WO2006104149A1 - Process for production of sand molds by injection molding and analysis program therefor - Google Patents

Process for production of sand molds by injection molding and analysis program therefor Download PDF

Info

Publication number
WO2006104149A1
WO2006104149A1 PCT/JP2006/306305 JP2006306305W WO2006104149A1 WO 2006104149 A1 WO2006104149 A1 WO 2006104149A1 JP 2006306305 W JP2006306305 W JP 2006306305W WO 2006104149 A1 WO2006104149 A1 WO 2006104149A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
injection molding
analysis
slurry
sand
Prior art date
Application number
PCT/JP2006/306305
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyasu Makino
Original Assignee
Sintokogio, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio, Ltd. filed Critical Sintokogio, Ltd.
Priority to JP2007510528A priority Critical patent/JP4569629B2/en
Publication of WO2006104149A1 publication Critical patent/WO2006104149A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C19/00Components or accessories for moulding machines
    • B22C19/04Controlling devices specially designed for moulding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes

Definitions

  • the present invention relates to a method for predicting a filling failure of sand mold molding by injection and performing molding with improved filling properties. More specifically, the present invention relates to an injection molding method in which a foamed mixture obtained by stirring particulate aggregate, a water-soluble binder and water is press-fitted into a heated mold cavity to mold a mold. It relates to the analysis program.
  • the core system is mainly a shell core or a cold box. Since both core systems are binders developed for pig iron, there is a problem with disintegration, especially in the case of low melting aluminum casting.
  • the shell core is a blow mold in which dry core sand coated with rosin is blown together with compressed air into a heated mold, while the cold box is wet core sand coated with rosin at room temperature. Blow mold into mold, then solidify by gassing.
  • protein-based binders and inorganic-based binder core systems have been developed and attracted attention for aluminum objects.
  • Non-patent Documents 1 and 2 The present applicants have developed a core system for aluminum products using a binder based on natural polysaccharides (Non-patent Documents 1 and 2).
  • this binder system water and a polysaccharide-based binder are added to silica sand, and the mixture is stirred to form a whip containing bubbles, then injection molded into a heated mold, and dried and solidified.
  • the decomposition temperature of the binder is low, so it has excellent disintegration, and since it is a binder based on natural polysaccharides, there is almost no odor.
  • the conventional core system is blow-molded, whereas the binder system is injection-molded in a whip shape with good fluidity, so the molding process is different and the filling into details is good.
  • Non-Patent Document 1 Zengo, Kato, Asano, Nagasaka, Japan Society for Engineering Engineering 144th Annual Lecture Meeting Summary (2004) 151
  • Non-Patent Document 2 Kato, Asano, Yoshitsugu, Nagasaka, Japan Society for Engineering Engineering 144th National Lecture Meeting Summary of Performance (2004) 152
  • the mold design including the mold design such as the mold temperature and the injection speed, it is necessary to grasp the filling phenomenon of the core mold in detail.
  • the present invention is a vertical injection capable of stably filling a slurry material containing a binder into a mold cavity based on optimized molding conditions.
  • a method for predicting a filling failure in a filling space of a sand molding by injection and performing molding with improved filling property is adopted by an injection molding machine.
  • a step of inputting molding data including molding conditions, the shape of the filling space and the physical properties of the sand, into the calculation means; based on the input data regarding the molding before the molding is actually performed A step of calculating the filling property of the sand sand by a sand molding analysis method; a step of repeating the calculation by the sand molding analysis method by changing molding conditions of the injection molding as necessary; and by the injection molding machine
  • the injection molding machine used in the above aspect is configured by filling a whip-like foam mixture obtained by stirring particulate aggregate, a water-soluble binder, and water into a heated mold cavity by a press-fitting method.
  • a saddle type can be formed.
  • the injection molding machine can be provided with at least one of temperature measuring means for the particulate aggregate or the foamed mixture, viscosity measuring means for the foamed mixture, and moisture measuring means for the foamed mixture.
  • the vertical injection molding method is a vertical injection molding method in which a slurry-like material containing a binder is filled in a filling space inside a mold by injection to perform vertical molding. Based on the judgment of the analysis results of the injection molding analysis method! The method includes a step of performing vertical molding under the molding conditions.
  • the vertical injection molding method of the present invention is a vertical injection molding method in which vertical molding is performed by filling a slurry-like material containing a binder into a filling space inside a mold by injection. Analyzing the injection molding analysis method based on data related to molding, including molding conditions and physical properties that are the physical properties of the slurry-like material. And a step of determining whether or not the molding condition is to be changed, and a step of performing an actual mold molding executed by the mold injection molding apparatus under the molding condition based on the determination! /
  • the vertical injection molding method is a vertical injection molding method in which a slurry-like material containing a binder is filled in a filling space inside a mold by injection to perform vertical molding.
  • the calculation by the injection molding analysis method is repeated by changing the molding conditions and determining the parameters, and the actual process executed by the injection molding apparatus. And a step of performing molding under modified molding conditions so as to match the analysis result of the injection molding analysis method using the determined parameters.
  • the program for injection molding according to the present invention is based on the molding conditions set for molding and data relating to molding including physical property values that are physical properties of the slurry-like material.
  • the computer calculates the equation of motion of the slurry material numerically so as to satisfy the continuity equation, and analyzes the equation of motion to obtain the velocity distribution of the slurry material after a minute time And a function of repeating the temperature distribution analysis for calculating the temperature distribution of the slurry-like material at the time.
  • the present invention configured as described above makes it possible to clarify the molding process of the Noinder system and optimize the mold design and molding conditions.
  • the present invention also performs molding under molding conditions optimized by the injection molding analysis method so as to eliminate the filling failure of the slurry-like material into the filling space by injection. Obtainable.
  • the present invention is based on the continuum model, and among the parameters necessary for the analysis of the injection-type analysis method mathematically modeled as a Newtonian fluid considering the shear rate dependence of the viscosity, a specific parameter is preliminarily subjected to preliminary experiments. Estimate / identify the force such as the physical property value that is the physical property of the slurry-like material and set it temporarily. Then, based on the temporarily set parameters, molding computer simulation by the injection molding analysis method is performed.
  • the parameters are data relating to molding including molding conditions set during molding and physical properties that are physical properties of the slurry-like material, and are data necessary for an injection molding analysis method.
  • the specific parameters are parameters that particularly contribute to the filling property, such as viscosity, heat transfer coefficient filling property, and packing density.
  • the injection molding analysis method for example, the equation of motion of the slurry-like material is calculated numerically so as to satisfy the continuous equation, and the velocity distribution of the slurry-like material after a minute time is obtained. It is possible to use an analysis method that repeats the above analysis and the temperature distribution analysis for calculating the temperature distribution of the slurry-like material at the time. This injection molding analysis method is stored in advance in a computer.
  • the molding is analyzed by the injection molding analysis method, and the quality of the molding using the temporarily set parameters is determined. If the result of this determination is a negative determination (underfill condition), the molding conditions are changed and the molding is analyzed by the injection molding analysis method. In the case of a good judgment (good filling state), the actual molding performed by the injection molding apparatus is performed under the modified molding conditions so as to match the analysis result of the injection molding analysis method. Yes.
  • the molding conditions are conditions executed by the injection molding apparatus. For example, the injection speed of the slurry-like material, the injection pressure, the injection flow rate (determining the shape force of the filling space), the initial temperature of the slurry-like material, Mold temperature, molding completion time (filling time and holding time in the mold after filling).
  • the physical property values which are physical properties of the slurry-like material include, for example, viscosity (depending on shear rate and water temperature), moisture, density, specific heat, thermal conductivity, porosity, mold and slurry. Such as heat transfer coefficient between materials.
  • the slurry material in the present invention is not particularly limited as long as it can be injected, and examples thereof include a particulate aggregate, a water-soluble binder, and a material obtained by stirring water. .
  • the slurry-like material contains the foamed mixture thus produced and whipped. In the present embodiment, core molding using the slurry-like material will be described.
  • At least one of the temperature measuring means for the particulate aggregate or slurry material, the viscosity measuring means for the slurry material, and the moisture measuring means for the slurry material may be omitted. it can.
  • the present invention is characterized in that the mold is at a temperature higher than the curing temperature of the binder, and the temperature of the slurry-like material is close to / from the mold temperature.
  • the equation (1) is a continuous equation
  • the equation (2) is a viscous fluid equation of motion.
  • Equation (3) represents the energy equation.
  • p is the density
  • v is the velocity vector
  • g is the gravity vector
  • Cp is the specific heat
  • T is the temperature
  • is the thermal conductivity
  • y Shear rate. Since the slurry-like material is highly viscous, the time term (left side), inertia term (first term on the right side) and gravity term (fourth term on the right side) in Equation (2) may be zero.
  • numerical analysis is performed by the finite element method.
  • Table 1 shows the physical properties, which are the physical properties of the core material, which has been agitated into a slurry, and Table 2 shows the analysis conditions such as the mold temperature.
  • the moisture content of the core material is determined by weighing a predetermined amount of the core material in a 120 ° C drying oven for 1 hour or more. Above, it is measured by reduced weight after being sufficiently dried.
  • the core material used in this analysis is a slurry-like material, it is considered that the core material has thixotropy whose viscosity depends on the shear rate. Therefore, the fluidity is investigated using the apparatus shown in Fig. 1 as a means for measuring the viscosity of the core material that is the slurry-like material in this analysis.
  • Fill the cylinder 1 with the core material 2 pressurize it with the piston 3, and let it flow out of the pilot hole 4.
  • the flow rate from the pilot hole 4 is changed, and the viscosity is calculated using equation (4) and the shear rate is calculated using equation (5).
  • Figure 2 shows the results obtained. Both Plotting with a logarithmic graph shows a linear relationship, so it is approximated by the Arrhenius equation. From Fig. 2, it was confirmed that the viscosity decreased with increasing shear rate, indicating thixotropy. That is, in the actual molding process, the higher the injection speed, the better the fluidity. In this case, the moisture value was 4.2% and 4.7% for 1S. It was considered that there was almost no influence of the moisture value within this condition, and Equation (6) was obtained.
  • Mold core The heat transfer between the materials is a very important factor in the present invention.
  • the amount of heat transferred from the mold to the core material is measured by a simple apparatus shown in FIG.
  • the mold 5 is heated to 523 K (about 250 ° C.), and then the molding core material 6 stirred in a slurry state is applied at a predetermined pressure so as to be in close contact with the mold 5.
  • the temperature gradient is calculated from the measured temperature and the heat transfer coefficient h (W / m2K) is obtained by equation (7).
  • Fig. 4 shows the obtained temperature measurement results and the calculated heat transfer coefficient.
  • the core shape is a rectangular ring shape, the outer dimensions are 100mm x 100mm, and the cross section is a square of 10mm x 10mm.
  • the core cavity volume is 40 x 10-6m3. In this basic experiment type, we will also check the condition of the weld where the core material joins.
  • Fig. 6 shows the analysis results when the injection flow rate Qi during molding was 79 X 10-6 m3Zs.
  • the core material flows left and right symmetrically, and molding is completed after 0.5 seconds.
  • the front line of the core material in the filling process had a smooth convex shape.
  • FIG. 1 The molding behavior observed in this example is shown in FIG.
  • a core material is filled in a sleeve of ⁇ ⁇ m, and injection molding is performed by an electric servo cylinder.
  • the cylinder speed was set to 0. OlmZs—constant, and the recorder speed was confirmed by the recorder during the molding process.
  • the forging time for filling almost symmetrically is 0.7 sec, which is slightly longer than the analysis result. This is considered to be because, in the initial stage of molding, the air existing between the cylinder and the core material is compressed and gradually flows out immediately before the cylinder contacts the core material in the sleeve.
  • the front line of the core material in the filling process had a smooth convex shape, which was very close to the shape obtained by the analysis.
  • Fig. 8 shows the temperature distribution immediately after the completion of molding when the injection flow rate Qi during molding is 79 X 10-6m3Zs and 393 X 10-6m3Zs. It is clear that the tip part is gradually heated during the molding process where the temperature of the final filling part is the highest. In addition, the one with a low ejection flow rate has a high temperature because it takes a long time to complete molding.
  • thermocouple ( ⁇ 0. lmm) was inserted into the cavity of the final filling portion, and the temperature during molding was measured. The obtained results are shown in FIG. Prior to the start of molding, the air temperature rose to about 493K (about 220 ° C) due to radiant heat from the mold even within the cavity. For this reason, since the thermocouple measures the temperature of the core material at the time of molding, the temperature is lowered gradually, and then the temperature of the core material is increased by being heated by the mold. Table 3 shows the temperature of the final filling part immediately after molding.
  • FIG. 10 shows the shape of the core of the target water jacket. Figure 10 also shows six injection ports.
  • the injection flow rate was set to flow 330 X 10-6 m3Zs from each injection port.
  • Figure 11 shows the filling behavior obtained from the analysis.
  • the core material is filled in order from the vicinity of the six injection ports. Since the skirting board part at the back left is relatively small, the filling force in about 0.2 seconds The skirting board part on the right front side is large, so it is the final filling part. In this core, there are 6 injection ports, but filling is completed smoothly without any weld lines.
  • the filling time was 0.6 seconds.
  • FIG. 12 shows the temperature distribution immediately after completion of filling obtained by analysis. Filled at a relatively early stage, and the thin-walled part has the highest temperature, but since it is about 310K (about 37 ° C), no water vaporization has occurred and it has solidified. It is not considered.
  • Figure 13 shows the core that was actually molded under these conditions. No weld line was observed in the unfilled part, and a very good core was obtained. In other words, it is considered that the core material did not solidify during the filling process, and the core material temperature solidified beyond 373K (about 100 ° C) after filling. In addition, aluminum was actually fabricated, and a good aluminum product was obtained.
  • the molding conditions in the injection molding analysis method by limiting the temperature so that the temperature of the slurry-like material does not exceed 100 ° C before the filling of the slurry-like material is completed. You can see this. Also, in the injection molding analysis method, before the completion of the filling of the slurry-like material, the temperature of the slurry-like material does not exceed 100 ° C and the limit is set so that the slurry can be filled in the shortest time. It can also be seen that it is preferable to obtain.
  • the temperature of the filled slurry-like material is a predetermined temperature at which filling is completed at least before the binder is completely cured, for example, 200 to 250 ° C, preferably 100 ° C or less. . Therefore, it is preferable that the injection molding analysis method obtains the molding conditions by limiting the temperature so that the temperature of the filled slurry-like material is at least a predetermined temperature at which the filling is completed before the curing is completed. .
  • the present analysis model and the parameter can express the molding phenomenon of the core system. Therefore, in the present invention, since the influence of the parameters on the moldability (fillability) is confirmed in advance and molded, it is possible to prevent filling failure.
  • FIG. 1 is a schematic view of an apparatus for investigating the fluidity of a core material.
  • FIG. 2 is a graph showing the relationship between the shear rate and viscosity of the core material.
  • FIG. 3 is a schematic view of an apparatus for measuring the heat transfer coefficient between mold and core material.
  • FIG. 4 is a graph showing the results of measurement temperature and heat transfer coefficient in the measurement of the heat transfer coefficient between mold and core material.
  • FIG. 5 shows an analysis model of the present invention and a basic experiment type for evaluating the validity of various parameters.
  • FIG. 6 shows the analysis results of the molding behavior obtained using the basic experimental mold shown in FIG.
  • FIG. 7 shows experimental results of molding behavior obtained using the basic experimental mold shown in FIG.
  • FIG. 8 shows the temperature distribution result immediately after completion of molding, obtained using the basic experimental model shown in FIG. [9]
  • Figure 9 shows the temperature measurement results in the cavity during molding, obtained using the basic experimental model shown in Figure 5.
  • FIG. 10 shows the shape of the water jacket core used in the example of the present invention.
  • FIG. 11 shows an analysis result of the filling behavior obtained by using the water jacket core shown in FIG.
  • FIG. 12 shows the analysis result of the temperature distribution immediately after completion of filling, obtained using the water jacket core shown in FIG.
  • FIG. 13 shows a water jacket core actually formed using the analysis result of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A process for the production of molds by injection molding which makes it possible to charge a mold cavity with a binder-containing slurry material stably on the basis of the optimized molding conditions, namely, a process for the production of molds by charging a mold cavity with a binder-containing slurry material by injection and molding the material, which comprises the step of conducting the molding under the conditions on the basis of the judgment of results of injection molding analysis. The injection molding analysis comprises calculating numerically the equation of motion of the slurry material so as to satisfy the equation of continuity and repeating the analysis of the equation of motion for determining the speed distribution of the material after the lapse of minute time and the analysis of temperature distribution for calculating the temperature distribution of the material at the time.

Description

明 細 書  Specification
砂型射出造型法及びその解析プログラム  Sand injection molding method and analysis program
技術分野  Technical field
[0001] 本発明は、射出による砂型造型の充填不良を予測し充填性を高めた造型を行う方 法に関する。より詳しくは、本発明は、粒子状骨材、水溶性バインダーおよび水を攪 拌して得た発泡混合物を、加熱された金型のキヤビティに圧入充填して铸型を造型 する射出造型法及びその解析プログラムに関する。  TECHNICAL FIELD [0001] The present invention relates to a method for predicting a filling failure of sand mold molding by injection and performing molding with improved filling properties. More specifically, the present invention relates to an injection molding method in which a foamed mixture obtained by stirring particulate aggregate, a water-soluble binder and water is press-fitted into a heated mold cavity to mold a mold. It relates to the analysis program.
背景技術  Background art
[0002] 従来、中子システムはシェル中子やコールドボックスが主流である。いずれの中子 システムも铸鉄铸物用に開発されたバインダーであるため、融点の低 ヽアルミ铸造で は特に崩壊性に問題がある。シェル中子は榭脂をコーティングした乾体の中子砂を 加熱した金型に圧縮空気とともに吹き込むブロー造型であり、一方、コールドボックス は榭脂をコーティングした湿体の中子砂を室温状態の金型にブロー造型し、その後 、ガッシングして固化する。近年、アルミニウム铸物を対象として、タンパク質ベースの バインダーや、無機ベースのバインダーの中子システムが開発され、注目されている  Conventionally, the core system is mainly a shell core or a cold box. Since both core systems are binders developed for pig iron, there is a problem with disintegration, especially in the case of low melting aluminum casting. The shell core is a blow mold in which dry core sand coated with rosin is blown together with compressed air into a heated mold, while the cold box is wet core sand coated with rosin at room temperature. Blow mold into mold, then solidify by gassing. In recent years, protein-based binders and inorganic-based binder core systems have been developed and attracted attention for aluminum objects.
[0003] 本出願人らは天然の多糖類をベースとしたバインダーにより、アルミニウム铸物を対 象とした中子システムを開発した (非特許文献 1、 2)。このバインダーシステムでは、 珪砂に水と多糖類ベースのノ インダーを添加し、撹拌して気泡を含んだホイップ状に した後に、加熱した金型に射出造型し、乾燥、固化させるシステムである。従来のシ エル中子やコールドボックスと比べて、バインダーの分解温度が低いため、崩壊性に 優れており、また、天然の多糖類をベースとするバインダーであるため、臭いはほとん どない。また、従来の中子システムではブロー造型であるのに対し、バインダーシステ ムでは流動性の良いホイップ状で射出造型するため、造型プロセスが異なっており、 細部への充填性が良好である。 [0003] The present applicants have developed a core system for aluminum products using a binder based on natural polysaccharides (Non-patent Documents 1 and 2). In this binder system, water and a polysaccharide-based binder are added to silica sand, and the mixture is stirred to form a whip containing bubbles, then injection molded into a heated mold, and dried and solidified. Compared to conventional shell cores and cold boxes, the decomposition temperature of the binder is low, so it has excellent disintegration, and since it is a binder based on natural polysaccharides, there is almost no odor. In addition, the conventional core system is blow-molded, whereas the binder system is injection-molded in a whip shape with good fluidity, so the molding process is different and the filling into details is good.
非特許文献 1 :善甫、加藤、浅野、長坂、 日本铸造工学会第 144回全国講演大会講 演概要集(2004) 151 非特許文献 2 :加藤、浅野、善甫、長坂、日本铸造工学会第 144回全国講演大会講 演概要集(2004) 152 本中子システムにおいては、従来の金型を用いても、バイン ダ一で中子を一応射出造型できるが、充填にばらつきが生じ、造型品の品質が安定 しにくい。このため、金型温度などの金型設計や、射出速度などを含めた造型条件を 決定するために、中子造型の充填現象を詳細に把握することが必要である。 Non-Patent Document 1: Zengo, Kato, Asano, Nagasaka, Japan Society for Engineering Engineering 144th Annual Lecture Meeting Summary (2004) 151 Non-Patent Document 2: Kato, Asano, Yoshitsugu, Nagasaka, Japan Society for Engineering Engineering 144th National Lecture Meeting Summary of Performance (2004) 152 In this core system, even if a conventional mold is used, a binder is used. However, it is difficult to stabilize the quality of the molded product. For this reason, in order to determine the mold design including the mold design such as the mold temperature and the injection speed, it is necessary to grasp the filling phenomenon of the core mold in detail.
[0004] しカゝしながら、造型条件を見出すのに、中子造型の現象を分析しながら、実験を繰 り返すと、多大な時間と労力が必要となる。また、造型条件だけでは安定した品質を 確保することが難しい。 [0004] However, if the experiment is repeated while analyzing the core molding phenomenon in order to find out the molding conditions, much time and labor are required. In addition, it is difficult to ensure stable quality only with molding conditions.
[0005] そこで、本発明は、叙上の事情に鑑み、最適化された造型条件に基づいて、金型 キヤビティへのバインダーを含むスラリー状材料の充填を安定して行うことができる铸 型射出造型法および射出造型解析法の解析プログラムを提供することを目的とする 発明の開示  [0005] Therefore, in view of the above circumstances, the present invention is a vertical injection capable of stably filling a slurry material containing a binder into a mold cavity based on optimized molding conditions. DISCLOSURE OF THE INVENTION DISCLOSURE OF THE INVENTION Disclosed for the purpose of providing an analysis program for molding method and injection molding analysis method
[0006] 上記の問題を解消するために、本発明の 1局面において、射出による砂型造型の 充填空間への充填不良を予測し充填性を高めた造型を行う方法は:射出造型機が 採用する造型条件、前記充填空間の形状および前記铸物砂の物理的性質を含む 造型に関するデータを演算手段に入力する工程と;実際に造型が行われる前に、入 力された前記造型に関するデータに基づいて前記铸物砂の充填性を砂型造型解析 法により演算する工程と;前記砂型造型解析法による演算を必要に応じて前記射出 造型の造型条件を変更して繰り返す工程と;前記射出造型機により実行される実際 の造型が前記砂型造型解析法による铸物砂の充填性の演算結果に基づいて行わ れるように変更された前記射出造型の造型条件で前記射出造型機を作動させるェ 程と;を含み、前記砂型造型解析法は、前記铸物砂の運動方程式を連続の式を満た すように数値的に計算し、微少時間後の前記铸物砂の速度分布を求める運動方程 式解析工程と、該時間における前記铸物砂の温度分布を計算する温度分布解析ェ 程と、上記運動方程式解析工程、上記温度分布解析工程を繰り返す工程と、から成 ることを特徴とする。  [0006] In order to solve the above problem, in one aspect of the present invention, a method for predicting a filling failure in a filling space of a sand molding by injection and performing molding with improved filling property is adopted by an injection molding machine. A step of inputting molding data including molding conditions, the shape of the filling space and the physical properties of the sand, into the calculation means; based on the input data regarding the molding before the molding is actually performed A step of calculating the filling property of the sand sand by a sand molding analysis method; a step of repeating the calculation by the sand molding analysis method by changing molding conditions of the injection molding as necessary; and by the injection molding machine A step of operating the injection molding machine under the molding conditions of the injection molding changed so that the actual molding performed is performed based on the calculation result of the filling property of the sand sand by the sand molding analysis method; Including In the sand mold forming analysis method, the equation of motion of the clay sand is numerically calculated so as to satisfy a continuous equation, and a velocity equation analysis step for obtaining the velocity distribution of the clay sand after a minute time, It comprises a temperature distribution analysis process for calculating the temperature distribution of the sand at the time, a step of analyzing the equation of motion, and a step of repeating the temperature distribution analysis step.
[0007] 上記局面にぉ 、て、連続体モデルに基づき、粘度の剪断速度依存性を考慮した- ユートン流体として数学的モデルを構築する。そして、本モデルの各種パラメータを 同定するとともに、中子造型のコンピュータシミュレーションを行う。さらに、基礎造型 実験により解析モデルとパラメータの妥当性を検証し、実スケールの中子造型のコン ピュータシミュレーションも行い、各種条件が造型性に及ぼす影響を予め確認し、砂 型造型の充填不良を予測した。 [0007] Based on the above aspect, based on the continuum model, the shear rate dependence of viscosity was considered- A mathematical model is constructed as a Eutonian fluid. In addition to identifying the various parameters of this model, we will perform a core-shaped computer simulation. In addition, the validity of the analysis model and parameters is verified by basic molding experiments, and computer simulations of core molding of actual scale are also performed to confirm the effects of various conditions on molding properties in advance, and to prevent defective filling of sand molding. Predicted.
[0008] 上記局面に用いる前記射出造型機は、粒子状骨材、水溶性バインダーおよび水を 攪拌して得たホイップ状の発泡混合物を、加熱された金型のキヤビティに圧入方式 によって充填して铸型を造型することができる。  [0008] The injection molding machine used in the above aspect is configured by filling a whip-like foam mixture obtained by stirring particulate aggregate, a water-soluble binder, and water into a heated mold cavity by a press-fitting method. A saddle type can be formed.
[0009] 前記射出造型機は、前記粒子状骨材若しくは前記発泡混合物の温度測定手段、 前記発泡混合物の粘度計測手段、前記発泡混合物の水分計測手段の少なくとも一 っを備免ることができる。 [0009] The injection molding machine can be provided with at least one of temperature measuring means for the particulate aggregate or the foamed mixture, viscosity measuring means for the foamed mixture, and moisture measuring means for the foamed mixture.
[0010] 発明の別の局面において、铸型射出造型法は、金型内部の充填空間にバインダ 一を含むスラリー状材料を射出によって充填し、铸型造型を行う铸型射出造型法で あって、射出造型解析法の解析結果の判断に基づ!/、た造型条件で铸型造型を行う 工程を含むことを特徴として 、る。 [0010] In another aspect of the invention, the vertical injection molding method is a vertical injection molding method in which a slurry-like material containing a binder is filled in a filling space inside a mold by injection to perform vertical molding. Based on the judgment of the analysis results of the injection molding analysis method! The method includes a step of performing vertical molding under the molding conditions.
[0011] また、本発明の 1局面において、本発明の铸型射出造型法は、金型内部の充填空 間にバインダーを含むスラリー状材料を射出によって充填し、铸型造型を行う铸型射 出造型法であって、造型に際して設定される造型条件とスラリー状材料の物理的性 質である物性値を含む造型に関するデータに基づく射出造型解析法の解析を行い 、該解析の結果に基づいて、前記造型条件を変更するカゝ否かを判断する工程と、铸 型射出造型装置により実行される実際の铸型造型を前記判断に基づいた造型条件 で行う工程とを含むことを特徴として!/、る。  [0011] Also, in one aspect of the present invention, the vertical injection molding method of the present invention is a vertical injection molding method in which vertical molding is performed by filling a slurry-like material containing a binder into a filling space inside a mold by injection. Analyzing the injection molding analysis method based on data related to molding, including molding conditions and physical properties that are the physical properties of the slurry-like material. And a step of determining whether or not the molding condition is to be changed, and a step of performing an actual mold molding executed by the mold injection molding apparatus under the molding condition based on the determination! /
[0012] また、本発明の 1局面において、铸型射出造型法は、金型内部の充填空間にバイ ンダーを含むスラリー状材料を射出によって充填し、铸型造型を行う铸型射出造型 法であって、造型に際して設定される造型条件とスラリー状材料の物理的性質である 物性値を含む造型に関するデータを記憶する工程と、実際に造型が行われる前に、 入力された前記造型に関するデータのうち、予め記憶されている射出造型解析法に 必要なパラメータを仮に設定する工程と、該仮に設定したパラメータを用いた射出造 型解析法の解析を行い、良好な解析結果を得るために、該射出造型解析法による 演算を前記造型条件を変更して繰り返し、パラメータを決定する工程と、射出造型装 置により実行される実際の造型を、該決定されたパラメータを用いた射出造型解析法 の解析結果に合致するように、変更された造型条件で行う工程とを含むことを特徴と している。 [0012] Further, in one aspect of the present invention, the vertical injection molding method is a vertical injection molding method in which a slurry-like material containing a binder is filled in a filling space inside a mold by injection to perform vertical molding. A process of storing data relating to molding including physical properties that are physical properties of the slurry-like material and molding conditions that are set at the time of molding, and before the actual molding is performed, Of these, a step of temporarily setting parameters necessary for a pre-stored injection molding analysis method, and an injection molding using the temporarily set parameters In order to analyze the mold analysis method and obtain a good analysis result, the calculation by the injection molding analysis method is repeated by changing the molding conditions and determining the parameters, and the actual process executed by the injection molding apparatus. And a step of performing molding under modified molding conditions so as to match the analysis result of the injection molding analysis method using the determined parameters.
[0013] また、本発明の射出造型のためのプログラムは、造型に設定された造型条件とスラ リー状材料の物理的性質である物性値を含む造型に関するデータに基づ ヽて、射 出造型解析法の解析をするためにコンピュータを、前記スラリー状材料の運動方程 式を連続の式を満たすように数値的に計算し、微少時間後の前記スラリー状材料の 速度分布を求める運動方程式の解析と該時間における前記スラリー状材料の温度 分布を計算する温度分布の解析とを繰り返す演算手段として機能させることを特徴と している。  [0013] In addition, the program for injection molding according to the present invention is based on the molding conditions set for molding and data relating to molding including physical property values that are physical properties of the slurry-like material. In order to analyze the analysis method, the computer calculates the equation of motion of the slurry material numerically so as to satisfy the continuity equation, and analyzes the equation of motion to obtain the velocity distribution of the slurry material after a minute time And a function of repeating the temperature distribution analysis for calculating the temperature distribution of the slurry-like material at the time.
[0014] 上記のように構成された本発明は、ノインダーシステムの造型プロセスを明確にし、 金型設計と造型条件を最適化して造型することができる。  [0014] The present invention configured as described above makes it possible to clarify the molding process of the Noinder system and optimize the mold design and molding conditions.
[0015] 本発明は、また、射出によるスラリー状材料の充填空間への充填不良がなくなるよう に、射出造型解析法により最適化された造型条件で造型を行うため、充填性を高め た造型を得ることができる。 [0015] The present invention also performs molding under molding conditions optimized by the injection molding analysis method so as to eliminate the filling failure of the slurry-like material into the filling space by injection. Obtainable.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、添付図面に基づいて本発明を説明する。本発明は、連続体モデルに基づき 、粘度の剪断速度依存性を考慮したニュートン流体として数学的にモデルィヒした射 出造型解析法の解析に必要なパラメータのうち、特定のパラメータを予め予備的な 実験により求め、またはスラリー状材料の物理的性質である物性値など力も推定 ·同 定し、仮に設定しておく。そして、前記仮に設定したパラメータに基づいて、前記射出 造型解析法による造型のコンピュータシミュレーションを行う。  Hereinafter, the present invention will be described with reference to the accompanying drawings. The present invention is based on the continuum model, and among the parameters necessary for the analysis of the injection-type analysis method mathematically modeled as a Newtonian fluid considering the shear rate dependence of the viscosity, a specific parameter is preliminarily subjected to preliminary experiments. Estimate / identify the force such as the physical property value that is the physical property of the slurry-like material and set it temporarily. Then, based on the temporarily set parameters, molding computer simulation by the injection molding analysis method is performed.
[0017] 前記パラメータとは、造型の際に設定される造型条件とスラリー状材料の物理的性 質である物性値を含む造型に関するデータであり、射出造型解析法に必要なデータ である。また、特定のパラメータは、とくに充填性に寄与するパラメータ、たとえば粘度 や、熱伝達係数充填性、充填密度などである。 [0018] 前記射出造型解析法としては、たとえば、スラリー状材料の運動方程式を連続の式 を満たすように数値的に計算し、微少時間後の前記スラリー状材料の速度分布を求 める運動方程式の解析と該時間における前記スラリー状材料の温度分布を計算する 温度分布の解析とを繰り返す解析法を用いることができる。この射出造型解析法は、 予めコンピュータに記憶されている。 [0017] The parameters are data relating to molding including molding conditions set during molding and physical properties that are physical properties of the slurry-like material, and are data necessary for an injection molding analysis method. In addition, the specific parameters are parameters that particularly contribute to the filling property, such as viscosity, heat transfer coefficient filling property, and packing density. [0018] As the injection molding analysis method, for example, the equation of motion of the slurry-like material is calculated numerically so as to satisfy the continuous equation, and the velocity distribution of the slurry-like material after a minute time is obtained. It is possible to use an analysis method that repeats the above analysis and the temperature distribution analysis for calculating the temperature distribution of the slurry-like material at the time. This injection molding analysis method is stored in advance in a computer.
[0019] 本実施の形態では、射出造型解析法による造型の解析を行い、仮に設定したパラ メータを用いた造型の良否を判定する。この判定結果、否の判定 (充填不足状態)の 場合、造型条件を変更して射出造型解析法による造型の解析を行う。そして、良の 判定 (充填良好状態)の場合、射出造型解析法の解析結果に合致するように、射出 造型装置により実行される実際の造型が前記変更された造型条件で造型を行うよう にしている。  In the present embodiment, the molding is analyzed by the injection molding analysis method, and the quality of the molding using the temporarily set parameters is determined. If the result of this determination is a negative determination (underfill condition), the molding conditions are changed and the molding is analyzed by the injection molding analysis method. In the case of a good judgment (good filling state), the actual molding performed by the injection molding apparatus is performed under the modified molding conditions so as to match the analysis result of the injection molding analysis method. Yes.
[0020] なお、造型条件とは、射出造型装置により実行される条件であり、たとえばスラリー 状材料の射出速度、射出圧力、射出流量 (充填空間の形状力 求める)、スラリー状 材料の初期温度、金型温度、造型完了時間 (充填時間と充填完了後の金型内保持 時間)などである。  [0020] The molding conditions are conditions executed by the injection molding apparatus. For example, the injection speed of the slurry-like material, the injection pressure, the injection flow rate (determining the shape force of the filling space), the initial temperature of the slurry-like material, Mold temperature, molding completion time (filling time and holding time in the mold after filling).
[0021] また、スラリー状材料の物理的性質である物性値とは、たとえば粘度 (せん断速度 や水の温度に依存する)、水分、密度、比熱、熱伝導度、空隙率、金型とスラリー状 材料との間の熱伝達係数などである。  [0021] Further, the physical property values which are physical properties of the slurry-like material include, for example, viscosity (depending on shear rate and water temperature), moisture, density, specific heat, thermal conductivity, porosity, mold and slurry. Such as heat transfer coefficient between materials.
[0022] 本発明におけるスラリー状材料としては、射出可能であればとくに限定されるもので はないが、たとえば粒子状骨材、水溶性バインダーおよび水を攪拌してなる材料など を挙げることができる。スラリー状材料は、このようにして作られホイップ状になった発 泡混合物を含む。本実施の形態では、前記スラリー状材料を用いた中子の造型につ いて説明する。  [0022] The slurry material in the present invention is not particularly limited as long as it can be injected, and examples thereof include a particulate aggregate, a water-soluble binder, and a material obtained by stirring water. . The slurry-like material contains the foamed mixture thus produced and whipped. In the present embodiment, core molding using the slurry-like material will be described.
[0023] また、本実施の形態では、前記粒子状骨材もしくはスラリー状材料の温度測定手段 、スラリー状材料の粘度計測手段、スラリー状材料の水分計測手段の少なくとも一つ を備免ることができる。  In the present embodiment, at least one of the temperature measuring means for the particulate aggregate or slurry material, the viscosity measuring means for the slurry material, and the moisture measuring means for the slurry material may be omitted. it can.
[0024] つぎに、前記射出造型解析法の数学的モデル (解析モデル)を中子造型に用いる 実施の形態を説明する。まず、前記解析法に必要なパラメータとして粘度や熱伝達 係数を同定するとともに、中子造型のコンピュータシミュレーションを行う。なお、本発 明においては、金型がバインダーの硬化温度より高温であり、金型の温度にスラリー 状材料の温度が近づ!/ヽて 、くことに特徴がある。 Next, an embodiment in which a mathematical model (analysis model) of the injection molding analysis method is used for core molding will be described. First, viscosity and heat transfer as parameters necessary for the analysis method In addition to identifying the coefficients, computer simulation of core molding is performed. The present invention is characterized in that the mold is at a temperature higher than the curing temperature of the binder, and the temperature of the slurry-like material is close to / from the mold temperature.
[0025] 本実施の形態では、粒子状骨材として珪砂に水分と多糖類ベースの水溶性バイン ダーを添加し、攪拌してスラリー状にした後に射出造型するため、連続体モデルに基 づいて造型挙動の解析を行う。本解析での基礎式(1)、式 (2)および式 (3)を以下に 示す。  [0025] In the present embodiment, water and a polysaccharide-based water-soluble binder are added to silica sand as a particulate aggregate, and after stirring to form a slurry, injection molding is performed. Therefore, based on a continuum model. Analyze molding behavior. The basic equations (1), (2), and (3) in this analysis are shown below.
[数 1] = .  [Number 1] =.
dt 、 "  dt "
…(1 )  … (1)
[数 2] [Equation 2]
― ( v) = [▽ . w】-【V . r】 - + ― (V) = [▽. W]-[V. R]-+
όί  όί
. . · ( 2 )  (2)
[数 3] [Equation 3]
Figure imgf000007_0001
Figure imgf000007_0001
• · · ( 3 )  • · · (3)
[0026] 前記式(1)は連続の式、式(2)は粘性流体の運動方程式であるナビエーストークス [0026] The equation (1) is a continuous equation, and the equation (2) is a viscous fluid equation of motion.
(Navier— Stokes)の式、式(3)はエネルギー方程式を示す。ここで、 pは密度、 v は速度ベクトル、 ては応力テンソルで粘度 と速度勾配で表現され、 pは圧力、 gは 重力ベクトル、 Cpは比熱、 Tは温度、 λは熱伝導度、 yは剪断速度である。なお、前 記スラリー状材料は粘性が高いため、式 (2)の時間項 (左辺)、慣性項 (右辺第 1項) 及び重力項 (右辺第 4項)を零としてもよい。本解析では有限要素法により数値解析 を行う。  (Navier-Stokes) equation, equation (3) represents the energy equation. Where p is the density, v is the velocity vector, and is the stress tensor expressed as viscosity and velocity gradient, p is the pressure, g is the gravity vector, Cp is the specific heat, T is the temperature, λ is the thermal conductivity, y is Shear rate. Since the slurry-like material is highly viscous, the time term (left side), inertia term (first term on the right side) and gravity term (fourth term on the right side) in Equation (2) may be zero. In this analysis, numerical analysis is performed by the finite element method.
[0027] ( 1)まず、粘度の測定について説明する。攪拌してスラリー状にした材料である中子 材料の物理的性質である物性値を表 1に、金型温度などの解析条件を表 2に示す。 中子材料の水分は、中子材料を所定重量計量して、 120°Cの乾燥炉内で 1時間以 上、充分に乾燥させて減少した重量により測定される。 (1) First, the measurement of viscosity will be described. Table 1 shows the physical properties, which are the physical properties of the core material, which has been agitated into a slurry, and Table 2 shows the analysis conditions such as the mold temperature. The moisture content of the core material is determined by weighing a predetermined amount of the core material in a 120 ° C drying oven for 1 hour or more. Above, it is measured by reduced weight after being sufficiently dried.
[表 1]  [table 1]
Figure imgf000008_0001
Figure imgf000008_0001
[表 2] [Table 2]
Figure imgf000008_0002
Figure imgf000008_0002
[0028] 本解析で対象としている中子材料はスラリー状材料であるため、粘度が剪断速度に 依存しているチクソトロピー性があると考えられる。そこで、本解析における前記スラリ 一状材料である中子材料の粘度計測手段として図 1に示す装置で流動性を調査す る。シリンダー 1内に中子材料 2を満たし、ピストン 3で加圧して下孔 4から流出させる 。ピストン 3の加圧力を変化させることにより、下孔 4からの流出速度を変え、式 (4)で 粘度を式 (5)で剪断速度を算出する。 [0028] Since the core material used in this analysis is a slurry-like material, it is considered that the core material has thixotropy whose viscosity depends on the shear rate. Therefore, the fluidity is investigated using the apparatus shown in Fig. 1 as a means for measuring the viscosity of the core material that is the slurry-like material in this analysis. Fill the cylinder 1 with the core material 2, pressurize it with the piston 3, and let it flow out of the pilot hole 4. By changing the pressure applied to the piston 3, the flow rate from the pilot hole 4 is changed, and the viscosity is calculated using equation (4) and the shear rate is calculated using equation (5).
画 μ ―  Image μ ―
\2 Q  \ 2 Q
• . · ( 4 )  • . · ( Four )
[数 5]  [Equation 5]
320 • ■ · ( 5 ) 320 • ■ · (5)
[0029] ここで、剪断速度 γ (1/s)は下孔 4から流出するフローレート Q (m3/s)と下孔 4の 直径 D ( = 0. 006m)で算出される。一方、粘度 (Pa' s)はピストン 3の圧力 Pp (Pa) と下孔 4の長さ L ( = 0. 004mm)等により表現される。得られた結果を図 2に示す。両 対数グラフでプロットしたところ、直線関係となったため、ァレニウス (Arrhenius)の 式で近似する。図 2より、剪断速度の増加にともない粘度が低下し、チクソトロピーで あることが確認された。すなわち、実際の造型過程において、射出速度が速いほど、 流動性がよいと考えられる。また、ここでは、水分値を 4. 2%と 4. 7%の 2条件とした 1S 本条件内では水分値の影響はほとんどないと考えられ式 (6)が得られた。 Here, the shear rate γ (1 / s) is calculated by the flow rate Q (m3 / s) flowing out from the lower hole 4 and the diameter D (= 0.006 m) of the lower hole 4. On the other hand, the viscosity (Pa's) is expressed by the pressure Pp (Pa) of the piston 3 and the length L (= 0.004 mm) of the lower hole 4. Figure 2 shows the results obtained. Both Plotting with a logarithmic graph shows a linear relationship, so it is approximated by the Arrhenius equation. From Fig. 2, it was confirmed that the viscosity decreased with increasing shear rate, indicating thixotropy. That is, in the actual molding process, the higher the injection speed, the better the fluidity. In this case, the moisture value was 4.2% and 4.7% for 1S. It was considered that there was almost no influence of the moisture value within this condition, and Equation (6) was obtained.
[数 6] = 746.5 X 845 [Equation 6] = 746.5 X 845
…(6 )  (6)
[0030] (2)つぎに、金型一中子材料間熱伝達係数の測定について説明する。金型一中子 材料間の熱移動は、本発明において非常に重要な因子である。本実施例では、第 1 ステップとして、図 3に示す簡易的な装置により、金型から中子材料に移動する熱量 を測定する。 (2) Next, measurement of the heat transfer coefficient between the mold and core material will be described. Mold core The heat transfer between the materials is a very important factor in the present invention. In this embodiment, as a first step, the amount of heat transferred from the mold to the core material is measured by a simple apparatus shown in FIG.
[0031] すなわち、金型 5を 523K (約 250°C)に加熱し、その上に、スラリー状に攪拌した造 型用の中子材料 6を金型 5に密着するように所定圧力で加圧して設置し、中子材料 6 内の温度分布を測定する。前記スラリー状材料である中子材料 6の温度測定手段は 中子材料 6上部より CA熱電対 7 ( φ 0. lmm)を挿入し、金型 5と接触して 、る温度 T X=0と金型表面から 10mm離れた位置における温度 TX= 10を測定する。この測 定温度カゝら温度勾配を算出して、式 (7)で熱伝達係数 h (W/m2K)を得る。  That is, the mold 5 is heated to 523 K (about 250 ° C.), and then the molding core material 6 stirred in a slurry state is applied at a predetermined pressure so as to be in close contact with the mold 5. Measure the temperature distribution in the core material 6. The temperature measuring means of the core material 6 which is the slurry material is inserted with a CA thermocouple 7 (φ 0. lmm) from above the core material 6 and brought into contact with the mold 5 at the temperature TX = 0 and the metal Measure the temperature TX = 10 at a position 10mm away from the mold surface. The temperature gradient is calculated from the measured temperature and the heat transfer coefficient h (W / m2K) is obtained by equation (7).
[数 7]
Figure imgf000009_0001
[Equation 7]
Figure imgf000009_0001
…(7 )  ... (7)
[0032] 得られた温度測定結果と算出された熱伝達係数を図 4に示す。中子材料を金型表 面に設置して 2. 5sec後には中子材料の金型に接している面の温度 TX=0は 373 Κ (約 100°C)に達し、水分の蒸発が行われている。また、その後、 lOsec間は大きな 変化はない。また、熱伝達係数 hはある程度の変化があるが、代表値として、 70 (W /m2K)でコンピュータシミュレーションを行う。 実施例 1 [0032] Fig. 4 shows the obtained temperature measurement results and the calculated heat transfer coefficient. After the core material is placed on the mold surface 2.5 seconds later, the temperature of the surface in contact with the core material mold TX = 0 reaches 373 Κ (about 100 ° C), and the water evaporates. It has been broken. After that, there is no significant change during lOsec. Moreover, although the heat transfer coefficient h varies to some extent, a computer simulation is performed with 70 (W / m2K) as a representative value. Example 1
[0033] つぎに、図 5に示す基礎実験型で解析モデルと各種パラメータの妥当性を評価す る。中子形状は矩形リング形状であり、外寸は 100mm X 100mmで、断面は 10mm X 10mmの正方形である。また、中子キヤビティの体積は 40 X 10— 6m3である。本 基礎実験型で中子材料が合流するウエルド部の状態も確認する。  [0033] Next, the validity of the analysis model and various parameters is evaluated using the basic experimental model shown in Fig. 5. The core shape is a rectangular ring shape, the outer dimensions are 100mm x 100mm, and the cross section is a square of 10mm x 10mm. The core cavity volume is 40 x 10-6m3. In this basic experiment type, we will also check the condition of the weld where the core material joins.
[0034] 造型時の射出流量 Qiが 79 X 10— 6m3Zsでの、解析結果を図 6に示す。左右対 称に中子材料が流れ、 0. 5sec後に造型が完了している。また、充填過程における 中子材料のフロントラインは滑らかな凸形状であった。  [0034] Fig. 6 shows the analysis results when the injection flow rate Qi during molding was 79 X 10-6 m3Zs. The core material flows left and right symmetrically, and molding is completed after 0.5 seconds. The front line of the core material in the filling process had a smooth convex shape.
[0035] 本実施例により観察された造型挙動を図 7に示す。本実施例においては、 φ ΙΟΟπι mのスリーブに中子材料を満たして、電動サーボシリンダーにより射出造型を行う。シ リンダ一の速度は 0. OlmZs—定に設定し、造型過程においても、設定速度である ことをレコーダ一により確認して行った。ほぼ、左右対称に充填している力 造型完了 時間は 0. 7secとなり、解析結果より若干長くなつた。これは、造型初期段階で、スリ ーブ内でシリンダーが中子材料に接触する直前にシリンダーと中子材料の間に存在 する空気が圧縮され徐々に流出し始めるためであると考えられる。また、充填過程に おける中子材料のフロントラインは滑らかな凸形状であり、解析で得られた形状に非 常に近かった。  [0035] The molding behavior observed in this example is shown in FIG. In this embodiment, a core material is filled in a sleeve of φ ΙΟΟπι m, and injection molding is performed by an electric servo cylinder. The cylinder speed was set to 0. OlmZs—constant, and the recorder speed was confirmed by the recorder during the molding process. The forging time for filling almost symmetrically is 0.7 sec, which is slightly longer than the analysis result. This is considered to be because, in the initial stage of molding, the air existing between the cylinder and the core material is compressed and gradually flows out immediately before the cylinder contacts the core material in the sleeve. The front line of the core material in the filling process had a smooth convex shape, which was very close to the shape obtained by the analysis.
[0036] つぎに、造型時の射出流量 Qiが 79 X 10— 6m3Zsと 393 X 10— 6m3Zsでのそ れぞれの造型完了直後の温度分布を図 8に示す。最終充填部分の温度が最も高ぐ 造型過程において、先端部分は徐々に加熱されていることが明らかである。また、射 出流速が遅い方は造型が完了するまでの時間が長いため、温度が高くなつている。  [0036] Next, Fig. 8 shows the temperature distribution immediately after the completion of molding when the injection flow rate Qi during molding is 79 X 10-6m3Zs and 393 X 10-6m3Zs. It is clear that the tip part is gradually heated during the molding process where the temperature of the final filling part is the highest. In addition, the one with a low ejection flow rate has a high temperature because it takes a long time to complete molding.
[0037] また、最終充填部分のキヤビティ内に CA熱電対( φ 0. lmm)をあら力じめ挿入し ておき、造型時の温度を測定した。得られた結果を図 9に示す。造型開始前におい ては、キヤビティ内においても金型からの輻射熱で約 493K (約 220°C)まで空気の 温度が上昇していた。そのため、造型時には熱電対は中子材料の温度を測定するた め、温度はー且低下し、その後、金型に加熱されて中子材料の温度が上昇している 。造型完了直後の最終充填部分の温度を表 3に示す。  [0037] In addition, a CA thermocouple (φ 0. lmm) was inserted into the cavity of the final filling portion, and the temperature during molding was measured. The obtained results are shown in FIG. Prior to the start of molding, the air temperature rose to about 493K (about 220 ° C) due to radiant heat from the mold even within the cavity. For this reason, since the thermocouple measures the temperature of the core material at the time of molding, the temperature is lowered gradually, and then the temperature of the core material is increased by being heated by the mold. Table 3 shows the temperature of the final filling part immediately after molding.
[表 3]
Figure imgf000011_0001
[Table 3]
Figure imgf000011_0001
[0038] 全体的に、解析結果の方は温度が低くなつているが、造型射出流量の影響は表現 できていると考えられる。 [0038] Overall, although the temperature of the analysis result is lower, it is considered that the influence of the molding injection flow rate can be expressed.
[0039] ここまでの解析と実施例結果より、造型挙動と温度分布の観点力ゝら本解析モデルと ノ メータが妥当であると判断できる。今後、パラメータを厳密に測定することで、より[0039] From the analysis up to this point and the results of the examples, it can be determined that the present analysis model and the meter are appropriate from the viewpoint of molding behavior and temperature distribution. In the future, by measuring parameters strictly,
、実測結果に近くできると考えられる。 This is considered to be close to the actual measurement result.
実施例 2  Example 2
[0040] つぎに、実機スケールの中子造型のコンピュータシミュレーションを行う。実機スケ ールの中子として、自動車エンジンのシリンダーブロックのウォータージャケットの型 で、中子造型解析、ならびに、実際の造型テストを行った。今回、対象としたウォータ 一ジャケットの中子の形状を図 10に示す。図 10には 6箇所の射出口も合わせて示し てある。  [0040] Next, a core-scale computer simulation of an actual machine scale is performed. As the core of the actual machine scale, we performed core molding analysis and actual molding tests on the water jacket type of the cylinder block of an automobile engine. Figure 10 shows the shape of the core of the target water jacket. Figure 10 also shows six injection ports.
[0041] 射出流量はそれぞれの射出口から 330 X 10— 6m3Zs流入することとした。解析 で得られた充填挙動を図 11に示す。 6箇所の射出口付近からそれぞれ順に中子材 料が満たされている。左奥の幅木部分は比較的小さいため、約 0. 2秒で充填してい る力 右手前の幅木部分は大きいため、最終充填部分となっている。また、本中子で は、 6箇所の射出口があるが、ウエルドラインが現れることなく滑らかに充填が完了し ている。充填時間は 0. 6秒であった。  [0041] The injection flow rate was set to flow 330 X 10-6 m3Zs from each injection port. Figure 11 shows the filling behavior obtained from the analysis. The core material is filled in order from the vicinity of the six injection ports. Since the skirting board part at the back left is relatively small, the filling force in about 0.2 seconds The skirting board part on the right front side is large, so it is the final filling part. In this core, there are 6 injection ports, but filling is completed smoothly without any weld lines. The filling time was 0.6 seconds.
[0042] つぎに、解析で得られた充填完了直後の温度分布を図 12に示す。比較的早い段 階で充填され、かつ、薄肉形状の部分が、最も温度が高くなつているが、約 310K( 約 37°C)であるため、水分の気化は生じておらず、固化していないと考えられる。本 条件下で、実際に造型した中子を図 13に示す。未充填部分はなぐウエルドラインも 観察されず、非常に良質な中子が得られた。すなわち、充填過程において中子材料 は固化せず、充填完了後に中子材料温度は 373K (約 100°C)を超えて固化したも のと考えられる。また、実際にアルミニウムを铸造して、良好なアルミニウム铸物が得 られた。 [0043] このため、前記射出造型解析法に、スラリー状材料の充填完了前に該スラリー状材 料の温度が 100°Cをこえないように制限をカ卩えて、造型条件を求めるのが好ましいこ とがわかる。また、前記射出造型解析法に、スラリー状材料の充填完了前に該スラリ 一状材料の温度が 100°Cをこえな 、で、かつ最短時間で充填できるように制限をカロ えて、造型条件を求めるのが好ましいこともわかる。 Next, FIG. 12 shows the temperature distribution immediately after completion of filling obtained by analysis. Filled at a relatively early stage, and the thin-walled part has the highest temperature, but since it is about 310K (about 37 ° C), no water vaporization has occurred and it has solidified. It is not considered. Figure 13 shows the core that was actually molded under these conditions. No weld line was observed in the unfilled part, and a very good core was obtained. In other words, it is considered that the core material did not solidify during the filling process, and the core material temperature solidified beyond 373K (about 100 ° C) after filling. In addition, aluminum was actually fabricated, and a good aluminum product was obtained. [0043] For this reason, it is preferable to determine the molding conditions in the injection molding analysis method by limiting the temperature so that the temperature of the slurry-like material does not exceed 100 ° C before the filling of the slurry-like material is completed. You can see this. Also, in the injection molding analysis method, before the completion of the filling of the slurry-like material, the temperature of the slurry-like material does not exceed 100 ° C and the limit is set so that the slurry can be filled in the shortest time. It can also be seen that it is preferable to obtain.
[0044] さらに、本発明においては、スラリー状材料のバインダーの配合や、種類、造型品 の形状 (たとえば複雑な形状や薄肉など)などにより、充填が完了する前に硬化して しまうおそれがあるため、充填されたスラリー状材料の温度が少なくともバインダーの 硬化が完了する前までに充填が完了するような所定の温度、たとえば 200〜250°C までの願わくば 100°C以下であることが望ましい。そこで、前記射出造型解析法に、 充填されたスラリー状材料の温度が少なくとも硬化が完了する前までに充填が完了 する所定の温度になるように制限をカ卩えて、造型条件を求めるのが好ましい。  [0044] Furthermore, in the present invention, there is a risk that the composition may be cured before filling is completed depending on the blending and type of the binder of the slurry material, the shape of the molded product (for example, a complicated shape or thin wall), and the like. Therefore, it is desirable that the temperature of the filled slurry-like material is a predetermined temperature at which filling is completed at least before the binder is completely cured, for example, 200 to 250 ° C, preferably 100 ° C or less. . Therefore, it is preferable that the injection molding analysis method obtains the molding conditions by limiting the temperature so that the temperature of the filled slurry-like material is at least a predetermined temperature at which the filling is completed before the curing is completed. .
[0045] 以上の解析と実施例結果により、本解析モデル、ならびに、ノ ラメータは、本中子シ ステムの造型現象を表現できているものと考えられる。したがって、本発明では、パラ メータが造型性 (充填性)に及ぼす影響を予め確認し、造型するため、充填不良を防 止することができる。  [0045] From the above analysis and the results of the examples, it is considered that the present analysis model and the parameter can express the molding phenomenon of the core system. Therefore, in the present invention, since the influence of the parameters on the moldability (fillability) is confirmed in advance and molded, it is possible to prevent filling failure.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]図 1は中子材料の流動性を調査する装置の概略図である。 [0046] FIG. 1 is a schematic view of an apparatus for investigating the fluidity of a core material.
[図 2]図 2は中子材料の剪断速度と粘度の関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the shear rate and viscosity of the core material.
[図 3]図 3金型一中子材料間熱伝達係数の測定装置の概略図である。  FIG. 3 is a schematic view of an apparatus for measuring the heat transfer coefficient between mold and core material.
[図 4]図 4は金型一中子材料間熱伝達係数の測定における測定温度と熱伝達係数 の結果を示すグラフである。  [FIG. 4] FIG. 4 is a graph showing the results of measurement temperature and heat transfer coefficient in the measurement of the heat transfer coefficient between mold and core material.
[図 5]図 5は本発明の解析モデルと各種パラメータの妥当性を評価する基礎実験型 を示す。  [FIG. 5] FIG. 5 shows an analysis model of the present invention and a basic experiment type for evaluating the validity of various parameters.
[図 6]図 6は図 5に示す基礎実験型を用いて得られた造型挙動の解析結果である。  [FIG. 6] FIG. 6 shows the analysis results of the molding behavior obtained using the basic experimental mold shown in FIG.
[図 7]図 7は図 5に示す基礎実験型を用いて得られた造型挙動の実験結果である。  [FIG. 7] FIG. 7 shows experimental results of molding behavior obtained using the basic experimental mold shown in FIG.
[図 8]図 8は図 5に示す基礎実験型を用いて得られた造型完了直後の温度分布結果 である。 圆 9]図 9は図 5に示す基礎実験型を用いて得られた造型時のキヤビティ内の温度測 定結果である。 [FIG. 8] FIG. 8 shows the temperature distribution result immediately after completion of molding, obtained using the basic experimental model shown in FIG. [9] Figure 9 shows the temperature measurement results in the cavity during molding, obtained using the basic experimental model shown in Figure 5.
[図 10]図 10は本発明の実施例に用いたウォータージャケット中子の形状である。  FIG. 10 shows the shape of the water jacket core used in the example of the present invention.
[図 11]図 11は図 10に示すウォータージャケット中子を用いて得られた充填挙動の解 析結果である。 [FIG. 11] FIG. 11 shows an analysis result of the filling behavior obtained by using the water jacket core shown in FIG.
[図 12]図 12は図 10に示すウォータージャケット中子を用いて得られた充填完了直後 の温度分布の解析結果である。  [FIG. 12] FIG. 12 shows the analysis result of the temperature distribution immediately after completion of filling, obtained using the water jacket core shown in FIG.
圆 13]図 13は本発明の解析結果を用いて実際に造型したウォータージャケット中子 である。 [13] FIG. 13 shows a water jacket core actually formed using the analysis result of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 模型内部の充填空間に铸物砂を射出によって充填造型を行う砂型造型の充填不 良を予測し充填性を高める造型方法であって:  [1] A molding method that predicts the filling defects of sand mold molding, in which the filling sand is injected into the filling space of the model by injection of dredged sand, and enhances the filling property:
射出造型機が採用する造型条件、前記充填空間の形状および前記铸物砂の物理 的性質を含む造型に関するデータを演算手段に入力する工程と;  Inputting data relating to molding including molding conditions adopted by the injection molding machine, the shape of the filling space, and the physical properties of the sand;
実際に造型が行われる前に、入力された前記造型に関するデータに基づいて前記 铸物砂の充填性を砂型造型解析法により演算する工程と;  A step of calculating the filling property of the slag sand by a sand molding analysis method based on the input data relating to the molding before the actual molding is performed;
前記砂型造型解析法による演算を必要に応じて前記射出造型の造型条件を変更 して繰り返す工程と;  Repeating the calculation by the sand mold molding analysis method by changing the molding conditions of the injection molding as necessary;
前記射出造型機により実行される実際の造型が、前記砂型造型解析法による铸物 砂の充填性の演算結果に基づいて行われるように変更された前記射出造型の造型 条件で前記射出造型機を作動させる工程と;  The injection molding machine is changed under the injection molding molding conditions changed so that the actual molding performed by the injection molding machine is performed based on the calculation result of the filling property of the sand sand by the sand mold molding analysis method. A step of operating;
を含み、  Including
前記砂型造型解析法は、前記铸物砂の運動方程式を連続の式を満たすように数 値的に計算し、微少時間後の前記铸物砂の速度分布を求める運動方程式解析工程 と、該時間における前記铸物砂の温度分布を計算する温度分布解析工程と、上記 運動方程式解析工程、上記温度分布解析工程を繰り返す工程と、カゝら成ることを特 徴とする射出による砂型造型の充填不良を予測し充填性を高める造型方法。  The sand mold making analysis method numerically calculates the equation of motion of the sediment sand so as to satisfy a continuous equation, and obtains the velocity equation distribution of the sediment sand after a minute time, Insufficient filling of sand mold by injection, characterized by comprising: a temperature distribution analysis step for calculating the temperature distribution of the sandy sand, a step of repeating the equation of motion analysis step, a step of analyzing the temperature distribution step, and the like. Molding method that predicts and enhances fillability.
[2] 請求項 1に記載の造型方法であって、前記射出造型機は、粒子状骨材、水溶性バ インダーおよび水を攪拌して得た発泡混合物を、加熱された金型のキヤビティに圧入 方式によって充填して铸型を造型することを特徴とする造型方法。  [2] The molding method according to claim 1, wherein the injection molding machine converts the foamed mixture obtained by stirring the particulate aggregate, the water-soluble binder, and water into a heated mold cavity. A molding method characterized in that a saddle mold is formed by filling with a press-fitting method.
[3] 請求項 2に記載の造型方法であって、前記射出造型機は、前記粒子状骨材若しく は前記発泡混合物の温度測定手段、前記発泡混合物の粘度計測手段、前記発泡 混合物の水分計測手段の少なくとも一つを備えることを特徴とする造型方法。  [3] The molding method according to claim 2, wherein the injection molding machine is configured to measure the temperature of the particulate aggregate or the foamed mixture, the viscosity measuring means of the foamed mixture, and the moisture of the foamed mixture. A molding method comprising at least one of measuring means.
[4] 金型内部の充填空間にバインダーを含むスラリー状材料を射出によって充填し、铸 型造型を行う铸型射出造型法であって、射出造型解析法の解析結果の判断に基づ いた造型条件で铸型造型を行う工程を含む铸型射出造型法。  [4] A vertical injection molding method in which a slurry-like material containing a binder is injected into a filling space inside a mold by injection to perform vertical molding, and molding is based on the judgment of the analysis result of the injection molding analysis method. A vertical injection molding method including a process of vertical molding under conditions.
[5] 金型内部の充填空間にバインダーを含むスラリー状材料を射出によって充填し、铸 型造型を行う铸型射出造型法であって: [5] Fill the filling space inside the mold with a slurry-like material containing a binder by injection. A vertical injection molding method that performs mold making:
造型に際して設定される造型条件とスラリー状材料の物理的性質である物性値を 含む造型に関するデータに基づく射出造型解析法の解析を行い、該解析の結果に 基づ ヽて、前記造型条件を変更するか否かを判断する工程と;  Analyze the injection molding analysis method based on the molding conditions set at the time of molding and the molding data including physical properties that are the physical properties of the slurry material, and change the molding conditions based on the results of the analysis Determining whether or not to do;
铸型射出造型装置により実行される実際の铸型造型を前記判断に基づいた造型 条件で行う工程と;  Performing an actual vertical molding performed by the vertical injection molding apparatus under molding conditions based on the determination;
を含む铸型射出造型法。  A vertical injection molding method.
[6] 金型内部の充填空間にバインダーを含むスラリー状材料を射出によって充填し、铸 型造型を行う铸型射出造型法であって:  [6] A vertical injection molding method in which a slurry-like material containing a binder is injected into a filling space inside a mold by injection to perform vertical molding:
造型に際して設定される造型条件とスラリー状材料の物理的性質である物性値を 含む造型に関するデータを記憶する工程と;  Storing data relating to molding, including molding conditions set during molding and physical properties that are physical properties of the slurry-like material;
実際に造型が行われる前に、入力された前記造型に関するデータのうち、予め記 憶されている射出造型解析法に必要なパラメータを仮に設定する工程と;  A step of temporarily setting parameters necessary for the injection molding analysis method stored in advance in the input data relating to the molding before molding is actually performed;
該仮に設定したパラメータを用いた射出造型解析法の解析を行 ヽ、良好な解析結 果を得るために、該射出造型解析法による演算を前記造型条件を変更して繰り返し Analysis of the injection molding analysis method using the temporarily set parameters was performed, and in order to obtain a good analysis result, the calculation by the injection molding analysis method was repeated while changing the molding conditions.
、ノ ラメータを決定する工程と; Determining a parameter; and
射出造型装置により実行される実際の造型を、該決定されたパラメータを用いた射 出造型解析法の解析結果に合致するように、変更された造型条件で行う工程と; を含む铸型射出造型法。  A step of performing an actual molding performed by the injection molding apparatus under modified molding conditions so as to match an analysis result of the injection molding analysis method using the determined parameters; Law.
[7] 請求項 4、 5または 6に記載の铸型射出造型法であって、前記射出造型解析法の 解析は、スラリー状材料の充填完了前に該スラリー状材料の温度力 SlOO°Cをこえな[7] The vertical injection molding method according to claim 4, 5 or 6, wherein the analysis of the injection molding analysis method is performed by applying the temperature force SlOO ° C of the slurry material before the slurry material is completely charged. Inferior
V、ように制限が加えられて 、る铸型射出造型法。 V, is a vertical injection molding method with restrictions.
[8] 請求項 4、 5または 6に記載の铸型射出造型法であって、前記射出造型解析法の 解析は、スラリー状材料の充填完了前に該スラリー状材料の温度力 SlOO°Cをこえな いで、かつ最短時間で充填できるように制限が加えられている铸型射出造型法。 [8] The vertical injection molding method according to claim 4, 5 or 6, wherein the analysis of the injection molding analysis method is performed by setting the temperature force SlOO ° C of the slurry material before the slurry material is completely charged. A vertical injection molding method in which restrictions are added so that it can be filled in the shortest possible time.
[9] 請求項 4、 5または 6に記載の铸型射出造型法であって、前記射出造型解析法の 解析は、充填されたスラリー状材料の温度が少なくともバインダーの硬化が完了する 前までに充填が完了する所定の温度になるように制限が加えられている铸型射出造 型法。 [9] The vertical injection molding method according to claim 4, 5 or 6, wherein the analysis of the injection molding analysis method is performed until the temperature of the filled slurry material is at least before the curing of the binder is completed. Vertical injection molding that is restricted to a predetermined temperature at which filling is completed Type method.
[10] 請求項 4乃至 9のいずれか 1つに記載の铸型射出造型法であって、前記射出造型 解析法は、前記スラリー状材料の運動方程式を連続の式を満たすように数値的に計 算し、微少時間後の前記スラリー状材料の速度分布を求める運動方程式の解析と該 時間における前記スラリー状材料の温度分布を計算する温度分布の解析とを繰り返 す解析法である铸型射出造型法。  [10] The vertical injection molding method according to any one of claims 4 to 9, wherein the injection molding analysis method numerically satisfies the equation of motion of the slurry material so as to satisfy a continuous equation. A vertical type that is an analysis method that repeats the analysis of the equation of motion to calculate the velocity distribution of the slurry-like material after a minute time and the analysis of the temperature distribution to calculate the temperature distribution of the slurry-like material at that time Injection molding method.
[11] 造型に際して設定される造型条件とスラリー状材料の物理的性質である物性値を 含む造型に関するデータに基づいて、射出造型解析法の解析をするためにコンビュ ータを、前記スラリー状材料の運動方程式を連続の式を満たすように数値的に計算 し、微少時間後の前記スラリー状材料の速度分布を求める運動方程式の解析と該時 間における前記スラリー状材料の温度分布を計算する温度分布の解析とを繰り返す 演算手段として機能させるための射出造型解析法の解析プログラム。 [11] Based on the molding conditions set at the time of molding and the data relating to molding including the physical property values that are the physical properties of the slurry-like material, the converter is used to analyze the injection molding analysis method. The equation of motion is numerically calculated so as to satisfy the continuity equation, the equation of motion for obtaining the velocity distribution of the slurry-like material after a minute time is analyzed, and the temperature distribution for calculating the temperature distribution of the slurry-like material at that time is calculated. An analysis program for injection molding analysis to function as a calculation means that repeats distribution analysis.
PCT/JP2006/306305 2005-03-28 2006-03-28 Process for production of sand molds by injection molding and analysis program therefor WO2006104149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510528A JP4569629B2 (en) 2005-03-28 2006-03-28 Mold injection molding method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005090753 2005-03-28
JP2005-090753 2005-03-28
JP2005-181654 2005-06-22
JP2005181654 2005-06-22

Publications (1)

Publication Number Publication Date
WO2006104149A1 true WO2006104149A1 (en) 2006-10-05

Family

ID=37053405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306305 WO2006104149A1 (en) 2005-03-28 2006-03-28 Process for production of sand molds by injection molding and analysis program therefor

Country Status (2)

Country Link
JP (1) JP4569629B2 (en)
WO (1) WO2006104149A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968452A (en) * 2013-02-26 2015-10-07 迪帕克·乔杜里 Computer implemented systems and methods for optimization of sand for reducing casting rejections
JP2019072768A (en) * 2017-10-17 2019-05-16 マグマ ギエッセレイテクノロジ ゲーエムベーハーMAGMA Giessereitechnologie GmbH Core shooting apparatus and method for controlling core shooting apparatus
JP2019188426A (en) * 2018-04-23 2019-10-31 三菱重工業株式会社 Core built-in mold production method, method for producing casting, and core built-in mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202344A (en) * 1997-01-17 1998-08-04 Sintokogio Ltd Method for predicting insufficient filling in green sand molding
JP2000015396A (en) * 1998-07-01 2000-01-18 Sintokogio Ltd Method for molding green sand mold and system thereof
WO2005023457A1 (en) * 2003-09-02 2005-03-17 Sintokogio, Ltd. Method of forming mold and core for metal casting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230007A (en) * 1995-02-27 1996-09-10 Canon Inc Method and device for simulation of injection molding process
JPH11291313A (en) * 1998-04-07 1999-10-26 Mitsubishi Plastics Ind Ltd Flow mark estimating method for thermoplastic resin injection molded product
JP3396837B2 (en) * 1999-03-29 2003-04-14 日立協和エンジニアリング株式会社 Flow solidification analysis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202344A (en) * 1997-01-17 1998-08-04 Sintokogio Ltd Method for predicting insufficient filling in green sand molding
JP2000015396A (en) * 1998-07-01 2000-01-18 Sintokogio Ltd Method for molding green sand mold and system thereof
WO2005023457A1 (en) * 2003-09-02 2005-03-17 Sintokogio, Ltd. Method of forming mold and core for metal casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968452A (en) * 2013-02-26 2015-10-07 迪帕克·乔杜里 Computer implemented systems and methods for optimization of sand for reducing casting rejections
JP2016508882A (en) * 2013-02-26 2016-03-24 チョウダハリ, ディーパックCHOWDHARY, Deepak Computer-aided system and method for sand optimization aimed at reducing casting rejects
JP2019072768A (en) * 2017-10-17 2019-05-16 マグマ ギエッセレイテクノロジ ゲーエムベーハーMAGMA Giessereitechnologie GmbH Core shooting apparatus and method for controlling core shooting apparatus
JP7408276B2 (en) 2017-10-17 2024-01-05 マグマ ギエッセレイテクノロジ ゲーエムベーハー Core molding device and method of controlling the core molding device
JP2019188426A (en) * 2018-04-23 2019-10-31 三菱重工業株式会社 Core built-in mold production method, method for producing casting, and core built-in mold

Also Published As

Publication number Publication date
JPWO2006104149A1 (en) 2008-09-11
JP4569629B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
Mitra et al. The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds
Snelling et al. Mechanical and material properties of castings produced via 3D printed molds
Coniglio et al. Investigation of process parameter effect on anisotropic properties of 3D printed sand molds
Martinez et al. Towards functionally graded sand molds for metal casting: engineering thermo-mechanical properties using 3D sand printing
WO2006104149A1 (en) Process for production of sand molds by injection molding and analysis program therefor
Oguntuyi et al. Challenges and recent progress on the application of rapid sand casting for part production: A review
US20110264425A1 (en) Molten alloy solidification analyzing method and solidification analyzing program for performing the same
Thorborg et al. The virtual core-modelling and optimization of core manufacturing and application
Sowa et al. The influence of riser shape on feeding effectiveness of solidifying casting
Popielarski et al. Computer simulation of cast iron flow in castability trials
Mádi et al. The effect of different grain sizes and heat input on the gas pressure inside artificial resin-bonded sand cores
Galles et al. Effect of sand dilation on core expansion during steel casting
Peters et al. Effect of mould expansion on pattern allowances in sand casting of steel
CN107107166B (en) Casting method with the vanishing pattern
Dańko et al. Diagnostic methods of technological properties and casting cores quality
Zych et al. Gas generation properties of materials used in the sand mould technology–modified research method
Kulkarni et al. Evaluation of metal-mould interfacial heat transfer during the solidification of aluminium-4.5% copper alloy castings cast in CO~ 2-sand moulds
Lefebvre et al. Development and use of simulation in the design of blown cores and moulds
Niane et al. Validation of Foundry Process for Aluminum Parts with Flow3D Software
Wolff et al. Thermophysical properties of mold materials
Gelin et al. Improved mould design in metal injection moulding by combination of numerical simulations and experiments
Wu et al. Computer simulation of core-shooting process with two-phase flow
Savithri et al. Multi-physics simulation and casting defect prediction using FLOW
Ramana et al. Experimental investigation on the time-temperature history of Al-Si alloy while cooling in fresh and reclaimed silicate sand mould
Bakhtiyarov et al. Thermophysical property measurements on mold materials: Thermal expansion and density

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510528

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730253

Country of ref document: EP

Kind code of ref document: A1