KR102258044B1 - A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application - Google Patents

A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application Download PDF

Info

Publication number
KR102258044B1
KR102258044B1 KR1020170153542A KR20170153542A KR102258044B1 KR 102258044 B1 KR102258044 B1 KR 102258044B1 KR 1020170153542 A KR1020170153542 A KR 1020170153542A KR 20170153542 A KR20170153542 A KR 20170153542A KR 102258044 B1 KR102258044 B1 KR 102258044B1
Authority
KR
South Korea
Prior art keywords
catalyst
ethylene oxide
producing
pvp
ppm
Prior art date
Application number
KR1020170153542A
Other languages
Korean (ko)
Other versions
KR20190056509A (en
Inventor
최종명
서명기
민형기
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020170153542A priority Critical patent/KR102258044B1/en
Publication of KR20190056509A publication Critical patent/KR20190056509A/en
Application granted granted Critical
Publication of KR102258044B1 publication Critical patent/KR102258044B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/0006Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/023Catalysts characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1009Surface area less than 10 m2/g
    • B01J35/19
    • B01J35/40
    • B01J35/612
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 산화에틸렌 제조용 촉매의 제조시 폴리비닐피롤리돈을 첨가하여 금속 결정 크기를 조정함으로써 에틸렌으로부터 고수율로 산화에틸렌을 생성할 수 있는 촉매의 제조 방법에 관한 것이다. 상기 촉매의 제조 방법은, (A) Ag, Pd 및 Pt로 이루어진 군으로부터 선택되는 1종 이상의 제1 금속을 포함하는 화합물을 용매에 용해하여 용액을 형성하는 단계; (B) 세슘, 레늄, 몰리브덴, 리튬, 나트륨, 칼륨 및 텅스텐으로 이루어진 군으로부터 선택되는 제2 금속을 포함하는 화합물 1종 이상을 각각 용매에 용해한 후, 이를 상기 (A) 단계에서 수득된 용액과 혼합하여 촉매 전구체 용액을 형성하는 단계; (C) 상기 촉매 전구체 용액에 폴리비닐피롤리돈(PVP)을 촉매 전구체 용액 대비 0.3 내지 0.6 중량%의 양으로 첨가하는 단계; 및 (D) 담체를 함침시키는 단계를 포함한다. The present invention relates to a method for producing a catalyst capable of producing ethylene oxide in high yield from ethylene by adjusting the size of metal crystals by adding polyvinylpyrrolidone in the preparation of a catalyst for producing ethylene oxide. The method for preparing the catalyst includes: (A) forming a solution by dissolving a compound containing at least one first metal selected from the group consisting of Ag, Pd, and Pt in a solvent; (B) After dissolving at least one compound containing a second metal selected from the group consisting of cesium, rhenium, molybdenum, lithium, sodium, potassium, and tungsten in a solvent, it is mixed with the solution obtained in step (A). Mixing to form a catalyst precursor solution; (C) adding polyvinylpyrrolidone (PVP) to the catalyst precursor solution in an amount of 0.3 to 0.6% by weight relative to the catalyst precursor solution; And (D) impregnating the carrier.

Figure 112017114265067-pat00001
Figure 112017114265067-pat00001

Description

PVP를 첨가한 산화에틸렌 제조용 촉매의 제조 방법 및 이의 적용{A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application}{A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application}

본 발명은 산화에틸렌 제조용 촉매의 제조 방법에 관한 것이다. 특히, 본 발명은 산화에틸렌 제조용 촉매의 제조시 폴리비닐피롤리돈을 첨가하여 금속 결정 크기를 조정함으로써 에틸렌으로부터 고수율로 산화에틸렌을 생성할 수 있는 촉매의 제조 방법에 관한 것이다.The present invention relates to a method for producing a catalyst for producing ethylene oxide. In particular, the present invention relates to a method for producing a catalyst capable of producing ethylene oxide in high yield from ethylene by adjusting the size of metal crystals by adding polyvinylpyrrolidone in the preparation of a catalyst for producing ethylene oxide.

산화에틸렌은 3원 고리의 환상 에테르이고, 가장 단순한 에폭사이드이며, 화학식은 C2H40의 가장 단순한 에폭사이드이다. 산화에틸렌은 물 및 유기 용매의 어느 것에도 잘 녹는 성질을 지니며, 유기 화합물의 합성시 중간체로서 유용하게 사용된다.Ethylene oxide is a three-membered cyclic ether, the simplest epoxide, and the simplest epoxide of C 2 H 4 0. Ethylene oxide has a property that is well soluble in both water and organic solvents, and is usefully used as an intermediate in the synthesis of organic compounds.

예를 들면, 에틸렌 옥사이드에 산을 촉매로서 하여 물과 반응시키면 에틸렌글리콜을 얻을 수 있다. 이 반응으로 물의 양을 줄이면, 폴리에틸렌 글리콜을 생성시킬 수도 있다. 게다가 물이 없는 조건에서 산을 작용시키면 양이온 중합에 따라 폴리에틸렌옥사이드가 생성된다. 또한, 그리냐드 시약(RMgX)과 반응시키면 가수분해 후에 제1 급 알코올을 얻을 수도 있다. 3원 고리의 개환에 따라 일그러짐 에너지가 해방되기 위해, 이 밖에도 다양한 구핵제에 대한 히드록시 에틸화제로서 높은 반응성을 나타내는 것이 알려져 있다. 이와 같이 공업적으로 폭넓은 용도를 가지는 에틸렌 옥사이드는 여러 가지의 합성법에 따라 제조되고 있지만, 대표적인 제법으로서는 에틸렌의 직접 기체 상태 산화에 의한 합성을 들 수 있다. 에틸렌의 직접 기체 상태 산화는 C2H4+1/2O2→C2H4O 라는 반응이며, 이 반응에 이용하는 촉매로서 여러 가지의 것이 제안되어 있다.For example, ethylene glycol can be obtained by reacting ethylene oxide with water using an acid as a catalyst. If the amount of water is reduced by this reaction, polyethylene glycol can also be produced. In addition, when an acid is reacted in the absence of water, polyethylene oxide is produced by cationic polymerization. In addition, by reacting with the Grignard reagent (RMgX), a primary alcohol may be obtained after hydrolysis. It is known to exhibit high reactivity as a hydroxy ethylating agent against various nucleating agents in order to release the distortion energy according to the ring opening of the three-membered ring. Ethylene oxide having such a wide industrial use is produced according to various synthesis methods, but as a typical production method, synthesis by direct gas-phase oxidation of ethylene is mentioned. The direct gaseous oxidation of ethylene is a reaction of C 2 H 4 +1/2O 2 →C 2 H 4 O, and various catalysts have been proposed for this reaction.

예를 들어, 한국등록특허 제10-1606875호에는, 에틸렌으로부터 산화에틸렌을 수득하는 반응에 사용되는, Ag 지지체로서 적합한 표면적이 적은 알파-알루미나를 함유하는 촉매의 제조 방법을 개시하고 있으나, 은 나노입자의 크기에 따른 촉매 효과를 인식하지 못하고 있다.For example, Korean Patent No. 10-1606875 discloses a method for preparing a catalyst containing alpha-alumina with a small surface area suitable as an Ag support, which is used in a reaction for obtaining ethylene oxide from ethylene, but silver nano The catalytic effect according to the size of the particles is not recognized.

종래에 에틸렌으로부터 산화에틸렌을 합성하는 촉매로 Ag 금속과 담체로 α-Al2O3를 사용하는 것은 잘 알려져 있으며 널리 사용되고 있다. 이는 에틸렌 산화 반응에서 선택적으로 산화에틸렌을 생성하는데 유리하지만 귀금속인 Ag를 사용한다는 점에서 Ag를 효율적으로 사용하는 것이 필요하다. Ag를 효율적으로 사용하기 위해서는 담체(α-Al2O3)에 담지시 Ag 입자의 크기를 작게 유지하여 담지하는 기술이 중요하지만, 이와 관련한 기술은 아직 개발되지 않은 실정이다.Conventionally, the use of an Ag metal as a catalyst for synthesizing ethylene oxide from ethylene and α-Al 2 O 3 as a carrier is well known and widely used. This is advantageous in selectively generating ethylene oxide in the ethylene oxidation reaction, but it is necessary to efficiently use Ag in that it uses Ag, which is a noble metal. In order to efficiently use Ag, it is important to keep the size of Ag particles small when supported on a carrier (α-Al 2 O 3 ), but a technology related to this has not yet been developed.

한국등록특허 제10-1606875호Korean Patent Registration No. 10-1606875

따라서, 본 발명의 목적은 산화에틸렌 제조시 사용되는 촉매에 있어서 효율적인 금속사용을 위해 금속 입자를 고분산시켜 에틸렌 전환속도 및 산화에틸렌 생성속도를 모두 증가시키는 고효율 촉매 합성법을 제공하고자 하는 것이다.Accordingly, an object of the present invention is to provide a high-efficiency catalyst synthesis method that increases both the ethylene conversion rate and the ethylene oxide production rate by highly dispersing metal particles for efficient use of metal in the catalyst used in the production of ethylene oxide.

본 발명은 상기 과제를 해결하기 위해, The present invention in order to solve the above problems,

(A) Ag, Pd 및 Pt로 이루어진 군으로부터 선택되는 1종 이상의 제1 금속을 포함하는 화합물을 용매에 용해하여 용액을 형성하는 단계;(A) forming a solution by dissolving a compound containing at least one first metal selected from the group consisting of Ag, Pd, and Pt in a solvent;

(B) 세슘, 레늄, 몰리브덴, 리튬, 나트륨, 칼륨 및 텅스텐으로 이루어진 군으로부터 선택되는 제2 금속을 포함하는 화합물 1종 이상을 각각 용매에 용해한 후, 이를 상기 (A) 단계에서 수득된 용액과 혼합하여 촉매 전구체 용액을 형성하는 단계;(B) After dissolving at least one compound containing a second metal selected from the group consisting of cesium, rhenium, molybdenum, lithium, sodium, potassium, and tungsten in a solvent, it is mixed with the solution obtained in step (A). Mixing to form a catalyst precursor solution;

(C) 상기 촉매 전구체 용액에 폴리비닐피롤리돈(PVP)을 촉매 전구체 용액 대비 0.3 내지 0.6 중량%의 양으로 첨가하는 단계; 및(C) adding polyvinylpyrrolidone (PVP) to the catalyst precursor solution in an amount of 0.3 to 0.6% by weight relative to the catalyst precursor solution; And

(D) 담체를 함침시키는 단계를 포함하는, 산화에틸렌 제조용 촉매의 제조 방법을 제공한다.(D) It provides a method for producing a catalyst for producing ethylene oxide, comprising the step of impregnating a carrier.

또한, 본 발명은 상기 제조 방법에 의해 제조된 산화에틸렌 제조용 촉매의 존재 하에서 에틸렌을 분자상태의 산소 또는 산소함유의 혼합기체로부터 기상반응으로 산화에틸렌을 제조함에 있어서, 반응 온도가 200 내지 250 ℃이며, 기체 공간 속도(Gas Hourly Space Velocity(GHSV, h-1))가 3000 내지 5000인 것인, 산화에틸렌의 제조 방법을 제공한다.In addition, in the present invention, in the production of ethylene oxide by gas phase reaction from molecular oxygen or a mixed gas containing oxygen in the presence of a catalyst for producing ethylene oxide prepared by the above production method, the reaction temperature is 200 to 250°C. , Gas Hourly Space Velocity (GHSV, h -1 )) is 3000 to 5000, it provides a method for producing ethylene oxide.

본 발명의 산화에틸렌 제조용 촉매의 제조 방법에 따르면, 촉매계에 PVP를 도입함으로써 금속 결정 크기의 제어가 가능하여 촉매 제조시 금속을 효율적으로 사용할 수 있으며, 또한 산화에틸렌의 합성시 에틸렌 전화속도 및 산화에틸렌 생성속도도 모두 증가된 효율적인 촉매를 제공할 수 있다.According to the production method of the catalyst for ethylene oxide production of the present invention, the metal crystal size can be controlled by introducing PVP into the catalyst system, so that the metal can be efficiently used in the production of the catalyst, and the ethylene conversion rate and ethylene oxide in the synthesis of ethylene oxide. It is possible to provide an efficient catalyst with both increased production rates.

도 1은 폴리비닐피롤리돈(PVP) 첨가량에 따른 은(Ag)의 결정 피크를 나타내는 XRD 그래프이다.
도 2는 PVP 첨가량에 따른 촉매의 SEM 이미지이다.
1 is an XRD graph showing a crystal peak of silver (Ag) according to the amount of polyvinylpyrrolidone (PVP) added.
2 is a SEM image of the catalyst according to the amount of PVP added.

본 발명은 (A) Ag, Pd 및 Pt로 이루어진 군으로부터 선택되는 1종 이상의 제1 금속을 포함하는 화합물을 용매에 용해하여 용액을 형성하는 단계; (B) 세슘, 레늄, 몰리브덴, 리튬, 나트륨, 칼륨 및 텅스텐으로 이루어진 군으로부터 선택되는 제2 금속을 포함하는 화합물 1종 이상을 각각 용매에 용해한 후, 이를 상기 (A) 단계에서 수득된 용액과 혼합하여 촉매 전구체 용액을 형성하는 단계; (C) 상기 촉매 전구체 용액에 폴리비닐피롤리돈(PVP)을 촉매 전구체 용액 대비 0.3 내지 0.6 중량%의 양으로 첨가하는 단계; 및 (D) 담체를 함침시키는 단계를 포함하는, 산화에틸렌 제조용 촉매의 제조 방법을 제공한다.The present invention comprises the steps of (A) dissolving a compound containing at least one first metal selected from the group consisting of Ag, Pd and Pt in a solvent to form a solution; (B) After dissolving at least one compound containing a second metal selected from the group consisting of cesium, rhenium, molybdenum, lithium, sodium, potassium, and tungsten in a solvent, respectively, the solution obtained in step (A) and Mixing to form a catalyst precursor solution; (C) adding polyvinylpyrrolidone (PVP) to the catalyst precursor solution in an amount of 0.3 to 0.6% by weight relative to the catalyst precursor solution; And (D) provides a method for producing a catalyst for producing ethylene oxide comprising the step of impregnating a carrier.

본 발명에 따른 촉매 제조 방법은 금속을 용매에 용해하여 촉매 전구체 용액을 형성하고, 상기 촉매 전구체 용액에 폴리비닐피롤리돈을 첨가하며, 여기에 담체를 함침하고, 감압 건조시켜 공기 유동하에 소성하는 것을 포함한다. In the method for preparing a catalyst according to the present invention, a metal is dissolved in a solvent to form a catalyst precursor solution, polyvinylpyrrolidone is added to the catalyst precursor solution, a carrier is impregnated therein, dried under reduced pressure, and then calcined under air flow. Includes that.

본 발명에서는 폴리비닐피롤리돈을 첨가함으로써 담체에 담지되는 금속 입자의 크기 제어에 영향을 미칠 수 있다는 것이 확인되었으며 PVP의 첨가량을 최적화함으로써 에틸렌으로부터 고수율로 산화에틸렌을 생성할 수 있는 촉매를 제공한다.In the present invention, it was confirmed that the addition of polyvinylpyrrolidone can affect the size control of the metal particles supported on the carrier, and by optimizing the amount of PVP added, a catalyst capable of producing ethylene oxide in high yield from ethylene is provided. do.

PVP는 계면활성제의 일종으로 특정 농도에서 마이쉘을 형성한다. PVP농도에 따라 마이쉘의 크기가 변화하며, 이때 형성되는 마이쉘의 크기에 Ag 입자의 크기가 영향을 받는다. 본 발명에서 사용되는 폴리비닐피롤리돈은 20000 내지 55000의 분자량을 가진다. PVP is a type of surfactant and forms a microshell at a specific concentration. The size of the microshells changes according to the PVP concentration, and the size of the Ag particles is affected by the size of the microcells formed at this time. Polyvinylpyrrolidone used in the present invention has a molecular weight of 20000 to 55000.

일 구현예에서, 폴리비닐피롤리돈은 약 50000 의 분자량을 가진다. 상기 폴리비닐피롤리돈은 촉매 전구체 용액 기준으로 0.25 중량% 초과 0.7 중량% 미만으로 사용할 수 있다. PVP 첨가량이 0.25 중량% 미만인 경우에는 PVP를 첨가하지 않은 경우에 비해 금속 입자의 크기가 컸으며 에틸렌 전환속도 및 산화에틸렌 합성속도가 느리고, PVP 첨가량이 0.7 중량% 초과인 경우에는 촉매 합성시 용매에 PVP가 완전히 용해되지 않아 균일한 촉매 합성을 달성하기 어렵다. 또 다른 구현예에서, 폴리비닐피롤리돈은 촉매 전구체 용액 기준으로 0.3 내지 0.6 중량% 사용된다. 추가의 구현예에서, 폴리비닐피롤리돈은 촉매 전구체 용액 기준으로 0.4 내지 0.5 중량% 사용된다. In one embodiment, the polyvinylpyrrolidone has a molecular weight of about 50000. The polyvinylpyrrolidone may be used in an amount greater than 0.25% by weight and less than 0.7% by weight based on the catalyst precursor solution. When the amount of PVP added is less than 0.25% by weight, the size of the metal particles is larger than that of the case where PVP was not added, and the ethylene conversion rate and the synthesis rate of ethylene oxide were slow, and when the amount of PVP added exceeded 0.7% by weight, It is difficult to achieve uniform catalyst synthesis because PVP is not completely dissolved. In another embodiment, the polyvinylpyrrolidone is used in an amount of 0.3 to 0.6% by weight based on the catalyst precursor solution. In a further embodiment, the polyvinylpyrrolidone is used in an amount of 0.4 to 0.5% by weight based on the catalyst precursor solution.

본 발명에 따른 일 구현예에서, 상기 범위의 폴리비닐피롤리돈의 첨가에 따라 수득되는 금속의 결정 크기는 16 nm 내지 23 nm 범위(XRD 분석을 통해 확인)를 가질 수 있다. 다른 구현예에서, 폴리비닐피롤리돈의 첨가에 따라 수득되는 금속의 결정 크기는 16 nm 내지 18 nm 범위를 가 진다.In one embodiment according to the present invention, the crystal size of the metal obtained by the addition of polyvinylpyrrolidone in the above range may have a range of 16 nm to 23 nm (confirmed through XRD analysis). In another embodiment, the crystal size of the metal obtained upon addition of polyvinylpyrrolidone has a range of 16 nm to 18 nm.

본 발명에 따른 일 구현예에서, 상기 담체 상에 담지된 금속은 Ag이다.In one embodiment according to the present invention, the metal supported on the carrier is Ag.

상기 담체는 실리카, α-알루미나, θ-알루마나 등일 수 있다. 일 구현예에서, 상기 담체는 α-알루미나이다.The carrier may be silica, α-alumina, θ-alumina, or the like. In one embodiment, the carrier is α-alumina.

본 발명에 따른 일 구현예에서, 상기 촉매는 Ag/α-Al2O3 이다. In one embodiment according to the present invention, the catalyst is Ag/α-Al 2 O 3 .

도 1은 폴리비닐피롤리돈(PVP) 첨가량에 따른 은(Ag)의 결정 피크를 나타내는 XRD 그래프이다. 1 is an XRD graph showing a crystal peak of silver (Ag) according to the amount of polyvinylpyrrolidone (PVP) added.

도 1에 제시된 결과는 담체로서 α-Al2O3 를 사용하고, Ag 금속을 담지시킨 촉매에 대한 것으로서, 이때 Ag의 결정 크기를 XRD 그래프의 (022) 결정 피크를 기준으로 scherrer equation을 이용하여 산출하였다.The results shown in FIG. 1 are for a catalyst in which α-Al 2 O 3 was used as a carrier and an Ag metal was supported.At this time, the crystal size of Ag was determined using the Scherrer equation based on the (022) crystal peak of the XRD graph. Was calculated.

본 발명에서 촉매 전구체 용액의 용매는 증류수, 에틸렌디아민 용액 및 유기용매일 수 있다. 일 구현예에서, 상기 용매는 증류수이다.In the present invention, the solvent of the catalyst precursor solution may be distilled water, an ethylenediamine solution, and an organic solvent. In one embodiment, the solvent is distilled water.

본 발명에 따른 일 구현예에서, 상기 방법은 각각의 금속 성분의 전구체들을 혼합하는 단계에서 에틸렌 디아민을 투입하여 금속-에틸렌 디아민 착화합물을 형성하는 것을 포함한다. In one embodiment according to the present invention, the method includes forming a metal-ethylene diamine complex by introducing ethylene diamine in the step of mixing the precursors of each metal component.

본 발명의 촉매는 세슘, 레늄, 몰리브덴, 리튬, 나트륨, 칼륨 및 텅스텐으로 이루어진 군으로부터 선택되는 1종 이상의 금속을 포함할 수 있다.The catalyst of the present invention may include one or more metals selected from the group consisting of cesium, rhenium, molybdenum, lithium, sodium, potassium, and tungsten.

본 발명의 일 구현예에 따르면, 촉매는 15 내지 25wt%의 은(Ag), 300 내지 800ppm의 레늄(Re), 100 내지 400ppm의 몰리브덴(Mo), 500 내지 1500ppm의 세슘(Cs), 및 1 내지 100ppm의 리튬(Li)을 포함할 수 있다.According to an embodiment of the present invention, the catalyst is 15 to 25 wt% of silver (Ag), 300 to 800 ppm of rhenium (Re), 100 to 400 ppm of molybdenum (Mo), 500 to 1500 ppm of cesium (Cs), and 1 It may contain to 100 ppm of lithium (Li).

본 발명에 따른 일 구현예에서, 상기 담체의 비표면적은 0.25 내지 10 m2/g이다. 또 다른 구현예에서, 상기 담체의 비표면적은 0.25 내지 내지 1 m2/g이다. In one embodiment according to the present invention, the specific surface area of the carrier is 0.25 to 10 m 2 /g. In another embodiment, the specific surface area of the carrier is 0.25 to 1 m 2 /g.

또한, 본 발명은 상기 제조 방법에 의해 제조된 산화에틸렌 제조용 촉매의 존재 하에서 에틸렌을 분자상태의 산소 또는 산소함유의 혼합기체로부터 기상반응으로 산화에틸렌을 제조하는 방법을 제공한다.In addition, the present invention provides a method for producing ethylene oxide by gas-phase reaction from ethylene in molecular oxygen or a mixed gas containing oxygen in the presence of a catalyst for producing ethylene oxide prepared by the above production method.

기상 반응의 형태로서는 예를 들면 연속식, 회분식, 반회분식 등을 채용할 수 있다. 본 발명의 촉매의 사용량은 에틸렌 등의 공급량 등에 따라 적절하게 설정할 수 있다.As a form of the gas phase reaction, for example, a continuous type, a batch type, a semi-batch type, or the like can be adopted. The amount of the catalyst used in the present invention can be appropriately set depending on the amount of ethylene or the like supplied.

상기 산화에틸렌 제조시 기상 반응 온도는 200 내지 250 ℃일 수 있고, 기체 공간 속도(Gas Hourly Space Velocity(GHSV, h-1))가 3000 내지 5000일 수 있다. 또한 압력은 10 내지 17 기압일 수 있다. 일 구현예에서, 압력은 14 내지 16 기압일 수 있다. 반응 압력이 낮으면 산화에틸렌의 선택도가 낮게 나오며, 반응 압력이 높을 경우 폭발 위험성이 증가한다. When preparing the ethylene oxide, the gas phase reaction temperature may be 200 to 250 °C, and the gas hourly space velocity (GHSV, h -1 ) may be 3000 to 5000. In addition, the pressure may be 10 to 17 atmospheres. In one embodiment, the pressure may be 14 to 16 atmospheres. When the reaction pressure is low, the selectivity of ethylene oxide is low, and when the reaction pressure is high, the risk of explosion increases.

일 구현예에 따르면, 상기 산화에틸렌의 제조시 사용되는 반응 가스는 15 내지 30%의 에틸렌을 포함한다. 다른 구현예에서, 상기 반응 가스는 15 내지 30%의 에틸렌을 포함한다. 일 구현예에서, 상기 반응 가스는 클로로하이드로카본을 0.1 내지 5 ppm, 예컨대 0.5 내지 2 ppm 함유한다.According to one embodiment, the reaction gas used in the production of the ethylene oxide contains 15 to 30% of ethylene. In another embodiment, the reaction gas comprises 15 to 30% ethylene. In one embodiment, the reaction gas contains 0.1 to 5 ppm of chlorohydrocarbon, such as 0.5 to 2 ppm.

상기 클로로하이드로카본의 예로는 CHCl3, CH2Cl2, CHCl3, CH3Cl 등을 포함한다. Examples of the chlorohydrocarbon include CHCl 3 , CH 2 Cl 2 , CHCl 3 , CH 3 Cl, and the like.

이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.Hereinafter, the action and effect of the invention will be described in more detail through specific examples of the invention. However, this is presented as an example of the invention, and the scope of the invention is not limited to any meaning by this.

실시예Example

[실시예 1] [Example 1]

옥살산은 분말(Silver oxalate powder) 7 g을 증류수(7 ml)에 넣고, 5 ℃로 냉각하면서 교반한다. 여기에, 에틸렌 디아민 수용액(92 wt%의 에틸렌 디아민 및 8 wt%의 H2O)을 3.5 ml 첨가하고, 교반시켜 용액을 형성한다. Re2O7 18.7 mg 및 (NH4)6Mo7O24·4H2O 11 mg을 각각 에틸렌 디아민과 암모니아수 혼합액(에틸렌 디아민, 30% 암모니아 수용액, 증류수를 같은 질량비로 혼합)에 용해하고, LiNO3 14 mg 및 Cs2CO3 24.1 mg을 각각 증류수 1 ml에 용해하여, 이들을 상기 용액에 넣고, 교반하여 촉매 전구체 용액을 형성한다. 이후, 상기 촉매 전구체 용액에 폴리비닐피롤리돈(M.W 약 50000)을 100mg (촉매 전구체 용액 대비 0.5 중량%에 상응함) 첨가하고 2시간 이상 교반한다. 건조된 α-Al2O3 15 g에 상기 촉매 전구체 용액을 흡수시킨 후, 이를 감압 건조시킨다. 감압 건조 후 공기 유동하에 250 ℃에서 5 내지 15분 동안 소성시켜, (Cs,Re,Li,Mo)Ag/α-Al2O3 촉매를 수득한다.Add 7 g of silver oxalate powder to distilled water (7 ml), and stir while cooling to 5°C. To this, 3.5 ml of an aqueous ethylene diamine solution (92 wt% of ethylene diamine and 8 wt% of H 2 O) was added and stirred to form a solution. Re 2 O 7 18.7 mg and (NH 4 ) 6 Mo 7 O 24 ·4H 2 O 11 mg, respectively, are dissolved in a mixture of ethylene diamine and aqueous ammonia (ethylene diamine, 30% aqueous ammonia solution, and distilled water are mixed in the same mass ratio), and LiNO 3 14 mg and 24.1 mg of Cs 2 CO 3 are each dissolved in 1 ml of distilled water, added to the solution, and stirred to form a catalyst precursor solution. Thereafter, 100 mg (corresponding to 0.5% by weight of the catalyst precursor solution) of polyvinylpyrrolidone (MW about 50000) is added to the catalyst precursor solution and stirred for 2 hours or more. After absorbing the catalyst precursor solution into 15 g of dried α-Al 2 O 3, it is dried under reduced pressure. After drying under reduced pressure and firing at 250° C. for 5 to 15 minutes under a flow of air, (Cs,Re,Li,Mo)Ag/α-Al 2 O 3 catalyst was obtained.

상기에서 수득한 (Cs,Re,Li,Mo)Ag/α-Al2O3 촉매는 20wt%의 은(Ag), 712ppm의 레늄(Re), 300ppm의 몰리브덴(Mo), 985ppm의 세슘(Cs), 및 70ppm의 리튬(Li)을 포함한다.The (Cs,Re,Li,Mo)Ag/α-Al 2 O 3 catalyst obtained above is 20 wt% silver (Ag), 712 ppm rhenium (Re), 300 ppm molybdenum (Mo), 985 ppm cesium (Cs). ), and 70 ppm of lithium (Li).

[비교예 1][Comparative Example 1]

실시예 1에서 PVP 함량을 0 중량%로 한 것을 제외하고는, 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that the PVP content was set to 0% by weight.

[비교예 2][Comparative Example 2]

실시예 1에서 PVP 함량을 0.1 중량%로 한 것을 제외하고는, 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that the PVP content was 0.1% by weight.

[비교예 3][Comparative Example 3]

실시예 1에서 PVP 함량을 0.25 중량%로 한 것을 제외하고는, 동일한 방법으로 촉매를 제조하였다. A catalyst was prepared in the same manner as in Example 1, except that the PVP content was 0.25% by weight.

[실험예 1] [Experimental Example 1]

산화에틸렌 합성 반응은 고정층 촉매 반응기를 이용하여 수행하였다. 실시예 1 및 비교예 1 내지 3에서 제조한 촉매를 1/2 inch 반응기에 충진한 후, 에틸렌을 GHSV 3500 h-1으로 공급하고 에틸렌 15%~25%, 산소 7~8% 및 EDC(ethylene dichloride) 1~5ppm 을 포함하는 혼합가스와 반응 온도 200~250℃ 에서 압력 14~15 기압 하에 접촉시켜 산화에틸렌 합성 반응을 진행하였다. The ethylene oxide synthesis reaction was carried out using a fixed bed catalytic reactor. After filling the catalyst prepared in Example 1 and Comparative Examples 1 to 3 in a 1/2 inch reactor, ethylene was supplied at GHSV 3500 h -1 and 15% to 25% of ethylene, 7 to 8% of oxygen, and EDC (ethylene dichloride) was brought into contact with a mixed gas containing 1 to 5 ppm under a pressure of 14 to 15 atmospheres at a reaction temperature of 200 to 250°C to proceed with an ethylene oxide synthesis reaction.

실시예 1 및 비교예 1 내지 3에서 제조한 촉매를 이용하여 제조한 산화에틸렌의 합성시 PVP 첨가량에 따른 산화에틸렌(EO) 선택도, 에틸렌(EL) 전환 속도, EO 생성 속도, Ag 결정 크기를 구한 결과를 하기 표 1에 나타낸다.When synthesizing ethylene oxide prepared using the catalyst prepared in Example 1 and Comparative Examples 1 to 3, the ethylene oxide (EO) selectivity according to the amount of PVP added, the ethylene (EL) conversion rate, the EO generation rate, and the Ag crystal size were determined. The calculated results are shown in Table 1 below.

Ag의 결정 크기는, 도 1에 나타낸 바와 같이, Ag/α-Al2O3 촉매의 제조시 PVP 첨가량에 따른 촉매의 XRD 분석 결과로부터, XRD 그래프의 (022) 결정 피크를 기준으로 scherrer equation을 이용하여 산출하였다.As shown in FIG. 1, as shown in FIG. 1, the Scherrer equation was calculated based on the (022) crystal peak of the XRD graph from the result of XRD analysis of the catalyst according to the amount of PVP added during the preparation of the Ag/α-Al 2 O 3 catalyst. It was calculated using.

PVP 첨가량 (wt%)PVP addition amount (wt%) EO 선택도 (%)EO selectivity (%) EL 전환 속도 (mmol/g-Agh)EL conversion rate (mmol/g -Ag h) EO 생성 속도
(mmol/g-Agh)
EO generation rate
(mmol/g -Ag h)
Ag 결정 크기Ag crystal size
(022)(022) PVP(0.5) (실시예 1)PVP (0.5) (Example 1) 0.50.5 86.286.2 39.8739.87 34.3734.37 16.7 nm16.7 nm PVP(0) (비교예 1)PVP(0) (Comparative Example 1) -- 85.185.1 32.1732.17 27.3727.37 18.3 nm18.3 nm PVP(0.1) (비교예 2)PVP(0.1) (Comparative Example 2) 0.10.1 86.686.6 26.8726.87 23.2723.27 22.4 nm22.4 nm PVP(0.25) (비교예 3)PVP (0.25) (Comparative Example 3) 0.250.25 86.386.3 29.0629.06 25.0825.08 18.7 nm18.7 nm

상기 표 1의 결과로부터, PVP 0.5wt%를 첨가하여 제조한 촉매(실시예 1)는 Ag 결정 크기가 PVP를 첨가하지 않고 제조한 촉매(비교예 1)에 비해 감소하는 바 Ag 결정 크기를 작게 형성하여 담체에 담지시킬 수 있음을 알 수 있다. 또한, 상기 실시예 1의 촉매를 산화에틸렌 합성 반응에 사용한 결과 PVP의 첨가 없이 제조한 촉매에 비해 산화에틸렌 선택도가 85.1%로부터 86.2%로 증가하였고, 에틸렌 전환속도 및 산화에틸렌 생성속도 모두 증가하는 것으로 나타나는 바, 효율적인 촉매인 것이 확인된다.From the results of Table 1, the catalyst prepared by adding 0.5wt% PVP (Example 1) reduced the Ag crystal size compared to the catalyst prepared without adding PVP (Comparative Example 1). It can be seen that it can be formed and supported on a carrier. In addition, as a result of using the catalyst of Example 1 for the ethylene oxide synthesis reaction, the ethylene oxide selectivity increased from 85.1% to 86.2% compared to the catalyst prepared without the addition of PVP, and both the ethylene conversion rate and the ethylene oxide production rate were increased. As it appears to be, it is confirmed that it is an efficient catalyst.

Claims (11)

(A) Ag, Pd 및 Pt로 이루어진 군으로부터 선택되는 1종 이상의 제1 금속을 포함하는 화합물을 용매에 용해하여 용액을 형성하는 단계;
(B) 세슘, 레늄, 몰리브덴, 리튬, 나트륨, 칼륨 및 텅스텐으로 이루어진 군으로부터 선택되는 제2 금속을 포함하는 화합물 1종 이상을 각각 용매에 용해한 후, 이를 상기 (A) 단계에서 수득된 용액과 혼합하여 촉매 전구체 용액을 형성하는 단계;
(C) 상기 촉매 전구체 용액에 20,000 내지 55,000의 분자량을 갖는 폴리비닐피롤리돈(PVP)을 촉매 전구체 용액 대비 0.3 내지 0.6 중량%의 양으로 첨가하는 단계; 및
(D) 담체를 함침시키는 단계를 포함하고,
상기 (A) 단계 및 (B) 단계에서 사용된 용매는 증류수이며,
상기 (A) 단계 및 (B) 단계에서 각각의 금속-포함 화합물의 용액을 형성할 때 에틸렌 디아민을 투입하는 것인, 산화에틸렌 제조용 촉매의 제조 방법.
(A) forming a solution by dissolving a compound containing at least one first metal selected from the group consisting of Ag, Pd, and Pt in a solvent;
(B) After dissolving at least one compound containing a second metal selected from the group consisting of cesium, rhenium, molybdenum, lithium, sodium, potassium, and tungsten in a solvent, respectively, the solution obtained in step (A) and Mixing to form a catalyst precursor solution;
(C) adding polyvinylpyrrolidone (PVP) having a molecular weight of 20,000 to 55,000 to the catalyst precursor solution in an amount of 0.3 to 0.6% by weight relative to the catalyst precursor solution; And
(D) impregnating the carrier,
The solvent used in steps (A) and (B) is distilled water,
In the step (A) and step (B), ethylene diamine is added when forming a solution of each of the metal-containing compounds, a method for producing a catalyst for producing ethylene oxide.
제1항에 있어서, 상기 제1 금속은 Ag인 것인, 산화에틸렌 제조용 촉매의 제조 방법.The method of claim 1, wherein the first metal is Ag. 제2항에 있어서, 상기 Ag의 결정 크기가 16 nm 내지 18 nm인 것인, 산화에틸렌 제조용 촉매의 제조 방법.The method of claim 2, wherein the Ag has a crystal size of 16 nm to 18 nm. 제1항에 있어서, 상기 담체는 α-알루미나인 것인, 산화에틸렌 제조용 촉매의 제조 방법.The method of claim 1, wherein the carrier is α-alumina. 삭제delete 제1항에 있어서, 상기 담체의 비표면적은 0.25 내지 1 m2/g인 것인, 산화에틸렌 제조용 촉매의 제조 방법.The method of claim 1, wherein the carrier has a specific surface area of 0.25 to 1 m 2 /g. 제1항에 있어서, 상기 폴리비닐피롤리돈의 첨가량은 0.4 내지 0.5 중량%인 것인, 산화에틸렌 제조용 촉매의 제조 방법.The method of claim 1, wherein the addition amount of the polyvinylpyrrolidone is 0.4 to 0.5% by weight. 제1항에 있어서, 상기 촉매는 15 내지 25wt%의 은(Ag), 300 내지 800ppm의 레늄(Re), 100 내지 400ppm의 몰리브덴(Mo), 500 내지 1500ppm의 세슘(Cs), 및 1 내지 100ppm의 리튬(Li)을 포함하는 것인, 산화에틸렌 제조용 촉매의 제조 방법. The method of claim 1, wherein the catalyst is 15 to 25 wt% of silver (Ag), 300 to 800 ppm of rhenium (Re), 100 to 400 ppm of molybdenum (Mo), 500 to 1500 ppm of cesium (Cs), and 1 to 100 ppm The method for producing a catalyst for producing ethylene oxide containing lithium (Li). 제1항 내지 제4항 및 제6항 내지 제8항 중 어느 한 항에 따른 방법에 의해 제조된 산화에틸렌 제조용 촉매의 존재 하에서 에틸렌을 분자상태의 산소 또는 산소함유의 혼합기체로부터 기상반응으로 산화에틸렌을 제조함에 있어서, 반응 온도가 200 내지 250 ℃이며, 기체 공간 속도(Gas Hourly Space Velocity(GHSV, h-1))가 3000 내지 5000인 것인, 산화에틸렌의 제조 방법.Oxidation of ethylene from molecular oxygen or a mixed gas containing oxygen in the presence of a catalyst for producing ethylene oxide prepared by the method according to any one of claims 1 to 4 and 6 to 8 by a gas phase reaction In producing ethylene, the reaction temperature is 200 to 250 °C, the gas space velocity (Gas Hourly Space Velocity (GHSV, h -1 )) is 3000 to 5000, the method for producing ethylene oxide. 제9항에 있어서, 15 내지 30%의 에틸렌을 포함하는 반응 가스를 이용하는 산화에틸렌의 제조 방법.The method for producing ethylene oxide according to claim 9, wherein a reaction gas containing 15 to 30% ethylene is used. 제10항에 있어서, 상기 반응 가스는 클로로하이드로카본을 0.1 내지 5ppm 함유하는 것인, 산화에틸렌의 제조 방법.The method of claim 10, wherein the reaction gas contains 0.1 to 5 ppm of chlorohydrocarbon.
KR1020170153542A 2017-11-17 2017-11-17 A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application KR102258044B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170153542A KR102258044B1 (en) 2017-11-17 2017-11-17 A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170153542A KR102258044B1 (en) 2017-11-17 2017-11-17 A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application

Publications (2)

Publication Number Publication Date
KR20190056509A KR20190056509A (en) 2019-05-27
KR102258044B1 true KR102258044B1 (en) 2021-05-27

Family

ID=66679395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170153542A KR102258044B1 (en) 2017-11-17 2017-11-17 A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application

Country Status (1)

Country Link
KR (1) KR102258044B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102189A1 (en) * 2005-03-22 2006-09-28 Shell Internationale Research Maatschappij B.V. A reactor system and process for the manufacture of ethylene oxide
US8791280B2 (en) * 2005-08-10 2014-07-29 Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg Process for preparation of catalyst carrier and its use in catalyst preparation
KR100836659B1 (en) * 2006-07-06 2008-06-10 삼성전기주식회사 Method for manufacturing metal nanoparticles

Also Published As

Publication number Publication date
KR20190056509A (en) 2019-05-27

Similar Documents

Publication Publication Date Title
US8530682B2 (en) Process for epoxidation start-up
EP1529565B1 (en) Catalyst for production of ethylene oxide
TWI409258B (en) Process for production of an olefin oxide
EP2920159B1 (en) Start-up process for high selectivity ethylene oxide catalysts
JP2008503478A (en) Process for producing olefin oxide, 1,2-diol, 1,2-diol ether, or alkanolamine
CN103118778A (en) Carrier for ethylene oxide catalysts
TW200602123A (en) Process for preparing a catalyst, the catalyst, and a use of the catalyst
CN104857996A (en) Process for treating a carrier, process for preparing a catalyst, the catalyst, and use of the catalyst
KR20100068425A (en) Ethylene oxide production using fixed moderator concentration
JP2007314521A (en) Method for producing epoxy compound
CN106311353A (en) Alpha-alumina support, corresponding silver catalyst and application
US20050192448A1 (en) Process for preparing an olefin oxide, a method of using the olefin oxide, a method of using the olefin oxide and a catalyst composition
KR102258044B1 (en) A method for synthesizING PVP-added catalyst for production of ethylene oxide and its application
US20110152073A1 (en) Epoxidation process and microstructure
TW201425303A (en) Method for preparing epoxides
US10046311B2 (en) Post treated silver catalysts for epoxidation
US8207359B2 (en) Method for producing epoxy compound
CN111437816B (en) Supported silver catalyst and preparation method and application thereof
KR20180082891A (en) A catalyst for synthesis of hydrogen reroxide and the synthesis of hydrogen reroxide using them
JP3951006B2 (en) Process for producing alkylene carbonate and catalyst used therefor
JP6579545B2 (en) Method for synthesizing indole derivatives
CN1925911A (en) Epoxidation process using a mixed catalyst system
JP6650840B2 (en) Method for producing MgO-supported catalyst
CN112705196B (en) Silver-gold bimetal supported catalyst and preparation method and application thereof
JP3789261B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant