—:!〜 405— 4内に空 気イオン発生装置 404—:!〜 404—4を配設するので、空気イオンの供給が確実とな る。  [0161] Further, the arrangement of the air duct is not limited to the arrangement in the same direction. For example, as shown in FIG. 29, the air duct 406-1 and the air duct 406-4 are connected to the housing 402. Even when it is arranged on the side wall, each joint 405—! The air ion generator 404— :! to 404-4 is installed in the ˜405-4, so that the supply of air ions is ensured.
[0162] また、図 30に示すように、空気を導入する導入装置 422を設けてなり、該導入装置 422を調整することにより、任意の空気ダクトに空気イオンを供給するようにしてもよい 本実施の形態では、前記導入装置 422は、空気ダクトに対応した可撓性の仕切り 部 423と、該仕切り部 423に当接して空気搬送方向を調整する角度可変自在の羽部 材 424とから構成されている力 本発明はこれに限定されるものではなレ、。なお、符 号 425は固定の導入部材である。 Further, as shown in FIG. 30, an introduction device 422 for introducing air is provided, and the introduction device Air ions may be supplied to an arbitrary air duct by adjusting 422. In the present embodiment, the introduction device 422 includes a flexible partition 423 corresponding to the air duct, and the partition. A force composed of a wing member 424 having a variable angle that contacts the portion 423 and adjusts the air conveyance direction. The present invention is not limited to this. Reference numeral 425 is a fixed introduction member.
本実施の形態においては、空気イオン発生装置を 2台としているが、設置台数は空 気イオン発生装置の能力と供給先の容量に応じて適宜増減するようにすればよい。 本実施の形態によれば、羽部材 424を移動させることで、例えば第 1の空気ダクト 4 06 _ 1の入口部を閉塞し、該第 1の空気ダクト 406 _ 1への空気の移動を制御してレヽ る。これにより、空気イオンを搬送するダクトを適宜変更することができる。  In the present embodiment, two air ion generators are used. However, the number of installed air ion generators may be appropriately increased or decreased according to the capacity of the air ion generator and the capacity of the supply destination. According to the present embodiment, by moving the wing member 424, for example, the inlet of the first air duct 4 06_1 is closed, and the movement of the air to the first air duct 406_1 is controlled. And then lay it. Thereby, the duct which conveys air ion can be changed suitably.
[0163] また、図 25の装置において、前記継手 405または空気ダクト 406または給気吹出し 部 408のいずれかに、例えば図 31に示すような、空気イオンを中和する空気イオン 中和部材 436を配設するようにしてもよい。この空気イオン中和部材 436を設置する ことにより、例えば特定の空気ダクト内における個別に空気イオンの搬送量を調整す ること力 Sできる。 Further, in the apparatus of FIG. 25, an air ion neutralizing member 436 for neutralizing air ions as shown in FIG. 31, for example, is provided in any one of the joint 405, the air duct 406, or the supply air blowing unit 408. It may be arranged. By installing the air ion neutralizing member 436, for example, a force S for individually adjusting the amount of air ions transported in a specific air duct can be achieved.
これにより、集中換気装置において、集中して空気イオンを搬送する場合において 、予め特定の部屋における空気イオン濃度を調整することが可能となる。  As a result, in the centralized ventilation device, when the air ions are transported in a concentrated manner, the air ion concentration in a specific room can be adjusted in advance.
特に集中換気システムの場合には、一定の濃度の空気イオンを筐体 402内部で発 生するが、空気イオン中和部材 436を適宜設置することにより、空気ダクトの距離及 び各部屋の大きさに応じて、各部屋の空気イオン濃度を所定濃度となるように調整す ること力 Sできる。  In particular, in the case of a centralized ventilation system, a certain concentration of air ions is generated inside the housing 402, but by installing the air ion neutralizing member 436 as appropriate, the distance of the air duct and the size of each room Depending on the situation, the air ion concentration in each room can be adjusted to a predetermined concentration.
[0164] ここで、前記空気イオン中和部材 436の材料としては、空気イオンを中和などで低 減できるような材料であれば、特に限定されるものではなレ、が、例えば帯電しやすい 樹脂製の素材や種々の不織布、金属(電極など)などを挙げることができる。  Here, the material of the air ion neutralizing member 436 is not particularly limited as long as it is a material that can reduce air ions by neutralization or the like. Examples thereof include resin materials, various non-woven fabrics, metals (electrodes, etc.), and the like.
負イオンのみを制御する場合であれば正イオンに帯電しやすレ、素材や、正イオン のみを制御するものであれば、負イオンに帯電しやすい素材を適宜用いることができ る。 [0165] また、空気イオン中和部材 436は設置型に限定されるものではなぐ可変型とする ようにしてもよい。 In the case of controlling only negative ions, a material that can be easily charged to positive ions or a material that controls only positive ions can be used as appropriate. [0165] The air ion neutralizing member 436 is not limited to the installation type, but may be a variable type.
例えば、図 32— 1、図 32— 2に示すように、空気イオン中和部材を複数の羽 437か らなるシャツタ型のものとし、図示しない作動部材により該羽 437を絞ること(ダクト断 面の開口率の調整)により、その開閉の度合いに応じて、個別に空気イオンの搬送 量を調整するようにしている。この場合には空気の搬送量も調整することができる。な お、調整は自動または手動で行うようにすればよレ、。なお、絞りは図 32— 1、図 32— 2のように内側だけではなぐダクト外側からの絞り構造としてもよい。ここで、空気ダク トの絞り径は 100%でなくともよぐ搬送する空気イオンを中和し、空気イオン濃度を 設計値の要求に応じて適宜増減するようにすればよい。  For example, as shown in FIGS. 32-1 and 32-2, the air ion neutralizing member is of a shatter type consisting of a plurality of wings 437, and the wings 437 are squeezed by an operating member (not shown). The amount of air ions transported is adjusted individually according to the degree of opening and closing. In this case, the amount of air transport can also be adjusted. The adjustment should be done automatically or manually. The diaphragm may have a diaphragm structure from the outside of the duct that is not limited to the inside as shown in FIGS. 32-1 and 32-2. Here, it is only necessary to neutralize the air ions to be transported, even if the throttle diameter of the air duct is not 100%, and to increase or decrease the air ion concentration appropriately according to the design value requirement.
[0166] また、可変型の空気イオン中和部材は羽型に限定されるものではなぐ例えば図 3 3— 1、図 33— 2に示すようなダクト内に揷入自在な仕切り部材 433とするようにしても ょレ、。この挿入量は所望の空気イオン量となるように調整すればょレ、。  Further, the variable type air ion neutralizing member is not limited to the wing type, but is a partition member 433 that can be inserted into a duct as shown in FIGS. 33-1 and 32-2, for example. Even if you do it. Adjust this insertion amount to the desired amount of air ions.
[0167] また、図 33— 3は各部屋における給気吹出し部 408近傍において、空気ダクト 406 内に仕切り部材 433を任意に挿入する場合を示している。この場合には、各部屋に おいて空気イオン量の調整が可能となる。  FIG. 33-3 shows a case where a partition member 433 is arbitrarily inserted into the air duct 406 in the vicinity of the air supply / outlet part 408 in each room. In this case, the amount of air ions can be adjusted in each room.
[0168] また、前記仕切り部材 433としては、例えば図 34— 1に示すようなネット状部材 433 a、図 34— 2に示すようなメッシュ状部材 433b、図 34— 3に示すような膜状部材 433 cなどとすることができる。  [0168] Further, as the partition member 433, for example, a net-like member 433a as shown in Fig. 34-1, a mesh-like member 433b as shown in Fig. 34-2, and a film-like shape as shown in Fig. 34-3 The member 433c can be used.
[0169] また、空気イオン中和部材としては、仕切り部材に限定されるものではなぐ例えば 棒状部材、櫛歯型部材などとすることもでき、これらの挿入の程度に応じて空気ィォ ンの中和量を適宜変更するようにしてもょレ、。  [0169] Further, the air ion neutralizing member is not limited to the partition member, and may be, for example, a rod-shaped member, a comb-shaped member, or the like. Even if you change the amount of neutralization as appropriate.
[0170] また、図 35に示すように、前記空気ダクト 406内に放電装置 435を配設してなり、該 放電装置 435による放電量に応じて、個別に空気イオンの搬送量を調整するようにし てもよい。  In addition, as shown in FIG. 35, a discharge device 435 is provided in the air duct 406, and the amount of air ions transported is individually adjusted in accordance with the amount of discharge by the discharge device 435. It may be.
[0171] また、図 36に示すように、前記各部屋の給気吹出し部 408のルーバー 409の角度 並びに材質などを調整し、ルーバー 409に空気イオンを接触させることで、個別に空 気イオンの吹出し量並びに向きを調整するようにしてもよい。 [0172] また、前記継手 405及び空気ダクト 406は、非帯電構造あるいは帯電性の低い構 造とするのが好ましい。非帯電構造あるいは帯電性の低い構造としては、帯電しない 、あるいは帯電しにくい構造であり、図には明示しないが各空気ダクトなどにアースを 設ける構造がある。また、非帯電構造としては、前記空気ダ外などの少なくとも内面 を非帯電性の材料で形成する、もしくは前記空気ダクトなどの少なくとも内面を非帯 電性の形状に構成することが考えられる。非帯電性の材料としては、アルミニウムなど の金属材料、または樹脂系材料などがある。なお、樹脂系材料としては、例えば負ィ オンを含む空気を搬送するダクトの場合には正に帯電しなレ、、あるいは帯電しにくい 樹脂系材料を採用し、正イオンを含む空気を搬送するダ外の場合には負に帯電し なレ、、あるいは帯電しにくい樹脂系材料を採用するようにすればよい。 [0171] Also, as shown in FIG. 36, by adjusting the angle and material of the louver 409 of the air supply / outlet part 408 in each room and bringing the air ions into contact with the louver 409, the air ions are individually separated. You may make it adjust blowing amount and direction. [0172] Further, the joint 405 and the air duct 406 preferably have an uncharged structure or a structure with low chargeability. Non-charged structures or structures with low chargeability are structures that are not charged or difficult to be charged, and there is a structure in which each air duct is provided with a ground although not shown in the figure. Further, as the non-charging structure, it is conceivable that at least the inner surface such as the outside of the air duct is formed of a non-charging material, or at least the inner surface of the air duct or the like is formed in a non-charging shape. Examples of the non-chargeable material include a metal material such as aluminum or a resin material. For example, in the case of ducts that carry air containing negative ions, resin materials that are not positively charged or resin materials that are difficult to be charged are used to carry air containing positive ions. In the case of outside the battery, a resin material that is not negatively charged or hardly charged may be used.
[0173] また、非帯電性の構成としては、蛇腹形状、空気ダクト内での番線などの支持体の ピッチ、または空気ダクトの内面材の接着方法などがある。すなわち、非帯電構造で は、空気ダクトにおいて空気が触れる内面に対して帯電しない、あるいは帯電しにく レ、構造を備えることが重要である。  [0173] Further, as the non-charging structure, there are a bellows shape, a pitch of a support such as a wire in an air duct, or a method of bonding an inner surface material of an air duct. In other words, in an uncharged structure, it is important to provide a structure in which the inner surface of the air duct that is in contact with air is not charged or is not easily charged.
[0174] 上述した実施の形態を適宜組み合わせることにより、空気ダクト内を搬送する空気 イオンの濃度を制御するようにしてもょレ、。  [0174] By appropriately combining the above-described embodiments, the concentration of air ions transported in the air duct may be controlled.
[0175] 本発明の空気イオン搬送システムはファンにより給気する第一種または第二種など の換気システムに適用することができる。次に、本発明の空気イオン搬送システムを 適用した集中換気システムの一例を上述した実施の形態 1で説明した図 14に示す。  [0175] The air ion transport system of the present invention can be applied to a first or second type ventilation system that supplies air with a fan. Next, an example of a centralized ventilation system to which the air ion transport system of the present invention is applied is shown in FIG. 14 described in the first embodiment.
[0176] 図 14に示す構成に関して、換気手段 202に前述した空気イオン搬送システム 400 が適用されている。この結果、各部屋の要求に応じた空気イオンの供給を可能として いる。また、給気空気ダクト 210bには、空気イオン中和部材が配設されており、各部 屋の要求に応じたイオン量となるように調整をするようにしている。なお、空気イオン 発生装置の可動は、換気手段 202の給気側送風機および排気側送風機の稼働とは 另 [Jに各々独立して各咅 B屋 201a, 201b, 201c, 201dに酉己 したスィッチ 221に つ て ONZOFF及び空気イオン発生量を制御することが可能である。また、リビングな ど一室に集中して各部屋のイオン量、風量を制御するようにしてもょレ、。 In the configuration shown in FIG. 14, the air ion transport system 400 described above is applied to the ventilation means 202. As a result, it is possible to supply air ions according to the requirements of each room. In addition, an air ion neutralizing member is disposed in the supply air duct 210b so that the amount of ions according to the requirements of each part is adjusted. Note that the movement of the air ion generator is different from the operation of the supply-side and exhaust-side fans of the ventilation means 202. [Independent of J, each switch B 201a, 201b, 201c, 201d 221 can control ONZOFF and air ion generation amount. You can also concentrate on one room, such as a living room, to control the amount of ions and air in each room.
[0177] よって、従来のような固定の空気イオン発生装置の場合と異なり、設計の段階にお いてまたは使用中の段階において、各々の部屋に供給する空気イオンの量を任意 に調整することができる。 [0177] Therefore, unlike the conventional fixed air ion generator, the design stage During or in use, the amount of air ions supplied to each room can be arbitrarily adjusted.
[0178] 以上のように、本発明に力かる空気イオン搬送システムによれば、各部屋の要求に 応じた空気イオンの搬送が可能となるので、各部屋に個別に空気イオン発生手段を 設けなくてもよいため、各部屋での設計上の制約を受けることがない。  [0178] As described above, according to the air ion transport system according to the present invention, air ions can be transported according to the demands of each room, so that air ion generation means are not provided individually in each room. Therefore, there is no design restriction in each room.
また、各部屋に設けた空気供給口に空気イオン発生手段を設けなくてもよいため、 水廻り部での湿気の影響やその他特殊な部屋 (冷凍室、冷蔵室、高温室、工場や医 療施設で薬剤使用あるいは薬剤薫蒸する部屋など)での空気イオン発生手段への 直接的な影響がなレ、ので、継続的で安定した空気イオンの供給が可能になる。 そして、空気ダクトによる空気イオンの搬送なので常時ダクト内の殺菌や脱臭が可 能である。このため、前記空気イオン搬送装置は、住宅に限らず、オフィス、医療施 設、老健施設、宿泊施設、教育施設あるいは美術館などの配管空調システム導入の あらゆる用途の建物に適応することが可能である。  In addition, it is not necessary to provide air ion generation means at the air supply port provided in each room, so the influence of moisture in the water circulation area and other special rooms (freezing room, refrigeration room, high temperature room, factory and medical care) Since there is no direct influence on the means for generating air ions in the room where the drug is used or fumigated in the facility, etc., it is possible to supply air ions continuously and stably. In addition, since air ions are transported by the air duct, the inside of the duct can be sterilized and deodorized at all times. For this reason, the air ion transport device can be applied not only to a house but also to buildings of all uses such as an office, a medical facility, a health facility, an accommodation facility, an educational facility, or a museum, etc. .
[0179] さらに、前記空気イオン搬送システムにおいて、空気清浄装置を設けることによって 負イオンと正イオンとを含ませる以前の空気の清浄を行っている。このため、空気ィォ ンを部屋などに搬送する際に負イオン及び正イオンが空気中の塵埃に吸着する事態 を防ぎ、空気イオンの有効濃度を維持した状態で当該空気イオンを搬送することが 可能になる。  [0179] Furthermore, in the air ion transport system, air is cleaned before including negative ions and positive ions by providing an air cleaning device. For this reason, it is possible to prevent negative ions and positive ions from adsorbing to dust in the air when transporting the air ions to a room or the like, and to transport the air ions while maintaining an effective concentration of air ions. It becomes possible.
[0180] また、前記空気イオン搬送装置は、空気イオンを配送する各継手や空気ダクトなど に非帯電構造を設けてあり、あるいは各空気ダ外などを非帯電性の材料を含み形 成してある。このため、空気イオンを部屋などに搬送する際に負イオン及び正イオン が静電気によって各空気ダクトなどに吸着する事態を防ぎ、空気イオンの有効濃度 を維持した状態で当該空気イオンを搬送することが可能になる。  [0180] In addition, the air ion transport device is provided with a non-charged structure in each joint or air duct for delivering air ions, or the outside of each air duct is formed by including a non-chargeable material. is there. For this reason, when air ions are transported to a room or the like, negative ions and positive ions are prevented from being adsorbed to each air duct by static electricity, and the air ions can be transported while maintaining an effective concentration of air ions. It becomes possible.
[0181] ぐ実施の形態 4 >  [0181] Embodiment 4>
図 37は本発明に係る空気イオン搬送システムの実施の形態を示す概略図である。 なお、本実施の形態における空気イオン搬送システムは、空調設備や換気設備を導 入するあらゆる用途に関し、例えば集合住宅、オフィス、医療施設、老健施設、宿泊 施設、教育施設、美術館、工場などの建物への応用や、車両 (乗用車、バス、電車な ど)への応用に適したものである。 FIG. 37 is a schematic view showing an embodiment of an air ion transport system according to the present invention. Note that the air ion transport system in the present embodiment relates to all uses for introducing air conditioning equipment and ventilation equipment, for example, buildings such as apartment houses, offices, medical facilities, health facilities, accommodation facilities, educational facilities, museums, factories, etc. Applications such as vehicles (passenger cars, buses, trains, etc.) And so on.
[0182] 図 37に示すように空気イオン搬送システムは、空気を送風して搬送する空気搬送 手段 501と、空気を負イオンまたは正イオンまたはこれらの両イオンを含ませた空気 イオンとする空気イオン発生手段 502とを有して構成してある。  [0182] As shown in Fig. 37, the air ion transport system includes air transport means 501 that blows and transports air, and air ions that use negative ions, positive ions, or air ions containing both of these ions. And generating means 502.
[0183] 空気搬送手段 501は、送風ユニット 511、ダクト 512、空気取入口部 513、空気吹 出口部 514、継手 515、および片落管 516 (パイプ径を変える)を有している。  The air conveying means 501 has a blower unit 511, a duct 512, an air intake port portion 513, an air discharge port portion 514, a joint 515, and a fall pipe 516 (changing the pipe diameter).
[0184] 送風ユニット 511は、主として箱状のケーシング 51 la、および当該ケーシング 51 la に収容した送風機 51 lbからなる。すなわち、送風ユニット 511は、送風機 511bの稼 働によってケーシング 51 laの内部に空気を吸込み、この吸込んだ空気をケーシング 51 laの外部に吹出す。また、ケーシング 511 aの内部において、送風機 5 l ibの空 気吹出側には、空気を清浄する清浄手段としてのフィルタ 511cが設けてある。フィル タ 511 cは、上述した実施の形態 1における空気清浄装置 109と同じであり、送風機 5 l ibの稼働によってその入口側から出口側に通過する空気中の塵埃などを主に除 去するものである。  [0184] The blower unit 511 mainly includes a box-shaped casing 51 la and a blower 51 lb accommodated in the casing 51 la. That is, the blower unit 511 sucks air into the casing 51 la by the operation of the blower 511b, and blows out the sucked air to the outside of the casing 51la. Further, in the casing 511a, a filter 511c as a cleaning means for cleaning air is provided on the air blowing side of the blower 5 ib. The filter 511 c is the same as the air purifier 109 in Embodiment 1 described above, and mainly removes dust in the air passing from the inlet side to the outlet side by the operation of the blower 5 l ib. It is.
[0185] ダクト 512は、ケーシング 51 laの外部から当該ケーシング 51 laの内部に吸込まれ る空気を通し、またケーシング 51 laの外部に吹出された空気を所定域に通す管であ る。  [0185] The duct 512 is a pipe through which air sucked into the casing 51la from the outside of the casing 51la is passed and air blown out of the casing 51la is passed through a predetermined area.
[0186] 空気取入口部 513は、ダクト 512の吸込み側の端部に設けてあり、外気などをダク ト 512に取入れる口をなしている。なお、空気取入口部 513は、外気に加えて換気の ために所定域からの空気を取り入れる口として用レ、る場合もある。  [0186] The air intake 513 is provided at the end of the duct 512 on the suction side, and serves as a port for taking outside air into the duct 512. Note that the air intake 513 may be used as a port for taking in air from a predetermined area for ventilation in addition to outside air.
[0187] 空気吹出口部 514は、ダクト 512の吹出し側の端部に設けてあり、所定域に空気を 吹出す口をなしている。  [0187] The air outlet 514 is provided at the end of the duct 512 on the outlet side, and forms an outlet for blowing out air in a predetermined area.
[0188] 継手 515は、各ダクト 512の間や、ケーシング 51 laとダクト 512との間に設けてあり 、相互間を接続するものである。また、継ぎ手 515は、図 37に示すように太径のダクト 512と、空気吹出口部 514を配設する細径のダクト 512とを接続して相互のダクト 51 2の管径を変えるためのものでもある。  [0188] The joint 515 is provided between the ducts 512, or between the casing 51la and the duct 512, and connects each other. In addition, the joint 515 connects the large-diameter duct 512 and the small-diameter duct 512 provided with the air outlet 514 as shown in FIG. 37 to change the pipe diameter of the mutual duct 512. It is also a thing.
[0189] 片落管 516は、ダクト 512の管径を変えるためのものであって、太径のダクト 512の 端部に空気吹出口部 514を取り付ける場合に、ダクト 512と空気吹出口部 514との間 に配設する。 [0189] The canopy pipe 516 is for changing the pipe diameter of the duct 512. When the air outlet 514 is attached to the end of the large-diameter duct 512, the duct 512 and the air outlet 514 Between It arranges in.
[0190] 空気搬送手段 501は、送風ユニット 511の送風機 51 lbの稼働によって空気取入 口部 513から取入れた外気(空気)を、ダクト 512を通して各空気吹出口部 514から 所定域 (部屋など)に吹出す。図 37に示す空気搬送手段 501では、太径のダクト 51 2の間に継ぎ手 515を複数 (4つ)介在して細径のダクト 512を複数接続して、複数の 所定域に空気を吹出すように構成してある。なお、上述した空気搬送手段 501は、 1 つの空気取入口部 513を有して構成してある力 これに限らず空気取入口部 513を 複数有して、当該各空気取入口部 513を複数のダクト 512を介してそれぞれ送風ュ ニット 511に対して接続してあってもよい。また、上述した空気搬送手段 1は、 5つ(複 数)の空気吹出口部 514を有している力 これに限らず、空気吹出口部 514を 1つに してもよい。  [0190] The air conveying means 501 is a predetermined area (such as a room) for the outside air (air) taken in from the air inlet 513 by operating the blower 51 lb of the blower unit 511 from each air outlet 514 through the duct 512. To blow out. In the air conveying means 501 shown in FIG. 37, a plurality of (four) joints 515 are interposed between the large-diameter ducts 512 and a plurality of small-diameter ducts 512 are connected to blow out air to a plurality of predetermined areas. It is constituted as follows. Note that the air conveying means 501 described above includes a single air intake portion 513, and is not limited to this. The air transfer means 501 has a plurality of air intake portions 513, and each air intake portion 513 includes a plurality of air intake portions 513. It may be connected to the air blowing unit 511 via the duct 512. Further, the air conveying means 1 described above is a force having five (several) air outlets 514, but is not limited to this, and the air outlet 514 may be one.
[0191] 空気イオン発生手段 502は、周囲の空気に正イオンを発生させる正イオン発生装 置、周囲の空気に負イオンを発生させる負イオン発生装置、あるいは周囲の空気に 正イオンおよび負イオンを共に発生させる正負イオン発生装置などを含む。すなわち 、空気イオン発生手段 502としては、正イオン発生装置のみ、負イオン発生装置のみ 、正イオン発生装置および負イオン発生装置の組み合わせ、正負イオン発生装置で の構成がある。図 37ではこれらのイオン発生装置を、空気搬送手段 501における送 風ユニット 511のケーシング 511aの内部であって、フィルタ 511cの出口側に 4つ配 置した例を示す。  [0191] The air ion generating means 502 is a positive ion generating device that generates positive ions in the surrounding air, a negative ion generating device that generates negative ions in the surrounding air, or positive ions and negative ions in the surrounding air. Includes positive and negative ion generators that generate both. That is, the air ion generation means 502 includes a positive ion generator only, a negative ion generator only, a combination of a positive ion generator and a negative ion generator, and a positive / negative ion generator. FIG. 37 shows an example in which four of these ion generators are arranged inside the casing 511a of the air supply unit 511 in the air conveying means 501 and on the outlet side of the filter 511c.
[0192] 正イオン発生装置および負イオン発生装置を組み合わせた構成の場合には、正ィ オン発生装置と負イオン発生装置とを所定間隔をおいて配置する。所定間隔は、例 えば 0. 1cm以上、好ましくは 0. 5cm以上、さらに好ましくは lcm以上とするのがよい 。このようにイオン発生装置を少なくとも 0. lcm以上離して設置することにより、発生 したイオンの減衰が激減する。なお、所定間隔は、イオン発生装置の配置される部位 の容積、設置数またはイオン発生能力により、最適な間隔は適宜変化する。また、図 には明示しないが正イオン発生装置と負イオン発生装置との間に仕切部を設けても よい。さらに、正イオン Z負イオンを共に発生させる装置を 1個または複数設置する 場合も同様である。 [0193] 正イオン発生装置または負イオン発生装置または正負イオン発生装置で構成した 空気イオン発生手段 502は、上述した実施の形態 1における空気イオン発生装置ュ ニット 104と同じである。なお、空気イオン発生手段 502としては、上記以外にも、レ ナード効果やプラズマなどによって空気イオン (正イオン,負イオン)を発生させること ができる。 [0192] In the case of a configuration in which a positive ion generator and a negative ion generator are combined, the positive ion generator and the negative ion generator are arranged at a predetermined interval. The predetermined interval is, for example, 0.1 cm or more, preferably 0.5 cm or more, and more preferably 1 cm or more. By placing the ion generator at least 0.1 lcm apart in this way, the attenuation of the generated ions is drastically reduced. Note that the optimum interval is appropriately changed depending on the volume of the portion where the ion generator is disposed, the number of installation, or the ion generation capability. Further, although not clearly shown in the figure, a partition may be provided between the positive ion generator and the negative ion generator. The same applies when one or more devices that generate both positive ions and Z negative ions are installed. [0193] Air ion generating means 502 configured with a positive ion generator, a negative ion generator, or a positive / negative ion generator is the same as air ion generator unit 104 in the first embodiment described above. In addition to the above, the air ion generating means 502 can generate air ions (positive ions and negative ions) by means of the Renard effect or plasma.
[0194] すなわち、空気イオン搬送システムは、空気搬送手段 501において空気取入口部 513から取入れた外気(空気)を、空気イオン発生手段 502によって負イオンまたは 正イオンまたはこれらの両イオンを含ませた空気イオンとして、ダクト 512を通して各 空気吹出口部 514から所定域 (部屋など)に空気イオンを吹出す。  That is, in the air ion transport system, the outside air (air) taken in from the air intake port 513 in the air transport means 501 includes negative ions, positive ions, or both of these ions by the air ion generation means 502. As air ions, air ions are blown out from each air outlet 514 to a predetermined area (such as a room) through the duct 512.
[0195] ところで、上述した空気イオン搬送システムにおいては、空気を搬送する経路を通 じて導電性を維持する導電構造を備えてレ、る。  Incidentally, the above-described air ion transport system includes a conductive structure that maintains conductivity through a path for transporting air.
[0196] 導電構造としては、空気搬送手段 501をなす送風ユニット 511、ダクト 512、空気取 入口部 513、空気吹出口部 514、継ぎ手 515、および片落管 516などの構成品を、 導電性を有する金属材または炭素樹脂材などの導電材で構成して、各構成品を通じ て導電性を維持する。  [0196] As the conductive structure, components such as the blower unit 511, the duct 512, the air inlet 513, the air outlet 514, the joint 515, and the bleed pipe 516 that form the air conveying means 501 are made conductive. It consists of conductive materials such as metal materials or carbon resin materials, and maintains conductivity through each component.
[0197] また、空気搬送手段 501をなす送風ユニット 511、ダクト 512、空気取入口部 513、 空気吹出口部 514、継ぎ手 515、および片落管 516の少なくとも搬送する空気が接 する部位 (例えば内壁面)を、導電性を有する金属材または炭素樹脂材などで構成 して各構成品を通じて導電性を維持してもよい。例えば、図 38に斜線部で示す部分 を導電性を有する金属材または炭素樹脂材などで構成する。この場合、空気が接す る面を金属材ゃ炭素樹脂材などを練り込んだ樹脂で形成したり、空気が接する面に 金属材ゃ炭素樹脂材などを練り込んだ塗料、さらには帯電防止塗料剤などを塗布す る。  [0197] In addition, at least a part of the blower unit 511, the duct 512, the air inlet part 513, the air outlet part 514, the joint 515, and the bleed pipe 516 that form the air conveying means 501 is in contact (for example, the inner part) The wall surface may be made of a conductive metal material or carbon resin material, and the conductivity may be maintained through each component. For example, the hatched portion in FIG. 38 is made of a conductive metal material or carbon resin material. In this case, the surface that comes into contact with air is made of a resin made by kneading a metal or carbon resin material, the paint made by kneading a metal or carbon resin material on the surface that comes into contact with air, or an antistatic paint. Apply an agent.
[0198] また、ダクト 512の端部や、継ぎ手 515などは、空気の漏れがない接続形態をなす ために導電部材で構成し難ぐ非導電性部として構成する場合がある。この場合、図 37および図 38に示すように非導電性部を他の導電性部に対してケーブルなどで構 成した導電部材 503で接続して導電性を保持する。すなわち、導電部材 503によつ て空気を搬送する経路を通じて導電性を維持する。また、導電部材 503は、導電性 部同士を接続して導電性を高めるようにしてもょレ、。 [0198] In addition, the end portion of the duct 512, the joint 515, and the like may be configured as non-conductive portions that are difficult to configure with a conductive member in order to achieve a connection form in which air does not leak. In this case, as shown in FIG. 37 and FIG. 38, the non-conductive portion is connected to the other conductive portion by a conductive member 503 constituted by a cable or the like to maintain conductivity. In other words, the conductive member 503 maintains conductivity through a path for conveying air. In addition, the conductive member 503 is conductive. Try to connect the parts together to increase conductivity.
[0199] このように、空気を搬送する経路を通じて導電性を維持する導電構造を備えたこと によって、空気を搬送する経路を通じて帯電を防止する。この結果、負イオンまたは 正イオンまたはこれらの両イオンを含ませた空気イオンが吸着されることがないので、 有効濃度を維持した状態で空気イオンを安定して搬送することが可能になる。  [0199] As described above, by providing a conductive structure that maintains conductivity through a path for transporting air, charging is prevented through a path for transporting air. As a result, since negative ions, positive ions, or air ions containing both of these ions are not adsorbed, air ions can be stably conveyed while maintaining an effective concentration.
[0200] さらに、上述した空気イオン搬送システムにおいては、上記導電構造に加えて、帯 電除去手段を設けることが好ましい。帯電除去手段としては、図 37に示すように空気 搬送手段 501をなす送風ユニット 511、ダクト 512、空気取入口部 513、空気吹出口 部 514、継ぎ手 515、および片落管 516に、アース 504を設ける。あるいは、空気搬 送手段 501をなす送風ユニット 511、ダクト 512、空気取入口部 513、空気吹出口部 514、継ぎ手 515、および片落管 516に、帯電除去装置 505を設ける。  [0200] Furthermore, in the air ion transport system described above, it is preferable to provide a charge removing means in addition to the conductive structure. As shown in FIG. 37, as an electrification removing means, a grounding unit 504 is connected to a blower unit 511, a duct 512, an air inlet part 513, an air outlet part 514, a joint 515, and a bleed pipe 516 forming an air conveying means 501 Provide. Alternatively, an electrification removing device 505 is provided in the air blowing unit 511, the duct 512, the air inlet portion 513, the air outlet portion 514, the joint 515, and the fall pipe 516 that constitute the air carrying means 501.
[0201] 帯電除去装置 505には、例えば交流式除電装置、高周波コロナ除電装置、ブロワ 一式除電装置、光照射除電装置、極軟 X線除電装置、真空紫外線除電装置、大気 圧グロ一放電式除電装置、およびドライフォグ除電装置などがある。  [0201] The static eliminator 505 includes, for example, an AC type static eliminator, a high-frequency corona static eliminator, a blower type static eliminator, a light irradiation static eliminator, an ultrasoft X-ray static eliminator, a vacuum ultraviolet static eliminator, an atmospheric pressure glow discharge type static eliminator. Devices, and dry fog neutralization devices.
[0202] このように、導電構造に加えて、空気搬送手段 1に帯電除去手段を設けたことにより 、空気搬送手段 1の帯電をさらに防止する。この結果、負イオンまたは正イオンまたは これらの両イオンを含ませた空気イオンが吸着されることがないので、有効濃度を維 持した状態で空気イオンをさらに安定して搬送することが可能になる。  [0202] In this way, in addition to the conductive structure, the air conveying means 1 is provided with the charge removing means, thereby further preventing the air conveying means 1 from being charged. As a result, negative ions, positive ions, or air ions containing both of these ions are not adsorbed, making it possible to more stably transport air ions while maintaining an effective concentration. .
[0203] なお、図 39は上述した空気イオン搬送システムと従前のシステムとを比較した図で ある。図 39に示すように導電構造(および帯電除去手段)によってシステム全体を非 帯電とした場合 (ィ)では、空気イオンを安定して搬送する。この (ィ)を空気イオン搬 送効率 100%とすると、非帯電としない既存 (従前)のシステムの場合 (ハ)は、空気ィ オンが帯電によって吸着されるので空気イオン搬送効率がほとんど 0%となる。なお、 空気搬送手段 1をなす送風ユニット 511 (ケーシング 51 la,送風機 51 lb)、ダクト 51 2、空気取入口部 513、空気吹出口部 514、継ぎ手 515、および片落管 516などい ずれかの構成品単体を非帯電とした場合 (口)では、空気イオンが帯電によって吸着 される部位があるために空気イオン搬送効率が不安定になる。  [0203] FIG. 39 is a diagram comparing the air ion transport system described above with a conventional system. As shown in Fig. 39, when the entire system is uncharged by the conductive structure (and the charge removing means) (ii), air ions are stably transported. Assuming that (ii) is the air ion transport efficiency of 100%, in the existing (previous) system that is not uncharged (iii), the air ion is adsorbed by charging, so the air ion transport efficiency is almost 0%. It becomes. Air blower unit 511 (casing 51 la, blower 51 lb), duct 51 2, air inlet 513, air outlet 514, joint 515, and bleed pipe 516, etc., forming air conveying means 1 When the component itself is uncharged (mouth), the air ion transport efficiency becomes unstable because there is a part where air ions are adsorbed by charging.
[0204] ところで、図 40は図 37に示す空気イオン搬送システムの変形例を示す概略図、図 41〜図 43は図 37に示す空気イオン搬送システムの適用例を示す概略図である。 [0204] FIG. 40 is a schematic diagram showing a modification of the air ion transport system shown in FIG. 41 to 43 are schematic views showing application examples of the air ion transport system shown in FIG.
[0205] 図 40に示す空気イオン搬送システムは、空気イオン発生手段 502を空気搬送手段 501の送風ユニット 51 1とは別に構成したものである。空気イオン発生手段 502は上 述と同様の構成であり、図 40では、空気搬送手段 501のダクト 512の間に接続した ケーシング 502aの内部にイオン発生装置を 4つ配置した例を示す。このように、空気 イオン発生手段 502は、送風ユニット 511と別に構成してあってもよレ、。なお、図 40 に示す空気イオン搬送システムでは、継ぎ手 515を図示していなレ、が、図 37に示す ように継ぎ手 515を用いてもよぐまた継ぎ手 515およびダクト 512を介して空気吹出 口部 514を複数設けてもよい。なお、図 40においては、空気イオン発生手段 502を 配置したケーシング 502aを送風ユニット 511の下流側に配置した形態を図示してい る力 これに限らず空気イオン発生手段 502を配置したケーシング 502aを送風ュニ ット 511の上流側に配置してもよい。 In the air ion transport system shown in FIG. 40, the air ion generating means 502 is configured separately from the air blowing unit 511 of the air transport means 501. The air ion generating means 502 has the same configuration as described above, and FIG. 40 shows an example in which four ion generating devices are arranged inside the casing 502a connected between the ducts 512 of the air conveying means 501. Thus, the air ion generating means 502 may be configured separately from the air blowing unit 511. In the air ion transfer system shown in FIG. 40, the joint 515 is not shown, but the joint 515 may be used as shown in FIG. 37, and the air outlet port portion is connected via the joint 515 and the duct 512. A plurality of 514 may be provided. Note that, in FIG. 40, a force illustrating a form in which the casing 502a in which the air ion generating means 502 is arranged is arranged on the downstream side of the blower unit 511 is not limited thereto, and the casing 502a in which the air ion generating means 502 is arranged is blown. It may be arranged upstream of the unit 511.
[0206] 図 41に示す空気イオン搬送システムは、全熱交換空調システムを構成してある。こ の場合、空気搬送手段 1の送風ユニット 511は、ケーシング 511 aの内部に給気送風 機 51 lbと排気送風機 51 lbとを有している。給気送風機 51 lbは、隔壁 51 Idで 2つ に区画されたケーシング 511 aの一方の領域 511 A内に配置してある。一方の領域 5 11Aの空気吸込側は、空気取入口部 513に通じるダクト 512に接続してあり、その空 気吹出側が所定域としての部屋 517に開口する空気吹出口部 514に通じるダクト 51 2に接続してある。また、ケーシング 511 aの一方の領域 511 Aには、空気の熱交換を 行うコイル 51 leおよびフィルタ 511cが設けてある。排気送風機 51 lbは、隔壁 51 Id で 2つに区画されたケーシング 511aの他方の領域 511B内に配置してある。他方の 領域 511Bの空気吸込側は、所定域である部屋 517に設けた空気吸込口部 518に 通じるリターン用のダクト 512に接続してあり、その空気吹出側が外気に開口する空 気排出口部 519に通じるダクト 512に接続してある。また、他方の領域 511Bには、フ ィルタ 511cが設けてある。 The air ion transfer system shown in FIG. 41 constitutes a total heat exchange air conditioning system. In this case, the blower unit 511 of the air conveying means 1 has an air supply blower 51 lb and an exhaust blower 51 lb inside the casing 511a. The supply air blower 51 lb is arranged in one region 511A of the casing 511a divided into two by the partition wall 51Id. The air suction side of one area 511A is connected to a duct 512 that leads to an air inlet 513, and the air outlet side of the area 511A is a duct that leads to an air outlet 514 that opens into a room 517 as a predetermined area 51 2 Is connected to. Further, a coil 51le and a filter 511c for performing heat exchange of air are provided in one region 511A of the casing 511a. The exhaust blower 51 lb is arranged in the other region 511B of the casing 511a divided into two by the partition wall 51 Id. The air suction side of the other region 511B is connected to a return duct 512 that leads to an air suction port 518 provided in a room 517 that is a predetermined region, and the air discharge port that opens to the outside air. Connected to duct 512 leading to 519. Further, a filter 511c is provided in the other region 511B.
[0207] また、空気搬送手段 501において、送風ユニット 511、ダクト 512、空気取入口部 5 13、空気吹出口部 514、空気吸込口部 518、および空気排出口部 519は、導電性 を有する金属材または炭素樹脂材などで構成した導電構造を備えている。なお、図 には明示しないが上述した継ぎ手 515および片落管 516有してもよぐこれらを導電 性を有する金属材または炭素榭脂材などで構成する。さらに、ケーシング 51 l aとダク ト 512との間、空気吹出口部 514とダクト 512との間、空気吸込口部 518とダクト 512 との間には、上述した導電部材 503が設けてある。また、空気搬送手段 501には、導 電構造に加えて、上述した帯電除去手段(アース 504および帯電除去装置 505)が 設けてある。 [0207] In the air conveying means 501, the blower unit 511, the duct 512, the air inlet 513, the air outlet 514, the air inlet 518, and the air outlet 519 are electrically conductive metals. It has a conductive structure made of a material or a carbon resin material. Figure Although not explicitly shown, the above-described joint 515 and canopy pipe 516 may be provided, and are made of a conductive metal material or carbon grease. Further, the conductive member 503 described above is provided between the casing 51 la and the duct 512, between the air outlet 514 and the duct 512, and between the air inlet 518 and the duct 512. In addition to the conductive structure, the air conveying means 501 is provided with the above-described charge removing means (the ground 504 and the charge removing device 505).
[0208] そして、空気イオン発生手段 502は、上述した構成と同様であって、図 41に示すよ うにケーシング 511a内の給気送風機 511bの吹出側に配設してある。なお、図には 明示しないが、空気イオン発生手段 502は、空気取入口部 513に通じるダクト 512、 一方の領域 511Aのフィルタ 511c入口側、一方の領域 51 1Aのフィルタ 511c出口 側であってコイル 511e入口側、空気吹出口部 514に通じるダクト 512、空気吸込口 部 518に通じるダクト 512、他方の領域 511Bのフィルタ 511c入口側、および空気排 出口部 519に通じるダクト 512に配設してもよい。  [0208] The air ion generation means 502 is the same as that described above, and is arranged on the outlet side of the air supply blower 511b in the casing 511a as shown in FIG. Although not explicitly shown in the figure, the air ion generating means 502 includes a duct 512 leading to the air inlet 513, a filter 511c inlet side of one region 511A, a filter 511c outlet side of one region 511A, and a coil. 511e inlet side, duct 512 leading to the air outlet 514, duct 512 leading to the air inlet 518, filter 511c inlet side of the other region 511B, and duct 512 leading to the air outlet 519 Good.
[0209] 図 41に示す空気イオン搬送システムは、給気送風機 51 lbを稼働することによって 空気取入口部 513からダクト 512を通して外気を取入れ、ケーシング 511 aの一方の 領域 511Aにおいてフィルタ 51 1cおよびコイル 51 leを通過させた後、ダクト 512を 通して空気吹出口部 514から部屋 517内に吹出す。一方、排気送風機 511bを稼働 することによって部屋 517内の空気を空気吸込口部 518からダクト 512を通し、ケー シング 51 laの他方の領域 511Bにおいてフィルタ 511cを通過させた後、ダクト 512 を通して空気排出口部 519から外気に排気する。この際、空気イオン発生手段 502 は、空気搬送手段 501が搬送する空気をイオンを含ませた空気イオンとする。この空 気イオンは、導電構造および帯電除去手段によって帯電を防止された空気搬送手 段 501で搬送されるので、有効濃度を維持した状態で安定して搬送され、除菌、抗ゥ ィルスおよび抗アレルゲン作用を行う。このように、本実施の形態における空気イオン 搬送システムは、全熱交換空調システムに適用することが可能である。  [0209] The air ion transfer system shown in Fig. 41 is configured to take in outside air from the air intake port 513 through the duct 512 by operating the air supply blower 51 lb, and in one region 511A of the casing 511a, the filter 51 1c and the coil After passing 51 le, the air is blown out from the air outlet 514 into the room 517 through the duct 512. On the other hand, by operating the exhaust blower 511b, the air in the room 517 is passed through the duct 512 from the air suction port 518, passed through the filter 511c in the other region 511B of the casing 51 la, and then exhausted through the duct 512. Exhaust air from outlet 519. At this time, the air ion generating means 502 converts the air conveyed by the air conveying means 501 into air ions containing ions. Since these air ions are transported by the air transport means 501 that is prevented from being charged by the conductive structure and the charge removing means, they are stably transported in a state where the effective concentration is maintained, and are sterilized, anti-virus and anti-virus. Performs allergen action. Thus, the air ion transport system in the present embodiment can be applied to a total heat exchange air conditioning system.
[0210] 図 42に示す空気イオン搬送システムは、オフィスビルなどの建物 600の空調システ ムを構成してある。図 42に示すように空調機 601には、冷却塔 602から熱源 (冷却ヒ ートポンプチラ一およびボイラなど) 603を介した冷温水が循環される。空調機 601は 、ダクト 512を通して空気取入口部 513から取入れた外気を、ダクト 512を通して空気 吹出口部 514から建物 600における各階の部屋 517に吹出す。一方、空調機 601 は、部屋 517内の空気を空気吸込口部 518からダクト 512を通して吸込み、この空気 を調節して再びダクト 512を通して空気吹出口部 514から部屋 517に吹出す。また、 部屋 517内の空気は、空調システムとは別に設けた空気吸込口部 518 'およびダクト 512'を通して空気排出口部 519'から外気に排出する。 [0210] The air ion transport system shown in Fig. 42 constitutes an air conditioning system for a building 600 such as an office building. As shown in FIG. 42, in the air conditioner 601, cold / hot water is circulated from a cooling tower 602 through a heat source (such as a cooling heat pump chiller and a boiler) 603. Air conditioner 601 The outside air taken in from the air inlet 513 through the duct 512 is blown out from the air outlet 514 to the room 517 on each floor in the building 600 through the duct 512. On the other hand, the air conditioner 601 sucks the air in the room 517 from the air inlet 518 through the duct 512, adjusts this air, and blows out again from the air outlet 514 to the room 517 through the duct 512. In addition, the air in the room 517 is discharged to the outside air from the air discharge port 519 ′ through the air suction port 518 ′ and the duct 512 ′ provided separately from the air conditioning system.
[0211] そして、上記空調システムに上述の空気イオン発生手段 502を設け、必要に応じて 空気イオンを搬送する経路に導電構造および帯電除去手段を備える。例えば、図 4 2に示すように空調機 601に空気イオン発生手段 502を設け、空調機 601、空気吹 出口部 514、および空調機 601から空気吹出口部 514に通じるダクト 512に導電構 造および帯電除去手段(アース 504)を備える。この結果、空調システムにおいて、空 調機 601からダクト 512を通して空気吹出口部 514に至る経路に、有効濃度を維持 した状態で安定して空気イオンを搬送できる。また、必要に応じて、空調機 601、冷 却塔 602、熱源 603、ダクト 512、空気取入口部 513、および空気吹出口部 514など に空気イオンを搬送する場合に、その経路に導電構造および帯電除去手段を備え ればよい。このように必要に応じて空気イオン搬送システムを構築することが可能に なる。なお、空気イオン発生手段 502は、空調機 601以外に、ダクト 512, 512'、空 気取入口部 513、空気吸込口部 518, 518 '、あるいは空気排出口部 519 'など、必 要に応じて空気イオンの効果を得たい部位に設けてもよい。  [0211] The air ion generation means 502 is provided in the air conditioning system, and a conductive structure and a charge removing means are provided in a path for transporting the air ions as necessary. For example, as shown in FIG. 42, an air ion generating means 502 is provided in an air conditioner 601 and a conductive structure is provided in an air conditioner 601, an air outlet 514, and a duct 512 leading from the air conditioner 601 to the air outlet 514. A charge removing means (ground 504) is provided. As a result, in the air conditioning system, air ions can be stably transported from the air conditioner 601 to the air outlet 514 through the duct 512 while maintaining an effective concentration. In addition, when air ions are transported to the air conditioner 601, cooling tower 602, heat source 603, duct 512, air inlet 513, air outlet 514, etc. It suffices to have an electrification removing means. In this way, it is possible to construct an air ion transport system as necessary. The air ion generation means 502 is not limited to the air conditioner 601 but may include a duct 512, 512 ′, an air inlet 513, an air inlet 518, 518 ′, or an air outlet 519 ′. It may be provided at a site where the effect of air ions is desired.
[0212] 図 43に示す空気イオン搬送システムは、図 42に示す空気イオン搬送システムと同 様に建物 600の空調システムを構成してある。図 43に示すように空調機 601には、 冷却塔 602から熱源 (冷却ヒートポンプチラ一およびボイラなど) 603を介した冷温水 が循環される。空調機 601は、ダクト 512を通して空気取入口部 513から取入れた外 気を、ダクト 512を通して空気吹出口部 514から建物 600における各階の部屋 517 に吹出す。一方、空調機 601は、部屋 517内の空気を空気吸込口部 518からダクト 5 12を通して吸込み、ダクト 512を通して空気排出口部 519から外気に排出する。また 、空調機 601は、部屋 517内の空気を空気吸込口部 518からダクト 512を通して吸 込み、この空気を調節して再びダクト 512を通して空気吹出口部 514から部屋 517に 吹出す。 [0212] The air ion transport system shown in FIG. 43 constitutes the air conditioning system of the building 600 in the same manner as the air ion transport system shown in FIG. As shown in FIG. 43, in the air conditioner 601, cold / hot water is circulated from a cooling tower 602 through a heat source (such as a cooling heat pump chiller and a boiler) 603. The air conditioner 601 blows the outside air taken in from the air inlet 513 through the duct 512 from the air outlet 514 to the room 517 on each floor in the building 600 through the duct 512. On the other hand, the air conditioner 601 sucks air in the room 517 from the air suction port 518 through the duct 512 and discharges it from the air discharge port 519 to the outside air through the duct 512. In addition, the air conditioner 601 sucks the air in the room 517 from the air inlet 518 through the duct 512, adjusts this air, and again passes through the duct 512 from the air outlet 514 to the room 517. Blow out.
[0213] そして、上記空調システムに上述の空気イオン発生手段 502を設け、必要に応じて 空気イオンを搬送する経路に導電構造および帯電除去手段を備える。例えば、図 4 3に示すように空調機 601に空気イオン発生手段 502を設け、空調機 601、空気吹 出口部 514、および空調機 601から空気吹出口部 514に通じるダクト 512に導電構 造および帯電除去手段(アース 504)を備える。この結果、空調システムにおいて、空 調機 601からダクト 512を通して空気吹出口部 514に至る経路に、有効濃度を維持 した状態で安定して空気イオンを搬送できる。また、必要に応じて、空調機 601、冷 却塔 602、熱源 603、ダクト 512、空気取入口部 513、空気吹出口部 514、空気吸込 口部 518、および空気排出口部 519などに空気イオンを搬送する場合に、その経路 に導電構造および帯電除去手段を備えればよい。このように、必要に応じて空気ィォ ン搬送システムを構築することが可能になる。なお、空気イオン発生手段 502は、空 調機 601以外に、ダクト 512、空気取入口部 513、空気吸込口部 518、あるいは空気 排出口部 519など、必要に応じて空気イオンの効果を得たレ、部位に設けてもょレ、。  [0213] The air ion generation means 502 described above is provided in the air conditioning system, and a conductive structure and a charge removing means are provided in a path for conveying the air ions as necessary. For example, as shown in FIG. 43, an air ion generating means 502 is provided in the air conditioner 601 and a conductive structure is provided in the air conditioner 601, the air outlet 514, and the duct 512 leading from the air conditioner 601 to the air outlet 514. A charge removing means (ground 504) is provided. As a result, in the air conditioning system, air ions can be stably transported from the air conditioner 601 to the air outlet 514 through the duct 512 while maintaining an effective concentration. In addition, if necessary, air ions are supplied to the air conditioner 601, cooling tower 602, heat source 603, duct 512, air inlet 513, air outlet 514, air inlet 518, air outlet 519, etc. In the case of transporting the battery, a conductive structure and a charge removing means may be provided in the path. In this way, it is possible to construct an air ion transport system as necessary. In addition to the air conditioner 601, the air ion generating means 502 obtained the effect of air ions as necessary, such as a duct 512, an air intake port 513, an air suction port 518, or an air discharge port 519. Let ’s put it on the part.
[0214] したがって、上述した空気イオン搬送システムでは、導電構造を備えて空気イオン を搬送する経路を通じて導電性を維持することによって、当該経路の帯電を防止す るので、有効濃度を維持した状態で安定して空気イオンを搬送することが可能になる 。この結果、従前では、空気イオンが種々の帯電している物体に吸着されて数 m程 度で減衰してしまうが、 10mから数十 m以上のレベルまで空気イオンを有効濃度で 搬送できる。特に、空気が乾燥する時期には、空気搬送手段 1の構成部が帯電し易 くなるが、これを防止するので年間を通し、連続して空気イオンを安定した有効濃度 で搬送することが可能になる。  [0214] Therefore, in the air ion transport system described above, the conductive structure is provided and the conductivity is maintained through the path for transporting air ions, thereby preventing the charging of the path, so that the effective concentration is maintained. It becomes possible to carry air ions stably. As a result, conventionally, air ions are adsorbed by various charged objects and attenuated in the order of several meters, but air ions can be conveyed at an effective concentration from 10 m to several tens of meters. In particular, when the air dries, the components of the air transport means 1 are easily charged, but this is prevented so that air ions can be transported continuously at a stable effective concentration throughout the year. become.
[0215] また、有効濃度を維持した状態で安定して空気イオンを搬送することが可能なため 、従前では、各部屋の吹出口に空気イオン発生手段 502を取り付けなくてはならず 設計上の制約をうけることになるが、空気イオン発生手段 502の取り付け位置を自由 に設定することが可能になる。例えば、上述したように送風ユニット 511や空調機 601 に空気イオン発生手段 502を取り付けた場合には、空気イオンの発生に伴い様々な 運転条件を設定することが可能になる。さらに、各部屋の吹出口に空気イオン発生 手段 502を取り付けなくてもよいため、水廻り部や、特殊な部屋 (冷凍室、冷蔵室、高 温室、工場や医療施設で薬剤を使用する薬剤薫蒸室など)での空気イオン発生手 段 502への直接的なダメージがなぐ継続的で安定した空気イオンの供給が可能に なる。 [0215] In addition, since it is possible to stably transport air ions while maintaining an effective concentration, conventionally, air ion generating means 502 must be attached to the air outlet of each room. Although there are restrictions, it is possible to freely set the mounting position of the air ion generating means 502. For example, when the air ion generating means 502 is attached to the blower unit 511 or the air conditioner 601 as described above, various operating conditions can be set as air ions are generated. In addition, air ions are generated at the outlet of each room. Since it is not necessary to install means 502, it is a means for generating air ions in water-circulating areas and special rooms (freezer rooms, refrigerator rooms, high greenhouses, drug fumigation rooms that use drugs in factories and medical facilities, etc.) A continuous and stable supply of air ions without direct damage to the 502 is possible.
[0216] また、導電構造に加えて、帯電除去手段を設けたことにより、空気イオンを搬送する 経路の帯電をさらに防止する。この結果、負イオンまたは正イオンまたはこれらの両ィ オンを含ませた空気イオンが吸着されることがなレ、ので、有効濃度を維持した状態で 空気イオンをさらに安定して搬送することが可能になる。  [0216] In addition to the conductive structure, a charge removing means is provided to further prevent charging of the path for carrying air ions. As a result, negative ions, positive ions, or air ions containing both of these ions cannot be adsorbed, so that air ions can be transported more stably while maintaining an effective concentration. become.
[0217] なお、上述した空気イオン搬送システムでは、空調システムや換気システムなどを 対象に説明したが、空気以外の気体を搬送するシステムにおいても応用可能である  [0217] Although the air ion transport system described above has been described for air conditioning systems, ventilation systems, and the like, it can also be applied to systems that transport gases other than air.
[0218] ぐ実施の形態 5 > [0218] Embodiment 5>
図 44は本発明の実施の形態 5である空気イオン搬送装置を示す概略構成図、図 4 5は配送手段の例を示す断面図、図 46は配送手段の別の例を示す断面図、図 47は 配送手段のさらに別の例を示す断面図、図 48は空気イオンのイオン濃度と搬送距離 との関係を示す図である。  44 is a schematic configuration diagram showing an air ion transport device according to Embodiment 5 of the present invention, FIG. 45 is a cross-sectional view showing an example of the delivery means, and FIG. 46 is a cross-sectional view showing another example of the delivery means. 47 is a sectional view showing still another example of the delivery means, and FIG. 48 is a diagram showing the relationship between the ion concentration of air ions and the transport distance.
[0219] 本発明の空気イオン搬送装置は、例えば空調設備などに採用されて住宅などの部 屋に空気イオンを搬送するものであり、送風手段 701、空気清浄手段 702、空気ィォ ン発生手段 703および配送手段 704を備えてレ、る。  [0219] The air ion transport apparatus of the present invention is employed in, for example, an air conditioner and transports air ions to a room such as a house, and includes a blowing means 701, an air purifying means 702, and an air ion generating means. 703 and delivery means 704 are provided.
[0220] 送風手段 701は、送風機などからなり、給気口 751と排気口 752とを有したケーシ ング 705の内部に配設してある。ケーシング 705の内部には、セパレータ 753を介し て 2分割した各通風路 754a, 754bが形成してある。各通風路 754a, 754bは、給気 口 751と排気口 752と間に通じて設けてある。なお、本実施の形態では給気口 751 力各通風路 754a, 754bに共通して設けてあり、 非気口 752力 S各通風路 754a, 754 bごとにそれぞれ設けてある。送風手段 701は、前記各通風路 754a, 754bにそれぞ れ配設してある。各送風手段 701は、その稼働によって給気口 751からケーシング 7 05の内部に給気した空気を、ケーシング 705の内部であるそれぞれの通風路 754a , 754bにそれぞれ通過させて各排気口 752からケーシング 705の外部に排気する。 [0221] なお、送風手段 701は、各通風路 754a, 754bにそれぞれ配設せず、給気口 751 の位置に単一で配設して、その排気口 752側においてケーシング 705の内部をセパ レータ 753で 2分割した各通風路 754a, 754bに給気した空気を通過させて各排気 口 752からケーシング 705の外部に当該空気を排気する構成であってもよい。 [0220] The air blowing means 701 is composed of a blower or the like, and is disposed inside a casing 705 having an air supply port 751 and an air exhaust port 752. Inside the casing 705, the air passages 754a and 754b divided into two via the separator 753 are formed. Each ventilation path 754a, 754b is provided between the air supply port 751 and the exhaust port 752. In this embodiment, the air supply port 751 is provided in common for each ventilation path 754a, 754b, and the non-air supply 752 force S is provided for each ventilation path 754a, 754b. The air blowing means 701 is disposed in each of the ventilation paths 754a and 754b. Each of the air blowing means 701 causes the air supplied from the air supply port 751 to the inside of the casing 705 by its operation to pass through the respective ventilation paths 754a and 754b inside the casing 705, respectively, and from the respective air outlets 752 to the casing Exhaust outside 705. Note that the air blowing means 701 is not provided in each of the ventilation paths 754a and 754b, but is provided alone at the position of the air supply port 751, and the interior of the casing 705 is separated on the exhaust port 752 side. A configuration may be adopted in which the air supplied to the ventilation paths 754a and 754b divided into two by the circulator 753 is exhausted and the air is exhausted from the exhaust ports 752 to the outside of the casing 705.
[0222] 空気清浄手段 702は、上述した実施の形態 1における空気清浄装置 109と同じで あり、送風手段 701の稼働によって給気口 751からケーシング 705の内部(各通風路 754a, 754b)に給気される空気中の塵埃などを主に除去するものである。  [0222] Air purifying means 702 is the same as air purifying apparatus 109 in Embodiment 1 described above, and air is supplied from air supply port 751 to the inside of casing 705 (respective ventilation paths 754a and 754b) by operating air blowing means 701. It mainly removes the dust in the air.
[0223] 空気イオン発生手段 703は、ケーシング 705の内部である各通風路 754a, 754b にそれぞれ設けてある。各空気イオン発生手段 703は、上述した実施の形態 1にお ける空気イオン発生装置ユニット 104と同じである。  [0223] The air ion generating means 703 is provided in each of the ventilation paths 754a and 754b inside the casing 705. Each air ion generation means 703 is the same as the air ion generation device unit 104 in the first embodiment described above.
したがって、送風手段 701を駆動することにより、イオン発生装置によって発生させ た正イオンと負イオンとを本体外に送り出すことができる。そして、これらの正イオンと 負イオンの作用により空気中の力ビゃ菌の微生物を殺菌することができる。  Therefore, by driving the air blowing means 701, positive ions and negative ions generated by the ion generator can be sent out of the main body. And, the action of these positive ions and negative ions can sterilize the microorganisms in the air.
その他、正イオンと負イオンには、コクサツキ一ウィルス、ポリオウイルス、などのウイ ノレス類も不活化する働きがあり、これらウィルスの混入による汚染が防止できる。 また、正イオンと負イオンには、臭いの元となる分子を分離する働きがあることも確 かめられており、空間の脱臭にも利用できる。  In addition, positive ions and negative ions also act to inactivate wines such as Coxsackie virus and poliovirus, and can prevent contamination due to contamination of these viruses. In addition, it has been confirmed that positive ions and negative ions have a function of separating molecules that cause odors, and can be used to deodorize spaces.
また、各通風路 754a, 754bに設けたそれぞれの空気イオン発生手段 703は、各 通風路 754a, 754bで個別のイオンを発生する。例えば通風路 754aでは負イオンを 発生し、通風路 754bでは正イオンを発生する。そして、発生した負イオンおよび正ィ オンは、送風手段 701によって各通風路 754a, 754bに通過する空気にそれぞれ含 まれることになる。  In addition, each air ion generating means 703 provided in each ventilation path 754a, 754b generates individual ions in each ventilation path 754a, 754b. For example, negative ions are generated in the ventilation path 754a, and positive ions are generated in the ventilation path 754b. The generated negative ions and positive ions are included in the air passing through the ventilation paths 754a and 754b by the air blowing means 701, respectively.
[0224] なお、空気イオン発生手段 703は、上記のようにケーシング 705の内部に設ける以 外に、ケーシング 705の外部である例えば排気口 752の位置に設けてあってもよレ、。  Note that the air ion generating means 703 may be provided outside the casing 705, for example, at the position of the exhaust port 752, other than being provided inside the casing 705 as described above.
[0225] 配送手段 704は、ケーシング 705の排気口 752からケーシング 705の外部に延在 して設けてあり、各通風路 754a, 754bを通過して各排気口 752から排気される各空 気を導通するために、それぞれ個別の管路 741a, 741bを有している。各管路 741a , 741bは、通気ダクトなどからなり、例えば住宅などの部屋に至る態様で共に配管し てあり、負イオンを含む第 1の空気と正イオンを含む第 2の空気とを前記部屋に個別 に配送する。 [0225] The delivery means 704 extends from the exhaust port 752 of the casing 705 to the outside of the casing 705, and passes the air exhausted from the exhaust ports 752 through the ventilation paths 754a and 754b. In order to conduct, each has separate pipes 741a and 741b. Each of the pipe lines 741a and 741b is composed of a ventilation duct or the like, for example, piped together in a manner leading to a room such as a house. The first air containing negative ions and the second air containing positive ions are individually delivered to the room.
[0226] 本実施の形態における配送手段 704は、図 45に示すようにそれぞれの管路 741a , 741bを独立して配管して、負イオンを含む第 1の空気と正イオンを含む第 2の空気 とを個別に配送する。また、配送手段 704の別の例では、図 46に示すように各管路 7 41a, 741bを単一管路 740の内部の分割によって形成して、負イオンを含む第 1の 空気と正イオンを含む第 2の空気とを個別に配送する。また、配送手段 704のさらに 別の例では、図 47に示すように各管路 741a, 741bによって重管を形成して、負ィ オンを含む空気イオンである第 1の空気と、正イオンを含む空気イオンである第 2の 空気とを個別に配送する。このように、様々な搬送形態を得ることができるので本空 気イオン搬送装置を設置する建物などの配管に応じた設計を行うことが可能になる。 また、配送手段 704の出口側において負イオンと正イオンとが混ざり合う手段を設け 、正負イオンが混ざった状態で室内に放出されることで、室内の殺菌効果がより向上 する。  [0226] As shown in Fig. 45, the delivery means 704 in the present embodiment is configured such that the pipes 741a and 741b are independently piped, so that the first air containing negative ions and the second air containing positive ions are contained. Air is delivered separately. Further, in another example of the delivery means 704, as shown in FIG. 46, each pipe line 741a, 741b is formed by dividing the inside of the single pipe line 740 so that the first air containing negative ions and the positive ions The second air containing is delivered separately. In another example of the delivery means 704, as shown in FIG. 47, a heavy pipe is formed by the pipe lines 741a and 741b, and the first air, which is an air ion including negative ions, and positive ions are The second air, which is the air ion containing, is delivered separately. As described above, since various transport modes can be obtained, it becomes possible to design in accordance with the piping of a building or the like where the air ion transport device is installed. Further, a means for mixing negative ions and positive ions is provided on the outlet side of the delivery means 704, and positive and negative ions are mixed and released into the room, so that the sterilizing effect in the room is further improved.
[0227] また、上記各管路 741a, 741bは、非帯電構造を有している。非帯電構造としては 、帯電しない、あるいは帯電しにくい構造であり、図には明示しないが各管路 741a, 741bにアースを設ける構造がある。また、非帯電構造としては、上記各管路 741a, 741bの少なくとも内面を非帯電性の材料で形成する、もしくは上記各管路 741a, 7 41bの少なくとも内面を非帯電性の形状に構成することが考えられる。非帯電性の材 料としては、アルミなど金属、または樹脂系材料などがある。なお、樹脂系材料として は、負イオンを含む第 1の空気を搬送する管路の場合には正に帯電しない、あるい は帯電しにくい樹脂系材料を採用し、正イオンを含む第 2の空気を搬送する管路の 場合には負に帯電しない、あるいは帯電しにくい樹脂系材料を採用する。また、非帯 電性の構成としては、蛇腹形状、管路 741a, 741b内での番線のピッチ、または管路 741a, 741bの内面材の接着方法などがある。すなわち、非帯電構造では、管路 74 la, 741bにおいて空気が触れる内面に対して帯電しなレ、、あるいは帯電しにくい構 造を備えることが重要である。  [0227] Each of the pipes 741a and 741b has an uncharged structure. The uncharged structure is a structure that is not charged or difficult to be charged, and there is a structure in which a ground is provided in each of the pipelines 741a and 741b, although not shown in the figure. In addition, as the non-charging structure, at least the inner surface of each of the pipes 741a and 741b is made of a non-charging material, or at least the inner surface of each of the pipes 741a and 741b is formed in a non-charging shape. Can be considered. Non-chargeable materials include metals such as aluminum or resin materials. The resin material is a resin material that is not positively charged or difficult to be charged in the case of a pipeline that carries the first air containing negative ions. For pipes that carry air, resin materials that are not negatively charged or difficult to be charged are used. Further, as the non-electrostatic configuration, there are an accordion shape, a pitch of a numbered wire in the pipes 741a and 741b, or a bonding method of an inner surface material of the pipes 741a and 741b. In other words, in the non-charged structure, it is important to provide a structure that is not charged with respect to the inner surface that is in contact with air in the conduits 74 la and 741b, or a structure that is difficult to be charged.
[0228] このように、上記空気イオン搬送装置は、空気イオン発生手段 703によってケーシ ング 705の内部に給気した空気に負イオンと正イオンとをそれぞれ含ませ、配送手段 704によって負イオンを含む第 1の空気と正イオンを含む第 2の空気とを個別に配送 している。このため、空気イオンを部屋などに搬送する際に負イオンおよび正イオン が結合'中和する事態を防ぎ、空気イオンの有効濃度を維持した状態で当該空気ィ オンを搬送することが可能になる。図 48では、例えば 1つの空気イオン発生手段 703 によって共に発生した負イオンおよび正イオンを共に含む管路内の空気イオン(図 4 8中破線で示す)と、負イオンのみを含む管路内の空気イオン(図 48中実線で示す) および正イオンのみを含む管路内の空気イオン(図 48中一点鎖線で示す)とを比較 して空気イオンのイオン濃度と搬送距離との関係を示している。すなわち、図 48で明 らかなように、負イオンあるいは正イオンのみを含む管路内の空気イオンは、負イオン および正イオンを共に含む管路内の空気イオンに比較してイオン濃度を維持してい る搬送距離が長いことが判る。この搬送距離は、負イオンおよび正イオンを共に含む 空気イオンを搬送する距離が数 m程度に対して負イオンまたは正イオンのみを含む 空気イオンを搬送する距離が 10mから数十 mに至る範囲以上にまで改善される。 また、空気イオン発生手段 703は、送風手段 701を設けたケーシング 705の内部あ るいは外部の排気口 752の位置に設けたうえで、空気イオンの有効濃度を維持した 状態で当該空気イオンを搬送することが可能なので、例えば住宅の各部屋に設けた 空気供給口に空気イオン発生手段 703を設けなくてもよい。この結果、送風手段 70 1との関連でイオン発生に関して様々な運転条件が設定できる。また、各部屋に設け た空気供給口に空気イオン発生手段 703を設けなくてもよいため、各部屋での設計 上の制約を受けることがない。さらに、各部屋に設けた空気供給口に空気イオン発生 手段 703を設けなくてもよいため、水廻り部での湿気の影響やその他特殊な部屋 (冷 凍室、冷蔵室、高温室、工場や医療施設で薬剤使用あるいは薬剤薫蒸する部屋な ど)での空気イオン発生手段 703への直接的な影響がないので、継続的で安定した 空気イオンの供給が可能になる。そして、管路による配送なので常時管路内の殺菌 や脱臭が可能である。このため、上記空気イオン搬送装置は、住宅に限らず、オフィ ス、医療施設、老健施設、宿泊施設、教育施設あるいは美術館などの配管空調シス テム導入のあらゆる用途の建物に適応することが可能である。 [0230] また、上記空気イオン搬送装置は、空気清浄手段 702によって負イオンと正イオン とを含ませる以前の空気の清浄を行っている。このため、空気イオンを部屋などに搬 送する際に負イオンおよび正イオンが空気中の塵埃に吸着する事態を防ぎ、空気ィ オンの有効濃度を維持した状態で当該空気イオンを搬送することが可能になる。 As described above, the air ion transport device is operated by the air ion generating means 703. The negative air and positive ions are included in the air supplied to the inside of the 705, and the first air containing negative ions and the second air containing positive ions are delivered individually by the delivery means 704. . This prevents negative ions and positive ions from being combined and neutralized when transporting air ions to a room, etc., and enables the air ions to be transported while maintaining an effective concentration of air ions. . In FIG. 48, for example, an air ion (shown by a broken line in FIG. 48) containing both negative ions and positive ions generated by one air ion generating means 703 and a pipe containing only negative ions. Compare the air ions (indicated by the solid line in Fig. 48) and the air ions in the pipeline containing only positive ions (indicated by the alternate long and short dash line in Fig. 48) to show the relationship between the ion concentration of the air ions and the transport distance. Yes. That is, as is clear from FIG. 48, the air ions in the pipeline containing only negative ions or positive ions maintain the ion concentration compared to the air ions in the pipeline containing both negative ions and positive ions. It can be seen that the transport distance is long. This transport distance is more than the range in which the distance to transport air ions containing only negative ions or positive ions is from 10 m to several tens of meters, while the distance to transport air ions including both negative ions and positive ions is about several meters. Will be improved. The air ion generation means 703 is provided in the casing 705 provided with the air blowing means 701 or at the position of the external exhaust port 752, and conveys the air ions while maintaining the effective concentration of air ions. Therefore, for example, the air ion generation means 703 may not be provided at the air supply port provided in each room of the house. As a result, various operating conditions can be set for ion generation in relation to the blowing means 701. Further, since it is not necessary to provide the air ion generating means 703 at the air supply port provided in each room, there is no design restriction in each room. Furthermore, since it is not necessary to provide the air ion generating means 703 at the air supply port provided in each room, the influence of moisture in the water circulation area and other special rooms (freezing room, refrigeration room, high temperature room, factory, etc.) Since there is no direct influence on the air ion generation means 703 in a room where a drug is used or fumigated in a medical facility, a continuous and stable supply of air ions is possible. And since it is delivered by pipeline, sterilization and deodorization in the pipeline is always possible. For this reason, the air ion transport device described above can be applied not only to houses but also to buildings of various uses such as offices, medical facilities, health facilities, accommodation facilities, educational facilities, or museums. is there. [0230] In addition, the air ion transport device cleans the air before it contains negative ions and positive ions by the air cleaning means 702. For this reason, when air ions are transported to a room or the like, negative ions and positive ions are prevented from adsorbing to dust in the air, and the air ions can be transported while maintaining the effective concentration of air ions. It becomes possible.
[0231] また、上記空気イオン搬送装置は、空気イオンを配送する各管路 741a, 741bに非 帯電構造を設けてあり、あるいは各管路 741a, 741bを非帯電性の材料を含み形成 してある。このため、空気イオンを部屋などに搬送する際に負イオンおよび正イオン が静電気によって各管路 741a, 741bに吸着する事態を防ぎ、空気イオンの有効濃 度を維持した状態で当該空気イオンを搬送することが可能になる。  [0231] Further, in the air ion transport device, each of the pipelines 741a and 741b for delivering air ions is provided with an uncharged structure, or each of the pipelines 741a and 741b includes an unchargeable material. is there. This prevents negative ions and positive ions from adsorbing to the pipes 741a and 741b due to static electricity when transporting air ions to a room, etc., and transports the air ions while maintaining the effective concentration of air ions. It becomes possible to do.
[0232] ところで、上記空気イオン搬送装置では、負イオンを含む第 1の空気と、正イオンを 含む第 2の空気とを個別に配送する構成であるが、空気イオン発生手段 703によつ てケーシング 705の内部に給気した空気に負イオンと正イオンとをそれぞれ含ませ、 負イオンを含む第 1の空気と、正イオンを含む第 2の空気とを共に搬送してもよい。こ の場合、負イオンおよび正イオンが発生直後に結合 ·中和する事態を防ぎ、空気ィォ ンの有効濃度を維持した状態で当該空気イオンを搬送することができる。図 48では、 例えば 1つの空気イオン発生手段 703によって共に発生した負イオンおよび正ィォ ンを共に含む管路内の空気イオン(図 48中破線で示す)と、別々の空気イオン発生 手段 703によりそれぞれ発生した負イオンおよび正イオンを共に含む管路内の空気 イオン(図 48中二点鎖線で示す)とを比較して空気イオンのイオン濃度と搬送距離と の関係を示している。すなわち、図 48で明らかなように、それぞれ発生した負イオン および正イオンを共に含む管路内の空気イオンは、共に発生した負イオンおよび正 イオンを共に含む管路内の空気イオンに比較して結合 '中和の程度が低くイオン濃 度を維持してレ、る搬送距離が長レ、ことが判る。  [0232] Incidentally, the air ion transport device has a configuration in which the first air containing negative ions and the second air containing positive ions are individually delivered. Negative air and positive ions may be included in the air supplied to the inside of the casing 705, and the first air containing negative ions and the second air containing positive ions may be conveyed together. In this case, it is possible to prevent the negative ions and positive ions from being combined and neutralized immediately after generation, and to transport the air ions while maintaining the effective concentration of air ions. In FIG. 48, for example, an air ion in a pipeline containing both negative ions and positive ions generated together by one air ion generation means 703 (shown by a broken line in FIG. 48) and a separate air ion generation means 703 The relationship between the ion concentration of air ions and the transport distance is shown in comparison with air ions (shown by a two-dot chain line in Fig. 48) in the pipeline containing both negative ions and positive ions generated. That is, as is clear from FIG. 48, the air ions in the pipeline containing both the negative ions and the positive ions generated in comparison with the air ions in the pipeline containing both the negative ions and the positive ions generated together, respectively. It can be seen that the degree of binding 'neutralization is low and the ion concentration is maintained, and the transport distance is long.
[0233] また、上記空気イオン搬送装置では、負イオンを含む第 1の空気と、正イオンを含 む第 2の空気とを個別に配送する構成であるが、上記第 1の空気と第 2の空気とは別 に、それぞれ発生した負イオンおよび正イオンを共に含む第 3の空気を上記管路 74 la, 741bとは別の管路(図示せず)で他の空気とは個別に配送してもよい。さらに、 上述した空気イオン搬送装置では、負イオンおよび正イオンを含まなレ、第 4の空気を 別の配管(図示せず)で他の空気とは個別に配送してもよい。第 4の空気としては、新 鮮空気による空気イオンを希釈するための空気、その他の空気 (香りを含む空気 ·高 酸素空気など)がある。この場合、図には明示しないがケーシング 705の内部をセパ レータ 753で 3分割あるいは 4分割にした各通風路を形成するとともに、各通風路の 排気口 752からケーシング 705の外部に延在する 3つあるいは 4つの管路を設けて、 第 1の空気と第 2の空気と第 3の空気とを個別に配送する形態と、第 1の空気と第 2の 空気と第 4の空気とを個別に配送する形態と、第 1の空気と第 2の空気と第 3の空気と 第 4の空気とを個別に配送する形態とを得ることも可能である。なお、この場合の各管 路は、上述したように独立した配管(図 45参照)、単一管路 740の内部の分割した配 管(図 46参照)あるいは重管による配管(図 47参照)が可能である。さらに、各管路の うちのいずれか一つの管路の内部に他の管路を内装している配管でもよい。 [0233] Further, the air ion transport device has a configuration in which the first air containing negative ions and the second air containing positive ions are separately delivered. Separately from the other air, the third air containing both negative ions and positive ions generated is delivered separately from other air through a pipe (not shown) separate from the pipes 74 la and 741b. May be. Further, in the above-described air ion transport device, the fourth air is not included in the air containing negative ions and positive ions. You may deliver separately with other air by another piping (not shown). The fourth air includes air for diluting air ions from fresh air, and other air (such as scented air or high oxygen air). In this case, although not shown in the drawing, the inside of the casing 705 is divided into three or four by a separator 753, and each ventilation path is formed from the exhaust port 752 of each ventilation path to the outside of the casing 705. One or four pipe lines are provided, and the first air, the second air, and the third air are separately delivered, and the first air, the second air, and the fourth air are separately provided. It is also possible to obtain a configuration in which the first air, the second air, the third air, and the fourth air are separately distributed. In this case, each pipe can be an independent pipe (see Fig. 45), a divided pipe inside the single pipe 740 (see Fig. 46), or a pipe with a heavy pipe (see Fig. 47). Is possible. Furthermore, the pipe | tube which has another pipe line inside the pipe line in any one of each pipe line may be sufficient.
[0234] また、上記空気イオン搬送装置では、第 1の空気〜第 3の空気に含まれる負イオン および正イオンの濃度を可変するイオン濃度可変手段を備えてもよい。イオン濃度可 変手段としては、負イオンあるいは正イオンの発生容量を増減する、あるいは、負ィ オンあるいは正イオンを間欠発生させるなどの手段がある。このイオン濃度可変手段 によれば、例えば最初に負イオンおよび正イオンの濃度を略同等量部屋に放出し、 部屋の空気中に遊するカビ菌およびウィルスなどの浮遊する細菌を殺菌、不活化し、 一酸化窒素、酢酸を除去した後、負イオンと正イオンとの混合比 (濃度)を変えて負ィ オンの濃度を増すことで負イオンによる癒し効果を得るなど、空気イオンによって得る 効果を場合に応じて変えることが可能になる。さらに、必要に応じて正イオンの濃度 を ί曽すこともできる。 [0234] In addition, the air ion transport device may include ion concentration varying means that varies the concentrations of negative ions and positive ions contained in the first air to the third air. As means for changing the ion concentration, there are means such as increasing or decreasing the generation capacity of negative ions or positive ions, or intermittently generating negative ions or positive ions. According to this ion concentration varying means, for example, first, approximately equal amounts of negative ions and positive ions are released into the room to sterilize and inactivate floating bacteria such as fungi and viruses that migrate into the room air. After removing nitric oxide and acetic acid, changing the mixing ratio (concentration) of negative ions and positive ions to increase the concentration of negative ions, the healing effect of negative ions is obtained. It can be changed according to circumstances. Furthermore, if necessary, the concentration of positive ions can be reduced.
[0235] また、第 1の空気〜第 3の空気を搬送する箇所 (部屋)が多い場合には、各管路を 複数要することになり、各箇所に搬送する負イオンあるいは正イオンの濃度が低下す るおそれがあるが、空気イオン発生手段 703を増すことで搬送する空気のイオン濃度 を調整することが可能である。  [0235] In addition, when there are many locations (rooms) for transporting the first air to the third air, multiple pipe lines are required, and the concentration of negative ions or positive ions transported to each location is high. Although there is a risk of a decrease, it is possible to adjust the ion concentration of the air to be conveyed by increasing the number of air ion generating means 703.
[0236] また、上記空気イオン搬送装置では、第 1の空気〜第 4の空気の送風量を可変する 送風量可変手段を備えてもよい。送風量可変手段としては、送風手段 701の稼働を 増減する、あるいは各管路の内径を変えるなどの手段がある。この送風量可変手段 によれば、空気の搬送量を変えることが可能になる。 [0236] In addition, the air ion transport device may further include an air flow rate varying unit that varies the air flow rates of the first air to the fourth air. As the air flow rate varying means, there are means such as increasing or decreasing the operation of the air blowing means 701 or changing the inner diameter of each pipe line. This air flow variable means According to this, it becomes possible to change the amount of air transport.
産業上の利用可能性 Industrial applicability
以上のように、本発明は、所望箇所に負イオン(マイナスイオン)や正イオン (プラス イオン)を空気に含ませた空気イオンを供給することに有用である。  As described above, the present invention is useful for supplying air ions in which negative ions (minus ions) or positive ions (plus ions) are contained in air at desired locations.

Claims

請求の範囲 The scope of the claims
[1] 外部から給気した空気に、負イオンまたは正イオンまたはこれらの両イオンを含ませ る空気イオン発生装置を少なくとも 0. 1cm以上離して複数設置してなることを特徴と する空気イオン搬送装置。  [1] Air ion transport characterized in that a plurality of air ion generators containing negative ions, positive ions, or both of these ions are installed at least 0.1 cm apart from the air supplied from the outside. apparatus.
[2] 外部から送風機を介して空気を導入する換気装置を有し、 [2] It has a ventilation device that introduces air from outside through a blower,
該換気装置内に一定間隔を有して均等に複数の空気イオン発生装置を配設して なることを特徴とする請求項 1に記載の空気イオン搬送装置。  2. The air ion transport device according to claim 1, wherein a plurality of air ion generators are evenly arranged at regular intervals in the ventilation device.
[3] 前記送風機側に複数の空気イオン発生装置を配設してなることを特徴とする請求 項 2に記載の空気イオン搬送装置。 3. The air ion transport device according to claim 2, wherein a plurality of air ion generators are disposed on the blower side.
[4] 前記送風機の吹出し口側に複数の空気イオン発生装置を配設してなることを特徴 とする請求項 2に記載の空気イオン搬送装置。 4. The air ion transport device according to claim 2, wherein a plurality of air ion generators are disposed on the outlet side of the blower.
[5] 前記送風機の吹出し口側にイオンの種類の異なる空気イオン発生装置を隣接して なることを特徴とする請求項 2に記載の空気イオン搬送装置。 5. The air ion transport device according to claim 2, wherein air ion generators of different types of ions are adjacent to the blower outlet side of the blower.
[6] 前記送風機の送風機側と吹出し口側との間のいずれかに、複数の空気イオン発生 装置を配設してなることを特徴とする請求項 2に記載の空気イオン搬送装置。 6. The air ion transport device according to claim 2, wherein a plurality of air ion generators are disposed between the air blower side and the air outlet side of the air blower.
[7] 前記空気イオン発生装置が、負イオンを含ませる空気イオン発生装置または正ィォ ンを含ませる空気イオン発生装置のいずれか一種を配設してなることを特徴とする請 求項 2〜6のいずれか一つに記載の空気イオン搬送装置。 [7] The air ion generator is provided with either an air ion generator containing negative ions or an air ion generator containing positive ions. The air ion conveying apparatus as described in any one of -6.
[8] 前記空気イオン発生装置が、負イオンを含ませる空気イオン発生装置または正ィォ ンを含ませる空気イオン発生装置を混在配設してなることを特徴とする請求項 2〜6 のレ、ずれか一つに記載の空気イオン搬送装置。 8. The air ion generator according to claim 2, wherein the air ion generator includes a mixture of air ion generators containing negative ions or air ion generators containing positive ions. The air ion transport device according to claim 1.
[9] 前記空気イオン発生装置が、負イオンを含ませる空気イオン発生装置または正ィォ ンを含ませる空気イオン発生装置のレ、ずれか一方または両方と、負イオンと正イオン とを同時に発生する空気イオン発生装置とを混在配設してなることを特徴とする請求 項 2〜6のいずれか一つに記載の空気イオン搬送装置。 [9] The air ion generator generates negative ions and positive ions simultaneously with either or both of the air ion generator containing negative ions or the air ion generator containing positive ions. The air ion transport device according to any one of claims 2 to 6, wherein the air ion generation device is disposed in a mixed manner.
[10] 前記送風機の吹出し口側に設けられた継手に接続され、 1または 2以上の部屋へ 個別に空気を搬送する空気ダ外を設けてなり、 [10] Connected to a joint provided on the blower outlet side of the blower, and provided with an outside of the air duct that individually conveys air to one or more rooms,
前記換気装置内に空気ダクトに対応した仕切り部を配設してなり、該仕切り部内に 負イオンと正イオンとを同時に発生する空気イオン発生装置を隣接してなることを特 徴とする請求項 2に記載の空気イオン搬送装置。 A partition portion corresponding to the air duct is disposed in the ventilation device, and the partition portion includes 3. The air ion transport device according to claim 2, wherein an air ion generator that simultaneously generates negative ions and positive ions is adjacent to the air ion transport device.
[11] 前記送風機の吹出し口側に設けられた継手に接続され、 1または 2以上の部屋へ 個別に空気を搬送する空気ダ外を設けてなり、 [11] Connected to a joint provided on the blower outlet side of the blower, and provided with an outside of the air duct for individually conveying air to one or more rooms,
前記換気装置内に空気ダクトに対応した仕切り部を配設してなり、該仕切り部内に 負イオンと正イオンとを同時に発生する空気イオン発生装置を設けてなることを特徴 とする請求項 2に記載の空気イオン搬送装置。  The partition part corresponding to an air duct is arrange | positioned in the said ventilation apparatus, The air ion generator which generate | occur | produces a negative ion and a positive ion simultaneously is provided in this partition part. The air ion conveying apparatus as described.
[12] 前記送風機からの空気送風方向を導入する整流板を配設してなることを特徴とす る請求項 2〜 11のレ、ずれか一つに記載の空気イオン搬送装置。 12. The air ion transport device according to claim 2, wherein a rectifying plate for introducing an air blowing direction from the blower is provided.
[13] 外部から送風機を介して空気を導入する換気装置と、 [13] a ventilator for introducing air from outside through a blower;
前記送風機の吹出し口側に設けられた継手に接続され、 1または 2以上の部屋へ 個別に空気を搬送する空気ダ外を設けてなり、  Connected to a joint provided on the blower outlet side of the blower, and provided with an outside of the air duct for individually conveying air to one or more rooms,
前記送風機から空気ダクト側に向かって拡開した仕切り部を設けてなると共に、 前記送風機側に送風量を一時的に絞る絞り部を形成してなり、  A partition portion that is expanded from the blower toward the air duct side is provided, and a throttle portion that temporarily restricts the amount of blown air is formed on the blower side,
前記絞り部内に負イオンまたは正イオンまたはこれらの両イオンを含ませる空気ィ オン発生装置を設けてなることを特徴とする空気イオン搬送装置。  An air ion transport device comprising an air ion generator for containing negative ions, positive ions, or both of these ions in the throttle portion.
[14] 外部から送風機を介して空気を導入する換気装置と、 [14] a ventilator for introducing air from outside through a blower;
前記送風機の吹出し口側に設けられた継手に接続され、 1または 2以上の部屋へ 個別に空気を搬送する空気ダ外を設けてなり、  Connected to a joint provided on the blower outlet side of the blower, and provided with an outside of the air duct for individually conveying air to one or more rooms,
前記送風機から空気ダクト側に向かって拡開した仕切り部を設けてなると共に、 前記送風機側に送風量を一時的に絞る絞り部を形成してなり、  A partition portion that is expanded from the blower toward the air duct side is provided, and a throttle portion that temporarily restricts the amount of blown air is formed on the blower side,
前記絞り部内に負イオンと正イオンとを同時に発生する空気イオン発生装置を設け てなることを特徴とする空気イオン搬送装置。  An air ion transport device comprising an air ion generator that simultaneously generates negative ions and positive ions in the throttle portion.
[15] 空気イオン発生装置を少なくとも 0. 1cm以上離して複数設置してなることを特徴と する請求項 13または 14に記載の空気イオン搬送装置。 [15] The air ion transport device according to [13] or [14], wherein a plurality of air ion generators are installed at least 0.1 cm apart.
[16] 空気を送風する送風手段と、負イオンまたは正イオンまたはこれらの両イオンを含ま せた空気イオンを発生する空気イオン発生手段とを有した空気イオン搬送装置にお いて、 前記空気イオン発生手段を所望とする対象部位の風上に配置したことを特徴とす る空気イオン搬送装置。 [16] In an air ion transport apparatus having air blowing means for blowing air and air ion generating means for generating air ions containing negative ions, positive ions, or both of these ions, An air ion transporting device, wherein the air ion generating means is arranged on the windward side of a desired target part.
[17] 前記対象部位は所定域の空気を入れ換える換気システム、あるいは所定域の空気 調節を行う空調システムにおける構成部であることを特徴とする請求項 16に記載の 空気イオン搬送装置。 17. The air ion transport device according to claim 16, wherein the target portion is a component in a ventilation system that replaces air in a predetermined region or an air conditioning system that performs air adjustment in a predetermined region.
[18] 前記送風手段は送風機を有し、当該送風機の空気吸込側に前記空気イオン発生 手段を配置したことを特徴とする請求項 16に記載の空気イオン搬送装置。  18. The air ion transport device according to claim 16, wherein the air blowing means has a blower, and the air ion generating means is arranged on the air suction side of the blower.
[19] 空気を清浄する清浄手段を有し、当該清浄手段の入口側に前記空気イオン発生 手段を配置したことを特徴とする請求項 16に記載の空気イオン搬送装置。 19. The air ion transport device according to claim 16, further comprising a cleaning means for cleaning air, wherein the air ion generating means is disposed on the inlet side of the cleaning means.
[20] 空気を清浄する清浄手段を有し、当該清浄手段の出口側に前記空気イオン発生 手段を配置したことを特徴とする請求項 16に記載の空気イオン搬送装置。 20. The air ion transport device according to claim 16, further comprising a cleaning means for cleaning air, wherein the air ion generating means is disposed on the outlet side of the cleaning means.
[21] 前記送風手段の送風によって空気を所定域に向けて吹出す空気吹出口を有し、 当該空気吹出口近傍に前記空気イオン発生手段を配置したことを特徴とする請求項21. The air blower according to claim 21, further comprising an air outlet that blows air toward a predetermined area by blowing air from the blower, and the air ion generator is disposed in the vicinity of the air outlet.
16に記載の空気イオン搬送装置。 16. The air ion transport device according to 16.
[22] 前記送風手段に接続したダクトを有し、当該ダクト内に前記空気イオン発生手段を 配置したことを特徴とする請求項 16に記載の空気イオン搬送装置。 22. The air ion transport device according to claim 16, further comprising a duct connected to the air blowing means, wherein the air ion generating means is disposed in the duct.
[23] 前記送風手段の送風によって外気を取り入れる取入ダクトを有し、当該取入ダクト 内に前記空気イオン発生手段を配置したことを特徴とする請求項 16に記載の空気ィ オン搬送装置。 23. The air ion transport device according to claim 16, further comprising an intake duct that takes in outside air by blowing air from the blower means, and the air ion generating means is disposed in the intake duct.
[24] 前記送風手段の送風によって所定域の空気を外気に排気する排気ダクトを有し、 当該排気ダ外内に前記空気イオン発生手段を配置したことを特徴とする請求項 16 に記載の空気イオン搬送装置。  24. The air according to claim 16, further comprising an exhaust duct that exhausts air in a predetermined area to the outside air by the air blown by the air blowing means, and the air ion generating means is disposed outside the exhaust air duct. Ion transfer device.
[25] 空気の熱交換を行うコイルを有し、当該コイルの入口側に前記空気イオン発生手段 を配置したことを特徴とする請求項 16に記載の空気イオン搬送装置。 25. The air ion transport device according to claim 16, further comprising a coil for performing heat exchange of air, wherein the air ion generating means is disposed on an inlet side of the coil.
[26] 空気の熱交換を行うコイルを有し、当該コイルの出口側に前記空気イオン発生手段 を配置したことを特徴とする請求項 16に記載の空気イオン搬送装置。 26. The air ion transport device according to claim 16, further comprising a coil for performing heat exchange of air, wherein the air ion generating means is disposed on an outlet side of the coil.
[27] 空気イオンを搬送する部位に帯電除去手段を設けたことを特徴とする請求項 16〜27. The charge removing means is provided at a site for conveying air ions.
26のいずれか一つに記載の空気イオン搬送装置。 27. The air ion transport device according to any one of 26.
[28] 換気装置の筐体内に設けられ、外部から給気した空気に、負イオンまたは正イオン またはこれらの両イオンを含ませる空気イオン発生装置と、 [28] An air ion generator that is provided in the casing of the ventilator and includes negative ions, positive ions, or both ions in the air supplied from the outside,
前記筐体に設けられた継手に接続され、 1または 2以上の部屋へ空気を搬送する 空気ダクトと、  An air duct connected to a joint provided in the housing and carrying air to one or more rooms;
前記空気イオン発生装置を制御する制御装置とを具備してなり、  A control device for controlling the air ion generator,
各部屋の要求に応じて空気イオンの発生の有無または空気イオン発生量を制御装 置により調節してなることを特徴とする空気イオン搬送システム。  An air ion transport system, wherein the presence or absence of air ions or the amount of air ions generated is adjusted by a control device according to the demand of each room.
[29] 前記筐体内に空気ダクトに対応した仕切り部を配設してなり、該仕切り部内に空気 イオン発生装置を配設してなることを特徴とする請求項 28に記載の空気イオン搬送 システム。 29. The air ion transport system according to claim 28, wherein a partition portion corresponding to an air duct is disposed in the casing, and an air ion generator is disposed in the partition portion. .
[30] 前記継手内に空気イオン発生装置を配設してなることを特徴とする請求項 28に記 載の空気イオン搬送システム。  30. The air ion transport system according to claim 28, wherein an air ion generator is disposed in the joint.
[31] 前記筐体内に空気ダクトへ空気イオンを導入する導入装置を配設してなることを特 徴とする請求項 28に記載の空気イオン搬送システム。 31. The air ion transport system according to claim 28, wherein an introduction device for introducing air ions into the air duct is disposed in the casing.
[32] 継手または空気ダクトまたは給気吹出し部のいずれかに、空気イオンを中和する空 気イオン中和部材を配設してなり、該空気イオンを中和することにより、個別に空気ィ オンの搬送量を調整してなることを特徴とする請求項 28に記載の空気イオン搬送シ ステム。 [32] An air ion neutralizing member that neutralizes air ions is provided in either the joint, the air duct, or the supply air outlet, and the air ions are individually neutralized by neutralizing the air ions. 29. The air ion transport system according to claim 28, wherein an on-transport amount is adjusted.
[33] 前記空気イオン中和部材が、シャツタまたは棒状部材または仕切り部材またはくし 状部材であり、該シャツタの絞りまたは棒状部材の挿入または仕切り部材の挿入また はくし状部材の挿入の程度に応じて、個別に空気イオンの搬送量を調整してなること を特徴とする請求項 32に記載の空気イオン搬送システム。  [33] The air ion neutralizing member is a shirter, a rod-like member, a partition member, or a comb-like member, and depending on the degree of the restriction of the shirter, the insertion of the rod-like member, the insertion of the partition member, or the insertion of the comb-like member. The air ion transport system according to claim 32, wherein the air ion transport amount is individually adjusted.
[34] 前記空気ダクト内に放電装置を配設してなり、該放電装置の放電量に応じて、個別 に空気イオンの搬送量を調整してなることを特徴とする請求項 28に記載の空気ィォ ン搬送システム。  34. The discharge device according to claim 28, wherein a discharge device is provided in the air duct, and the amount of air ions transported is individually adjusted according to the discharge amount of the discharge device. Air ion transport system.
[35] 前記各部屋の給気吹出し部のルーバーの角度を調整し、個別に空気イオンの吹 出し量や、その向きを調整してなることを特徴とする請求項 28に記載の空気イオン搬 送システム。 [35] The air ion carrier according to claim 28, wherein an angle of a louver of an air supply / outlet part of each room is adjusted, and an amount and direction of air ions are individually adjusted. Sending system.
[36] 前記継手または空気ダクトは、非帯電構造あるいは帯電性の低い構造を有してい ることを特徴とする請求項 28〜35のいずれか一つに記載の空気イオン搬送システム [36] The air ion transport system according to any one of [28] to [35], wherein the joint or the air duct has an uncharged structure or a structure with low chargeability.
[37] 前記継手または空気ダクトは、非帯電性の材料あるいは帯電性の低レ、材料で形成 してあることを特徴とする請求項 28〜35のいずれか一つに記載の空気イオン搬送シ ステム。 [37] The air ion transport system according to any one of [28] to [35], wherein the joint or the air duct is formed of a non-charging material or a low charging material. Stem.
[38] 空気を送風して搬送する空気搬送手段と、当該空気搬送手段によって搬送する空 気を負イオンまたは正イオンまたはこれらの両イオンを含ませた空気イオンとする空 気イオン発生手段とを有した空気イオン搬送システムであって、空気を搬送する経路 を通じて導電性を維持する導電構造を備えたことを特徴する空気イオン搬送システ ム。  [38] Air conveying means that blows and conveys air, and air ion generating means that converts the air conveyed by the air conveying means into negative ions, positive ions, or air ions containing both of these ions. An air ion transport system comprising: a conductive structure that maintains conductivity through a path for transporting air.
[39] 前記導電構造は、少なくとも搬送する空気が接する部位を、導電性を有する金属 材または炭素樹脂材などで構成したことを特徴とする請求項 38に記載の空気イオン 搬送システム。  39. The air ion transport system according to claim 38, wherein the conductive structure is configured with at least a portion in contact with the transported air made of a conductive metal material or carbon resin material.
[40] 前記導電構造は、非導電性部に対して導電性部を接続する導電部材を有してなる ことを特徴とする請求項 38または 39に記載の空気イオン搬送システム。  40. The air ion transport system according to claim 38 or 39, wherein the conductive structure includes a conductive member that connects the conductive portion to the nonconductive portion.
[41] 空気を搬送する経路に帯電除去手段を設けたことを特徴とする請求項 38〜40の レ、ずれか一つに記載の空気イオン搬送システム。  41. The air ion transport system according to any one of claims 38 to 40, wherein a charge removing means is provided in a path for transporting air.
PCT/JP2005/020626 2005-04-04 2005-11-10 Air ion conveyance device and air ion conveyance system WO2006106594A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-107531 2005-04-04
JP2005107531A JP2006280787A (en) 2005-04-04 2005-04-04 Air ion conveyance system
JP2005-199058 2005-07-07
JP2005199058A JP2007017085A (en) 2005-07-07 2005-07-07 Air ion conveyance system

Publications (1)

Publication Number Publication Date
WO2006106594A1 true WO2006106594A1 (en) 2006-10-12

Family

ID=37073162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020626 WO2006106594A1 (en) 2005-04-04 2005-11-10 Air ion conveyance device and air ion conveyance system

Country Status (1)

Country Link
WO (1) WO2006106594A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055960A (en) * 2008-08-28 2010-03-11 Sharp Corp Ion generator
EP2289719A1 (en) * 2007-04-12 2011-03-02 Halla Climate Control Corp. Air conditioning system for automotive vehicles
US8691158B2 (en) 2008-08-28 2014-04-08 Sharp Kabushiki Kaisha Ion generation apparatus
CN104235953A (en) * 2014-07-22 2014-12-24 重庆超力高科技股份有限公司 Air purifier assembly
EP2325961A4 (en) * 2008-08-28 2016-04-13 Sharp Kk Ion detection device and ion generation device
CN105485782A (en) * 2016-01-27 2016-04-13 山东红太阳保温材料有限公司 Solar negative-ion air purification device
CN104235953B (en) * 2014-07-22 2017-01-04 重庆超力高科技股份有限公司 Air purifier assembly
EP4180736A1 (en) * 2021-11-16 2023-05-17 LG Electronics, Inc. Ion generating device and air conditioner comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775664A (en) * 1993-07-13 1995-03-20 Aisin Seiki Co Ltd Deodorizing device
JP2004251496A (en) * 2003-02-18 2004-09-09 Sharp Corp Method and device for deactivating antigenic material
JP2004286385A (en) * 2003-03-24 2004-10-14 Max Co Ltd Ventilator and building using it
JP2004363088A (en) * 2003-05-15 2004-12-24 Sharp Corp Ion generating element, ion generator, and electric device
JP2005056607A (en) * 2003-08-06 2005-03-03 Sharp Corp Ion generator and air conditioner using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775664A (en) * 1993-07-13 1995-03-20 Aisin Seiki Co Ltd Deodorizing device
JP2004251496A (en) * 2003-02-18 2004-09-09 Sharp Corp Method and device for deactivating antigenic material
JP2004286385A (en) * 2003-03-24 2004-10-14 Max Co Ltd Ventilator and building using it
JP2004363088A (en) * 2003-05-15 2004-12-24 Sharp Corp Ion generating element, ion generator, and electric device
JP2005056607A (en) * 2003-08-06 2005-03-03 Sharp Corp Ion generator and air conditioner using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2289719A1 (en) * 2007-04-12 2011-03-02 Halla Climate Control Corp. Air conditioning system for automotive vehicles
EP2289718A1 (en) * 2007-04-12 2011-03-02 Halla Climate Control Corp. Air conditioning system for automotive vehicles
EP1980430B1 (en) * 2007-04-12 2011-09-14 Halla Climate Control Corporation Air conditioning system for automotive vehicles
JP2010055960A (en) * 2008-08-28 2010-03-11 Sharp Corp Ion generator
US8691158B2 (en) 2008-08-28 2014-04-08 Sharp Kabushiki Kaisha Ion generation apparatus
EP2325961A4 (en) * 2008-08-28 2016-04-13 Sharp Kk Ion detection device and ion generation device
CN104235953A (en) * 2014-07-22 2014-12-24 重庆超力高科技股份有限公司 Air purifier assembly
CN104235953B (en) * 2014-07-22 2017-01-04 重庆超力高科技股份有限公司 Air purifier assembly
CN105485782A (en) * 2016-01-27 2016-04-13 山东红太阳保温材料有限公司 Solar negative-ion air purification device
EP4180736A1 (en) * 2021-11-16 2023-05-17 LG Electronics, Inc. Ion generating device and air conditioner comprising the same

Similar Documents

Publication Publication Date Title
WO2006106594A1 (en) Air ion conveyance device and air ion conveyance system
JP4413445B2 (en) Air conditioning duct device
JP2005337610A (en) Air ion carrying device
JP4494870B2 (en) Air ion transport system
WO2013065205A1 (en) Device and method for trapping and inactivating micro-organisms and viruses
RU2286271C1 (en) Railway car ventilation and air-conditioning system
JP2006280787A (en) Air ion conveyance system
CN102538092A (en) Intelligent air treatment device
JP4073824B2 (en) Blower
JP4163540B2 (en) Ventilator and building using the same
JP2005134016A (en) Atmospheric ion conveyer
WO2021184012A1 (en) Electro-ionic devices for improved protection from airborne biopathogens
JP4223306B2 (en) Ventilation structure and ventilation system and building using the same
JP5209753B2 (en) Ventilation system
JP4913705B2 (en) Air supply structure and ventilation system and building using the same
JP2007305436A (en) Ion emitting device and air conditioner equipped with it
WO2022014110A1 (en) Air purification device and air conditioning device
GB2304576A (en) Reduction of airborne contaminants
JP2008116202A (en) Installation structure of ion generating element, air blowing structure using the installation structure, air conditioner and air-conditioning system
JP2007017085A (en) Air ion conveyance system
JP5087121B2 (en) Air supply structure and ventilation system and building using the same
JP4258422B2 (en) Ventilating facilities
JP2004057298A (en) Air cleaning system
CN112406483A (en) A viral bacillus equipment of killing for vehicle
JP6335418B2 (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200580049797.3

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 05806242

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5806242

Country of ref document: EP