WO2006103836A1 - Method and device of crystallizing thin film material - Google Patents

Method and device of crystallizing thin film material Download PDF

Info

Publication number
WO2006103836A1
WO2006103836A1 PCT/JP2006/302459 JP2006302459W WO2006103836A1 WO 2006103836 A1 WO2006103836 A1 WO 2006103836A1 JP 2006302459 W JP2006302459 W JP 2006302459W WO 2006103836 A1 WO2006103836 A1 WO 2006103836A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
pulsed laser
thin film
maximum peak
minimum point
Prior art date
Application number
PCT/JP2006/302459
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Kato
Toshio Inami
Junichi Shida
Suk-Hwan Chung
Miki Sawai
Akinori Koyano
Naoyuki Kobayashi
Original Assignee
The Japan Steel Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Japan Steel Works, Ltd. filed Critical The Japan Steel Works, Ltd.
Priority to KR1020077024239A priority Critical patent/KR100930855B1/en
Publication of WO2006103836A1 publication Critical patent/WO2006103836A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters

Definitions

  • the present invention relates to a thin film material crystallization method and an apparatus therefor, and in particular, it is used mainly for a flat panel by irradiating a thin film silicon material with a pulsed laser to crystallize the material.
  • the present invention relates to a method and apparatus for crystallizing a thin film material used for producing crystallized silicon for forming a thin film transistor.
  • Patent Documents 1 and 2 describe a method or apparatus for irradiating a laser as a superimposed laser.
  • this pulsed laser the time width of the pulse is widened by overlapping a plurality of divided lasers.
  • the crystallization progress time is lengthened, and the crystal size can be increased.
  • TFT thin film transistor
  • Patent Document 1 Japanese Patent Laid-Open No. 8-148423
  • Patent Document 2 JP-A-6-5537
  • Patent Documents 1 and 2 lack consideration of this point. Of course, when producing a flat panel, it is also desired to have excellent throughput.
  • a square (space) line beam consisting of a pulsed (time) laser is applied several times, especially 10-20 times, at the optimum irradiation energy density. It is necessary to produce by irradiation. At this time, since the repetition frequency of the laser is several hundred Hz, the pulsed laser is irradiated at intervals of several ms. Therefore, after one pulse of irradiation, the silicon is melted and crystallized and then cooled to the temperature before irradiation, and pulsed lasers after the second pulse are irradiated one after another.
  • a pulse (time) excimer laser is shaped into a square (space) line beam by a homogenizer, and with an energy density optimal for a-Si in a thin film at a feed pitch of 5 to 10%, Irradiate 10 to 20 times per spot to form a crystal with a uniform V and grain size that is approximately equal to the wavelength of the laser.
  • the reason why crystal grains having the same size as the wavelength of the laser beam are obtained is that after the semiconductor film is melted and recrystallized by laser beam irradiation. It is thought that the resulting surface roughness is the starting point of light scattering (light splitting). This surface roughness is basically caused by the density change in the solid-liquid state, and unevenness is formed at the solidification end point (grain boundary part) when the solidification progresses laterally and the crystal grains grow. It is understood qualitatively as a phenomenon. Then, when the rough surface of the semiconductor film is irradiated again with laser light, the scattered light scattered by the concavo-convex portions interfere with each other and form a standing wave on the film surface.
  • the incident angle of the laser to the material is set to a vertical line.
  • the size of the crystal grains can be increased (for example, Patent Publication 2004-172424).
  • the crystal grains produced in this way are characterized in that they can be made uniform with almost the same size as the wavelength of the irradiated laser.
  • this is a pulse wave of one pulsed laser that irradiates a material. This is due to the fact that it only functions as a single pulse laser for melting and solidifying the material, so that the effect of reducing the number of irradiations cannot be achieved.
  • the average value of the pulse energy may change by several% or more. Due to this change, when the range of the optimum energy value is narrow, the energy density to be irradiated may deviate from the optimum value power, so it becomes necessary to frequently measure and adjust the laser, and therefore stop production. However, there was a problem that productivity was lowered.
  • the crystallinity of the material greatly depends on the energy density of the laser beam, and cannot be obtained satisfactorily if the energy density is too low or too high.
  • process margin The width of the optimum irradiation energy density at which a crystal grain size approximately equal to the laser wavelength is obtained is hereinafter referred to as "process margin".
  • a process margin of 20 mjZcm2 is a typical value when the number of irradiations is 20, and the process margin is zero when the number of irradiations is 10 times or less.
  • the invention of claim 1 is a material in which a pulsed laser is divided into a plurality of divided lasers and delayed when a thin film silicon material is irradiated with a pulsed laser a plurality of times to form crystal grains.
  • the pulse waveform force of one pulsed laser formed by the superposition of a plurality of divided lasers
  • the maximum peak of intensity I and at least one of the intensity exceeding ⁇ / 2 A thin film material crystallization method characterized by having a maximum peak and a minimum point located between at least one adjacent maximum peak and decreasing in intensity below IZ2.
  • the pulsed laser when forming crystal grains by irradiating a thin silicon material with a pulsed laser multiple times, the pulsed laser is divided into a plurality of divided lasers and delayed to irradiate the material.
  • the pulse waveform force of one pulsed laser formed by the superposition of a plurality of divided lasers has at least two maximum peaks with a predetermined intensity IA or more, and a maximum peak that causes melting of the material Strength decreases to the minimum point Then, after the material is crystallized, the material has a maximum peak that causes the material to melt.
  • the invention according to claim 3 is the method for crystallizing a thin film material according to claim 1, wherein the strength of the minimum point is I Z10 or more.
  • the pulsed laser when forming crystal grains by irradiating a thin silicon material with a pulsed laser multiple times, is divided into a plurality of divided lasers and delayed to irradiate the material.
  • the pulse waveform of one pulsed laser formed by the superposition of a plurality of divided lasers is
  • It has a maximum peak of maximum intensity I, one or more minimum points with an intensity of I Z10 or more and IZ2 or less, and before and after the minimum point, the maximum peaks of I and IA exceeding IZ2 are 1 It is a method for crystallizing a thin film material characterized by existing one by one.
  • the pulsed laser when forming crystal grains by irradiating a thin silicon material with a pulsed laser a plurality of times, the pulsed laser is divided into a plurality of divided lasers and delayed to irradiate the material.
  • the pulse waveform force of one pulsed laser formed by the superposition of a plurality of divided lasers, the first maximum peak between the irradiation start point and the first minimum point, and the first minimum point
  • N is an integer of 3 or more
  • n is in the range of 1 to N
  • the invention of claim 6 is characterized in that the intensity of the nth minimum point is an intensity of InZlO or more and InZ2 or less with respect to the intensity In of the immediately following n + 1 maximum peak. This is a method for crystallizing a thin film material.
  • the invention according to claim 7 is characterized in that the number of times of irradiation of the pulsed laser per place of the material is 10 times or less, and the crystallization of the thin film material according to claim 1, 2, 3, 4, 5 or 6 It is a method.
  • the invention of claim 8 is a laser in which the pulsed laser is not linearly polarized light, 8.
  • the invention of claim 9 divides and delays the pulsed laser into a plurality of divided lasers when a thin film silicon material is irradiated with a pulsed laser from a laser oscillator a plurality of times to form crystal grains. Then, a thin-film material crystallization apparatus that irradiates the material with a dividing device that divides the pulsed laser by delaying it into a plurality of divided lasers, and shapes the intensity distribution of the plurality of divided lasers and superimposes them on the material.
  • the pulse waveform force of one pulsed laser formed by the superposition of a plurality of divided lasers has a maximum peak of I, and an intensity of IZ10 or more and IZ2 or less
  • This thin film material crystallization apparatus is characterized in that there are one or more minimum points, and there are one maximum peak of intensities I and IA exceeding IZ2 before and after the minimum point.
  • the material when forming crystal grains by irradiating a thin silicon material with a pulsed laser a plurality of times (multiple pulses), the material is irradiated.
  • the pulse An increase in the optimum crystallization energy of the laser can be avoided.
  • a crystal grain when a crystal grain is formed by irradiating a thin film silicon material with a pulsed laser a plurality of times, it is formed by superposition of divided lasers that irradiate the material. Pulse waveform force of two pulsed lasers After at least two maximum peaks with a predetermined intensity of IA or more, maximum peak force that causes melting in the material After the intensity decreases to the minimum point and the material is crystallized The material has a maximum peak that causes the material to melt.
  • the number of times of irradiation with the pulsed laser can be 10 times or less per part of the material.
  • the pulsed laser applied to the material is a laser that is not linearly polarized light and the incident angle of the incident light with respect to the normal of the material is 1 ° or more, a polarizing plate is used.
  • the size of the crystal grains can be increased without reducing the output.
  • FIG. 1 is a schematic view showing an apparatus for crystallizing a thin film material according to one embodiment of the present invention.
  • FIG. 2 Similarly, a split laser with time on the horizontal axis and intensity on the vertical axis is shown, Fig. 2 (a) is a diagram showing the split laser individually, and Fig. 2 (b) is the superposition state of the split laser. Diagram shown.
  • FIG. 3 Diagram showing the superimposed state of split lasers with time on the horizontal axis and intensity on the vertical axis
  • FIG. 5 Diagram showing the optimum crystallization energy characteristics for delay time.
  • FIG. 6 A diagram showing the process margin characteristics of the maximum number of peaks.
  • FIG. 7 shows a crystallization apparatus for a thin film material similarly used in one example
  • FIG. 7 (A) is a schematic diagram showing a laser oscillator and a dividing means
  • FIG. 7 (B) omits a short axis homogenizer
  • Fig. 7 (C) is a schematic diagram showing the material from the long axis homogenizer to the material.
  • Fig. 7 (C) is a schematic diagram showing the material from the short axis homogenizer to the material.
  • reference numeral 1 denotes a laser oscillator. Specifically, an excimer laser (wavelength 308 nm), which is an ultraviolet laser that is not linearly polarized, is emitted.
  • the pulsed laser 20 emitted from the laser oscillator 1 is divided into two by a semi-transmissive mirror 221 having a transmittance of 50%, and the first divided laser 20a reflected by the semi-transmissive mirror 221 is incident on the homogenizer 224.
  • the second split laser 20b that has passed through the semi-transmissive mirror 221 passes through the delay circuit 223, and then enters the homogenizer 224 through the total reflection mirror 222.
  • the semi-transmission mirror 221, the total reflection mirror 222, and the delay circuit 223 make up a splitting device that splits one pulsed laser into a plurality of split lasers while being mutually delayed.
  • the homogenizer 224 and the subsequent steps are the same as the general conventional method.
  • the first and second divided lasers 2 Oa and 20b are formed into line beams, and the delay time is reduced to the thin-film silicon material 12. Is crystallized by superimposing the first and second divided lasers 20a and 20b, which become a plurality of pulses exceeding 0 ns and not exceeding 100 ns.
  • the first and second divided lasers 20a and 20b functioning as the two pulses shown in Fig. 2 (a) are irradiated while being superimposed with an appropriate delay time T
  • the first and second divided lasers are used.
  • the pulse waveform 2 with 20a and 20b superimposed is a local minimum point where the intensity of the maximum peak 23 is I and the intensity decreases from the maximum peak 23 to IZ10 or more and to IZ2 or less.
  • One maximal peak 22 of intensity IA having 21 and exceeding IZ2 is formed. This maximum peak 23 occurs after the minimum point 21 as the material 12 can be melted by the superposition of the first and second divided lasers 20a and 20b.
  • this waveform 2 shows that the material 12 can be crystallized when the intensity of the maximum peak 23 is I, and a minimum point 21 having an intensity of IZ10 or more and IZ2 or less is formed. It can be said that before and after point 21, one maximum point 22, 23 of strength exceeding IZ2 capable of melting material 12 is formed.
  • the number of maximum points 22, 23 and minimum point 21 varies depending on the number of divisions of the divided lasers 20a and 20b. There are a plurality of local maximum points 22, 23 and local minimum points 21, and at least one local minimum point 21 that can be crystallized with an intensity of 10 Z or more and IZ 2 or less. It is sufficient that 22 and 23 are formed one by one.
  • T 0 to: LOOns
  • one pulsed laser 20 is divided into a plurality of parts, delayed, and then superimposed to irradiate the material 12 with the laser.
  • the pulse waveform 2 of the laser melts the material 12
  • the maximum peak 23 of the intensity I that can melt the material 12 and at least one minimum point 21 that decreases in intensity to IZ2 or less that can crystallize the material 12
  • the pulse waveform 2 of one pulsed laser that irradiates the material 12 has an intensity IA or more that can melt the material 12.
  • the material 12 is crystallized from the maximum peak 22 that melts in the material 12, with at least two local maximum peaks 2 2 and 23, and a minimum point 21 located between the two adjacent maximum peaks 22 and 23.
  • a laser having a first pulse waveform is used as a material. If the thin film material 12 is crystallized by irradiating 12, a large and uniform crystal can be obtained even if the number of pulsed lasers 20 emitted from the laser oscillator 1 and irradiated is reduced. As a result, the variation in crystal grain size is reduced, and the variation in TFT characteristics across the panel is reduced.
  • the crystal growth process will be described.
  • the crystal growth is thought to increase due to the combination of the grain strength generated by the first irradiation and subsequent irradiation.
  • it is necessary to re-irradiate the laser so that the solidified state of the material 12, that is, the state force of crystallization, rises to near the melting temperature, and to provide melting and recrystallization. . If the energy density of the laser is optimal, crystal grains will grow and will be approximately at the wavelength of the laser.
  • the optimum energy density for melting and recrystallization of the material 12 is not only when the single pulsed laser 20 has, but also when the waveform 2 has the first waveform. Can be obtained.
  • Norse waveform 2 has the first Nors waveform
  • the material 12 made of silicon melts near the first peak 22, and the material near the minimum point 21 where the strength decreases to IZ2 or less. 12 begins to crystallize, after which the second peak 23 is incident and the material 12 melts and crystallizes again.
  • a pulsed laser having a Norse waveform composed of only one conventional peak that is not a split laser is placed for a sufficient time.
  • T 0 ⁇ : LOOns And crystallized upon irradiation.
  • the half widths of the first and second divided lasers 20a and 20b with the delay time T are W.
  • the Norse waveform 2 in which the first and second divided lasers 20a and 20b are superimposed has a maximum peak 23 intensity of I, and from the maximum peak 23 to I Z10 or more There is a minimum point 21 where the intensity decreases below IZ2, and there is one maximum peak 22 of intensity IA exceeding IZ2. This maximum peak 23 occurs after the minimum point 21 due to the superposition of the first and second divided lasers 20a and 20b.
  • the first and second divided lasers 20a, 20b force The pulsed laser 20 having a force 20
  • the pulse energy of the laser 20 is 670 mJ and the repetition frequency is 300 Hz.
  • the number of irradiations (10 times, 20 times) in Fig. 4 is the number of times the laser 20 is irradiated.
  • the process margin below the minimum value IZ2 shown in Fig. 4 is a process in the conventional method that does not use the above-mentioned split laser. Compared to the margin (zero at 10 exposures, approximately 20 miZcm2 at 20 exposures).
  • the silicon thin film material 12 crystallized with 10 irradiations shown in Fig. 4 is observed by SEM (scanning electron microscope), and the size of the crystal grains in one field of view is measured. 90% or more of the laser beam size is 308nm ⁇ 30nm.
  • the allowable range (process margin) of the irradiation energy density at which the process conditions were obtained As a result, the process margin (about 20mjZcm2) when the number of irradiations is 10 times is almost the same as that of a material crystallized after 20 times of irradiation with a general conventional method that does not use a split laser.
  • the crystal grains were obtained satisfactorily.
  • the pulse waveform 3 of one pulsed laser formed by superimposing the N + 1 divided lasers is a first waveform between the irradiation start point 30 and the first minimum point 31.
  • the intensity of the nth minimum point is an intensity of InZlO or more and InZ2 or less with respect to the intensity In of the immediately preceding nth maximum peak, or the intensity of the nth minimum point is
  • the crystallization method has an intensity in the range of I nZlO or more and I nZ2 or less, and the material 112 is at least melted, crystallized, melted by one pulsed laser If crystallization is applied sequentially, the number of irradiations can be reduced.
  • n is an integer in the range of 1 to N.
  • T It was formed as 30 ns (minimum point intensity value IZ2), and all the split lasers 120a, 120b, 120c, and 120d were made incident on the common homogenizer 110.
  • the delay circuits 107, 108, and 109 are arranged between the semi-transparent mirrors 103 to 105 and the total reflection mirror 106.
  • the semi-transmissive mirrors 103 to 105, the total reflection mirror 106, and the delay circuits 107 to 109 allow a plurality of pulsed lasers 102 to be used.
  • the splitting means for splitting the split lasers 120a, 120b, 120c, and 120d with mutual delay is configured. Intensity of two adjacent maximum peaks of pulse waveform 3 shown in Fig. 3 In n, I n + 1 is the intensity of the minimum point between them Intensities of multiple values that exceed the intensity of InZ2 and melt material 112 The maximum peak of the maximum intensity exists in the maximum peak of In.
  • the number of transflective mirrors 103 to 105 and delay circuits 107 to 109 is changed, and a pulse waveform with the number of maximum peaks of 1 to 7 is irradiated to the thin-film silicon material 12 to generate pulses.
  • a pulse waveform with the number of maximum peaks of 1 to 7 is irradiated to the thin-film silicon material 12 to generate pulses.
  • the result is shown in Fig. 6.
  • the number of irradiations is the number of pulsed lasers 102.
  • the number of times of irradiation of the pulsed laser per part of the material 12 is 10 or less.
  • XeCl excimer laser oscillator 101 pulse energy: 670mJ, repetition frequency: 300Hz, pulsed laser 102 with a pulse waveform emitted by four mirrors 103, 104, 105, 106 with reflectivity Rl, R2, R3, R4 Dividing and changing the direction, the delay circuits 107, 108, 109 provided between the mirrors 103, 104, 105, 106 delay the adjacent ij lasers 120 a to 120 d with each other, and successively pass to the long axis homogenizer 110.
  • the a-Si film 112 having a film thickness of 50 nm on the glass, which is the material 12, was irradiated with a rectangular wave having a long axis of 200 mm.
  • the reflectivity of the mirror 103 is Rl
  • the reflectivity of the mirror 104 is R2
  • Each delay circuit 107, 108, 109 includes a plurality of total reflection mirrors for generating an optical path difference, and these total reflection mirrors provide time differences to the divided lasers 120a to 120d. Delay time: A 9m optical path was provided to delay 30ns.
  • a short-axis homogenizer 111 shown in Fig. 7 (C) is provided in the direction perpendicular to the long axis of the pulsed laser 102, and the short-axis width is shaped into a rectangular wave spatial intensity distribution of 0.4 mm.
  • the a-Si film 112 on the glass is not shown in the figure! It was placed on the stage and scanned in the minor axis direction at a speed of V (mm / s).
  • the homogenizers 110 and 111 constitute shaping means for shaping the intensity distribution of a plurality of divided lasers and superimposing them on the material 112 for irradiation.
  • the material 112 made of a crystallized silicon thin film after irradiation with the pulsed laser 102 is observed with a SEM (scanning electron microscope), and the size of the crystal grain in one field of view is measured.
  • the allowable width (process margin) of the irradiation energy density at which the process condition was obtained was measured.
  • the process margin was about 20, 40, 60, 100mjZcm2, as shown in Fig. 6 as the maximum number of peaks 4. Number of times: Processable conditions were obtained even under 5 times.
  • the crystal grains can be made larger than the wavelength of the laser 102. It is known. Therefore, the incident angle of the incident light with respect to the normal of the material 112 is set to 1 ° or more. Further, since the repetition frequency of the laser is several hundred Hz, the pulsed laser 102 is irradiated at intervals of several ms.
  • silicon material 112 is repeatedly melted and cooled and crystallized by irradiation with a plurality of pulsed lasers, and becomes uniform at a size approximately equal to or greater than the wavelength of the laser to be irradiated.
  • the variation in thickness can be reduced. If one pulsed laser 102 is irradiated as a plurality of divided lasers 120a to 120d, the effect equivalent to irradiating a pulsed laser with multiple pulses according to the number of divisions by one pulsed laser 102 can be obtained. It is done.
  • the pulsed laser 102 irradiated to the material 112 is a laser that is not linearly polarized light
  • crystal grains can be grown without reducing the output using a polarizing plate. If the incident angle of the incident light with respect to the normal of the material is 1 ° or more, the crystal grains can be made equal to the wavelength of the laser 102 or larger than the wavelength of the laser by repeated irradiation of the pulsed laser 102.
  • An excimer laser is a random polarization without a specific polarization. Large crystal grains are obtained when the incident angle of the incident light with respect to the normal of the material is 1 ° or more.

Abstract

When crystal particle size cannot be uniformed, it is impossible to reduce variations in TFT characteristics over the entire panel. A method of crystallizing a thin film material comprising the step of splitting a pulse-form laser into a plurality of split lasers and delaying them and irradiating a material (12, 112) with them when the thin-film-form silicon material (12, 112) is irradiated with a pulse-form laser several times to form crystals, wherein the pulse waveform (2) of one pulse-form laser formed by a plurality of superimposed split lasers has a maximum peak (23) having the maximum intensity I, at least one maximum peak (22) having an intensity exceeding I/2, and at least one minimum point (21) positioned between adjacent maximum peaks (22, 23) and having an intensity lower than I/2.

Description

明 細 書  Specification
薄膜材料の結晶化方法及びその装置  Method and apparatus for crystallizing thin film material
技術分野  Technical field
[0001] 本発明は、薄膜材料の結晶化方法及びその装置に関し、特に、薄膜状のシリコン 製の材料にパルス状レーザを照射し、材料を結晶化することにより、主にフラットパネ ルに使われる薄膜トランジスターとするための結晶化シリコンの製造に利用される薄 膜材料の結晶化方法及びその装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a thin film material crystallization method and an apparatus therefor, and in particular, it is used mainly for a flat panel by irradiating a thin film silicon material with a pulsed laser to crystallize the material. The present invention relates to a method and apparatus for crystallizing a thin film material used for producing crystallized silicon for forming a thin film transistor.
背景技術  Background art
[0002] 薄膜状のシリコン製の材料に、パルス状レーザを複数回照射して結晶粒を形成す る際、 1つのパルス状レーザを複数に分割、遅延させた分割レーザとなし、これらの 分割レーザを重畳したレーザとして照射する方法又は装置が、特許文献 1, 2に記載 されている。このパルス状レーザは、複数の分割レーザを重ね合わせることによって パルスの時間幅を広くしている。これにより、 1つのパルス状レーザの照射による材料 の溶融後、結晶化が進む時間を長くすることになり、結晶の大きさを大きくすることが できるとしている。結晶粒を大きくすることで薄膜トランジスタ (以下、「TFT」という。 ) のソース'ドレイン間の粒界数を少なくすることができるため、 TFTの動作速度を速く することができる。  [0002] When forming a crystal grain by irradiating a thin-film silicon material with a pulsed laser multiple times, a single pulsed laser is divided into a plurality of divided lasers, and these divided lasers are divided. Patent Documents 1 and 2 describe a method or apparatus for irradiating a laser as a superimposed laser. In this pulsed laser, the time width of the pulse is widened by overlapping a plurality of divided lasers. As a result, after the material is melted by one pulsed laser irradiation, the crystallization progress time is lengthened, and the crystal size can be increased. By increasing the crystal grains, the number of grain boundaries between the source and drain of a thin film transistor (hereinafter referred to as “TFT”) can be reduced, so that the operating speed of the TFT can be increased.
特許文献 1:特開平 8— 148423号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-148423
特許文献 2:特開平 6— 5537号公報  Patent Document 2: JP-A-6-5537
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] レーザ照射により結晶化した薄膜状のシリコン製の材料でフラットパネルを作製す る場合、 TFTの動作速度が速いことは重要である力 さらに重要な特性として、パネ ル全体の TFT特性のばらつきが小さいことが要求されている。そのためには、結晶 粒の大きさが均一である必要がある。 [0003] When a flat panel is made of a thin-film silicon material crystallized by laser irradiation, it is important that the TFT operating speed is fast. More importantly, the TFT characteristics of the entire panel Small variation is required. For this purpose, the crystal grains must be uniform in size.
[0004] し力しながら、特許文献 1, 2にあっては、この点の配慮に欠けている。勿論、フラッ トパネルを作製する場合、スループットに優れることも望まれる。 [0005] 結晶粒の大きさを均一にするためには、パルス(時間)状レーザよりなる方形 (空間) のラインビームを、最適照射エネルギー密度で、 1箇所あたり複数回、特に 10〜20 回照射して作製する必要がある。このとき、レーザの繰返し周波数は数百 Hzである ためパルス状レーザは数 ms間隔で照射される。従って、 1パルスの照射により、シリ コンは溶融、結晶化後、照射前の温度まで冷却され、 2パルス以降のパルス状レー ザが次々と照射される。 However, Patent Documents 1 and 2 lack consideration of this point. Of course, when producing a flat panel, it is also desired to have excellent throughput. [0005] In order to make the crystal grain size uniform, a square (space) line beam consisting of a pulsed (time) laser is applied several times, especially 10-20 times, at the optimum irradiation energy density. It is necessary to produce by irradiation. At this time, since the repetition frequency of the laser is several hundred Hz, the pulsed laser is irradiated at intervals of several ms. Therefore, after one pulse of irradiation, the silicon is melted and crystallized and then cooled to the temperature before irradiation, and pulsed lasers after the second pulse are irradiated one after another.
[0006] すなわち、パルス(時間)状のエキシマ'レーザを、ホモジナイザーにより方形 (空間 )のラインビームに整形し、 5〜10%の送りピッチで薄膜の a— Siに最適なエネルギー 密度でもって、一箇所あたり 10〜20回照射して、レーザの波長の大きさにほぼ等し V、粒径が均一な結晶が形成される。  That is, a pulse (time) excimer laser is shaped into a square (space) line beam by a homogenizer, and with an energy density optimal for a-Si in a thin film at a feed pitch of 5 to 10%, Irradiate 10 to 20 times per spot to form a crystal with a uniform V and grain size that is approximately equal to the wavelength of the laser.
[0007] レーザ光の波長の大きさに等しい結晶粒が得られる原因は、特開平 10— 256152 に記載されて 、るように、レーザ光の照射で半導体膜が融解 ·再結晶化した後に形 成される表面荒れが、光散乱 (光分割)の起点となるためと考えられている。この表面 荒れは、基本的には固液状態での密度変化に起因するもので、固化が横方向に進 み結晶粒が成長したときの固化の終点 (粒界部)に凹凸が形成される現象として定性 的に理解される。そして、この半導体膜の荒れた表面にレーザ光を再び照射すると、 この凹凸部で散乱された散乱光同士が干渉し、膜表面に定在波を形成するのである 。従って、多重回照射では、この過程を繰り返す中で最終的に特定の周期の凹凸パ ターンが半導体膜の表面に形成される(J. SipeJ.F.Young, J.S.Perston, and H.M. van Driel, Phys.Rev.B27, 1141, 1155,2001(1983》。  [0007] As described in JP-A-10-256152, the reason why crystal grains having the same size as the wavelength of the laser beam are obtained is that after the semiconductor film is melted and recrystallized by laser beam irradiation. It is thought that the resulting surface roughness is the starting point of light scattering (light splitting). This surface roughness is basically caused by the density change in the solid-liquid state, and unevenness is formed at the solidification end point (grain boundary part) when the solidification progresses laterally and the crystal grains grow. It is understood qualitatively as a phenomenon. Then, when the rough surface of the semiconductor film is irradiated again with laser light, the scattered light scattered by the concavo-convex portions interfere with each other and form a standing wave on the film surface. Therefore, in the multiple irradiation, an uneven pattern with a specific period is finally formed on the surface of the semiconductor film by repeating this process (J. Sipe J. F. Young, JSPerston, and HM van Driel, Phys Rev. B27, 1141, 1155, 2001 (1983).
[0008] そして、パルス状レーザを材料に照射するとき、レーザの材料への入射角を垂直線  [0008] Then, when the material is irradiated with a pulsed laser, the incident angle of the laser to the material is set to a vertical line.
(法線)から 1° 以上とすることで、結晶粒の大きさを大きくすることができる(例えば特 許公開 2004— 172424)。このようにして作製した結晶粒は、照射するレーザの波長 とほぼ同じ大きさで均一にできるという特徴がある。  By making the angle 1 ° or more from the (normal) line, the size of the crystal grains can be increased (for example, Patent Publication 2004-172424). The crystal grains produced in this way are characterized in that they can be made uniform with almost the same size as the wavelength of the irradiated laser.
[0009] しかして、これらの方法は、照射回数を 10〜20回とするために、ラインビームの送り 速度 (送り速度 =ラインビーム幅 Z照射回数 Xレーザの繰返し周波数)を遅くする必 要があり、そのために生産効率が低下するという技術的課題があった。  [0009] Therefore, in these methods, it is necessary to slow down the line beam feed rate (feed rate = line beam width Z number of times X laser repetition frequency) in order to set the number of times of irradiation to 10 to 20 times. Therefore, there was a technical problem that the production efficiency was lowered.
[0010] これは、従来技術にあっては、材料に照射する 1つのパルス状レーザのパルス波 形力 材料の溶融'固化に対して単一のパルスレーザとしてのみ機能するため、照射 回数の減少効果を奏し得な ヽことに起因する。 [0010] In the prior art, this is a pulse wave of one pulsed laser that irradiates a material. This is due to the fact that it only functions as a single pulse laser for melting and solidifying the material, so that the effect of reducing the number of irradiations cannot be achieved.
[0011] また、エキシマレーザの発振器を長時間運転すると、パルスエネルギーの平均値が 数%以上変化することがある。この変化に起因して、最適エネルギー値の幅が狭いと きには照射するエネルギー密度が最適値力 外れることがあるため、レーザを頻繁に 計測'調整をする必要が生じ、そのために生産を停止し、生産性が低下するという課 題もあった。  [0011] When the excimer laser oscillator is operated for a long time, the average value of the pulse energy may change by several% or more. Due to this change, when the range of the optimum energy value is narrow, the energy density to be irradiated may deviate from the optimum value power, so it becomes necessary to frequently measure and adjust the laser, and therefore stop production. However, there was a problem that productivity was lowered.
[0012] すなわち、材料 (p— Si膜)の結晶性は、レーザ光のエネルギー密度に大きく依存し 、エネルギー密度が低すぎても、高すぎても良好に得られない。そして、最適なエネ ルギー密度で製造すると、おおよそレーザ光 2の波長(λ = 308nm)に等しい大きさ の結晶粒が得られる。  That is, the crystallinity of the material (p-Si film) greatly depends on the energy density of the laser beam, and cannot be obtained satisfactorily if the energy density is too low or too high. When manufactured at the optimum energy density, crystal grains having a size approximately equal to the wavelength of the laser beam 2 (λ = 308 nm) can be obtained.
[0013] 尚、上述したレーザの波長にほぼ等しい大きさの結晶粒径が得られる最適照射ェ ネルギー密度の幅を、以下「プロセスマージン」という。ちなみに、分割レーザとしない 一般的な従来法では、照射回数 20回でプロセスマージンは 20mjZcm2が一般的 な値で、照射回数 10回以下ではプロセスマージンがゼロであった。  [0013] The width of the optimum irradiation energy density at which a crystal grain size approximately equal to the laser wavelength is obtained is hereinafter referred to as "process margin". By the way, in a general conventional method that does not use a split laser, a process margin of 20 mjZcm2 is a typical value when the number of irradiations is 20, and the process margin is zero when the number of irradiations is 10 times or less.
課題を解決するための手段  Means for solving the problem
[0014] 請求項 1の発明は、薄膜状のシリコン製の材料に、パルス状レーザを複数回照射し て結晶粒を形成する際、パルス状レーザを複数の分割レーザに分割 ·遅延させて材 料に照射する薄膜材料の結晶化方法において、複数の分割レーザの重畳によって 形成される 1つのパルス状レーザのパルス波形力 最大の強度 Iの極大ピークと、 \/ 2を超える強度の少なくとも 1つの極大ピークと、少なくとも 1つの隣接する極大ピーク の間に位置し、 IZ2以下に強度が低下する極小点とを有することを特徴とする薄膜 材料の結晶化方法である。 [0014] The invention of claim 1 is a material in which a pulsed laser is divided into a plurality of divided lasers and delayed when a thin film silicon material is irradiated with a pulsed laser a plurality of times to form crystal grains. In the crystallization method of the thin film material irradiated to the material, the pulse waveform force of one pulsed laser formed by the superposition of a plurality of divided lasers The maximum peak of intensity I and at least one of the intensity exceeding \ / 2 A thin film material crystallization method characterized by having a maximum peak and a minimum point located between at least one adjacent maximum peak and decreasing in intensity below IZ2.
請求項 2の発明は、薄膜状のシリコン製の材料に、パルス状レーザを複数回照射し て結晶粒を形成する際、パルス状レーザを複数の分割レーザに分割 ·遅延させて材 料に照射する薄膜材料の結晶化方法において、複数の分割レーザの重畳によって 形成される 1つのパルス状レーザのパルス波形力 所定の強度 I A以上の極大ピーク を少なくとも 2つ有し、材料に溶融を生ずる極大ピーク力 極小点にまで強度が低下 して材料に結晶化を生じた後、材料に溶融を生ずる極大ピークを有することを特徴と する薄膜材料の結晶化方法である。 In the invention of claim 2, when forming crystal grains by irradiating a thin silicon material with a pulsed laser multiple times, the pulsed laser is divided into a plurality of divided lasers and delayed to irradiate the material. In the thin film material crystallization method, the pulse waveform force of one pulsed laser formed by the superposition of a plurality of divided lasers has at least two maximum peaks with a predetermined intensity IA or more, and a maximum peak that causes melting of the material Strength decreases to the minimum point Then, after the material is crystallized, the material has a maximum peak that causes the material to melt.
請求項 3の発明は、極小点の強度が、 I Z10以上であることを特徴とする請求項 1 の薄膜材料の結晶化方法である。  The invention according to claim 3 is the method for crystallizing a thin film material according to claim 1, wherein the strength of the minimum point is I Z10 or more.
請求項 4の発明は、薄膜状のシリコン製の材料に、パルス状レーザを複数回照射し て結晶粒を形成する際、パルス状レーザを複数の分割レーザに分割 ·遅延させて材 料に照射する薄膜材料の結晶化方法において、複数の分割レーザの重畳によって 形成される 1つのパルス状レーザのパルス波形が、  In the invention of claim 4, when forming crystal grains by irradiating a thin silicon material with a pulsed laser multiple times, the pulsed laser is divided into a plurality of divided lasers and delayed to irradiate the material. In the thin film material crystallization method, the pulse waveform of one pulsed laser formed by the superposition of a plurality of divided lasers is
最大の強度 Iの極大ピークを有すると共に、 I Z10以上で IZ2以下の強度である極 小点が 1つ以上あり、かつ、極小点の前後に、 IZ2を超える強度 I, IAの極大ピーク が 1つずつ存在することを特徴とする薄膜材料の結晶化方法である。 It has a maximum peak of maximum intensity I, one or more minimum points with an intensity of I Z10 or more and IZ2 or less, and before and after the minimum point, the maximum peaks of I and IA exceeding IZ2 are 1 It is a method for crystallizing a thin film material characterized by existing one by one.
請求項 5の発明は、薄膜状のシリコン製の材料に、パルス状レーザを複数回照射し て結晶粒を形成する際、パルス状レーザを複数の分割レーザに分割 ·遅延させて材 料に照射する薄膜材料の結晶化方法において、複数の分割レーザの重畳によって 形成される 1つのパルス状レーザのパルス波形力 照射の開始点と第 1極小点間の 第 1極大ピークと、第 1極小点と第 2極小点間の第 2極大ピークと、第 (N— 1)極小点 と第 N極小点間の第 N極大ピークと、第 N極小点と照射の終了点間の第 (N+ 1)極 大ピークとからなる材料に結晶化を生ずる合計 N個の極小点と材料に溶融を生ずる( N+ 1)個の極大ピークとを有し、 Nが 3以上の整数であり、第 n極小点の強度が、直 前の第 n極大ピークの強度 Inに対して、 I nZlO以上で I nZ2以下の強度であり、 n が 1〜Nの範囲の整数であることを特徴とする薄膜材料の結晶化方法である。  According to the invention of claim 5, when forming crystal grains by irradiating a thin silicon material with a pulsed laser a plurality of times, the pulsed laser is divided into a plurality of divided lasers and delayed to irradiate the material. In the thin film material crystallization method, the pulse waveform force of one pulsed laser formed by the superposition of a plurality of divided lasers, the first maximum peak between the irradiation start point and the first minimum point, and the first minimum point The second maximum peak between the second minimum points, the Nth maximum peak between the (N-1) minimum point and the Nth minimum point, and the (N + 1) maximum between the Nth minimum point and the end point of irradiation. It has a total of N minimum points that cause crystallization in a material consisting of large peaks and (N + 1) maximum peaks that cause melting in the material, N is an integer of 3 or more, and the nth minimum point The intensity is the intensity of In nZlO and I nZ2 or less with respect to the intensity n of the previous nth maximum peak, and n is in the range of 1 to N It is a thin film material crystallization method characterized by being an integer.
請求項 6の発明は、第 n極小点の強度が、直後の第 n+ 1極大ピークの強度 Inに対 して、 I nZlO以上で I nZ2以下の強度であることを特徴とする請求項 5の薄膜材料 の結晶化方法である。  The invention of claim 6 is characterized in that the intensity of the nth minimum point is an intensity of InZlO or more and InZ2 or less with respect to the intensity In of the immediately following n + 1 maximum peak. This is a method for crystallizing a thin film material.
請求項 7の発明は、前記材料の 1箇所当たりのパルス状レーザの照射回数が 10回 以下であることを特徴とする請求項 1, 2, 3, 4, 5又は 6の薄膜材料の結晶化方法で ある。  The invention according to claim 7 is characterized in that the number of times of irradiation of the pulsed laser per place of the material is 10 times or less, and the crystallization of the thin film material according to claim 1, 2, 3, 4, 5 or 6 It is a method.
請求項 8の発明は、前記パルス状レーザが直線偏光でないレーザであって、材料 の法線に対する入射光線の入射角が 1° 以上であることを特徴とする請求項 1, 2, 3 , 4, 5, 6又は 7の薄膜材料の結晶化方法である。 The invention of claim 8 is a laser in which the pulsed laser is not linearly polarized light, 8. The method of crystallizing a thin film material according to claim 1, wherein the incident angle of the incident light with respect to the normal line is 1 ° or more.
請求項 9の発明は、薄膜状のシリコン製の材料に、レーザ発振器からのパルス状レ 一ザを複数回照射して結晶粒を形成する際、パルス状レーザを複数の分割レーザに 分割 ·遅延させて材料に照射する薄膜材料の結晶化装置にぉ 、て、パルス状レーザ を複数の分割レーザに遅延させて分割する分割手段と、複数の分割レーザの強度 分布を整形して材料に重畳させて照射する整形手段とを有し、複数の分割レーザの 重畳によって形成される 1つのパルス状レーザのパルス波形力 最大の強度 Iの極 大ピークを有すると共に、 I Z10以上で IZ2以下の強度である極小点が 1つ以上あ り、かつ、極小点の前後に、 IZ2を超える強度 I, IAの極大ピークが 1つずつ存在す ることを特徴とする薄膜材料の結晶化装置である。  The invention of claim 9 divides and delays the pulsed laser into a plurality of divided lasers when a thin film silicon material is irradiated with a pulsed laser from a laser oscillator a plurality of times to form crystal grains. Then, a thin-film material crystallization apparatus that irradiates the material with a dividing device that divides the pulsed laser by delaying it into a plurality of divided lasers, and shapes the intensity distribution of the plurality of divided lasers and superimposes them on the material. The pulse waveform force of one pulsed laser formed by the superposition of a plurality of divided lasers has a maximum peak of I, and an intensity of IZ10 or more and IZ2 or less This thin film material crystallization apparatus is characterized in that there are one or more minimum points, and there are one maximum peak of intensities I and IA exceeding IZ2 before and after the minimum point.
発明の効果  The invention's effect
[0015] 独立請求項 1, 4, 5及び 9によれば、薄膜状のシリコン製の材料に、パルス状レー ザを複数回 (複数パルス)照射して結晶粒を形成する際、材料に照射する分割レー ザの重畳によって形成される 1つのパルス状レーザのパルス波形力 S、極大ピークを 少なくとも 2つ有し、最大の強度 Iの極大ピークから IZ2以下に強度が低下する極小 点を少なくとも 2つの極大ピークの間に有する。これにより、最大の強度 Iの極大ピー ク又は他の極大ピークにおいて材料に溶融を生じさせ、 2つの極大ピークの間の極 小点において材料に結晶化を与えることができる。  [0015] According to the independent claims 1, 4, 5 and 9, when forming crystal grains by irradiating a thin silicon material with a pulsed laser a plurality of times (multiple pulses), the material is irradiated. The pulse waveform force S of a single pulsed laser formed by the superposition of split lasers, and at least two maximum peaks, and at least two minimum points where the intensity decreases from the maximum peak of maximum intensity I to IZ2 or lower Between two maximum peaks. This can cause the material to melt at the maximum peak of maximum intensity I or other maximum peak and to crystallize the material at the minimum point between the two maximum peaks.
[0016] このような 1つのノ ルス状レーザの分割レーザの照射により、材料の溶融、結晶化 後、照射前の温度にまで冷却されることなぐ結晶化後に直ぐに再度の溶融が行わ れるため、パルス状レーザの照射回数を低減させて、速やかに均一な大きさの結晶 粒による結晶化を行うことができる。その結果、パネル全体の TFT特性のばらつきが 小さくなる。 [0016] Since irradiation of such a split laser of one Norse-shaped laser, after melting and crystallization of the material, it is melted again immediately after crystallization without being cooled to the temperature before irradiation. By reducing the number of pulsed laser irradiations, crystallization can be performed quickly with uniform-sized crystal grains. As a result, the variation in TFT characteristics across the panel is reduced.
[0017] そして、分割レーザの遅延時間を適正にとって極小点の強度を IZ2以下とすれば 、適当なプロセスマージンを与えるプロセス条件が得られ、材料を良好に結晶化させ ることが可能になる。  [0017] When the delay time of the divided laser is set appropriately and the intensity of the minimum point is set to IZ2 or less, process conditions that give an appropriate process margin can be obtained, and the material can be crystallized satisfactorily.
[0018] また、請求項 3, 4, 5, 6及び 9のように極小点の強度を IZ10以上とすれば、パル ス状レーザの最適結晶化エネルギーの高騰を避けることができる。 [0018] Further, if the intensity of the minimum point is IZ10 or more as in claims 3, 4, 5, 6, and 9, the pulse An increase in the optimum crystallization energy of the laser can be avoided.
[0019] 独立請求項 2によれば、薄膜状のシリコン製の材料に、パルス状レーザを複数回照 射して結晶粒を形成する際、材料に照射する分割レーザの重畳によって形成される 1つのパルス状レーザのパルス波形力 所定の強度 I A以上の極大ピークを少なくと も 2つ有し、材料に溶融を生ずる極大ピーク力 極小点にまで強度が低下して材料 に結晶化を生じた後、材料に溶融を生ずる極大ピークを有する。  [0019] According to the independent claim 2, when a crystal grain is formed by irradiating a thin film silicon material with a pulsed laser a plurality of times, it is formed by superposition of divided lasers that irradiate the material. Pulse waveform force of two pulsed lasers After at least two maximum peaks with a predetermined intensity of IA or more, maximum peak force that causes melting in the material After the intensity decreases to the minimum point and the material is crystallized The material has a maximum peak that causes the material to melt.
[0020] これにより、 1つのパルス状レーザの分割レーザの照射により、材料の溶融、結晶化 後、照射前の温度にまで冷却されることなぐ結晶化後に直ぐに再度の溶融が行わ れる。その結果、パルス状レーザの照射回数を低減させて、速やかに均一な大きさの 結晶粒による結晶化を行うことができる。  [0020] With this, by the irradiation of one pulsed laser split laser, the material is melted and crystallized, and then melted again immediately after crystallization without being cooled to the temperature before irradiation. As a result, the number of times of irradiation with the pulsed laser can be reduced, and crystallization with crystal grains of uniform size can be performed quickly.
[0021] パルス状レーザの照射回数は、請求項 7のように材料の 1箇所当たり、 10回以下と することが可能である。  [0021] As described in claim 7, the number of times of irradiation with the pulsed laser can be 10 times or less per part of the material.
[0022] 請求項 8によれば、材料に照射するパルス状レーザが直線偏光でないレーザであ つて、入射光線の材料の法線に対する入射角が 1° 以上であるため、偏光板を使用 して出力を低下させることなぐ結晶粒の大きさを大きくすることができる。  [0022] According to claim 8, since the pulsed laser applied to the material is a laser that is not linearly polarized light and the incident angle of the incident light with respect to the normal of the material is 1 ° or more, a polarizing plate is used. The size of the crystal grains can be increased without reducing the output.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明の 1実施の形態に係る薄膜材料の結晶化装置を示す概略図。  FIG. 1 is a schematic view showing an apparatus for crystallizing a thin film material according to one embodiment of the present invention.
[図 2]同じく横軸に時間をとり縦軸に強度をとつた分割レーザを示し、図 2 (a)は分割 レーザを個別に示す線図、図 2 (b)は分割レーザの重畳状態を示す線図。  [Fig. 2] Similarly, a split laser with time on the horizontal axis and intensity on the vertical axis is shown, Fig. 2 (a) is a diagram showing the split laser individually, and Fig. 2 (b) is the superposition state of the split laser. Diagram shown.
[図 3]同じく横軸に時間をとり縦軸に強度をとつた分割レーザの重畳状態を示す線図  [Fig. 3] Diagram showing the superimposed state of split lasers with time on the horizontal axis and intensity on the vertical axis
[図 4]同じく遅延時間 プロセスマージン特性を示す線図。 [Fig.4] Diagram showing delay time process margin characteristics.
[図 5]同じく遅延時間 最適結晶化エネルギー特性を示す線図。  [Fig. 5] Diagram showing the optimum crystallization energy characteristics for delay time.
[図 6]同じく極大ピーク数一プロセスマージン特性を示す線図。  [Fig. 6] A diagram showing the process margin characteristics of the maximum number of peaks.
[図 7]同じく 1実施例に用いた薄膜材料の結晶化装置を示し、図 7 (A)はレーザ発振 器及び分割手段を示す概略図、図 7 (B)は短軸ホモジナイザーを省略し、長軸ホモ ジナイザーカゝら材料までを示す概略図、図 7 (C)は短軸ホモジナイザーから材料まで を示す概略図。 発明を実施するための最良の形態 FIG. 7 shows a crystallization apparatus for a thin film material similarly used in one example, FIG. 7 (A) is a schematic diagram showing a laser oscillator and a dividing means, FIG. 7 (B) omits a short axis homogenizer, Fig. 7 (C) is a schematic diagram showing the material from the long axis homogenizer to the material. Fig. 7 (C) is a schematic diagram showing the material from the short axis homogenizer to the material. BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 図 1〜図 7は、本発明に係る薄膜材料の結晶化装置の 1実施の形態を示す。図 1中 において符号 1はレーザ発振器を示し、具体的には直線偏光でない紫外域レーザで あるエキシマレーザ (波長 308nm)を射出する。レーザ発振器 1から射出されるパル ス状レーザ 20は、透過率 50%の半透過ミラー 221によって 2つに分割し、半透過ミラ 一 221で反射した第 1の分割レーザ 20aはホモジナイザー 224に入射させ、また、半 透過ミラー 221を透過した第 2の分割レーザ 20bは遅延回路 223を透過後に全反射 ミラー 222でホモジナイザー 224に入射させる。この半透過ミラー 221、全反射ミラー 222及び遅延回路 223〖こより、 1つのパルス状レーザを複数の分割レーザに相互に 遅延させて分割する分割手段を構成して!/ヽる。  1 to 7 show an embodiment of a thin-film material crystallization apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes a laser oscillator. Specifically, an excimer laser (wavelength 308 nm), which is an ultraviolet laser that is not linearly polarized, is emitted. The pulsed laser 20 emitted from the laser oscillator 1 is divided into two by a semi-transmissive mirror 221 having a transmittance of 50%, and the first divided laser 20a reflected by the semi-transmissive mirror 221 is incident on the homogenizer 224. The second split laser 20b that has passed through the semi-transmissive mirror 221 passes through the delay circuit 223, and then enters the homogenizer 224 through the total reflection mirror 222. The semi-transmission mirror 221, the total reflection mirror 222, and the delay circuit 223 make up a splitting device that splits one pulsed laser into a plurality of split lasers while being mutually delayed.
[0025] ホモジナイザー 224以降は一般的な従来法と同様であり、第 1,第 2の分割レーザ 2 Oa, 20bをラインビームに成形して、薄膜状のシリコン製の材料 12に遅延時間: Tを 0 nsを越え 100ns以下の複数のパルスとなる第 1,第 2の分割レーザ 20a, 20bを重畳 させて照射して結晶化する。  [0025] The homogenizer 224 and the subsequent steps are the same as the general conventional method. The first and second divided lasers 2 Oa and 20b are formed into line beams, and the delay time is reduced to the thin-film silicon material 12. Is crystallized by superimposing the first and second divided lasers 20a and 20b, which become a plurality of pulses exceeding 0 ns and not exceeding 100 ns.
[0026] 図 2 (a)に示す 2つのパルスとして機能する第 1,第 2の分割レーザ 20a, 20bを適 正な遅延時間 Tで重畳させて照射するとき、第 1,第 2の分割レーザ 20a, 20bを重畳 させたパルス波形 2は、図 2 (b)に示すように最大ピーク 23の強度が Iのとき、最大ピ ーク 23から I Z10以上で IZ2以下に強度が低下した極小点 21を有し、 IZ2を超え る強度 I Aの極大ピーク 22が 1つ形成される。この最大ピーク 23は、第 1,第 2の分割 レーザ 20a, 20bの重畳により、材料 12を溶融させ得るものとして、極小点 21よりも後 に生ずる。また、このノ ルス波形 2は、最大ピーク 23の強度が Iのとき、材料 12を結 晶化させ得るものとして、 I Z10以上で IZ2以下の強度である極小点 21を 1つ形成 し、極小点 21の前後に、材料 12を溶融させ得る IZ2を超える強度の極大点 22, 23 を 1つずつ形成しているともいえる。極大点 22, 23及び極小点 21の数は、分割レー ザ 20a, 20bの分割数によって変化する。極大点 22, 23及び極小点 21を複数有し、 I Z10以上で IZ2以下の強度で結晶化させ得る少なくとも 1つの極小点 21の前後に 、 IZ2を超える強度で材料 12を溶融させ得る極大点 22, 23を 1つずつ形成してい ればよい。 [0027] このレーザ発振器 1から射出される 1つのパルス状レーザ 20を第 1,第 2の分割レー ザ 20a, 20bのように複数に分割.遅延 (遅延時間: T=0〜: LOOns)させた後に重畳 させたパルス波形 2のレーザを材料 12に照射する方法により、パルス状レーザ 20の 照射回数を少なくして結晶粒の大きさを均一にすることを試みたところ、パルスの時 間的な幅を広げただけでは照射回数の減少に効果がなぐ図 2 (a)に示す分割レー ザ 20a, 20bに特定の条件を与える場合にのみ、照射回数を少なくしても均一かつ 大きな結晶が得られることが判った。 [0026] When the first and second divided lasers 20a and 20b functioning as the two pulses shown in Fig. 2 (a) are irradiated while being superimposed with an appropriate delay time T, the first and second divided lasers are used. As shown in Fig. 2 (b), the pulse waveform 2 with 20a and 20b superimposed is a local minimum point where the intensity of the maximum peak 23 is I and the intensity decreases from the maximum peak 23 to IZ10 or more and to IZ2 or less. One maximal peak 22 of intensity IA having 21 and exceeding IZ2 is formed. This maximum peak 23 occurs after the minimum point 21 as the material 12 can be melted by the superposition of the first and second divided lasers 20a and 20b. In addition, this waveform 2 shows that the material 12 can be crystallized when the intensity of the maximum peak 23 is I, and a minimum point 21 having an intensity of IZ10 or more and IZ2 or less is formed. It can be said that before and after point 21, one maximum point 22, 23 of strength exceeding IZ2 capable of melting material 12 is formed. The number of maximum points 22, 23 and minimum point 21 varies depending on the number of divisions of the divided lasers 20a and 20b. There are a plurality of local maximum points 22, 23 and local minimum points 21, and at least one local minimum point 21 that can be crystallized with an intensity of 10 Z or more and IZ 2 or less. It is sufficient that 22 and 23 are formed one by one. [0027] One pulsed laser 20 emitted from the laser oscillator 1 is divided into a plurality of pieces, such as first and second divided lasers 20a and 20b, and delayed (delay time: T = 0 to: LOOns). We tried to make the crystal size uniform by reducing the number of times of irradiation with the pulsed laser 20 by irradiating the material 12 with the laser with the pulse waveform 2 superimposed after the pulse. Even if the number of irradiations is reduced, uniform and large crystals can be obtained only when specific conditions are given to the divided lasers 20a and 20b shown in Fig. 2 (a). It turns out that it is obtained.
[0028] すなわち、照射回数を少なくして結晶粒の大きさを均一にするためには、 1つのパ ルス状レーザ 20を複数に分割 ·遅延させた後に重畳させてレーザを材料 12に照射 するとき、レーザのパルス波形 2が、材料 12を溶融させ得る強度 Iの最大ピーク 23と 、材料 12を結晶化させ得る IZ2以下に強度が低下する少なくとも 1つの極小点 21と 、材料 12を溶融させ得る IZ2を超える強度の少なくとも 1つの極大ピーク 22とが必要 である。つまり、パルス波形 2が、極小点 21が少なくとも 1つの隣接する極大ピーク 22 , 23の間に位置するものとして 1つ以上あり、極小点 21の前後に、材料 12に溶融を 生ずる極大ピーク 22, 23が 1つずつ存在すればよい。但し、最大ピーク 23は、極大 ピークの一種で、最大の強度 Iの極大ピークであるから、材料 12に照射する 1つのパ ルス状レーザのパルス波形 2が、材料 12を溶融させ得る強度 I A以上の極大ピーク 2 2, 23を少なくとも 2つ有し、隣接する 2つの極大ピーク 22, 23の間に極小点 21が位 置し、材料 12に溶融を生ずる極大ピーク 22から材料 12を結晶化させ得る極小点 21 にまで強度が低下して材料 12に結晶化を生じた後、材料 12に再度溶融を生ずる極 大ピーク 23が存在して!/、ればよ!/、。  In other words, in order to reduce the number of times of irradiation and make the size of crystal grains uniform, one pulsed laser 20 is divided into a plurality of parts, delayed, and then superimposed to irradiate the material 12 with the laser. When the pulse waveform 2 of the laser melts the material 12, the maximum peak 23 of the intensity I that can melt the material 12, and at least one minimum point 21 that decreases in intensity to IZ2 or less that can crystallize the material 12 There must be at least one maximal peak 22 with an intensity exceeding IZ2 to obtain. That is, there is one or more pulse waveforms 2 in which the minimum point 21 is located between at least one adjacent maximum peak 22, 23, and the maximum peak 22 causing melting of the material 12 before and after the minimum point 21 There must be one 23 each. However, since the maximum peak 23 is a type of maximum peak and is the maximum peak of the maximum intensity I, the pulse waveform 2 of one pulsed laser that irradiates the material 12 has an intensity IA or more that can melt the material 12. The material 12 is crystallized from the maximum peak 22 that melts in the material 12, with at least two local maximum peaks 2 2 and 23, and a minimum point 21 located between the two adjacent maximum peaks 22 and 23. There will be a maximum peak 23 that will cause the material 12 to crystallize after the strength has decreased to the minimum point of 21 to be crystallized and then melted again in the material 12! /.
[0029] つまり、 1つのノ ルス状レーザ 20を複数に分割'遅延させた後に重畳させたレーザ を材料 12に照射するとき、レーザのパルス波形 2が、最大ピーク 23の強度が Iのとき 、 IZ2を超える強度の極大ピーク 22が得られた後、 IZ2以下に強度が低下する極小 点 21が生じ、その後、最大ピーク 23 (極大ピーク 23)が生じればよい。この IZ2を超 える強度の極大ピーク 22と、 IZ2以下に強度が低下する極小点 21と、最大ピーク 23 (IZ2を超える強度の極大ピーク 23)とを順次に有するレーザのパルス波形 2を、第 1 のパルス波形とする。 [0030] しかして、薄膜状のシリコン材料 12に、ノ ルス状レーザ 20を複数回照射 (複数パル ス照射)して結晶粒を形成する方法において、第 1のパルス波形を有するレーザを材 料 12に照射して薄膜の材料 12を結晶化させれば、レーザ発振器 1から射出させて 照射するパルス状レーザ 20の数を少なくしても大きく均一な結晶を得ることが可能で ある。その結果、結晶粒の大きさのばらつきが小さくなり、パネル全体の TFT特性の ばらつきが小さくなる。 [0029] That is, when the material 12 is irradiated with a laser that is superposed after being divided and delayed into a plurality of one laser-like lasers 20, when the intensity of the maximum pulse 23 is I, After a maximum peak 22 having an intensity exceeding IZ2 is obtained, a minimum point 21 where the intensity decreases below IZ2 is generated, and then a maximum peak 23 (maximum peak 23) is generated. A pulse waveform 2 of a laser having a maximum peak 22 with an intensity exceeding IZ2, a minimum point 21 where the intensity decreases below IZ2, and a maximum peak 23 (maximum peak 23 with an intensity exceeding IZ2) is sequentially obtained. Set to 1 pulse waveform. [0030] Therefore, in a method of forming crystal grains by irradiating a thin-film silicon material 12 with a Norlas laser 20 multiple times (multiple pulse irradiation), a laser having a first pulse waveform is used as a material. If the thin film material 12 is crystallized by irradiating 12, a large and uniform crystal can be obtained even if the number of pulsed lasers 20 emitted from the laser oscillator 1 and irradiated is reduced. As a result, the variation in crystal grain size is reduced, and the variation in TFT characteristics across the panel is reduced.
[0031] 結晶の成長過程について説明する。結晶の成長は、 1回目の照射で生じた結晶粒 力 2回目以降の照射により結合して大きくなるものと考えられている。この結晶の成 長のためには、材料 12が冷却された固化つまり結晶化の状態力も溶融温度近傍ま で上昇するようにレーザの照射を再度実施し、溶融 ·再結晶化を与える必要がある。 レーザのエネルギー密度が最適であると、結晶粒が成長し、ほぼレーザの波長に等 [0031] The crystal growth process will be described. The crystal growth is thought to increase due to the combination of the grain strength generated by the first irradiation and subsequent irradiation. In order to grow this crystal, it is necessary to re-irradiate the laser so that the solidified state of the material 12, that is, the state force of crystallization, rises to near the melting temperature, and to provide melting and recrystallization. . If the energy density of the laser is optimal, crystal grains will grow and will be approximately at the wavelength of the laser.
LV、大きさの結晶粒を得ることが可能である。 It is possible to obtain crystal grains of LV and size.
[0032] この材料 12に溶融 ·再結晶化を与える最適のエネルギー密度は、単独のパルス状 レーザ 20が有している場合の他、ノ ルス波形 2が第 1のノ ルス波形を有する場合に ち得られる。 [0032] The optimum energy density for melting and recrystallization of the material 12 is not only when the single pulsed laser 20 has, but also when the waveform 2 has the first waveform. Can be obtained.
[0033] ノ ルス波形 2が第 1のノ ルス波形を有する場合には、第 1のピーク 22付近でシリコ ン製の材料 12が溶融し、強度が IZ2以下に低下する極小点 21付近で材料 12が結 晶化を開始し、その後、第 2のピーク 23が入射することによって材料 12が再び溶融、 結晶化する。このように、材料 12の結晶化開始後に分割レーザによって入熱するこ とで、分割レーザとしない従来の 1つのピークだけで構成されるノ ルス波形をもつパ ルス状レーザを十分な時間を置いて 2回照射した場合と同じ効果が得られるものと考 えられる。  [0033] When Norse waveform 2 has the first Nors waveform, the material 12 made of silicon melts near the first peak 22, and the material near the minimum point 21 where the strength decreases to IZ2 or less. 12 begins to crystallize, after which the second peak 23 is incident and the material 12 melts and crystallizes again. In this way, by inputting heat with the split laser after the crystallization of the material 12 is started, a pulsed laser having a Norse waveform composed of only one conventional peak that is not a split laser is placed for a sufficient time. Thus, the same effect as when irradiated twice is considered.
[0034] この効果を確かめるために、半値幅 W= 25nsからなる 1つのパルス状レーザ 20を 、図 2 (a)に示すように 2つに分割して第 1,第 2の分割レーザ 20a, 20bを得、これを ラインビームに成形して、薄膜状のシリコン製の材料 12に遅延時間: T=0〜: LOOns の 2つのパルスとなる第 1,第 2の分割レーザ 20a, 20bとして重畳させて照射して結 晶化した。図 2 (a)に示すように、遅延時間 Tの第 1,第 2の分割レーザ 20a, 20bの 各半値幅は Wである。 [0035] 第 1,第 2の分割レーザ 20a, 20bを重畳させたノ ルス波形 2は、図 2 (b)に示すよう に最大ピーク 23の強度が Iのとき、最大ピーク 23から I Z10以上で IZ2以下に強度 が低下した極小点 21を有し、 IZ2を超える強度 IAの極大ピーク 22が 1つある。この 最大ピーク 23は、第 1,第 2の分割レーザ 20a, 20bの重畳により、極小点 21よりも後 に生ずる。 In order to confirm this effect, one pulsed laser 20 having a half width W = 25 ns is divided into two as shown in FIG. 2 (a), and the first and second divided lasers 20a, 20a, 20b is obtained, formed into a line beam, and superimposed on the thin-film silicon material 12 as the first and second split lasers 20a and 20b with two delay times: T = 0 ~: LOOns And crystallized upon irradiation. As shown in FIG. 2 (a), the half widths of the first and second divided lasers 20a and 20b with the delay time T are W. [0035] As shown in Fig. 2 (b), the Norse waveform 2 in which the first and second divided lasers 20a and 20b are superimposed has a maximum peak 23 intensity of I, and from the maximum peak 23 to I Z10 or more There is a minimum point 21 where the intensity decreases below IZ2, and there is one maximum peak 22 of intensity IA exceeding IZ2. This maximum peak 23 occurs after the minimum point 21 due to the superposition of the first and second divided lasers 20a and 20b.
[0036] そして、第 1,第 2の分割レーザ 20a, 20b (パルス波形 2)力 なるパルス状レーザ 2 0の材料 12への照射回数 10, 20回におけるプロセスマージンと 2つの分割レーザ 2 Oa, 20bを合算したときの最適結晶化エネルギー密度を計測し、図 4、図 5の結果を 得た。極小点 21は、遅延時間 Tを長くすると小さくなり、 T= 30nsのとき、 1/2, T=5 Onsで ΙΖΙΟであった。従って、後述するように半値幅 W= 25nsく遅延時間 Tに設 定し、また、遅延時間 T=30〜50nsに設定することが望ましい。なお、パルス状レー ザ 20のノ レスエネルギー: 670mJ,繰返し周波数: 300Hzであり、図 4の照射回数( 10回数, 20回数)は、ノ ルス状レーザ 20の照射回数である。  [0036] The first and second divided lasers 20a, 20b (pulse waveform 2) force The pulsed laser 20 having a force 20 The number of times of irradiation of the material 12, the process margin at 10 and 20, and the two divided lasers 2 Oa, The optimum crystallization energy density when adding 20b was measured, and the results shown in Figs. 4 and 5 were obtained. The minimum point 21 is reduced when the delay time T is increased, and is で at 1/2, T = 5 Ons when T = 30 ns. Therefore, as described later, it is desirable to set the half-value width W = 25 ns to the delay time T and the delay time T = 30 to 50 ns. The pulse energy of the laser 20 is 670 mJ and the repetition frequency is 300 Hz. The number of irradiations (10 times, 20 times) in Fig. 4 is the number of times the laser 20 is irradiated.
[0037] 図 4、図 5より一般的な従来法 (遅延時間 T=0ns)では照射回数 10回でプロセス条 件がなかった(プロセスマージンがゼロであった)。分割レーザ 20a, 20bの遅延時間 Tを長くして行くと、遅延時間 T= 20ns以上力 正のプロセスマージンが生じ始め、 遅延時間 T= 30ns以上 (極小点の強度 IZ2以下)とすることで適当なプロセス条件( 適当なプロセスマージン)が得られた。従って、極小点 21の強度つまり極小値を IZ2 以下とする。しかし、図 5から分力るように、遅延時間 T= 50ns以上 (極小点の強度 I Z10以下)で、最適結晶化エネルギーが急激に上昇を開始したため、極小点 21の 強度 IZ10以上とする。  [0037] From Fig. 4 and Fig. 5, in the general conventional method (delay time T = 0ns), there were no process conditions after 10 irradiations (the process margin was zero). If the delay time T of the split lasers 20a and 20b is increased, a positive process margin will start to occur for delay time T = 20 ns or more, and it is appropriate to set delay time T = 30 ns or more (minimum point intensity IZ2 or less). Process conditions (appropriate process margin) were obtained. Therefore, the intensity of the minimum point 21, that is, the minimum value is set to IZ2 or less. However, as shown in Fig. 5, since the optimum crystallization energy started to increase rapidly with a delay time of T = 50 ns or more (minimum point intensity I Z10 or less), the intensity at minimum point 21 is set to IZ10 or more.
[0038] 図 4に示される極小値 IZ2以下でのプロセスマージン(照射回数 10回で約 20mJ Zcm2、照射回数 20回で約 40mjZcm2)は、上述した分割レーザとしない一般的 な従来法でのプロセスマージン(照射回数 10回で零、照射回数 20回で約 20miZc m2)と比較して向上して 、る。  [0038] The process margin below the minimum value IZ2 shown in Fig. 4 (approximately 20mJ Zcm2 with 10 irradiations and approximately 40mjZcm2 with 20 irradiations) is a process in the conventional method that does not use the above-mentioned split laser. Compared to the margin (zero at 10 exposures, approximately 20 miZcm2 at 20 exposures).
[0039] 図 4に示す照射回数 10回で結晶化したシリコン薄膜製の材料 12は、 SEM (走査 型電子顕微鏡)により観察し、 1視野内の結晶粒の大きさを計測して、結晶粒の 90% 以上が、レーザ波長の大きさ 308nm±30nmであるときをプロセス条件として、プロ セス条件が得られる照射エネルギー密度の許容幅 (プロセスマージン)を観察した。 その結果、照射回数: 10回のときのプロセスマージン (約 20mjZcm2)は、分割レー ザとしない一般的な従来法での照射回数 20回で結晶化した材料とほぼ同様であり、 ほぼ同様の大きさの結晶粒が良好に得られていた。 [0039] The silicon thin film material 12 crystallized with 10 irradiations shown in Fig. 4 is observed by SEM (scanning electron microscope), and the size of the crystal grains in one field of view is measured. 90% or more of the laser beam size is 308nm ± 30nm. We observed the allowable range (process margin) of the irradiation energy density at which the process conditions were obtained. As a result, the process margin (about 20mjZcm2) when the number of irradiations is 10 times is almost the same as that of a material crystallized after 20 times of irradiation with a general conventional method that does not use a split laser. The crystal grains were obtained satisfactorily.
[0040] このように、極小点の強度値を IZ2以下とすることで照射回数を低減できる効果が あることが分かったので、次に整数 N≥ 3として、極大ピークを N+ 1個、 IZ2〜IZ1 0を満足する極小点を N個つくりその効果を試験により確認した。  [0040] In this way, it was found that the number of irradiations can be reduced by setting the intensity value of the local minimum point to IZ2 or less. Next, with integer N≥3, N + 1 peaks and IZ2 ~ N minimum points satisfying IZ10 were created and the effect was confirmed by tests.
[0041] この N+ 1個の分割レーザの重畳によって形成される 1つのパルス状レーザのパル ス波形 3は、図 3に示すように、照射の開始点 30と第 1極小点 31間の第 1極大ピーク 41、第 1極小点 31と第 2極小点 32間の第 2極大ピーク 42、第 (N— 1)極小点 37と第 N極小点 38間の第 N極大ピーク 48、第 N極小点と照射の終了点 50間の第 (N+ 1) 極大ピーク 49、というように、材料 112に結晶化を生ずる合計 N個の極小点と材料 1 12に溶融を生ずる (N+ 1)個の極大ピークとを有する。そして、第 n極小点の強度が 、直前の第 n極大ピークの強度 Inに対して、 I nZlO以上で I nZ2以下の強度である 結晶化方法、又は、第 n極小点の強度が、直後の第 n+ 1極大ピークの強度 In+ 1に 対して、 I nZlO以上で I nZ2以下の範囲の強度である結晶化方法とし、材料 112 に対して 1つのパルス状レーザによって少なくとも溶融 ·結晶化 ·溶融 ·結晶化を順次 に与えれば、照射回数を減少させることが可能である。但し、 nは、 1〜Nの範囲の整 数である。  [0041] As shown in FIG. 3, the pulse waveform 3 of one pulsed laser formed by superimposing the N + 1 divided lasers is a first waveform between the irradiation start point 30 and the first minimum point 31. Maximum peak 41, second maximum peak 42 between first minimum point 31 and second minimum point 32, Nth maximum peak 48 between (N-1) minimum point 37 and Nth minimum point 38, Nth minimum point (N + 1) maxima peak 49 between irradiation and end point 50 of irradiation, for example, a total of N minima that cause crystallization in material 112 and (N + 1) maxima that cause melting in material 1 12 And have. Then, the intensity of the nth minimum point is an intensity of InZlO or more and InZ2 or less with respect to the intensity In of the immediately preceding nth maximum peak, or the intensity of the nth minimum point is For the intensity of the n + 1st peak, In + 1, the crystallization method has an intensity in the range of I nZlO or more and I nZ2 or less, and the material 112 is at least melted, crystallized, melted by one pulsed laser If crystallization is applied sequentially, the number of irradiations can be reduced. However, n is an integer in the range of 1 to N.
[0042] このための試験装置として、図 7 (A) , (B) , (C)に示すような複数(図上で 3個)の 半透過ミラー 103, 104, 105及び 1個の全反射ミラー 106を使い、発振器 101から 射出される 1つのパルス状レーザ 102を分割し、時間が近接する複数(図上では 4個 )の隣接する分割レーザ 120a、 120b, 120c, 120dを遅延時間 T=30ns (極小点 の強度値 IZ2)として形成し、全ての分割レーザ 120a、 120b, 120c, 120dを共通 のホモジナイザー 110に入射させた。このため、遅延回路 107, 108, 109を各半透 過ミラー 103〜105及び全反射ミラー 106の間に配置した。これにより、図 3に示す極 大ピークが N+ 1個、極小点が N個のパルス波形を作った。この半透過ミラー 103〜 105、全反射ミラー 106及び遅延回路 107〜109により、パルス状レーザ 102を複数 の分割レーザ 120a、 120b, 120c, 120dに相互に遅延させて分割する分割手段を 構成している。図 3に示すパルス波形 3の隣接する 2つの極大ピークの強度 I n, I n + 1は、その間の極小点の強度 I nZ2の強度を超えれて材料 112を溶融させればよ ぐ複数の強度 I nの極大ピークの中に最大の強度の極大ピークが存在している。 [0042] As a test apparatus for this purpose, a plurality of (three in the figure) semi-transparent mirrors 103, 104, 105 and one total reflection as shown in FIGS. 7 (A), (B), (C) Using a mirror 106, one pulsed laser 102 emitted from an oscillator 101 is divided, and multiple adjacent lasers 120a, 120b, 120c, 120d that are close in time (four in the figure) are delayed by T = It was formed as 30 ns (minimum point intensity value IZ2), and all the split lasers 120a, 120b, 120c, and 120d were made incident on the common homogenizer 110. For this reason, the delay circuits 107, 108, and 109 are arranged between the semi-transparent mirrors 103 to 105 and the total reflection mirror 106. This produced a pulse waveform with N + 1 maximum peaks and N minimum points as shown in Fig. 3. The semi-transmissive mirrors 103 to 105, the total reflection mirror 106, and the delay circuits 107 to 109 allow a plurality of pulsed lasers 102 to be used. The splitting means for splitting the split lasers 120a, 120b, 120c, and 120d with mutual delay is configured. Intensity of two adjacent maximum peaks of pulse waveform 3 shown in Fig. 3 In n, I n + 1 is the intensity of the minimum point between them Intensities of multiple values that exceed the intensity of InZ2 and melt material 112 The maximum peak of the maximum intensity exists in the maximum peak of In.
[0043] 実際に、半透過ミラー 103〜105及び遅延回路 107〜109の個数を変えて、極大 ピークの数が 1〜7のパルス波形を薄膜状のシリコン製の材料 12に照射して、パルス 状レーザの照射回数 5, 10, 15, 20回における、極大ピーク数とプロセスマージンと の関係を計測した。その結果を図 6に示す。図 6より極大ピーク数 (及び極小点数)が 多くなるとプロセスマージンが拡大し、照射回数 5回であっても、極大ピーク数が 3以 上となる分割レーザとすれば良好なプロセス条件が得られることが判った。この照射 回数は、パルス状レーザ 102の数である。材料 12の 1箇所当たりのパルス状レーザ の照射回数は、 10回以下で十分である。 [0043] Actually, the number of transflective mirrors 103 to 105 and delay circuits 107 to 109 is changed, and a pulse waveform with the number of maximum peaks of 1 to 7 is irradiated to the thin-film silicon material 12 to generate pulses. We measured the relationship between the number of maximum peaks and the process margin at 5, 10, 15 and 20 times. The result is shown in Fig. 6. As shown in Fig. 6, as the number of maximum peaks (and the number of minimum points) increases, the process margin increases, and even if the number of irradiations is 5, the split laser with the maximum peak number of 3 or more provides good process conditions. I found out. The number of irradiations is the number of pulsed lasers 102. The number of times of irradiation of the pulsed laser per part of the material 12 is 10 or less.
実施例  Example
[0044] 1実施例について図 7を参照して具体的に説明する。  One embodiment will be specifically described with reference to FIG.
XeClエキシマレーザ発振器 101よりパルスエネルギー: 670mJ,繰返し周波数: 3 00Hzで出射したパルス波形のパルス状レーザ 102を、反射率が Rl, R2, R3, R4 の 4つのミラー 103, 104, 105, 106によって分割,方向転換し、前記ミラー 103, 1 04, 105, 106間に設けた遅延回路 107, 108, 109により隣接する分害 ijレーザ 120 a〜120d同士を時間遅延させ、長軸ホモジナイザー 110に次々に入射して、長軸: 2 00mm長さの矩形波の空間強度分布に公知手段で整形し、材料 12であるガラス上 の膜厚 50nmの a— Si膜 112へ照射した。ミラー 103の反射率は Rl、ミラー 104の反 射率は R2、ミラー 105の反射率は R3、全反射ミラー 106の反射率は R4= 100%で ある。  XeCl excimer laser oscillator 101 pulse energy: 670mJ, repetition frequency: 300Hz, pulsed laser 102 with a pulse waveform emitted by four mirrors 103, 104, 105, 106 with reflectivity Rl, R2, R3, R4 Dividing and changing the direction, the delay circuits 107, 108, 109 provided between the mirrors 103, 104, 105, 106 delay the adjacent ij lasers 120 a to 120 d with each other, and successively pass to the long axis homogenizer 110. The a-Si film 112 having a film thickness of 50 nm on the glass, which is the material 12, was irradiated with a rectangular wave having a long axis of 200 mm. The reflectivity of the mirror 103 is Rl, the reflectivity of the mirror 104 is R2, the reflectivity of the mirror 105 is R3, and the reflectivity of the total reflection mirror 106 is R4 = 100%.
[0045] このとき、パルス波形は極大ピーク強度が周期 30nsで 4つ生ずる図 3の波形 3が得 られるように、前記反射率を R1 = 25%, R2 = 33. 3%, R3 = 50%, R4= 100%と した。  [0045] At this time, the reflectance is set to R1 = 25%, R2 = 33.3%, R3 = 50% so that the waveform shown in Fig. 3 can be obtained in which the maximum peak intensity is four with a period of 30ns. , R4 = 100%.
[0046] エキシマレーザは、 a— Si膜 112への吸収力が高い紫外域の直線偏光でない光を 発し、高出力のパルス光(波長 308nm)が得られる。 [0047] 尚、各遅延回路 107, 108, 109は、光路差を生じさせるための複数の全反射ミラ 一を備え、これらの全反射ミラーにより分割レーザ 120a〜120dに時間差を設けるも ので、それぞれ遅延時間: 30nsの遅延をするために 9mの光路を設けた。 The excimer laser emits light that is not linearly polarized in the ultraviolet region and has high absorption power to the a-Si film 112, and high-power pulsed light (wavelength 308 nm) is obtained. [0047] Each delay circuit 107, 108, 109 includes a plurality of total reflection mirrors for generating an optical path difference, and these total reflection mirrors provide time differences to the divided lasers 120a to 120d. Delay time: A 9m optical path was provided to delay 30ns.
[0048] パルス状レーザ 102の長軸と直交する方向には図 7 (C)に示す短軸ホモジナイザ 一 111を設け、短軸幅を 0. 4mmの矩形波の空間強度分布に整形し、材料 112に 、材料 112の法線に対する入射光線の入射角 α = 5° でもって照射した。また、ガラ ス上 a— Si膜 112は図示しな!、ステージに載せ、速度: V (mm/s)で短軸方向にス キャンした。そして、 a— Si膜 112の 1箇所の照射回数: Z = 5, 10, 15, 20回となるよ うに、 V=0. 4- 300/Zにより、 V= 24, 12, 8, 6mm/sとした。ホモジナイザー 11 0, 111は、複数の分割レーザの強度分布を整形して材料 112に重畳させて照射す るための整形手段を構成している。  [0048] A short-axis homogenizer 111 shown in Fig. 7 (C) is provided in the direction perpendicular to the long axis of the pulsed laser 102, and the short-axis width is shaped into a rectangular wave spatial intensity distribution of 0.4 mm. 112 was irradiated with an incident angle α = 5 ° of the incident light with respect to the normal of the material 112. The a-Si film 112 on the glass is not shown in the figure! It was placed on the stage and scanned in the minor axis direction at a speed of V (mm / s). Then, the number of times of irradiation of one location of the a-Si film 112: V = 24, 12, 8, 6mm / with V = 0.4-300 / Z so that Z = 5, 10, 15, 20 s. The homogenizers 110 and 111 constitute shaping means for shaping the intensity distribution of a plurality of divided lasers and superimposing them on the material 112 for irradiation.
[0049] パルス状レーザ 102の照射後の結晶化したシリコン薄膜製の材料 112は、 SEM ( 走査型電子顕微鏡)により観察し、 1視野内の結晶粒の大きさを計測して、結晶粒の 90%以上が、レーザ波長の大きさ 308nm± 30nmであるときをプロセス条件として、 プロセス条件が得られる照射エネルギー密度の許容幅 (プロセスマージン)を計測し た。その結果、照射回数: 5, 10, 15, 20回のときのプロセスマージンは、図 6に極大 ピーク数 4として示されるように約 20, 40, 60, 100mjZcm2で、従来プロセス不可 であった照射回数: 5回以下でもプロセス可能な条件が得られた。  [0049] The material 112 made of a crystallized silicon thin film after irradiation with the pulsed laser 102 is observed with a SEM (scanning electron microscope), and the size of the crystal grain in one field of view is measured. With 90% or more of the laser wavelength size being 308nm ± 30nm as the process condition, the allowable width (process margin) of the irradiation energy density at which the process condition was obtained was measured. As a result, when the number of irradiations was 5, 10, 15, 20 times, the process margin was about 20, 40, 60, 100mjZcm2, as shown in Fig. 6 as the maximum number of peaks 4. Number of times: Processable conditions were obtained even under 5 times.
[0050] 材料 112へのパルス状レーザ 102 (分割レーザ 120a〜120d)の入射角 αを垂直 線 (法線)に対して 1° 以上とすることで、結晶粒をレーザ 102の波長より大きくできる ことが知られている。そこで、材料 112の法線に対する入射光線の入射角は 1° 以上 とする。また、レーザの繰返し周波数は数百 Hzであるためパルス状レーザ 102は数 ms間隔で照射される。従って、複数パルスのパルス状レーザの照射によりシリコン( 材料 112)は溶融、冷却結晶化を繰返し、照射するレーザの波長とほぼ同じ又はそ れ以上の大きさで均一になるから、結晶粒の大きさのばらつきを小さくすることができ る。 1つのパルス状レーザ 102を複数の分割レーザ 120a〜120dとして照射すれば、 1つのパルス状レーザ 102によって分割数に応じた複数パルスのパルス状レーザを 照射することと同等の効果が得られると考えられる。 また、特開 2004— 172424に記載するように、材料 112に照射するパルス状レー ザ 102が直線偏光でないレーザであれば、偏光板を用いて出力を低下させることなく 結晶粒を成長させることができ、また、入射光線の材料の法線に対する入射角が 1° 以上であれば、パルス状レーザ 102の繰返し照射により、結晶粒はレーザ 102の波 長と同等あるいはレーザの波長より大きくできる。エキシマレーザは、特定の偏光をも たないランダム偏光である。入射光線の材料の法線に対する入射角を 1° 以上として 、大きな結晶粒が得られている。 [0050] By making the incident angle α of the pulsed laser 102 (split laser 120a to 120d) to the material 112 1 ° or more with respect to the vertical line (normal line), the crystal grains can be made larger than the wavelength of the laser 102. It is known. Therefore, the incident angle of the incident light with respect to the normal of the material 112 is set to 1 ° or more. Further, since the repetition frequency of the laser is several hundred Hz, the pulsed laser 102 is irradiated at intervals of several ms. Therefore, silicon (material 112) is repeatedly melted and cooled and crystallized by irradiation with a plurality of pulsed lasers, and becomes uniform at a size approximately equal to or greater than the wavelength of the laser to be irradiated. The variation in thickness can be reduced. If one pulsed laser 102 is irradiated as a plurality of divided lasers 120a to 120d, the effect equivalent to irradiating a pulsed laser with multiple pulses according to the number of divisions by one pulsed laser 102 can be obtained. It is done. Further, as described in JP-A-2004-172424, if the pulsed laser 102 irradiated to the material 112 is a laser that is not linearly polarized light, crystal grains can be grown without reducing the output using a polarizing plate. If the incident angle of the incident light with respect to the normal of the material is 1 ° or more, the crystal grains can be made equal to the wavelength of the laser 102 or larger than the wavelength of the laser by repeated irradiation of the pulsed laser 102. An excimer laser is a random polarization without a specific polarization. Large crystal grains are obtained when the incident angle of the incident light with respect to the normal of the material is 1 ° or more.

Claims

請求の範囲 The scope of the claims
[1] 薄膜状のシリコン製の材料(12, 112)に、パルス状レーザを複数回照射して結晶粒 を形成する際、パルス状レーザを複数の分割レーザに分割'遅延させて材料(12, 1 12)に照射する薄膜材料の結晶化方法において、複数の分割レーザの重畳によつ て形成される 1つのパルス状レーザのパルス波形(2)が、最大の強度 Iの極大ピーク (23)と、 IZ2を超える強度の少なくとも 1つの極大ピーク(22)と、少なくとも 1つの隣 接する極大ピーク(22, 23)の間に位置し、 IZ2以下に強度が低下する極小点(21) とを有することを特徴とする薄膜材料の結晶化方法。  [1] When a thin film of silicon material (12, 112) is irradiated with a pulsed laser multiple times to form crystal grains, the pulsed laser is divided into a plurality of divided lasers and delayed (material (12 , 1 12), the pulse waveform (2) of one pulsed laser formed by the superposition of a plurality of divided lasers has a maximum peak of maximum intensity I (23 ) And at least one maximum peak (22) with an intensity exceeding IZ2 and at least one adjacent maximum peak (22, 23) and a minimum point (21) where the intensity drops below IZ2 A method for crystallizing a thin film material, comprising:
[2] 薄膜状のシリコン製の材料(12, 112)に、パルス状レーザを複数回照射して結晶粒 を形成する際、パルス状レーザを複数の分割レーザに分割'遅延させて材料(12, 1 12)に照射する薄膜材料の結晶化方法において、複数の分割レーザの重畳によつ て形成される 1つのパルス状レーザのパルス波形(2)が、所定の強度 (I A)以上の極 大ピーク(22, 23)を少なくとも 2つ有し、材料(12, 112)に溶融を生ずる極大ピーク [2] When forming crystal grains by irradiating a thin-film silicon material (12, 112) with a pulsed laser multiple times, the pulsed laser is divided into a plurality of divided lasers and delayed (the material (12 , 1 12), the pulse waveform (2) of one pulsed laser formed by the superposition of a plurality of divided lasers is a pole having a predetermined intensity (IA) or higher. Maximum peak that has at least two large peaks (22, 23) and causes melting in the material (12, 112)
(22)から極小点(21)にまで強度が低下して材料(12, 112)に結晶化を生じた後、 材料(12, 112)に溶融を生ずる極大ピーク (23)を有することを特徴とする薄膜材料 の結晶化方法。 It has a maximum peak (23) that causes the material (12, 112) to melt after the strength decreases from (22) to the minimum point (21) and crystallization occurs in the material (12, 112). A thin film material crystallization method.
[3] 極小点(21)の強度が、 I Z10以上であることを特徴とする請求項 1の薄膜材料の結 晶化方法。  [3] The method for crystallizing a thin film material according to claim 1, wherein the strength of the minimum point (21) is I Z10 or more.
[4] 薄膜状のシリコン製の材料(12, 112)に、パルス状レーザを複数回照射して結晶粒 を形成する際、パルス状レーザを複数の分割レーザに分割'遅延させて材料(12, 1 12)に照射する薄膜材料の結晶化方法において、複数の分割レーザの重畳によつ て形成される 1つのパルス状レーザのパルス波形(2)が、最大の強度 Iの極大ピーク [4] When a thin film silicon material (12, 112) is irradiated with a pulsed laser multiple times to form crystal grains, the pulsed laser is divided into a plurality of divided lasers and delayed (the material (12 , 1 12) In the method of crystallizing thin film materials irradiated to 12), the pulse waveform (2) of one pulsed laser formed by the superposition of a plurality of divided lasers has a maximum peak of maximum intensity I.
(23)を有すると共に、 I Z10以上で IZ2以下の強度である極小点(21)が 1つ以上 あり、かつ、極小点(21)の前後に、 IZ2を超える強度 I, IAの極大ピーク(22, 23)が 1つずつ存在することを特徴とする薄膜材料の結晶化方法。 There are one or more minimum points (21) that have (23) and have an intensity greater than or equal to I Z10 and less than or equal to IZ2, and before and after the minimum point (21), the maximum peaks of intensities I and IA exceeding IZ2 ( A thin film material crystallization method characterized in that there is one each of 22, 23).
[5] 薄膜状のシリコン製の材料(12, 112)に、パルス状レーザを複数回照射して結晶粒 を形成する際、パルス状レーザを複数の分割レーザに分割'遅延させて材料(12, 1 12)に照射する薄膜材料の結晶化方法において、複数の分割レーザの重畳によつ て形成される 1つのパルス状レーザのパルス波形(3)が、照射の開始点(30)と第 1 極小点(31)間の第 1極大ピーク (41)と、第 1極小点(31)と第 2極小点(32)間の第 2極大ピーク (42)と、第 (N— 1)極小点(37)と第 N極小点(38)間の第 N極大ピーク (48)と、第 N極小点と照射の終了点(50)間の第 (N+ 1)極大ピーク (49)とからなる 材料(12, 112)に結晶化を生ずる合計 N個の極小点と材料(12, 112)に溶融を生 ずる(N+ 1)個の極大ピークとを有し、 Nが 3以上の整数であり、第 n極小点の強度が 、直前の第 n極大ピークの強度 Inに対して、 I nZlO以上で I nZ2以下の強度であり 、nが 1〜Nの範囲の整数であることを特徴とする薄膜材料の結晶化方法。 [5] When forming a crystal grain by irradiating a thin film of silicon material (12, 112) with a pulsed laser multiple times, the pulsed laser is divided into a plurality of divided lasers and delayed (material (12 , 1 12) in the method of crystallizing thin film materials, The pulse waveform (3) of a single pulsed laser formed in this way shows the first maximum peak (41) between the irradiation start point (30) and the first minimum point (31), and the first minimum point (31) And the second maximum peak (42) between the second minimum point (32), the Nth maximum peak (48) between the (N-1) minimum point (37) and the Nth minimum point (38), A total of N local minimum points and materials (12, 112) that cause crystallization in the material (12, 112) consisting of the N minimum point and the (N + 1) maximum peak (49) between the end point of irradiation (50) (N + 1) maximum peaks that cause melting, N is an integer of 3 or more, and the intensity of the nth minimum point is I nZlO relative to the intensity In of the immediately preceding nth maximum peak. A method for crystallizing a thin film material, characterized in that the strength is not more than InZ2 and n is an integer in the range of 1 to N.
[6] 第 n極小点の強度が、直後の第 n+ 1極大ピークの強度 Inに対して、 I nZlO以上で I  [6] The intensity of the n-th local minimum point is I nZlO or more with respect to the intensity In of the next n + 1 local maximum peak.
nZ2以下の強度であることを特徴とする請求項 5の薄膜材料の結晶化方法。  6. The method for crystallizing a thin film material according to claim 5, wherein the strength is nZ2 or less.
[7] 前記材料(12, 112)の 1箇所当たりのパルス状レーザの照射回数が 10回以下であ ることを特徴とする請求項 1, 2, 3, 4, 5又は 6の薄膜材料の結晶化方法。  [7] The thin film material according to claim 1, 2, 3, 4, 5 or 6, wherein the number of times of irradiation of the pulsed laser per part of the material (12, 112) is 10 times or less. Crystallization method.
[8] 前記パルス状レーザが直線偏光でな 、レーザであって、材料(12, 112)の法線に 対する入射光線の入射角が 1° 以上であることを特徴とする請求項 1, 2, 3, 4, 5, 6 又は 7の薄膜材料の結晶化方法。  8. The pulsed laser is a laser that is not linearly polarized light, and an incident angle of incident light with respect to the normal of the material (12, 112) is 1 ° or more. , 3, 4, 5, 6 or 7 thin film material crystallization method.
[9] 薄膜状のシリコン製の材料(12, 112)に、レーザ発振器(1, 101)からのパルス状レ 一ザ (20, 102)を複数回照射して結晶粒を形成する際、パルス状レーザを複数の分 割レーザに分割 ·遅延させて材料(12, 112)に照射する薄膜材料の結晶化装置に おいて、パルス状レーザを複数の分割レーザに遅延させて分割する分割手段と、複 数の分割レーザの強度分布を整形して材料(12, 112)に重畳させて照射する整形 手段(110, 111)とを有し、複数の分割レーザの重畳によって形成される 1つのパル ス状レーザのパルス波形(2)力 最大の強度 Iの極大ピーク(23)を有すると共に、 I Z10以上で IZ2以下の強度である極小点(21)が 1つ以上あり、かつ、極小点(21) の前後に、 IZ2を超える強度 I, IAの極大ピーク(22, 23)が 1つずつ存在することを 特徴とする薄膜材料の結晶化装置。  [9] When forming a crystal grain by irradiating the thin silicon material (12, 112) with the pulsed laser (20, 102) from the laser oscillator (1, 101) multiple times In a thin film material crystallization apparatus that divides and delays a laser beam into a plurality of split lasers and irradiates the material (12, 112), a splitting means for delaying and splitting the pulse laser into a plurality of split lasers; And shaping means (110, 111) for shaping the intensity distribution of a plurality of divided lasers and superimposing them on the material (12, 112), and forming one pulse formed by superposing a plurality of divided lasers. The pulse waveform of the laser beam (2) force The maximum intensity I has a maximum peak (23), and there is at least one minimum point (21) that is greater than I Z10 and less than IZ2, and the minimum point ( Before and after 21), there is one maximum peak (22, 23) of intensities I and IA exceeding IZ2. Crystallizer.
PCT/JP2006/302459 2005-03-29 2006-02-13 Method and device of crystallizing thin film material WO2006103836A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077024239A KR100930855B1 (en) 2005-03-29 2006-02-13 Crystallization method of thin film material and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-095938 2005-03-29
JP2005095938A JP3977379B2 (en) 2005-03-29 2005-03-29 Method and apparatus for crystallizing thin film material

Publications (1)

Publication Number Publication Date
WO2006103836A1 true WO2006103836A1 (en) 2006-10-05

Family

ID=37053105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302459 WO2006103836A1 (en) 2005-03-29 2006-02-13 Method and device of crystallizing thin film material

Country Status (4)

Country Link
JP (1) JP3977379B2 (en)
KR (1) KR100930855B1 (en)
TW (1) TW200717608A (en)
WO (1) WO2006103836A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512572A (en) * 2009-11-30 2013-04-11 アプライド マテリアルズ インコーポレイテッド Crystallization for semiconductor applications

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863407B2 (en) * 2009-02-02 2012-01-25 株式会社日本製鋼所 Laser annealing method for semiconductor film
MX2012005204A (en) * 2009-11-03 2012-09-21 Univ Columbia Systems and methods for non-periodic pulse partial melt film processing.
JP5454911B2 (en) * 2010-03-25 2014-03-26 株式会社日本製鋼所 Method of manufacturing annealed body and laser annealing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174216A (en) * 1997-08-29 1999-03-16 Japan Steel Works Ltd:The Pulse light irradiation method and device thereof
JP2000021776A (en) * 1998-07-01 2000-01-21 Nec Corp Method of forming semiconductor thin film, pulse laser irradiator and semiconductor device
JP2002261042A (en) * 2000-12-26 2002-09-13 Semiconductor Energy Lab Co Ltd Device and method for irradiating laser
JP2002270510A (en) * 2000-12-26 2002-09-20 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
WO2003043070A1 (en) * 2001-11-12 2003-05-22 Sony Corporation Laser annealing device and thin-film transistor manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174216A (en) * 1997-08-29 1999-03-16 Japan Steel Works Ltd:The Pulse light irradiation method and device thereof
JP2000021776A (en) * 1998-07-01 2000-01-21 Nec Corp Method of forming semiconductor thin film, pulse laser irradiator and semiconductor device
JP2002261042A (en) * 2000-12-26 2002-09-13 Semiconductor Energy Lab Co Ltd Device and method for irradiating laser
JP2002270510A (en) * 2000-12-26 2002-09-20 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
WO2003043070A1 (en) * 2001-11-12 2003-05-22 Sony Corporation Laser annealing device and thin-film transistor manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512572A (en) * 2009-11-30 2013-04-11 アプライド マテリアルズ インコーポレイテッド Crystallization for semiconductor applications
US8906725B2 (en) 2009-11-30 2014-12-09 Applied Materials, Inc. Crystallization processing for semiconductor applications
US9290858B2 (en) 2009-11-30 2016-03-22 Applied Materials, Inc. Crystallization processing for semiconductor applications
US9455145B2 (en) 2009-11-30 2016-09-27 Applied Materials, Inc. Crystallization processing for semiconductor applications

Also Published As

Publication number Publication date
JP2006278746A (en) 2006-10-12
KR20070112485A (en) 2007-11-26
TWI301293B (en) 2008-09-21
TW200717608A (en) 2007-05-01
JP3977379B2 (en) 2007-09-19
KR100930855B1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US9245757B2 (en) Laser annealing treatment apparatus and laser annealing treatment method
US8802580B2 (en) Systems and methods for the crystallization of thin films
JP3860444B2 (en) Silicon crystallization method and laser annealing equipment
US20050252894A1 (en) Laser annealing device and method for producing thin-film transistor
US20120260847A1 (en) Amorphous silicon crystallization using combined beams from multiple oscillators
TWI579901B (en) Short pulse fiber laser for ltps crystallization
CN108604532B (en) Method and system for spot beam crystallization
JP2015188110A (en) System and method for partial dissolution film processing based on asynchronous pulse
JP3977379B2 (en) Method and apparatus for crystallizing thin film material
JP5578584B2 (en) Laser annealing apparatus and laser annealing method
JP4131752B2 (en) Method for manufacturing polycrystalline semiconductor film
JP4024657B2 (en) Method and apparatus for forming periodic structure of crystal
KR100611040B1 (en) Apparutus for thermal treatment using laser
KR100278128B1 (en) Method for manufacturing polycrystal semiconductor film
JP2003243322A (en) Method of manufacturing semiconductor device
JP2000012460A (en) Method and device for preparing thin film
KR20220007139A (en) MEHTOD AND OPTICAL SYSTEM FOR PROCESSING A SEMICONDUCTOR MATERIAL
JP2006135192A (en) Method and apparatus for manufacturing semiconductor device
KR102238080B1 (en) Laser Annealing Apparatus and Method
US20200238441A1 (en) Systems and methods for spot beam and line beam crystallization
JP2007005412A (en) Method of forming polysilicon film
JP2007201447A (en) Silicon crystallizing mask, silicon crystallizing device comprising the same, and silicon crystallizing method
Yaniazaki et al. Silicon crystallization technique using 100-200mm long line beam with DPSS green lasers aimed for factory manufacturing of poly-Si TFT panels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077024239

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06713601

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713601

Country of ref document: EP