WO2006104104A1 - Mimo送信装置、mimo受信装置、および再送方法 - Google Patents

Mimo送信装置、mimo受信装置、および再送方法 Download PDF

Info

Publication number
WO2006104104A1
WO2006104104A1 PCT/JP2006/306174 JP2006306174W WO2006104104A1 WO 2006104104 A1 WO2006104104 A1 WO 2006104104A1 JP 2006306174 W JP2006306174 W JP 2006306174W WO 2006104104 A1 WO2006104104 A1 WO 2006104104A1
Authority
WO
WIPO (PCT)
Prior art keywords
interleaving
bits
transmission
codeword
mimo
Prior art date
Application number
PCT/JP2006/306174
Other languages
English (en)
French (fr)
Inventor
Masayuki Hoshino
Ryohei Kimura
Yasuaki Yuda
Tomohiro Imai
Kenichi Miyoshi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP20060730122 priority Critical patent/EP1858187A1/en
Priority to JP2007510495A priority patent/JP4642839B2/ja
Priority to BRPI0609658-1A priority patent/BRPI0609658A2/pt
Priority to US11/909,415 priority patent/US8086927B2/en
Publication of WO2006104104A1 publication Critical patent/WO2006104104A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system

Definitions

  • the present invention relates to a MIMO transmission apparatus, a MIMO reception apparatus, and a retransmission method, and more particularly to a MIMO transmission apparatus, a MIMO reception apparatus, and a retransmission method that randomize errors by interleaving transmitted bits.
  • Multi Input Multi Output communication is attracting attention.
  • a transmission device having a plurality of transmission antennas simultaneously transmits a stream composed of a plurality of bits from each transmission antenna, and a reception device having a plurality of reception antennas separates the streams in the transmission device. Demodulate. Therefore, when different streams are transmitted simultaneously from all the transmission antennas of the transmission apparatus, theoretically, the transmission efficiency can be improved to several times the number of transmission antennas compared to the case where there is only one transmission antenna.
  • Patent Document 1 there is a difference in the transmission power of each transmission antenna, and a stream composed of bits having high importance is also transmitted with a transmission antenna power having a high transmission power.
  • a stream consisting of bits of low importance is also transmitted with transmission antenna power with low transmission power.
  • Patent Document 1 discloses that when a retransmission request is fed back as a reception device power, the transmission device also transmits a transmission antenna force different from that at the previous transmission time for each stream. As a result, it is possible to reduce the number of retransmissions by reducing the possibility that only a specific stream will be mistaken continuously.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-72427
  • An object of the present invention is to provide a MIMO transmission apparatus, a MIMO reception apparatus, and a retransmission method that enable flexible control according to changes in the propagation environment and can further reduce the number of retransmissions. .
  • a MIMO transmission apparatus is a MIMO transmission apparatus including a plurality of transmission antennas, and an error correction code unit for generating a transmission bit by error correction code input of information bits, and generation Interleave means for performing interleaving within a codeword consisting of bits transmitted at the same time among the plurality of transmission antenna powers transmitted, and all bits included in the codeword after interleaving are simultaneously transmitted from the plurality of antennas.
  • a retransmission method is a retransmission method in a MIMO transmission apparatus including a plurality of transmission antennas, and includes a step of generating a transmission bit by performing error correction coding on an information bit.
  • FIG. 1 is a block diagram showing a main configuration of a MIMO transmitting apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an example of an interleave pattern table according to Embodiment 1.
  • FIG. 3 is a block diagram showing a main configuration of the MIMO receiving apparatus according to Embodiment 1
  • FIG. 4 is a sequence diagram showing operations involving retransmission according to Embodiment 1.
  • FIG. 5A shows an example of an interleave pattern according to Embodiment 1.
  • FIG. 6A is a diagram showing another example of an interleave pattern according to Embodiment 1.
  • FIG. 7 is a block diagram showing a main configuration of a MIMO transmitting apparatus according to Embodiment 2 of the present invention.
  • FIG. 8 shows an example of an interleave pattern table according to Embodiment 2.
  • FIG. 9 is a block diagram showing a main configuration of a MIMO receiving apparatus according to Embodiment 2.
  • FIG. 10 is a block diagram showing a main configuration of a MIMO receiving apparatus according to Embodiment 3 of the present invention.
  • the gist of the present invention is to perform interleaving with different interleaving patterns for each retransmission, with all bits transmitted simultaneously from a plurality of transmitting antennas as a unit.
  • FIG. 1 is a block diagram showing a main configuration of the MIMO transmission apparatus according to Embodiment 1 of the present invention.
  • the MIMO transmitter shown in FIG. 1 includes an FEC (Forward Error Correction) encoding unit 101, a rate matching unit 102, an interreno 103, a buffer 104, an inter-codeword interleaver 105, a counter 106, and an interleave pattern table 107.
  • RF Radio Frequency: radio frequency
  • FEC code encoding unit 101 performs error correction encoding on information bits, and outputs transmission bits in which redundant bits are included in information bits to rate matching unit 102.
  • Rate matching section 102 adjusts the coding rate of the transmission signal by performing repetition and puncturing on the transmission bits (rate matching).
  • Interleaver 103 rearranges the order of information bits and redundant bits included in the transmission bits after rate matching (interleaving), and improves resistance to burst errors.
  • the noffer 104 temporarily stores the interleaved transmission bits in preparation for retransmission. Then, buffer 104 outputs the stored transmission bit to inter-codeword interleaver 105 when a retransmission request is input from the MIMO receiving apparatus that is the communication partner.
  • Inter-codeword interleaver 105 performs interleaving in units of all information bits and redundant bits included in symbols transmitted simultaneously from a plurality of transmission antennas.
  • the inter-codeword interleaver 105 for example, can transmit (2 bits x number of transmit antennas) when all the transmit antenna forces are transmitted simultaneously with different symbols modulated by QPSK (Quadrature Phase Shift Keying). ) Interleaved in units of bits.
  • QPSK Quadrature Phase Shift Keying
  • the inter-codeword interleaver 105 performs interleaving in units of 2 bits regardless of the number of transmission antennas. This unit of interleaving is hereinafter referred to as a “code word”.
  • the interleaver 105 in the codeword performs interleaving according to the interleave pattern notified from the interleave pattern table 107 when interleaving in the codeword is performed. Do. As will be described later, the interleave pattern table 107 reports an interleave pattern in which each bit in the codeword is rearranged to a different position for each retransmission.
  • Counter 106 counts retransmission requests from the MIMO receiver and outputs the number of retransmissions to interleave pattern table 107.
  • Interleave pattern table 107 stores an interleave pattern used for intra-codeword interleaving for each number of retransmissions, and notifies inter-word interleaver 105 of an interleave pattern corresponding to the number of retransmissions. That is, the interleave pattern table 10 7 stores the interleave patterns of patterns 0, 1, 2,... In association with the number of retransmissions 0, 1, 2,. is doing. The patterns 0, 1, 2,... Corresponding to the number of retransmissions are different, and each bit in the codeword is rearranged at a different position for each retransmission.
  • Bit distribution section 108 distributes information bits and redundant bits included in the code word to modulation sections 109-1 to 109-m and outputs them. At this time, the bit distribution unit 108 distributes the bits for one symbol according to the modulation schemes in the modulation units 109-1 to 109-m. That is, for example, 2 bits are output to the modulation unit that performs modulation by QPSK, and 4 bits are output to the modulation unit that performs modulation by 16QAM (Quadrature Amplitude Modulation). As described above, since a codeword indicates all bits included in a symbol transmitted simultaneously from a plurality of transmission antennas, the bit distribution unit 108 converts all bits included in the codeword into one symbol. Each is distributed to each of the modulation units 109-1 to 109-m.
  • bit distribution section 108 performs bit distribution in consideration of the number of different symbols transmitted simultaneously from a plurality of transmission antennas (hereinafter referred to as “spatial multiplexing number”).
  • spatial multiplexing number the number of different symbols transmitted simultaneously from a plurality of transmission antennas.
  • the bit distribution unit 108 duplicates the bits included in the codeword as necessary, and simultaneously transmits the same symbol. It outputs to the modulation part corresponding to the transmitting antenna to transmit. In other words, the bit distribution unit 108 distributes all the bits included in the codeword to the number of spatial multiplexing, and after duplicating the bits as necessary, to the modulation units 109-1 to 109-m. Output.
  • Modulation sections 109-1 to 109-m modulate the bits output from bit distribution section 108 to generate symbols.
  • the modulation method in each of the modulation units 109-1 to 109-m can be the same or different from each other!
  • Transmission RF section 110-1 to: L 10-m performs predetermined radio transmission processing (DZA conversion, up-conversion, etc.) on the symbols generated by modulation sections 109-1 to 109-m, Transmit from the corresponding transmitting antenna.
  • DZA conversion, up-conversion, etc. predetermined radio transmission processing
  • the code rate determined by the rate matching unit 102 the priority of information bits at the time of puncturing, and redundant bits Information including the transmission start position, information on the number of retransmissions counted by the counter 106, information on the spatial multiplexing number in the bit distribution unit 108, and modulation schemes in the modulation units 109-l to 109-m
  • a control signal that also has the power of such information is generated and transmitted from the transmission RF section 110-1 to: L10-m via the transmission antenna.
  • FIG. 3 is a block diagram showing a main configuration of the MIMO receiving apparatus according to Embodiment 1.
  • the MIMO receiver shown in FIG. 3 includes reception RF sections 201-1 to 201-n, control signal demodulation section 202, MIMO demodulation section 203, interleave pattern table 204, codeword dintalino 205, dintaliva 206, rate dematching.
  • a unit 207, a likelihood generation unit 208, a likelihood storage unit 209, an FEC decoding unit 210, an error detection unit 211, and a retransmission request generation unit 212 are included.
  • Reception RF sections 201-1 to 201-n receive signals from the corresponding reception antennas, and perform predetermined radio reception processing (down-conversion, AZD conversion, etc.) on the received signals.
  • the reception signals received by the reception RF units 201-1 to 201-n include symbols transmitted from the transmission antennas of the MIMO transmission apparatus.
  • Control signal demodulating section 202 demodulates the control signal received from each receiving antenna, notifies spatial multiplexing number and modulation scheme information included in the control signal to MIMO demodulation section 203, and transmits information on the number of retransmissions.
  • the interleave pattern table 204 is notified, and the encoded information is notified to the rate dematching unit 207.
  • MIMO demodulation section 203 separates and demodulates symbols transmitted from each transmitting antenna on the transmission side using information on the spatial multiplexing number and modulation scheme, and is included in all symbols transmitted simultaneously. Information bits and redundant bits (that is, codewords) to be output to codeword deinterleaver 205 as units. When the same symbol is simultaneously transmitted from a plurality of transmission antennas, MIMO demodulation section 203 demodulates the combined symbol by, for example, maximum ratio combining, for example.
  • Interleaving pattern table 204 is similar to interleaving pattern table 107 included in the MIMO transmission apparatus, and stores interleaving patterns used for interleaving within codewords for each number of retransmissions. Interleaving pattern table 204 notifies inter-word word dinger 205 of an interleaving pattern corresponding to the number of retransmissions.
  • the inter-codeword dingter 205 de-interleaves the code word that has been interleaved according to the interleave pattern notified by the interleave pattern table 204. That is, the intra-codeword dinger 205 rearranges the bits in the code word interleaved with a different interleaving pattern for each retransmission by the transmitting-side inter-codeword interleaver 105 so as to restore the original bits.
  • the dingerever 206 accumulates a plurality of symbols of information bits and redundant bits after intra-codeword dingtering, and rearranges them so that interleaving by the interleaver 103 on the transmission side is restored.
  • the rate dematching unit 207 deletes the repeated bits based on the sign key information and supplements the punctured bits. For the repetition and puncturing patterns, the priority of the information bit at the time of puncturing the code rate included in the code information and the transmission start position of the redundant bit can be determined uniquely.
  • Likelihood generation section 208 performs soft decision on each bit after rate dematching, calculates a likelihood value corresponding to each bit, and outputs the likelihood value to likelihood storage section 209 and FEC decoding section 210. . Also, the likelihood For the retransmitted bits, the degree generation unit 208 synthesizes the likelihood values obtained up to the previous soft decision and the likelihood values obtained by the current soft decision, and the obtained combined likelihood value is estimated. The data is output to the degree storage unit 209 and the FEC decoding unit 210.
  • Likelihood storage section 209 stores the likelihood value or the combined likelihood value generated by likelihood generation section 208 in preparation for the next retransmission.
  • FEC decoding unit 210 performs error correction decoding using a likelihood value or a combined likelihood value corresponding to information bits and redundant bits, makes a hard decision, and performs error detection on the obtained information bits. Part 2
  • the error detection unit 211 detects an error in the information bit using an error detection code such as a CRC (Cyclic Redundancy Check) code attached to the information bit. Then, error detection section 211 notifies retransmission request generation section 212 of the error detection result, and outputs an information bit as received data when no error is detected.
  • an error detection code such as a CRC (Cyclic Redundancy Check) code attached to the information bit. Then, error detection section 211 notifies retransmission request generation section 212 of the error detection result, and outputs an information bit as received data when no error is detected.
  • retransmission request generation section 212 If an error is detected in the information bits as a result of error detection, retransmission request generation section 212 generates a retransmission request that is fed back to the MIMO transmission apparatus. The generated retransmission request is transmitted from the unillustrated transmission unit to the MIMO transmission apparatus.
  • the interleaved transmission bits are stored in the buffer 104 in preparation for retransmission, and are interleaved in units of bits, ie, codewords, that become symbols transmitted simultaneously from a plurality of transmission antennas by the interleaver 105 in the codeword. Is performed (302). At this time, the ability to rearrange the bits in the codeword according to the interleave pattern for each number of retransmissions stored in the interleave pattern table 107. Since this is the first transmission here, the interleave pattern corresponding to 0 for the number of retransmissions. Thus, inter-codeword interleaving is performed. That is, when the interleave pattern table 107 is as shown in FIG. In this case, each bit in the codeword is interleaved according to the pattern 0 corresponding to the retransmission count 0.
  • each bit in the code word is distributed to each transmission antenna by the bit distribution unit 108.
  • the bit distribution by the bit distribution unit 108 is performed according to the respective modulation schemes and spatial multiplex numbers in the modulation units 109-1 to 109-m. Specifically, the number of bits corresponding to one symbol in the modulation scheme of each modulation unit is output to each of the modulation units 109-l to 109-m and the same. The bits that make up this symbol are duplicated and the same bits obtained are output to the respective modulation units
  • modulation sections 109-1 to 109-m and transmission RF sections 110-1 to L10 Transmission processing such as modulation is performed by m (303), and a plurality of symbols corresponding to all bits in the codeword are simultaneously transmitted from each transmission antenna (304). Further, a control signal including encoded information, information on the number of retransmissions, information on the number of spatial multiplexing, and information on the modulation method, which is generated by a control signal generation unit (not shown), is simultaneously transmitted (305).
  • a plurality of symbols and control signals transmitted from a plurality of transmission antennas are received by reception RF sections 201-1 to 201-n via reception antennas in the MIMO receiver, and the control signals are demodulated by control signals.
  • the received signal at each receiving antenna in which a plurality of symbols are mixed is output to MIMO demodulation unit 203.
  • the modulation scheme and spatial multiplexing number in the modulation units 109-1 to 109-m on the transmission side are notified to the MIMO demodulator 203, and the MIMO demodulator 203
  • a plurality of symbols mixed and mixed in the received signal are separated and demodulated (306).
  • the bits (that is, codewords) included in the respective symbols transmitted simultaneously from the transmitting antennas on the transmitting side are output to the intracodeword dintariba 205.
  • the number of retransmissions is the power notified to interleaving pattern table 204. 0 is notified, and the interleave pattern corresponding to the number of retransmissions 0 is notified to the interleave pattern table 204 force codeword dinger 205.
  • the interleave pattern table 204 is as shown in FIG. 2, for example, the pattern 0 corresponding to the number of retransmissions 0 is notified to the intra-codeword dintalizer 205.
  • each bit in the codeword is rearranged by the interleaver 205 in the codeword so that the interleaving by the interleave pattern according to the number of retransmissions is restored (307).
  • the inter-codeword interleaver 105 returns to the original state by the intra-codeword interleaver 105 on the transmission side by the intra-codeword interleaver 205.
  • likelihood value output from likelihood generating section 208 corresponds to all information bits and redundant bits output from FEC code base section 101 on the transmitting side, these likelihood values.
  • the error correction decoding is performed by the FEC decoding unit 210 (308), and the likelihood value corresponding to the information bits after the error correction decoding is hard-determined to obtain the information bits.
  • the error detection unit 211 performs error detection using the error detection code added to the information bits (309), and notifies the error detection result to the retransmission request generation unit 212. If is not detected, the information bit is output as received data.
  • a retransmission request is generated by retransmission request generation section 212 and fed back to the MIMO transmission apparatus (31 0).
  • the feedback request that has been fed back is input to buffer 104 and counter 106 of the MIMO transmitter, and the transmission bits stored in notcher 104 are output again to inter-codeword interleaver 105 and retransmitted by counter 106.
  • the count is counted as 1.
  • the number of retransmissions counted by the counter 106 is the interleave pattern table 107.
  • the interleave pattern force interleave pattern table 107 corresponding to the number of retransmissions is notified to the inter-codeword interleaver 105.
  • inter-codeword interleaver 105 performs inter-codeword interleaving for the transmission bits output from nota 104 with an interleave pattern different from that for the first transmission (311).
  • inter-codeword interleaving is performed according to the interleave pattern corresponding to the number of retransmissions of 1. That is, when the interleave pattern table 107 is as shown in FIG. 2, for example, interleaving is performed for each bit in the codeword according to pattern 1 corresponding to the number of retransmissions 1.
  • each bit force S-interleaved in the codeword is performed by a different interleaving pattern for each number of retransmissions, so that each bit in the codeword is transmitted from a different transmission antenna for each retransmission or the same Even if it is transmitted from the transmitting antenna, the bit position in the symbol is changed for each retransmission.
  • this bit is rearranged at different positions in the codeword at the first transmission and at the first retransmission, so that it is transmitted from different transmission antennas. Can do.
  • the diversity effect is obtained by the difference in the propagation path between each transmission antenna and the MIMO receiver, and the error of this bit is higher than when the same transmission antenna force is transmitted at the first transmission and at the retransmission.
  • the rate characteristic can be improved.
  • the bit position in the symbol can be changed even if the same transmission antenna is transmitted. That is, for example, when the modulation method is 16QAM, the reliability of demodulation differs depending on the bit position in the symbol, which includes 4 bits in one symbol, and is divided into the upper 2 bits and the lower 2 bits according to the reliability. .
  • inter-codeword interleaving is performed for each retransmission, so that a bit that has become a lower bit in the symbol at the first transmission can be made an upper bit in the symbol at the time of retransmission.
  • bit error rate characteristics of one bit can be improved because a bit does not always become a lower bit.
  • inter-codeword interleaving is performed with a different interleaving pattern for each retransmission. Therefore, the error rate characteristics of each bit in the codeword can be improved, and as a result, the number of retransmissions can be reduced.
  • the codeword is a bit included in a symbol transmitted simultaneously from a plurality of transmission antennas, it is composed of at most several tens of bits defined by the number of transmission antennas and the modulation method. This makes it possible to perform fine control in units of several tens of bits transmitted in one symbol time.
  • each bit in the codeword is distributed to each transmitting antenna and transmission processing such as modulation is performed (312), as in the first transmission.
  • a plurality of symbols corresponding to all of the bits are simultaneously retransmitted from each transmitting antenna (313).
  • a control signal including encoded information, information on the number of retransmissions, information on the spatial multiplexing number, and information on the modulation scheme is transmitted simultaneously (314).
  • a plurality of symbols and control signals transmitted from a plurality of transmission antennas are received by the MIMO receiver, as in the initial transmission, and the control signal is demodulated by the control signal demodulator 202.
  • the MIMO demodulator 203 Separation of multiple symbols' Demodulation is performed (315).
  • the bits that is, codewords
  • the bits included in the symbols retransmitted simultaneously from the transmitting antennas on the transmitting side are output to the intracodeword dintarber 205.
  • the order of these bits is different from that at the first transmission.
  • the number of retransmissions included in the control signal is notified to interleave pattern table 204.
  • the number of retransmissions is 1, 1 is notified as the number of retransmissions, and the interleave pattern table 204 receives the code in the codeword.
  • Interleaver 205 is notified of the interleave pattern corresponding to retransmission count 1. That is, when the interleave pattern table 204 is as shown in FIG. 2, for example, the pattern 1 corresponding to the number of retransmissions 1 is notified to the codeword deinterleaver 205.
  • each bit in the codeword is rearranged by the interleaver 205 in the codeword so that the interleaving by the interleave pattern corresponding to the number of retransmissions is restored (316).
  • the bits in the codeword are deinterleaved by the dintaler 206 and rate dematched by the rate dematching unit 207.
  • all the bits after rate dematching are soft-decided by the likelihood generation unit 208, and the obtained likelihood values are stored in the likelihood storage unit 209. Synthesized (317).
  • the obtained combined likelihood value is stored in the likelihood storage unit 209 and output to the FEC decoding unit 210.
  • the combined likelihood value is error-corrected and decoded by the FEC decoding unit 210 (318), error detection is performed by the error detection unit 211 (319), and information bits Is output as received data, or a retransmission request is further fed back to the MIMO transmitter.
  • interleave pattern table 107 is as shown in FIG.
  • FIG. 5 shows an example of an interleaving pattern in a case where the MIMO transmission apparatus has three transmission antennas (ANT1, ANT2, and ANT3), and each transmission antenna power is transmitted with a symbol modulated by QPSK.
  • pattern 0 is notified from interleave pattern table 107 to interleaver 105 in the code word at the time of initial transmission. Therefore, when bits al to a6 included in the code word are input to inter-codeword interleaver 105, pattern 0 shown in the upper part of FIG. 5A is applied, and output order shown in the lower part of FIG. 5A is applied. It is output to the bit distribution unit 108. These bits al to a6 are distributed by the bit distribution unit 108 to the modulation units 109-1 to 109-3 corresponding to the transmission antennas ANT1 to ANT3. 1S Here, all modulation units 109-1 to 109 — Since 3 uses ⁇ 3?
  • Pattern 1 moves the output order 3 at the end of Pattern 0 to the beginning and moves the other output orders 5, 4, 2, 1, 6 one by one backward. It is a shifted pattern.
  • the relationship between the patterns is not limited to this, and for example, each pattern may be random.
  • pattern 2 shown in the upper part of FIG. 5C is applied.
  • symbols including bits a6 and a5 are transmitted from transmission antenna ANT1.
  • symbols including bits a2 and a4 are transmitted simultaneously from transmitting antenna ANT2, and symbols including bits a3 and al are transmitted simultaneously from transmitting antenna ANT3.
  • each bit al to a6 is transmitted at a different transmission antenna from the previous transmission or at a bit position different from the previous transmission in the symbol.
  • the error rate characteristics can be improved for each retransmission.
  • FIG. 6 shows that a MIMO transmission apparatus has two transmission antennas (ANT1 and ANT2), a symbol modulated by 16QAM is transmitted from the transmission antenna ANT1, and a symbol modulated by QPSK is transmitted from the transmission antenna ANT2.
  • ANT1 and ANT2 transmission antennas
  • a symbol modulated by 16QAM is transmitted from the transmission antenna ANT1
  • a symbol modulated by QPSK is transmitted from the transmission antenna ANT2.
  • 2 transmit antennas and 16Q modulation methods each
  • pattern 0 shown in the upper part of FIG. 6A is applied, and as a result of inter-codeword interleaving according to pattern 0, a pattern including bits a4, a3, a6, and a2 is included.
  • the symbol is transmitted from the transmitting antenna ANT1, and the symbols including bits al and a5 are transmitted simultaneously from the transmitting antenna ANT2.
  • the bits a4 and a3 surrounded by the broken line in the lower part of FIG. 6A are the upper bits in the symbol and have high reliability during demodulation.
  • each bit al to a6 is transmitted at a transmission antenna different from the previous transmission or at a bit position different from the previous transmission in the symbol, and the error rate characteristics are changed for each retransmission. Can be improved.
  • inter-codeword interleaving is performed in units of all bits included in symbols simultaneously transmitted from a plurality of transmission antennas, and this inter-codeword interleaving is performed.
  • the interleaving pattern used in is different for each retransmission. For this reason, relatively fine control can be performed in units of bits transmitted in one symbol time, and flexible control according to changes in the propagation environment can be performed.
  • each bit included in the codeword is transmitted from a different transmission antenna for each retransmission, or is allocated to a different bit position in a symbol for each retransmission, and an error is generated in each bit. Can be even, and as a result, the number of retransmissions can be further reduced
  • Embodiment 2 of the present invention is that the interleaving pattern used for intra-codeword interleaving is switched according to changes in the propagation environment, modulation scheme, or spatial multiplexing number.
  • FIG. 7 is a block diagram showing a main configuration of the MIMO transmission apparatus according to Embodiment 2.
  • the MIMO transmitter shown in FIG. 7 includes an FEC encoding unit 101, a rate matching unit 102, an interleaver 103, a buffer 104, an inter-codeword interleaver 105, a counter 106, an interleave pattern table 107a, a bit distribution unit 108, and a modulation.
  • Interleave pattern table 107a stores an interleave pattern used for inter-codeword interleaving for each number of retransmissions, and notifies inter-word interleaver 105 of the interleave pattern corresponding to the number of retransmissions.
  • the interleave pattern table 107a includes a pattern group (hereinafter referred to as an “interleave pattern set”) with an emphasis on replacement of transmission antennas that transmit each bit for each transmission. Two types of interleave pattern sets are stored, with the emphasis on switching the upper and lower order in each bit symbol for each transmission.
  • the interleave pattern table 107a includes, as shown in FIG. 8, for example, patterns x0, xl, x2,...
  • Two types of interleaved patterns are stored in association with each other: a powerful interleaved pattern set, and an interleaved pattern set consisting of y0, yl, y2, ... is doing.
  • the patterns x0, xl, x2,... And the patterns y0, yl, y2,... Differ according to the number of retransmissions, and each bit in the codeword is in a different position for each retransmission. It will be rearranged.
  • Interleave pattern set selection section 401 selects any interleave pattern set in interleave pattern table 107a according to feedback information fed back from the MIMO receiver.
  • the feedback information is information on an interleave pattern set determined by the MIMO receiver such as the number of independent paths in the propagation path, as will be described later.
  • FIG. 9 is a block diagram showing a main configuration of the MIMO receiving apparatus according to the second embodiment.
  • the MIMO receiver shown in FIG. 9 includes a reception RF section 201-1 to 201-n, a control signal demodulation section 202, a MIMO demodulation section 203, an interleave pattern table 204, a deinterleaver 205 in codeword, Interleaver 206, rate dematching unit 207, likelihood generation unit 208, likelihood storage unit 209, FEC decoding unit 210, error detection unit 211, retransmission request generation unit 212, number of paths measurement unit 501, reception quality measurement
  • the unit 502 and the determination unit 503 are provided.
  • Path number measurement section 501 measures the number of independent paths that can be separated on the propagation path from the result of symbol separation / demodulation in MIMO demodulation section 203.
  • the more independent nodes that can be separated the better the communication quality.
  • Reception quality measuring section 502 measures the reception quality of each independent path.
  • determination unit 503 Based on the number of independent paths and the reception quality of each path, determination unit 503 places importance on the replacement of transmission antennas, and the interleave pattern that focuses on the replacement of higher and lower levels in an interleave pattern set or symbol. The force for selecting any of the sets is determined, and the result is used as feedback information.
  • the determination unit 503 is a propagation environment suitable for MIMO communication when there are relatively many independent paths and the reception quality of each path is relatively good. Judgment that the number of multiples will increase, and select an interleave pattern set with emphasis on replacement of transmitting antennas. On the other hand, if the number of independent nodes is relatively small or the reception quality of each path is relatively poor, it is suitable for MIMO communication, and because it is a propagation environment, it is determined that the number of spatial multiplexing is small. Select an interleave pattern set with emphasis on the exchange of the upper and lower parts in the symbol.
  • the number of independent paths on the propagation path is measured by path number measuring section 501 in the MIMO receiver, and the reception quality of each path is measured by reception quality measuring section 502.
  • the determination pattern 503 also determines the interleave pattern set for the number and reception quality measurement results. At this time, when it is determined that the propagation environment is suitable for MIMO communication and different symbols are simultaneously transmitted to a plurality of transmission antenna powers, the determination unit 503 is greatly increased by replacing the transmission antenna for each retransmission. Since a diversity effect can be obtained, a corresponding interleave pattern set is selected.
  • the determination unit 503 replaces the transmission antenna for each retransmission even if the transmission antenna is replaced. Since it is highly likely that it will be the same as when sent, Select an interleave pattern set that focuses on subordinate replacement.
  • the selection result is fed back to the MIMO transmission apparatus as feedback information, and any one of the interleave pattern sets stored in the interleave pattern table 107a is selected by the interleave pattern set selection unit 401 in the Ml MO transmission apparatus. It is.
  • interleave pattern corresponding to the number of retransmissions in the selected interleave pattern set is notified to inter-codeword interleaver 105, and different intra-codeword interleaving is performed for each retransmission. Since the interleaving pattern set pattern corresponding to the propagation environment is applied to the interleaving within the code word here as described above, the number of retransmissions can be reduced most efficiently.
  • interleave patterns there are two types of interleave patterns: an interleave pattern set in which the transmission antenna is switched for each retransmission, and an interleave pattern set in which the upper and lower levels in the symbol are switched for each retransmission.
  • the set is memorized, and depending on whether the propagation environment is suitable for MIMO communication! /, Or not! /, Select a different interleave pattern set, and depending on the number of retransmissions among the selected interleave pattern set Interleaving within codewords using the interleave pattern. For this reason, a plurality of interleave pattern sets can be prepared and an interleave pattern set suitable for the propagation environment can be used, and the number of retransmissions can be reduced most efficiently.
  • the receiving apparatus power S interleave pattern set is determined and the transmitting apparatus power S interleave pattern set is selected according to the feedback information from the receiving apparatus.
  • the pattern set may be determined. That is, for example, when multi-level modulation such as 16QAM or 64QAM is not performed as a result of adaptive modulation in the transmission apparatus, an interleave pattern set for replacing the transmission antenna is selected, while when multi-level modulation is performed with a small number of spatial multiplexing. Select the interleave pattern set that swaps the upper and lower levels.
  • a feature of Embodiment 3 of the present invention is that error rate decoding is repeated on the receiving side to further improve the error rate characteristics. [0099] Since the MIMO transmitting apparatus according to the present embodiment has the same configuration as that of Embodiment 1 (FIG. 1), description thereof is omitted.
  • FIG. 10 is a block diagram showing a main configuration of the MIMO receiving apparatus according to the third embodiment.
  • the MIMO receiver shown in FIG. 10 includes reception RF sections 201-1 to 201-n, control signal demodulation section 202, Ml MO demodulation section 203a, interleave pattern table 204, intra-codeword deinterleaver 205, dintaraver 206, rate dematching.
  • a mapping unit 604 is provided.
  • MIMO demodulation section 203a separates and demodulates the symbols transmitted from the transmitting antennas on the transmitting side using the spatial multiplexing number, the modulation scheme, and the replica symbols output from remapping section 604. Unlike Embodiment 1, MIMO demodulating section 203a uses, as external information, a replica symbol that is also generated as a result of error correction decoding by FEC decoding section 210 during the iterative decoding process. Separation and demodulation.
  • Rate matching section 601 performs rate matching similar to rate matching section 102 in the MIMO transmission apparatus on the result of error correction decoding by FEC decoding section 210.
  • Interleaver 602 performs interleaving similar to that of interleaver 103 in the MIMO transmission apparatus for each bit after rate matching.
  • Inter-codeword interleaver 603 performs inter-codeword interleaving for each bit after interleaving in accordance with the number of retransmissions in the same manner as inter-codeword interleaver 105 in the MIMO transmitter.
  • Re-mapping section 604 symbol-maps each bit after interleaving within the codeword, and generates a replica symbol similar to the symbol generated by the MIMO transmitting apparatus.
  • a replica symbol of a symbol transmitted from the M1MO transmitter is generated in the process of iterative decoding in the MIMO receiver, and the replica symbol is used as external information when demodulating the received signal.
  • demodulation accuracy increases and errors occur.
  • the rate characteristic is further improved.
  • the interleave pattern table 204 power in the MIMO receiving apparatus to the inter-codeword interleaver 603 The interleave pattern corresponding to the number of retransmissions is notified.
  • MIMO demodulation section 203a can accurately separate and demodulate symbols included in the received signal, and can further improve error rate characteristics.
  • a replica symbol consisting of bits subjected to repetitive decoding on the receiving side and inter-codeword interleaving similar to that on the transmitting side in the process of iterative decoding is obtained.
  • the demodulation used is performed. For this reason, the accuracy of demodulation is increased, and the error rate characteristics can be further improved.
  • a normal interleaver is provided together with the inter-codeword interleaver.
  • a normal interleaver may be omitted.
  • Each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Here, it is sometimes called IC, system LSI, super LSI, or ultra LSI, depending on the difference in power integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general-purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable 'processor that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
  • the MIMO transmission apparatus includes a plurality of transmission antennas.
  • An MO transmission device wherein error correction coding means for generating a transmission bit by inputting an error correction code for an information bit, and a portion of the generated transmission bits transmitted simultaneously with the plurality of transmission antenna forces Interleaving means for performing interleaving within a codeword consisting of bits, and transmitting means for simultaneously transmitting all bits included in the codeword after interleaving from the plurality of antennas, the interleaving means comprising: When retransmitting the codeword, a configuration is adopted in which interleaving within the codeword is performed with an interleave pattern different from that at the previous transmission.
  • the MIMO transmission apparatus is the MIMO transmission apparatus according to the first aspect, wherein the interleaving means includes a counter that counts a retransmission request to which a communication partner power is also fed back, and a count number of retransmission requests. And an interleave pattern table for storing different interleave patterns corresponding to each other.
  • the MIMO transmission apparatus is the MIMO transmission apparatus according to the first aspect, wherein the interleaving means corresponds to modulation schemes of different symbols transmitted simultaneously from the plurality of transmission antennas.
  • a configuration is adopted in which a certain number of bits are used as a code word.
  • the bit serving as the code word is defined from the number of different symbols transmitted simultaneously and the number according to the modulation method of each symbol, the number of spatial multiplexing and the number of modulation multi-values The force can also be obtained by intensively calculating the number of bits included in the code word.
  • the interleaving means allocates the same bit to a transmission antenna different from the previous transmission.
  • the interleaving pattern is interleaved in the codeword.
  • the interleaving means is an interleaving pattern in which the same bit is assigned to a bit position different from the previous transmission in the symbol. Is used for interleaving within the codeword
  • the bit error rate is such that the same bit does not always become the lower bit in the symbol. The characteristics can be improved.
  • the MIMO transmission apparatus is the MIMO transmission apparatus according to the first aspect, wherein the interleaving means transmits the same bit as the previous transmission counter and a counter that counts a retransmission request whose communication partner power is also fed back.
  • a second interleave pattern group including an interleave pattern in which the same bits as the first interleave pattern group including an interleave pattern allocated to a transmission antenna different from the time are allocated to different bit positions in the symbol than in the previous transmission
  • an interleave pattern table for storing the data, and a selection unit that selects either the first interleave pattern group or the second interleave pattern group, and counts retransmission requests in the selected interleave pattern group.
  • the interleaving pattern according to the number Adopt a configuration in which the interleaving.
  • the selection unit has a predetermined number or more of independent paths in a propagation path with a communication partner, and A configuration is adopted in which the first interleave pattern group is selected when the reception quality of each independent node is equal to or higher than a predetermined quality.
  • the MIMO transmission apparatus is the selection device according to the sixth aspect.
  • the selection unit is configured to select the second interleave pattern group when the number of independent paths in the propagation path with the communication partner is less than a predetermined number, or when the reception quality of each independent node is lower than the predetermined quality. Take.
  • the MIMO transmission apparatus is the MIMO transmission apparatus according to the sixth aspect, wherein the selection unit is configured such that when all symbols transmitted by the plurality of transmission antenna forces are not subjected to multilevel modulation. A configuration for selecting the first interleave pattern group is adopted.
  • the MIMO transmission apparatus is the MIMO transmission apparatus according to the sixth aspect, wherein the selection unit transmits multi-level modulation of any one of the symbols transmitted from the plurality of transmission antennas.
  • the second interleave pattern group is selected when different symbols having a plurality of transmitting antenna powers less than a predetermined number are transmitted.
  • the MIMO receiving apparatus comprises: a receiving means for receiving a codeword consisting of a plurality of transmit antenna powers provided in a communication partner simultaneously; and a received code A configuration is adopted that includes a dingering unit that performs dingtering corresponding to interleaving in the communication partner with respect to the bits in the word, and an error correction decoding unit that performs error correction decoding of the codeword after ding.
  • the MIMO receiving apparatus in the eleventh aspect, is the same as the interleaving at the communication partner for the bits in the codeword after the error correction decoding.
  • Interleaving means for interleaving, and interleaved codewords as symbols Mapping means for mapping and generating a replica of a symbol transmitted simultaneously from a plurality of transmission antennas provided in the communication partner, and demodulation for demodulating a codeword received by the receiving means using the generated replica
  • a means further comprising a means.
  • the retransmission method according to the thirteenth aspect of the present invention is a retransmission method in a MIMO transmission apparatus including a plurality of transmission antennas, and generates a transmission bit by performing error correction coding on information bits. And interleaving within a codeword composed of bits transmitted simultaneously from the plurality of transmission antennas among the generated transmission bits, and all bits included in the codeword after the interleaving are transmitted to the plurality of antennas. And the step of interleaving within the code word with an interleaving pattern different from the previous transmission when retransmitting the code word.
  • the ⁇ transmitting device, ⁇ receiving device, and retransmission method according to the present invention enable flexible control according to changes in the propagation environment, and can further reduce the number of retransmissions, for example, transmitted. It can be applied to a transmission device, a reception device, and a retransmission method that randomize errors by interleaving bits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

 伝搬環境の変化に応じた柔軟な制御を可能にして、再送回数をより削減するMIMO送信装置を開示する。バッファ(104)は、インタリーブ後の送信ビットを再送に備えて一時的に記憶する。符号語内インタリーバ(105)は、複数の送信アンテナから同時に送信されるシンボルに含まれるすべてのビットを単位としたインタリーブを行う。また、符号語内インタリーバ(105)は、符号語内のインタリーブを行う際に、インタリーブパターンテーブル(107)から通知されるインタリーブパターンに従ったインタリーブを行う。カウンタ(106)は、再送要求をカウントし、再送回数をインタリーブパターンテーブル(107)へ出力する。インタリーブパターンテーブル(107)は、再送回数ごとの符号語内インタリーブに用いるインタリーブパターンを記憶しており、再送回数に応じたインタリーブパターンを符号語内インタリーバ(105)へ通知する。

Description

明 細 書
MIMO送信装置、 MIMO受信装置、および再送方法
技術分野
[0001] 本発明は、 MIMO送信装置、 MIMO受信装置、および再送方法に関し、特に、送 信されるビットをインタリーブして誤りをランダム化する MIMO送信装置、 MIMO受信 装置、および再送方法に関する。
背景技術
[0002] 近年、無線通信においては、伝送効率の向上を図ることができる技術として MIMO
(Multi Input Multi Output)通信が注目されている。 MIMO通信においては、複数の 送信アンテナを備えた送信装置が各送信アンテナから複数のビットで構成されるスト リームを同時に送信し、複数の受信アンテナを備えた受信装置が送信装置における ストリームを分離して復調する。したがって、送信装置のすべての送信アンテナから 互いに異なるストリームが同時に送信される場合は、理論的には送信アンテナが 1本 の場合に比べて伝送効率を送信アンテナ数倍に向上することができる。
[0003] また、例えば特許文献 1に開示されて!、るように、各送信アンテナの送信電力に差 を設け、重要度が高いビットからなるストリームを送信電力が高い送信アンテナ力も送 信し、重要度が低いビットからなるストリームを送信電力が低い送信アンテナ力 送信 することにより、 MIMO通信における全体的な誤り率特性を向上することができる。
[0004] さらに、特許文献 1には、受信装置力も再送要求がフィードバックされた場合、送信 装置は、各ストリームを前回の送信時とは異なる送信アンテナ力も送信することが開 示されている。これにより、特定のストリームのみが連続して誤る可能性を低くして、再 送回数を削減することができる。
特許文献 1:特開 2004— 72427号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、上記従来の技術にお!、ては、ストリーム単位で送信アンテナを切り替 えるという粗い制御のみが行われており、誤り率特性の向上や再送回数の削減には 限界があるという問題がある。すなわち、再送ごとに送信アンテナを切り替える場合、 例えば誤り訂正符号ィ匕などにおけるひとまとまりのビットからなるストリームを単位とし て送信アンテナを切り替えるため、柔軟な制御を行うことができず、時々刻々と変化 する伝搬環境に追従できないことがある。結果として、再送回数を十分に削減するこ とができないことがある。
[0006] 本発明の目的は、伝搬環境の変化に応じた柔軟な制御を可能にして、再送回数を より削減することができる MIMO送信装置、 MIMO受信装置、および再送方法を提 供することである。
課題を解決するための手段
[0007] 本発明に係る MIMO送信装置は、複数の送信アンテナを備える MIMO送信装置 であって、情報ビットを誤り訂正符号ィ匕して送信ビットを生成する誤り訂正符号ィ匕手 段と、生成された送信ビットのうち前記複数の送信アンテナ力 同時に送信される分 のビットからなる符号語内のインタリーブを行うインタリーブ手段と、インタリーブ後の 符号語に含まれるすべてのビットを前記複数のアンテナから同時に送信する送信手 段と、を有し、前記インタリーブ手段は、前記符号語を再送する場合、前回送信時と は異なるインタリーブパターンで前記符号語内のインタリーブを行う構成を採る。
[0008] 本発明に係る再送方法は、複数の送信アンテナを備える MIMO送信装置におけ る再送方法であって、情報ビットを誤り訂正符号ィ匕して送信ビットを生成するステップ と、生成された送信ビットのうち前記複数の送信アンテナ力 同時に送信される分の ビットからなる符号語内のインタリーブを行うステップと、インタリーブ後の符号語に含 まれるすべてのビットを前記複数のアンテナから同時に送信するステップと、前記符 号語を再送する場合、前回送信時とは異なるインタリーブパターンで前記符号語内 のインタリーブを行うステップと、を有するようにした。
[0009] これらによれば、複数の送信アンテナから同時に送信される符号語内のインタリー ブを再送ごとに異なるインタリーブパターンで行うため、 1シンボル時間で送信される 数十ビット単位での細かい制御を行うことができるとともに、再送されるたびに各ビット における誤りの発生を均等にすることができる。結果として、伝搬環境の変化に応じ た柔軟な制御を可能にして、再送回数をより削減することができる。 発明の効果
[0010] 本発明によれば、伝搬環境の変化に応じた柔軟な制御を可能にして、再送回数を より肖減することができる。
図面の簡単な説明
[0011] [図 1]本発明の実施の形態 1に係る MIMO送信装置の要部構成を示すブロック図 [図 2]実施の形態 1に係るインタリーブパターンテーブルの一例を示す図
[図 3]実施の形態 1に係る MIMO受信装置の要部構成を示すブロック図
[図 4]実施の形態 1に係る再送を伴う動作を示すシーケンス図
[図 5A]実施の形態 1に係るインタリーブパターンの一例を示す図
[図 5B]図 5Aに続く図
[図 5C]図 5Bに続く図
[図 6A]実施の形態 1に係るインタリーブパターンの他の一例を示す図
[図 6B]図 6Aに続く図
[図 6C]図 6Bに続く図
[図 7]本発明の実施の形態 2に係る MIMO送信装置の要部構成を示すブロック図
[図 8]実施の形態 2に係るインタリーブパターンテーブルの一例を示す図
[図 9]実施の形態 2に係る MIMO受信装置の要部構成を示すブロック図
[図 10]本発明の実施の形態 3に係る MIMO受信装置の要部構成を示すブロック図 発明を実施するための最良の形態
[0012] 本発明の骨子は、複数の送信アンテナから同時に送信されるすべてのビットを単位 として、再送ごとに異なるインタリーブパターンでインタリーブを行うことである。
[0013] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0014] (実施の形態 1)
図 1は、本発明の実施の形態 1に係る MIMO送信装置の要部構成を示すブロック 図である。図 1に示す MIMO送信装置は、 FEC (Forward Error Correction:前方誤 り訂正)符号化部 101、レートマッチング部 102、インタリーノ 103、バッファ 104、符 号語内インタリーバ 105、カウンタ 106、インタリーブパターンテーブル 107、ビット分 配部 108、変調部 109— 1〜109— m、および送信 RF (Radio Frequency:無線周波 数)部 110—1〜: L 10—mを有している。
[0015] FEC符号ィ匕部 101は、情報ビットに対する誤り訂正符号化を行い、情報ビットに冗 長ビットをカ卩えた送信ビットをレートマッチング部 102へ出力する。
[0016] レートマッチング部 102は、送信ビットに対するレピテイシヨンおよびパンクチャリング を行って、送信信号の符号化率を調整する (レートマッチング)。
[0017] インタリーバ 103は、レートマッチング後の送信ビットに含まれる情報ビットおよび冗 長ビットの順序を並び替え (インタリーブ)、バースト誤りに対する耐性を高める。
[0018] ノッファ 104は、インタリーブ後の送信ビットを再送に備えて一時的に記憶する。そ して、バッファ 104は、通信相手となる MIMO受信装置からの再送要求が入力される と、記憶した送信ビットを符号語内インタリーバ 105へ出力する。
[0019] 符号語内インタリーバ 105は、複数の送信アンテナから同時に送信されるシンボル に含まれるすべての情報ビットおよび冗長ビットを単位としたインタリーブを行う。すな わち、符号語内インタリーバ 105は、例えばすベての送信アンテナ力も QPSK (Quad rature Phase Shift Keying)で変調された互いに異なるシンボルが同時に送信される 場合は、(2ビット X送信アンテナ数)のビットを単位としたインタリーブを行う。
[0020] さらに他の例を挙げれば、 QPSKで変調された互いに異なるシンボルと 16QAM ( Quadrature Amplitude Modulation)で変調された互いに異なるシンボルとがそれぞれ 半数ずつの送信アンテナから同時に送信される場合は、(2ビット X送信アンテナ数 Z2+4ビット X送信アンテナ数 Z2)のビットを単位としたインタリーブを行う。つまり、 符号語内インタリーバ 105におけるインタリーブの単位となるビット数は、送信アンテ ナ数と変調多値数とから決定される。
[0021] ただし、複数の送信アンテナから同一のシンボルが送信される場合は、これらの送 信アンテナから同時に送信されるシンボルをまとめて 1つとみなす。つまり、例えばす ベての送信アンテナから QPSKで変調された同一のシンボルが同時に送信される場 合は、符号語内インタリーバ 105は、送信アンテナ数に拘わらず 2ビットを単位とした インタリーブを行う。なお、このインタリーブの単位を以下では「符号語」という。
[0022] また、符号語内インタリーバ 105は、符号語内のインタリーブを行う際に、インタリー ブパターンテーブル 107から通知されるインタリーブパターンに従ったインタリーブを 行う。後述するように、インタリーブパターンテーブル 107からは、符号語内の各ビット が再送ごとに異なる位置へ並び替えられるインタリーブパターンが通知される。
[0023] カウンタ 106は、 MIMO受信装置からの再送要求をカウントし、再送回数をインタリ ーブパターンテーブル 107へ出力する。
[0024] インタリーブパターンテーブル 107は、再送回数ごとの符号語内インタリーブに用 いるインタリーブパターンを記憶しており、再送回数に応じたインタリーブパターンを 符号語内インタリーバ 105へ通知する。すなわち、インタリーブパターンテーブル 10 7は、例えば図 2に示すように、再送回数 0、 1、 2、 · · ·に対してそれぞれパターン 0、 1、 2、 · · ·のインタリーブパターンを対応づけて記憶している。そして、各再送回数に 応じたパターン 0、 1、 2、 · · ·は、それぞれ異なっており、符号語内の各ビットが再送 ごとに異なる位置に並び替えられることになる。
[0025] ビット分配部 108は、符号語に含まれる情報ビットおよび冗長ビットを変調部 109 - 1〜109— mへ分配して出力する。このとき、ビット分配部 108は、変調部 109— 1〜 109— mそれぞれにおける変調方式に応じて 1シンボル分のビットを分配する。すな わち、例えば QPSKによって変調を行う変調部へは 2ビットを出力し、 16QAM (Qua drature Amplitude Modulation)によって変調を行う変調部へは 4ビットを出力する。上 述したように、符号語とは複数の送信アンテナから同時に送信されるシンボルに含ま れるすべてのビットを示しているため、ビット分配部 108は、符号語に含まれるすべて のビットを 1シンボル分ずつ各変調部 109— 1〜109— mへ分配することになる。
[0026] また、ビット分配部 108は、複数の送信アンテナから同時に送信される互いに異な るシンボルの数 (以下、「空間多重数」という)を考慮して、ビットの分配を行う。一般に 、 MIMO送信装置と MIMO受信装置との間の伝搬路に独立したパスが多ければ、 複数の送信アンテナ力 送信されたシンボルを MIMO受信装置において精度良く 分離することができる。ところが、伝搬路に独立したパスが少なければ、各送信アンテ ナカ 送信されたシンボルを精度良く分離することができない。
[0027] そこで、伝搬路に独立したパスが多い場合は、複数の送信アンテナ力 互いに異 なるシンボルが同時に送信されて伝送効率の向上が図られることがある。一方、伝搬 路に独立したパスが少ない場合は、複数の送信アンテナから同一のシンボルが同時 に送信されてダイバーシチによる誤り率特性の向上が図られることがある。
[0028] このため、ビット分配部 108は、複数の送信アンテナから同一のシンボルが同時に 送信される場合は、必要に応じて符号語に含まれるビットを複製した上で、同一のシ ンボルを同時に送信する送信アンテナに対応する変調部へ出力する。換言すれば、 ビット分配部 108は、符号語に含まれるすべてのビットを空間多重数分に分配し、必 要に応じてビットの複製を行った上で変調部 109— l〜109—mへ出力する。
[0029] 変調部 109— 1〜109— mは、ビット分配部 108から出力されたビットを変調して、 シンボルを生成する。各変調部 109— 1〜109— mにおける変調方式は、同一のも のでも互 ヽに異なるものでも良!、。
[0030] 送信 RF部 110— 1〜: L 10— mは、変調部 109— 1〜109— mによって生成された シンボルに対して所定の無線送信処理 (DZA変換、アップコンバートなど)を施し、 それぞれ対応する送信アンテナから送信する。
[0031] なお、図 1に示す MIMO送信装置は、図示しない制御信号生成部において、レー トマッチング部 102によって決定された符号ィ匕率と、パンクチャリング時の情報ビット の優先度と、冗長ビットの送信開始位置とを含む符号ィ匕情報、カウンタ 106によって カウントされた再送回数の情報、ビット分配部 108における空間多重数の情報、およ び各変調部 109— l〜109—mにおける変調方式の情報など力もなる制御信号を生 成し、送信 RF部 110— 1〜: L 10— mから送信アンテナを介して送信する。
[0032] 図 3は、実施の形態 1に係る MIMO受信装置の要部構成を示すブロック図である。
図 3に示す MIMO受信装置は、受信 RF部 201— l〜201—n、制御信号復調部 20 2、 MIMO復調部 203、インタリーブパターンテーブル 204、符号語内ディンタリー ノ 205、ディンタリーバ 206、レートデマッチング部 207、尤度生成部 208、尤度記憶 部 209、 FEC復号ィ匕部 210、誤り検出部 211、および再送要求生成部 212を有して いる。
[0033] 受信 RF部 201 - 1〜201— nは、それぞれ対応する受信アンテナから信号を受信 し、受信信号に対して所定の無線受信処理 (ダウンコンバート、 AZD変換など)を施 す。各受信 RF部 201— 1〜201— nによって受信される受信信号には、 MIMO送信 装置の各送信アンテナカゝら送信されたシンボルが混在している。 [0034] 制御信号復調部 202は、各受信アンテナから受信された制御信号を復調し、制御 信号に含まれる空間多重数および変調方式の情報を MIMO復調部 203へ通知し、 再送回数の情報をインタリーブパターンテーブル 204へ通知し、符号化情報をレート デマッチング部 207へ通知する。
[0035] MIMO復調部 203は、空間多重数および変調方式の情報を用いて、送信側の各 送信アンテナから送信されたシンボルを分離して復調し、同時に送信されたすベて のシンボルに含まれる情報ビットおよび冗長ビット (すなわち、符号語)を単位として符 号語内デインタリーバ 205へ出力する。なお、 MIMO復調部 203は、複数の送信ァ ンテナから同一のシンボルが同時に送信されている場合は、これらのシンボルを例え ば最大比合成などして、合成後のシンボルを復調する。
[0036] インタリーブパターンテーブル 204は、 MIMO送信装置が有するインタリーブパタ ーンテーブル 107と同様であり、再送回数ごとの符号語内インタリーブに用いられる インタリーブパターンを記憶している。そして、インタリーブパターンテーブル 204は、 再送回数に応じたインタリーブパターンを符号語内ディンタリーバ 205へ通知する。
[0037] 符号語内ディンタリーバ 205は、インタリーブパターンテーブル 204力 通知される インタリーブパターンに従ったインタリーブが施されている符号語をディンタリーブす る。すなわち、符号語内ディンタリーバ 205は、送信側の符号語内インタリーバ 105 によって再送ごとに異なるインタリーブパターンでインタリーブされている符号語内の ビットを元に戻すように並び替える。
[0038] ディンタリーバ 206は、符号語内ディンタリーブ後の情報ビットおよび冗長ビットを 複数シンボル分蓄積し、送信側のインタリーバ 103によるインタリーブを元に戻すよう に並び替える。
[0039] レートデマッチング部 207は、符号ィ匕情報に基づ 、てレピテイシヨンされたビットを 削除し、パンクチャリングされたビットを補充する。レピテイシヨンおよびパンクチヤリン グのパターンについては、符号ィ匕情報に含まれる符号ィ匕率'パンクチャリング時の情 報ビットの優先度 ·冗長ビットの送信開始位置力 一意に求めることが出来る。
[0040] 尤度生成部 208は、レートデマッチング後の各ビットを軟判定し、各ビットに対応す る尤度値を算出し、尤度記憶部 209および FEC復号ィ匕部 210へ出力する。また、尤 度生成部 208は、再送されたビットに関しては、前回の軟判定までに得られた尤度値 と今回の軟判定によって得られた尤度値を合成し、得られた合成尤度値を尤度記憶 部 209および FEC復号ィ匕部 210へ出力する。
[0041] 尤度記憶部 209は、尤度生成部 208によって生成された尤度値または合成尤度値 を次回の再送に備えて記憶する。
[0042] FEC復号ィ匕部 210は、情報ビットおよび冗長ビットに対応する尤度値または合成尤 度値を用いて誤り訂正復号ィ匕を行って硬判定し、得られた情報ビットを誤り検出部 2
11へ出力する。
[0043] 誤り検出部 211は、情報ビットに付カ卩されている CRC (Cyclic Redundancy Check: 巡回冗長検査)符号などの誤り検出符号を用いて情報ビットの誤りを検出する。そし て、誤り検出部 211は、誤り検出結果を再送要求生成部 212へ通知するとともに、誤 りが検出されな力つた場合には、情報ビットを受信データとして出力する。
[0044] 再送要求生成部 212は、誤り検出の結果、情報ビットに誤りが検出された場合は、 MIMO送信装置へフィードバックする再送要求を生成する。生成された再送要求は 、図示しな!ヽ送信部から MIMO送信装置へ送信される。
[0045] 次いで、上記のように構成された送 MIMO受信装置による再送を伴う動作を図 4に 示すシーケンス図を参照しながら説明する。
[0046] まず、 MIMO送信装置において、情報ビットが FEC符号ィ匕部 101によって誤り訂 正符号化され (301)、情報ビットおよび冗長ビットからなる送信ビットがレートマツチン グ部 102によってレートマッチングされ、インタリーバ 103によってインタリーブされる
[0047] インタリーブされた送信ビットは、再送に備えてバッファ 104に記憶され、符号語内 インタリーバ 105によって、複数の送信アンテナから同時に送信されるシンボルとなる ビット、すなわち符号語、を単位としたインタリーブが行われる(302)。このとき、イン タリーブパターンテーブル 107に記憶された再送回数ごとのインタリーブパターンに 従って符号語内の各ビットが並び替えられる力 ここでは初回送信であるため、再送 回数が 0に対応するインタリーブパターンに従った符号語内インタリーブが行われる。 すなわち、インタリーブパターンテーブル 107が例えば図 2に示すようなものである場 合、再送回数 0に対応するパターン 0に従って符号語内の各ビットに対するインタリー ブが行われる。
[0048] そして、符号語内インタリーブが行われると、ビット分配部 108によって符号語内の 各ビットが各送信アンテナへ分配される。上述したように、ビット分配部 108によるビッ トの分配は、変調部 109— l〜109—mにおけるそれぞれの変調方式および空間多 重数に応じて行われる。具体的には、各変調部の変調方式において 1シンボルに相 当する数のビットがそれぞれ変調部 109— l〜109—mへ出力されるとともに、同一
Figure imgf000011_0001
、ては、このシンボルを 構成するビットが複製され、得られた同一のビットがそれぞれの変調部へ出力される
[0049] このようにして 1シンボル分のビットが変調部 109— 1〜109— mへ出力されると、変 調部 109— 1〜 109— mおよび送信 RF部 110— 1〜: L 10— mによって変調などの送 信処理が行われ (303)、符号語内のすべてのビットに対応する複数のシンボルが各 送信アンテナから同時に送信される(304)。さらに、図示しない制御信号生成部によ つて生成された、符号化情報、再送回数の情報、空間多重数の情報、および変調方 式の情報を含む制御信号が同時に送信される(305)。
[0050] 複数の送信アンテナから送信された複数のシンボルおよび制御信号は、 MIMO受 信装置における受信アンテナを介して受信 RF部 201— 1〜201—nに受信され、制 御信号は制御信号復調部 202へ出力されるとともに、複数のシンボルが混在する各 受信アンテナにおける受信信号が MIMO復調部 203へ出力される。
[0051] そして、制御信号復調部 202による制御信号の復調の後、送信側の変調部 109— 1〜109— mにおける変調方式および空間多重数が MIMO復調部 203へ通知され 、 MIMO復調部 203によって受信信号中に混在して 、る複数のシンボルの分離 ·復 調が行われる(306)。これにより、送信側の各送信アンテナから同時に送信されたそ れぞれのシンボルに含まれるビット (すなわち符号語)が符号語内ディンタリーバ 205 へ出力される。
[0052] 一方、制御信号復調部 202による制御信号の復調の後、再送回数力インタリーブ パターンテーブル 204へ通知される力 ここでは初回送信であるため、再送回数とし て 0が通知され、インタリーブパターンテーブル 204力 符号語内ディンタリーバ 205 へ再送回数 0に対応するインタリーブパターンが通知される。すなわち、インタリーブ パターンテーブル 204が例えば図 2に示すようなものである場合、再送回数 0に対応 するパターン 0が符号語内ディンタリーバ 205へ通知される。
[0053] そして、符号語内ディンタリーバ 205によって、再送回数に応じたインタリーブパタ ーンによるインタリーブを元に戻すように、符号語内の各ビットが並び替えられる (30 7)。換言すれば、符号語内ディンタリーバ 205によって、送信側の符号語内インタリ ーバ 105による符号語内インタリーブが元に戻される。
[0054] 符号語内ディンタリーブが終了すると、所定量の符号語内のビットがディンタリーバ 206に蓄積され、ディンタリーバ 206によって、送信側のインタリーバ 103によるイン タリーブが元に戻され、レートデマッチング部 207によって、符号ィ匕情報に応じたレー トデマッチングが行われる。レートデマッチング後のすべてのビットは、尤度生成部 20 8によって軟判定され、得られた尤度値が尤度記憶部 209に記憶されるとともに、 FE C復号ィ匕部 210へ出力される。
[0055] 尤度生成部 208から出力される尤度値は、送信側の FEC符号ィ匕部 101から出力さ れるすべての情報ビットおよび冗長ビットに対応して 、るため、これらの尤度値が FE C復号ィ匕部 210によって誤り訂正復号ィ匕され (308)、誤り訂正復号後の情報ビットに 対応する尤度値が硬判定され、情報ビットが得られる。そして、誤り検出部 211によつ て、情報ビットに付加されている誤り検出符号を用いた誤り検出が行われ (309)、誤 り検出結果が再送要求生成部 212へ通知されるとともに、誤りが検出されなければ情 報ビットが受信データとして出力される。
[0056] このような誤り検出の結果、情報ビットから誤りが検出された場合には、再送要求生 成部 212によって再送要求が生成され、 MIMO送信装置へフィードバックされる (31 0)。
[0057] フィードバックされた再送要求は、 MIMO送信装置のバッファ 104およびカウンタ 1 06へ入力され、ノッファ 104に記憶された送信ビットが再び符号語内インタリーバ 10 5へ出力されるとともに、カウンタ 106によって再送回数が 1とカウントされる。そして、 カウンタ 106によってカウントされた再送回数は、インタリーブパターンテーブル 107 へ出力され、再送回数に応じたインタリーブパターン力インタリーブパターンテープ ル 107から符号語内インタリーバ 105へ通知される。
[0058] そして、符号語内インタリーバ 105によって、ノ ッファ 104から出力された送信ビット に対する符号語内インタリーブが初回送信時とは異なるインタリーブパターンで行わ れる(311)。ここでは、再送回数が 1であるため、再送回数が 1に対応するインタリー ブパターンに従った符号語内インタリーブが行われる。すなわち、インタリーブパター ンテーブル 107が例えば図 2に示すようなものである場合、再送回数 1に対応するパ ターン 1に従って符号語内の各ビットに対するインタリーブが行われる。
[0059] このように、再送回数ごとに異なるインタリーブパターンによって符号語内の各ビット 力 Sインタリーブされるため、符号語内の各ビットは、再送ごとに異なる送信アンテナか ら送信されたり、同一の送信アンテナカゝら送信されても再送ごとのシンボル内ビット位 置変更が行われたりする。
[0060] つまり、 1つのビットに着目すると、このビットは初回送信時と 1回目の再送時とでは 、符号語内で異なる位置に並べ替えられるため、異なる送信アンテナから送信される ようにすることができる。そして、各送信アンテナと MIMO受信装置との間の伝搬路 の違いにより、ダイバーシチ効果が得られることになり、初回送信時と再送時とで同一 の送信アンテナ力も送信するよりも、このビットの誤り率特性を向上することができる。
[0061] また、上記のビットが例えば 16QAMや 64QAMなどの変調方式によって多値変 調される場合には、このビットは初回送信時と 1回目の再送時とでは、符号語内で異 なる位置に並べ替えられるため、同一の送信アンテナカゝら送信されてもシンボル内の ビット位置を変更することができる。すなわち、例えば変調方式が 16QAMの場合に は、 1シンボルに 4ビットが含まれる力 シンボル内のビット位置によって復調の信頼 度が異なり、信頼度に応じて上位 2ビットと下位 2ビットとに分けられる。
[0062] このため、再送ごとに符号語内インタリーブが行われることにより、初回送信時には シンボル内の下位ビットとなつたビットを再送時にはシンボル内の上位ビットとすること ができる。これにより、 1つのビットが常に下位ビットとなることがなぐこのビットの誤り 率特性を向上することができる。
[0063] このように、再送ごとに異なるインタリーブパターンで符号語内インタリーブが行わ れるため、符号語内の各ビットの誤り率特性を向上することができ、結果として再送回 数を削減することができる。また、上述したように、符号語は、複数の送信アンテナか ら同時に送信されるシンボルに含まれるビットであるため、送信アンテナ数と変調方 式によって規定される高々数十ビットによって構成されており、 1シンボル時間で送信 される数十ビット単位での細かい制御を行うことが可能となる。
[0064] そして、符号語内インタリーブが行われると、初回送信時と同様に、符号語内の各 ビットが各送信アンテナへ分配され、変調などの送信処理が行われて (312)、符号 語内のすべてのビットに対応する複数のシンボルが各送信アンテナから同時に再送 される(313)。また、初回送信時と同様に、符号化情報、再送回数の情報、空間多 重数の情報、および変調方式の情報を含む制御信号が同時に送信される(314)。
[0065] 複数の送信アンテナから送信された複数のシンボルおよび制御信号は、初回送信 時と同様に、 MIMO受信装置によって受信され、制御信号復調部 202によって制御 信号が復調され、 MIMO復調部 203によって複数のシンボルの分離 '復調が行われ る(315)。これにより、送信側の各送信アンテナから同時に再送されたそれぞれのシ ンボルに含まれるビット (すなわち符号語)が符号語内ディンタリーバ 205へ出力され る。ただし、これらのビットの順序は、初回送信時とは異なっている。
[0066] 一方、制御信号に含まれる再送回数力インタリーブパターンテーブル 204へ通知さ れるが、ここでは再送回数が 1であるため、再送回数として 1が通知され、インタリーブ パターンテーブル 204から符号語内デインタリーバ 205へ再送回数 1に対応するイン タリーブパターンが通知される。すなわち、インタリーブパターンテーブル 204が例え ば図 2に示すようなものである場合、再送回数 1に対応するパターン 1が符号語内デ インタリーバ 205へ通知される。
[0067] そして、符号語内ディンタリーバ 205によって、再送回数に応じたインタリーブパタ ーンによるインタリーブを元に戻すように、符号語内の各ビットが並び替えられる(31 6)。次いで、初回送信時と同様に、符号語内のビットがディンタリーバ 206によって ディンタリーブされ、レートデマッチング部 207によってレートデマッチングされる。そ して、レートデマッチング後のすべてのビットは、尤度生成部 208によって軟判定され 、得られた尤度値が尤度記憶部 209に記憶されて 、る初回送信時の尤度値と合成さ れる(317)。得られた合成尤度値は、尤度記憶部 209に記憶されるとともに、 FEC復 号ィ匕部 210へ出力される。
[0068] このように、再送ごとに軟判定によって得られる尤度値を合成することにより、再送ご との誤り訂正復号の精度が向上する。特に、本実施の形態においては、再送ごとに 異なるインタリーブパターンで符号語内インタリーブが行われているため、同一のビッ トが常に劣悪な伝搬路を伝送されるような偏りが生じず、再送ごとの尤度値を合成す ることによって誤り訂正復号の精度を大きく向上することができる。
[0069] 以後、初回送信時と同様に、合成尤度値が FEC復号ィ匕部 210によって誤り訂正復 号化され (318)、誤り検出部 211によって誤り検出が行われ (319)、情報ビットが受 信データとして出力されるか、または、さらに再送要求が MIMO送信装置へフィード ノ ックされる。
[0070] 次に、インタリーブパターンについて、具体例を挙げて説明する。以下の説明にお いては、インタリーブパターンテーブル 107が図 2に示すようなものであるとする。
[0071] 図 5は、 MIMO送信装置が送信アンテナを 3本 (ANT1、 ANT2、および ANT3) 備え、かつ各送信アンテナ力も QPSKによって変調されたシンボルが送信される場 合のインタリーブパターンの例を示す図である。送信アンテナが 3本かつ変調方式が QPSKである場合は、符号語は 6ビット(= 3本 X 2ビット)力も構成されることになる。
[0072] 上述したように、初回送信時には、インタリーブパターンテーブル 107から符号語内 インタリーバ 105へパターン 0が通知されている。したがって、符号語内に含まれるビ ット al〜a6は、符号語内インタリーバ 105へ入力されると、図 5Aの上段に示すパタ ーン 0が適用され、図 5Aの下段に示す出力順序でビット分配部 108へ出力される。 これらのビット al〜a6は、ビット分配部 108によって、各送信アンテナ ANT1〜ANT 3に対応する変調部 109— 1〜 109— 3へ分配される 1S ここではすべての変調部 1 09— 1〜109— 3が変調方式として<3?31^を採用するため、各変調部へ2ビットずっ 分配されて出力される。この結果、ビット a4および a3を含むシンボルは送信アンテナ ANT1から、ビット a6および a2を含むシンボルは送信アンテナ ANT2から、ビット al および a5を含むシンボルは送信アンテナ ANT3から、それぞれ同時に送信されるこ とになる。 [0073] このような初回送信が行われた後、 MIMO受信装置から再送要求がフィードバック された場合は、 1回目の再送が行われることになる。上述したように、 1回目の再送時 には、インタリーブパターンテーブル 107から符号語内インタリーバ 105へパターン 1 が通知されている。したがって、符号語内に含まれるビット al〜a6は、符号語内イン タリーバ 105へ入力されると、図 5Bの上段に示すパターン 1が適用され、図 5Bの下 段に示す出力順序でビット分配部 108へ出力される。なお、図 5Bの上段に示すよう に、パターン 1は、パターン 0の最後尾の出力順序 3を先頭に移動し、他の出力順序 5、 4、 2、 1、 6をそれぞれ 1つずつ後へシフトしたパターンとなっている。ただし、各パ ターンの関係は、このようなものには限定されず、例えばそれぞれのパターンがラン ダムなものであっても良 、。
[0074] このようなパターン 1に従った符号語内インタリーブの結果、ビット a5および a4を含 むシンボルは送信アンテナ ANT1から、ビット alおよび a3を含むシンボルは送信ァ ンテナ ANT2から、ビット a2および a6を含むシンボルは送信アンテナ ANT3から、そ れぞれ同時に送信されることになる。
[0075] 同様に、 2回目の再送時には、図 5Cの上段に示すパターン 2が適用され、パターン 2に従った符号語内インタリーブの結果、ビット a6および a5を含むシンボルは送信ァ ンテナ ANT1から、ビット a2および a4を含むシンボルは送信アンテナ ANT2から、ビ ット a3および alを含むシンボルは送信アンテナ ANT3から、それぞれ同時に送信さ れること〖こなる。
[0076] このようにインタリーブパターンに従った符号語内インタリーブの結果、各ビット al〜 a6は、前回の送信時とは異なる送信アンテナ、またはシンボル内の前回の送信時と は異なるビット位置にて送信されることになり、再送ごとに誤り率特性を向上すること ができる。
[0077] さらに、他の具体例を挙げる。
[0078] 図 6は、 MIMO送信装置が送信アンテナを 2本 (ANT1および ANT2)備え、かつ 送信アンテナ ANT1から 16QAMによって変調されたシンボルが送信され、送信ァ ンテナ ANT2から QPSKによって変調されたシンボルが送信される場合のインタリー ブパターンの例を示す図である。送信アンテナが 2本かつ変調方式がそれぞれ 16Q AMおよび QPSKである場合は、符号語は 6ビット( = 1本 X 4ビット + 1本 X 2ビット) 力 構成されることになる。
[0079] このような場合も、初回送信時には、図 6Aの上段に示すパターン 0が適用され、パ ターン 0に従った符号語内インタリーブの結果、ビット a4、 a3、 a6、および a2を含むシ ンボルは送信アンテナ ANT1から、ビット alおよび a5を含むシンボルは送信アンテ ナ ANT2から、それぞれ同時に送信されることになる。
[0080] ここで、送信アンテナ ANT1から送信される 4ビットのうち、図 6Aの下段の破線で囲 まれたビット a4および a3は、シンボル内の上位ビットであり、復調時の信頼度が高い
[0081] 以下同様に、 1回目の再送時および 2回目の再送時においては、図 6Bおよび図 6 Cに示すような送信アンテナおよびシンボル内のビット位置の割り当てでビット al〜a 6のビットが送信される。これにより、各ビット al〜a6は、前回の送信時とは異なる送 信アンテナ、またはシンボル内の前回の送信時とは異なるビット位置にて送信される ことになり、再送ごとに誤り率特性を向上することができる。
[0082] 以上のように、本実施の形態によれば、複数の送信アンテナから同時に送信される シンボルに含まれるすべてのビットを単位とした符号語内インタリーブを行 ヽ、この符 号語内インタリーブに用いられるインタリーブパターンを再送ごとに異なるものにする 。このため、 1シンボル時間で送信されるビットを単位とした比較的細かい制御を行う ことができ、伝搬環境の変化に応じた柔軟な制御を行うことができる。また、符号語内 に含まれる各ビットが、再送ごとに異なる送信アンテナから送信されたり、再送ごと〖こ シンボル内の異なるビット位置に割り当てられて送信されたりして、各ビットにおける 誤りの発生を均等にすることができ、結果として再送回数をより削減することができる
[0083] (実施の形態 2)
本発明の実施の形態 2の特徴は、伝搬環境、変調方式、または空間多重数の変化 に伴って、符号語内インタリーブに使用されるインタリーブパターンを切り替える点で ある。
[0084] 図 7は、実施の形態 2に係る MIMO送信装置の要部構成を示すブロック図である。 同図において、図 1と同じ部分には同じ符号を付し、その説明を省略する。図 7に示 す MIMO送信装置は、 FEC符号化部 101、レートマッチング部 102、インタリーバ 1 03、バッファ 104、符号語内インタリーバ 105、カウンタ 106、インタリーブパターンテ 一ブル 107a、ビット分配部 108、変調部 109— 1〜109— m、送信 RF部 110— 1〜 110— m、およびインタリーブパターンセット選択部 401を有して!/、る。
[0085] インタリーブパターンテーブル 107aは、再送回数ごとの符号語内インタリーブに用 いるインタリーブパターンを記憶しており、再送回数に応じたインタリーブパターンを 符号語内インタリーバ 105へ通知する。ただし、実施の形態 1とは異なり、インタリー ブパターンテーブル 107aは、送信ごとに各ビットを送信する送信アンテナが入れ替 わることに重点を置いたパターン群(以下、「インタリーブパターンセット」という)と、送 信ごとに各ビットのシンボル内の上位'下位が入れ替わることに重点を置 、たインタリ ーブパターンセットとの 2種類のインタリーブパターンセットを記憶している。すなわち 、インタリーブパターンテーブル 107aは、例えば図 8に示すように、再送回数 0、 1、 2 、 · · ·に対して、送信アンテナの入れ替えに重点を置いたパターン x0、 xl、 x2、 · · · 力もなるインタリーブパターンセットと、シンボル内の上位'下位の入れ替えに重点を 置いたパターン y0、 yl、 y2、 · · 'からなるインタリーブパターンセットとの 2種類の各ィ ンタリーブパターンを対応づけて記憶している。そして、各再送回数に応じたパター ン x0、 xl、 x2、 . · ·およびパターン y0、 yl、 y2、 . · ·は、それぞれ異なっており、符号 語内の各ビットが再送ごとに異なる位置に並び替えられることになる。
[0086] インタリーブパターンセット選択部 401は、 MIMO受信装置からフィードバックされ るフィードバック情報に応じて、インタリーブパターンテーブル 107a中のいずれかの インタリーブパターンセットを選択する。
[0087] ここで、フィードバック情報とは、後述するように、伝搬路における独立したパス数な ど力も MIMO受信装置が決定したインタリーブパターンセットの情報である。
[0088] 図 9は、実施の形態 2に係る MIMO受信装置の要部構成を示すブロック図である。
同図において、図 3と同じ部分には同じ符号を付し、その説明を省略する。図 9に示 す MIMO受信装置は、受信 RF部 201— l〜201—n、制御信号復調部 202、 MIM O復調部 203、インタリーブパターンテーブル 204、符号語内デインタリーバ 205、デ インタリーバ 206、レートデマッチング部 207、尤度生成部 208、尤度記憶部 209、 F EC復号ィ匕部 210、誤り検出部 211、再送要求生成部 212、パス数測定部 501、受 信品質測定部 502、および判定部 503を有して 、る。
[0089] パス数測定部 501は、 MIMO復調部 203におけるシンボルの分離 ·復調の結果か ら、伝搬路上において分離可能な独立したパスの数を測定する。一般に、 MIMO通 信においては、分離可能な独立したノ^が多いほど通信品質が良好となる。
[0090] 受信品質測定部 502は、独立したパスそれぞれの受信品質を測定する。
[0091] 判定部 503は、独立したパスの数および各パスの受信品質から、送信アンテナの 入れ替えに重点を置 、たインタリーブパターンセットまたはシンボル内の上位'下位 の入れ替えに重点を置いたインタリーブパターンセットのいずれを選択する力判定し 、その結果をフィードバック情報とする。
[0092] 具体的には、判定部 503は、独立したパスが比較的多ぐかつ各パスの受信品質 が比較的良好である場合には、 MIMO通信に適した伝搬環境であるため、空間多 重数が大きくなると判断し、送信アンテナの入れ替えに重点を置いたインタリーブパ ターンセットを選択する。一方、独立したノ スが比較的少ないか、または各パスの受 信品質が比較的劣悪である場合には、 MIMO通信に適して 、な 、伝搬環境である ため、空間多重数が小さくなると判断し、シンボル内の上位 '下位の入れ替えに重点 を置 、たインタリーブパターンセットを選択する。
[0093] 本実施の形態においては、 MIMO受信装置内のパス数測定部 501によって伝搬 路上の独立したパス数が測定され、受信品質測定部 502によって各パスの受信品質 が測定され、独立したパス数および受信品質の測定結果力も判定部 503によってィ ンタリーブパターンセットが決定される。このとき、判定部 503は、伝搬環境が MIMO 通信に適しており、複数の送信アンテナ力 互 、に異なるシンボルが同時に送信さ れると判断される場合は、再送ごとに送信アンテナを入れ替えることにより大きなダイ バーシチ効果を得ることができるため、これに対応するインタリーブパターンセットを 選択する。また、判定部 503は、伝搬環境が MIMO通信に適しておらず、複数の送 信アンテナから同一のシンボルが同時に送信されると判断される場合は、再送ごとに 送信アンテナを入れ替えても前回の送信時と変わらない可能性が高いため、上位 · 下位の入れ替えに重点を置いたインタリーブパターンセットを選択する。
[0094] 選択の結果は、フィードバック情報として MIMO送信装置へフィードバックされ、 Ml MO送信装置内のインタリーブパターンセット選択部 401によって、インタリーブパタ ーンテーブル 107aに記憶されているいずれかのインタリーブパターンセットが選択さ れる。
[0095] そして、選択されたインタリーブパターンセットにおける再送回数に応じたインタリー ブパターンが符号語内インタリーバ 105へ通知され、再送ごとに異なる符号語内イン タリーブが行われる。ここでの符号語内インタリーブには、上述したように伝搬環境に 応じたインタリーブパターンセットのパターンが適用されて 、るため、最も効率的に再 送回数の削減を図ることができる。
[0096] 以上のように、本実施の形態によれば、再送ごとに送信アンテナを入れ替えるイン タリーブパターンセットおよび再送ごとにシンボル内の上位 ·下位を入れ替えるインタ リーブパターンセットの 2種類のインタリーブパターンセットを記憶しておき、伝搬環境 が MIMO通信に適して!/、るか否かに応じて!/、ずれかのインタリーブパターンセットを 選択し、選択されたインタリーブパターンセットのうち再送回数に応じたインタリーブ パターンで符号語内インタリーブを行う。このため、複数のインタリーブパターンセット を用意して、伝搬環境に適したインタリーブパターンセットを用いることができ、最も効 率的に再送回数の削減を図ることができる。
[0097] なお、本実施の形態においては、受信装置力 Sインタリーブパターンセットを決定し、 受信装置からのフィードバック情報に従って送信装置力 Sインタリーブパターンセットを 選択するものとしたが、送信装置力 Sインタリーブパターンセットを決定するようにしても 良い。すなわち、例えば送信装置における適応変調の結果、 16QAMや 64QAMな どの多値変調が行われない場合は送信アンテナを入れ替えるインタリーブパターン セットを選択する一方、空間多重数が少なく多値変調が行われる場合は上位 ·下位 を入れ替えるインタリーブパターンセットを選択する。
[0098] (実施の形態 3)
本発明の実施の形態 3の特徴は、受信側にお!、て誤り訂正復号を繰り返して行 ヽ 、誤り率特性をさらに向上する点である。 [0099] 本実施の形態に係る MIMO送信装置は、実施の形態 1 (図 1)と同様の構成を有す るため、その説明を省略する。
[0100] 図 10は、実施の形態 3に係る MIMO受信装置の要部構成を示すブロック図である 。同図において、図 3と同じ部分には同じ符号を付し、その説明を省略する。図 10に 示す MIMO受信装置は、受信 RF部 201— l〜201—n、制御信号復調部 202、 Ml MO復調部 203a、インタリーブパターンテーブル 204、符号語内デインタリーバ 205 、ディンタリーバ 206、レートデマッチング部 207、尤度生成部 208、尤度記憶部 209 、 FEC復号ィ匕部 210、誤り検出部 211、再送要求生成部 212、レートマッチング部 6 01、インタリーノ 602、符号語内インタリーバ 603、および再マッピング部 604を有し ている。
[0101] MIMO復調部 203aは、空間多重数、変調方式、および再マッピング部 604から出 力されるレプリカシンボルを用いて、送信側の各送信アンテナから送信されたシンポ ルを分離'復調する。 MIMO復調部 203aは、実施の形態 1とは異なり、繰り返し復号 の過程にぉ 、て、 FEC復号ィ匕部 210による誤り訂正復号ィ匕の結果力も生成されるレ プリカシンボルを外部情報として、シンボルの分離 ·復調を行う。
[0102] レートマッチング部 601は、 FEC復号ィ匕部 210による誤り訂正復号ィ匕の結果に対し て、 MIMO送信装置内のレートマッチング部 102と同様のレートマッチングを行う。
[0103] インタリーノ 602は、レートマッチング後の各ビットに対して、 MIMO送信装置内の インタリーバ 103と同様のインタリーブを行う。
[0104] 符号語内インタリーバ 603は、インタリーブ後の各ビットに対して、 MIMO送信装置 内の符号語内インタリーバ 105と同様に再送回数に応じた符号語内インタリーブを行
[0105] 再マッピング部 604は、符号語内インタリーブ後の各ビットをシンボルマッピングし て、 MIMO送信装置によって生成されるシンボルと同様のレプリカシンボルを生成す る。
[0106] 本実施の形態においては、 MIMO受信装置における繰り返し復号の過程で、 Ml MO送信装置から送信されるシンボルのレプリカシンボルを生成し、受信信号の復調 時に、レプリカシンボルを外部情報として用いる。このため、復調精度が高くなり、誤り 率特性がさらに向上する。
[0107] 繰り返し復号の過程においては、 MIMO送信装置における符号語内インタリーブ と同様の符号語内インタリーブを行う必要があるため、 MIMO受信装置内のインタリ ーブパターンテーブル 204力 符号語内インタリーバ 603へ、再送回数に応じたイン タリーブパターンが通知される。
[0108] このように繰り返し復号を行うことにより、 MIMO復調部 203aにおいては、受信信 号に含まれるシンボルの分離 ·復調を正確に行うことができ、誤り率特性をさらに向上 することができる。
[0109] 以上のように、本実施の形態によれば、受信側において繰り返し復号を行い、繰り 返し復号の過程で送信側と同様の符号語内インタリーブが施されたビットからなるレ プリカシンボルを用いた復調が行われる。このため、復調の精度が高くなり、誤り率特 性をさらに向上することができる。
[0110] なお、上記各実施の形態においては、符号語内インタリーバとともに通常のインタリ ーバを設ける構成としたが、通常のインタリーバは設けない構成としても良い。
[0111] 上記各実施の形態では、本発明をノヽードウエアで構成する場合を例にとって説明 したが、本発明はソフトウェアで実現することも可能である。
[0112] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されてもよいし、一部または全 てを含むように 1チップィ匕されてもよい。ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ウルトラ LSIと呼称されることもある。
[0113] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Progra mmable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフ ィギユラブル'プロセッサーを利用してもよい。
[0114] さらには、半導体技術の進歩または派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って もよい。バイオ技術の適応等が可能性としてありえる。
[0115] 本発明の第 1の態様に係る MIMO送信装置は、複数の送信アンテナを備える Ml MO送信装置であって、情報ビットを誤り訂正符号ィ匕して送信ビットを生成する誤り訂 正符号化手段と、生成された送信ビットのうち前記複数の送信アンテナ力 同時に送 信される分のビットからなる符号語内のインタリーブを行うインタリーブ手段と、インタリ ーブ後の符号語に含まれるすべてのビットを前記複数のアンテナから同時に送信す る送信手段と、を有し、前記インタリーブ手段は、前記符号語を再送する場合、前回 送信時とは異なるインタリーブパターンで前記符号語内のインタリーブを行う構成を 採る。
[0116] この構成によれば、複数の送信アンテナから同時に送信されるビットからなる符号 語内のインタリーブを再送ごとに異なるインタリーブパターンで行うため、 1シンボル 時間で送信される数十ビット単位での細カ^、制御を行うことができるとともに、再送さ れるたびに各ビットにおける誤りの発生を均等にすることができる。結果として、伝搬 環境の変化に応じた柔軟な制御を可能にして、再送回数をより削減することができる
[0117] 本発明の第 2の態様に係る MIMO送信装置は、上記第 1の態様において、前記ィ ンタリーブ手段は、通信相手力もフィードバックされる再送要求をカウントするカウンタ と、再送要求のカウント数に応じた互いに異なるインタリーブパターンを記憶するイン タリーブパターンテーブルと、を有する構成を採る。
[0118] この構成によれば、通信相手力もフィードバックされる再送要求の数に応じた互い に異なるインタリーブパターンを記憶するため、容易に再送ごとに異なるインタリーブ パターンでインタリーブを行うことができる。
[0119] 本発明の第 3の態様に係る MIMO送信装置は、上記第 1の態様において、前記ィ ンタリーブ手段は、前記複数の送信アンテナから同時に送信される互いに異なるシン ボルそれぞれの変調方式に応じた数のビットを符号語とする構成を採る。
[0120] この構成〖こよれば、同時送信される互いに異なるシンボル数と各シンボルの変調方 式に応じた数とから符号語となるビットが規定されるため、空間多重数と変調多値数 力も符号語内に含まれるビット数をあら力じめ求めることができる。
[0121] 本発明の第 4の態様に係る MIMO送信装置は、上記第 1の態様において、前記ィ ンタリーブ手段は、同一のビットが前回送信時とは異なる送信アンテナに割り当てら れるインタリーブパターンで前記符号語内のインタリーブを行う構成を採る。
[0122] この構成によれば、同一のビットが前回送信時とは異なる送信アンテナに割り当て られるため、再送によりダイバーシチ効果を得ることができ、ビットの誤り率特性を向 上することができる。
[0123] 本発明の第 5の態様に係る MIMO送信装置は、上記第 1の態様において、前記ィ ンタリーブ手段は、同一のビットがシンボル内の前回送信時とは異なるビット位置に 割り当てられるインタリーブパターンで前記符号語内のインタリーブを行う構成を採る
[0124] この構成によれば、同一のビットがシンボル内の前回送信時とは異なるビット位置に 割り当てられるため、同一のビットが常にシンボル内の下位ビットとなることがなぐビ ットの誤り率特性を向上することができる。
[0125] 本発明の第 6の態様に係る MIMO送信装置は、上記第 1の態様において、前記ィ ンタリーブ手段は、通信相手力もフィードバックされる再送要求をカウントするカウンタ と、同一のビットが前回送信時とは異なる送信アンテナに割り当てられるインタリーブ パターンを含む第 1のインタリーブパターン群と同一のビットがシンボル内の前回送 信時とは異なるビット位置に割り当てられるインタリーブパターンを含む第 2のインタリ ーブパターン群とを記憶するインタリーブパターンテーブルと、前記第 1のインタリー ブパターン群または前記第 2のインタリーブパターン群のいずれか一方を選択する選 択部と、を有し、選択されたインタリーブパターン群における再送要求のカウント数に 応じたインタリーブパターンで前記符号語内のインタリーブを行う構成を採る。
[0126] この構成によれば、性質が異なる 2種類のインタリーブパターン群のうちいずれか一 方を選択して再送ごとに符号語内のインタリーブを行うため、例えば伝搬環境に即し たインタリーブパターン群を選択して、効率的に再送回数の削減を図ることができる。
[0127] 本発明の第 7の態様に係る MIMO送信装置は、上記第 6の態様において、前記選 択部は、通信相手との間の伝搬路における独立したパス数が所定数以上、かつ、独 立したノ スそれぞれの受信品質が所定品質以上の場合に前記第 1のインタリーブパ ターン群を選択する構成を採る。
[0128] 本発明の第 8の態様に係る MIMO送信装置は、上記第 6の態様において、前記選 択部は、通信相手との間の伝搬路における独立したパス数が所定数未満、または、 独立したノ スそれぞれの受信品質が所定品質以下の場合に前記第 2のインタリーブ パターン群を選択する構成を採る。
[0129] 本発明の第 9の態様に係る MIMO送信装置は、上記第 6の態様において、前記選 択部は、前記複数の送信アンテナ力 送信されるすべてのシンボルが多値変調され ない場合に前記第 1のインタリーブパターン群を選択する構成を採る。
[0130] 本発明の第 10の態様に係る MIMO送信装置は、上記第 6の態様において、前記 選択部は、前記複数の送信アンテナから送信される 、ずれかのシンボルが多値変調 され、かつ、前記複数の送信アンテナ力 所定数未満の互いに異なるシンボルが送 信される場合に前記第 2のインタリーブパターン群を選択する構成を採る。
[0131] これらの構成によれば、伝搬環境が MIMO通信に適しており、空間多重数が多い 場合は、同一のビットが前回送信時とは異なる送信アンテナに割り当てられる一方、 伝搬環境が MIMO通信に適しておらず、空間多重数が少ない場合は、同一のビット がシンボル内の前回送信時とは異なるビット位置に割り当てられる。このため、伝搬 環境が MIMO通信に適して 、る力否かに応じて、最も効率的な符号語内のインタリ ーブを行うことができ、再送回数をさらに削減することができる。
[0132] 本発明の第 11の態様に係る MIMO受信装置は、通信相手に備えられる複数の送 信アンテナ力 同時に送信された分のビットからなる符号語を受信する受信手段と、 受信された符号語内のビットに対して前記通信相手におけるインタリーブに対応する ディンタリーブを行うディンタリーブ手段と、ディンタリーブ後の符号語を誤り訂正復 号化する誤り訂正復号化手段と、を有する構成を採る。
[0133] この構成によれば、通信相手に備えられる複数の送信アンテナから同時に送信さ れたビットからなる符号語内のディンタリーブを通信相手におけるインタリーブに対応 して行うため、符号語単位の細か!ヽ制御が施されて送信された信号を正確に受信す ることがでさる。
[0134] 本発明の第 12の態様に係る MIMO受信装置は、上記第 11の態様において、前 記誤り訂正復号ィ匕後の符号語内のビットに対して前記通信相手におけるインタリー ブと同一のインタリーブを行うインタリーブ手段と、インタリーブ後の符号語をシンボル マッピングして前記通信相手に備えられる複数の送信アンテナから同時に送信され たシンボルのレプリカを生成するマッピング手段と、生成されたレプリカを用いて、前 記受信手段によって受信された符号語を復調する復調手段と、をさらに有する構成 を採る。
[0135] この構成によれば、誤り訂正復号ィ匕結果から生成されるレプリカを用いて、受信さ れた符号語を復調するため、復調および誤り訂正復号化を繰り返し実行して、復調 の精度を高め、誤り率特性をさらに向上することができる。
[0136] 本発明の第 13の態様に係る再送方法は、複数の送信アンテナを備える MIMO送 信装置における再送方法であって、情報ビットを誤り訂正符号ィ匕して送信ビットを生 成するステップと、生成された送信ビットのうち前記複数の送信アンテナから同時に 送信される分のビットからなる符号語内のインタリーブを行うステップと、インタリーブ 後の符号語に含まれるすべてのビットを前記複数のアンテナから同時に送信するス テツプと、前記符号語を再送する場合、前回送信時とは異なるインタリーブパターン で前記符号語内のインタリーブを行うステップと、を有するようにした。
[0137] この方法によれば、複数の送信アンテナから同時に送信される符号語内のインタリ ーブを再送ごとに異なるインタリーブパターンで行うため、 1シンボル時間で送信され る数十ビット単位での細かい制御を行うことができるとともに、再送されるたびに各ビッ トにおける誤りの発生を均等にすることができる。結果として、伝搬環境の変化に応じ た柔軟な制御を可能にして、再送回数をより削減することができる。
[0138] 本明糸田書 ίま、 2005年 3月 29曰出願の特願 2005— 095344に基づくものである。
この内容は全てここに含めておく。
産業上の利用可能性
[0139] 本発明に係る ΜΙΜΟ送信装置、 ΜΙΜΟ受信装置、および再送方法は、伝搬環境 の変化に応じた柔軟な制御を可能にして、再送回数をより削減することができ、例え ば送信されるビットをインタリーブして誤りをランダム化する ΜΙΜΟ送信装置、 ΜΙΜΟ 受信装置、および再送方法に適用することができる。

Claims

請求の範囲
[1] 複数の送信アンテナを備える MIMO送信装置であって、
情報ビットを誤り訂正符号化して送信ビットを生成する誤り訂正符号化手段と、 生成された送信ビットのうち前記複数の送信アンテナ力 同時に送信される分のビ ットからなる符号語内のインタリーブを行うインタリーブ手段と、
インタリーブ後の符号語に含まれるすべてのビットを前記複数のアンテナから同時 に送信する送信手段と、を有し、
前記インタリーブ手段は、
前記符号語を再送する場合、前回送信時とは異なるインタリーブパターンで前記符 号語内のインタリーブを行う MIMO送信装置。
[2] 前記インタリーブ手段は、
通信相手力もフィードバックされる再送要求をカウントするカウンタと、
再送要求のカウント数に応じた互いに異なるインタリーブパターンを記憶するインタ リーブパターンテーブルと、
を有する請求項 1記載の MIMO送信装置。
[3] 前記インタリーブ手段は、
前記複数の送信アンテナから同時に送信される互いに異なるシンボルそれぞれの 変調方式に応じた数のビットを符号語とする請求項 1記載の MIMO送信装置。
[4] 前記インタリーブ手段は、
同一のビットが前回送信時とは異なる送信アンテナに割り当てられるインタリーブパ ターンで前記符号語内のインタリーブを行う請求項 1記載の MIMO送信装置。
[5] 前記インタリーブ手段は、
同一のビットがシンボル内の前回送信時とは異なるビット位置に割り当てられるイン タリーブパターンで前記符号語内のインタリーブを行う請求項 1記載の MIMO送信 装置。
[6] 前記インタリーブ手段は、
通信相手力もフィードバックされる再送要求をカウントするカウンタと、
同一のビットが前回送信時とは異なる送信アンテナに割り当てられるインタリーブパ ターンを含む第 1のインタリーブパターン群と同一のビットがシンボル内の前回送信 時とは異なるビット位置に割り当てられるインタリーブパターンを含む第 2のインタリー ブパターン群とを記憶するインタリーブパターンテーブルと、
前記第 1のインタリーブパターン群または前記第 2のインタリーブパターン群のいず れか一方を選択する選択部と、を有し、
選択されたインタリーブパターン群における再送要求のカウント数に応じたインタリ ーブパターンで前記符号語内のインタリーブを行う請求項 1記載の MIMO送信装置
[7] 前記選択部は、
通信相手との間の伝搬路における独立したパス数が所定数以上、かつ、独立した ノ スそれぞれの受信品質が所定品質以上の場合に前記第 1のインタリーブパターン 群を選択する請求項 6記載の MIMO送信装置。
[8] 前記選択部は、
通信相手との間の伝搬路における独立したパス数が所定数未満、または、独立し たパスそれぞれの受信品質が所定品質以下の場合に前記第 2のインタリーブパター ン群を選択する請求項 6記載の MIMO送信装置。
[9] 前記選択部は、
前記複数の送信アンテナから送信されるすべてのシンボルが多値変調されない場 合に前記第 1のインタリーブパターン群を選択する請求項 6記載の MIMO送信装置
[10] 前記選択部は、
前記複数の送信アンテナから送信される!、ずれかのシンボルが多値変調され、か つ、前記複数の送信アンテナカゝら所定数未満の互いに異なるシンボルが送信される 場合に前記第 2のインタリーブパターン群を選択する請求項 6記載の MIMO送信装 置。
[11] 通信相手に備えられる複数の送信アンテナ力 同時に送信された分のビットからな る符号語を受信する受信手段と、
受信された符号語内のビットに対して前記通信相手におけるインタリーブに対応す るディンタリーブを行うディンタリーブ手段と、
ディンタリーブ後の符号語を誤り訂正復号ィ匕する誤り訂正復号ィ匕手段と、 を有する MIMO受信装置。
[12] 前記誤り訂正復号ィ匕後の符号語内のビットに対して前記通信相手におけるインタリ ーブと同一のインタリーブを行うインタリーブ手段と、
インタリーブ後の符号語をシンボルマッピングして前記通信相手に備えられる複数 の送信アンテナから同時に送信されたシンボルのレプリカを生成するマッピング手段 と、
生成されたレプリカを用いて、前記受信手段によって受信された符号語を復調する 復調手段と、
をさらに有する請求項 11記載の MIMO受信装置。
[13] 複数の送信アンテナを備える MIMO送信装置における再送方法であって、
情報ビットを誤り訂正符号ィ匕して送信ビットを生成するステップと、
生成された送信ビットのうち前記複数の送信アンテナ力 同時に送信される分のビ ットからなる符号語内のインタリーブを行うステップと、
インタリーブ後の符号語に含まれるすべてのビットを前記複数のアンテナから同時 に送信するステップと、
前記符号語を再送する場合、前回送信時とは異なるインタリーブパターンで前記符 号語内のインタリーブを行うステップと、
を有する再送方法。
PCT/JP2006/306174 2005-03-29 2006-03-27 Mimo送信装置、mimo受信装置、および再送方法 WO2006104104A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20060730122 EP1858187A1 (en) 2005-03-29 2006-03-27 Mimo transmitting apparatus, mimo receiving apparatus, and retransmitting method
JP2007510495A JP4642839B2 (ja) 2005-03-29 2006-03-27 Mimo送信装置、mimo受信装置、および送信方法
BRPI0609658-1A BRPI0609658A2 (pt) 2005-03-29 2006-03-27 aparelho de transmissão mimo, aparelho de recepção mimo e método de retransmissão
US11/909,415 US8086927B2 (en) 2005-03-29 2006-03-27 MIMO transmitting apparatus, MIMO receiving apparatus, and retransmitting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-095344 2005-03-29
JP2005095344 2005-03-29

Publications (1)

Publication Number Publication Date
WO2006104104A1 true WO2006104104A1 (ja) 2006-10-05

Family

ID=37053360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306174 WO2006104104A1 (ja) 2005-03-29 2006-03-27 Mimo送信装置、mimo受信装置、および再送方法

Country Status (8)

Country Link
US (1) US8086927B2 (ja)
EP (1) EP1858187A1 (ja)
JP (1) JP4642839B2 (ja)
KR (1) KR20070122462A (ja)
CN (1) CN101151835A (ja)
BR (1) BRPI0609658A2 (ja)
RU (1) RU2007136105A (ja)
WO (1) WO2006104104A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117957A1 (en) * 2007-03-23 2008-10-02 Samsung Electronics Co., Ltd. Spatial interleaver for mimo wireless communication systems
WO2008126378A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 無線通信システム、無線通信装置及び無線通信方法
CN102227104A (zh) * 2007-03-14 2011-10-26 华为技术有限公司 数据的交织方法和装置
CN101237440B (zh) * 2007-02-02 2012-01-25 华为技术有限公司 一种数据的交织方法和装置
US8223628B2 (en) 2007-01-10 2012-07-17 Lantiq Deutschland Gmbh Data transmission method, transmitter, receiver, transceiver and transmission system
EP2077636A4 (en) * 2006-10-24 2013-10-16 Mitsubishi Electric Corp TRANSMISSION DEVICE, RECEIVER DEVICE, COMMUNICATION METHOD AND COMMUNICATION SYSTEM
JP2014140187A (ja) * 2009-09-02 2014-07-31 Qualcomm Incorporated Harq結合を伴う、および、軟判定指向形チャネル推定を伴う、反復デコーディングアーキテクチャ
US9686045B2 (en) 2007-04-04 2017-06-20 Lantiq Beteiligungs-GmbH & Co. KG Data transmission and retransmission

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848708B2 (en) * 2005-02-02 2010-12-07 Panasonic Corporation Radio communication system, interleave pattern control device, and interleave pattern control method
RU2475973C2 (ru) * 2007-08-10 2013-02-20 Фудзицу Лимитед Базовая радиостанция и мобильная станция
US8320486B2 (en) 2007-09-28 2012-11-27 Apple Inc. Retransmission method for HARQ in MIMO systems
US8229039B2 (en) * 2007-11-26 2012-07-24 Broadcom Corporation Flexible rate matching
US9184874B2 (en) 2008-03-31 2015-11-10 Qualcomm Incorporated Storing log likelihood ratios in interleaved form to reduce hardware memory
CN101729191B (zh) * 2008-10-27 2013-08-07 华为技术有限公司 一种比特数据处理的方法和装置
US8245092B2 (en) * 2008-11-03 2012-08-14 Apple Inc. Method for efficient control signaling of two codeword to one codeword transmission
US8270602B1 (en) 2009-08-13 2012-09-18 Sandia Corporation Communication systems, transceivers, and methods for generating data based on channel characteristics
TWI437437B (zh) * 2009-09-23 2014-05-11 Silicon Motion Inc 資料接收方法、具有資料接收機制的電子裝置以及儲存系統
RU2444846C1 (ru) * 2010-12-06 2012-03-10 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Способ детектирования сигнала в системах связи с mimo каналом
WO2012100790A1 (en) * 2011-01-28 2012-08-02 Nokia Siemens Networks Oy Apparatus and method for communication
WO2015089741A1 (zh) 2013-12-17 2015-06-25 华为技术有限公司 接收数据的方法及设备,以及发送数据的方法及设备
JP6325394B2 (ja) * 2014-08-25 2018-05-16 株式会社東芝 Icカード、携帯可能電子装置、及び、icカード処理装置
CN107078833B (zh) * 2014-10-28 2019-11-05 索尼公司 通信控制设备、无线通信设备、通信控制方法、无线通信方法和程序
US9979566B2 (en) * 2016-09-27 2018-05-22 Intel Corporation Hybrid forward error correction and replay technique for low latency
EP3644568B1 (en) * 2017-06-19 2022-08-10 Panasonic Intellectual Property Corporation of America Transmission device, reception device, transmission method, and reception method
CN113039731A (zh) * 2018-11-22 2021-06-25 华为技术有限公司 用于支持ieee 802.11的harq的设备和方法
WO2021049172A1 (ja) * 2019-09-12 2021-03-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置及び通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304178A (ja) * 2002-04-10 2003-10-24 Ntt Docomo Inc 多入力多出力ターボ受信方法及びその受信機
JP2004072427A (ja) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法
JP2004112471A (ja) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2004297182A (ja) * 2003-03-25 2004-10-21 Matsushita Electric Ind Co Ltd 符号化装置および符号化方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871303B2 (en) * 1998-12-04 2005-03-22 Qualcomm Incorporated Random-access multi-directional CDMA2000 turbo code interleaver
US20020116681A1 (en) * 2000-12-27 2002-08-22 Cute Ltd. Decoder, system and method for decoding trubo block codes
CA2414302C (en) * 2001-05-08 2007-09-18 Samsung Electronics Co., Ltd. Apparatus and method for generating codes in a communication system
WO2003088537A1 (fr) * 2002-04-12 2003-10-23 Matsushita Electric Industrial Co., Ltd. Dispositif de communication multiporteuse et procede de communication multiporteuse
US7184713B2 (en) * 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7254769B2 (en) * 2002-12-24 2007-08-07 Electronics And Telecommunications Research Insitute Encoding/decoding apparatus using low density parity check code
GB2408898B (en) * 2003-12-02 2006-08-16 Toshiba Res Europ Ltd Improved communications apparatus and methods
US20050204258A1 (en) * 2004-02-13 2005-09-15 Broadcom Corporation Encoding system and method for a transmitter in wireless communications
US7991056B2 (en) * 2004-02-13 2011-08-02 Broadcom Corporation Method and system for encoding a signal for wireless communications
KR101042747B1 (ko) * 2005-06-21 2011-06-20 삼성전자주식회사 구조적 저밀도 패리티 검사 부호를 사용하는 통신시스템에서 데이터 송수신 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304178A (ja) * 2002-04-10 2003-10-24 Ntt Docomo Inc 多入力多出力ターボ受信方法及びその受信機
JP2004072427A (ja) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法
JP2004112471A (ja) * 2002-09-19 2004-04-08 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2004297182A (ja) * 2003-03-25 2004-10-21 Matsushita Electric Ind Co Ltd 符号化装置および符号化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UESUGI M. ET AL.: "Introduction of Multi-level Modulation for 4th Generation Mobile Systems", WIRELESS SOLUTION LABORATORIES, MATSUSHITA COMMUNICATION INDUSTRIAL CO, LTD., vol. 1, 7 March 2001 (2001-03-07), pages 785 - 786, XP003000072 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077636A4 (en) * 2006-10-24 2013-10-16 Mitsubishi Electric Corp TRANSMISSION DEVICE, RECEIVER DEVICE, COMMUNICATION METHOD AND COMMUNICATION SYSTEM
US8223628B2 (en) 2007-01-10 2012-07-17 Lantiq Deutschland Gmbh Data transmission method, transmitter, receiver, transceiver and transmission system
CN101237440B (zh) * 2007-02-02 2012-01-25 华为技术有限公司 一种数据的交织方法和装置
CN102227104A (zh) * 2007-03-14 2011-10-26 华为技术有限公司 数据的交织方法和装置
CN102227104B (zh) * 2007-03-14 2013-12-18 华为技术有限公司 数据的交织方法和装置
WO2008117957A1 (en) * 2007-03-23 2008-10-02 Samsung Electronics Co., Ltd. Spatial interleaver for mimo wireless communication systems
WO2008126378A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 無線通信システム、無線通信装置及び無線通信方法
JP5153006B2 (ja) * 2007-03-30 2013-02-27 パナソニック株式会社 無線通信システム、無線通信装置及び無線通信方法
US8755755B2 (en) 2007-03-30 2014-06-17 Panasonic Corporation Radio communication system, radio communication apparatus, and radio communication method
US9686045B2 (en) 2007-04-04 2017-06-20 Lantiq Beteiligungs-GmbH & Co. KG Data transmission and retransmission
JP2014140187A (ja) * 2009-09-02 2014-07-31 Qualcomm Incorporated Harq結合を伴う、および、軟判定指向形チャネル推定を伴う、反復デコーディングアーキテクチャ

Also Published As

Publication number Publication date
JP4642839B2 (ja) 2011-03-02
BRPI0609658A2 (pt) 2010-04-20
JPWO2006104104A1 (ja) 2008-09-04
US8086927B2 (en) 2011-12-27
US20090055701A1 (en) 2009-02-26
KR20070122462A (ko) 2007-12-31
RU2007136105A (ru) 2009-04-10
EP1858187A1 (en) 2007-11-21
CN101151835A (zh) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4642839B2 (ja) Mimo送信装置、mimo受信装置、および送信方法
CN100382473C (zh) 用于分组发送/接收的比特加扰的方法和设备
JP4870070B2 (ja) Mimo送信装置及びmimoシステムにおけるデータ再送方法
JP4884722B2 (ja) 無線通信装置及び無線通信方法
AU2002301480B2 (en) Transmitting/receiving apparatus and method for packet retransmission in a mobile communication system
US8060802B2 (en) Automatic repeat request (ARQ) apparatus and method of multiple input multiple output (MIMO) system
US20030128769A1 (en) Apparatus and method for transmitting/receiving data according to channel condition in a CDMA mobile communication system with antenna array
WO2008041309A1 (fr) Système de communication sans fil et émetteur et récepteur associés
JP5112469B2 (ja) 無線通信装置及び無線通信方法
WO2007145487A2 (en) Method of encoding/decoding using low density check matrix
KR20080024297A (ko) 다중 입력 다중 출력 시스템에서 자동 반복 요청 장치 및방법
JP2010087730A (ja) 符号化・変調方式の切り替え方法、及び無線通信装置
JP5388529B2 (ja) 無線通信装置
JPWO2010109635A1 (ja) マルチアンテナ通信装置及びマルチアンテナ通信方法
US20130163649A1 (en) Apparatus and method for transmitting/receiving data in a wireless communication system
EP2632069B1 (en) Transmission method and transmission apparatus
JP2008028750A (ja) 通信システム及び通信方法並びに送信機及び受信機
CN109217987B (zh) 用于无线通信中可配置的mimo处理的方法和装置
CN111200484A (zh) 具有可变调制和编码的混合arq
AU2012201942A1 (en) Apparatus and Method for Transmitting/Receiving Data in a Wireless Communication System
WO2005004367A2 (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010653.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/011481

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 11909415

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007510495

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006730122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1554/MUMNP/2007

Country of ref document: IN

Ref document number: 1020077022054

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007136105

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006730122

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0609658

Country of ref document: BR

Kind code of ref document: A2