WO2006102189A1 - A reactor system and process for the manufacture of ethylene oxide - Google Patents
A reactor system and process for the manufacture of ethylene oxide Download PDFInfo
- Publication number
- WO2006102189A1 WO2006102189A1 PCT/US2006/009929 US2006009929W WO2006102189A1 WO 2006102189 A1 WO2006102189 A1 WO 2006102189A1 US 2006009929 W US2006009929 W US 2006009929W WO 2006102189 A1 WO2006102189 A1 WO 2006102189A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- ethylene
- reactor system
- tube
- epoxidation
- Prior art date
Links
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000008569 process Effects 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title description 16
- 239000003054 catalyst Substances 0.000 claims abstract description 146
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 84
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000005977 Ethylene Substances 0.000 claims abstract description 39
- 229910052709 silver Inorganic materials 0.000 claims abstract description 36
- 239000004332 silver Substances 0.000 claims abstract description 36
- 238000006735 epoxidation reaction Methods 0.000 claims abstract description 28
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 28
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 22
- 239000001301 oxygen Substances 0.000 claims abstract description 22
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims abstract description 21
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 15
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 13
- 239000010937 tungsten Substances 0.000 claims abstract description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 239000011651 chromium Substances 0.000 claims abstract description 10
- 229940031098 ethanolamine Drugs 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 239000011733 molybdenum Substances 0.000 claims abstract description 10
- 150000004820 halides Chemical class 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 41
- 229940117927 ethylene oxide Drugs 0.000 description 33
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 31
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000002826 coolant Substances 0.000 description 14
- -1 ethylene glycol ethers Chemical class 0.000 description 12
- 239000001569 carbon dioxide Substances 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 11
- 238000000926 separation method Methods 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- 150000001340 alkali metals Chemical class 0.000 description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 150000001342 alkaline earth metals Chemical class 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 229930195734 saturated hydrocarbon Natural products 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 150000002169 ethanolamines Chemical class 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 150000003839 salts Chemical group 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 150000003606 tin compounds Chemical class 0.000 description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 229960003750 ethyl chloride Drugs 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000013529 heat transfer fluid Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- HRLYFPKUYKFYJE-UHFFFAOYSA-N tetraoxorhenate(2-) Chemical compound [O-][Re]([O-])(=O)=O HRLYFPKUYKFYJE-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XREKCAGAPAEVFE-UHFFFAOYSA-J tri(hexadecanoyloxy)stannyl hexadecanoate Chemical compound [Sn+4].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O XREKCAGAPAEVFE-UHFFFAOYSA-J 0.000 description 1
- QEEPNARXASYKDD-UHFFFAOYSA-J tris(7,7-dimethyloctanoyloxy)stannyl 7,7-dimethyloctanoate Chemical compound [Sn+4].CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O QEEPNARXASYKDD-UHFFFAOYSA-J 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
- C07D301/04—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
- C07D301/08—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
- C07D301/10—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/30—Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/067—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/302—Basic shape of the elements
- B01J2219/30223—Cylinder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/304—Composition or microstructure of the elements
- B01J2219/30416—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/304—Composition or microstructure of the elements
- B01J2219/30475—Composition or microstructure of the elements comprising catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/683—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/688—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the invention relates to a reactor system.
- the invention also relates to the use of the reactor system in the manufacture of ethylene oxide, and chemicals derivable from ethylene oxide.
- Ethylene oxide is an important industrial chemical used as a feedstock for making such chemicals as ethylene glycol, ethylene glycol ethers, ethanol amines and detergents.
- One method for manufacturing ethylene oxide is by epoxidation of ethylene, that is the catalyzed partial oxidation of ethylene with oxygen yielding ethylene oxide.
- the ethylene oxide so manufactured may be reacted with water, an alcohol or an amine to produce ethylene glycol, an ethylene glycol ether or an ethanol amine.
- ethylene epoxidation a feedstream containing ethylene and oxygen is passed over a bed of catalyst contained within a reaction zone that is maintained at certain reaction conditions. The relatively large heat of reaction makes adiabatic operation at reasonable operation rates impossible.
- a commercial ethylene epoxidation reactor is generally in the form of a shell-and- tube heat exchanger, in which a plurality of substantially parallel elongated, relatively narrow tubes are filled with catalyst particles to form a packed bed, and in which the shell contains a coolant.
- the internal tube diameter is frequently in the range of from 20 to 40 mm, and the number of tubes per reactor may range in the thousands, for example up to 12,000.
- US Patent 4,921,681 which is incorporated herein by reference.
- the present invention provides a reactor system for the epoxidation of ethylene, which reactor system comprises at least one elongated tube having an internal tube diameter of more than 40 mm, wherein contained is a catalyst bed of catalyst particles comprising silver and a promoter component deposited on a carrier, which promoter component comprises an element selected from rhenium, tungsten, molybdenum and chromium. More preferably, the internal tube diameter is at least 45 mm.
- the invention also provides a process for the epoxidation of ethylene comprising reacting ethylene with oxygen in the presence of the catalyst bed contained in the reactor system of this invention.
- the invention provides a method of preparing ethylene glycol, an ethylene glycol ether or an ethanol amine comprising obtaining ethylene oxide by the process for the epoxidation of ethylene according to this invention, and converting the ethylene oxide into ethylene glycol, the ethylene glycol ether, or the ethanol amine.
- FIG. 1 depicts an elongated tube which comprises a catalyst bed in accordance with this invention.
- FIG. 2 depicts a catalyst particle which may be used in this invention and which has a hollow cylinder geometric configuration.
- FIG. 3 is a schematic representation of an ethylene oxide manufacturing process which includes certain novel aspects of the invention. Detailed Description of the Invention
- a reactor system which comprises elongated tubes of more than 40 mm, preferably at least 45 mm, and typically up to 80 mm internal tube diameter, which is larger than the conventionally practiced elongated tubes having typically a 20 - 40 mm internal tube diameter.
- Increasing the internal tube diameter from, for example, 39 mm to, for example, 55 mm will cause that the number of tubes is approximately halved when the same catalyst load is to be distributed over the tubes applying the same bed depth.
- Using larger internal tube diameters also allows for the use of larger catalyst particles in the catalyst bed which can lower the pressure drop over the catalyst bed.
- Epoxidation catalysts which comprise silver in quantities below 150 g/kg catalyst and additionally a promoter component selected from rhenium, tungsten, molybdenum and chromium have been used commercially for many years.
- An important aspect of this invention is the recognition only after such many years of commercial use that these catalysts may be used in a reactor tube having an internal tube diameter which is larger than conventionally used, without compromising the temperature and heat control of the catalyst bed.
- Particularly advantageous is the use of such epoxidation catalysts having silver in quantities of at least 150 g/kg catalyst.
- an important factor may be that these catalysts are less likely to cause a run-away reaction than catalysts which do not comprise a promoter component. Namely, under practical epoxidation conditions, that is in the presence of an organic halide reaction modifier, catalysts which comprise a promoter component produce less heat per mole ethylene converted, and lower activation energies may cause the overall reaction rate to be less temperature dependent.
- a difference may exist in the catalysts' response to an organic halide: in the case of the catalysts which comprise a promoter component an inadvertent increase in temperature may cause less increase in reaction rate than would be expected just from the temperature increase, and in the case of the catalysts not comprising a promoter component an inadvertent increase in temperature may cause more increase in reaction rate than would be expected just from the temperature increase.
- the catalysts' response to the organic halide may have a dampening effect in the case of catalysts which have a promoter component, as opposed to an amplifying effect in the case of catalysts not having a promoter component.
- the response of the catalysts to an organic halide reaction modifier is known from EP-A- 352850, which is incorporated herein by reference.
- FIG. 1 depicts the inventive reactor system 10 comprising the elongated tube 12 and the catalyst bed 14, typically a packed catalyst bed, contained within the elongated tube 12.
- Elongated tube 12 has a tube wall 16 with an inside tube surface 18 and internal tube diameter 20 that define a reaction zone, wherein is contained catalyst bed 14, and a reaction zone diameter 20.
- Elongated tube 12 has a tube length 22 and the catalyst bed 14 contained within the reaction zone has a bed depth 24.
- the internal tube diameter 20 is above 40 mm, preferably 45 mm or above, and typically at most 80 mm.
- the internal tube diameter 20 is at least 48 mm, more in particular at least 50 mm.
- the internal tube diameter is less than 70 mm, more preferably less than 60 mm.
- the length 22 of the elongated tube is at least 3 m, more preferably at least 5 m.
- the tube length 22 is at most 25 m, more preferably at most 20 m.
- the wall thickness of the elongated tube is at least 0.5 mm, more preferably at least 0.8 mm, and in particular at least 1 mm.
- the wall thickness of the elongated tube is at most 10 mm, more preferably at most 8 mm, and in particular at most 5 mm.
- the elongated tube 12 may contain a separate bed of particles of a non-catalytic or inert material for the purpose of, for example, heat exchange with a feedstream and/or another such separate bed for the purpose of, for example, heat exchange with the reaction product.
- the bed depth 24 is at least 3 m, more preferably at least 5 m.
- the bed depth 24 is at most 25 m, more preferably at most 20 m.
- the elongated tube 12 further has an inlet tube end 26 into which a feedstream comprising ethylene and oxygen can be introduced and an outlet tube end 28 from which a reaction product comprising ethylene oxide and ethylene can be withdrawn.
- the ethylene in the reaction product if any, is ethylene of the feedstream which passes through the reactor zone unconverted. Typical conversions of the ethylene exceed 10 mole percent, but, in some instances, the conversion may be less.
- the reactor system includes a catalyst bed of particles of a catalyst comprising silver and a promoter component deposited on a carrier.
- a major portion of the catalyst bed comprises the catalyst particles.
- the ratio of the weight of the catalyst particles to the weight of all the particles contained in the catalyst bed is at least 0.50, in particular at least 0.8, but preferably at least 0.85 and, most preferably at least 0.9.
- Particles which may be contained in the catalyst bed other than the catalyst particles are, for example, inert particles. However, it is preferred that such other particles are not present.
- the carrier for use in this invention may be based on a wide range of materials. Such materials may be natural or artificial inorganic materials and they may include refractory materials, silicon carbide, clays, zeolites, charcoal and alkaline earth metal carbonates, for example calcium carbonate. Preferred are refractory materials, such as alumina, magnesia, zirconia and silica. The most preferred material is ⁇ -alumina.
- the carrier comprises at least 85 %w, more typically at least 90 %w, in particular at least 95 %w ⁇ -alumina, frequently up to 99.9 %w ⁇ -alumina, relative to the weight of the carrier.
- ⁇ -alumina carrier may comprise, for example, silica, alkali metal components, for example sodium and/or potassium components, and/or alkaline earth metal components, for example calcium and/or magnesium components.
- the surface area of the carrier may suitably be at least 0.1 m 2 /g, preferably at least
- surface area may suitably be at most 10 m 2 /g, preferably at most 5 m 2 /g, and in particular at most 3 m 2 /g, relative to the weight of the carrier.
- Surface area is understood to relate to the surface area as determined by the B.E.T. (Brunauer, Emmett and Teller) method as described in Journal of the American Chemical Society 60 (1938) pp. 309-316.
- High surface area carriers in particular when they are ⁇ -alumina carriers optionally comprising in addition silica, alkali metal and/or alkaline earth metal components, provide improved performance and stability of operation.
- the water absorption of the carrier is typically in the range of from 0.2 to 0.8 g/g, preferably in the range of from 0.3 to 0.7 g/g. A higher water absorption may be in favor in view of a more efficient deposition of silver and further elements, if any, on the carrier by impregnation. However, at a higher water absorption, the carrier, or the catalyst made therefrom, may have lower crush strength.
- the carrier is typically a calcined, i.e. sintered, carrier, preferably in the form of formed bodies, the size of which is in general determined by the internal diameter of the elongated tube in which the catalyst particles are included in the catalyst bed. hi general, the skilled person will be able to determine an appropriate size of the formed bodies. It is found very convenient to use formed bodies in the form of trapezoidal bodies, cylinders, saddles, spheres, doughnuts, and the like.
- the catalyst particles have preferably a generally hollow cylinder geometric configuration.
- the catalyst particles having a generally hollow cylinder geometric configuration 30 may have a length 32, typically from 4 to 20 mm, more typically from 5 to 15 mm; an outside diameter 34, typically from 4 to 20 mm, more typically from 5 to 15 mm; and inside diameter 36, typically from 0.1 to 6 mm, preferably from 0.2 to 4 mm.
- the catalyst particles have a length and an inner diameter as described hereinbefore and an outside diameter of at least 7 mm, preferably at least 8 mm, more preferably at least 9 mm, and at most 20 mm, or at most 15 mm.
- the ratio of the length 32 to the outside diameter 34 is typically in the range of from 0.5 to 2, more typically from 0.8 to 1.2.
- the void space provided by the inside diameter of the hollow cylinder allows, when preparing the catalyst, for improved deposition of the catalytic component onto the carrier, for example by impregnation, and improved further handling, such as drying, and, when using the catalyst, it provides for a lower pressure drop over the catalyst bed.
- An advantage of applying a relatively small bore diameter is also that the shaped carrier material has higher crush strength relative to a carrier material having a larger bore diameter.
- the carrier surface may be in the range of from 0.1 to 10 %w, more suitable from 0.5 to 5 %w, in particular from 1 to 3 %w, for example 2 %w, calculated as metallic tin relative to the weight of the carrier.
- Such coating may be applied irrespective of whether or not the carrier will be used for preparing a catalyst comprising the promoter compound.
- Such coated carriers are known from US- A-4701347, US-A-4548921 and US-A-3819537, which are incorporated herein by reference.
- the coated carriers may suitably be prepared by impregnating the carrier with a solution of an organic tin compound in an organic diluent, for example toluene or hexane.
- a suitable organic tin compound may be for example a tin alkoxide or a tin alkanoate.
- a preferred tin alkanoate is for example tin neodecanoate or tin hexadecanoate.
- the tin impregnated carrier may be dried in air at a temperature between 400 and 1200 0 C, for example at 600 0 C.
- the preparation of the catalyst is known in the art and the known methods are applicable to the preparation of the catalyst particles which may be used in the practice of this invention.
- Methods of depositing silver on the carrier include impregnating the carrier with a silver compound containing cationic silver and performing a reduction to form metallic silver particles.
- the reduction of cationic silver to metallic silver may be accomplished during a step in which the catalyst is dried, so that the reduction as such does not require a separate process step.
- the silver containing impregnation solution comprises a reducing agent, for example, an oxalate, a lactate or formaldehyde.
- Appreciable catalytic activity is obtained by employing a silver content of the catalyst of at least 10 g/kg, relative to the weight of the catalyst.
- the catalyst comprises silver in a quantity of from 50 to 500 g/kg, more preferably from 100 to 400 g/kg.
- the silver content of the catalyst may be at least 150 g/kg, more preferably at least 200 g/kg, and most preferably at least 250 g/kg, relative to the weight of the catalyst.
- the silver content of the catalyst may be at most 500 g/kg, more preferably at most 450 g/kg, and most preferably at most 400 g/kg, relative to the weight of the catalyst.
- the silver content of the catalyst is in the range of from 150 to 500 g/kg, more preferably from 200 to 400 g/kg, relative to the weight of the catalyst.
- the catalyst may comprise silver in a quantity of 150 g/kg, or 180 g/kg, or 190 g/kg, or 200 g/kg, or 250 g/kg, or 350 g/kg, relative to the weight of the catalyst.
- a catalyst having a relatively high silver content for example in the range of from 150 to 500 g/kg, on total catalyst, it may be advantageous to apply multiple depositions of silver.
- the catalyst for use in this invention comprises a promoter component which comprises an element selected from rhenium, tungsten, molybdenum, chromium, and mixtures thereof.
- the promoter component comprises, as an element, rhenium.
- the promoter component may typically be present in a quantity of at least 0.01 mmole/kg, more typically at least 0.1 mmole/kg, and preferably at least 0.5 mmole/kg, calculated as the total quantity of the element (that is rhenium, tungsten, molybdenum and/or chromium) relative to the weight of the catalyst.
- the promoter component may be present in a quantity of at most 50 mmole/kg, preferably at most
- the promoter component may be deposited onto the carrier is not material to the invention.
- the promoter component may suitably be provided as an oxide or as an oxyanion, for example, as a rhenate, perrhenate, or tungstate, in salt or acid form.
- rhenium may typically be present in a quantity of at least 0.1 mmole/kg, more typically at least 0.5 mmole/kg, and preferably at least 1.0 mmole/kg, in particular at least 1.5 mmole/kg, calculated as the quantity of the element relative to the weight of the catalyst.
- Rhenium is typically present in a quantity of at most 5.0 mmole/kg, preferably at most 3.0 mmole/kg, more preferably at most 2.0 mmole/kg, in particular at most 1.5 mmole/kg.
- the catalyst when the catalyst comprises a rhenium containing promoter component, the catalyst may preferably comprise a rhenium copromoter, as a further component deposited on the carrier.
- the rhenium copromoter may be selected from components comprising an element selected from tungsten, chromium, molybdenum, sulfur, phosphorus, boron, and mixtures thereof.
- the rhenium copromoter is selected from components comprising tungsten, chromium, molybdenum, sulfur, and mixtures thereof. It is particularly preferred that the rhenium copromoter comprises, as an element, tungsten.
- the rhenium copromoter may typically be present in a total quantity of at least
- the rhenium copromoter may be present in a total quantity of at most 40 mmole/kg, preferably at most 10 mmole/kg, more preferably at most 5 mmole/kg, on the same basis.
- the form in which the rhenium copromoter may be deposited on the carrier is not material to the invention.
- the catalyst preferably comprises silver, the promoter component, and a component comprising a further element, deposited on the carrier.
- Eligible further elements maybe selected from the group of nitrogen, fluorine, alkali metals, alkaline earth metals, titanium, hafnium, zirconium, vanadium, thallium, thorium, tantalum, niobium, gallium and germanium and mixtures thereof.
- the alkali metals are selected from lithium, potassium, rubidium and cesium. Most preferably the alkali metal is lithium, potassium and/or cesium.
- the alkaline earth metals are selected from calcium and barium.
- the further element is present in the catalyst in a total quantity of from 0.01 to 500 mmole/kg, more typically from 0.05 to 100 mmole/kg, calculated as the element on the weight of the catalyst.
- the further elements may be provided in any form. For example, salts of an alkali metal or an alkaline earth metal are suitable.
- the quantity of alkali metal present in the catalyst is deemed to be the quantity insofar as it can be extracted from the catalyst with de-ionized water at 100 0 C.
- the extraction method involves extracting a 10-gram sample of the catalyst three times by heating it in 20 ml portions of de-ionized water for 5 minutes at 100 0 C and determining in the combined extracts the relevant metals by using a known method, for example atomic absorption spectroscopy.
- the quantity of alkaline earth metal present in the catalyst is deemed to the quantity insofar as it can be extracted from the catalyst with 10 %w nitric acid in de-ionized water at 100 0 C.
- the extraction method involves extracting a 10-gram sample of the catalyst by boiling it with a 100 ml portion of 10 %w nitric acid for 30 minutes (1 atm., i.e. 101.3 kPa) and determining in the combined extracts the relevant metals by using a known method, for example atomic absorption spectroscopy.
- a known method for example atomic absorption spectroscopy.
- a catalyst which may suitably be used in this invention is a catalyst designated S- 882, as has been marketed by CRI International (Houston, TX, USA).
- FIG. 3 is a schematic representation showing a typical ethylene oxide manufacturing system 40 with a shell-and-tube heat exchanger 42 which is equipped with one or more reactor systems as depicted in FIG. 1.
- a plurality of reactor systems of this invention is grouped together into a tube bundle for insertion into the shell of a shell-and-tube heat exchanger.
- the skilled person will understand that the catalyst particles may be packed into the individual elongated tubes such that the elongated tubes and their contents provide the same resistivity when a gas flow passes through the elongated tubes.
- the number of elongated tubes present in the shell-and-tube heat exchanger 42 is typically in the range of from 1,000 to 15,000, more typically in the range of from 2,000 to 10,000. Generally, such elongated tubes are in a substantially parallel position relative to each other.
- Ethylene oxide manufacturing system 40 may comprise one or more shell-and-tube heat exchangers 42, for example two, three or four.
- the shell-and-tube heat exchanger 42 may comprise elongated tubes which are individually removable from the shell-and-tube heat exchanger and exchangeable against elongated tubes of a different internal diameter.
- the elongated tubes may be removable and exchangeable as one or more bundles. If desirable, the performance of the catalyst may be tested in the shell-and-tube heat exchanger having elongated tubes of different internal diameters.
- a feedstream comprising ethylene and oxygen is charged via conduit 44 to the tube side of shell-and-tube heat exchanger 42 wherein it is contacted with the catalyst bed contained therein within elongated tubes 12 of the inventive reactor systems.
- the shell- and-tube heat exchanger 42 is typically operated in a manner which allows an upward or downward flow of gas through the catalyst bed.
- the heat of reaction is removed and control of the reaction temperature, that is the temperature within the catalyst bed, is achieved by use of a heat transfer fluid, for example oil, kerosene or water, which is charged to the shell side of shell-and-tube heat exchanger 42 by way of conduit 46 and the heat transfer fluid is removed from the shell of shell-and-tube heat exchanger 42 through conduit 48.
- a heat transfer fluid for example oil, kerosene or water
- the reaction product comprising ethylene oxide, unreacted ethylene, unreacted oxygen and, optionally, other reaction products such as carbon dioxide and water, is withdrawn from the reactor system tubes of shell-and-tube heat exchanger 42 through conduit 50 and passes to separation system 52.
- Separation system 52 provides for the separation of ethylene oxide from ethylene and, if present, carbon dioxide and water.
- An extraction fluid such as water can be used to separate these components and is introduced to separation system 52 by way of conduit 54.
- the enriched extraction fluid containing ethylene oxide passes from separation system 52 through conduit 56 while unreacted ethylene and carbon dioxide, if present, passes from separation system 52 through conduit 58.
- Separated carbon dioxide passes from separation system 52 through conduit 61.
- a portion of the gas stream passing through conduit 58 can be removed as a purge stream through conduit 60.
- the remaining gas stream passes through conduit 62 to recycle compressor 64.
- a stream containing ethylene and oxygen passes through conduit 66 and is combined with the recycle ethylene that is passed through conduit 62 and the combined stream is passed to recycle compressor 64.
- Recycle compressor 64 discharges into conduit 44 whereby the discharge stream is charged to the inlet of the tube side of the shell-and- tube heat exchanger 42.
- Ethylene oxide produced may be recovered from the enriched extraction fluid, for example by distillation or extraction.
- the ethylene concentration in the feedstream passing through conduit 44 may be selected within a wide range. Typically, the ethylene concentration in the feedstream will be at most 80 mole-%, relative to the total feed. Preferably, it will be in the range of from 0.5 to 70 mole-%, in particular from 1 to 60 mole-%, on the same basis. As used herein, the feedstream is considered to be the composition which is contacted with the catalyst particles.
- the present epoxidation process may be air-based or oxygen-based, see "Kirk- Othmer Encyclopedia of Chemical Technology", 3 rd edition, Volume 9, 1980, pp. 445- 447. Ih the air-based process air or air enriched with oxygen is employed as the source of the oxidizing agent while in the oxygen-based processes high-purity (at least 95 mole-%) oxygen is employed as the source of the oxidizing agent.
- oxygen-based processes are oxygen-based and this is a preferred embodiment of the present invention.
- the oxygen concentration in the feedstream passing through conduit 44 may be selected within a wide range. However, in practice, oxygen is generally applied at a concentration which avoids the flammable regime.
- the concentration of oxygen applied will be within the range of from 1 to 15 mole-%, more typically from 2 to ll mole-% of the total feed.
- the actual safe operating ranges depend, along with the feedstream composition, also on the reaction conditions such as the reaction temperature and the pressure.
- An organic halide may be present in the feedstream passing through conduit 44 as a reaction modifier for increasing the selectivity, suppressing the undesirable oxidation of ethylene or ethylene oxide to carbon dioxide and water, relative to the desired formation of ethylene oxide.
- Fresh organic halide is suitably fed to the process through conduit 66.
- Organic halides are in particular organic bromides, and more in particular organic chlorides.
- Preferred organic halides are chlorohydrocarbons or bromohydrocarbons. More preferably they are selected from the group of methyl chloride, ethyl chloride, ethylene dichloride, ethylene dibromide, vinyl chloride or a mixture thereof. Most preferred are ethyl chloride and ethylene dichloride.
- the organic halides are generally effective as reaction modifier when used in low concentration in the feed, for example up to 0.01 mole-%, relative to the total feed. It is preferred that the organic halide is present in the feedstream at a concentration of at most 5OxIO "4 mole-%, in particular at most 2OxIO "4 mole-%, more in particular at most 15XlO "4 mole-%, relative to the total feed, and preferably at least 0.2x10 "4 mole-%, in particular at least 0.5x10 "4 mole-%, more in particular at least IxIO '4 mole-%, relative to the total feed.
- the feedstream may contain one or more optional components, for example carbon dioxide, inert gases and saturated hydrocarbons.
- Carbon dioxide generally has an adverse effect on the catalyst activity.
- separation system 52 is operated in such a way that the quantity of carbon dioxide in the feedstream through conduit 44 is low, for example, below 2 mole-%, preferably below 1 mole-%, or in the range of from 0.2 to 1 mole-%.
- Inert gases for example nitrogen or argon, may be present in the feedstream passing through conduit 44 in a concentration of from 30 to 90 mole-%, typically from 40 to 80 mole-%.
- Suitable saturated hydrocarbons are methane and ethane.
- saturated hydrocarbons may be present in a quantity of up to 80 mole-%, relative to the total feed, in particular up to 75 mole-%. Frequently they are present in a quantity of at least 30 mole- %, more frequently at least 40 mole-%. Saturated hydrocarbons may be employed in order to increase the oxygen flammability limit. Olefins other than ethylene may be present in the feedstream, for example in a quantity of less than 10 mole-%, in particular less than 1 mole-%, relative to the quantity of ethylene. However, it is preferred that ethylene is the single olefin present in the feedstream.
- the epoxidation process may be carried out using reaction temperatures selected from a wide range.
- the reaction temperature is in the range of from 150 to 340 0 C, more preferably in the range of from 180 to 325 0 C.
- the shell-side heat transfer liquid has a temperature which is typically 1 to 15 0 C, more typically 2 to 10 0 C lower than the reaction temperature.
- the reaction temperature may be increased gradually or in a plurality of steps, for example in steps of from 0.1 to 20 °C, in particular 0.2 to 10 0 C, more in particular 0.5 to 5 °C.
- the total increase in the reaction temperature may be in the range of from 10 to 140 °C, more typically from 20 to 100 °C.
- the reaction temperature may be increased typically from a level in the range of from 150 to 300 0 C, more typically from 200 to 280 0 C, when a fresh catalyst is used, to a level in the range of from 230 to 340 0 C, more typically from 240 to 325 °C, when the catalyst has decreased in activity due to ageing.
- the epoxidation process is preferably carried out at a pressure in the inlet tube end 26 in the range of from 1000 to 3500 kPa.
- "GHSV" or Gas Hourly Space Velocity is the unit volume of gas at normal temperature and pressure (0 0 C, 1 arm, i.e. 101.3 kPa) passing over one unit of the total volume of catalyst bed per hour.
- the GHSV is in the range of from 1500 to 10000 Nm 3 /(m 3 .h).
- the process is carried out at a work rate in the range of from 0.5 to 10 kmole ethylene oxide produced per m 3 of the total catalyst bed per hour, in particular 0.7 to 8 kmole ethylene oxide produced per m 3 of the total catalyst bed per hour, for example 5 kmole ethylene oxide produced per m 3 of the total catalyst bed per hour.
- the ethylene oxide produced in the epoxidation process may be converted, for example, into ethylene glycol, an ethylene glycol ether or an ethanol amine.
- the conversion into ethylene glycol or the ethylene glycol ether may comprise, for example, reacting the ethylene oxide with water, suitably using an acidic or a basic catalyst.
- the ethylene oxide may be reacted with a ten fold molar excess of water, in a liquid phase reaction in presence of an acid catalyst, e.g. 0.5-1.0 %w sulfuric acid, based on the total reaction mixture, at 50-70 0 C at 100 kPa absolute, or in a gas phase reaction at 130-240 0 C and 2000-4000 kPa absolute, preferably in the absence of a catalyst.
- an acid catalyst e.g. 0.5-1.0 %w sulfuric acid
- the ethylene glycol ethers thus produced may be a di-ether, tri- ether, tetra-ether or a subsequent ether.
- Alternative ethylene glycol ethers may be prepared by converting the ethylene oxide with an alcohol, in particular a primary alcohol, such as methanol or ethanol, by replacing at least a portion of the water by the alcohol.
- the ethylene oxide may be converted into ethylene glycol by first converting the ethylene oxide into ethylene carbonate by reacting it with carbon dioxide, and subsequently hydrolyzing the ethylene carbonate to form ethylene glycol.
- a primary alcohol such as methanol or ethanol
- the conversion into the ethanol amine may comprise reacting ethylene oxide with an amine, such as ammonia, an alkyl amine or a dialkyl amine.
- an amine such as ammonia, an alkyl amine or a dialkyl amine.
- Anhydrous or aqueous ammonia may be used.
- Anhydrous ammonia is typically used to favor the production of mono ethanol amine.
- Ethylene glycol and ethylene glycol ethers may be used in a large variety of industrial applications, for example in the fields of food, beverages, tobacco, cosmetics, thermoplastic polymers, curable resin systems, detergents, heat transfer systems, etc.
- Ethanol amines may be used, for example, in the treating ("sweetening") of natural gas.
- the organic compounds mentioned herein for example the olefins, ethylene glycol ethers, ethanol amines and organic halides, have typically at most 40 carbon atoms, more typically at most 20 carbon atoms, in particular at most 10 carbon atoms, more in particular at most 6 carbon atoms.
- ranges for numbers of carbon atoms include the numbers specified for the limits of the ranges.
- Example I Comparative, not according to the invention
- Reactor models were developed which include appropriate kinetic models for the use of silver containing catalysts in a process for manufacturing ethylene oxide from ethylene and oxygen.
- An appropriate reactor model was developed for silver catalysts comprising rhenium and tungsten and another appropriate reactor model was developed for silver catalysts containing no rhenium and no rhenium copromoter.
- the models are based on the correlation of actual catalyst performance data gathered from numerous sources such as micro-reactor activity data, pilot plant data and other sources of catalyst performance data.
- a process was modeled, as performed in a reactor tube of 11.8 m length and 38.9 mm internal diameter containing a packed bed of standard cylindrical catalyst particles having about 8 mm outside diameter 34, about 8 mm length 32 and about 3.2 mm inside diameter 36, the catalyst comprising silver, rhenium, and tungsten, and the reactor tube being cooled in a boiling water reactor.
- the quantity of silver was 275 g/kg, relative to the weight of the catalyst.
- the operating conditions of the modeled process were a GHSV of 3327 Nl/l.h, inlet pressure of 1.75 MPa, a work rate of 3.3 kmole ethylene oxide per m 3 of packed bed per hour, and a composition of the feed stream of 25 mole-% ethylene, 8.5 mole-% oxygen, 1 mole-% carbon dioxide, 1 mole-% nitrogen, 2.7 mole-% argon, 1 mole-% ethane, the balance being methane.
- the selectivity of the catalyst is estimated to be 89.9 mole-%.
- the shell-side coolant temperature was calculated to be 230 0 C.
- the model predicted that in a tube of this internal diameter (38.9 mm) the coolant temperature can be increased to 247 0 C before the rate of production of reaction heat exceeds the rate of heat removal through the wall of the tube, which is characteristic of a run-away reaction.
- the margin to run-away is 17 0 C.
- Example I was repeated, with the difference that the internal diameter was 54.4 mm, instead of 38.9 mm.
- the shell-side coolant temperature was calculated to be 228 0 C.
- the model predicted that in a tube of this internal diameter (54.4 mm) the coolant temperature can be increased to 240 0 C before the rate of production of reaction heat exceeds the rate of heat removal through the wall of the tube.
- the margin to run-away is 12 0 C.
- Example III Comparative, not according to the invention
- Example I was repeated, with the difference that the catalyst comprised silver in a quantity of 132 g/kg, relative to the weight of the catalyst.
- the selectivity of the catalyst is estimated to be 89.1 mole-%.
- the shell-side coolant temperature was calculated to be 234 0 C.
- the model predicted that in a tube of this internal diameter (38.9 mm) the coolant temperature can be increased to 247 0 C before the rate of production of reaction heat exceeds the rate of heat removal through the wall of the tube.
- the margin to run-away is 13 0 C.
- Example III was repeated, with the difference that the internal diameter was 54.4 mm, instead of 38.9 mm.
- the shell-side coolant temperature was calculated to be 232 0 C.
- the model predicted that in a tube of this internal diameter (54.4 mm) the coolant temperature can be increased to 240 0 C before the rate of production of reaction heat exceeds the rate of heat removal through the wall of the tube.
- the margin to run-away is 8 0 C.
- Example I was repeated, with the differences that the catalyst comprises silver in a quantity of 145 g/kg, relative to the weight of the catalyst, no rhenium and no rhenium copromoter, that the appropriate reactor model for a silver catalyst containing no rhenium and no rhenium copromoter was used, and that the internal diameter was 38.5 mm, instead of 38.9 mm.
- the selectivity of the catalyst is estimated to be 82.7 mole-%.
- the shell-side coolant temperature was calculated to be 199 0 C.
- the model predicted that in a tube of this internal diameter (38.5 mm) the coolant temperature can be increased to 209 0 C before the rate of production of reaction heat exceeds the rate of heat removal through the wall of the tube. Thus, according to the model prediction, under these conditions the margin to run-away is 10 0 C.
- Example VI Comparative, not according to the invention
- Example V was repeated, with the difference that the internal diameter was 55 mm, instead of 38.5 mm.
- the shell-side coolant temperature was calculated to be 194.5 0 C.
- the model predicted that in a tube of this internal diameter (55 mm) the coolant temperature can be increased to 197.5 0 C before the rate of production of reaction heat exceeds the rate of heat removal through the wall of the tube.
- the margin to run-away is as low as 3 0 C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Epoxy Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/886,800 US20090234144A1 (en) | 2005-03-22 | 2006-03-20 | Reactor System and Process for the Manufacture of Ethylene Oxide |
JP2008503060A JP5421587B2 (en) | 2005-03-22 | 2006-03-20 | Reactor system and process for the production of ethylene oxide |
EA200702028A EA011641B1 (en) | 2005-03-22 | 2006-03-20 | A reactor system and process for the manufacture of ethylene oxide |
CA2602163A CA2602163C (en) | 2005-03-22 | 2006-03-20 | A reactor system and process for the manufacture of ethylene oxide |
EP06748456A EP1861196A1 (en) | 2005-03-22 | 2006-03-20 | A reactor system and process for the manufacture of ethylene oxide |
BRPI0608862-7A BRPI0608862A2 (en) | 2005-03-22 | 2006-03-20 | ethylene oxide reactor system and process |
AU2006227295A AU2006227295A1 (en) | 2005-03-22 | 2006-03-20 | A reactor system and process for the manufacture of ethylene oxide |
MX2007011550A MX2007011550A (en) | 2005-03-22 | 2006-03-20 | A reactor system and process for the manufacture of ethylene oxide. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66398405P | 2005-03-22 | 2005-03-22 | |
US60/663,984 | 2005-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006102189A1 true WO2006102189A1 (en) | 2006-09-28 |
Family
ID=36691732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/009929 WO2006102189A1 (en) | 2005-03-22 | 2006-03-20 | A reactor system and process for the manufacture of ethylene oxide |
Country Status (12)
Country | Link |
---|---|
US (1) | US20090234144A1 (en) |
EP (1) | EP1861196A1 (en) |
JP (1) | JP5421587B2 (en) |
KR (1) | KR20070112870A (en) |
CN (1) | CN101146604A (en) |
AU (1) | AU2006227295A1 (en) |
BR (1) | BRPI0608862A2 (en) |
CA (1) | CA2602163C (en) |
EA (1) | EA011641B1 (en) |
MX (1) | MX2007011550A (en) |
TW (1) | TWI510475B (en) |
WO (1) | WO2006102189A1 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008141030A1 (en) | 2007-05-09 | 2008-11-20 | Shell Oil Company | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
WO2009119416A1 (en) * | 2008-03-26 | 2009-10-01 | 株式会社日本触媒 | Catalyst for production of ethylene oxide, and process for production of ethylene oxide using the catalyst |
EP2140933A1 (en) * | 2008-07-02 | 2010-01-06 | Werner Soyez | Structured catalyst hold for pipe reactors |
US7704908B2 (en) | 2005-12-22 | 2010-04-27 | Shell Oil Company | Method for reusing rhenium from a donor spent epoxidation catalyst |
US7750170B2 (en) | 2005-12-22 | 2010-07-06 | Shell Oil Company | Process for mixing an oxidant having explosive potential with a hydrocarbon |
WO2012050819A1 (en) * | 2010-09-29 | 2012-04-19 | Shell Oil Company | Improved eo process control |
WO2012140613A1 (en) * | 2011-04-14 | 2012-10-18 | Basf Se | Process for producing a catalyst for the oxidation of ethylene to ethylene oxide |
US8357812B2 (en) | 2005-12-22 | 2013-01-22 | Shell Oil Company | Process for preparing a rejuvenated epoxidation catalyst |
US8921587B2 (en) | 2011-04-14 | 2014-12-30 | Basf Se | Process for producing a catalyst for the oxidation of ethylene to ethylene oxide |
US8921586B2 (en) | 2008-05-07 | 2014-12-30 | Shell Oil Company | Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
EP2771107A4 (en) * | 2011-10-28 | 2015-09-02 | Basf Se | Process for producing supported silver catalyst |
US9144765B2 (en) | 2007-05-18 | 2015-09-29 | Shell Oil Company | Reactor system, an absorbent and a process for reacting a feed |
KR101573085B1 (en) * | 2007-05-18 | 2015-11-30 | 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 | A reactor system an absorbent and a process for reacting a feed |
US9199223B2 (en) | 2011-10-28 | 2015-12-01 | Basf Se | Process for producing a supported silver catalyst |
US9346774B2 (en) | 2008-05-07 | 2016-05-24 | Shell Oil Company | Process for the start-up of an epoxidation process, a process for the production of ethylene oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US10532989B2 (en) | 2007-05-09 | 2020-01-14 | Shell Oil Company | Epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
EP3639923A1 (en) | 2018-10-15 | 2020-04-22 | Basf Se | Process for producing ethylene oxide by gas-phase oxidation of ethylene |
EP3639924A1 (en) | 2018-10-15 | 2020-04-22 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
EP3659703A1 (en) | 2018-11-28 | 2020-06-03 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
WO2021038027A1 (en) | 2019-08-28 | 2021-03-04 | Basf Se | Process for preparing an epoxidation catalyst |
EP3885038A1 (en) | 2020-03-27 | 2021-09-29 | Basf Se | Process for producing an epoxidation catalyst |
WO2021191414A1 (en) | 2020-03-27 | 2021-09-30 | Basf Se | Process for producing a silver-based epoxidation catalyst |
WO2021260140A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Production of porous alpha-alumina supports from boehmitic derived aluminas |
WO2021260182A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Process for producing a porous alpha-alumina catalyst support |
WO2021260138A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Shaped catalyst body for the production of ethylene oxide |
WO2022161924A1 (en) | 2021-01-26 | 2022-08-04 | Basf Se | Epoxidation catalyst |
WO2024079247A1 (en) | 2022-10-12 | 2024-04-18 | Basf Se | Epoxidation catalyst |
WO2024089255A1 (en) | 2022-10-28 | 2024-05-02 | Basf Se | Process for the manufacture of an ethylene-derived chemical of interest, in particular styrene, from renewably-sourced ethanol |
WO2024133081A1 (en) | 2022-12-20 | 2024-06-27 | Basf Se | Manufacture of an ethylene-derived chemical of interest, in particular acrylic acid, in combination with generation of heated steam |
US12121881B2 (en) | 2018-10-15 | 2024-10-22 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112012011076A2 (en) * | 2009-11-10 | 2016-07-05 | Shell Int Research | process and integrated system for the preparation of a lower olefin product. |
AU2010318055B2 (en) | 2009-11-10 | 2014-04-03 | Shell Internationale Research Maatschappij B.V. | Process for producing ethylene oxide |
CN102666794B (en) * | 2009-11-10 | 2015-12-02 | 国际壳牌研究有限公司 | For the preparation of the method for lower olefins product |
WO2011057982A2 (en) * | 2009-11-10 | 2011-05-19 | Shell Internationale Research Maatschappij B.V. | Process for producing olefins |
EP2499222A2 (en) | 2009-11-10 | 2012-09-19 | Shell Internationale Research Maatschappij B.V. | Process for producing olefins |
RU2012149861A (en) | 2010-04-23 | 2014-05-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | METHOD FOR PRODUCING AROMATIC HYDROCARBONS AND ETHYLENE |
US8742146B2 (en) | 2010-12-08 | 2014-06-03 | Shell Oil Company | Process for improving the selectivity of an EO catalyst |
US8742147B2 (en) | 2010-12-08 | 2014-06-03 | Shell Oil Company | Process for improving the selectivity of an EO catalyst |
WO2012101092A1 (en) | 2011-01-24 | 2012-08-02 | Shell Internationale Research Maatschappij B.V. | Process for the production of ethylene oxide |
CN108947938A (en) | 2011-01-24 | 2018-12-07 | 国际壳牌研究有限公司 | The preparation method of ethylene oxide |
NL2006561C2 (en) | 2011-04-06 | 2012-10-09 | Univ Leiden | Process to prepare an ethanol-derivate. |
CA2834299C (en) | 2011-04-29 | 2019-09-03 | Shell Internationale Research Maatschappij B.V. | Process for improving the selectivity of an eo catalyst |
EP2644604A1 (en) | 2012-03-30 | 2013-10-02 | Shell Internationale Research Maatschappij B.V. | Process for the production of ethylene oxide |
FR3001969B1 (en) * | 2013-02-12 | 2015-08-21 | IFP Energies Nouvelles | PROCESS FOR PRODUCING ETHYLENE OXIDE FROM A THERMALLY INTEGRATED ETHANOL FLOW |
FR3001968B1 (en) * | 2013-02-12 | 2015-02-27 | IFP Energies Nouvelles | PROCESS FOR PRODUCING ETHYLENE OXIDE FROM A THERMO-MECHANICALLY INTEGRATED ETHANOL FLOW |
RU2721603C2 (en) * | 2015-12-15 | 2020-05-21 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Methods and systems for removing alkyl iodide impurities from return gas stream when producing ethylene oxide |
CN110035998B (en) | 2016-12-02 | 2024-02-20 | 国际壳牌研究有限公司 | Method for regulating ethylene epoxidation catalyst and related method for producing ethylene oxide |
KR102258044B1 (en) * | 2017-11-17 | 2021-05-27 | 롯데케미칼 주식회사 | A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application |
TW201943709A (en) | 2018-04-09 | 2019-11-16 | 荷蘭商蜆殼國際研究公司 | Process for the production of ethylene oxide |
CN110605073B (en) * | 2018-06-15 | 2022-03-15 | 中国石油化工股份有限公司 | Catalyst loading method for olefin epoxidation process and olefin epoxidation method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0266015A1 (en) * | 1986-10-31 | 1988-05-04 | Shell Internationale Researchmaatschappij B.V. | Ethylene oxide catalyst and process for the catalytic production of ethylene oxide |
WO2004056463A1 (en) * | 2002-12-19 | 2004-07-08 | Bp Chemicals Limited | Process for manufacturing ethylene oxide |
WO2004072055A1 (en) * | 2003-02-14 | 2004-08-26 | Bp Chemicals Limited | Process for manufacturing ethylene oxide |
WO2004101141A1 (en) * | 2003-05-07 | 2004-11-25 | Shell Internationale Research Maatschappij B.V. | A reactor system and process for the manufacture of ethylene oxide |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH529586A (en) * | 1970-09-16 | 1972-10-31 | Montedison Spa | Catalyst for the production of ethylene oxide from ethylene |
US4130570A (en) * | 1973-10-19 | 1978-12-19 | Boreskov Georgy K | Method of producing ethylene oxide |
AU529228B2 (en) * | 1977-07-13 | 1983-06-02 | Nippon Shokubai Kagaku Kogyo Co. Ltd. | Catalytic vapour phase oxidation |
NL8201396A (en) * | 1982-04-01 | 1983-11-01 | Dow Chemical Nederland | SILVER CATALYST AND A METHOD FOR THE PREPARATION THEREOF. |
US4820496A (en) * | 1983-07-15 | 1989-04-11 | Catalyst Technology, Inc. | Catalyst recovery trough for unloading multi-tube reactors with maximum dust containment |
US4845296A (en) * | 1983-12-13 | 1989-07-04 | Union Carbide Corporation | Process for preparing alkanolamines |
JPS60216844A (en) * | 1984-04-13 | 1985-10-30 | Nippon Shokubai Kagaku Kogyo Co Ltd | Silver catalyst for producing ethylene oxide |
EP0207542B1 (en) * | 1985-06-28 | 1989-05-24 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of a silver-containing catalyst |
US4701347A (en) * | 1986-04-18 | 1987-10-20 | American Telephone And Telegraph Company, At&T Bell Laboratories | Method for growing patterned metal layers |
GB8618325D0 (en) * | 1986-07-28 | 1986-09-03 | Shell Int Research | Catalyst |
US4766105A (en) * | 1986-10-31 | 1988-08-23 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
GB8716653D0 (en) * | 1987-07-15 | 1987-08-19 | Shell Int Research | Silver-containing catalyst |
US4921681A (en) * | 1987-07-17 | 1990-05-01 | Scientific Design Company, Inc. | Ethylene oxide reactor |
CA1339317C (en) * | 1988-07-25 | 1997-08-19 | Ann Marie Lauritzen | Process for producing ethylene oxide |
US4874879A (en) * | 1988-07-25 | 1989-10-17 | Shell Oil Company | Process for starting-up an ethylene oxide reactor |
US5380697A (en) * | 1993-09-08 | 1995-01-10 | Shell Oil Company | Ethylene oxide catalyst and process |
US5739075A (en) * | 1995-10-06 | 1998-04-14 | Shell Oil Company | Process for preparing ethylene oxide catalysts |
US5801259A (en) * | 1996-04-30 | 1998-09-01 | Shell Oil Company | Ethylene oxide catalyst and process |
AU749910B2 (en) * | 1998-03-19 | 2002-07-04 | Mitsubishi Chemical Corporation | Method for producing monoethylene glycol |
TR200100748T2 (en) * | 1998-09-14 | 2001-08-21 | Shell Internationale Research Maatschappij B.V. | A process for removing ionizable species from the catalyst surface in order to improve catalytic properties |
JP4499219B2 (en) * | 1999-10-04 | 2010-07-07 | 株式会社日本触媒 | Method for producing ethylene oxide |
US6372925B1 (en) * | 2000-06-09 | 2002-04-16 | Shell Oil Company | Process for operating the epoxidation of ethylene |
JP4042332B2 (en) * | 2001-02-27 | 2008-02-06 | 三菱化学株式会社 | Process for producing olefin oxide using rhenium-containing catalyst |
US20040225138A1 (en) * | 2003-05-07 | 2004-11-11 | Mcallister Paul Michael | Reactor system and process for the manufacture of ethylene oxide |
US20040224841A1 (en) * | 2003-05-07 | 2004-11-11 | Marek Matusz | Silver-containing catalysts, the manufacture of such silver-containing catalysts, and the use thereof |
-
2006
- 2006-03-20 AU AU2006227295A patent/AU2006227295A1/en not_active Abandoned
- 2006-03-20 WO PCT/US2006/009929 patent/WO2006102189A1/en active Application Filing
- 2006-03-20 CA CA2602163A patent/CA2602163C/en active Active
- 2006-03-20 EA EA200702028A patent/EA011641B1/en unknown
- 2006-03-20 BR BRPI0608862-7A patent/BRPI0608862A2/en not_active Application Discontinuation
- 2006-03-20 JP JP2008503060A patent/JP5421587B2/en not_active Expired - Fee Related
- 2006-03-20 US US11/886,800 patent/US20090234144A1/en not_active Abandoned
- 2006-03-20 KR KR1020077023959A patent/KR20070112870A/en not_active Application Discontinuation
- 2006-03-20 MX MX2007011550A patent/MX2007011550A/en unknown
- 2006-03-20 EP EP06748456A patent/EP1861196A1/en not_active Withdrawn
- 2006-03-20 CN CNA2006800093584A patent/CN101146604A/en active Pending
- 2006-03-21 TW TW095109696A patent/TWI510475B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0266015A1 (en) * | 1986-10-31 | 1988-05-04 | Shell Internationale Researchmaatschappij B.V. | Ethylene oxide catalyst and process for the catalytic production of ethylene oxide |
WO2004056463A1 (en) * | 2002-12-19 | 2004-07-08 | Bp Chemicals Limited | Process for manufacturing ethylene oxide |
WO2004072055A1 (en) * | 2003-02-14 | 2004-08-26 | Bp Chemicals Limited | Process for manufacturing ethylene oxide |
WO2004101141A1 (en) * | 2003-05-07 | 2004-11-25 | Shell Internationale Research Maatschappij B.V. | A reactor system and process for the manufacture of ethylene oxide |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7704908B2 (en) | 2005-12-22 | 2010-04-27 | Shell Oil Company | Method for reusing rhenium from a donor spent epoxidation catalyst |
US8357812B2 (en) | 2005-12-22 | 2013-01-22 | Shell Oil Company | Process for preparing a rejuvenated epoxidation catalyst |
US7750170B2 (en) | 2005-12-22 | 2010-07-06 | Shell Oil Company | Process for mixing an oxidant having explosive potential with a hydrocarbon |
EP2155708B1 (en) | 2007-05-09 | 2018-02-21 | Shell Internationale Research Maatschappij B.V. | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US10532989B2 (en) | 2007-05-09 | 2020-01-14 | Shell Oil Company | Epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
JP2010527333A (en) * | 2007-05-09 | 2010-08-12 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Process for producing olefin oxide, 1,2-diol, 1,2-diol ether, 1,2-carbonate or alkanolamine |
WO2008141030A1 (en) | 2007-05-09 | 2008-11-20 | Shell Oil Company | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
CN101679333B (en) * | 2007-05-09 | 2013-07-31 | 国际壳牌研究有限公司 | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US8536353B2 (en) | 2007-05-09 | 2013-09-17 | Shell Oil Company | Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US9144765B2 (en) | 2007-05-18 | 2015-09-29 | Shell Oil Company | Reactor system, an absorbent and a process for reacting a feed |
KR101573085B1 (en) * | 2007-05-18 | 2015-11-30 | 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 | A reactor system an absorbent and a process for reacting a feed |
WO2009119416A1 (en) * | 2008-03-26 | 2009-10-01 | 株式会社日本触媒 | Catalyst for production of ethylene oxide, and process for production of ethylene oxide using the catalyst |
JP5566881B2 (en) * | 2008-03-26 | 2014-08-06 | 株式会社日本触媒 | Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst |
US9346774B2 (en) | 2008-05-07 | 2016-05-24 | Shell Oil Company | Process for the start-up of an epoxidation process, a process for the production of ethylene oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US8921586B2 (en) | 2008-05-07 | 2014-12-30 | Shell Oil Company | Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
EP2140933A1 (en) * | 2008-07-02 | 2010-01-06 | Werner Soyez | Structured catalyst hold for pipe reactors |
US8859792B2 (en) | 2010-09-29 | 2014-10-14 | Shell Oil Company | Olefin epoxidation process |
US8546592B2 (en) | 2010-09-29 | 2013-10-01 | Shell Oil Company | Olefin epoxidation process |
WO2012050819A1 (en) * | 2010-09-29 | 2012-04-19 | Shell Oil Company | Improved eo process control |
US8921587B2 (en) | 2011-04-14 | 2014-12-30 | Basf Se | Process for producing a catalyst for the oxidation of ethylene to ethylene oxide |
WO2012140613A1 (en) * | 2011-04-14 | 2012-10-18 | Basf Se | Process for producing a catalyst for the oxidation of ethylene to ethylene oxide |
EP2771107A4 (en) * | 2011-10-28 | 2015-09-02 | Basf Se | Process for producing supported silver catalyst |
US9199223B2 (en) | 2011-10-28 | 2015-12-01 | Basf Se | Process for producing a supported silver catalyst |
WO2020078658A1 (en) | 2018-10-15 | 2020-04-23 | Basf Se | Process for producing ethylene oxide by gas-phase oxidation of ethylene |
US12121881B2 (en) | 2018-10-15 | 2024-10-22 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
WO2020078657A1 (en) | 2018-10-15 | 2020-04-23 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
EP3639923A1 (en) | 2018-10-15 | 2020-04-22 | Basf Se | Process for producing ethylene oxide by gas-phase oxidation of ethylene |
EP3639924A1 (en) | 2018-10-15 | 2020-04-22 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
EP3659703A1 (en) | 2018-11-28 | 2020-06-03 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
WO2020108872A1 (en) | 2018-11-28 | 2020-06-04 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
WO2021038027A1 (en) | 2019-08-28 | 2021-03-04 | Basf Se | Process for preparing an epoxidation catalyst |
EP3885038A1 (en) | 2020-03-27 | 2021-09-29 | Basf Se | Process for producing an epoxidation catalyst |
WO2021191414A1 (en) | 2020-03-27 | 2021-09-30 | Basf Se | Process for producing a silver-based epoxidation catalyst |
WO2021260140A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Production of porous alpha-alumina supports from boehmitic derived aluminas |
WO2021259427A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Porous catalyst-support shaped body |
WO2021260138A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Shaped catalyst body for the production of ethylene oxide |
WO2021260182A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Process for producing a porous alpha-alumina catalyst support |
WO2022161924A1 (en) | 2021-01-26 | 2022-08-04 | Basf Se | Epoxidation catalyst |
WO2024079247A1 (en) | 2022-10-12 | 2024-04-18 | Basf Se | Epoxidation catalyst |
WO2024089255A1 (en) | 2022-10-28 | 2024-05-02 | Basf Se | Process for the manufacture of an ethylene-derived chemical of interest, in particular styrene, from renewably-sourced ethanol |
WO2024133081A1 (en) | 2022-12-20 | 2024-06-27 | Basf Se | Manufacture of an ethylene-derived chemical of interest, in particular acrylic acid, in combination with generation of heated steam |
Also Published As
Publication number | Publication date |
---|---|
AU2006227295A1 (en) | 2006-09-28 |
CN101146604A (en) | 2008-03-19 |
CA2602163C (en) | 2014-02-18 |
JP2008534501A (en) | 2008-08-28 |
EP1861196A1 (en) | 2007-12-05 |
KR20070112870A (en) | 2007-11-27 |
US20090234144A1 (en) | 2009-09-17 |
TWI510475B (en) | 2015-12-01 |
TW200640892A (en) | 2006-12-01 |
MX2007011550A (en) | 2007-10-19 |
BRPI0608862A2 (en) | 2010-02-02 |
EA011641B1 (en) | 2009-04-28 |
EA200702028A1 (en) | 2008-02-28 |
CA2602163A1 (en) | 2006-09-28 |
JP5421587B2 (en) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2602163C (en) | A reactor system and process for the manufacture of ethylene oxide | |
US7835868B2 (en) | Process for selecting shaped particles for use in a packed bed | |
US7538235B2 (en) | Process for preparing a catalyst, the catalyst, and a use of the catalyst | |
KR101704079B1 (en) | Methods for enhancing the efficiency of rhenium-promoted epoxidation catalysts and epoxidation methods utilizing these | |
GB2433501A (en) | Microchannel reactor for epoxidation of an olefin by reacting olefin, oxygen & catalyst, & subsequent quenching by heat exchange with a heat exchange fluid | |
CA2904972C (en) | Method for the production of ethylene oxide | |
US20050222441A1 (en) | Process for preparing a catalyst, the catalyst, and a use of the catalyst | |
GB2460514A (en) | An epoxidation reactor and process for the production of an olefin oxide | |
US20140135513A1 (en) | Eo reactor, process and thermocouple placement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680009358.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006748456 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006227295 Country of ref document: AU Ref document number: 7161/DELNP/2007 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2602163 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/011550 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2008503060 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2006227295 Country of ref document: AU Date of ref document: 20060320 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077023959 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200702028 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11886800 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0608862 Country of ref document: BR Kind code of ref document: A2 |