WO2006104411A1 - Method for producing 2-methyl-1,4-naphthoquinone - Google Patents

Method for producing 2-methyl-1,4-naphthoquinone Download PDF

Info

Publication number
WO2006104411A1
WO2006104411A1 PCT/RU2005/000495 RU2005000495W WO2006104411A1 WO 2006104411 A1 WO2006104411 A1 WO 2006104411A1 RU 2005000495 W RU2005000495 W RU 2005000495W WO 2006104411 A1 WO2006104411 A1 WO 2006104411A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
mhx
oxygen
carried out
conversion
Prior art date
Application number
PCT/RU2005/000495
Other languages
French (fr)
Russian (ru)
Inventor
Oxana Anatolievna Kholdeeva
Mikele Rossi
Original Assignee
Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk filed Critical Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Publication of WO2006104411A1 publication Critical patent/WO2006104411A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
    • C07C46/08Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring with molecular oxygen

Definitions

  • the invention relates to organic synthesis, and in particular, to a method for producing 2-methyl-l, 4-naphthoxinone (MHX, menadione, vitamin K 3 ).
  • MHX is a synthetic analogue of group K vitamins, which are widely used in medical practice and animal husbandry as drugs to improve blood coagulation, and also play an important role in bone formation.
  • MHX 4-naphthoxinone
  • MHX is obtained mainly by stoichiometric oxidation of 2-methylnaphthalene (MH) with chromium (VI) oxide in sulfuric acid with a yield of 40-50%
  • MHX selectivity reaches 60% with an MH conversion of 65%.
  • the disadvantages of this process are 1) the use of concentrated hydrogen peroxide (85%), which is an explosive reagent and 2) the use of a homogeneous catalyst and, accordingly, the difficulties associated with its separation and regeneration.
  • MHX 2-methylnaphthalene
  • MHX 2-methylnaphthalene
  • MHJI KHSO 5 The oxidation of MHJI KHSO 5 in the presence of porphyrins of iron and manganese is known [R. Sopg, A. Sorokip, J. Vetadou, V. Mépier, Metalororhurm-Catalus Ohidatiof 2-methylpaphthalepot, K- 3 , 6-methyl-1, 4-paroxylpropyl, Chet. 62 (1997) 673].
  • the yield of MHX is maximum in the presence of FeTDCPPS and is 30%.
  • the oxidation of MHJI to MHX by aqueous hydrogen peroxide in the presence of mesoporous titanium silicate catalysts is known. (MHX yield of 46% with MNL conversion of 97%) [SU 2196764, C07C46 / 06, 01.20.03].
  • the disadvantages of this process are 1) two-stage 2) low productivity (it is impossible to use the concentration of MNL in the reaction mixture greater than 0.1 M) and 3) the use of stoichiometric amounts of hetero-compounds of GPS containing toxic vanadium. Even during the oxidation process in a two-phase system, the organic solvent - water, pollution of the organic phase with vanadium complexes cannot be completely avoided, resulting from the interaction of HPS (or its degradation products) with organic components of the reaction mixture.
  • the objective of the invention is to provide a method for oxidizing MNL in MHX with oxygen or an oxygen-containing gas, the use of which will significantly simplify the process technology, increase its productivity and increase the purity of the resulting product by eliminating the presence of toxic impurities of transition metals in the product.
  • the problem is achieved in that the oxidation of 2-methyl-l-naphthol (MNL) in 2-methyl-l, 4-naphthoxinone (MHX) is carried out in the absence of a catalyst in an organic solvent or in an MNL melt at a pressure (P) of oxygen or an oxygen-containing gas of at least 1 atm (preferably P (O 2 ) of at least 3 atm) and a temperature of at least 2O 0 C.
  • P pressure
  • O 2 oxygen-containing gas
  • Example 1 In a temperature-controlled at 80 ° C glass (“pyrox”) reactor equipped with a magnetic stirrer and a condenser, 55 mg of 2-methyl-1-naphthol MHJI (0.1 mol / L) and 3.5 ml of toluene are placed. The mixture is stirred vigorously at 80 ° C. and an oxygen pressure of 3 atm. After 8 hours, the conversion of MHJl and the yield of 2-methyl-l, 4-naphthoxinone MHX calculated on the reacted MHJI (selectivity) determined by GLC were 76 and 80%, respectively.
  • Example 2 The process is carried out as in example 1, but instead of toluene take 3.5 ml of CCl 4 . After 4 hours, the conversion of MHJI and the yield of MHX based on the reacted MHJI (selectivity) were 58 and 80%, respectively.
  • Example 3 The process is carried out as in example 2, but at an oxygen pressure of 1 atm. After 10 hours, MHJI conversion and MHX selectivity were 43% and 74%, respectively. This example in comparison with example 2 demonstrates that with a decrease in oxygen pressure, the reaction rate is significantly reduced.
  • Example 4 The process is carried out as in example 2, but at a temperature of 50 ° C. After 10 hours, the conversion of MHJI is 40%, the selectivity for MHX is 74%. This example, in comparison with example 2, demonstrates that with a decrease in the reaction temperature, its rate decreases.
  • Example 5 The process is carried out as in example 2, but at room temperature (about 20 ° C). After 72 hours, the conversion of MHJI is 43%, the yield of MHX is 84%.
  • Example 6 The process is carried out as in example 1, but take ON g MNL (0.2 mol / l) After 7.5 h, the conversion of MNL 83%, the selectivity for MHX 82%.
  • Example 7. The process is carried out as in example 1, but take 220 g of MNL (0.4 mol / l). After 7.5 h, the conversion of MNL 91%, the selectivity for MHX 88%.
  • Examples 6 and 7 in comparison with example 1 show that increasing the concentration of MNL above 0.1 M leads to an increase in the speed and productivity of the process and does not lead to a decrease in selectivity for MHX.
  • Example 8 The process is carried out as in example 2, but take 220 g MNL (0.4 mol / l) and carry out the process at room temperature (about 2O 0 C). After 119 h, the MNL inversion is 75%, the MHX selectivity is 80%. After 162 hours, the MNL conversion was 87%, and the MHX selectivity was 80%. This example demonstrates that with a 4-fold increase in the concentration of MNL, the selectivity of the process does not deteriorate, and also that at room temperature the selectivity of the process does not deteriorate with an increase in the conversion of MNL.
  • Example 9 The process is carried out as in example 2, but take 277 g MNL (0.5 mol / l). After 4.5 h, the conversion of MNL 89%, the yield of MHX 70%.
  • Example 10 The process is carried out as in example 9, but without solvent and at a temperature of 75 ° C. After 3.5 hours, the conversion of MNL was 55%, and the yield of MHX was 47%. This example demonstrates the possibility of carrying out the process in the MNL melt, without the use of an organic solvent.
  • Example 11 The process is carried out as in example 2, but air is used as an oxidizing agent at a pressure of 3 atm. After 10 hours, the MNL conversion and MHX selectivity were 40 and 70%, respectively.
  • an oxygen-containing gas such as air, can be used as an oxidizing agent.
  • Example 12 The process is carried out as in example 1, but cyclohexane is used as a solvent. After 6 hours, the MNL conversion and MHX selectivity were 41 and 84%, respectively.
  • Example 13 The process is carried out as in example 2, but chloroform is used as a solvent. After 3 hours, the conversion of MNL and selectivity for MHX are 33 and 45%, respectively. This example demonstrates a decrease in the selectivity of the process with increasing polarity of the solvent.
  • Example 14 The process is carried out as in example 2, but acetic acid is used as a solvent. After 3 hours, MHJI conversion and MEK selectivity were 14 and 60%, respectively.
  • Example 15 The process is carried out as in example 2, but ethanol is used as a solvent. After 3 hours, the conversion of MHJI is 6%, the yield of MHX is 0%.
  • Example 16 The process is carried out as in example 2, but cyclohexanone is used as a solvent. After 3 hours, the conversion of MHJI is 0%, the yield of MHX is 0%.
  • Example 17 The process is carried out as in example 2, but acetonitrile is used as a solvent. After 5 hours, the conversion of MHJI is 20%, the yield of MHX is 2%. Examples 14-17 demonstrate that the process is not efficient in polar solvents.

Abstract

The invention relates to a method for producing 2-methyl-1,4-naphthoquinone by oxidising a 2-methyl-1-naphthol with the aid of oxygen or oxygen-containing gas in an organic solvent medium or in a 2-methyl-1-naphthol melt and intensively agitating at the oxygen or oxygen-containing gas pressure equal to or less than 1 atm and a temperature equal to or less than 20 °C. Said invention makes it possible to attain a high target product yield.

Description

Способ получения 2-мeтил-l,4-нaфтoxинoнa The method of obtaining 2-methyl-l, 4-naphthoxinone
Изобретение относится к органическому синтезу, а именно, к способу получения 2-мeтил-l,4-нaфтoxинoнa (MHX, менадиона, витамина K3). MHX является синтетическим аналогом витаминов группы К, которые широко применяются в медицинской практике и животноводстве в качестве препаратов для улучшения свертывания крови, а также играют важную роль при образовании костей.The invention relates to organic synthesis, and in particular, to a method for producing 2-methyl-l, 4-naphthoxinone (MHX, menadione, vitamin K 3 ). MHX is a synthetic analogue of group K vitamins, which are widely used in medical practice and animal husbandry as drugs to improve blood coagulation, and also play an important role in bone formation.
Большинство способов получения 2-мeтил-l,4-нaфтoxинoнa (MHX) основано на окислении 2-мeтилнaфтaлинa (MH). В промышленности MHX получают главным образом путем стехиометрического окисления 2- метилнафталина (MH) оксидом хрома (VI) в серной кислоте с выходом 40-50% [L.F. Fiеsеr, Сопvепiепt рrосеdurеs fоr thе рrераrаtiоп оf апtihеmоrrhаgiс соmроuпds, J. Вiоl. Сhеm. 133 (1940) 391; R.А. Shеldоп, Ноmоgепеоus апd hеtеrоgепеоus саtаlуtiс охidаtiоп with реrохidе rеаgепts, Тор. Сшт. Сhеm. 164 (1993) 21]. При этом на 1 кг продукта образуется 18 кг хромосодержащих сточных вод. Известен способ получения MHX, где в качестве стехиометрического окислителя используется раствор Mn2(SO4)3 в серной кислоте; выход 2-мeтил-l,4-нaфтoxинoнa составляет 55% [M. Реrsiаsаmу, M. V. Вhаtt, Fасilе охidаtiоп оf аrоmаtiс riпgs bу Mn2(S(Xi)3, Теtrаhеdrоп Lеttеrs 46 (1978) 4561]. Данные способы требуют использования больших количеств дорогих и токсичных окислительных агентов и неприемлемы как с точки зрения экологии, так и с точки зрения экономики.Most methods for the preparation of 2-methyl-l, 4-naphthoxinone (MHX) are based on the oxidation of 2-methylnaphthalene (MH). In industry, MHX is obtained mainly by stoichiometric oxidation of 2-methylnaphthalene (MH) with chromium (VI) oxide in sulfuric acid with a yield of 40-50% [LF Fiсеr, Compound rоceаdures forrеrеrаrаtiсо, bоmperatorоmagrосhісоmо. Chem. 133 (1940) 391; R.A. Shëldop, Nomogepeus apd heterogepheusus satalutis ohidatiop with rehide reagetts, Tor. Cp Chem. 164 (1993) 21]. At the same time, 18 kg of chromium-containing wastewater is formed per 1 kg of product. A known method of producing MHX, where a solution of Mn 2 (SO 4 ) 3 in sulfuric acid is used as a stoichiometric oxidizing agent; the yield of 2-methyl-l, 4-naphthoxinone is 55% [M. Resiasamu, MV Batt, Facile oxydate of aromatics rips b Mn 2 (S (Xi) 3 , Terraheter Letters 46 (1978) 4561]. These methods require the use of large amounts of expensive and toxic oxidizing agents and are unacceptable, both from the point of view of ecology in terms of economics.
Известны каталитические способы окисления 2-мeтилнaфтaлинa (MH). Известно каталитическое окисление MH персульфатом аммония в присутствии цepий(ГV) аммоний сульфата и додецилсульфата натрия с образованием смеси MHX и 2-мeтил-l,6-нaфтoxинoнa с выходом до 73% [J. Skаrzеwski, Сеrium саtаlуzеd реrsulfаtе охidаtiоп оf роlусусliс аrоmаtiс hуdrосаrbопs tо quiпопеs, Теtrаhеdrоп 40 (1984) 4997].Catalytic methods for the oxidation of 2-methylnaphthalene (MH) are known. The catalytic oxidation of MH by ammonium persulfate in the presence of cerium (GV) ammonium sulfate and sodium dodecyl sulfate is known to form a mixture of MHX and 2-methyl-l, 6-naphthoxinone with a yield of up to 73% [J. Skarzewski, Сеrium сatalуzеd resulfatе okhidatiop о rolususlis aromatis hudrosarbops tо quiopopes, Tetrаhedrop 40 (1984) 4997].
Известны способы окисления MH бихроматами в присутствии соединений рутения в качестве катализаторов [S. Сhосrоп, M. Мiсhmап, Охidаtiоп оf 2-methylпaphthaleпe tо 2-methyl-l,4-пaphthoquiпoпe with аттопiuт dichromate catalysed by RuCl3, Аррl. Саtаl. 62 (1990) 119], KHSO5 в присутствии порфиринов железа и марганца [R. Sопg, А. Sоrокiп, J. Веmаdоu, В. Меuпiеr, Меtаllороrрhуriп-Саtаlуzеd Охidаtiоп оf 2-methylnaphthalene tо vitаmiп K3 апd 6- methyl-l,4-naphtholquinone bу роtаssiuт топореrsulfаtе iп аquеоus sоlutiоп, J. Оrg. Сhет. 62 (1997) 673] и др. Сообщалось об окислении MH трет- бутилгидропероксидом в присутствии Fe- и Мп-содержащих фталоцианинов, закрепленных на поверхности мезопористых (MCM-41) и аморфных силикатов (SiO2). В данном способе селективность по MHX не превышала 34% при конверсии 90% [А. Sоrоkiп, А. Тuеl, Меtаllорhthаlосуапiпе Fuпсtiопаlizеd Siliсаs: Саtаlуsts fоr thе Sеlесtivе Охidаtiоп оf Аrоmаtiс Соmроuпds, Саtаl. Тоdау 57 (2000) 45].Known methods for the oxidation of MH by dichromates in the presence of ruthenium compounds as catalysts [S. Choproop, M. Mishmap, Ohidatiop оf 2-methyl-paphthalepe to 2-methyl-l, 4-paphthoquipo with attopiate dichromate catalysed by RuCl 3 , Arl. Catal. 62 (1990) 119], KHSO 5 in the presence of iron and manganese porphyrins [R. Sopg, A. Sorocip, J. Vetadou, V. Mépier, Metalororrhurip-Catalus Ohidatop 2-methylnaphthalene vitamip K 3 apd 6-methyl-1, 4-naphtholquinone butoptosulfate Chet. 62 (1997) 673] et al. The oxidation of MH with tert-butyl hydroperoxide in the presence of Fe- and Mn-containing phthalocyanines fixed on the surface of mesoporous (MCM-41) and amorphous silicates (SiO 2 ) has been reported. In this method, the MHX selectivity did not exceed 34% at a conversion of 90% [A. Sorokip, A. Tuel, Metallorhthalosuapipe Fuppiopilized Silis: Satalusts forté Ohidatiop of Aromatis Kompoupds, Satal. Todau 57 (2000) 45].
Наибольший интерес представляет использование экологически чистых и дешевых окислителей - молекулярного кислорода и пероксида водорода. Известно окисление MH пероксидом водорода в среде карбоновых кислот без катализатора [US 6579994, C07C 46/04, 12.12.02] и в присутствии соединений палладия в качестве катализатора [US 5637741, C07C 46/04, 10.06.97]. Высокую каталитическую активность в реакции окисления метилнафталина пероксидом водорода H2O2 в среде уксусной кислоты/уксусного ангидрида проявляют комплексы рения, в частности, метилтриоксорений (VII) (CH3ReO3, MTO) [W. Аdаm, W.А. Неrrmапп, W. Liп, Сh.R. Sаhа-Моllеr, R.W. Fisсhеr, J.D.G. Соrrеiа, Ноmоgепеоus саtаlуtiс охidаtiоп оf аrепеs апd а пеw sупthеsis оf vitаmiп K3, Апgеw. Сhеm. Iпt. Ed. 33 (1994) 2475; W.А. Неrrmапп, JJ. Наidеr, R. W. Fisсhеr, Rhепшm-Саtаlуzеd Охidаtiоп оf Аrепеs - ап Imрrоvеd Sупthеsis оf Vitаmiп K3, J. MoI. Саtаl. А: Сhеm. 138 (1999) 115]. Селективность по MHX достигает 60% при конверсии MH 65%. Недостатками данного процесса являются 1) использование концентрированного пероксида водорода (85%), который является взрывоопасным реагентом и 2) использование гомогенного катализатора и соответственно трудности, связанные с его отделением и регенерацией. Известно окисление MH пероксидом водорода в уксусной кислоте с использованием солей железа (Fe(CЮ4)3, (CH3COO)3Fe) в качестве гомогенного катализатора [J. Коwаlski, J. Рlоszупskа, А. Sоbkоwiаk, Irоп (Ш)- iпduсеd асtivаtiоп оf hуdrоgеп реrохidе fоr охidаtiоп оf 2-mefhylпaphthaleпe iп glасiаl асеtiс асid, Саtаl. Соттuп. 4 (2003) 603]. Селективность данного процесса не превышает 36% при конверсии субстрата 85-90%. Известен способ окисления MH перекисидом водорода с использованием ацетата Pd(П), закрепленного на полистирол-сульфоновых смолах, в качестве катализатора [S. Yаmаguсhi, M. Ьiопе, S. Епоmоtо, Охidаtiоп оf 2-methylnaphthalene tо 2- methyl-l,4-naphthoquinone with hуdrоgеп реrохidе in the presence of Pd(II)- роlуstуrепе sulfопiс асid rеsiп, Сhет. Lеtt. (1985) 827]. В данном процессе селективность по MHX достигает 66% при конверсии MH 90%. Известно также окисление MH перокисидом водорода в присутствии титан- и железосодержащих молекулярных сит (TS-I, Тi-Веtа, Ti-NCL-I, Fе-Веtа, Ti- MCM-41) [О.S. Апuпziаtа, L.В. Рiеrеllа, А.R. Веltrаmопе, Sупthеsis оf mепаdiопе оvеr sеlесtivе охidаtiоп zеоlitеs, J. MoI. Саtаl. А: Сhеm. 149 (1999) 255; О.S. Апuпziаtа, А.R. Веltrаmопе, J. Сussа, Studiеs оf Vitаmiп K3 sупthеsis оvеr Ti- сопtаiпiпg mеsороrоus mаtеriаl, Аррl. Саtаl. А: Gепеrаl 270 (2004) 77]. Максимальная селективность (54%) при конверсии 22% была получена для цеолита Fе-Веtа. Общим недостатком всех процессов получения 2-мeтил-l,4-нaфтoxинoнaOf greatest interest is the use of environmentally friendly and cheap oxidizing agents - molecular oxygen and hydrogen peroxide. It is known that MH is oxidized with hydrogen peroxide in a carboxylic acid medium without a catalyst [US 6579994, C07C 46/04, 12/12/02] and in the presence of palladium compounds as a catalyst [US 5637741, C07C 46/04, 06/10/97]. High catalytic activity in the oxidation reaction of methylnaphthalene with hydrogen peroxide H 2 O 2 in an environment of acetic acid / acetic anhydride is shown by rhenium complexes, in particular methyl trioxorenium (VII) (CH 3 ReO 3 , MTO) [W. Adam, W.A. Nerrmapp, W. Lip, Ch.R. Saha-Möller, RW Fischer, JDG Correia, Nomogepeus satalutis okhidatiop of arpeps apd and pw supupésis of vitamip K 3 , Apgew. Chem. Ipt. Ed. 33 (1994) 2475; W.A. Jermrmapp, JJ. Naider, RW Fischeher, Rhepshm-Sataluzed Ohidatiof of Arpez - up Improved Supetesis of Vitamip K 3 , J. MoI. Catal. A: Chem. 138 (1999) 115]. MHX selectivity reaches 60% with an MH conversion of 65%. The disadvantages of this process are 1) the use of concentrated hydrogen peroxide (85%), which is an explosive reagent and 2) the use of a homogeneous catalyst and, accordingly, the difficulties associated with its separation and regeneration. It is known to oxidize MH with hydrogen peroxide in acetic acid using iron salts (Fe (CU 4 ) 3 , (CH 3 COO) 3 Fe) as a homogeneous catalyst [J. Kowalski, J. Roszupska, A. Sobkowiak, Irop (W) - Ipduced activatiop of hudrogep rehide for ohidatiop of 2-mefhylpaphthalepe ip glacial asetis acid, Catal. Sottup. 4 (2003) 603]. The selectivity of this process does not exceed 36% with a substrate conversion of 85-90%. Famous Method for the oxidation of MH with hydrogen peroxide using Pd (P) acetate fixed on polystyrene-sulfonic resins as a catalyst [S. Yamaguchi, M. Biope, S. Epoto, Ohidopiof 2-methylnaphthalene to 2-methyl-1, 4-naphthoquinone with hydrogen sulfate in the presence of Pd (II) - roustustere sulfulfic acid. Lettt. (1985) 827]. In this process, the MHX selectivity reaches 66% with an MH conversion of 90%. It is also known that MH is oxidized with hydrogen peroxide in the presence of titanium and iron-containing molecular sieves (TS-I, Ti-Veta, Ti-NCL-I, Fe-Veta, Ti-MCM-41) [O.S. Application, L.V. Rierella, A.R. Veltramope, Supеsis оf mepadiopе overeсlivet ohidatiop zеlitеs, J. MoI. Catal. A: Chem. 149 (1999) 255; O.S. Application, A.R. Veltramope, J. Sousse, Studies оf Vitamip K 3 suptеsis overs Ti- soptipipg mesoropus material, Arrl. Catal. A: Heperal 270 (2004) 77]. The maximum selectivity (54%) at 22% conversion was obtained for Fe-Beta zeolite. A common disadvantage of all processes for obtaining 2-methyl-l, 4-naphthoxinone
(MHX) из 2-мeтилнaфтaлинa (MH) является низкая селективность по целевому продукту и, в частности, образование 2-мeтил-l,6-нaфтoxинoнa, близкого по физико-химическим свойствам к MHX, что сильно осложняет процесс выделения и очистки MHX. Избежать образования в качестве побочного продукта 6-мeтил-l,4- нафтохинона позволяет использование в качестве исходного субстрата 2- мeтил-1 -нафтола (MHJI) вместо 2-мeтилнaфтaлинa (MH). Разработанный недавно высокоэффективный способ получения MHJI путем алкилирования дешевого и доступного сырья - 1 -нафтола - метанолом в газовой фазе в присутствии катализатора, содержащего смесь оксидов Mg и Fe(П)/Fe(ПI) [WO 2004/014832, B01J23/78, 19.02.04], делает MHJI более перспективным исходным субстратом для получения MHX, чем MH.(MHX) from 2-methylnaphthalene (MH) is a low selectivity for the target product and, in particular, the formation of 2-methyl-l, 6-naphthoxinone, which is close in physical and chemical properties to MHX, which greatly complicates the process of isolation and purification of MHX. The use of 6-methyl-l, 4-naphthoquinone as a by-product can be avoided by using 2-methyl-1-naphthol (MHJI) as the starting substrate instead of 2-methylnaphthalene (MH). A recently developed highly efficient method for producing MHJI by alkylating a cheap and affordable raw material — 1-naphthol — with methanol in the gas phase in the presence of a catalyst containing a mixture of Mg and Fe (P) / Fe (PI) oxides [WO 2004/014832, B01J23 / 78, 19.02 .04], makes MHJI a more promising starting substrate for MHX than MH.
Известно окисление MHJI KHSO5 в присутствии порфиринов железа и марганца [R. Sопg, А. Sоrоkiп, J. Веmаdоu, В. Меuпiеr, Меtаllороrрhуrm- Саtаlуzеd Охidаtiоп оf 2-methylпaphthaleпe tо vitаmiп K3 апd 6-methyl-l,4- парhthоlquiпопе bу роtаssiuт топореrsulfаtе iп аquеоus sоlutiоп, J. Оrg. Сhет. 62 (1997) 673]. Выход MHX максимален в присутствии FeTDCPPS и составляет 30%. Известно окисление MHJI в MHX водным пероксидом водорода в присутствии мезопористых титан-силикатных катализаторов (выход MHX 46% при конверсии МНЛ 97%) [SU 2196764, C07C46/06, 20.01.03].The oxidation of MHJI KHSO 5 in the presence of porphyrins of iron and manganese is known [R. Sopg, A. Sorokip, J. Vetadou, V. Mépier, Metalororhurm-Catalus Ohidatiof 2-methylpaphthalepot, K- 3 , 6-methyl-1, 4-paroxylpropyl, Chet. 62 (1997) 673]. The yield of MHX is maximum in the presence of FeTDCPPS and is 30%. The oxidation of MHJI to MHX by aqueous hydrogen peroxide in the presence of mesoporous titanium silicate catalysts is known. (MHX yield of 46% with MNL conversion of 97%) [SU 2196764, C07C46 / 06, 01.20.03].
Наиболее близким к предлагаемому изобретению является способ получения 2-мeтил-l,4-нaфтoxинoнa (MHX) путем каталитического окисления 2-мeтил-l -нафтола (МНЛ) или его смеси с 2,4-димeтил-l -нафтолом в двухфазной системе, в которой окисляемое вещество вводят в реакцию в растворе не смешивающегося с водой органического растворителя, а катализатор представляет собой водный раствор молибдованадофосфорной гетерополикислоты или ее кислой соли (ГПК-п), содержащей 10 - 20 oб.% уксусной кислоты, причем реакцию окисления проводят при интенсивном перемешивании фаз при температуре 40 - 7O0C, общий состав катализатора отвечает формуле HaPχMoyVnOь, где 1< х <3; 8 <y <16; 40 <b <89; а = 2b - 6y - 5 (х + п); 4 < п <12, п - число атомов ванадия. В процессе реакции используют мольное отношение ГПК-п : MH, не превышающее 2,5. Максимальный выход 2-мeтил-l,4-нaфтoxинoнa достигает 88 % в случае применения водно- уксуснокислого раствора ГПК и хлорсодержащего растворителя (SU 2162837, C07C50/12, 10.02.01).Closest to the proposed invention is a method for producing 2-methyl-l, 4-naphthoxinone (MHX) by catalytic oxidation of 2-methyl-l-naphthol (MNL) or its mixture with 2,4-dimethyl-l-naphthol in a two-phase system, in which the oxidizable substance is reacted in a solution of a water-immiscible organic solvent, and the catalyst is an aqueous solution of molybdovanadophosphoric heteropoly acid or its acid salt (HPA-p) containing 10 to 20 vol.% acetic acid, and the oxidation reaction is carried out under intense mixing phases at a temperature of 40 - 7O 0 C, the overall composition of the catalyst corresponds to the formula H a PχMo y V n O, where 1 <x <3; 8 <y <16; 40 <b <89; a = 2b - 6y - 5 (x + n); 4 <n <12, n is the number of vanadium atoms. During the reaction, the molar ratio of HPA-p: MH is used, not exceeding 2.5. The maximum yield of 2-methyl-l, 4-naphthoxinone reaches 88% when using an aqueous-acetic acid solution of HPA and a chlorine-containing solvent (SU 2162837, C07C50 / 12, 02.10.01).
Недостатками данного процесса являются 1) двухстадийность 2) низкая производительность (нельзя использовать концентрацию МНЛ в реакционной смеси больше 0.1 M) и 3) использование стехиометрических количеств гетерополисоединений ГПС, содержащих ядовитый ванадий. Даже при проведении процесса окисления в двухфазной системе органический растворитель - вода нельзя полностью избежать загрязнения органической фазы комплексами ванадия, образующимися в результате взаимодействия ГПС (или продуктов его деструкции) с органическими компонентами реакционной смеси.The disadvantages of this process are 1) two-stage 2) low productivity (it is impossible to use the concentration of MNL in the reaction mixture greater than 0.1 M) and 3) the use of stoichiometric amounts of hetero-compounds of GPS containing toxic vanadium. Even during the oxidation process in a two-phase system, the organic solvent - water, pollution of the organic phase with vanadium complexes cannot be completely avoided, resulting from the interaction of HPS (or its degradation products) with organic components of the reaction mixture.
Задачей данного изобретения является создание способа окисления МНЛ в MHX кислородом или кислородсодержащим газом, использование которого приведет к существенному упрощению технологии процесса, повышению его производительности и повышению чистоты получаемого продукта за счет исключения наличия ядовитых примесей переходных металлов в продукте.The objective of the invention is to provide a method for oxidizing MNL in MHX with oxygen or an oxygen-containing gas, the use of which will significantly simplify the process technology, increase its productivity and increase the purity of the resulting product by eliminating the presence of toxic impurities of transition metals in the product.
Поставленная задача достигается тем, что процесс окисления 2-мeтил-l- нафтола (МНЛ) в 2-мeтил-l,4-нaфтoxинoн (MHX) проводят в отсутствие катализатора в среде органического растворителя или в расплаве МНЛ при давлении (P) кислорода или кислородсодержащего газа не менее 1 атм (преимущественно P(O2) не менее 3 атм) и температуре не менее 2O0C. Процесс осуществляют при интенсивном перемешиванииThe problem is achieved in that the oxidation of 2-methyl-l-naphthol (MNL) in 2-methyl-l, 4-naphthoxinone (MHX) is carried out in the absence of a catalyst in an organic solvent or in an MNL melt at a pressure (P) of oxygen or an oxygen-containing gas of at least 1 atm (preferably P (O 2 ) of at least 3 atm) and a temperature of at least 2O 0 C. The process is carried out with vigorous stirring
В качестве органического растворителя используют неполярные и малополярные ароматические и неароматические углеводороды и хлорсодержащие углеводороды, или их любые смеси, преимущественно, толуол, четыреххлористый углерод, циклогексан.As an organic solvent, non-polar and low-polar aromatic and non-aromatic hydrocarbons and chlorine-containing hydrocarbons, or any mixtures thereof, mainly toluene, carbon tetrachloride, cyclohexane, are used.
Ограничения по концентрации окисления 2-мeтил-l -нафтола (MHJl) для заявляемого процесса нет, что позволяет существенно повысить производительность процесса по сравнению с прототипом.There are no restrictions on the concentration of oxidation of 2-methyl-l-naphthol (MHJl) for the claimed process, which can significantly increase the productivity of the process compared to the prototype.
Сущность изобретения иллюстрируется следующими примерами.The invention is illustrated by the following examples.
Пример 1. В термостатируемый при 80°C стеклянный («пиpeкc») реактор, снабженный магнитной мешалкой и конденсором, помещают 55 мг 2- мeтил-1 -нафтола MHJI (0.1 моль/л) и 3.5 мл толуола. Смесь интенсивно перемешивают при 80°C и давлении кислорода 3 атм. Через 8 ч конверсия MHJl и выход 2-мeтил-l,4-нaфтoxинoнa MHX в расчете на прореагировавший MHJI (селективность), определенные методом ГЖХ, составляют 76 и 80%, соответственно .Example 1. In a temperature-controlled at 80 ° C glass (“pyrox”) reactor equipped with a magnetic stirrer and a condenser, 55 mg of 2-methyl-1-naphthol MHJI (0.1 mol / L) and 3.5 ml of toluene are placed. The mixture is stirred vigorously at 80 ° C. and an oxygen pressure of 3 atm. After 8 hours, the conversion of MHJl and the yield of 2-methyl-l, 4-naphthoxinone MHX calculated on the reacted MHJI (selectivity) determined by GLC were 76 and 80%, respectively.
Пример 2. Процесс проводят как в примере 1, но вместо толуола берут 3.5 мл CCl4. Через 4 ч конверсия MHJI и выход MHX в расчете на прореагировавший MHJI (селективность), составляют 58 и 80%, соответственно.Example 2. The process is carried out as in example 1, but instead of toluene take 3.5 ml of CCl 4 . After 4 hours, the conversion of MHJI and the yield of MHX based on the reacted MHJI (selectivity) were 58 and 80%, respectively.
Пример 3. Процесс проводят как в примере 2, но при давлении кислорода 1 атм. Через 10 ч конверсия MHJI и селективность по MHX, составляют 43 и 74%, соответственно. Данный пример в сравнении с примером 2 демонстрирует, что с уменьшением давления кислорода существенно уменьшается скорость реакции.Example 3. The process is carried out as in example 2, but at an oxygen pressure of 1 atm. After 10 hours, MHJI conversion and MHX selectivity were 43% and 74%, respectively. This example in comparison with example 2 demonstrates that with a decrease in oxygen pressure, the reaction rate is significantly reduced.
Пример 4. Процесс проводят как в примере 2, но при температуре 50°C. Через 10 ч конверсия MHJI 40%, селективность по MHX 74%. Данный пример в сравнении с примером 2 демонстрирует, что с уменьшением температуры реакции уменьшается ее скорость.Example 4. The process is carried out as in example 2, but at a temperature of 50 ° C. After 10 hours, the conversion of MHJI is 40%, the selectivity for MHX is 74%. This example, in comparison with example 2, demonstrates that with a decrease in the reaction temperature, its rate decreases.
Пример 5. Процесс проводят как в примере 2, но при комнатной температуре (около 20°C). Через 72 ч конверсия MHJI 43%, выход MHX 84%.Example 5. The process is carried out as in example 2, but at room temperature (about 20 ° C). After 72 hours, the conversion of MHJI is 43%, the yield of MHX is 84%.
Через 171 ч конверсия MHJI 80%, селективность по MHX 75%. Данный процесс демонстрирует возможность получения MHX с высоким выходом при комнатной температуре.After 171 h, the conversion of MHJI is 80%, the selectivity for MHX is 75%. This process demonstrates the possibility of obtaining MHX in high yield at room temperature.
Пример 6. Процесс проводят как в примере 1, но берут ПО г МНЛ (0.2 моль/л) Через 7.5 ч конверсия МНЛ 83%, селективность по MHX 82%. Пример 7. Процесс проводят как в примере 1, но берут 220 г МНЛ (0.4 моль/л) Через 7.5 ч конверсия МНЛ 91%, селективность по MHX 88%.Example 6. The process is carried out as in example 1, but take ON g MNL (0.2 mol / l) After 7.5 h, the conversion of MNL 83%, the selectivity for MHX 82%. Example 7. The process is carried out as in example 1, but take 220 g of MNL (0.4 mol / l). After 7.5 h, the conversion of MNL 91%, the selectivity for MHX 88%.
Примеры 6 и 7 в сравнении с примером 1 показывают, что увеличение концентрации МНЛ выше 0.1 M приводит к увеличению скорости и производительности процесса и не приводит к уменьшению селективности по MHX.Examples 6 and 7 in comparison with example 1 show that increasing the concentration of MNL above 0.1 M leads to an increase in the speed and productivity of the process and does not lead to a decrease in selectivity for MHX.
Пример 8. Процесс проводят как в примере 2, но берут 220 г МНЛ (0.4 моль/л) и проводят процесс при комнатной температуре (около 2O0C). Через 119 ч нверсия МНЛ 75%, селективность по MHX 80%. Через 162 ч конверсия МНЛ 87%, селективность по MHX 80%. Данный пример демонстрирует, что при увеличении концентрации МНЛ в 4 раза селективность процесса не ухудшается, а также что при комнатной температуре селективность процесса не ухудшается с увеличением конверсии МНЛ.Example 8. The process is carried out as in example 2, but take 220 g MNL (0.4 mol / l) and carry out the process at room temperature (about 2O 0 C). After 119 h, the MNL inversion is 75%, the MHX selectivity is 80%. After 162 hours, the MNL conversion was 87%, and the MHX selectivity was 80%. This example demonstrates that with a 4-fold increase in the concentration of MNL, the selectivity of the process does not deteriorate, and also that at room temperature the selectivity of the process does not deteriorate with an increase in the conversion of MNL.
Пример 9. Процесс проводят как в примере 2, но берут 277 г МНЛ (0.5 моль/л) Через 4.5 ч конверсия МНЛ 89%, выход MHX 70%. Пример 10. Процесс проводят как в примере 9, но без растворителя и при температуре 75°C. Через 3.5 ч конверсия МНЛ 55%, выход MHX 47%. Данный пример демонстрирует возможность проведения процесса в расплаве МНЛ, без использования органического растворителя.Example 9. The process is carried out as in example 2, but take 277 g MNL (0.5 mol / l). After 4.5 h, the conversion of MNL 89%, the yield of MHX 70%. Example 10. The process is carried out as in example 9, but without solvent and at a temperature of 75 ° C. After 3.5 hours, the conversion of MNL was 55%, and the yield of MHX was 47%. This example demonstrates the possibility of carrying out the process in the MNL melt, without the use of an organic solvent.
Пример 11. Процесс проводят как в примере 2, но в качестве окислителя используют воздух при давлении 3 атм. Через 10 ч конверсия МНЛ и селективность по MHX, составляют 40 и 70%, соответственно. Данный пример демонстрирует, что в качестве окислителя можно использовать кислородсодержащий газ, например, воздух.Example 11. The process is carried out as in example 2, but air is used as an oxidizing agent at a pressure of 3 atm. After 10 hours, the MNL conversion and MHX selectivity were 40 and 70%, respectively. This example demonstrates that an oxygen-containing gas, such as air, can be used as an oxidizing agent.
Пример 12. Процесс проводят как в примере 1, но в качестве растворителя используют циклогексан. Через 6 ч конверсия МНЛ и селективность по MHX, составляют 41 и 84%, соответственно.Example 12. The process is carried out as in example 1, but cyclohexane is used as a solvent. After 6 hours, the MNL conversion and MHX selectivity were 41 and 84%, respectively.
Пример 13. Процесс проводят как в примере 2, но в качестве растворителя используют хлороформ. Через 3 ч конверсия МНЛ и селективность по MHX, составляют 33 и 45%, соответственно. Данный пример демонстрирует уменьшение селективности процесса при увеличении полярности растворителя.Example 13. The process is carried out as in example 2, but chloroform is used as a solvent. After 3 hours, the conversion of MNL and selectivity for MHX are 33 and 45%, respectively. This example demonstrates a decrease in the selectivity of the process with increasing polarity of the solvent.
Пример 14. Процесс проводят как в примере 2, но в качестве растворителя используют уксусную кислоту. Через 3 ч конверсия MHJI и селективность по MEK, составляют 14 и 60%, соответственно.Example 14. The process is carried out as in example 2, but acetic acid is used as a solvent. After 3 hours, MHJI conversion and MEK selectivity were 14 and 60%, respectively.
Пример 15. Процесс проводят как в примере 2, но в качестве растворителя используют этиловый спирт. Через 3 ч конверсия MHJI 6%, выход MHX 0%.Example 15. The process is carried out as in example 2, but ethanol is used as a solvent. After 3 hours, the conversion of MHJI is 6%, the yield of MHX is 0%.
Пример 16. Процесс проводят как в примере 2, но в качестве растворителя используют циклогексанон. Через 3 ч конверсия MHJI 0%, выход MHX 0%.Example 16. The process is carried out as in example 2, but cyclohexanone is used as a solvent. After 3 hours, the conversion of MHJI is 0%, the yield of MHX is 0%.
Пример 17. Процесс проводят как в примере 2, но в качестве растворителя используют ацетонитрил. Через 5 ч конверсия MHJI 20%, выход MHX 2%. Примеры 14-17 демонстрируют, что в полярных растворителях процесс протекает неэффективно.Example 17. The process is carried out as in example 2, but acetonitrile is used as a solvent. After 5 hours, the conversion of MHJI is 20%, the yield of MHX is 2%. Examples 14-17 demonstrate that the process is not efficient in polar solvents.
Обобщенные результаты проведения процесса по примерам 1-17 приведены в таблице.The generalized results of the process according to examples 1-17 are shown in the table.
Приведенные примеры показывают, что предлагаемый настоящим изобретением способ получения MHX является высокопроизводительным, дешевым и простым в реализации. Применение данного способа позволяет получить целевой продукт высокой чистоты (без примесей переходных металлов) и с высоким выходом. Органический растворитель отделяется перегонкой и может быть использован многократно. Отделение MHX от побочных продуктов (главным образом, смол) может быть осуществлено путем перегонки с водяным паром. Смолы можно сжечь с образованием CO2 и H2O. Таблица. Окисление 2 -метил- 1 -нафтола (MHJl) в 2-мeтил-l,4-нaфтoxинoн (MHX)The above examples show that the method of obtaining MHX proposed by the present invention is high-performance, cheap and easy to implement. The application of this method allows to obtain the target product of high purity (without impurities of transition metals) and with a high yield. The organic solvent is separated by distillation and can be used repeatedly. Separation of MHX from by-products (mainly resins) can be carried out by steam distillation. Resins can be burned to form CO 2 and H 2 O. Table. Oxidation of 2-methyl-1-naphthol (MHJl) to 2-methyl-l, 4-naphthoxinone (MHX)
Figure imgf000009_0001
Figure imgf000009_0001
а) ГЖХ выход в расчете на исходный субстрат. б) В расплаве МНЛ. в) Вместо кислорода используют воздух. a) GLC output calculated on the starting substrate. b) In the melt of MNL. c) Instead of oxygen, air is used.

Claims

Формула изобретения Claim
1. Способ получения 2-мeтил-l,4-нaфтoxинoнa путем окисления 2-мeтил-l- нафтола кислородом или кислородсодержащим газом, отличающийся тем, что процесс проводят в среде органического растворителя или в расплаве 2 -метил- 1- нафтола.1. A method of producing 2-methyl-l, 4-naphthoxinone by oxidation of 2-methyl-l-naphthol with oxygen or an oxygen-containing gas, characterized in that the process is carried out in an organic solvent or in a 2-methyl-1-naphthol melt.
2. Способ по п.l, отличающийся тем, что в качестве органического растворителя используют неполярные и малополярные ароматические и неароматические углеводороды и хлорсодержащие углеводороды, или их любую смесь, преимущественно, толуол, четыреххлористый углерод, циклогексан.2. The method according to claim 1, characterized in that non-polar and low-polar aromatic and non-aromatic hydrocarbons and chlorine-containing hydrocarbons, or any mixture thereof, mainly toluene, carbon tetrachloride, cyclohexane, are used as an organic solvent.
3. Способ по п. п.1,2, отличающийся тем, что процесс ведут при интенсивном перемешивании при давлении кислорода или кислородсодержащего газа не ниже 1 атм, преимущественно, не ниже 3 атм. 3. The method according to p. 1.2, characterized in that the process is carried out with vigorous stirring at a pressure of oxygen or an oxygen-containing gas not lower than 1 atm, preferably not lower than 3 atm.
4. Способ по п. п.1,2, отличающийся тем, что процесс ведут при температуре не ниже 20°C. 4. The method according to p. 1.2, characterized in that the process is carried out at a temperature not lower than 20 ° C.
PCT/RU2005/000495 2005-03-28 2005-10-03 Method for producing 2-methyl-1,4-naphthoquinone WO2006104411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2005108448/04A RU2278106C1 (en) 2005-03-28 2005-03-28 Method for preparing 2-methyl-1,4-naphthoquinone
RU2005108448 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006104411A1 true WO2006104411A1 (en) 2006-10-05

Family

ID=36714132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2005/000495 WO2006104411A1 (en) 2005-03-28 2005-10-03 Method for producing 2-methyl-1,4-naphthoquinone

Country Status (2)

Country Link
RU (1) RU2278106C1 (en)
WO (1) WO2006104411A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185431A (en) * 2020-01-14 2021-07-30 新发药业有限公司 Green preparation method of menadione sodium bisulfite
CN113185433A (en) * 2020-01-14 2021-07-30 新发药业有限公司 Preparation method of menadione sodium bisulfite
CN115710171A (en) * 2022-10-10 2023-02-24 兄弟科技股份有限公司 Preparation method of beta-menadione

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2022958C1 (en) * 1990-08-13 1994-11-15 Новосибирский институт органической химии СО РАН Method of 2-methyl-1,4-naphthoquin0ne synthesis
RU2142935C1 (en) * 1997-07-18 1999-12-20 Институт катализа им.Г.К.Борескова СО РАН 2-methyl-1,4-naphthoquinone production process
WO2002079133A1 (en) * 2001-03-29 2002-10-10 Council Of Scientific And Industrial Research Process for preparation of 2-methyl-1,4-naphthoquinone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2022958C1 (en) * 1990-08-13 1994-11-15 Новосибирский институт органической химии СО РАН Method of 2-methyl-1,4-naphthoquin0ne synthesis
RU2142935C1 (en) * 1997-07-18 1999-12-20 Институт катализа им.Г.К.Борескова СО РАН 2-methyl-1,4-naphthoquinone production process
WO2002079133A1 (en) * 2001-03-29 2002-10-10 Council Of Scientific And Industrial Research Process for preparation of 2-methyl-1,4-naphthoquinone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185431A (en) * 2020-01-14 2021-07-30 新发药业有限公司 Green preparation method of menadione sodium bisulfite
CN113185433A (en) * 2020-01-14 2021-07-30 新发药业有限公司 Preparation method of menadione sodium bisulfite
CN113185431B (en) * 2020-01-14 2023-03-31 新发药业有限公司 Green preparation method of menadione sodium bisulfite
CN113185433B (en) * 2020-01-14 2023-09-08 新发药业有限公司 Preparation method of menadione sodium bisulfate
CN115710171A (en) * 2022-10-10 2023-02-24 兄弟科技股份有限公司 Preparation method of beta-menadione

Also Published As

Publication number Publication date
RU2278106C1 (en) 2006-06-20

Similar Documents

Publication Publication Date Title
ES2961389T3 (en) Production of glucaric acid and derivatives from glucose
Bhaumik et al. Triphase catalysis over titanium–silicate molecular sieves under solvent-free conditions: I. Direct hydroxylation of benzene
BRPI0710861A2 (en) processes for producing at least one aromatic carboxylic acid and terephthalic acid
JP2003529582A (en) Method for producing aromatic alcohol, especially phenol
Kumar et al. Oxidative organic transformations catalyzed by titanium-and vanadium-silicate molecular sieves
CN107148415A (en) The method for preparing glyceric acid carbonic ester
CN112645908A (en) Method for preparing maleic anhydride
WO2006104411A1 (en) Method for producing 2-methyl-1,4-naphthoquinone
Rao et al. A novel one step photocatalytic synthesis of dihydropyrazine from ethylenediamine and propylene glycolIICT Communication No 4561.
WO2014202031A1 (en) Method for co-production of adipic acid and nitrocyclohexane
Yao et al. An environmentally benign catalytic oxidation of cholesteryl acetate with molecular oxygen by using N-hydroxyphthalimide
JP2006504781A (en) Method for producing carboxylic acid
CN102452918B (en) Method for preparing corresponding dicarboxylic acid by catalytic oxidation of hydroxy acid
Selvaraj et al. Highly selective synthesis of trans-stilbene oxide over mesoporous Mn-MCM-41 and Zr–Mn-MCM-41 molecular sieves
IL145598A (en) Singlet oxygen oxidation of organic substrates
EP2611763A1 (en) Process for industrial production of 2 -methyl - 1, 4 - naphthaquinone
JP3001653B2 (en) Method for producing dodecanedioic acid
CN110423185B (en) Method for selectively oxidizing cumene compound
EP1544190B1 (en) Method for producing carboxylic acids
JP2000026347A (en) Production of aromatic compound having hydroxyl group by catalytic oxidation
Bijudas Selective Oxidation of Benzyl Alcohols by Hydrogen Peroxide under Phase Transfer Catalysis
JP3772209B2 (en) Production method of carboxylic acid
JPH0565245A (en) Simultaneous production of lactones and aromatic carboxylic acid
RU2196764C2 (en) Method of synthesis of substituted quinones, catalyst for its realization and method of catalyst synthesis
JP5360863B2 (en) Method for synthesizing aromatic substituted aliphatic cyclic ketone compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05802729

Country of ref document: EP

Kind code of ref document: A1