WO2006104134A1 - Tuning fork type oscillator mounting structure of oscillating gyroscope - Google Patents

Tuning fork type oscillator mounting structure of oscillating gyroscope Download PDF

Info

Publication number
WO2006104134A1
WO2006104134A1 PCT/JP2006/306255 JP2006306255W WO2006104134A1 WO 2006104134 A1 WO2006104134 A1 WO 2006104134A1 JP 2006306255 W JP2006306255 W JP 2006306255W WO 2006104134 A1 WO2006104134 A1 WO 2006104134A1
Authority
WO
WIPO (PCT)
Prior art keywords
support member
vibration
vibrator
tuning fork
center
Prior art date
Application number
PCT/JP2006/306255
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Kuramoto
Mitsuhiro Nakajima
Takeshi Hosokawa
Atsushi Ochi
Takeshi Inoue
Mitsuru Yamamoto
Original Assignee
Japan Aviation Electronics Industry, Limited
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry, Limited, Nec Corporation filed Critical Japan Aviation Electronics Industry, Limited
Publication of WO2006104134A1 publication Critical patent/WO2006104134A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks

Definitions

  • the present invention relates to a tuning fork type vibration gyro comprising a package and a tuning fork type vibrator in which a driving leg and a detection leg are coupled by a body part, and in particular by supporting the body part using a package as a fulcrum.
  • the present invention relates to a vibrator mounting structure in which a tuning fork type vibrator is mounted on a package.
  • FIG. 10 is a diagram showing a tuning fork vibrator for a vibrating gyroscope.
  • Fig. 10 (A) shows the state when there is no rotation input to the tuning fork vibrating gyroscope
  • Fig. 10 (B) shows the tuning fork vibrating gyroscope. Represents the state when there is rotation input.
  • 111a and 111b are excitation drive legs (excitation drive side arm in Patent Document 1)
  • 112a and 112b are vibration detection legs (vibration detection side arm in Patent Document 1).
  • Excitation drive legs 1 11a and 11 lb are paired with each other and vibrate in opposite phases.
  • the drive legs 11 la and 1 l ib for excitation are referred to as drive legs 111 (drive side arm in Patent Document 1).
  • the vibration detection legs 112a and 112b are paired with each other and vibrate in opposite phases.
  • the detection legs 112a and 112b for vibration are referred to as detection legs 112 (detection side arms in Patent Document 1).
  • the trunk portion 10 is a rectangular parallelepiped, and its planar shape (the shape of the upper surface 10a) is a square (not necessarily a square).
  • Each surface of the body 10 is represented by reference numeral 10a on the top surface, represented by reference numeral 1 Ob on the bottom surface (not shown in the figure), represented by 10c on the end surface on the drive leg 111 side, and on the end surface on the detection leg 112 side (illustration). (Not shown in the figure) is represented by 10d, one side is represented by 10e, and the other side (not shown in the figure) is represented by 10f.
  • the upper surface 10a and the bottom surface 10b are referred to as main surfaces.
  • the tuning-fork type vibration gyro in Patent Document 1 and Patent Document 2 is provided with one non-excitation drive leg (non-excitation drive side arm in Patent Document 1) between the excitation drive legs 111a and 1 ib.
  • One non-vibration detection leg (patented between the vibration detection legs 112a and 112b The non-vibration detection arm in Document 1 is provided, but the non-excitation drive leg and non-vibration detection leg are provided for vibration stabilization and are not necessary for explanation of the principle. This is omitted in the tuning fork type vibration gyro shown in FIG.
  • the body 10, the drive legs 11 la and 11 lb for excitation, and the detection legs 112a and 112b for vibration are made of one piezoelectric single crystal body, and have a shape cut out from a single plate-like piezoelectric single crystal. Eggplant. Examples of the piezoelectric single crystal include quartz crystal, lithium niobate, and langasite.
  • the body 10, the drive leg 111a, 111b for excitation and the thickness of the detection leg 112a, 112b for vibration are the same.
  • the axes of the excitation driving legs 111a and 111b and the axes of the vibration detection legs 112a and 112b are the end face 10c and Each is perpendicular to 1 Od.
  • the axes of the excitation drive leg 111a and the vibration detection leg 112a are on the same axis.
  • the axes of the excitation drive leg 11 lb and the vibration detection leg 112b are on the same axis.
  • driving leg 11 la and 11 lb for excitation are symmetrical with respect to a plane passing through the center of gravity of the body part 10 and parallel to the side face 10e, and the detection legs 112a and 112b for vibration are also symmetrical.
  • Driving electrodes 111a and 111b for excitation and detection legs 112a and 112b for vibration are provided with driving electrodes and detection electrodes, respectively (the electrodes are not shown).
  • the excitation drive legs 11 la and 11 lb are placed in a plane parallel to the upper surface 10a. It vibrates in opposite directions, that is, in opposite phase.
  • This vibration is the driving vibration in the tuning fork type vibration gyro.
  • the drive vibration is vibration in a plane parallel to the main surface (the upper surface 10a and the bottom surface 10b) of the body portion 10, and such vibration in a plane parallel to the main surface is referred to as in-plane vibration.
  • In-plane vibration is represented by arrows Ha and Hb in Fig. 10 (A).
  • the Coriolis vibrations Ca and Cb are vibrations in a direction perpendicular to the main surface of the body 10, and their phases are opposite to each other.
  • the vibration in the direction perpendicular to the main surface of the body portion 10 is referred to as surface vertical vibration.
  • the body portion 10 Since the body portion 10 is plate-shaped, it has extremely high rigidity against vibration in a direction parallel to the main surface, that is, in-plane vibration, and vibration in a direction perpendicular to the other main surface, It exhibits relatively low stiffness against vertical vibration. Therefore, among the vibrations generated in the excitation drive legs 111a and 111b, the drive vibrations Ha and Hb which are in-plane vibrations hardly propagate to the vibration detection legs 112a and 112b, and the other surface vertical vibrations are Coriolis. The vibrations Ca and Cb propagate to the vibration detection legs 112a and 112b with high efficiency.
  • the core vibrations propagated to the vibration detection legs 112a and 112b are detected vibrations Da and Db in the tuning fork type vibration gyro.
  • the tuning fork type vibration gyro detects the angular velocity ⁇ by taking out the voltage appearing in the vibration detection legs 112a and 112b as an electric signal by the detection electrodes by the detection vibrations Da and Db.
  • the drive vibration component appearing on the vibration detection legs 112a and 112b is noise, and the detected vibration component (Da, Db) is a signal. Therefore, the ratio of the drive vibration component to the detected vibration component (Da, Db) in the vibration detection legs 112a, 1 12b is the signal-to-noise ratio (SZN ratio). Therefore, to detect the angular velocity ⁇ with high accuracy, It is necessary to reduce drive vibration components that leak and appear in the detection legs 112a and 112b.
  • the drive vibration component leaking to the vibration detection legs 112a, 1 12b becomes a bias for the signal component [detection vibration component (Da, Db)]. If this bias is unstable, the detection accuracy of the angular velocity ⁇ is lowered.
  • the tuning fork vibrator is supported at the center of gravity by the holding body in Patent Document 1. Its center of gravity is in the middle of the torso.
  • Patent Document 1 JP 2001-255152
  • Patent Document 2 JP 2001-208545
  • Patent Document 3 Japanese Patent No. 2518600
  • Patent Document 4 JP-A-11-173857
  • FIG. 5 is a schematic diagram showing a variation in distortion appearing in the vibrator when the body of the tuning fork vibrator is supported by a support member.
  • FIGS. 5A and 5B show distortions appearing on the body 10 when drive vibration is applied to the body in a state where it is not supported by the support member.
  • 5 (C) and 5 (D) show the case where the center of gravity of the body part 10 is supported by the support member 2 and driving vibration is applied to the body part 10 with the body part 10 mounted on the package substrate 30. The distortion that appears in the torso appears.
  • 5 (C) and 5 (D) the support member 2 is fixed to the center of gravity of the body 10 and the package substrate 30.
  • 6 to 9 are simulation diagrams of trunk distortion when the center of gravity of the trunk 10 of the tuning fork vibrator is not supported and when it is supported by the support member 2.
  • reference numeral 10 denotes a body
  • 11a and l ib denote excitation driving legs
  • 11c denotes non-excitation driving legs
  • 12a and 12b denote vibration detection legs
  • 12c denotes a non-vibration detection leg.
  • These simulation diagrams are distribution diagrams of displacements in the trunk 10 and the drive legs and the detection legs in the vicinity of the trunk 10.
  • Figures 6 to 9 show the same pattern in the displacement distribution diagram measured by the force laser Doppler displacement meter drawn by computer simulation.
  • Figure 6 shows the distribution of displacement in the driving vibration direction (in-plane vibration direction) when the body part 10 is not supported.
  • Figure 7 shows the direction perpendicular to the driving vibration when the body part 10 is not supported (plane vertical vibration direction).
  • Fig. 8 is a distribution diagram of displacement in the driving vibration direction (in-plane vibration direction) when the center of gravity of the body 10 is supported by the support member 2.
  • Fig. 9 is a diagram when the center of gravity of the body 10 is supported by the support member 2.
  • FIG. 6 is a distribution diagram of displacement in a direction perpendicular to the drive vibration (plane vertical vibration direction).
  • Patent Documents 1 and 2 show a structure in which a cylindrical support member is fixed to the center of gravity of a tuning fork vibrator with an adhesive or the like to support the vibrator.
  • the vibrator mounting structure adopted in the tuning fork type vibration gyro of Patent Documents 1 and 2 the tuning fork type vibrator is supported by the same principle as the vibrator mounting structure shown in the schematic diagram of FIG. Asymmetry occurs and appears as a leakage drive vibration on the vibration detection leg, becomes a noise component for the detected vibration, and decreases the accuracy of angular velocity detection.
  • Patent Document 3 and Patent Document 4 As a structure for suppressing drive vibration from leaking to the vibration detection leg, those described in Patent Document 3 and Patent Document 4 have been proposed.
  • FIG. 11 shows a rotation speed sensor 10 (tuning fork type vibration gyro) described in Patent Document 3.
  • the rotational speed sensor 10 includes a housing 11, a double ended (ie, H type) tuning fork 13, and a rotational speed detection circuit 21.
  • the housing 11 has a lid 12, a base 14, and a mounting structure 15.
  • the tuning fork 13 is etched by a single crystal force of the piezoelectric material. This material is made of quartz, lithium niobate (Lithium
  • FIG. 12 shows a tuning fork 13 described in Patent Document 3.
  • the main body 16 of the tuning fork 13 has a surrounding frame 30 and an internal cavity 33.
  • the tuning fork 13 has excitation branches (driving tines) 31 and 32 and pickup branches (44 and 45).
  • the tuning fork 13 also has a single dedicated mounting base 57 in the cavity 33.
  • the mounting base 57 is spaced from the inner peripheral surface 18 of the frame 30, is surrounded by it, and is disposed at the center thereof.
  • the mounting base 57 is coupled to the inner peripheral surface 18 by a suspension device 59 formed by cross bridges 61 and 62 and suspension bridges 64 to 67.
  • the peripheral surface 71 of the mounting base 57 is spaced from the inner peripheral surface 18 of the main body 16 by an opening 73 in the + Y direction and by an opening 74 in the ⁇ Y direction.
  • FIG. 13 (FIG. 4 in Patent Document 3) shows the base portion 14 and the mounting structure 15 of the housing 11 described in Patent Document 3.
  • the mounting structure 15 is a pedestal 94.
  • This bedestal 94 has substantially the same dimensions as the mounting surface 59 of the tuning fork 13.
  • the tuning fork 13 is attached to the pedestal 94.
  • the back surface 70 of the mounting base 57 is a single dedicated mounting surface of the tuning fork 13. This surface is fixed to the mounting surface 76 of the pedestal 94. This fixing is preferably performed by a conventional thermoplastic adhesive or epoxy resin.
  • a suspension device 59 couples the mounting base 57 to the frame 30.
  • Pedestal 94 is made of stainless steel, aluminum, nickel alloy Monel 400 or ceramics.
  • the polished silicon or quartz wafer may be “stretched” according to the wafer force and fixed to the base 14 using epoxy resin.
  • the vibrator mounting structure is composed of a pedestal 94, a suspension device 59, and a mounting base 57.
  • FIG. 14 is a view showing a supporting means for supporting the vibrator 50 in the vibratory gyroscope of Patent Document 4. As shown in FIG.
  • This support means is also an example of a vibrator mounting structure in which the vibrator 50 is mounted on a package.
  • Reference numerals 51a, 51b, 52, and 53 in FIG. 14 denote support means.
  • the protrusions 51A and 51B are arranged vertically so as to sandwich the support hole 47 of the vibrator 50, and the vibrator 50 is also pressure-bonded by the protrusions 51A and 51B.
  • 14 (b) and 14 (c) a pin 52a is provided on the projection 52, and a hole 53a is provided on the other projection 53.
  • the protrusions 52 and 53 are arranged vertically so as to sandwich the support hole 47 of the vibrator 50, the pin 52a is inserted into the support hole 47, penetrated, and further inserted into the hole 53a.
  • the transducer 50 is crimped from the direction.
  • the vibrator mounting structure of Patent Document 4 in FIG. 14 also needs to form support holes 47 in the vibrator 50. Therefore, when the vibrator 50 is made of a material for which an efficient etching method has not been established, for example, langasite, the vibrator mounting structure of the cited document 4 cannot be applied. Further, in the vibrator mounting structure of the cited document 4, the support hole 47 is provided in a region where the detection vibration is minimized, but the vibration as shown in FIG. 10 that couples the driving leg and the detection leg via the trunk. As shown in the displacement distribution diagrams of FIGS. 6 to 9, the drive vibration (in-plane vibration) is not small even in the region where the detected vibration (plane vertical vibration) is small. Even if the support hole 47 is provided in the area, the drive vibration is not small in that area. .
  • the vibrator mounting structure described in Patent Document 4 cannot be applied to a tuning fork made of a material for which an efficient etching method has not been established, such as langasite, and the driving leg and the detection leg are connected to the body.
  • the tuning fork as shown in Figure 10 The type vibrator cannot be put into practical use due to the large loss of vibration energy.
  • an object of the present invention is to reduce the drive vibration leaking to the detection leg by suppressing the occurrence of vertical asymmetry of the distortion generated in the vibrator by supporting the tuning fork vibrator with the support member, As a result, it is intended to improve the accuracy and stability of the angular velocity detection of the tuning fork type vibrating gyroscope.
  • Another object of the present invention is a simple structure that can be applied to a tuning fork type vibrator made of a material for which an efficient etching method has not been established, for example, langasite, and has little loss of vibration energy. It is to provide a vibrator mounting structure that can be miniaturized. Means for solving the problem
  • the present invention provides the following means.
  • a tuning fork vibrator having a support member fixing region on the bottom surface of the moon and a support member fixed to the support member mounting region of the package
  • the center of gravity position of the support member fixing region is on the longitudinal direction line of the tuning fork type vibrator passing through the bottom surface center of gravity position.
  • the distance between the gravity center position of the support member fixing region and the bottom surface gravity center position is 30% or more of the length of the support member fixing region in the longitudinal direction.
  • the center of gravity position of the support member fixing region is the bottom surface center of gravity position or the tuning fork type passing through the bottom surface center of gravity position It is on the longitudinal direction line of the vibrator and is located at the position near the detection leg side from the position of the center of gravity of the bottom surface,
  • the shape of the support member fixing region is symmetric with respect to the longitudinal direction line, and is sharpened toward the drive leg side.
  • a vibrator mounting structure characterized by this.
  • FIG. 1 is an exploded perspective view showing a tuning-fork type vibration girder having a vibrator support structure according to a first embodiment of the present invention.
  • FIG. 2 shows that the center point of the support member fixing region in the tuning fork vibrator of FIG. 1 is a position that is more than 30% closer to the detection leg side from the center of gravity of the tuning fork vibrator (the first aspect of the invention).
  • FIG. 2 is a plan view of the bottom surface of the tuning fork vibrator showing the first embodiment.
  • FIG. 3 is a diagram for explaining that the shape of the support member fixing region on the surface of the tuning fork vibrator is sharp toward the drive leg side (second embodiment of the present invention).
  • (A) is a plan view of the bottom surface of the tuning fork vibrator
  • (B) is a plan view of a hexagonal support member fixing region
  • (C) is a pentagonal support member fixing. It is a top view of an area.
  • FIG. 4 is a diagram for explaining that the shape of the support member fixing region on the surface of the tuning fork vibrator is a trapezoid or a triangle with the detection leg side as a base (third embodiment of the present invention).
  • FIG. 1 is a tuning fork type vibrator
  • la is a support member fixing region in the tuning fork type vibrator
  • 2 is a support member
  • 3 is a package
  • 10 is a body part
  • 10c is a body part 10 11a
  • l ib is an excitation drive leg
  • 11c is a non-excitation drive leg
  • 12 is a detection leg
  • 12a and 12b are vibration detection legs
  • 12c is a non-vibration detection leg
  • 20c is Center of support member fixing area la
  • 30 is a package substrate
  • 30a is a support member mounting area
  • 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a, 37b are terminals It is.
  • FIG. 1 the tuning fork vibrator 1, the support member 2, and the package 3 are shown in an exploded manner.
  • the lower surface of the support member 2 is fixed to the support member mounting region 30a on the upper surface of the package substrate 30 with an adhesive
  • the upper surface of the support member 2 is The tuning fork vibrator 1 is fixed to the support member fixing region la on the bottom surface of the body 10 with an adhesive.
  • the state in which the members denoted by reference numerals 1, 2, and 3 are joined is a state in which the support member 2 supports the fixing region la of the tuning fork vibrator 1 with the support member mounting region 30a as a fulcrum.
  • the vibrator 1 is mounted on the package 3 via the support member 2.
  • the drive leg 11 in the tuning fork vibrator 1 includes a non-excitation drive leg 11c in addition to the excitation drive legs 11a and l ib corresponding to the excitation drive legs 111a and 11 lb in the drive leg 111 in FIG. Prepare.
  • the detection leg 12 in the tuning fork type vibrator 1 includes a non-vibration detection leg 12c in addition to the vibration detection legs 12a and 12b corresponding to the vibration detection legs 112a and 112b in the detection leg 112 of FIG. .
  • the non-excitation drive leg 11c and the non-vibration detection leg 12c are also provided as a non-excitation drive side arm and a non-vibration detection side arm in the tuning fork type vibration gyroscopes of Patent Documents 1 and 2. Although it is provided to stabilize the vibration of the drive leg 11 and the detection leg 12, it is not important for the operation of the present invention, and even if these legs 11c and 12c are omitted as shown in FIG. Therefore, further description of the non-excitation drive leg 11c and the non-excitation detection leg 12c will be omitted below.
  • the operation of the tuning fork type vibrator 1 in the tuning fork type vibration gyro shown in FIG. 1 is the same as that of the tuning fork type vibrator shown in FIG.
  • a tuning fork vibrator 1 in FIG. 1 is a single crystal piezoelectric body made of langasite.
  • a driving electrode is provided on at least one of the excitation driving legs 11a and l ib in the tuning fork resonator 1 and vibrates.
  • At least one of the detection legs 12a and 12b for detection is provided with a detection electrode, but the illustration is omitted.
  • the drive electrode and the detection electrode are connected to any of the terminals 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a, or 37b with bonding wires. However, these bonding wires are not shown.
  • FIG. 2 shows a position where the center point 20c of the support member fixing region la in the tuning fork vibrator 1 of FIG. 1 is shifted from the center of gravity 1 Oc of the tuning fork vibrator 1 by D to the detection leg 12 side.
  • FIG. 2 is a plan view showing a certain state (a first embodiment of the present invention).
  • the center-of-gravity position 10c is a position where the center of the tuning fork vibrator 1 is projected onto the bottom surface of the trunk portion 10, and corresponds to the above-described bottom-surface center-of-gravity position.
  • FIG. 1 shows a position where the center point 20c of the support member fixing region la in the tuning fork vibrator 1 of FIG. 1 is shifted from the center of gravity 1 Oc of the tuning fork vibrator 1 by D to the detection leg 12 side.
  • FIG. 2 is a plan view showing a certain state (a first embodiment of the present invention).
  • the center-of-gravity position 10c is a position where the center of the tuning fork vibrator
  • the center of the support member fixing area la (coincides with the center of gravity of the area la) 20c is 30% or more of the length L of la, and it is separated from the center of gravity 10c by a distance D (D ⁇ 0.3L). Therefore, compared with the conventional case where the center 20c of the support member fixing region la is located at the same Cf as the center of gravity 10c of the vibrator, the restraint of the support member 2 against the drive vibration in the body 10 is extremely small. Become. Therefore, the upper and lower asymmetry of the strain is remarkably small between the upper side (the side not in contact with the support member 2) and the lower side (the side in contact with the support member 2 and the support member fixing region la side) of the body 10 and detection. Drive vibration that leaks to the leg 12 is reduced, and the angular velocity detection accuracy of the tuning-fork type vibration gyro is improved and stabilized.
  • the center of the support member fixing region la of the trunk portion 10 is distorted in the distribution of vibration strain. Is in the point where becomes small. Therefore, in the first embodiment, the influence of the restraint of the support member 2 on the drive vibration of the body part 10 is small (on the side not contacting the support member 2) and the lower side (on the support member 2).
  • the so-called up-down asymmetry of the strain which is different in the magnitude of the strain on the contact side, the support member fixing area la side), is Drive vibration that leaks to the detection legs is reduced significantly, and the angular velocity detection accuracy of the tuning fork type vibration gyro is improved and stabilized.
  • langasite is used as the piezoelectric crystal material constituting the tuning fork vibrator 1.
  • Langasite is a material for which an efficient etching method has not been established, but formation of vibrator 1 and support member 2 in the manufacture of this embodiment is possible with a mechanical force using a wire saw or a turret.
  • this embodiment can be easily realized.
  • FIG. 3 is a plan view showing a vibrator mounting structure according to the second embodiment of the present invention.
  • the shape of the support member fixing region la in the tuning fork vibrator 1 is a hexagon and has a sharp apex toward the drive leg 11 side.
  • the shape of the support member fixing region la in the tuning fork vibrator 1 is a pentagon, and the pentagon has a sharp apex toward the drive leg 11 side.
  • the length of the support member fixing region la is L, and the distance between the center of gravity position 10c of the tuning fork vibrator 1 (corresponding to the above-mentioned bottom center of gravity position) and the center of gravity 20c of the support member fixing region la. If D is D, then D ⁇ 0.
  • the region from the vicinity of the boundary between the driving leg 11 and the trunk portion 10 to the center of gravity of the trunk portion 10 is a region showing a distribution in which the displacement of the driving vibration is large on the bottom surface of the trunk portion 10.
  • the area force of the region showing the distribution where the displacement of the driving vibration is large in the area of the support member fixing region la, the driving vibration displacement force on the other hand, the center of gravity of the trough 10 is detected from the leg.
  • the area on the 12 side is large. Therefore, compared with the conventional case where the support member fixing region la is rectangular, the restraint of the support member 2 with respect to the drive vibration in the body portion 10 is remarkably small, so that the distortion in the body portion 10 described with reference to FIG.
  • the vibrator 1 and the supporting member 2 can be formed by machining with a wire saw or a turret in the manufacture of the present embodiment, and there is no process that requires forming by etching. realizable.
  • FIG. 4 is a diagram showing a vibrator mounting structure according to the third embodiment of the present invention, and has a configuration similar to FIG.
  • the length of the support member fixing region la is L
  • the center of gravity position 10c of the tuning fork vibrator 1 (corresponding to the above-described bottom center of gravity position) and the support member fixing region la. If the distance from the center of gravity 20c of the landing area la is D, then D ⁇ 0.
  • the shape of the support member fixing region la is a trapezoid or a triangle with the detection leg 12 side as a base.
  • the area near the boundary between the driving leg 11 and the body 10 is a region showing a distribution in which the driving vibration distortion of the body 10 is large.
  • the area on the detection leg 12 side is large from the center of gravity 10c showing a distribution with small distortion. Accordingly, since the restraint of the support member is reduced as a whole, the vertical asymmetry of the distortion in the trunk portion 10 described with reference to FIG.
  • Forming the vibrator 1 and the support member 2 in the manufacture of the present embodiment can be performed by a mechanical force using a wire saw or a turret, and there is no process that requires forming by etching. Therefore, the present embodiment is easy. Can be realized.
  • FIG. 1 is an exploded perspective view showing a tuning fork type vibration gyro having a vibrator support structure according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the first embodiment of the present invention shown in FIG. 1, and is a tuning fork showing the relationship between the center position 20c of the support member fixing region la of the tuning fork-type vibrating gyroscope and the center of gravity 10c of the trunk portion 10;
  • FIG. 3 is a plan view of the bottom surface of the type resonator 1.
  • FIG. 3 is a diagram showing a second embodiment (vibrator support structure) of the present invention, in which the shape of the support member fixing region la is sharp toward the drive leg 11 side (A , B) or a pentagonal vertex (C).
  • FIG. 3 is a diagram showing a second embodiment (vibrator support structure) of the present invention, in which the shape of the support member fixing region la is sharp toward the drive leg 11 side (A , B) or a pentagonal vertex (C).
  • FIG. 4 is a diagram showing a third embodiment (vibrator support structure) of the present invention, in which the shape of the support member fixing region la is a trapezoid (B) or a triangle (A
  • FIG. 2 is a plan view of the bottom surface of the tuning fork vibrator 1 showing that C).
  • FIG. 5 is a schematic diagram showing a variation in distortion appearing in the vibrator when the body of the tuning fork vibrator is supported by a support member.
  • FIG. 7 is a distribution diagram of displacement in a direction perpendicular to the drive vibration (surface vertical vibration direction) when the body 10 is not supported.
  • FIG. 8 is a distribution diagram of displacement in the driving vibration direction (in-plane vibration direction) when the center of gravity of the trunk portion 10 is supported by the support member 2.
  • FIG. 9 is a distribution diagram of displacement in a direction perpendicular to the drive vibration (surface vertical vibration direction) when the center of gravity of the trunk portion 10 is supported by the support member 2.
  • FIG. 10 is a diagram for explaining the operating principle of a tuning fork vibrator having a structure in which a driving leg and a detection leg are coupled to each other by a trunk.
  • FIG. 11 is a diagram showing a rotational speed sensor 10 (tuning fork type vibration gyroscope) described in Patent Document 3.
  • FIG. 12 is a diagram showing a tuning fork 13 described in Patent Document 3.
  • FIG. 13 is a view showing a base portion 14 and a mounting structure 15 of a housing 11 described in Patent Document 3.
  • FIG. 14 is a view showing a support means for supporting the vibrator 50 in the vibration gyroscope of Patent Document 4.
  • FIG. 14 is a view showing a support means for supporting the vibrator 50 in the vibration gyroscope of Patent Document 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

A tuning fork type oscillator mounting structure of an oscillating gyroscope capable of reducing driving oscillation leaking to detection legs by suppressing the occurrence of vertical asymmetry of strain produced in a turning fork type oscillator when the oscillator is fixedly supported by a support member. The magnitude of the oscillating strain of an oscillator body part (10) is distributed to be larger on drive leg (11a, 11b, 11c) side and smaller on the detection legs (12a, 12b, 12c) side. Accordingly, the center (20c) of a support member fixed area (1a) is not positioned at the gravity center (10c) of the body part (10) but positioned on the detection leg side thereof apart by a distance D of 30% or more of the length L of the support member fixed area (1a) from the gravity center (10c) of the body part (10). As compared with a conventional case in which the center (20c) of the support member fixed area is positioned at the same position as the gravity center (10c) of the oscillator, the constraint of the support member against the drive oscillation on the body part (10) is remarkably reduced. As a result, the drive oscillation leaking to the detection legs is reduced and the angular velocity detection accuracy of the tuning fork type oscillating gyroscope can be increased.

Description

振動ジャイロの音叉型振動子搭載構造  Vibration gyro tuning fork type vibrator mounting structure
技術分野  Technical field
[0001] 本発明は、駆動脚および検出脚を胴部で結合してなる音叉型振動子をパッケージ へ収容してなる音叉型振動ジャイロに関し、特にパッケージを支点としてその胴部を 支持することにより、音叉型振動子をパッケージへ搭載する振動子搭載構造に関す る。  TECHNICAL FIELD [0001] The present invention relates to a tuning fork type vibration gyro comprising a package and a tuning fork type vibrator in which a driving leg and a detection leg are coupled by a body part, and in particular by supporting the body part using a package as a fulcrum. The present invention relates to a vibrator mounting structure in which a tuning fork type vibrator is mounted on a package.
背景技術  Background art
[0002] この種の音叉型振動ジャイロは、特許文献 1又は特許文献 2に記載されている。特許 文献 1又は特許文献 2に記載の音叉型振動ジャイロの基本構造及びその作動を、図 10を参照して説明する。図 10は振動ジャイロ用音叉型振動子を示す図であり、同図 (A)は音叉型振動ジャイロに対する回転の入力がないときの状態を表し、同図(B)は 音叉型振動ジャイロに対し回転の入力があるときの状態を表す。図において、 111a , 111bは励振用駆動脚 (特許文献 1における励振用駆動側アーム)、 112a, 112b は振動用検出脚 (特許文献 1における振動用検出側アーム)である。励振用駆動脚 1 11a及び 11 lbは、互いに対をなし、逆位相で振動する。励振用駆動脚 11 la及び 1 l ibは、駆動脚 (特許文献 1では、駆動側アーム) 111と称する。振動用検出脚 112a 及び 112bは、互いに対をなし、逆位相で振動する。振動用検出脚 112a及び 112b は、検出脚 (特許文献 1では、検出側アーム) 112と称する。胴部 10は、直方体であり 、その平面形 (上面 10aの形)は正方形である(正方形である必要は必ずしもない)。 胴部 10における各面は、上面を符号 10aで現し、底面(図に現れていない)を符号 1 Obで現し、駆動脚 111側の端面を符号 10cで現し、検出脚 112側の端面(図に現れ ていない)を符号 10dで現し、一方の側面を符号 10eで現し、他方の側面(図に現れ ていない)を符号 10fで現すこととする。上面 10a及び底面 10bを主面と称する。なお 、特許文献 1及び特許文献 2の音叉型振動ジャイロには、励振用駆動脚 111a及び 1 l ibの間に 1つの非励振用駆動脚 (特許文献 1における非励振用駆動側アーム)が 設けてあり、また振動用検出脚 112a及び 112bの間に 1つの非振動用検出脚 (特許 文献 1における非振動用検出側アーム)が設けてあるが、非励振用駆動脚および非 振動用検出脚は、振動の安定ィ匕のために設けてあり、原理説明においては必要でな いので、図 10の音叉型振動ジャイロでは省略した。 [0002] This type of tuning-fork type vibration gyro is described in Patent Document 1 or Patent Document 2. The basic structure and operation of a tuning fork type vibration gyro described in Patent Document 1 or Patent Document 2 will be described with reference to FIG. Fig. 10 is a diagram showing a tuning fork vibrator for a vibrating gyroscope. Fig. 10 (A) shows the state when there is no rotation input to the tuning fork vibrating gyroscope, and Fig. 10 (B) shows the tuning fork vibrating gyroscope. Represents the state when there is rotation input. In the figure, 111a and 111b are excitation drive legs (excitation drive side arm in Patent Document 1), and 112a and 112b are vibration detection legs (vibration detection side arm in Patent Document 1). Excitation drive legs 1 11a and 11 lb are paired with each other and vibrate in opposite phases. The drive legs 11 la and 1 l ib for excitation are referred to as drive legs 111 (drive side arm in Patent Document 1). The vibration detection legs 112a and 112b are paired with each other and vibrate in opposite phases. The detection legs 112a and 112b for vibration are referred to as detection legs 112 (detection side arms in Patent Document 1). The trunk portion 10 is a rectangular parallelepiped, and its planar shape (the shape of the upper surface 10a) is a square (not necessarily a square). Each surface of the body 10 is represented by reference numeral 10a on the top surface, represented by reference numeral 1 Ob on the bottom surface (not shown in the figure), represented by 10c on the end surface on the drive leg 111 side, and on the end surface on the detection leg 112 side (illustration). (Not shown in the figure) is represented by 10d, one side is represented by 10e, and the other side (not shown in the figure) is represented by 10f. The upper surface 10a and the bottom surface 10b are referred to as main surfaces. The tuning-fork type vibration gyro in Patent Document 1 and Patent Document 2 is provided with one non-excitation drive leg (non-excitation drive side arm in Patent Document 1) between the excitation drive legs 111a and 1 ib. One non-vibration detection leg (patented between the vibration detection legs 112a and 112b The non-vibration detection arm in Document 1 is provided, but the non-excitation drive leg and non-vibration detection leg are provided for vibration stabilization and are not necessary for explanation of the principle. This is omitted in the tuning fork type vibration gyro shown in FIG.
[0003] 胴部 10、励振用駆動脚 11 la及び 11 lb並びに振動用検出脚 112a及び 112bは、 1つの圧電単結晶体でなり、一枚の板状の圧電単結晶から切り出された形をなす。 圧電単結晶としては、水晶、ニオブ酸リチウム、ランガサイト等がある。胴部 10、励振 用駆動脚 111a, 111b及び振動用検出脚 112a, 112bの厚みは同一である。励振 用駆動脚 11 la及び 11 lbが励振されていない状態、即ち静止状態では、励振用駆 動脚 111a, 111bの軸及び振動用検出脚 112a, 112bの軸は、胴部 10の端面 10c 及び 1 Odにそれぞれ垂直である。励振用駆動脚 111 a及び振動用検出脚 112aの軸 は同一の軸線上にある。同様に、励振用駆動脚 11 lb及び振動用検出脚 112bの軸 も同一の軸線上にある。また、胴部 10の重心を通り、側面 10eに平行な面に関し、励 振用駆動脚 11 la及び 11 lbは対称であり、また振動用検出脚 112a及び 112bも対 称である。励振用駆動脚 111a, 111b及び振動用検出脚 112a, 112bには駆動用 電極及び検出用電極がそれぞれ設けてある(これら電極の図示は省略されている。 ) [0003] The body 10, the drive legs 11 la and 11 lb for excitation, and the detection legs 112a and 112b for vibration are made of one piezoelectric single crystal body, and have a shape cut out from a single plate-like piezoelectric single crystal. Eggplant. Examples of the piezoelectric single crystal include quartz crystal, lithium niobate, and langasite. The body 10, the drive leg 111a, 111b for excitation and the thickness of the detection leg 112a, 112b for vibration are the same. In a state where the excitation driving legs 11 la and 11 lb are not excited, that is, in a stationary state, the axes of the excitation driving legs 111a and 111b and the axes of the vibration detection legs 112a and 112b are the end face 10c and Each is perpendicular to 1 Od. The axes of the excitation drive leg 111a and the vibration detection leg 112a are on the same axis. Similarly, the axes of the excitation drive leg 11 lb and the vibration detection leg 112b are on the same axis. Further, the driving leg 11 la and 11 lb for excitation are symmetrical with respect to a plane passing through the center of gravity of the body part 10 and parallel to the side face 10e, and the detection legs 112a and 112b for vibration are also symmetrical. Driving electrodes 111a and 111b for excitation and detection legs 112a and 112b for vibration are provided with driving electrodes and detection electrodes, respectively (the electrodes are not shown).
[0004] このような図 10の構造の音叉型振動ジャイロにおける駆動用電極に励振用の交流 電圧を印加すると、励振用駆動脚 11 la及び 11 lbは、上面 10aに平行な平面内に おいて互いに反対方向に、即ち逆位相に、振動する。この振動が、音叉型振動ジャ イロにおける駆動振動である。駆動振動は、胴部 10の主面(上面 10a及び底面 10b) に平行な平面内における振動であり、このような主面に平行な平面内における振動 を面内振動と称する。面内振動は、図 10 (A)において矢印 Ha及び Hbで現してある 。この状態で、角速度 ωの回転が図 10 (B)の入力軸回りに入力されると、脚振動に よる脚端速度に比例してコリオリカが発生するので、コリオリカは脚振動と 90度位相 がずれた同じ周波数の振動になる。この振動は、コリオリカに基づく振動という意味 で、コリオリ振動と称することにする。脚端の変位が士 aの範囲になるように脚が振動 をしているとき、その脚端速度の絶対値は、脚端の変位が士 aの時にゼロであり、脚 端の変位がゼロの時に最大となる。図 10の構造の音叉型振動ジャイロでは、角速度 ωの回転が図 10 (Β)の入力軸回りに入力されたとき、励振用駆動脚 11 la及び 111 bにコリオリカが作用し、コリオリ振動 Ca及び Cbがそれぞれ生じる。コリオリ振動 Ca及 び Cbは、胴部 10の主面に直交する方向の振動であり、その位相は互いに逆である 。胴部 10の主面に直交する方向の振動を面垂直振動と称する。 When an AC voltage for excitation is applied to the drive electrode in the tuning fork type vibration gyro having the structure shown in FIG. 10, the excitation drive legs 11 la and 11 lb are placed in a plane parallel to the upper surface 10a. It vibrates in opposite directions, that is, in opposite phase. This vibration is the driving vibration in the tuning fork type vibration gyro. The drive vibration is vibration in a plane parallel to the main surface (the upper surface 10a and the bottom surface 10b) of the body portion 10, and such vibration in a plane parallel to the main surface is referred to as in-plane vibration. In-plane vibration is represented by arrows Ha and Hb in Fig. 10 (A). In this state, if rotation of the angular velocity ω is input around the input shaft shown in Fig. It becomes the vibration of the same frequency which shifted. This vibration is called Coriolis vibration in the sense of vibration based on Coriolis. When the leg vibrates so that the displacement of the leg end is within the range of a, the absolute value of the leg end velocity is zero when the displacement of the leg end is a, and the displacement of the leg end is zero. It becomes the maximum at the time of. In the tuning fork type vibration gyro having the structure of FIG. 10, when the rotation of the angular velocity ω is inputted around the input shaft of FIG. Coriolis acts on b and Coriolis vibrations Ca and Cb are generated respectively. The Coriolis vibrations Ca and Cb are vibrations in a direction perpendicular to the main surface of the body 10, and their phases are opposite to each other. The vibration in the direction perpendicular to the main surface of the body portion 10 is referred to as surface vertical vibration.
[0005] 胴部 10は、板状であるので、その主面に平行な方向の振動、即ち面内振動に対し ては極めて高い剛性を有し、他方主面に直交する方向の振動、即ち面垂直振動に 対しては相対的に低い剛性を示す。そこで、励振用駆動脚 111a, 111bに生じる振 動のうちで、面内振動である駆動振動 Ha及び Hbは、振動用検出脚 112a, 112bに は殆ど伝搬せず、他方面垂直振動であるコリオリ振動 Ca及び Cbは高 、効率で振動 用検出脚 112a, 112bに伝搬する。振動用検出脚 112a及び 112bに伝搬したコリオ リ振動が、音叉型振動ジャイロにおける検出振動 Da及び Dbである。音叉型振動ジャ イロは、検出振動 Da及び Dbにより振動用検出脚 112a及び 112bに現れる電圧を検 出用電極で電気信号として取り出すことにより、角速度 ωを検出する。  [0005] Since the body portion 10 is plate-shaped, it has extremely high rigidity against vibration in a direction parallel to the main surface, that is, in-plane vibration, and vibration in a direction perpendicular to the other main surface, It exhibits relatively low stiffness against vertical vibration. Therefore, among the vibrations generated in the excitation drive legs 111a and 111b, the drive vibrations Ha and Hb which are in-plane vibrations hardly propagate to the vibration detection legs 112a and 112b, and the other surface vertical vibrations are Coriolis. The vibrations Ca and Cb propagate to the vibration detection legs 112a and 112b with high efficiency. The core vibrations propagated to the vibration detection legs 112a and 112b are detected vibrations Da and Db in the tuning fork type vibration gyro. The tuning fork type vibration gyro detects the angular velocity ω by taking out the voltage appearing in the vibration detection legs 112a and 112b as an electric signal by the detection electrodes by the detection vibrations Da and Db.
[0006] 音叉型振動ジャイロでは、振動用検出脚 112a, 112bに現れる駆動振動成分がノ ィズであり、検出振動成分 (Da, Db)が信号である。そこで、振動用検出脚 112a, 1 12bにおける検出振動成分 (Da, Db)に対する駆動振動成分の比が信号対雑音比 (SZN比)となるので、角速度 ωを高い精度で検出するには、振動用検出脚 112a, 112bに漏れ、現れる駆動振動成分を低減する必要がある。振動用検出脚 112a, 1 12bに漏れる駆動振動成分は、信号成分 [検出振動成分 (Da, Db)]に対するバイァ スとなり、このバイアスが不安定であれば、角速度 ωの検出精度は低下する。  In the tuning fork type vibration gyro, the drive vibration component appearing on the vibration detection legs 112a and 112b is noise, and the detected vibration component (Da, Db) is a signal. Therefore, the ratio of the drive vibration component to the detected vibration component (Da, Db) in the vibration detection legs 112a, 1 12b is the signal-to-noise ratio (SZN ratio). Therefore, to detect the angular velocity ω with high accuracy, It is necessary to reduce drive vibration components that leak and appear in the detection legs 112a and 112b. The drive vibration component leaking to the vibration detection legs 112a, 1 12b becomes a bias for the signal component [detection vibration component (Da, Db)]. If this bias is unstable, the detection accuracy of the angular velocity ω is lowered.
[0007] 特許文献 1および特許文献 2の音叉型振動ジャイロでは、石英ガラス製の支持部材  [0007] In the tuning fork type vibration gyro of Patent Document 1 and Patent Document 2, a support member made of quartz glass
(特許文献 1における保持体)によって音叉型振動子をその重心で支持している。そ の重心は、胴部の中央にある。  The tuning fork vibrator is supported at the center of gravity by the holding body in Patent Document 1. Its center of gravity is in the middle of the torso.
特許文献 1 :特開 2001- 255152  Patent Document 1: JP 2001-255152
特許文献 2:特開 2001- 208545  Patent Document 2: JP 2001-208545
特許文献 3:特許第 2518600号公報  Patent Document 3: Japanese Patent No. 2518600
特許文献 4:特開平 11-173857  Patent Document 4: JP-A-11-173857
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0008] 図 5は、音叉型振動子の胴部を支持部材で支持したときに、振動子に現れる歪の 変動を示す模式図である。図 5 (A) , (B)は、支持部材で支持しない状態において、 駆動振動が胴部に加えられたときに胴部 10に表れる歪を現す。図 5 (C) , (D)は、胴 部 10の重心を支持部材 2で支持し、胴部 10をパッケージ基板 30に搭載した状態に おいて、駆動振動が胴部 10に加えられたときに胴部に表れる歪を現す。図 5 (C) , ( D)において、支持部材 2は胴部 10の重心及びパッケージ基板 30に固着されている Problems to be solved by the invention [0008] FIG. 5 is a schematic diagram showing a variation in distortion appearing in the vibrator when the body of the tuning fork vibrator is supported by a support member. FIGS. 5A and 5B show distortions appearing on the body 10 when drive vibration is applied to the body in a state where it is not supported by the support member. 5 (C) and 5 (D) show the case where the center of gravity of the body part 10 is supported by the support member 2 and driving vibration is applied to the body part 10 with the body part 10 mounted on the package substrate 30. The distortion that appears in the torso appears. 5 (C) and 5 (D), the support member 2 is fixed to the center of gravity of the body 10 and the package substrate 30.
[0009] 図 5 (A)は、駆動脚に励振された駆動振動により、互いに反対向きの脚の振動変位 a 1及び j8 1による応力が胴部 10に生じたとき、胴部 10の上部には互いに反対向き の歪 al及び blが生じ、胴部 10の下部には互いに反対向きの歪 cl及び dlが生じ、 a l =bl = cl = dlであることを現している。図 5 (B)は、駆動脚に励振された駆動振動 により、互いに反対向きの脚の振動変位 α 2及び |8 2による応力が胴部 10に生じたと き、胴部 10の上部には互いに反対向きの歪 a2及び b2が生じ、胴部 10の下部には 互 ヽに反対向きの歪 c2及び d2が生じ、 a2 = b2 = c2 = d2であることを現して!/、る。 [0009] FIG. 5 (A) shows that when the vibration due to the vibration displacements a 1 and j81 of the legs opposite to each other is generated in the trunk 10 by the driving vibration excited by the driving leg, In this case, distortions al and bl in opposite directions occur, and distortions cl and dl in opposite directions occur in the lower part of the body 10, indicating that al = bl = cl = dl. Fig. 5 (B) shows that when the vibration caused by the vibration displacement α 2 and | 82 of the legs opposite to each other is generated in the trunk 10 due to the drive vibration excited by the drive legs, The opposite strains a2 and b2 occur, and the lower part of the body 10 has opposite strains c2 and d2, which indicates that a2 = b2 = c2 = d2.
[0010] これに対し、図 5 (C)は、駆動脚に励振された駆動振動により、互いに反対向きの 脚の振動変位 α 1及び j8 1による応力が胴部 10に生じたとき、胴部 10の上部には互 いに反対向きの歪 al及び blが生じ、胴部 10の下部には互いに反対向きの歪 cl及 び dlが生じるが、 al =bl >cl = dlであることを現している。また、図 5 (D)は、駆動 脚に励振された駆動振動により、互いに反対向きの脚の振動変位 α 2及び |8 2によ る応力が胴部 10に生じたとき、胴部 10の上部には互いに反対向きの歪 a2及び b2が 生じ、胴部 10の下部には互いに反対向きの歪 c2及び d2が生じる力 a2=b2 >c2 = d2であることを現して!/、る。  [0010] On the other hand, FIG. 5 (C) shows the case where stress is generated in the trunk 10 due to the vibration displacements α1 and j81 of the legs opposite to each other due to the drive vibration excited by the drive leg. Distortions al and bl opposite to each other occur at the top of 10 and distortions cl and dl opposite to each other occur at the bottom of the body 10, indicating that al = bl> cl = dl. ing. FIG. 5 (D) shows that when the stress due to the vibration displacement α 2 and | 82 of the legs opposite to each other is generated in the trunk 10 by the driving vibration excited by the driving leg, It is shown that forces a2 and b2 opposite to each other are generated in the upper part, and forces a2 = b2> c2 = d2 are generated in the lower part of the body 10 to generate opposite strains c2 and d2.
[0011] 図 5 (C) , (D)に示されるように、音叉型振動子の胴部 10を支持部材 2で支持した とき、胴部 10の上部における歪とその下部における歪とは大きさが相違し、胴部歪の 上下非対称性が生じる。胴部 10の歪に上下非対称性が生じると、駆動振動に直交 する方向の振動、即ち面垂直振動成分が胴部に生じる。この面垂直振動成分は、漏 れ駆動振動として振動用検出脚に現れ、検出振動と同じ振動方向であるから、検出 振動に対し雑音成分となり、角速度の検出精度を低下させる。 [0012] 図 6乃至図 9は、音叉型振動子の胴部 10の重心を支持しないときと、支持部材 2で 支持したときにおける胴部歪のシミュレーション図である。図 6乃至図 9において、 10 は胴部、 11a, l ibは励振用駆動脚、 11cは非励振用駆動脚、 12a, 12bは振動用 検出脚、 12cは非振動用検出脚である。これらシミュレーション図は、胴部 10および 胴部 10近傍の駆動脚および検出脚における変位の分布図である。図 6乃至図 9はコ ンピュータシミュレーションにより作図した力 レーザドップラー変位計によって計測し た変位分布図も同様なパターンとなる。図 6は胴部 10を支持しないときにおける駆動 振動方向(面内振動方向)の変位の分布図、図 7は胴部 10を支持しないときにおけ る駆動振動と直交する方向(面垂直振動方向)の変位の分布図である。図 8は胴部 1 0の重心を支持部材 2で支持したときにおける駆動振動方向(面内振動方向)の変位 の分布図、図 9は胴部 10の重心を支持部材 2で支持したときにおける駆動振動と直 交する方向(面垂直振動方向)の変位の分布図である。図 9を図 7と比較すると、胴部 10の重心を支持部材 2で支持したときには、検出脚 12a, 12b, 12c側の胴部 10お よび検出脚 12に面垂直振動が大きく現れていることが分かる。 [0011] As shown in Figs. 5 (C) and (D), when the body 10 of the tuning fork vibrator is supported by the support member 2, the strain at the upper part of the body 10 and the distortion at the lower part are large. The vertical distortion of the trunk distortion occurs. When a vertical asymmetry is generated in the distortion of the body 10, vibration in a direction perpendicular to the drive vibration, that is, a plane vertical vibration component is generated in the body. This surface vertical vibration component appears on the vibration detection leg as a leakage drive vibration and is in the same vibration direction as the detection vibration. Therefore, it becomes a noise component with respect to the detection vibration and decreases the accuracy of angular velocity detection. 6 to 9 are simulation diagrams of trunk distortion when the center of gravity of the trunk 10 of the tuning fork vibrator is not supported and when it is supported by the support member 2. 6 to 9, reference numeral 10 denotes a body, 11a and l ib denote excitation driving legs, 11c denotes non-excitation driving legs, 12a and 12b denote vibration detection legs, and 12c denotes a non-vibration detection leg. These simulation diagrams are distribution diagrams of displacements in the trunk 10 and the drive legs and the detection legs in the vicinity of the trunk 10. Figures 6 to 9 show the same pattern in the displacement distribution diagram measured by the force laser Doppler displacement meter drawn by computer simulation. Figure 6 shows the distribution of displacement in the driving vibration direction (in-plane vibration direction) when the body part 10 is not supported. Figure 7 shows the direction perpendicular to the driving vibration when the body part 10 is not supported (plane vertical vibration direction). ) Is a distribution diagram of displacement. Fig. 8 is a distribution diagram of displacement in the driving vibration direction (in-plane vibration direction) when the center of gravity of the body 10 is supported by the support member 2. Fig. 9 is a diagram when the center of gravity of the body 10 is supported by the support member 2. FIG. 6 is a distribution diagram of displacement in a direction perpendicular to the drive vibration (plane vertical vibration direction). When FIG. 9 is compared with FIG. 7, when the center of gravity of the body 10 is supported by the support member 2, surface vertical vibrations appear greatly on the body 10 and the detection legs 12 on the detection legs 12 a, 12 b, 12 c side. I understand.
[0013] 音叉型振動ジャイロでは、振動子をパッケージに搭載する振動子搭載構造の採用 は不可避である。特許文献 1及び 2では、音叉型振動子の重心に円柱型の支持部材 を接着剤等で固着し、振動子を支持する構造が示されている。特許文献 1及び 2の 音叉型振動ジャイロで採用されている振動子搭載構造では、図 5の模式図で示す振 動子搭載構造と同じ原理で音叉型振動子を支持しており、胴部歪の上下非対称性 が生じ、漏れ駆動振動として振動用検出脚に現れ、検出振動に対し雑音成分となり 、角速度の検出精度を低下させる。駆動振動が振動用検出脚に漏れるのを抑制する 構造として、特許文献 3および特許文献 4に記載のものが提案されて ヽる。  In a tuning fork type vibration gyro, it is inevitable to employ a vibrator mounting structure in which a vibrator is mounted on a package. Patent Documents 1 and 2 show a structure in which a cylindrical support member is fixed to the center of gravity of a tuning fork vibrator with an adhesive or the like to support the vibrator. In the vibrator mounting structure adopted in the tuning fork type vibration gyro of Patent Documents 1 and 2, the tuning fork type vibrator is supported by the same principle as the vibrator mounting structure shown in the schematic diagram of FIG. Asymmetry occurs and appears as a leakage drive vibration on the vibration detection leg, becomes a noise component for the detected vibration, and decreases the accuracy of angular velocity detection. As a structure for suppressing drive vibration from leaking to the vibration detection leg, those described in Patent Document 3 and Patent Document 4 have been proposed.
[0014] 図 11 (特許文献 3における図 1)は特許文献 3に記載の回転速度センサ 10 (音叉型 振動ジャイロ)を示す。この回転速度センサ 10は、ハウジング 11と、両側 (double ende d) (即ち H型)音叉 (tuning fork) 13と、回転速度検出回路 21とを有する。ハウジング 1 1は、蓋 12と、基部 14と、取付け構造体 15とを有する。音叉 13は、圧電材料の単結 晶力 エッチングされる。この材料は、水晶、ニオブ酸リチウム (Lithium FIG. 11 (FIG. 1 in Patent Document 3) shows a rotation speed sensor 10 (tuning fork type vibration gyro) described in Patent Document 3. The rotational speed sensor 10 includes a housing 11, a double ended (ie, H type) tuning fork 13, and a rotational speed detection circuit 21. The housing 11 has a lid 12, a base 14, and a mounting structure 15. The tuning fork 13 is etched by a single crystal force of the piezoelectric material. This material is made of quartz, lithium niobate (Lithium
Niobate)或いは他の圧電物質であるのが良い。 [0015] 図 12 (特許文献 3における図 3)は、特許文献 3に記載の音叉 13を示す。音叉 13の 本体 16は、周囲のフレーム 30と内部キヤビティ 33とを有する。音叉 13は、励振枝 (dri ve tine)31, 32及びピックアップ枝 (pickup tine) 44, 45を有する。また、音叉 13は、 キヤビティ 33内に単一専用取付け基部 57を有する。取付け基部 57は、フレーム 30 の内周面 18から間隔を隔てられ、これで囲まれ、且つその中の中央に配置されてい る。取付け基部 57は、クロスブリッジ 61, 62及びサスペンションブリッジ 64乃至 67に よって形成されたサスペンション装置 59によって内周面 18に結合されている。取付 け基部 57の周面 71は、本体 16の内周面 18から、 +Y方向では開口 73によって、― Y方向では開口 74によって間隔を隔てられている。 Niobate) or other piezoelectric material. FIG. 12 (FIG. 3 in Patent Document 3) shows a tuning fork 13 described in Patent Document 3. The main body 16 of the tuning fork 13 has a surrounding frame 30 and an internal cavity 33. The tuning fork 13 has excitation branches (driving tines) 31 and 32 and pickup branches (44 and 45). The tuning fork 13 also has a single dedicated mounting base 57 in the cavity 33. The mounting base 57 is spaced from the inner peripheral surface 18 of the frame 30, is surrounded by it, and is disposed at the center thereof. The mounting base 57 is coupled to the inner peripheral surface 18 by a suspension device 59 formed by cross bridges 61 and 62 and suspension bridges 64 to 67. The peripheral surface 71 of the mounting base 57 is spaced from the inner peripheral surface 18 of the main body 16 by an opening 73 in the + Y direction and by an opening 74 in the −Y direction.
[0016] 図 13 (特許文献 3における図 4)は、特許文献 3に記載されたハウジング 11の基部 1 4及び取付構造体 15を示す。取付構造体 15はペデスタル 94である。このべデスタ ル 94は、音叉 13の取付け面 59とほぼ同じ寸法を有する。図 11、図 12に戻ると、音 叉 13はペデスタル 94に取付けられている。取付け基部 57の裏面 70は、音叉 13の 単一専用取付面である。この面は、ペデスタル 94の取付け面 76に固定されている。 この固定は、従来の熱可塑性接着剤或いはエポキシ榭脂によって行われるのがよい 。力べして、音叉 13は、単一専用取付面 70のところだけでノ、ウジング 11内に取付け られる。サスペンション装置 59が、取付け基部 57をフレーム 30に結合する。ぺデスタ ル 94は、ステンレス鋼、アルミニウム、ニッケル合金モネル(Monel)400或いはセラミツ タスで作られるのがよ 、。研磨したシリコン或 、は水晶のウェハ力 別に「けカ^、」て、 そして、エポキシ榭脂を用いて基部 14に固定してもよい。特許文献 3の音叉型振動 ジャイロでは、振動子搭載構造はペデスタル 94、サスペンション装置 59、取付け基 部 57でなる。  FIG. 13 (FIG. 4 in Patent Document 3) shows the base portion 14 and the mounting structure 15 of the housing 11 described in Patent Document 3. The mounting structure 15 is a pedestal 94. This bedestal 94 has substantially the same dimensions as the mounting surface 59 of the tuning fork 13. Returning to FIG. 11 and FIG. 12, the tuning fork 13 is attached to the pedestal 94. The back surface 70 of the mounting base 57 is a single dedicated mounting surface of the tuning fork 13. This surface is fixed to the mounting surface 76 of the pedestal 94. This fixing is preferably performed by a conventional thermoplastic adhesive or epoxy resin. As a result, the tuning fork 13 can be mounted in the housing 11 only at the single dedicated mounting surface 70. A suspension device 59 couples the mounting base 57 to the frame 30. Pedestal 94 is made of stainless steel, aluminum, nickel alloy Monel 400 or ceramics. The polished silicon or quartz wafer may be “stretched” according to the wafer force and fixed to the base 14 using epoxy resin. In the tuning fork type vibration gyro of Patent Document 3, the vibrator mounting structure is composed of a pedestal 94, a suspension device 59, and a mounting base 57.
[0017] このような特許文献 3に記載の振動子搭載構造では、音叉 13の本体 16に内部キヤ ビティ 33を設けるので、音叉 13の本体 16に深いエッチング力卩ェを施す必要がある。 音叉 13が、効率的なエッチング方法が確立されていない材料、例えばランガサイト、 でなるときは、引用文献 3の振動子搭載構造は適用できない。また、引用文献 3の振 動子搭載構造は、内部キヤビティ 33内にサスペンション装置 59を備えるので、複雑 な構造であり、高価であり、小型化も難しい。 [0018] 図 14は、特許文献 4の振動型ジャイロスコープにおいて、振動子 50を支持する支 持手段を示す図である。この支持手段も、振動子 50をパッケージに搭載する振動子 搭載構造の一例である。図 14における 51a,51b,52,53は支持手段である。図 14 (a )においては、突起 51Aと 51Bとを、振動子 50の支持孔 47を挟むように上下に配置 し、突起 51Aと 51Bとによって上下方向力も振動子 50を圧着している。図 14 (b) , (c) においては、突起 52の方にピン 52aを設け、他方の突起 53の方に孔 53aを設ける。 突起 52と 53とを、振動子 50の支持孔 47を挟むように上下に配置し、ピン 52aを支持 孔 47に挿入し、貫通させ、更に孔 53aに挿入し、突起 52と 53とによって上下方向か ら振動子 50を圧着している。 In such a vibrator mounting structure described in Patent Document 3, since the internal cavity 33 is provided in the main body 16 of the tuning fork 13, it is necessary to apply a deep etching force to the main body 16 of the tuning fork 13. When the tuning fork 13 is made of a material for which an efficient etching method has not been established, for example, langasite, the vibrator mounting structure described in Reference 3 cannot be applied. In addition, the vibrator mounting structure of the cited document 3 includes a suspension device 59 in the internal cavity 33, so that the structure is complicated, expensive, and difficult to downsize. FIG. 14 is a view showing a supporting means for supporting the vibrator 50 in the vibratory gyroscope of Patent Document 4. As shown in FIG. This support means is also an example of a vibrator mounting structure in which the vibrator 50 is mounted on a package. Reference numerals 51a, 51b, 52, and 53 in FIG. 14 denote support means. In FIG. 14 (a), the protrusions 51A and 51B are arranged vertically so as to sandwich the support hole 47 of the vibrator 50, and the vibrator 50 is also pressure-bonded by the protrusions 51A and 51B. 14 (b) and 14 (c), a pin 52a is provided on the projection 52, and a hole 53a is provided on the other projection 53. The protrusions 52 and 53 are arranged vertically so as to sandwich the support hole 47 of the vibrator 50, the pin 52a is inserted into the support hole 47, penetrated, and further inserted into the hole 53a. The transducer 50 is crimped from the direction.
[0019] 図 14の特許文献 4の振動子搭載構造も、特許文献 3の振動子搭載構造と同様に、 振動子 50に支持孔 47を形成する必要がある。そこで、振動子 50が効率的なエッチ ング方法が確立されていない材料、例えばランガサイト、でなるときは、引用文献 4の 振動子搭載構造は適用できない。また引用文献 4の振動子搭載構造では、支持孔 4 7は、検出振動が最小となる領域に設けているが、駆動脚と検出脚とを胴部を介して 結合する図 10のような振動子では、図 6乃至図 9の変位分布図で示されているように 、検出振動 (面垂直振動)が小さい領域でも駆動振動 (面内振動)は小さくないので、 検出振動が最小となる領域に支持孔 47を設けても、その領域では駆動振動が小さく ないので、突起 51A及び 51Bよって上下方向から振動子を圧着すると、駆動振動の エネルギー損失が大きぐ音叉型振動ジャイロとして実用化は難しい。  As in the vibrator mounting structure of Patent Document 3, the vibrator mounting structure of Patent Document 4 in FIG. 14 also needs to form support holes 47 in the vibrator 50. Therefore, when the vibrator 50 is made of a material for which an efficient etching method has not been established, for example, langasite, the vibrator mounting structure of the cited document 4 cannot be applied. Further, in the vibrator mounting structure of the cited document 4, the support hole 47 is provided in a region where the detection vibration is minimized, but the vibration as shown in FIG. 10 that couples the driving leg and the detection leg via the trunk. As shown in the displacement distribution diagrams of FIGS. 6 to 9, the drive vibration (in-plane vibration) is not small even in the region where the detected vibration (plane vertical vibration) is small. Even if the support hole 47 is provided in the area, the drive vibration is not small in that area. .
[0020] 以上に挙げた特許文献 1及び 2の振動子搭載構造では、図 5に示すように、音叉型 振動子の胴部 10を支持部材 2で支持することにより、胴部 10に歪の上下非対称性 が発生するので、駆動振動が検出脚に漏れ、ひいては音叉型振動ジャイロの角速度 検出精度の向上が妨げられ、また検出精度の安定性も損なわれていた。また、特許 文献 3に記載の振動子搭載構造は、効率的なエッチング方法が確立されていない材 料、例えばランガサイト、でなる音叉型振動子には、適用できないし、構造が複雑で 高価であり、小型化も難しい。また、特許文献 4に記載の振動子搭載構造は、効率的 なエッチング方法が確立されていない材料、例えばランガサイト、でなる音叉には、 やはり適用できないし、駆動脚と検出脚とを胴部を介して結合する図 10のような音叉 型振動子では振動エネルギーの損失が大きぐ実用できない。 [0020] In the vibrator mounting structure of Patent Documents 1 and 2 listed above, as shown in Fig. 5, by supporting the body 10 of the tuning fork type vibrator with the support member 2, the body 10 is distorted. Due to the vertical asymmetry, the drive vibration leaked to the detection legs, which hindered the improvement in the angular velocity detection accuracy of the tuning fork type vibration gyroscope, and the stability of the detection accuracy was also impaired. In addition, the vibrator mounting structure described in Patent Document 3 cannot be applied to tuning fork vibrators made of materials for which an efficient etching method has not been established, such as Langasite, and the structure is complicated and expensive. Yes, downsizing is difficult. Further, the vibrator mounting structure described in Patent Document 4 cannot be applied to a tuning fork made of a material for which an efficient etching method has not been established, such as langasite, and the driving leg and the detection leg are connected to the body. The tuning fork as shown in Figure 10 The type vibrator cannot be put into practical use due to the large loss of vibration energy.
[0021] そこで、本発明の目的は、音叉型振動子を支持部材で支持することによる振動子 に生じる歪の上下非対称性の発生を抑制することにより、検出脚に漏れる駆動振動 を低減し、ひいては音叉型振動ジャイロの角速度検出精度の向上と安定ィ匕を図るこ とにある。また、本発明の別の目的は、効率的なエッチング方法が確立されていない 材料、例えばランガサイト、でなる音叉型振動子にも適用でき、振動エネルギーの損 失が少なぐ簡単な構造であり、小型化が可能な振動子搭載構造の提供にある。 課題を解決するための手段  Therefore, an object of the present invention is to reduce the drive vibration leaking to the detection leg by suppressing the occurrence of vertical asymmetry of the distortion generated in the vibrator by supporting the tuning fork vibrator with the support member, As a result, it is intended to improve the accuracy and stability of the angular velocity detection of the tuning fork type vibrating gyroscope. Another object of the present invention is a simple structure that can be applied to a tuning fork type vibrator made of a material for which an efficient etching method has not been established, for example, langasite, and has little loss of vibration energy. It is to provide a vibrator mounting structure that can be miniaturized. Means for solving the problem
[0022] 前述の課題を解決するために本発明は次の手段を提供する。  In order to solve the above-described problems, the present invention provides the following means.
[0023] (1)一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚およ び該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該月同 部の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着され た支持部材を有する音叉型振動子の振動子搭載構造において、  [0023] (1) A pair of excitation drive legs and a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection legs, and is interposed between the body part and the package In the vibrator mounting structure of a tuning fork vibrator having a support member fixing region on the bottom surface of the moon and a support member fixed to the support member mounting region of the package,
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、 前記支持部材固着領域の重心位置が、前記底面重心位置を通る前記音叉型振動 子の長手方向線上であって、該底面重心位置から前記検出脚側に寄った位置にあ ることを特徴とする振動子搭載構造。  When the point at which the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface center of gravity position, the center of gravity position of the support member fixing region is on the longitudinal direction line of the tuning fork type vibrator passing through the bottom surface center of gravity position. The vibrator mounting structure, wherein the vibrator mounting structure is located at a position close to the detection leg side from the position of the bottom center of gravity.
[0024] (2)前記支持部材固着領域の重心位置と前記底面重心位置との間の距離は、前記 長手方向における前記支持部材固着領域の長さの 30%以上であることを特徴とす る前記(1)に記載の振動子搭載構造。  (2) The distance between the gravity center position of the support member fixing region and the bottom surface gravity center position is 30% or more of the length of the support member fixing region in the longitudinal direction. The vibrator mounting structure according to (1) above.
[0025] (3)—対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚およ び該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該月同 部の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着され た支持部材を有する音叉型振動子の振動子搭載構造において、  [0025] (3) —a pair of excitation drive legs and a pair of vibration detection legs, and a trunk portion that couples the excitation drive legs and the vibration detection legs, and between the trunk portion and the package. In the vibrator mounting structure of a tuning fork vibrator having an intervening support member fixing region on the bottom surface of the moon and the support member mounting region of the package,
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、 前記支持部材固着領域の重心位置が、前記底面重心位置にあるか、又は前記底面 重心位置を通る前記音叉型振動子の長手方向線上であって、該底面重心位置から 前記検出脚側に寄った位置にあり、 前記支持部材固着領域の形状が、前記長手方向線に関し対称であり、前記駆動脚 側に向けて尖鋭となって 、ることを特徴とする When a point at which the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface center of gravity position, the center of gravity position of the support member fixing region is the bottom surface center of gravity position or the tuning fork type passing through the bottom surface center of gravity position It is on the longitudinal direction line of the vibrator and is located at the position near the detection leg side from the position of the center of gravity of the bottom surface, The shape of the support member fixing region is symmetric with respect to the longitudinal direction line, and is sharpened toward the drive leg side.
ことを特徴とする振動子搭載構造。  A vibrator mounting structure characterized by this.
[0026] (4)前記支持部材固着領域の形状が、 6角形であるか、又は前記検出脚側を底辺と する台形若しくは三角形であることを特徴とする前記 (3)に記載の振動子搭載構造。 発明の効果  [0026] (4) The vibrator mounting according to (3), wherein the shape of the support member fixing region is a hexagon, or a trapezoid or a triangle having the detection leg side as a base. Construction. The invention's effect
[0027] 上記本発明によれば、音叉型振動子を支持部材で支持することに起因して、振動 子に生じる歪の上下非対称性の発生を抑制することにより、検出脚に漏れる駆動振 動を低減し、ひいては音叉型振動ジャイロの角速度検出精度の向上と安定化を可能 にする振動子搭載構造が提供できる。さらに、本発明によれば、効率的なエッチング 方法が確立されていない材料、例えばランガサイト、でなる音叉型振動子にも適用で き、振動エネルギーの損失が少なぐ簡単な構造であり、小型化が可能であり、また 制作費も低廉な振動子搭載構造を提供できる。  [0027] According to the present invention described above, drive vibration that leaks to the detection leg by suppressing the occurrence of vertical asymmetry of the distortion generated in the vibrator due to the tuning fork vibrator supported by the support member. Therefore, it is possible to provide a vibrator mounting structure that can improve and stabilize the angular velocity detection accuracy of a tuning-fork vibration gyro. Furthermore, according to the present invention, it can be applied to a tuning fork type vibrator made of a material for which an efficient etching method has not been established, for example, langasite, and has a simple structure with a small loss of vibration energy and a small size. It is possible to provide a resonator mounting structure that can be manufactured at low cost.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 次に本発明の実施の形態を挙げ、図面を参照し、本発明を一層具体的に説明する 。図 1は、本発明の第 1の実施の形態の振動子支持構造を有する音叉型振動ジャィ 口を示す分解斜視図である。図 2は、図 1の音叉型振動子における支持部材固着領 域の中心点が、前記音叉型振動子の重心位置から検出脚側に 30%以上寄った位 置であること (本発明の第 1の実施の形態)を示す前記音叉型振動子の底面の平面 図である。図 3は、前記音叉型振動子表面の前記支持部材固着領域の形状が、前 記駆動脚側に向けて尖鋭となっていること (本発明の第 2の実施の形態)を説明する 図であり、同図 (A)は前記音叉型振動子の底面の平面図、同図(B)は 6角形をした 支持部材固着領域の平面図、同図 (C)は 5角形をした支持部材固着領域の平面図 である。図 4は、前記音叉型振動子表面の前記支持部材固着領域の形状が、前記 検出脚側を底辺とする台形または三角形であること (本発明の第 3の実施の形態)を 説明する図であり、同図 (A)は前記音叉型振動子の底面の平面図、同図 (B)は台形 をした支持部材固着領域の平面図、同図 (C)は 3角形をした支持部材固着領域の 平面図である。 [0029] 図 1乃至図 4において、 1は音叉型振動子、 laは音叉型振動子 1における支持部 材固着領域、 2は支持部材、 3はパッケージ、 10は胴部、 10cは胴部 10の重心、 11 は駆動脚、 11a, l ibは励振用駆動脚、 11cは非励振用駆動脚、 12は検出脚、 12a , 12bは振動用検出脚、 12cは非振動用検出脚、 20cは支持部材固着領域 laの中 心、 30はパッケージ基板、 30aは支持部材搭載領域、 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a, 37bは端子である。 Next, embodiments of the present invention will be described, and the present invention will be described more specifically with reference to the drawings. FIG. 1 is an exploded perspective view showing a tuning-fork type vibration girder having a vibrator support structure according to a first embodiment of the present invention. FIG. 2 shows that the center point of the support member fixing region in the tuning fork vibrator of FIG. 1 is a position that is more than 30% closer to the detection leg side from the center of gravity of the tuning fork vibrator (the first aspect of the invention). FIG. 2 is a plan view of the bottom surface of the tuning fork vibrator showing the first embodiment. FIG. 3 is a diagram for explaining that the shape of the support member fixing region on the surface of the tuning fork vibrator is sharp toward the drive leg side (second embodiment of the present invention). (A) is a plan view of the bottom surface of the tuning fork vibrator, (B) is a plan view of a hexagonal support member fixing region, and (C) is a pentagonal support member fixing. It is a top view of an area. FIG. 4 is a diagram for explaining that the shape of the support member fixing region on the surface of the tuning fork vibrator is a trapezoid or a triangle with the detection leg side as a base (third embodiment of the present invention). (A) is a plan view of the bottom surface of the tuning fork vibrator, (B) is a plan view of a trapezoidal support member fixing region, and (C) is a triangular support member fixing region. FIG. In FIGS. 1 to 4, 1 is a tuning fork type vibrator, la is a support member fixing region in the tuning fork type vibrator 1, 2 is a support member, 3 is a package, 10 is a body part, 10c is a body part 10 11a, l ib is an excitation drive leg, 11c is a non-excitation drive leg, 12 is a detection leg, 12a and 12b are vibration detection legs, 12c is a non-vibration detection leg, 20c is Center of support member fixing area la, 30 is a package substrate, 30a is a support member mounting area, 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a, 37b are terminals It is.
[0030] 図 1には、音叉型振動子 1、支持部材 2およびパッケージ 3が分解して示してある。  In FIG. 1, the tuning fork vibrator 1, the support member 2, and the package 3 are shown in an exploded manner.
音叉型振動子 1、支持部材 2およびパッケージ 3が組み合わされた状態では、支持部 材 2の下面はパッケージ基板 30の上面における支持部材搭載領域 30aに接着剤で 固着され、支持部材 2の上面は音叉型振動子 1の胴部 10の底面の支持部材固着領 域 laに接着剤で固着されている。符号 1, 2, 3の部材が結合された状態は、支持部 材 2が、支持部材搭載領域 30aを支点として、音叉型振動子 1の固着領域 laを支持 している状態であり、音叉型振動子 1が支持部材 2を介してパッケージ 3に搭載され た状態である。  In the state where the tuning fork vibrator 1, the support member 2, and the package 3 are combined, the lower surface of the support member 2 is fixed to the support member mounting region 30a on the upper surface of the package substrate 30 with an adhesive, and the upper surface of the support member 2 is The tuning fork vibrator 1 is fixed to the support member fixing region la on the bottom surface of the body 10 with an adhesive. The state in which the members denoted by reference numerals 1, 2, and 3 are joined is a state in which the support member 2 supports the fixing region la of the tuning fork vibrator 1 with the support member mounting region 30a as a fulcrum. The vibrator 1 is mounted on the package 3 via the support member 2.
[0031] 音叉型振動子 1における駆動脚 11は、図 10の駆動脚 111における励振用駆動脚 111a, 11 lbに対応する励振用駆動脚 11a, l ibに加え、非励振用駆動脚 11cを備 える。同様に、音叉型振動子 1における検出脚 12は、図 10の検出脚 112における振 動用検出脚 112a, 112bに対応する振動用検出脚 12a, 12bに加え、非振動用検 出脚 12cを備える。非励振用駆動脚 11c及び非振動用検出脚 12cは、特許文献 1及 び 2の音叉型振動ジャイロにも非励振用駆動側アーム及び非振動用検出側アームと して設けてあるものであり、駆動脚 11および検出脚 12の振動を安定ィ匕するために備 えてあるが、本発明の作用には重要でないし、図 10のようにこれら脚 11c及び 12cを 欠いても本実施の形態は実施できるので、以下では非励振用駆動脚 11c及び非振 動用検出脚 12cについてはこれ以上の説明は省略する。図 1の音叉型振動ジャイロ における音叉型振動子 1の作用は、図 10に示す音叉型振動子の作用と同様である  [0031] The drive leg 11 in the tuning fork vibrator 1 includes a non-excitation drive leg 11c in addition to the excitation drive legs 11a and l ib corresponding to the excitation drive legs 111a and 11 lb in the drive leg 111 in FIG. Prepare. Similarly, the detection leg 12 in the tuning fork type vibrator 1 includes a non-vibration detection leg 12c in addition to the vibration detection legs 12a and 12b corresponding to the vibration detection legs 112a and 112b in the detection leg 112 of FIG. . The non-excitation drive leg 11c and the non-vibration detection leg 12c are also provided as a non-excitation drive side arm and a non-vibration detection side arm in the tuning fork type vibration gyroscopes of Patent Documents 1 and 2. Although it is provided to stabilize the vibration of the drive leg 11 and the detection leg 12, it is not important for the operation of the present invention, and even if these legs 11c and 12c are omitted as shown in FIG. Therefore, further description of the non-excitation drive leg 11c and the non-excitation detection leg 12c will be omitted below. The operation of the tuning fork type vibrator 1 in the tuning fork type vibration gyro shown in FIG. 1 is the same as that of the tuning fork type vibrator shown in FIG.
[0032] 図 1の音叉型振動子 1は、ランガサイトからなる単結晶圧電体である。音叉型振動 子 1における励振用駆動脚 11a及び l ibの少なくとも一方には駆動用電極が、振動 用検出脚 12a及び 12bの少なくとも一方には検出用電極がそれぞれ設けてあるが、 図示は省略してある。また、駆動用電極および検出用電極は、端子 31a, 31b, 32a , 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a又は 37bの内のいずれ かへボンディングワイヤで接続されて 、るが、それらボンディングワイヤも図示が省略 してある。 A tuning fork vibrator 1 in FIG. 1 is a single crystal piezoelectric body made of langasite. A driving electrode is provided on at least one of the excitation driving legs 11a and l ib in the tuning fork resonator 1 and vibrates. At least one of the detection legs 12a and 12b for detection is provided with a detection electrode, but the illustration is omitted. The drive electrode and the detection electrode are connected to any of the terminals 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a, or 37b with bonding wires. However, these bonding wires are not shown.
[0033] 図 2は、図 1の音叉型振動子 1における支持部材固着領域 laの中心点 20cが、音 叉型振動子 1の重心位置 1 Ocから検出脚 12側に Dだけ寄った位置であること (本発 明の第 1の実施の形態)を示す平面図である。重心位置 10cは、音叉型振動子 1の重 心を胴部 10の底面に投射した位置であり、前述の底面重心位置に相当する。ここで 、図 8を参照し、胴部 10における面内振動による面内振動方向の変位 (駆動振動に よる変位)の分布を見ると、面内歪は駆動脚 11側で大きぐ検出脚 12側で小さい。ま た、図 9を参照し、胴部 10における面垂直振動による変位 (検出振動による面垂直変 位)の分布を見ると、面内振動方向の変位は、やはり駆動脚 11側で大きぐ検出脚 1 2側で小さい。そこで、駆動振動と検出振動の合成振動による胴部 10の歪が最小と なる点は、音叉型振動子 1の重心位置 10cよりも検出脚 12側に寄った所にある。図 2 では支持部材固着領域 laの中心 (領域 laの重心に一致) 20cが、 laの長さ Lの 30 %以上、重心位置 10cから距離 D (D≥0.3L)だけ離れて検出脚 12側にあるので、支 持部材固着領域 laの中心 20cが振動子重心 10cと同 Cf立置にある従来の場合に比 ベると、胴部 10における駆動振動に対する支持部材 2の拘束は著しく小となる。従つ て、胴部 10の上側 (支持部材 2に接しない側)と下側 (支持部材 2に接する側、支持 部材固着領域 la側)とで、歪の上下非対称性は著しく小となり、検出脚 12に漏れる 駆動振動が低減し、ひいては音叉型振動ジャイロの角速度検出精度が向上し、また 安定化する。  [0033] FIG. 2 shows a position where the center point 20c of the support member fixing region la in the tuning fork vibrator 1 of FIG. 1 is shifted from the center of gravity 1 Oc of the tuning fork vibrator 1 by D to the detection leg 12 side. FIG. 2 is a plan view showing a certain state (a first embodiment of the present invention). The center-of-gravity position 10c is a position where the center of the tuning fork vibrator 1 is projected onto the bottom surface of the trunk portion 10, and corresponds to the above-described bottom-surface center-of-gravity position. Here, referring to FIG. 8, when looking at the distribution of the displacement in the in-plane vibration direction due to the in-plane vibration in the body 10 (displacement due to the drive vibration), the in-plane distortion is large on the drive leg 11 side. Small on the side. In addition, referring to Fig. 9, looking at the distribution of displacement due to surface vertical vibration in the body 10 (surface vertical displacement due to detected vibration), the displacement in the in-plane vibration direction is still detected to be large on the drive leg 11 side. Leg 1 Small on the 2 side. Therefore, the point where the distortion of the body portion 10 due to the combined vibration of the drive vibration and the detection vibration is minimized is closer to the detection leg 12 side than the center of gravity position 10c of the tuning fork vibrator 1. In Fig. 2, the center of the support member fixing area la (coincides with the center of gravity of the area la) 20c is 30% or more of the length L of la, and it is separated from the center of gravity 10c by a distance D (D≥0.3L). Therefore, compared with the conventional case where the center 20c of the support member fixing region la is located at the same Cf as the center of gravity 10c of the vibrator, the restraint of the support member 2 against the drive vibration in the body 10 is extremely small. Become. Therefore, the upper and lower asymmetry of the strain is remarkably small between the upper side (the side not in contact with the support member 2) and the lower side (the side in contact with the support member 2 and the support member fixing region la side) of the body 10 and detection. Drive vibration that leaks to the leg 12 is reduced, and the angular velocity detection accuracy of the tuning-fork type vibration gyro is improved and stabilized.
[0034] 以上に説明したように、図 1、図 2の実施の形態 (第 1の実施の形態)では、胴部 10 の支持部材固着領域 laの中心は、振動歪の分布の中で歪が小となる点にある。そこ で第 1の実施の形態では、支持部材 2の拘束が胴部 10の駆動振動に与える影響が 小さぐ胴部 10の上側 (支持部材 2に接しない側)と下側 (支持部材 2に接する側、支 持部材固着領域 la側)とで歪大きさが異なるという、いわゆる歪の上下非対称性は 著しく小となり、検出脚に漏れる駆動振動が低減し、ひいては音叉型振動ジャイロの 角速度検出精度が向上し、また安定化する。 As described above, in the embodiment of FIGS. 1 and 2 (the first embodiment), the center of the support member fixing region la of the trunk portion 10 is distorted in the distribution of vibration strain. Is in the point where becomes small. Therefore, in the first embodiment, the influence of the restraint of the support member 2 on the drive vibration of the body part 10 is small (on the side not contacting the support member 2) and the lower side (on the support member 2). The so-called up-down asymmetry of the strain, which is different in the magnitude of the strain on the contact side, the support member fixing area la side), is Drive vibration that leaks to the detection legs is reduced significantly, and the angular velocity detection accuracy of the tuning fork type vibration gyro is improved and stabilized.
[0035] 図 1、図 2の実施の形態では音叉型振動子 1を構成する圧電結晶材料としてランガ サイトを用いた。ランガサイトは、効率的なエッチング方法が確立されていない材料で あるが、本実施の形態の製造における振動子 1および支持部材 2の成形は、ワイヤー ソーまたは砲石による機械力卩ェで可能であり、エッチングにより成形を要する工程が ないので、本実施の形態は容易に実現できる。  In the embodiment shown in FIGS. 1 and 2, langasite is used as the piezoelectric crystal material constituting the tuning fork vibrator 1. Langasite is a material for which an efficient etching method has not been established, but formation of vibrator 1 and support member 2 in the manufacture of this embodiment is possible with a mechanical force using a wire saw or a turret. In addition, since there is no process that requires molding by etching, this embodiment can be easily realized.
[0036] 図 3は、本発明の第 2の実施の形態の振動子搭載構造を示す平面図である。図 3 ( A)、(B)では、音叉型振動子 1における支持部材固着領域 laの形状が 6角形であり 、駆動脚 11側に向けて尖鋭な頂点を有している。図 3 (C)では、音叉型振動子 1に おける支持部材固着領域 laの形状が 5角形であり、該 5角形は駆動脚 11側に向け て尖鋭な頂点を有している。図 3の実施の形態において、支持部材固着領域 laの長 さを L、音叉型振動子 1の重心位置 10c (前述の底面重心位置に相当)と支持部材固 着領域 laの重心 20cとの距離を Dとするとき、 D≥0とする。  FIG. 3 is a plan view showing a vibrator mounting structure according to the second embodiment of the present invention. 3A and 3B, the shape of the support member fixing region la in the tuning fork vibrator 1 is a hexagon and has a sharp apex toward the drive leg 11 side. In FIG. 3 (C), the shape of the support member fixing region la in the tuning fork vibrator 1 is a pentagon, and the pentagon has a sharp apex toward the drive leg 11 side. In the embodiment of FIG. 3, the length of the support member fixing region la is L, and the distance between the center of gravity position 10c of the tuning fork vibrator 1 (corresponding to the above-mentioned bottom center of gravity position) and the center of gravity 20c of the support member fixing region la. If D is D, then D≥0.
[0037] 図 8に示すとおり、駆動脚 11と胴部 10との境界付近から胴部 10の重心にかけての 領域は、胴部 10の底面で駆動振動の変位が大きい分布を示す領域である。図 3の 実施の形態では、支持部材固着領域 laの面積のうち、駆動振動の変位が大きい分 布を示す領域の面積力 、さぐ一方では駆動振動変位力 、さい胴部 10の重心から 検出脚 12側の面積が大きい。そこで、支持部材固着領域 laが長方形である従来の 場合に比べると、胴部 10における駆動振動に対する支持部材 2の拘束は著しく小と なるので、図 5を参照して説明した胴部 10における歪の上下非対称性が軽減され、 検出脚 12に漏れる駆動振動が軽減され、ひ 、ては音叉型振動ジャイロの角速度検 出精度の向上と安定ィ匕が可能となる。本実施の形態の製造における振動子 1及び支 持部材 2の成形は、ワイヤーソーまたは砲石による機械加工で可能であり、エツチン グにより成形を要する工程がないので、本実施の形態は容易に実現できる。  As shown in FIG. 8, the region from the vicinity of the boundary between the driving leg 11 and the trunk portion 10 to the center of gravity of the trunk portion 10 is a region showing a distribution in which the displacement of the driving vibration is large on the bottom surface of the trunk portion 10. In the embodiment of FIG. 3, the area force of the region showing the distribution where the displacement of the driving vibration is large in the area of the support member fixing region la, the driving vibration displacement force on the other hand, the center of gravity of the trough 10 is detected from the leg. The area on the 12 side is large. Therefore, compared with the conventional case where the support member fixing region la is rectangular, the restraint of the support member 2 with respect to the drive vibration in the body portion 10 is remarkably small, so that the distortion in the body portion 10 described with reference to FIG. As a result, the driving vibration leaking to the detection leg 12 is reduced, and the angular velocity detection accuracy of the tuning-fork type vibration gyro can be improved and stabilized. The vibrator 1 and the supporting member 2 can be formed by machining with a wire saw or a turret in the manufacture of the present embodiment, and there is no process that requires forming by etching. realizable.
[0038] 図 4は、本発明の第 3の実施の形態の振動子搭載構造を示す図であり、図 3と同様 な図の構成となっている。図 4の実施の形態において、支持部材固着領域 laの長さ を L、音叉型振動子 1の重心位置 10c (前述の底面重心位置に相当)と支持部材固 着領域 laの重心 20cとの距離を Dとするとき、 D≥0とする。 FIG. 4 is a diagram showing a vibrator mounting structure according to the third embodiment of the present invention, and has a configuration similar to FIG. In the embodiment of FIG. 4, the length of the support member fixing region la is L, the center of gravity position 10c of the tuning fork vibrator 1 (corresponding to the above-described bottom center of gravity position) and the support member fixing region la. If the distance from the center of gravity 20c of the landing area la is D, then D≥0.
[0039] 図 4の振動子搭載構造では、支持部材固着領域 laの形状は、検出脚 12側を底辺 とする台形または三角形である。支持部材固着領域 laの面積のうち、胴部 10の駆動 振動歪が大きい分布を示す領域である、駆動脚 11と胴部 10との境界付近力も重心 10cにかけての面積が小さぐ一方では駆動振動歪が小さい分布を示す重心 10cか ら検出脚 12側の面積が大きい。そこで全体として、支持部材の拘束が減少するので 、図 5を参照して説明した胴部 10における歪の上下非対称性が軽減され、検出脚 12 に漏れる駆動振動が軽減され、ひいては音叉型振動ジャイロの角速度検出精度の 向上と安定ィ匕が可能となる。本実施の形態の製造における振動子 1および支持部材 2の成形は、ワイヤーソーまたは砲石による機械力卩ェで可能であり、エッチングにより 成形を要する工程がな 、ので、本実施の形態は容易に実現できる。  In the vibrator mounting structure of FIG. 4, the shape of the support member fixing region la is a trapezoid or a triangle with the detection leg 12 side as a base. Out of the area of the support member fixing area la, the area near the boundary between the driving leg 11 and the body 10 is a region showing a distribution in which the driving vibration distortion of the body 10 is large. The area on the detection leg 12 side is large from the center of gravity 10c showing a distribution with small distortion. Accordingly, since the restraint of the support member is reduced as a whole, the vertical asymmetry of the distortion in the trunk portion 10 described with reference to FIG. 5 is reduced, the drive vibration leaking to the detection leg 12 is reduced, and the tuning fork type vibration gyro This makes it possible to improve the angular velocity detection accuracy and improve stability. Forming the vibrator 1 and the support member 2 in the manufacture of the present embodiment can be performed by a mechanical force using a wire saw or a turret, and there is no process that requires forming by etching. Therefore, the present embodiment is easy. Can be realized.
[0040] 以上には本発明の実施の形態を、図面を参照して、具体的に説明したが、本発明 力 Sこれらの実施の形態に限定されるものでないことは勿論である。  Although the embodiments of the present invention have been specifically described above with reference to the drawings, the present invention is of course not limited to these embodiments.
図面の簡単な説明  Brief Description of Drawings
[0041] [図 1]本発明の第 1の実施の形態の振動子支持構造を有する音叉型振動ジャイロを 示す分解斜視図である。  FIG. 1 is an exploded perspective view showing a tuning fork type vibration gyro having a vibrator support structure according to a first embodiment of the present invention.
[図 2]図 1に示した本発明の第 1の実施の形態を示す図であり、音叉型振動ジャイロ の支持部材固着領域 laの中心位置 20cと胴部 10の重心 10cの関係を示す音叉型 振動子 1の底面の平面図である。  2 is a diagram showing the first embodiment of the present invention shown in FIG. 1, and is a tuning fork showing the relationship between the center position 20c of the support member fixing region la of the tuning fork-type vibrating gyroscope and the center of gravity 10c of the trunk portion 10; FIG. 3 is a plan view of the bottom surface of the type resonator 1.
[図 3]本発明の第 2の実施の形態 (振動子支持構造)を示す図であり、支持部材固着 領域 laの形状が駆動脚 11側に向けて尖鋭となっている 6角形頂点 (A, B)または 5 角形頂点 (C)であることを示す音叉型振動子 1の底面の平面図である。  FIG. 3 is a diagram showing a second embodiment (vibrator support structure) of the present invention, in which the shape of the support member fixing region la is sharp toward the drive leg 11 side (A , B) or a pentagonal vertex (C). FIG.
圆 4]本発明の第 3の実施の形態 (振動子支持構造)を示す図であり、支持部材固着 領域 laの形状が、前記検出脚 12側を底辺とする台形 (B)または三角形 (A、 C)であ ることを示す音叉型振動子 1の底面の平面図である。  FIG. 4 is a diagram showing a third embodiment (vibrator support structure) of the present invention, in which the shape of the support member fixing region la is a trapezoid (B) or a triangle (A FIG. 2 is a plan view of the bottom surface of the tuning fork vibrator 1 showing that C).
[図 5]音叉型振動子の胴部を支持部材で支持したときに、振動子に現れる歪の変動 を示す模式図である。  FIG. 5 is a schematic diagram showing a variation in distortion appearing in the vibrator when the body of the tuning fork vibrator is supported by a support member.
[図 6]胴部 10を支持しないときにおける駆動振動方向(面内振動方向)の変位の分布 図である。 [Figure 6] Displacement distribution in the driving vibration direction (in-plane vibration direction) when the body 10 is not supported FIG.
[図 7]胴部 10を支持しないときにおける駆動振動と直交する方向(面垂直振動方向) の変位の分布図である。  FIG. 7 is a distribution diagram of displacement in a direction perpendicular to the drive vibration (surface vertical vibration direction) when the body 10 is not supported.
[図 8]胴部 10の重心を支持部材 2で支持したときにおける駆動振動方向(面内振動 方向)の変位の分布図である。  FIG. 8 is a distribution diagram of displacement in the driving vibration direction (in-plane vibration direction) when the center of gravity of the trunk portion 10 is supported by the support member 2.
[図 9]胴部 10の重心を支持部材 2で支持したときにおける駆動振動と直交する方向( 面垂直振動方向)の変位の分布図である。  FIG. 9 is a distribution diagram of displacement in a direction perpendicular to the drive vibration (surface vertical vibration direction) when the center of gravity of the trunk portion 10 is supported by the support member 2.
[図 10]駆動脚と検出脚とを胴部で結合した構造の音叉型振動子の作動原理を説明 する図である。  FIG. 10 is a diagram for explaining the operating principle of a tuning fork vibrator having a structure in which a driving leg and a detection leg are coupled to each other by a trunk.
[図 11]特許文献 3に記載の回転速度センサ 10 (音叉型振動ジャイロ)を示す図である [図 12]特許文献 3に記載の音叉 13を示す図である。  11 is a diagram showing a rotational speed sensor 10 (tuning fork type vibration gyroscope) described in Patent Document 3. FIG. 12 is a diagram showing a tuning fork 13 described in Patent Document 3.
[図 13]特許文献 3に記載されたハウジング 11の基部 14及び取付構造体 15を示す図 である。  FIG. 13 is a view showing a base portion 14 and a mounting structure 15 of a housing 11 described in Patent Document 3.
[図 14]特許文献 4の振動型ジャイロスコープにおいて、振動子 50を支持する支持手 段を示す図である。  14 is a view showing a support means for supporting the vibrator 50 in the vibration gyroscope of Patent Document 4. FIG.
符号の説明 Explanation of symbols
1 音叉型振動子  1 Tuning fork type vibrator
la 音叉型振動子 1における支持部材固着領域  la Support area of tuning fork vibrator 1
2 支持部材  2 Support member
3 パッケージ  3 Package
10 胴部  10 Torso
10c 振動子重心  10c center of gravity
11 駆動脚  11 Driving legs
11a, l ib, 111a, 111b 励振用駆動脚  11a, l ib, 111a, 111b Excitation drive leg
11c 非励振用駆動脚  11c Non-excited drive leg
12 検出脚  12 Detection legs
12a, 12b, 112a, 112b 振動用検出脚 12c 非振動用検出脚 12a, 12b, 112a, 112b Vibration detection legs 12c Non-vibration detection leg
20c 支持部材固着領域重心 20c Support member fixing area center of gravity
30 パッケージ基板 30 Package substrate
30a 支持部材搭載領域 30a Support member mounting area
31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a: 端子  31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a: Terminal
a l, β ΐ, a 2, β 2 駆動脚の振動変位  a l, β ΐ, a 2, β 2 Vibration displacement of driving leg
al, bl, a2, b2 胴部の上側(支持部材が固着されていない側)における歪 cl, dl, c2, d2 胴部の下側 (支持部材が固着されている側)における歪 al, bl, a2, b2 Strain on the upper side of the body (the side where the support member is not fixed) cl, dl, c2, d2 Strain on the lower side of the body (the side where the support member is fixed)

Claims

請求の範囲 The scope of the claims
[1] 一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚および 該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該胴部 の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着された 支持部材を有する音叉型振動子の振動子搭載構造にお!、て、  [1] A pair of excitation drive legs and a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection leg, the body part being interposed between the body part and the package, The vibrator mounting structure of a tuning fork vibrator having a support member fixing region on the bottom surface of the substrate and a support member fixed to the support member mounting region of the package!
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、 前記支持部材固着領域の重心位置が、前記底面重心位置を通る前記音叉型振動 子の長手方向線上であって、該底面重心位置から前記検出脚側に寄った位置にあ ることを特徴とする振動子搭載構造。  When the point at which the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface center of gravity position, the center of gravity position of the support member fixing region is on the longitudinal direction line of the tuning fork type vibrator passing through the bottom surface center of gravity position. The vibrator mounting structure, wherein the vibrator mounting structure is located at a position close to the detection leg side from the position of the bottom center of gravity.
[2] 前記支持部材固着領域の重心位置と前記底面重心位置との間の距離は、前記長手 方向における前記支持部材固着領域の長さの 30%以上であることを特徴とする請 求項 1に記載の振動子搭載構造。  [2] The distance between the gravity center position of the support member fixing region and the bottom surface gravity center position is 30% or more of the length of the support member fixing region in the longitudinal direction. The vibrator mounting structure described in 1.
[3] 一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚および 該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該胴部 の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着された 支持部材を有する音叉型振動子の振動子搭載構造にお!、て、  [3] A pair of excitation drive legs and a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection leg, the body part being interposed between the body part and the package, The vibrator mounting structure of a tuning fork vibrator having a support member fixing region on the bottom surface of the substrate and a support member fixed to the support member mounting region of the package!
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、 前記支持部材固着領域の重心位置が、前記底面重心位置にあるか、又は前記底面 重心位置を通る前記音叉型振動子の長手方向線上であって、該底面重心位置から 前記検出脚側に寄った位置にあり、  When a point at which the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface center of gravity position, the center of gravity position of the support member fixing region is the bottom surface center of gravity position or the tuning fork type passing through the bottom surface center of gravity position It is on the longitudinal direction line of the vibrator and is located at the position near the detection leg side from the position of the center of gravity of the bottom surface,
前記支持部材固着領域の形状が、前記長手方向線に関し対称であり、前記駆動脚 側に向けて尖鋭となって 、ることを特徴とする  The shape of the support member fixing region is symmetric with respect to the longitudinal direction line, and is sharpened toward the drive leg side.
ことを特徴とする振動子搭載構造。  A vibrator mounting structure characterized by this.
[4] 前記支持部材固着領域の形状が、 6角形であるか、又は前記検出脚側を底辺とする 台形若しくは三角形であることを特徴とする請求項 3に記載の振動子搭載構造。 4. The vibrator mounting structure according to claim 3, wherein the shape of the support member fixing region is a hexagon, or a trapezoid or a triangle with the detection leg side as a base.
PCT/JP2006/306255 2005-03-28 2006-03-28 Tuning fork type oscillator mounting structure of oscillating gyroscope WO2006104134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005092384A JP3959097B2 (en) 2005-03-28 2005-03-28 Vibration gyro tuning fork type vibrator mounting structure
JP2005-092384 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006104134A1 true WO2006104134A1 (en) 2006-10-05

Family

ID=37053390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306255 WO2006104134A1 (en) 2005-03-28 2006-03-28 Tuning fork type oscillator mounting structure of oscillating gyroscope

Country Status (2)

Country Link
JP (1) JP3959097B2 (en)
WO (1) WO2006104134A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5112198B2 (en) * 2007-07-13 2013-01-09 日本航空電子工業株式会社 Tuning fork type vibration gyro
JP5016652B2 (en) * 2009-10-14 2012-09-05 日本航空電子工業株式会社 Tuning fork type vibration gyro

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101223U (en) * 1989-01-31 1990-08-13
JPH02101221U (en) * 1989-01-31 1990-08-13
JPH1038579A (en) * 1996-07-19 1998-02-13 Fujitsu Ltd Piezoelectric gyroscope
JPH11173857A (en) * 1997-06-23 1999-07-02 Ngk Insulators Ltd Vibration type gyroscope, vibrator used for the same, analysis method for vibration of vibrator, supporting method for vibrator, and manufacture of vibration type gyroscope
JP2000304549A (en) * 1999-02-17 2000-11-02 Ngk Insulators Ltd Vibration type gyroscope and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101223U (en) * 1989-01-31 1990-08-13
JPH02101221U (en) * 1989-01-31 1990-08-13
JPH1038579A (en) * 1996-07-19 1998-02-13 Fujitsu Ltd Piezoelectric gyroscope
JPH11173857A (en) * 1997-06-23 1999-07-02 Ngk Insulators Ltd Vibration type gyroscope, vibrator used for the same, analysis method for vibration of vibrator, supporting method for vibrator, and manufacture of vibration type gyroscope
JP2000304549A (en) * 1999-02-17 2000-11-02 Ngk Insulators Ltd Vibration type gyroscope and its production method

Also Published As

Publication number Publication date
JP2006275630A (en) 2006-10-12
JP3959097B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
KR100764257B1 (en) Vibrating gyro element, support structure of vibrating gyro element, and gyro sensor
US6046531A (en) Vibrator, vibratory gyroscope, and linear accelerometer
EP2012087B1 (en) Vibration gyro
JP2006201053A (en) Piezoelectric vibrating gyroscope element, support structure of same, and gyro sensor
JP2006201117A (en) Vibrating gyroscope element, support structure of same, and gyro sensor
JP2001255152A (en) Piezoelectric vibrating gyroscope and its frequency adjusting method
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP4295233B2 (en) Tuning fork type vibrator for vibration gyro
JP5353616B2 (en) Vibration gyro element, support structure of vibration gyro element, and gyro sensor
JP2012149961A (en) Vibration gyro
WO2006104134A1 (en) Tuning fork type oscillator mounting structure of oscillating gyroscope
JP2007163200A (en) Vibrating reed and angular velocity sensor
JP2006266969A (en) Tuning fork type piezo-electric oscillating gyroscope
JP4256322B2 (en) Vibrating gyro vibrator mounting structure
JP2000337880A (en) Vibration-type gyroscope and method for adjusting it
JP5970699B2 (en) Sensor unit, electronic equipment
JP4319998B2 (en) Vibrating gyro vibrator
JP4262691B2 (en) Vibrating gyro
JP2009085808A (en) Acceleration sensor and acceleration measurement device
JP3993602B2 (en) Vibration gyro tuning fork type vibrator mounting structure
JPH10318756A (en) Oscillatory gyro
JP2009264863A (en) Gyro sensor vibrating body
JP2005043306A (en) Oscillating gyro sensor
JP2023107353A (en) vibration device
JP2002372421A (en) Angular velocity sensor and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730203

Country of ref document: EP

Kind code of ref document: A1