WO2006105230A1 - Procede de production de fil de polyarene-azole - Google Patents

Procede de production de fil de polyarene-azole Download PDF

Info

Publication number
WO2006105230A1
WO2006105230A1 PCT/US2006/011518 US2006011518W WO2006105230A1 WO 2006105230 A1 WO2006105230 A1 WO 2006105230A1 US 2006011518 W US2006011518 W US 2006011518W WO 2006105230 A1 WO2006105230 A1 WO 2006105230A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer
solution
temperature
yarn
Prior art date
Application number
PCT/US2006/011518
Other languages
English (en)
Inventor
Steven Allen
Stephen Moore
Vlodek Gabara
Doetze Sikkema
Original Assignee
E. I. Du Pont De Nemours And Company
Magellan Systems International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E. I. Du Pont De Nemours And Company, Magellan Systems International, Inc. filed Critical E. I. Du Pont De Nemours And Company
Publication of WO2006105230A1 publication Critical patent/WO2006105230A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles

Definitions

  • the present invention relates to rigid-rod polymers, processes for the preparation of such polymers, and the production of filaments and yams comprising such polymers.
  • liquid-crystalline polymer solutions of heterocyclic rigid-rod polymers can be formed into high strength fibers by spinning liquid-crystalline solutions into wet fibers, removing solvent to dry the fibers, and heat treating the dried fibers.
  • high-performance polymeric fibers that include poly(p- phenylene benzobisthiazole) (“PBZT”) and poly(p-phenylene-2,6-benzobisoxazole) (“PBO”).
  • Fiber strength is typically correlated to one or more polymer parameters, including composition, molecular weight, intermolecular interactions, backbone, residual solvent or water, macromolecular orientation, and process history. For example, fiber strength typically increases with polymer length (i.e., molecular weight), polymer orientation, and the presence of strong attractive intermolecular interactions. As high molecular weight rigid-rod polymers are useful for forming polymer solutions ("dopes") from which fibers can be spun, increasing molecular weight typically results in increased fiber strength. [0005] Molecular weights of rigid-rod polymers are typically monitored by, and correlated to, one or more dilute solution viscosity measurements.
  • dilute solution measurements of the relative viscosity (“V re i” or “ ⁇ re i” or “n re i”) and inherent viscosity (“V inh “ or “ ⁇ i nh “ or “ni nh ”) are typically used for monitoring polymer molecular weight.
  • V inh or " ⁇ i nh” or "ni nh ”
  • V inh or " ⁇ i nh” or "ni nh
  • V inh /» (V re ⁇ ) / C, where In is the natural logarithm function and C is the concentration of the polymer solution.
  • V re i is a unitless ratio, thus Vj nI1 is expressed in units of inverse concentration, typically as deciliters per gram ("dl/g").
  • Rigid-rod polymer fibers having strong hydrogen bonds between polymer chains e.g., polypyridobisimidazoles
  • polypyridobisimidazoles have been described in U.S. Patent No. 5,674,969 to Sikkema et al.
  • An example of a polypyridobisimidazole includes poly(l,4-(2,5- dihydroxy)phenylene-2,6-pyrido[2,3-d:5,6-d']bisimidazole), which can be prepared by the condensation polymerization of 2,3,5,6-tetraarmnopyridine and 2,5-dihydroxyterephthalic acid in polyphosphoric acid.
  • Sikkema describes that in making one- or two-dimensional objects, such as fibers, films, tapes, and the like, it is desired that polypyridobisimidazoles have a high molecular weight corresponding to a relative viscosity ("V re i" or " ⁇ re i") of at least about 3.5, preferably at least about 5, and more particularly equal to or higher than about 10, when measured at a polymer concentration of 0.25 g/dl in methane sulfonic acid at 25 0 C.
  • V re i relative viscosity
  • Sikkema also discloses that very good fiber spinning results are obtained with poly[pyridobisimidazole-2,6-diyl(2,5- dihydroxy-p-phenylene)] having relative viscosities greater than about 12, and that relative viscosities of over 50 (corresponding to inherent viscosities greater than about 15.6 dl/g) can be achieved. Accordingly, further technical advances are needed to provide even higher molecular weight rigid-rod polymers, such as polypyridobisimidazoles, that are characterized as providing polymer solutions having even greater viscosities.
  • the present invention is directed, in part to a process for making a polyareneazole polymer, comprising the steps of: a) contacting azole-forming monomers, and optionally P 2 O 5 , in polyphosphoric acid to form a mixture, wherein the polyphosphoric acid and optional P2O 5 have a combined equivalent percentage of P2O5 of at least about 87 percent by weight of the polyphosphoric acid (PPA) and the optional P 2 O 5 ; b) reacting the mixture to form a solution comprising functionally terminated polyareneazole oligomer; c) reducing the combined equivalent percentage of P 2 O 5 in the solution; and d) further reacting the oligomer to produce a polymer.
  • the combined equivalent percentage of P 2 O 5 in the oligomer solution is reduced by adding phosphoric acid in step c) in certain embodiments.
  • the phosphoric acid may be, for example, superphosphoric acid or polyphosphoric acid.
  • the combined effective percentage of P 2 O 5 after step d) in the polymer solution is about 78 weight percent or greater.
  • the combined equivalent percentage of P 2 O 5 in step a) may, in some embodiments, be from about 87 to about 92 percent and the combined equivalent percentage of P 2 O 5 after step d) may be from about 80 to about 84 percent.
  • Step a) may additionally comprise a metal powder.
  • the metal powder contains at least one of tin and iron.
  • Step a) may be performed at a temperature of from about 50 0 C to about 110 0 C.
  • step a) is performed with blending of the mixture in PPA.
  • step a) additionally comprises a chain terminator for the polymer.
  • Suitable chain terminators include benzoic acid, phenyl benzoate, or orthophenylene diamine.
  • step b) may be performed at a temperature of from about 130 0 C to about 142 0 C for about 2 to about 8 hours.
  • step d) may be performed at a temperature of about 160 0 C to about 250 0 C. In certain embodiments, step d) may be performed at a temperature of about 180 0 C to about 200 0 C. Step d) may also comprise a plurality of reaction steps, each of said reaction steps, subsequent to the first of said reaction steps, being performed at a higher temperature than the previous of said reaction steps. In certain embodiments, step d) has a solids concentration of about 10 to about 21 percent.
  • the invention is also related to a process further comprising the step of spinning a filament from the polymer solution.
  • Some preferred azole-forming monomers include 2,5-dimercapto-p-phenylene diamine, terephthalic acid, bis-(4-benzoic acid), oxy-bis-(4-benzoic acid), 2,5- dihydroxyterephthalic acid, isophthalic acid, 2,5-pyridodicarboxylic acid, 2,6- napthalenedicarboxylic acid, 2,6-quinolinedicarboxylic acid, 2,6-bis(4-carboxyphenyl) pyridobisimidazole, 2,3,5,6-tetraaminopyridrne, 4,6-diaminoresorcinol, 2,5- diaminohydroquinone, 2,5-diamino-4,6-dithiobenzene, or any combination thereof.
  • the azole-forming monomers are 2,3,5,6-tetraaminopyridine and 2,5- dihydroxyterephthalic acid. In some preferred processes, the azole-forming monomers are in the form of a complex of 2,3,5,6-tetraaminopyridine and 2,5-dihydroxyterephthalic acid.
  • the polyareneazole is poly ⁇ 2,6- diimidazo[4,5-b:4',5'-e]pyridinylene-l,4-(2,5-dihydroxy)phenylene ⁇ .
  • Figure 1 is a schematic diagram of a polyareneazole fiber production process.
  • Figure 2 is a graphical representation of inherent viscosity vs. tin content of polyareneazole polymer solutions according to certain embodiments of the present invention that are listed in Table 4.
  • Filaments of the present invention can be made from polyareneazole polymer.
  • polyareneazole refers to polymers having either: one heteroaromatic ring fused with an adjacent aromatic group (Ar) of repeating unit structure (a):
  • N being a nitrogen atom and Z being a sulfur, oxygen, or NR group with R being hydrogen or a substituted or unsubstituted alkyl or aryl attached to N; or two hetero aromatic rings each fused to a common aromatic group (Ar 1 ) of either of the repeating unit structures (bl or b2):
  • Polyareneazole polymers include polybenzazole polymers and/or polypyridazole polymers.
  • the polybenzazole polymers comprise polybenzimidazole or polybenzobisimidazole polymers.
  • the polypyridazole polymers comprise polypyridobisimidazole or polypyridoimidazole polymers.
  • the polymers are of a polybenzobisimidazole or polypyridobisimidazole type.
  • Y is an aromatic, heteroaromatic, aliphatic group, or nil; preferably an aromatic group; more preferably a six-membered aromatic group of carbon atoms. Still more preferably, the six-membered aromatic group of carbon atoms (Y) has para- oriented linkages with two substituted hydroxyl groups; even more preferably 2,5-dihydroxy- /w ⁇ -phenylene.
  • Ax and Ar 1 each represent any aromatic or heteroaromatic group.
  • An "aromatic” group may be an optionally substituted aromatic 5- to 13- membered mono- or bi- carbocyclic ring such as phenyl or naphthyl.
  • groups containing aryl moieties are monocyclic having 5 to 7 carbon atoms in the ring. Phenyl is one preferred aryl.
  • a "heteroaromatic” group may be an aromatic 5- to 13- membered carbon containing mono- or bi- cyclic ring having one to five heteroatoms that independently may be nitrogen, oxygen or sulfur.
  • groups containing heteroaryl moieties are monocyclic having 5 to 7 members in the ring where one to two of the ring members are selected independently from nitrogen, oxygen or sulfur.
  • aryl or heteroaromatic moieties may be optionally substituted.
  • Sustituents include one or more Of Ci-C 6 alkyl, halogen, hydroxyl, Ci-C 6 alkoxy, CN, -NO 2 , amino, CpC 6 alkylamino, dialkylamino of 1-6 carbon atoms per alkyl group, thio, Ci- C 6 alkylthio, C]-C 6 alkylsulfinyl, Ci-C 6 alkylsulfonyl, C 2 -C 7 alkoxycarbonyl, C 2 -C 7 alkylcarbonyl, trifluoroalkxoy, benzylnitrile and benzoyl groups.
  • the aromatic or heteroaromatic group can be any suitable fused or non- fused polycyclic system, in some embodiments it is preferably a single six-membered ring.
  • the Ar or Ar 1 group is more preferably heteroaromatic, wherein a nitrogen atom is substituted for one of the carbon atoms of the ring system or Ar or Ar 1 may contain only carbon ring atoms, hi still other embodiments, the Ar or Ar 1 group is more preferably heteroaromatic.
  • polybenzazole refers to polyareneazole polymer having repeating structure (a), (bl), or (b2) wherein the Ar or Ar 1 group is a single six-membered aromatic ring of carbon atoms.
  • polybenzazoles include a class of rigid rod polybenzazoles having the structure (bl) or (b2); more preferably rigid rod polybenzazoles having the structure (bl) or (b2) with a six-membered carbocyclic aromatic ring Ar 1 .
  • polybenzimidazole preferably it is poly(benzo[l,2-d:4,5-d']bisimidazole- 2,6-diyl-l,4-phenylene).
  • polybenzazole is a polybenzthiazole, preferably it is poly(benzo[l,2-d:4,5-d']bisthiazole-2,6-diyl-l,4-phenylene).
  • polybenzazole When the polybenzazole is a polybenzoxazole, preferably it is poly(benzo[l,2-d:4,5-d']bisoxazole-2,6-diyl-l,4- ⁇ henylene).
  • polypyridazole refers to polyareneazole polymer having repeating structure (a), (bl), or (b2) wherein the Ar or Ar 1 group is a single six-membered aromatic ring of five carbon atoms and one nitrogen atom.
  • these polypyridazoles include a class of rigid rod polypyridazoles having the structure (bl) or (b2).
  • polypyridazoles having the structure (bl) or (b2) with a six-membered heterocyclic aromatic ring Ar 1 .
  • N is a nitrogen atom and R is hydrogen or a substituted or unsubstituted alkyl or aryl attached to N, preferably wherein R is H.
  • the average number of repeat units of the polymer chains is typically in the range of from about from about 10 to about 25,000, more typically in the range of from about 100 to 1,000, even more typically in the range of from about 125 to 500, and further typically in the range of from about 150 to 300.
  • the phrase "functionally terminated polyareneazole oligomer” refers to a polyareneazole oligomer that has at least one reactive group at a terminal position.
  • oligomer refers to a molecule having from 2 to about five covalently linked chemical units that can be the same or different.
  • polymer refers to a molecule having more than about five covalently linked chemical units that can be the same or different.
  • alkyl refers to a substituted or unsubstituted aliphatic hydrocarbon chain and includes, but is not limited to, straight and branched chains containing from 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, unless explicitly specified otherwise.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, i-butyl and t-butyl.
  • alkyl Specifically included within the definition of "alkyl” are those aliphatic hydrocarbon chains that are optionally substituted.
  • the carbon number as used in the definitions herein refers to carbon backbone and carbon branching, but does not include carbon atoms of the substituents, such as alkoxy substitutions and the like.
  • substitutents for alkyl groups include nitro, cyano, -N(R x )(R y ), halo, hydroxyl, aryl, heteroaryl, alkoxy, alkoxyalkyl, and alkoxycarbonyl where R x and R y are each, independently, H, alkyl or aryl.
  • PBZ polybenzazole
  • Other embodiments further include yams, fabrics, and articles incorporating filaments of this invention, and processes for making such yarns, fabrics, and articles.
  • filaments of the present invention are prepared from polyareneazole polymer, such as polybenzazole (PBZ) or polypyridazole polymer.
  • PBZ polybenzazole
  • filaments refers to a relatively flexible, macroscopically homogeneous body having a high ratio of length to width across its cross-sectional area perpendicular to its length.
  • the filament cross section may be any shape, but is typically circular.
  • the term “filament” may be used interchangeably with the term "fiber.”
  • fiber refers to a continuous length of two or more fibers, wherein fiber is as defined hereinabove.
  • fabric refers to any woven, knitted, or non- woven structure.
  • woven is meant any fabric weave, such as, plain weave, crowfoot weave, basket weave, satin weave, twill weave, and the like.
  • knitted is meant a structure produced by interlooping or intermeshing one or more ends, fibers or multifilament yarns.
  • non-woven is meant a network of fibers, including unidirectional fibers, felt, and the like.
  • the more preferred rigid rod polypyridazoles include, but are not limited to polypyridobisimidazole homopolymers and copolymers such as those described in U.S. Patent 5,674,969.
  • One such exemplary polypyridobisimidazole is homopolymer ⁇ oly(l ,4-(2,5-dihydroxy) phenylene-2,6-diimidazo[4,5-b:4' 5 '-e]pyridinylene).
  • This polymer is also known using various terminology, for example: poly(l,4-(2,5- dihydroxy)phenylene-2,6-pyrido[2,3-d:5,6-d']bisimidazole); poly[(l ,4-dihydroxyimidazo [4,5- b:4',5'-e] pyridine-2,6-diyl) (2,5-dihydroxy-l,4-phenylene)]; poly[(2,6-diimidazo [4,5-b:4',5'-e] pyridinylene - (2,5-dihydroxy-l,4-phenylene)]; Chemical Abstracts Registry No.
  • the polyareneazole polymers used in this invention may have the properties associated with a rigid-rod structure, a semi-rigid-rod structure, or a flexible coil structure; preferably a rigid rod structure.
  • this class of rigid rod polymers has structure (bl) or (b2) it preferably has two azole groups fused to the aromatic group Ar 1 .
  • Suitable polyareneazoles useful in this invention include homopolymers and copolymers. Up to as much as about 25 percent, by weight, of other polymeric material can be blended with the polyareneazole. Also copolymers may be used having as much as about 25 percent or more of other polyareneazole monomers or other monomers substituted for a monomer of the majority polyareneazole. Suitable polyareneazole homopolymers and copolymers can be made by known procedures, such as those described in U.S. Patents 4,533,693 (to Wolfe et al. on Aug. 6, 1985), 4,703,103 (to Wolfe et al. on Oct.
  • Additives may also be incorporated in the polyareneazole in desired amounts, such as, for example, anti-oxidants, lubricants, ultra-violet screening agents, colorants and the like.
  • Suitable polyareneazole monomers are reacted in a solution of non-oxidizing and dehydrating acid 1 under non-oxidizing atmosphere with mixing at a temperature that is increased in step-wise or ramped fashion.
  • the polyareneazole polymer can be rigid rod, semirigid rod or flexible coil. It is preferably a lyotropic liquid-crystalline polymer, which forms liquid-crystalline domains in solution when its concentration exceeds a critical concentration.
  • processes for increasing the inherent viscosity of a polyareneazole polymer solution typically include the steps of contacting, in polyphosphoric acid, azole-forming monomers and iron metal powder, the iron metal powder added in an amount of from about 0.05 to about 0.9 weight percent, based on the total weight of the azole-forming monomers, and reacting the azole- forming monomers to form the polyareneazole polymer.
  • the azole-forming monomers are suitably prepared separately in aqueous solutions and precipitated to form a monomer complex in a reaction vessel.
  • one suitable process uses a vessel under a nitrogen purge that is charged with a phosphoric acid buffer (pH in the range of from about 4.0 to about 4.5) and water. The solution is heated to approximately 5O 0 C.
  • an aqueous azole-forming monomer solution is made, preferably 2,5-dihydroxy terephthalic acid ("DHTA"), by combining an alkaline salt of 2,5-dihydroxy terephthalic acid, Na 2 S 2 C ⁇ , NH 4 OH, and water.
  • DHTA 2,5-dihydroxy terephthalic acid
  • an aqueous mixture of a second azole-forming monomer that is capable of reacting with the first azole-forming monomer is prepared, preferably tetraminopyridine ("TAP”)-3HC1-H2 ⁇ solution is made by combining TAP-3HC1-H 2 O and water in a vessel under a nitrogen blanket, and then adding some NH 4 OH.
  • TAP tetraminopyridine
  • the solution of the third vessel is transferred to the second vessel, and the pH is adjusted to within the range of from about 9 to about 10 in some embodiments.
  • the combined solution is then warmed to approximately 50 0 C while stirring with nitrogen bubbling until the solution clears.
  • the cleared solution is transferred to the first vessel with enough additional HsPCMo maintain the pH to about 4.5 during the addition process to precipitate the monomer complex to form a slurry.
  • the slurry containing the monomer complex is typically filtered under nitrogen and washed with water and degassed ethanol.
  • the monomer complex can be kept in an inert atmosphere and dried prior to polymerization.
  • a more preferred process for increasing the inherent viscosity of a polyareneazole polymer solution includes combining in an autoclave, 2,6-diamino-3,5- dinitropyridine ("DADNP"), water, 5% Pt/C catalyst and ammonium hydroxide and heating under pressure to hydrogenate the DADNP. After venting and cooling, activated carbon in water is added as a slurry to the autoclave and mixed. The solution is then filtered, forming a colorless TAP solution. This is added to a K 2 -DHTA/Na 2 S 2 ⁇ 4 solution with mixing. A pre-mixed phosphate buffer solution is diluted with water and precharged in a coupling vessel and heated to about 50°C while mixing.
  • DADNP 2,6-diamino-3,5- dinitropyridine
  • water 5% Pt/C catalyst and ammonium hydroxide
  • activated carbon in water is added as a slurry to the autoclave and mixed.
  • the solution is
  • the basic TAP/K 2 -DHTA mixture (pH about 10) is then added to the coupling vessel while adding aqueous EbPCMo control the pH around 4.5. Large amounts of fine light-yellow monomer complex crystals form during the addition.
  • the final pH is brought to about 4.5 while the monomer complex slurry is cooled. The slurry is then filtered to give a pale yellow cake.
  • the monomer complex cake is washed with water followed by ethanol before being set to purge with nitrogen overnight. The color of the final cake is pale yellow.
  • Polymerization of the monomer complex is typically carried out in a reactor suitably equipped with connections for purging with inert gas, applying a vacuum, heating and stirring.
  • Monomer complex, P2O 5 , PPA and powdered metal are typically added to the reactor.
  • the reactor is typically purged, heated and mixed to effect polymerization.
  • about 20 parts of monomer complex, about 10 parts of P 2 O 5 , about 60 parts of polyphosphoric acid and about 0.1 parts tin or iron metal are added to a suitable reactor.
  • the contents of the reactor are stirred at about 60 rpm and heated to about 100°C for about one hour under vacuum with a slight nitrogen purge.
  • the temperature is typically raised to at least 12O 0 C, preferably to at least about 130°C, and preferably no more than about 140 0 C for a few more hours, preferably about four hours.
  • the temperature is then raised and held at a higher temperature, at least about 15O 0 C, more typically at least about 170°C, and preferably at about 18O 0 C for about an hour, more preferably for about two hours.
  • the reactor is typically flushed with nitrogen and a sample of the polymer solution is taken for viscosity determination.
  • the process comprises: a) contacting azole-forming monomers, metal powder, and optionally P 2 O 5 , in polyphosphoric acid to form a mixture; b) blending the mixture at a temperature of from about 50 0 C to about 110 0 C; c) further blending the mixture at a temperature of up to about 144 0 C to form a solution comprising an oligomer; d) degassing the solution; and e) reacting the oligomer solution at a temperature of about 160 0 C to about 250 0 C for a time sufficient to form a polymer.
  • the relative molecular weights of the polyareneazole polymers are suitably characterized by diluting the polymer products with a suitable solvent, such as methane sulfonic acid, to a polymer concentration of 0.05 g/dl, and measuring one or more dilute solution viscosity values at 3O 0 C.
  • Molecular weight development of polyareneazole polymers of the present invention is suitably monitored by, and correlated to, one or more dilute solution viscosity measurements.
  • dilute solution measurements of the relative viscosity (“V r ei” or “ ⁇ r ei” or “n re i”) and inherent viscosity (“Vi nh “ or “ ⁇ i nh “ or “ni n h”) are typically used for monitoring polymer molecular weight.
  • the relative and inherent viscosities of dilute polymer solutions are related according to the expression
  • the polyareneazole polymers are produced that are characterized as providing a polymer solution having an inherent viscosity of at least about 22 dl/g at 30 0 C at a polymer concentration of 0.05 g/dl in methane sulfonic acid.
  • metal powders are useful for helping to build the molecular weight of polyareneazoles.
  • iron metal powder present in an amount of from about 0.1 to about 0.5 weight percent based on monomer.
  • Suitable iron metal powder will be particularly fine to provide sufficient surface area for catalyzing the polymerization reaction.
  • iron metal powder will suitably have a particle size that will pass through a 200 mesh screen.
  • the azole-forming monomers suitably include 2,5-dimercapto-p-phenylene diamine, terephthalic acid, bis-(4-benzoic acid), oxy-bis-(4-benzoic acid), 2,5- dihydroxyterephthalic acid, isophthalic acid, 2,5-pyridodicarboxylic acid, 2,6- napthalenedicarboxylic acid, 2,6-quinolinedicarboxylic acid, 2,6-bis(4-carboxyphenyl) pyridobisimidazole, 2,3,5,6-tetraaminopyridine, 4,6-diaminoresorcinol, 2,5- diaminohydroquinone, l,4-diamino-2,5-dithiobenzene, or any combination thereof.
  • the azole-forming monomers include 2,3,5,6-tetraaminopyridine and 2,5-dihydroxyterephthalic acid.
  • it is preferred that that the azole-forming monomers are phosphorylated.
  • phosphorylated azole-forming monomers are polymerized in the presence of polyphosphoric acid and a metal catalyst.
  • Azole-forming monomers can be selected for generating any of a number of polyareneazoles, and suitable polyareneazoles made according to certain embodiments of the processes of the present invention include polypyridoazoles, which preferably include polypyridobisimidazoles, which preferably include poly(l,4-(2,5-dihydroxy)phenylene-2,6- pyrido[2,3-d:5,6-d']bisimidazole).
  • Monomers are selected for generating any of a number of polyareneazoles, and suitable polyareneazoles made according to certain embodiments of the processes of the present invention will include a polybenzazole, which preferably includes a polybenzabisoxazole.
  • the present invention also provides processes for preparing polyareneazole polymer.
  • processes suitably include the steps of contacting, in polyphosphoric acid, azole-forming monomers and a metal powder including tin metal, iron metal, vanadium metal, chromium metal, or any combination thereof, the metal powder added in an amount of from about 0.05 to about 0.9 weight percent, based on the total amount of azole- forming monomers, and reacting the monomers to form the polyareneazole polymer.
  • these processes suitably form polyareneazoles that are characterized as providing a polymer solution having an inherent viscosity of at least about 22 dl/g at 30 0 C at a polymer concentration of 0.05 g/dl in methane sulfonic acid.
  • the metal powder is present in an amount of about 0.1 to about 0.5 weight percent based on monomer.
  • Suitable metal powders have a fine particle size that provide a high surface area for effecting catalysis of the polymerization reaction. Accordingly, suitable metal powders have a particle size such that will pass through a 200 mesh screen. Similar monomers can be polymerized according to these processes to form polymers are provided using these processes as described above.
  • Processes for making a monomer complex comprising 2,3,5,6-tetraamino pyridine (TAP) and 2,5-dihydroxy terephthalic acid (DHTA) monomers are also provided.
  • the processes typically include the steps of contacting a molar excess of a 2,3,5,6-tetraaminopyridine free base in water to a 2,5-dihydroxy terephthalic acid dipotassium salt to form an aqueous mixture, and adjusting the pH of the aqueous mixture to within the range of from about 3 to about 5 to precipitate the monomer complex.
  • the molar ratio of the 2,3,5,6-tetraaminopyridine free base to the 2,5-dihydroxy terephthalic acid dipotassium salt is at least about 1.05 to 1, even more typically at least about 1.075 to 1, and particularly at least about 1.15 to 1.
  • the pH of the reaction mixtures are suitably maintained by adding an acid, preferably orthophosphoric acid, to the aqueous mixture
  • suitable salts include an alkaline salt of the 2,5-dihydroxy terephthalic acid salt and an ammonium salt of 2,5- dihydroxy terephthalic acid.
  • the alkaline salt of the 2,5-dihydroxy terephthalic acid is 2,5-dihydroxy terephthalic acid dipotassium salt.
  • the pH of the aqueous mixture is typically adjusted to precipitate the monomer complex.
  • a suitable pH for precipitating the monomer complex is in the range of from about 4.3 to about 4.6.
  • certain embodiments of the present invention also include one or more additional steps of polymerizing the monomer complex to form a polyareneazole.
  • any of the monomers as described herein can be used for forming any of the polyareneazoles.
  • the polyareneazole poly(l,4-(2,5-dihydroxy)phenylene-2,6-pyrido[2,3-d:5,6-d']bisimidazole) is formed using a monomer complex composed of 2,3,5,6-tetraamino pyridine and 2,5-dihydroxy terephthalic acid monomers.
  • Poly(l,4-(2,5-dihydroxy)phenylene-2,6-pyrido[2,3-d:5,6-d']bisimidazole) polymers are also provided in several embodiments. These polymers are characterized as providing a polymer solution with methane sulfonic acid having an inherent viscosity of at least about 22 dl/g, more typically at least about 25 dl/g, even more typically at least about 28 dl/g, and further typically at least about 30 dl/g, at 30 0 C at a polymer concentration of 0.05 g/dl.
  • Various embodiments of the present invention also include filaments that can be prepared from these poly(l,4-(2,5-dihydroxy)phenylene-2,6- ⁇ yrido[2,3-d:5,6-d']bisimidazole) polymers.
  • polymer dope solutions can be extruded or spun through a die or spinneret to prepare or spin a dope filament.
  • the spinneret preferably contains a plurality of holes. The number of holes in the spinneret and their arrangement is not critical to the invention, but it is desirable to maximize the number of holes for economic reasons.
  • the spinneret can contain as many as 100 or 1000, or more, and they may be arranged in circles, grids, or in any other desired arrangement.
  • the spinneret may be constructed out of any materials that will not be degraded by the dope solution.
  • multifilament yarns comprising a plurality of filaments are also provided.
  • the number of filaments per multifilament yarn is approximately the number of holes in the spinneret.
  • the multifilament yarns prepared with filaments of the present invention have a yarn tenacity of at least about 24 grams per denier ("gpd").
  • Additional processes for preparing poly(l ,4-(2,5-dihydroxy)phenylene-2,6- pyrido[2,3-d:5,6-d']bisimidazole) polymers are also provided. These embodiments include contacting a molar excess of a 2,3,5,6-tetraamino pyridine free base in water to a 2,5-dihydroxy terephthalic acid salt to form an aqueous mixture, adjusting the pH of the aqueous mixture to within the range of from about 3 to about 5 to precipitate a monomer complex composed of 2,3,5,6-tetraamino pyridine and 2,5-dihydroxy terephthalic acid monomers, contacting, in polyphosphoric acid, the monomer complex with metal powder, the metal powder added in an amount of from about 0.05 to about 0.9 weight percent, based on the total weight of the monomer complex, and polymerizing the monomer complex in polyphosphoric acid to form the polymer solution.
  • the molar ratio of 2,3,5,6-tetraamino pyridine to 2,5-dihydroxy terephthalic acid typically is at least about 1.05 to 1, more typically at least about 1.075 to 1, and even more typically at least about 1.15 to 1.
  • the pH is suitably adjusted by adding an acid, such as orthophosphoric acid, to the aqueous mixture.
  • the polyphosphoric acid has an equivalent P 2 O5 content after polymerization of typically at least about 81 percent, and more typically at least about 82 percent by weight. In certain embodiments, the equivalent P 2 O 5 content is at least about 83 percent by weight and in other embodiments, at least 87 percent by weight.
  • the metal powder suitably includes iron powder, tin powder, vanadium powder, chromium powder, or any combination thereof.
  • the metal powder is iron powder.
  • the 2,5- dihydroxy terephthalic acid salt is an alkaline salt or an ammonium salt of 2,5-dihydroxy terephthalic acid, and preferably the alkaline salt is 2,5-dihydroxy terephthalic acid dipotassium salt, hi additional embodiments, the processes may further include one or more additional steps for preparing articles of manufacture, such as filaments and yarns.
  • the present invention also provides the additional step of forming fibers from polymer solutions (i.e., dopes) of poly(l,4-(2,5-dihydroxy)phenylene-2,6-pyrido[2,3-d:5,6-d']bisimidazole) in polyphosphoric acid using one or fiber spinning processes.
  • poly(l,4-(2,5-dihydroxy)phenylene-2,6- pyrido[2,3-d:5,6-d']bisimidazole) polymer solutions have an inherent viscosity measured in 0.05 g/dl methane sulfonic acid of at least about 22 dl/g when measured in 0.05 g/dl methane sulfonic acid at 3O 0 C.
  • the polymer is formed in acid solvent providing the dope solution 2.
  • the polymer is dissolved in the acid solvent after formation. Either is within the ambit of the invention.
  • the polymer is formed in acid solvent and provided for use in the invention.
  • the dope solution 2, comprising polymer and polyphosphoric acid typically contains a high enough concentration of polymer for the polymer to form an acceptable filament 6 after extrusion and coagulation.
  • the concentration of polymer in the dope 2 is preferably high enough to provide a liquid-crystalline dope.
  • the concentration of the polymer is preferably at least about 7 weight percent, more preferably at least about 10 weight percent and most preferably at least about 14 weight percent.
  • the maximum concentration is typically selected primarily by practical factors, such as polymer solubility and dope viscosity.
  • the concentration of polymer is preferably no more than 30 weight percent, and more preferably no more than about 20 weight percent.
  • the polymer dope solution 2 may contain additives such as anti-oxidants, lubricants, ultra-violet screening agents, colorants and the like which are commonly incorporated.
  • the polymer dope solution 2 is typically extruded or spun through a die or spinneret 4 to prepare or spin the dope filament 6.
  • the spinneret 4 preferably contains a plurality of holes. The number of holes in the spinneret and their arrangement is not critical to the invention, but it is desirable to maximize the number of holes for economic reasons.
  • the spinneret 4 can contain as many as 100 or 1000, or more, and they may be arranged in circles, grids, or in any other desired arrangement.
  • the spinneret 4 may be constructed out of any materials that will not be degraded by the dope solution 2.
  • Fibers may be spun from solution using any number of processes, however, wet spinning and "air-gap" spinning are the best known.
  • the general arrangement of the spinnerets and baths for these spinning processes is well known in the art, with the figures in U.S. Patent Nos. 3,227,793; 3,414,645; 3,767,756; and 5,667,743 being illustrative of such spinning processes for high strength polymers, the entirety of each is incorporated by reference herein.
  • air-gap the spinneret typically extrudes the fiber first into a gas, such as air.
  • dope solution 2 exiting the spinneret 4 enters a gap 8 (typically called an "air gap” although it need not contain air) between the spinneret 4 and a coagulation bath 10 for a very short duration of time.
  • the gap 8 may contain any fluid that does not induce coagulation or react adversely with the dope, such as air, nitrogen, argon, helium, or carbon dioxide.
  • the dope filament 6 is drawn across the air gap 8, with or without stretching and immediately introduced into a liquid coagulation bath. Alternately, the fiber may be "wet-spun”.
  • the spinneret In wet spinning, the spinneret typically extrudes the fiber directly into the liquid of a coagulation bath and normally the spinneret is immersed or positioned beneath the surface of the coagulation bath. Either spinning process may be used to provide fibers for use in the processes of the invention. In some embodiments of the present invention, air-gap spinning is preferred.
  • the filament 6 is "coagulated" in the coagulation bath 10 containing water or a mixture of water and phosphoric acid, which removes enough of the polyphosphoric acid to prevent substantial stretching of the filament 6 during any subsequent processing. If multiple fibers are extruded simultaneously, they may be combined into a multifilament yarn before, during or after the coagulation step.
  • the term "coagulation” as used herein does not necessarily imply that the dope filament 6 is a flowing liquid and changes into a solid phase.
  • the dope filament 6 can be at a temperature low enough so that it is essentially non-flowing before entering the coagulation bath 10.
  • the coagulation bath 10 does ensure or complete the coagulation of the filament, i.e., the conversion of the polymer from a dope solution 2 to a substantially solid polymer filament 12.
  • the amount of solvent, i.e., polyphosphoric acid, removed during the coagulation step will depend on the residence time of the filament 6 in the coagulation bath, the temperature of the bath 10, and the concentration of solvent therein. For example, using a 20 weight percent solution of phosphoric acid at a temperature of about 23°C, a residence time of about one second will remove about 70 percent of the solvent present in the filament 6.
  • the residual polyphosphoric acid associated with the filament is typically substantially hydrolyzed and removed to preserve polymer fiber properties.
  • PPA is conveniently hydrolyzed by heating the filament or yarn prior to washing and/or neutralization steps.
  • One manner of hydrolysis includes convective heating of the coagulated fiber for a short period of time.
  • the hydrolysis may be effected by heating the wet, as coagulated filament or yarn in boiling water or an aqueous acid solution. This treatment provides PPA hydrolysis while adequately retaining the tensile strength of the product fiber.
  • the heat treatment step may occur in a separate cabinet 14, or as an initial process sequence followed by one or more subsequent washing steps in an existing washing cabinet 14.
  • this is solved by (a) contacting the dope filament with a solution in bath or cabinet 14 thereby hydrolyzing PPA and then (b) contacting the filament with a neutralization solution in bath or cabinet 16 containing water and an effective amount of a base under conditions sufficient to neutralize sufficient quantities of the phosphoric acid, polyphosphoric acid, or any combination thereof in the filament.
  • hydrolyzed PPA may be removed from the filament or yarn 12 by washing in one or more washing steps to remove most of the residual acid solvent/and or hydrolyzed PPA from the filament or yarn 12.
  • the washing of the filament or yarn 12 may be carried out by treating the filament or yarn 12 with a base, or with multiple washings where the treatment of the filament or yarn with base is preceded and/or followed by washings with water.
  • the filament or yarn may also be treated subsequently with an acid to reduce the level of cations in the polymer. This sequence of washings may be carried out in a continuous process by running the filament through a series of baths and/or through one or more washing cabinets.
  • Figure 1 depicts one washing bath or cabinet 14.
  • Washing cabinets typically comprise an enclosed cabinet containing one or more rolls which the filament travels around a number of times, and across, prior to exiting the cabinet. As the filament or yarn 12 travels around the roll, it is sprayed with a washing fluid. The washing fluid is continuously collected in the bottom of the cabinet and drained therefrom. [0069] The temperature of the washing fluid(s) is preferably greater than 30 0 C. The washing fluid may also be applied in vapor form (steam), but is more conveniently used in liquid form. Preferably, a number of washing baths or cabinets are used.
  • the residence time of the filament or yarn 12 in any one washing bath or cabinet 14 will depend on the desired concentration of residual phosphorus in the filament or yarn 12, but preferably the residence time are in the range of from about one second to less than about two minutes. In a continuous process, the duration of the entire washing process in the preferred multiple washing bath(s) and/or cabinet(s) is preferably no greater than about 10 minutes, more preferably more than about 5 seconds and no greater than about 160 seconds.
  • preferred bases for the removal of hydrolyzed PPA include NaOH; KOH; Na 2 CO 3 ; NaHCO 3 ; K 2 CO 3 ; KHCO 3 ; or trialkylamines, preferably ⁇ tributylamine; or mixtures thereof.
  • the base is water soluble.
  • the process optionally may include the step of contacting the filament with a washing solution containirig water or an acid to remove all or substantially all excess base.
  • This washing solution can be applied in a washing bath or cabinet 18.
  • the fiber or yarn 12 may be dried in a dryer 20 to remove water and other liquids.
  • the temperature in the dryer is typically about 80 0 C to about 130 0 C.
  • the dryer residence time is typically 5 seconds to perhaps as much as 5 minutes at lower temperatures.
  • the dryer can be provided with a nitrogen or other non-reactive atmosphere.
  • the fiber can optionally be further processed in, for instance, a heat setting device 22. Further processing may be done in a nitrogen purged tube furnace 22 for increasing tenacity and/or relieving the mechanical strain of the molecules in the filaments.
  • the filament or yarn 12 is wound up into a package on a windup device 24. Rolls, pins, guides, and/or motorized devices 26 are suitably positioned to transport the filament or yarn through the process.
  • the phosphorous content of the dried filaments after removal of the hydrolyzed PPA is less than about 5,000 ppm (0.5 %) by weight, and more preferably, less than about 4,000 ppm (0.4 %) by weight, and most preferably less than about 2,000 ppm (0.2 %) by weight.
  • the yarn is collected at a speed of at least 50, or at least 100, or at least 250, or at least 500, or at least 800 meters per minute.
  • the invention concerns a continuous process for making a polyareneazole multifilament yarn comprising: a) extruding a solution comprising polyareneazole polymer and polyphosphoric acid through a plurality of orifices to produce a plurality of filaments; b) forming a multifilament yarn from said filaments; c) hydrolyzing at least some of the polyphosphoric acid in the yarn by heating the yarn to a temperature above about 120 0 C for up to about two minutes; d) washing at least some of the hydrolyzed polyphosphoric acid from the yarn; e) . drying the washed yarn; f) optionally, heating the yarn above about 300 0 C, and g) collecting the yarn at a speed of at least about 50 meters per minute.
  • the process additionally comprises conditioning the yarn prior to hydrolyzing.
  • the filaments pass through an air gap and then through a coagulation bath after being extruded.
  • mmole and “millimole” are synonymous. All polymer solids concentrations, weight percents based on monomer, and polymer solution percent P 2 O 5 concentrations are expressed on the basis of TD-complex as a 1:1 molar complex between TAP and DHTA. (TD-complex is believed to be a monohydrate.)
  • Temperature is measured in degrees Celsius (°C) unless otherwise stated.
  • Denier is determined according to ASTM D 1577 and is the linear density of a fiber as expressed as weight in grams of 9000 meters of fiber.
  • Tenacity is determined according to ASTM D 3822 and is the maximum or breaking stress of a fiber as expressed as force per unit cross-sectional area.
  • Elemental analysis of alkaline cation (M) and phosphorus (P) is determined according to the inductively coupled plasma (ICP) method as follows.
  • a sample (1-2 grams), accurately weighed, is placed into a quartz vessel of a CEM Star 6 microwave system. Concentrated sulfuric acid (5 ml) is added and swirled to wet.
  • a condenser is connected to the vessel and the sample is digested using the moderate char method. This method involves heating the sample to various temperatures up to about 260°C to char the organic material. Aliquots of nitric acid are automatically added by the instrument at various stages of the digestion. The clear, liquid final digestate is cooled to room temperature and diluted to 50 ml with deionized water.
  • the solution may be analyzed on a Perkin Elmer optima inductively coupled plasma device using the manufacturers' recommended conditions and settings. A total of twenty-six different elements may be analyzed at several different wavelengths per sample. A 1/10 dilution may be required for certain elements such as sodium and phosphorus. Calibration standards are from 1 to lO ppm.
  • This example illustrates the use of 5 percent molar excess of 2,3 ,5 ,6- tetraaminopyridine ("TAP”) in the making of monomer complex by a batch process. Water was degassed and deionized.
  • TAP 2,3 ,5 ,6- tetraaminopyridine
  • a first stirred 2-liter resin kettle under a nitrogen purge was charged with 50 ml of 85% H 3 PO 4 and 450 ml water, followed by the addition of a 10 percent by weight sodium hydroxide solution until the pH of the material in the kettle was approximately 4.6 as measured by a pH probe. The solution was heated to approximately 50 0 C.
  • DHTA 2,5-dihydroxy terephthalic acid
  • a TAP-3HC1-H 2 O solution was made by combining 70Og water and 42g TAP- 3HCLH 2 O in a quart bottle equipped with a septum (under a nitrogen blanket). 6Og OfNH 4 OH were then added. This solution was cannulated to the second resin kettle. This combined solution in the second kettle had a pH of approximately 9 to 10. The combined solution was warmed to approximately 50 0 C while stirring with nitrogen bubbling until the solution became clear. This solution was cannulated to the first resin kettle along with enough additional HsPO 4 to adjust the pH to 4.5 to precipitate the monomer complex to form a slurry.
  • the H 3 PO 4 solution was made by diluting 50 ml of 85% H 3 PO 4 in 500 ml water.
  • Example 1 The procedure of Example 1 was repeated, however 43 grams of TAP were used to make the TAP.3HC1.H 2 O solution, providing a molar excess of 7.5 % TAP as compared to a molar excess of 5 % TAP as in Example 1.
  • the temperature was raised and held at 137°C for 3 hours.
  • the temperature was raised and held at 18O 0 C for 2 hours.
  • the reactor was flushed with nitrogen gas ("N 2 ") and a sample of the polymer solution was diluted with methane sulfonic acid to 0.05% concentration.
  • N 2 nitrogen gas
  • Example 1 The procedure of Example 1 was repeated, however 46 grams of TAP were used to make the TAP.3HC1.H 2 O solution, providing a molar excess of 15 % TAP compared to a 5 % molar excess as in Example 1.
  • the temperature was raised and held at 18O 0 C for 2 hours.
  • the reactor was flushed with N 2 and a sample of the polymer solution was diluted with methane sulfonic acid to 0.05% concentration.
  • the nj nh 33.4 dl/g.
  • This example illustrates the use of 7.5 percent molar excess of 2,3,5,6- tetraaminopyridine (TAP) in the making of monomer complex by a directly coupled process.
  • TAP 2,3,5,6- tetraaminopyridine
  • a dipotassium salt of 2,5-dihydroxy terephthalic acid (K 2 -DHTAZNa 2 S 2 CU) solution was prepared in a vessel by combining 126.81 grams OfK 2 -DHTA, 2208 grams of water, and 2.2 grams sodium dithionate.
  • the colorless TAP solution was added to the K 2 -DHTAzTMa 2 S 2 O 4 solution with mixing at 5O 0 C .
  • the color of the K 2 -DHTAZNa 2 S 2 O 4 solution was light yellow and did not change during the TAP addition the pH of the TAP/K 2 -DHTA mixture was 10.0.
  • the clave and filters were then rinsed with lOOg H 2 O which was added to the vessel.
  • the theoretical amount of TAP, including DADNP purity (98%) that could have been made, filtered, and transferred to the mix vessel was 68.8 g (0.494 mol) giving a maximum TAP/K 2 -DHTA molar ratio of 1.075.
  • the final pH was brought to 4.5 while the monomer complex slurry cooled to 30 0 C. The slurry was filtered giving a pale yellow cake.
  • the monomer complex cake was washed 3 times with 40Og each of water followed by 20Og of ethanol before being set to purge with nitrogen overnight. The color of the cake was pale yellow.
  • This example illustrates the effect of production of a monomer complex made with a 1:1 ratio of TAP and DHTA.
  • the following were combined in a clean dry 2CV Model DIT Mixer (available from Design Integrated Technology, Inc, Warrenton, Virginia) that was continuously purged with nitrogen gas: a) 62.4 grams of polyphosphoric acid (PPA) with a concentration of 84.84% P 2 O 5 , b) 14.71 grams of P 2 O 5 , c) 0.11 grams of tin powder (325 mesh and available from VWR scientific; this amount is 0.5% based on weight of TD-complex or 0.01421 millimoles Tin / millimoles TD- complex), and d) 22.89 grams of TD-Complex (a one to one complex of tetraaminopyridine (TAP) and dihydroxyterephthalic acid, i.e., 47.21 g of TAP and 67.21 g of DHTA).
  • PPA polyphosphoric acid
  • TAP t
  • the CV Model was a jacketed twin cone reactor that was heated by the circulation of hot oil through the jacket. This reactor used intersecting dual helical-conical blades that intermesh throughout the conical envelope of the bowl.
  • the mixer blades were started and set at about 53 rpm.
  • the reactor was swept with dry N2 gas.
  • the temperature of the reaction mixture was measured throughout using a thermocouple. The temperature of the reaction mixture was raised to 100 0 C and held for 1 hour. The temperature of the reaction mixture was raised to 137 0 C and held for 3 hours. Next, the temperature of the reaction mixture was raised to 18O 0 C and held under vacuum for 3 hours.
  • the mixer was purged with nitrogen and the polymer solution was discharged into a glass vessel.
  • the polymer was removed from the mixer in the form of 18% solids polymer in PPA.
  • a sample of the polymer was separated from the solution and then diluted with methane sulfonic acid ("MSA") to a concentration of 0.05% polymer solids.
  • MSA methane sulfonic acid
  • the inherent viscosity of the polymer sample was 6 dl/g.
  • a CV Model oil heated twin cone reactor having intersecting dual helical- conical blades that intermesh throughout the conical envelope of the bowl was used.
  • the mixer blades were started and set at 53 rpm and a vacuum was pulled on the reaction mixture in such a way as to moderate the foaming of the mixture during the reaction.
  • the temperature of the reaction mixture was measured throughout using a thermocouple. The temperature was raised to 100 0 C and held for 1 hour. The temperature was raised to 137°C and held for 3 hours. Next the temperature was raised to 180 0 C and held under vacuum for 3 hours.
  • the mixer was purged with nitrogen and the polymer solution was discharged into a glass vessel. The polymer was removed from the mixer in the form of an 18% polymer in PPA.
  • Example 7 The procedure of Example 5 was repeated using 0.01421 millimoles of iron powder/millimoles TD-complex. The inherent viscosity of the polymer sample produced was measured as 29 dl/g. See Table 1.
  • Example 7 The procedure of Example 5 was repeated using 0.01421 millimoles of iron powder/millimoles TD-complex. The inherent viscosity of the polymer sample produced was measured as 29 dl/g. See Table 1.
  • Example 7 The procedure of Example 5 was repeated using 0.01421 millimoles of iron powder/millimoles TD-complex. The inherent viscosity of the polymer sample produced was measured as 29 dl/g. See Table 1.
  • Example 5 The procedure of Example 5 was repeated using 0.01421 millimoles of vanadium and chromium powder/millimoles TD-complex. The inherent viscosities of the polymer samples produced were both 22 dl/g using vanadium and chromium. See Table 1.
  • Example B
  • Example 5 was repeated without reducing metal. The resulting inherent viscosity was 9 dl/g. See Table 1.
  • Example C
  • Example 5 was repeated with the reducing metals copper (Cu), nickel (Ni), manganese (Mn), boron (B), titanium (Ti), aluminum (Al), gallium (Ga), cobalt (Co) and zinc (Zn). The results are shown in Table 2.
  • Example D
  • Example 5 was repeated with the metal salts tin chloride and magnesium chloride used as the reducing agents instead of metal powder. The results are shown in Table 3.
  • the CV Model was a oil-heated twin cone reactor that used intersecting dual helical-conical blades that intermesh throughout the conical envelope of the bowl.
  • the mixer blades were started and set at 53 rpm and a vacuum was pulled on the reaction mixture in such a way as to moderate the foaming of the mixture during the reaction.
  • the temperature of the reaction mixture was measured using a thermocouple. The temperature was raised to 100 0 C and held for 1 hour. The temperature was raised to 135°C and held for 3 hours. Next the temperature was raised to 18O 0 C and held for 2 hours.
  • the mixer was purged with nitrogen and the polymer solution was discharged into a glass vessel. The polymer was removed from the mixer in the form of 18% polymer in PPA.
  • the 4CV Model was a jacketed twin cone reactor, which was heated by hot oil circulating through the jacket, that used intersecting dual helical-conical blades that intermesh throughout the conical envelope of the bowl.
  • the mixer blades were set at 80 rpm and a vacuum was pulled on the reaction mixture in such a way as to moderate the foaming of the mixture during the reaction.
  • the temperature of the reaction mixture was measured using a thermocouple.
  • the temperature of the reaction mixture was raised to 100 0 C and held for 1 hour.
  • the temperature was raised to 135°C and held for 4 hours.
  • Next the temperature was raised to 180°C and held for 2 hours.
  • the mixer was purged with nitrogen and the polymer solution was discharged into a glass vessel.
  • the polymer was removed from the mixer in the form of 18% polymer in PPA.
  • a sample of the polymer solution was diluted with methane sulfonic acid to 0.05% concentration.
  • the resulting polymer had an inherent viscosity of 26 dl/g.
  • the 4CV Model was heated by hot oil and used intersecting dual helical-conical blades that intermeshed throughout the conical envelope of the bowl.
  • the mixer blades were started and set at 80 rpm and a vacuum was pulled on the reaction mixture in such a way as to moderate the foaming of the mixture during the reaction.
  • the temperature of the reaction mixture is measured throughout using a thermocouple.
  • the temperature of the reaction mixture was raised to 100 0 C and held there for 1 hour.
  • the temperature was raised to 135°C and held for 4 hours.
  • Next the temperature was raised to 180°C and held for 2 hours.
  • the mixer was purged with nitrogen and the polymer solution was discharged into a glass vessel.
  • the polymer was removed from the mixer in the form of 18% polymer in PPA.
  • a sample of the polymer solution was diluted with methane sulfonic acid to 0.05% concentration.
  • the ni n h was 24 dl/g.
  • the bobbin of multifilament yarn was washed in boiling water for 90 minutes, followed by soaking in 2 wt % aqueous caustic for 2 hours, followed by soaking in water for 2 hours, the water being exchanged for fresh water twice, followed by soaking in 2 wt % aqueous acetic acid for 2 hours, followed by soaking in fresh water for 2 hours, the water being exchanged for fresh water twice.
  • the bobbin of washed yarn was stored wet in a plastic bag until dried in a tube oven.
  • the yarn was dried at 170 C under a tension of 1000 grams by passing it through a 1-foot long tube oven purged with nitrogen at a speed of 0.5 m/min.
  • the resulting 387 denier yarn had the following physical properties: tenacity/elongation/modulus 25.9 gpd/2.24%/1398 gpd.
  • the 1 atmosphere (absolute) pressure in the mixer is equalized to the 1 atmosphere pressure in the N 2 -blanketed weigh chamber.
  • the monomer complex, tin, and benzoic acid are transferred to the lOCV mixer, and then the transfer valve is closed.
  • the mixer blades are started and their speed is ramped to 40 rpm. Water cooling is restarted when the agitator starts, and the monomer complex, tin, and benzoic acid are blended into the PPA mixture for 10 minutes after the mixer blades have reached the 40 rpm rate. Then a vacuum is slowly applied to degas the mixture as the blending continues. Water cooling is controlled to maintain the contents of the mixer at 75 (+/-5) 0 C.
  • the pressure in the mixer is reduced to 50 mm Hg pressure and mixing is continued for 10 minutes. Then the mixer blade speed is reduced to 12 rpm and water cooling is reduced to allow the temperature of the contents in the mixer to rise to 85 (+/-5) 0 C. The mixer blades are then stopped, N 2 is admitted to bring the pressure up to 1 atmosphere, and the contents of the mixer are then transferred to a feed tank having two agitators (a DIT l OSC mixer).
  • the reactant mixture in the feed tank is maintained at a temperature of 110 0 C and a pressure of 50 mm Hg absolute. Both agitators are run at 40 rpm.
  • the reactant mixture is pumped from the tank at an average rate of 10,050 grams/hour through a heat exchanger, to increase the temperature of the mixture to 137 0 C, and into a series of three static mixer reactors, allowing a 3-hour hold-up time for oligomer formation.
  • superphosphoric acid (SPA) 76 % P 2 O 5
  • SPA superphosphoric acid
  • the oligomer mixture with SPA is then well blended through a static mixer and transferred to a stirred surge tank any volatiles are removed by a vacuum.
  • the stirred surge tank is a DIT 5SC mixer, having a temperature maintained at 137 0 C. Average hold-up time in the surge tank is VA hi. Polymerization of the Mixture
  • the oligomer mixture is then further polymerized to the desired molecular weight at a temperature of 180 0 C.
  • the oligomer mixture is first pumped through a heat exchanger to raise the temperature of the mixture to 180 0 C and then through a reactor system of static mixers and a rotating Couette-type-shearing reactor imparting 5 sec " shear rate to the polymerizing solution.
  • the reactor system is maintained at 180 0 C (+/- 5 degrees) and the holdup time in the reactor system is 4 hours.
  • a solution containing a polymer having an inherent viscosity of 25 dl/g is obtained.
  • the 18 weight % solution of 25 IV polymer in PPA (having a strength of equivalent of 81.5% P 2 O 5 ) is then forwarded to the spinning machine using a gear pump to boost its pressure. A portion of the solution is then metered through a 5 cc/revolution gear pump at 18O 0 C.
  • the polymer solution is pumped through a spinning pack consisting of a combination of screens, filters, and flow distribution and support plates, through a spinneret having 500 holes.
  • the 500 filaments from the spinneret are spun through an air gap of 12 mm and are coagulated in a 20% aqueous phosphoric acid bath equipped with a 5 mm diameter quench tube, the bath controlled at a temperature of 20 0 C, to form a yarn.
  • the yarn is forwarded by a pair of feed rolls that convey the yarn at 200 meters per minute.
  • the yarn is rinsed with water first in a wash trough and then on rolls.
  • the bulk of the surface liquid is then stripped by contacting the yarn with cylindrical pins.
  • the yarn is then forwarded to drying rolls operating at a surface temperature of 105 0 C.
  • the contact time of the yarn on the surfaces of the rolls is 4.2 seconds.
  • the yarn is then conveyed to electrically heated rolls operating at a surface temperature of 200 0 C to hydro lyze residual PPA in the filaments.
  • Transit time on the rolls is a total of 14 seconds, with the contact time of the yarn on the surfaces of these rolls being 7 seconds.
  • the yarn is then conveyed to wash rolls, where it is washed to remove residual acid.
  • the yarn is passed through eight pairs of advancing-wrap wash rolls. For each roll pair, there are 10 wraps, the residence time is 7.5 seconds, and the wash liquid temperatures are controlled to 70 0 C.
  • the first four sets of wash rolls wash the yarn with water in a counter-current process.
  • the amount of phosphoric acid in the wash water increases from the fourth set of rolls to the first set of rolls due to the extraction of the phosphoric acid from the yarn.
  • the fifth set of wash rolls wash the yarn with 2% sodium hydroxide in water, followed by the sixth set of wash rolls that wash the yarn with water. During operation, there is some carryover of caustic from the fifth set of wash rolls to the sixth set.
  • the seventh set of wash rolls wash the yarn with 2% acetic acid in water, followed by the eighth set of wash rolls that wash the yarn with water. During operation, there is some carryover of acetic acid from the seventh set of wash rolls to the eighth set. Drying
  • the washed yarn is conveyed across a pair of rolls to isolate the washing from drying.
  • the yarn passes between contacting cylindrical pins to strip the bulk of the surface wash liquid from the yarn, and then is conveyed onto a pair of steam-heated drying rolls having a surface temperature of 150 0 C.
  • Contact time on the dryer rolls is 30 seconds.
  • a textile finish is then applied to the yarn and it is wound on a bobbin.
  • Example 11 illustrates the optional heat treatment of the yarn made in Example 11.
  • the process of Example 11 is repeated, except after drying, a volatile antistatic finish is applied to the yarn instead of a textile finish, and the yarn is immediately conveyed to heated rolls instead of being wound on a bobbin.
  • Heat Treatment
  • the dried yarn is conveyed to three pairs of electrically heated rolls, which raise the temperature of the yarn to 400 0 C.
  • the yarn is then conveyed into a N 2 -blanketed tube oven which raises the temperature of the yarn to 500 0 C.
  • the yarn Before exiting the N 2 atmosphere, the yarn is cooled in a room temperature N 2 atmosphere for 2 seconds, and a finish is applied.
  • the yarn is then conveyed across a bank of rolls to establish proper tension for winding and the yarn is then wound onto a tube by a tension-controlled spindle-driven winder
  • the 4CV Model was a jacketed twin cone reactor, which was heated by hot oil circulating through the jacket, that offered a unique mixing principle using intersecting dual helical-conical blades that intermesh throughout the conical envelope of the bowl.
  • the mixer blades were started and set at 80 rpm and a vacuum was pulled on the reaction mixture in such a way as to moderate the foaming of the mixture during the reaction.
  • the temperature of the reaction mixture is measured throughout using a thermocouple. The temperature was raised to 100 0 C and held there for 1 hour. The temperature was then raised to 135°C and held for 2 hours. The mixer is then flushed with nitrogen gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un polymère de type polyarène-azole comprenant les étapes de : a) mise en contact de monomères formant des azoles et, de manière optionnelle, de P2O5, dans de l'acide polyphosphorique pour former un mélange, lesdits acide polyphosphorique et P2O5 optionnel ayant un pourcentage combiné équivalent de P2O5 d'au moins environ 87 pour cent en poids de l'acide polyphosphorique (PPA) et du P2O5 optionnel ; b) réaction du mélange pour former une solution constituée d'oligomère de polyarène-azole à terminaison fonctionnelle ; c) la réduction du pourcentage combiné équivalent de P2O5 dans la solution ; et d) la réaction additionnelle de l'oligomère pour former un polymère.
PCT/US2006/011518 2005-03-28 2006-03-27 Procede de production de fil de polyarene-azole WO2006105230A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66588405P 2005-03-28 2005-03-28
US60/665,884 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006105230A1 true WO2006105230A1 (fr) 2006-10-05

Family

ID=36670753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/011518 WO2006105230A1 (fr) 2005-03-28 2006-03-27 Procede de production de fil de polyarene-azole

Country Status (1)

Country Link
WO (1) WO2006105230A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016825A1 (fr) * 2006-07-31 2008-02-07 E. I. Du Pont De Nemours And Company Microfilaments de polyarénazole et leur procédé de fabrication
CN114805799A (zh) * 2022-05-18 2022-07-29 哈尔滨工业大学 一种pipd-swcnt共聚物的制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804804A (en) * 1970-11-23 1974-04-16 Horizons Inc Preparation of heterocyclic polymers from heteroaromatic tetramines
GB1361840A (en) * 1970-12-30 1974-07-30 Horizons Research Inc Substituted pyridines and polymers derived therefrom
US4002679A (en) * 1974-08-07 1977-01-11 The United States Of America As Represented By The Secretary Of The Air Force Preparation of polybenzimidazoles
US4079039A (en) * 1974-03-04 1978-03-14 Horizons Research Incorporated Polyheterocyclic polymers derived from substituted tetraamino pyridines
US5041522A (en) * 1990-03-23 1991-08-20 The United States Of America As Represented By The Secretary Of The Air Force Dihydroxy-pendant rigid-rod benzobisazole polymer
US5674969A (en) * 1993-04-28 1997-10-07 Akzo Nobel Nv Rigid rod polymer based on pyridobisimidazole
WO1999027169A1 (fr) * 1997-11-21 1999-06-03 Akzo Nobel N.V. Materiaux retardateurs de flamme
US20030083421A1 (en) * 2001-08-29 2003-05-01 Satish Kumar Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804804A (en) * 1970-11-23 1974-04-16 Horizons Inc Preparation of heterocyclic polymers from heteroaromatic tetramines
GB1361840A (en) * 1970-12-30 1974-07-30 Horizons Research Inc Substituted pyridines and polymers derived therefrom
US4079039A (en) * 1974-03-04 1978-03-14 Horizons Research Incorporated Polyheterocyclic polymers derived from substituted tetraamino pyridines
US4002679A (en) * 1974-08-07 1977-01-11 The United States Of America As Represented By The Secretary Of The Air Force Preparation of polybenzimidazoles
US5041522A (en) * 1990-03-23 1991-08-20 The United States Of America As Represented By The Secretary Of The Air Force Dihydroxy-pendant rigid-rod benzobisazole polymer
US5674969A (en) * 1993-04-28 1997-10-07 Akzo Nobel Nv Rigid rod polymer based on pyridobisimidazole
WO1999027169A1 (fr) * 1997-11-21 1999-06-03 Akzo Nobel N.V. Materiaux retardateurs de flamme
US20030083421A1 (en) * 2001-08-29 2003-05-01 Satish Kumar Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016825A1 (fr) * 2006-07-31 2008-02-07 E. I. Du Pont De Nemours And Company Microfilaments de polyarénazole et leur procédé de fabrication
CN114805799A (zh) * 2022-05-18 2022-07-29 哈尔滨工业大学 一种pipd-swcnt共聚物的制备方法及应用
CN114805799B (zh) * 2022-05-18 2024-03-19 哈尔滨工业大学 一种pipd-swcnt共聚物的制备方法及应用

Similar Documents

Publication Publication Date Title
US7683157B2 (en) Process for the production of polyarenazole polymer
US7851584B2 (en) Process for preparing monomer complexes
US7776246B2 (en) Process for the production of polyarenazole yarn
US8263221B2 (en) High inherent viscosity polymers and fibers therefrom
US7671171B2 (en) Processes for preparing high inherent viscosity polyareneazoles using metal powders
US7683122B2 (en) Processes for increasing polymer inherent viscosity
WO2006105230A1 (fr) Procede de production de fil de polyarene-azole
US7754846B2 (en) Thermal processes for increasing polyareneazole inherent viscosities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06739966

Country of ref document: EP

Kind code of ref document: A1