WO2006097490A1 - Nicotinsäureanilide, verfahren zu ihrer herstellung und sie enthaltende mittel zur bekämpfung von schadpilzen - Google Patents

Nicotinsäureanilide, verfahren zu ihrer herstellung und sie enthaltende mittel zur bekämpfung von schadpilzen Download PDF

Info

Publication number
WO2006097490A1
WO2006097490A1 PCT/EP2006/060754 EP2006060754W WO2006097490A1 WO 2006097490 A1 WO2006097490 A1 WO 2006097490A1 EP 2006060754 W EP2006060754 W EP 2006060754W WO 2006097490 A1 WO2006097490 A1 WO 2006097490A1
Authority
WO
WIPO (PCT)
Prior art keywords
nicotinamide
chloro
trifluoromethyl
methyl
formula
Prior art date
Application number
PCT/EP2006/060754
Other languages
English (en)
French (fr)
Inventor
Markus Gewehr
Jochen Dietz
Thomas Grote
Carsten Blettner
Wassilios Grammenos
Udo HÜNGER
Bernd Müller
Frank Schieweck
Anja Schwögler
Jan Klaas Lohmann
Joachim Rheinheimer
Peter Schäfer
Siegfried Strathmann
Reinhard Stierl
Jan Rether
Karl Eicken
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP06708777A priority Critical patent/EP1861369A1/de
Priority to BRPI0608709-4A priority patent/BRPI0608709A2/pt
Priority to US11/885,990 priority patent/US20080171774A1/en
Priority to JP2008501303A priority patent/JP2008533097A/ja
Publication of WO2006097490A1 publication Critical patent/WO2006097490A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3

Definitions

  • Nicotinic acid anilides process for their preparation and compositions containing them for controlling harmful fungi
  • the present invention is a.
  • n 0.1 or 2; m 2 or 3;
  • X 2 is halogen, where the radicals X 2 may have different meanings;
  • Y is CN, NO 2, -C 4 -alkyl, C r C 4 haloalkyl, methoxy or methylthio;
  • p is zero or 1;
  • R 1 is halogen, methyl, C 1 -C 4 -haloalkyl, methoxy, methylthio, methylsulfinyl or methylsulfonyl;
  • R 2 is hydrogen, methyl or ethyl; W oxygen or sulfur.
  • the invention relates to processes for the preparation of these compounds, compositions containing them and processes for their use for controlling harmful fungi.
  • Nicotinic acid anilides with fungicidal activity are known from the literature.
  • EP-A 545 099 describes biphenylanilides of this type which have monosubstitution on the biphenyl group.
  • Amide group have a very specific substitution with unsaturated radicals.
  • the compounds of the formula I have an over the known compounds improved activity against harmful fungi.
  • the compounds of the formula I can be present in various crystal modifications, which may differ in their biological activity. They are also the subject of the present invention.
  • halogen is fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine;
  • C 1 -C 4 -alkyl is methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl or 1, 1-dimethylethyl, preferably methyl or ethyl;
  • C 1 -C 4 -haloalkyl represents a partially or completely halogenated C 1 -C 4 -alkyl radical, where the halogen atom (s) is / are in particular fluorine and / or chlorine, ie, for example, chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, diflu oromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2-chloro-2-fluoroethyl, 2,2,2-trifluoroethyl, 2 Chloro-1,1,2-trifluoroethyl, 2-chloro-2,2-difluoroethyl, 2-bromo-2,2-difluoroethyl
  • the compounds I are generally obtained by reacting a carboxylic acid halide of the formula II in a manner known per se (for example, March, Advanced Organic Chemistry, 2nd Ed., 382 f., McGraw-Hill, 1977) in the presence of a Base reacted with an aniline of formula III:
  • the radical Hal in the formula II represents a halogen atom such as fluorine, chlorine, bromine and iodine, in particular fluorine, chlorine or bromine.
  • This reaction is usually carried out at temperatures of (-2O) 0 C to 100 0 C, preferably 0 0 C to 50 ° C.
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane , Anisole and tetrahydrofuran, nitriles such as acetonitrile and propionitrile, ketones such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol and methylene chloride, dimethylsul
  • Bases generally include inorganic compounds, e.g. Alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal amides such as lithium amide, sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates such as lithium carbonate and calcium carbonate and alkali metal hydrogencarbonates such as sodium bicarbonate and organometallic compounds, in particular alkali metal lalkyle such as methyllithium, butyl lithium and phenyllithium, alkyl magnesium halides such as methyl magnesium chloride and alkali metal and alkaline earth metal alkoxides such as sodium, sodium, potassium, potassium tert .
  • Butanolate and dimethoxymagnesium also organic bases, eg tertiary amines such as trimethylamine, triethylamine, di-isopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and bicyclic amines into consideration.
  • organic bases eg tertiary amines such as trimethylamine, triethylamine, di-isopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and bicyclic amines into consideration.
  • Triethylamine and pyridine are particularly preferably used.
  • the bases are generally used in equimolar amounts based on the compound II. But they can also be used in an excess of 5 mol% to 30 mol%, preferably 5 mol% to 10 mol%, or - in the case of using tertiary amines - optionally as a solvent.
  • the starting materials are generally reacted with each other in approximately equimolar amounts. It may be advantageous for the yield to use II in an excess of 1 mol% to 20 mol%, preferably 1 mol% to 10 mol%, based on III.
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane,
  • Cyclohexane and petroleum ether aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles such as acetonitrile and propionitrile , Ketones such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, and dimethyl sulfoxide and dimethylformamide, more preferably methylene chloride, toluene and tetrahydrofuran.
  • aromatic hydrocarbons such as toluene, o-, m- and p-xylene
  • halogenated hydrocarbons such as methylene
  • Suitable dehydrating agents are 1, 1'-carbonyldiimidazole, bis (2-oxo-3-oxazolidinyl) phosphoryl chloride, carbodiimides such as N, N'-dicyclohexylcarbodiimide and N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide, phosphonium salts such as (benzotriazole-1 - yloxy) tris (dimethylamino) phosphonium hexafluorophosphate, bromotripyrrolidinophosphonium hexafluorophosphate, bromotris (dimethylamino) phosphonium hexafluorophosphate and Chlorotripyrrolidinophosphonium hexafluorophosphate, uronium and thiuronium salts such as O- (benzotriazol-1-yl) -N, N, N ', N'-t
  • Suitable organic bases are tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine and N-methyl-piperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylamino-pyridine and bicyclic amines. Triethylamine and pyridine are particularly preferably used.
  • the bases are generally used in excess of from 10 mol% to 200 mol%, preferably from 50 mol% to 150 mol%, based on the compound IV.
  • the starting materials are generally reacted in approximately equimolar amounts with one another. It may be advantageous for the yield to use one of the compounds in an excess of 1 mol% to 20 mol%, preferably 1 mol% to 10 mol%.
  • the dehydrating agents are generally used in excess of from 5 mol% to 100 mol%, preferably from 5 mol% to 60 mol%.
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane , Anisole and tetrahydrofuran, as well as dimethyl sulfoxide and dimethylformamide, particularly preferably diethyl ether, tert-butyl methyl ether, tetrahydrofuran and dimethylformamide.
  • aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether
  • aromatic hydrocarbons such as toluene, o-, m- and p-xy
  • Suitable alkylating agents are alkyl halides such as methyl iodide, ethyl iodide, methyl bromide, ethyl bromide, methyl chloride and ethyl chloride, alkyl (perfluoroalkyl sulfonates) such as methyl trifluoromethyl sulfonate and ethyl trifluoromethyl sulfonate, alkyl (alkyl sulfonates) such as methyl methyl sulfonate and ethyl methyl sulfonate, alkyl (arylsulfonate ) such as methyl p-tolylsulfonate and ethyl p-tolylsulfonate, oxonium salts such as trimethyloxonium tetrafluoroborate and triethyloxonium tetrafluoroborate.
  • alkyl halides such as methyl
  • methyl iodide ethyl iodide
  • methyl bromide ethyl bromide
  • chloride methyl chloride
  • ethyl chloride ethyl chloride
  • Suitable bases are generally inorganic compounds, for example alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides such as lithium hydride, sodium hydride, potassium hydride and calcium hydride Alkali metal amides such as lithium amide, sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and calcium carbonate, and alkali metal hydrogen carbonates such as sodium bicarbonate or organometallic compounds, in particular alkali metal alkyls such as methyllithium, butyllithium and phenyl-lithium, alkylmagnesium halides such as methylmagnesium chloride and alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium
  • the bases are generally used in approximately equimolar amounts based on the compound I. However, they can also be used in an excess of 5 mol% to 30 mol%, preferably 5 mol% to 10 mol%.
  • the starting materials are generally reacted with each other in approximately equimolar amounts. However, it may also be advantageous for the yield to use the alkylating agent in an excess of 1 mol% to 20 mol%, preferably 1 mol% to 10 mol%, based on I.
  • Those compounds I 1 in which W is sulfur can also be prepared by sulfurization of the corresponding compounds I 1 in which W is oxygen (cf., for example, D. Petrova & K. Jakobcic, Croat. Chem. Acta 48, 49 (1976 ) and WO 01/42223).
  • n zero; X 1 chlorine; X 2 F or Cl, in particular fluorine;
  • Y -C 4 -alkyl, Ci-C4-haloalkyl or methoxy in particular methyl, difluoro- methyl, trifluoromethyl or methoxy; particularly preferably methyl or trifluoromethyl; p zero;
  • R 1 is halogen, methyl, trifluoromethyl or methoxy, in particular F 1 Cl 1 methyl or
  • trifluoromethyl particularly preferably fluorine, chlorine or trifluoromethyl, in particular chlorine or
  • Trifluoromethyl most preferably chlorine
  • R 2 is hydrogen or methyl, in particular hydrogen
  • W oxygen is hydrogen
  • radicals X 2 are preferably in the 2,4,5- or 3,4,5-position, in particular in the 3,4,5-position.
  • Y -C 4 alkyl, -C 4 haloalkyl or methoxy in particular methyl, Difluorme- methyl, trifluoromethyl or methoxy
  • R 1 is halogen, methyl, trifluoromethyl or methoxy, in particular fluorine, chlorine, methyl or trifluoromethyl
  • R 2 is hydrogen or methyl
  • W oxygen
  • R 1 is F, Cl, methyl or trifluoromethyl, in particular fluorine or chlorine; R 2 is hydrogen; W oxygen.
  • compounds I with m 2, in particular those in which n is zero, p is zero, R 1 is fluorine or chlorine, in particular chlorine, and R 2 is hydrogen.
  • radicals X are preferably in the 2,4- or 3,4-position, in particular in the 3,4-position.
  • Table 4 Compounds of the general formula IA, in which R 1 is trifluoromethyl and R 2 is hydrogen and B corresponds in each case to one row of Table A.
  • Table 8 Compounds of the general formula IA, in which R 1 is methyl and R 2 is methyl and B corresponds in each case to one row of Table A.
  • Table 13 Compounds of the general formula IA, in which R 1 is methyl and R 2 is ethyl and B corresponds in each case to one row of Table A.
  • Table 18 Compounds of the general formula IB in which R 1 is methyl and B corresponds in each case to one row of Table A.
  • the compounds I are suitable as fungicides. They are distinguished by outstanding activity against a broad spectrum of phytopathogenic fungi, in particular from the classes of the Ascomycetes, Deuteromycetes, Peronosporomyces (syn. Oomycetes) and Basidiomycetes. They are sometimes systemically effective and can be used in crop protection as foliar, soil and Beizfungizide.
  • Alternaria species on vegetables, rapeseed, sugar beets and fruits and rice e.g. A. solani or A. alternata on potatoes and tomatoes, - Aphanomyces species on sugar beet and vegetables,
  • Drechslera species Pyrenophora species on corn, cereals, rice and turf, e.g. D. teres to barley or D. tritici-repentis to wheat,
  • Fusarium and Verticillium species on various plants e.g. F. graminearum or F. culmorum on cereal or F. oxysporum on a variety of plants, e.g. Tomatoes, - Gaeumanomyces graminis on cereals,
  • Gibberella species on cereals and rice e.g., Gibberella fujikuroi on rice
  • Mycosphaerella species on cereals, bananas and peanuts e.g. M. graminicola on wheat or M. fijiesis on bananas, - Peronospora on cabbage and onion plants, e.g. P. brassicae on cabbage or P. destructor on onion,
  • Pseudoperonospora on various plants e.g. P. cubensis on cucumber or P. humili on hops,
  • Puccinia species on various plants e.g. P. triticina, P. striformins, P. hordei or P. graminis on cereals or P. asparagi on asparagus,
  • Tilletia species on cereals - Ustilago species on cereals, maize and sugarcane, e.g. U. maydis on corn,
  • Venturia species scab
  • apples and pears e.g. V. inaequalis to apple.
  • the compounds I are also suitable for controlling harmful fungi in the protection of materials (eg wood, paper, paint dispersions, fibers or fabrics) and in the protection of stored products.
  • harmful fungi ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sciophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp .; Basidi- omycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., P / et / rotus spp., Porta spp., Serpula spp.
  • Tyromyces spp. Deuteromycetes such as Aspergillus spp., Cladosportum spp., Penicillium spp., Trtchoderma spp., Alternaria spp., Paecilomyces spp. and Zygomycetenwe Mucorspp., in addition in the material contactor the following yeasts: Candida spp. and Saccharomyces cerevisae.
  • the compounds I are used by treating the fungi or the plants, seeds, materials or the soil to be protected against fungal attack with a fungicidally effective amount of the active ingredients.
  • the application can be done both before and after the infection of the materials, plants or seeds by the fungi.
  • the fungicidal compositions generally contain between 0.1 and 95 wt .-%, preferably between 0.5 and 90 wt .-%, active ingredient.
  • the application rates in the application in crop protection depending on the nature of the desired effect between 0.01 and 2.0 kg of active ingredient per ha.
  • seed treatment e.g. by dusting, coating or impregnating seed
  • active substance e.g. by dusting, coating or impregnating seed
  • the application rate of active ingredient depends on the type of application and the desired effect. Usual application rates are, for example, 0.001 g to 2 kg, preferably 0.005 g to 1 kg of active ingredient per cubic meter of material treated in the material protection.
  • the compounds I can be converted into the usual formulations, e.g. Solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the application form depends on the respective purpose; It should in any case ensure a fine and uniform distribution of the compound I according to the invention.
  • the formulations are prepared in a known manner, e.g. by stretching the active compound with solvents and / or excipients, if desired with use of emulsifiers and dispersants.
  • Suitable solvents / auxiliaries are essentially:
  • aromatic solvents eg Solvesso ® products, XyIoI
  • paraffins eg petroleum fractions
  • alcohols eg methanol, butanol, pentanol, benzyl alcohol
  • ketones eg cyclohexanone, gamma-butyrolactone
  • pyrrolidones N-methylpyrrolidone and NOP
  • acetates glycols, dimethyl fatty acid amides, fatty acids and
  • Fatty acid ester In principle, solvent mixtures can also be used.
  • - Carriers such as ground natural minerals (eg kaolins, clays, talc, chalk) and ground synthetic minerals (eg fumed silica, silicates); Emulsifiers such as nonionic and anionic emulsifiers (eg polyoxyethylene fatty alcohol ethers, alkyl sulfonates and arylsulfonates) and dispersants such as lignin liquors and methylcellulose.
  • ground natural minerals eg kaolins, clays, talc, chalk
  • ground synthetic minerals eg fumed silica, silicates
  • Emulsifiers such as nonionic and anionic emulsifiers (eg polyoxyethylene fatty alcohol ethers, alkyl sulfonates and arylsulfonates) and dispersants such as lignin liquors and methylcellulose.
  • the surface-active substances used are alkali metal, alkaline earth metal, ammonium salts of lignin sulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalenesulfonic acid, alkylarylsulfonates, alkyl sulfates, alkyl sulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, and condensation products of sulfonated naphthalene and naphthalene derivatives with formaldehyde , Condensation products of naphthalene or naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ethers, tributylphenyl
  • mineral oil fractions of medium to high boiling point such as kerosine or diesel oil, coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, strong polar solvents, e.g. Dimethylsulfoxide, N-methylpyrrolidone or water into consideration.
  • mineral oil fractions of medium to high boiling point such as kerosine or diesel oil, coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivative
  • Powders, dispersants and dusts may be prepared by mixing or co-grinding the active substances with a solid carrier.
  • Granules e.g. Coated, impregnated and homogeneous granules can be prepared by binding the active compounds to solid carriers.
  • Solid carriers are e.g. Mineral earths, such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulphate, magnesium oxide, ground plastics, fertilizers, e.g. Ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products such as cereal flour, tree bark, wood and nutshell meal, cellulose powder and other solid carriers.
  • Mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulphate, magnesium oxide, ground plastics
  • Seed treatment formulations may additionally contain binders and / or gelling agents and optionally dyes.
  • Binders can be added to increase adhesion of the active ingredients to the seed after treatment.
  • Suitable binders are for example EO / PO block copolymer surfactants, but late also polyvinyl alcohols, Ppolyvinylpyrrolidone, polyacrylates, polymethacrylates, polybutenes, polyisobutylenes, polystyrenes, polyethyleneamines, Polyethylenamide, polyethylenimines (Lupasol ®, Polymin ®), polyethers, polyurethanes, polyvinyl acetates, Tylose and Copolymers of these polymers.
  • a suitable gelling agent is, for example, carrageen (Satiagel ®).
  • the formulations generally contain between 0.01 and 95% by weight, preferably between 0.1 and 90% by weight, of the active compound I.
  • the active compounds are in a purity of 90% to 100%, preferably 95% % to 100% (according to NMR spectrum) used.
  • the active compound concentrations in the ready-to-use preparations can be varied within wide ranges. In general, they are between 0.0001 and 10%, preferably between 0.01 and 1%.
  • the active ingredients can also be used with great success in the ultra-low-volume (ULV) process, it being possible to apply formulations containing more than 95% by weight of active ingredient or even the active ingredient without additives.
  • UUV ultra-low-volume
  • the formulations in question give, after dilution of from two to ten times, active compound concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations.
  • formulations are: 1. Products for dilution in water
  • a compound I according to the invention 10 parts by weight of a compound I according to the invention are dissolved with 90 parts by weight of water or a water-soluble solvent. Alternatively, wetting agents or other adjuvants are added. When diluted in water, the active ingredient dissolves. This gives a formulation with an active ingredient content of 10% by weight.
  • a compound I according to the invention 20 parts by weight of a compound I according to the invention are dissolved in 70 parts by weight of cyclohexanone with the addition of 10 parts by weight of a dispersant, e.g. Polyvinylpyrrolidone solved. Dilution in water gives a dispersion.
  • the active ingredient content is 20% by weight.
  • a compound I according to the invention 15 parts by weight of a compound I according to the invention are dissolved in 75 parts by weight of xylene with the addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). Dilution in water results in an emulsion.
  • the formulation has an active ingredient content of 15% by weight.
  • a compound I according to the invention 25 parts by weight of a compound I according to the invention are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight).
  • This mixture is added to water by means of an emulsifying machine (e.g., Ultraturax) in 30 parts by weight and made into a homogeneous emulsion. Dilution in water results in an emulsion.
  • the formulation has an active ingredient content of 25% by weight.
  • a compound I according to the invention 20 parts by weight of a compound I according to the invention are comminuted with the addition of 10 parts by weight of dispersants and wetting agents and 70 parts by weight of water or an organic solvent in a stirred ball mill to give a fine active substance suspension. Dilution in water results in a stable suspension of the active ingredient.
  • the active ingredient content in the formulation is 20% by weight.
  • 50 parts by weight of a compound I according to the invention are finely ground with the addition of 50 parts by weight of dispersants and wetting agents and prepared by means of industrial equipment (for example extrusion, spray tower, fluidized bed) as water-dispersible or water-soluble granules. Dilution in water results in a stable dispersion or solution of the active ingredient.
  • the formulation has an active ingredient content of 50% by weight.
  • WP, SP Water-dispersible and Water-Soluble Powders (WP, SP) 75 parts by weight of a compound I according to the invention are ground in a rotor-stator mill with the addition of 25 parts by weight of dispersants, wetting agents and silica gel. Dilution in water results in a stable dispersion or solution of the active ingredient.
  • the active ingredient content of the formulation is 75% by weight.
  • a compound I according to the invention are finely ground and with 99.5 parts by weight of carriers. Common processes are extrusion, spray drying or fluidized bed. This gives a granulate for direct application with an active ingredient content of 0.5 wt .-%.
  • the active compounds may be used as such, in the form of their formulations or the forms of use prepared therefrom, e.g. in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, scattering agents, granules by spraying, misting, dusting, scattering or pouring.
  • the forms of application depend entirely on the purposes of use; In any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (spray powders, oil dispersions) by addition of water.
  • the substances as such or dissolved in an oil or solvent, can be homogenized in water by means of wetting agents, tackifiers, dispersants or emulsifiers. But it can also be made of effective substance wetting, adhesion, dispersing or emulsifying and possibly solvent or oil concentrates, which are suitable for dilution with water.
  • the active compound concentrations in the ready-to-use preparations can be varied within wide ranges. In general, they are between 0.0001 and 10%, preferably between 0.01 and 1%.
  • the active ingredients can also be used with great success in the ultra-low-volume (ULV) process, it being possible to apply formulations containing more than 95% by weight of active ingredient or even the active ingredient without additives.
  • UUV ultra-low-volume
  • wetting agents To the active ingredients oils of various types, wetting agents, adjuvants, herbicides, fungicides, other pesticides, bactericides, optionally also just before use (tank mix), are added. These agents can usually be mixed into the compositions according to the invention in a weight ratio of 1: 100 to 100: 1, preferably 1:10 to 10: 1.
  • adjuvants in this sense are in particular: organically modified polysiloxanes, eg Break Thru S 240 ® ; Alcohol alkoxylates, eg. B. Atplus 245 ®, Atplus MBA 1303 ®, Plurafac LF 300 ® and Lutensol ON 30 ®; EO-PO block polyme ⁇ sate, z. B. Pluro- nic RPE 2035 ® and Genapol B ®; Alcohol ethoxylates, eg. As Lutensol XP 80 ®; and sodium dioctylsulfosuccinate, e. B. Leophen RA ®.
  • organically modified polysiloxanes eg Break Thru S 240 ®
  • Alcohol alkoxylates eg. B. Atplus 245 ®, Atplus MBA 1303 ®, Plurafac LF 300 ® and Lutensol ON 30 ®
  • EO-PO block polyme ⁇ sate z
  • the agents according to the invention in the form of use as fungicides, may also be present together with other active substances, e.g. with herbicides, insecticides, growth regulators such as Prohexadion-Ca, fungicides or with fertilizers.
  • active substances e.g. with herbicides, insecticides, growth regulators such as Prohexadion-Ca, fungicides or with fertilizers.
  • Azoxystrobin dimoxystrobin, enestroburine, fluoxastrobin, kresoxim-methyl, metominostrobin, picoxystrobin, pyraclostrobin, trifloxystrobin, orysastrobin, (2-chloro-5- [1- (3-methyl-benzyloxyimino) -ethyl] -benzyl) -carbamic acid methyl ester, (2-Chloro-5- [1- (6-methyl-pyridin-2-ylmethoxyimino) -ethyl] -benzyl) -carbamic acid methyl ester, 2- (ortho- (2,5-dimethylphenyl-oxymethylene) -phenyl) -3- methoxy-methyl acrylate;
  • Benzoic acid amides flumetover, fluopicolide (picobenzamide), zoxamide;
  • Other carboxamides carpropamide, diclocymet, mandipropamide, N- (2- (4- [3- (4-chloro-phenyl) -prop-2-ynyloxy] -3-methoxyphenyl) -ethyl) -2-methanesulfonylamino 3-methyl-butyramide, N- (2- (4- [3- (4-chloro-phenyl) -prop-2-ynyloxy] -3-methoxy-phenyl) -ethyl) -2-ethanesulfonyl-amino-3-methyl- butyramide;
  • bitertanol bromuconazole, cyproconazole, difenoconazole, diniconazole, enilconazole, epoxiconazole, fenbuconazole, flusilazole, fluquinconazole, flutriafol, Hexaconazole, imibenconazole, ipconazole, metconazole, myclobutanil, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimol, triadimefon, triticonazole;
  • - imidazoles cyazofamide, imazalil, pefurazoate, prochloraz, triflumizole; Benzimidazoles: benomyl, carbendazim, fuberidazole, thiabendazole;
  • Pyridines fluazinam, pyrifenox, 3- [5- (4-chlorophenyl) -2,3-dimethylisoxazolidin-3-yl] pyridine;
  • Pyrimidines bupirimate, cyprodinil, ferimzone, fenarimol, mepanipyrim, nuarimol, pyrimethanil;
  • Dicarboximides iprodione, procymidone, vinclozolin;
  • acibenzolar-S-methyl anilazine, captan, captafol, dazomet, diclomethine, fenoxanil, folpet, fenpropidin, famoxadone, fenamidone, octhilinone, probenazole, proquinazide, pyroquilon, quinoxyfen, tricyclazole, 5-chloro-7- (4- methyl-piperidin-1-yl) -6- (2,4,6-trifluorophenyl) - [1, 2,4] triazolo [1,5-a] pyrimidine, 2-butoxy-6-iodo-3 propylchromen-4-one, 3- (3-bromo-6-fluoro-2-methyl-indole-1-sulfonyl) - [1, 2,4] triazole-1-sulfonic acid dimethylamide;
  • Carbamates and Dithiocarbamates - Dithiocarbamates Ferbam, Mancozeb, Maneb, Metiram, Metam, Propineb, Thiram, Zineb, Ziram;
  • guanidines dodin, iminoctadine, guazatine
  • Antibiotics Kasugamycin, Polyoxin, Streptomycin, Validamycin A; Organometallic compounds: fentin salts;
  • Sulfur-containing heterocyclyl compounds isoprothiolane, dithianone;
  • Organophosphorus compounds edifenphos, fosetyl, fosetyl-aluminum, Iprobenfos, pyrazophos, tolclofos-methyl, phosphorous acid and their salts;
  • Organochlorine compounds thiophanate-methyl, chlorothalonil, dichlofluanid, toluidine, flusulfamide, phthalide, hexachlorobenzene, pencycuron, quintozene;
  • Nitrophenyl derivatives binapacryl, dinocap, dinobuton;
  • - Inorganic active substances Bordeaux broth, copper acetate, copper hydroxide, copper oxychloride, basic copper sulphate, sulfur;
  • Example 1 ⁇ Aß ⁇ '- dichlorobiphenyl ⁇ -yl ⁇ -ttrifluormethyOnicotinamid
  • 2- (trifluoromethyl) nicotinic acid a solution of 0.20 g of 2- (trifluoromethyl) nicotinic acid and 0.21 g of triethylamine in 30 ml dichloromethane at 0 0 C 0.25 g of 3'.
  • the mixture was stirred at 0 ° C. for 15 minutes and then at room temperature for 12 hours.
  • the active compounds were prepared as a stock solution with 25 mg of active ingredient, which with a mixture of acetone and / or dimethyl sulfoxide and the emulsifier Uniperol ® EL (wetting agent with emulsifying and dispersing action based on ethoxylated alkyl kylphenole) in the volume ratio solvent Emulsifier from 99 to 1 ad 10 ml was filled. It was then made up to 100 ml with water. This stock solution was diluted with the described solvent-emulsifier-water mixture to the desired drug concentration.
  • Leaves of potted plants of the "Golden Queen" variety were sprayed to drip point with an aqueous suspension in the concentration of active compound specified below.
  • the leaves were infected with an aqueous spore suspension of Alternaria solani 'm 2% biomalt solution having a density of 0.17 ⁇ 10 6 spores / ml.
  • the plants were placed in a water vapor-saturated chamber at temperatures between 20 and 22 ° C. After 5 days, the disease on the untreated, but infected control plants had developed so strongly that the infestation could be determined visually in%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pyridine Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft Nicotinsäureanilide (I) wobei: n = 0,1,2; m = 2,3; X1 = F, Chlor; X2 = Halogen; Y = CN, NO2, C1-C4-Alkyl, C1-C4-Halogenalkyl, Methoxy, Methylthio; p = 0,1 ; R1 = Halogen, Methyl, CrC4-Halogenalkyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl; R2 = Wasserstoff, Methyl, Ethyl; W = O, S; Verfahren zur Herstellung dieser Verbindungen, sie enthaltende Mittel und Saatgut sowie Verfahren zur Bekämpfung von Schadpilzen.

Description

Nicotinsäureanilide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen
Beschreibung
Die vorliegende Erfi I
Figure imgf000003_0001
in der die Variablen folgende Bedeutungen haben:
n 0,1 oder 2; m 2 oder 3;
X1 F oder Chlor, wobei im Falle von n = 2 die beiden Reste X1 verschiedene Bedeutungen haben können;
X2 Halogen, wobei die Reste X2 verschiedene Bedeutungen haben können; Y CN, NO2, CrC4-AIkVl, CrC4-Halogenalkyl, Methoxy oder Methylthio; p Null oder 1 ;
R1 Halogen, Methyl, CrC4-Halogenalkyl, Methoxy, Methylthio, Methylsulfinyl oder Methylsulfonyl;
R2 Wasserstoff, Methyl oder Ethyl; W Sauerstoff oder Schwefel.
Außerdem betrifft die Erfindung Verfahren zur Herstellung dieser Verbindungen, sie enthaltende Mittel und Verfahren zu deren Verwendung zur Bekämpfung von Schadpilzen.
Aus der Literatur sind Nicotinsäureanilide mit fungizider Wirkung bekannt. So werden beispielsweise in der EP-A 545 099 Biphenylanilide diesen Typs beschrieben, die an der Biphenyl-Gruppe eine Monosubstitution aufweisen.
Aus der WO 02/059086 sind Nicotinsäureanilide bekannt, die am Stickstoff der
Amidgruppe eine ganz spezifische Substitution mit ungesättigten Resten aufweisen.
Aus der JP-A 2001/302605 ist 2-Chlor-N-(4'-chlor-6-methyl-biphenyl-2-yl)-nicotinamid bekannt. Aufgabe der vorliegenden Erfindung war es, Nicotinsäureanilide aufzufinden, die eine verbesserte fungizide Wirkung zeigen als die Verbindungen des Stands der Technik.
Demgemäß wurden die eingangs definierten Verbindungen I gefunden.
Außerdem wurden Verfahren zur Herstellung dieser Verbindungen, sie enthaltende Mittel und Verfahren zu deren Verwendung zur Bekämpfung von phytopathogenen Schadpilzen gefunden.
Die Verbindungen der Formel I weisen eine gegenüber den bekannten Verbindungen verbesserte Wirksamkeit gegen Schadpilze auf.
Die Verbindungen der Formel I können in verschiedenen Kristallmodifikationen vorliegen, die sich in der biologischen Wirksamkeit unterscheiden können. Sie sind ebenfalls Gegenstand der vorliegenden Erfindung.
In Formel I steht Halogen für Fluor, Chlor, Brom oder Jod, vorzugsweise für Fluor oder Chlor;
CrC4-Alkyl steht für Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2- Methylpropyl oder 1 ,1-Dimethylethyl, vorzugsweise für Methyl oder Ethyl;
Ci-C4-Halogenalkyl steht für einen teilweise oder vollständig halogenierten C1-C4- Alkylrest, wobei das/die Halogenatom (e) insbesondere Fluor und/oder Chlor ist/sind, also z.B. Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Diflu- ormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1- Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2-Chlor-2- fluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-1 ,1 ,2-trifluorethyl, 2-Chlor-2,2-difluorethyl, 2- Brom-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, 1 ,1 ,2,2- Tetrafluorethyl, 1,1,2,2-Tetrachlorethyl, Pentafluorethyl, 2,2,3,3-TetrafluoM-propyl, 1 ,1 ,2,3,3,3-HexafluoM-propyl, 1,1 ,1 ,3,3,3-Hexafluor-2-propyl, Heptafluor-1-propyl, Heptafluor-2-propyl, 2,2,3,3,4,4,4-Heptafluor-1-butyl oder Nonafluor-1-butyl, insbesondere für Halogenmethyl, besonders bevorzugt für CH2-CI, CH(CI)2, CH2-F, CH(F)2, CF3, CHFCI, CF2CI oder CF(CI)2.
Man erhält die Verbindungen I im allgemeinen dadurch, dass man ein Carbonsäureha- logenid der Formel Il in an sich bekannter Weise (z. B. J. March, Advanced Organic Chemistry, 2nd Ed., 382 f., McGraw-Hill, 1977) in Gegenwart einer Base mit einem Anilin der Formel III umsetzt:
Figure imgf000005_0001
Der Rest HaI in der Formel Il steht für ein Halogenatom wie Fluor, Chlor, Brom und Jod, insbesondere Fluor, Chlor oder Brom. Diese Umsetzung erfolgt üblicherweise bei Temperaturen von (-2O)0C bis 1000C, vorzugsweise 00C bis 50°C.
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p- XyIoI, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethyl- keton, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n- Propanol, Isopropanol, n-Butanol und tert.-Butanol sowie Methylenchlorid, Dimethylsul- foxid und Dimethylformamid, besonders bevorzugt Toluol, Methylenchlorid und Tetrahydrofuran.
Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Basen kommen allgemein anorganische Verbindungen, z.B. Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und CaI- ziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, CaI- ziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiuma- mid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencarbonate wie Natri- umhydrogencarbonat und metallorganische Verbindungen, insbesondere Alkalimetal- lalkyle wie Methyllithium, Butyllithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium-tert.-butanolat und Di- methoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethy- lamin, Triethylamin, Di-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht.
Besonders bevorzugt werden Triethylamin und Pyridin verwendet. Die Basen werden im allgemeinen in äquimolaren Mengen bezogen auf die Verbindung Il eingesetzt. Sie können aber auch in einem Überschuß von 5 mol-% bis 30 mol- %, vorzugsweise 5 mol-% bis 10 mol-%, oder - im Falle der Verwendung von tertiären Aminen - gegebenenfalls als Lösungsmittel verwendet werden.
Die Edukte werden im allgemeinen in etwa äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, Il in einem Überschuß von 1 mol-% bis 20 mol-%, vorzugsweise 1 mol-% bis 10 mol-%, bezogen auf III einzusetzen.
Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe der Formel Il oder III sind bekannt oder können analog zu bekannten Verbindungen synthetisiert werden (HeIv. Chim. Acta, 60, 978 (1977); Zh. Org. Khim., 26, 1527 (1990); Heterocy- cles 26, 1885 (1987); Izv. Akad. Nauk. SSSR Ser. Khim., 2160 (1982); THL 28, 593 (1987); THL 29, 5463 (1988)).
Weiterhin wurde gefunden, dass man Verbindungen der Formel I dadurch erhält, dass man in an sich bekannter Weise Carbonsäuren der Formel IV mit einem Anilin der Formel III in Gegenwart von Dehydratisierungsmitteln und ggf. einer organischen Base umsetzt.
Figure imgf000006_0001
IV III I
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan,
Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p- XyIoI, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethyl- keton, Diethylketon und tert.-Butylmethylketon, sowie Dimethylsulfoxid und Dimethyl- formamid, besonders bevorzugt Methylenchlorid, Toluol und Tetrahydrofuran.
Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Dehydratisierungsmittel kommen 1 ,1'-Carbonyldiimidazol, Bis(2-oxo-3- oxazolidinyl)phosphorylchlorid, Carbodiimide wie N,N'-Dicyclohexylcarbodiimid und N- (3-Dimethylaminopropyl)-N'-ethylcarbodiimid, Phosphoniumsalze wie (Benzotriazol-1- yloxy)tris(dimethylamino)phosphoniumhexafluorphosphat, Bromtripyrrolidinophospho- niumhexafluorphosphat, Bromtris(dimethylamino)phosphoniumhexafluorphosphat und Chlortripyrrolidinophosphoniumhexafluorphosphat, Uronium- und Thiuroniumsalze wie O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumhexafluorphosphat, O-(7- Azabenzotriazol-1-yl)-N,N,N\N'-tetramethyluroniumhexafluorphosphat, S-(1-Oxido-2- pyridyO-N.N.N'.N'-tetramethylthiuroniumtetrafluorborat, O-(2-Oxo-1 (2H)pyridyl)- N.N.N'.N'-tetramethyluroniumtetrafluorborat und O-[(Ethoxycarbonyl)cyano- methylenamino]-N,N,N\N'-tetramethyluroniumtetrafluorborat, Carbeniumsalze wie (Benzotriazol-1 -yloxy)dipyrrolidinocarbeniumhexaf luorphosphat, (Benzotriazol-1 - yloxy)dipiperidinocarbeniumhexafluorphosphat, O-(3,4-Dihydro-4-oxo-1 ,2,3- benzotriazin-S-yO-N.N.N'.N'-tetramethyluroniumtetrafluorborat, Chlor-N',N'- bis(tetramethylen)formamidiniumtetrafluorborat, Chlordipyrrolidinocarbenium- hexafluorphosphat, Chlor-N,N,N',Nl-bis(pentamethylen)formamidiniumtetrafluorborat, Imidazoliumsalze wie 2-Chlor-1 ,3-dimethylimidazolidiniumtetrafluorborat, vorzugsweise 1 ,1'-Carbonyldiimidazol, Bis(2-oxo-3-oxazolidinyl)phosphorylchlorid, N1N'- Dicyclohexylcarbodiimid und N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid, in Be- tracht.
Als organische Basen kommen tertiäre Amine wie Trimethylamin, Triethylamin, Di- isopropylethylamin und N-Methyl-piperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylamino-pyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Triethylamin und Pyridin verwendet. Die Basen werden im allgemeinen im Überschuß von 10 mol-% bis 200 mol-%, vorzugsweise von 50 mol-% bis 150 mol-%, bezogen auf die Verbindung IV eingesetzt.
Die Edukte werden im allgemeinen in etwa äquimolaren Mengen miteinander umge- setzt. Es kann für die Ausbeute vorteilhaft sein, eine der Verbindungen in einem Überschuß von 1 mol-% bis 20 mol-%, vorzugsweise 1 mol-% bis 10 mol-%, einzusetzen. Die Dehydratisierungsmittel werden im allgemeinen im Überschuß von 5 mol-% bis 100 mol-%, vorzugsweise 5 mol-% bis 60 mol-% eingesetzt.
Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe der Formel III und IV sind bekannt oder können analog zu bekannten Verbindungen synthetisiert werden.
Man erhält Verbindungen der Formel I mit R2 = Methyl oder Ethyl dadurch, dass man Verbindungen der Formel I mit R2 = H in an sich bekannter Weise in Gegenwart einer Base mit einem Alkylierungsmittel umsetzt:
Figure imgf000008_0001
(R* = H) I (R2 = CH3, C2H5)
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p- XyIoI, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, sowie Dimethylsulfoxid und Dimethylformamid, besonders bevorzugt Diethylether, tert.-Butylmethylether, Tetrahydrofuran und Dimethylformamid.
Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Geeignete Alkylierungsmittel (XCH3 oder XC2H5) sind Alkylhalogenide wie Methyliodid, Ethyliodid, Methylbromid, Ethylbromid, Methylchlorid und Ethylchlorid, Alkyl(perfluor- alkylsulfonate) wie Methyltrifluormethylsulfonat und Ethyltrifluormethylsulfonat, Al- kyl(alkylsulfonate) wie Methylmethylsulfonat und Ethylmethylsulfonat, Al- kyl(arylsulfonate) wie Methyl-p-tolylsulfonat und Ethyl-p-tolylsulfonat, Oxoniumsalze wie Trimethyloxoniumtetrafluorborat und Triethyloxoniumtetrafluorborat.
Besonders bevorzugt sind Methyliodid, Ethyliodid, Methylbromid, Ethylbromid, Methylchlorid und Ethylchlorid.
Als Basen kommen allgemein anorganische Verbindungen, z.B. Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und CaI- ziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, CaI- ziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiuma- mid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Natriumcarbonat, Kaliumcarbonat und Calziumcarbonat sowie Alkali- metallhydrogencarbonate wie Natriumhydrogencarbonat oder metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methyllithium, Butyllithium und Phenyl- lithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumetha- nolat, Kalium-tert.-butanolat in Betracht. Besonders bevorzugt werden Natriumcarbonat, Kaliumcarbonat, Natriumhydrid, Kaliumhydrid, Butyllithium und Kalium-tert.-butanolat verwendet.
Die Basen werden im allgemeinen in etwa äquimolaren Mengen bezogen auf die Ver- bindung I eingesetzt. Sie können aber auch in einem Überschuß von 5 mol-% bis 30 mol-%, vorzugsweise 5 mol-% bis 10 mol-%, verwendet werden.
Die Edukte werden im allgemeinen in etwa äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute aber auch vorteilhaft sein, das Alkylierungsmittel in einem Überschuß von 1 mol-% bis 20 mol-%, vorzugsweise 1 mol-% bis 10 mol-%, bezogen auf I einzusetzen.
Diejenigen Verbindungen I1 bei denen W für Schwefel steht, sind auch durch Schwefelung der entsprechenden Verbindungen I1 bei denen W für Sauerstoff steht, herstellbar (vgl. z.B. D. Petrova & K. Jakobcic, Croat. Chem. Acta 48, 49 (1976) sowie die WO 01/42223).
Im Hinblick auf die biologische Wirkung der Verbindungen I sind die folgenden Bedeutungen der Variablen bevorzugt, und zwar jeweils für sich allein oder in Kombi- nation: n Null; X1 Chlor; X2 F oder Cl, insbesondere Fluor;
Y CrC4-AIkVl, Ci-C4-Halogenalkyl oder Methoxy, insbesondere Methyl, Difluor- methyl, Trifluormethyl oder Methoxy; besonders bevorzugt Methyl oder Trifluormethyl; p Null; R1 Halogen, Methyl, Trifluormethyl oder Methoxy, insbesondere F1 Cl1 Methyl oder
Trifluormethyl; besonders bevorzugt Fluor, Chlor oder Trifluormethyl, insbesondere Chlor oder
Trifluormethyl, ganz besonders bevorzugt Chlor; R2 Wasserstoff oder Methyl, insbesondere Wasserstoff; W Sauerstoff.
Im Falle von m = 3 stehen die Reste X2 vorzugsweise in 2,4,5- oder 3,4,5-Position, insbesondere in 3,4,5-Position.
Besonders bevorzugt sind Verbindungen I mit folgenden Substituenten-Kombinationen, in denen die Substituenten die folgenden Bedeutungen haben: X2 F oder Chlor;
Y CrC4-Alkyl, CrC4-Halogenalkyl oder Methoxy, insbesondere Methyl, Difluorme- thyl, Trifluormethyl oder Methoxy; R1 Halogen, Methyl, Trifluormethyl oder Methoxy, insbesondere Fluor, Chlor, Methyl oder Trifluormethyl; R2 Wasserstoff oder Methyl; W Sauerstoff.
Weiterhin bevorzugt sind auch folgende Kombinationen von Substituenten mit folgenden Bedeutungen: n Null; p Null; X2 F oder Chlor;
R1 F, Cl, Methyl oder Trifluormethyl, insbesondere Fluor oder Chlor; R2 Wasserstoff; W Sauerstoff.
Bevorzugt sind auch Verbindungen I mit m = 2, insbesondere diejenigen, bei denen n für Null, p für Null, R1 für Fluor oder Chlor, insbesondere Chlor, und R2 für Wasserstoff stehen.
Die Reste X stehen dabei vorzugsweise in 2,4- oder 3,4-Position, insbesondere in 3,4- Position.
Im Hinblick auf ihre Verwendung als Fungizide sind die Verbindungen der allgemeinen Formeln I-A und I-B besonders bevorzugt:
Figure imgf000010_0001
(I-A) (I-B)
Tabelle A
Figure imgf000010_0002
Figure imgf000011_0001
Figure imgf000012_0001
Tabelle 1 :
Verbindungen der allgemeinen Formel I-A, worin R1 für Cl und R2 für Wasserstoff stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 2:
Verbindungen der allgemeinen Formel I-A, worin R1 für F und R2 für Wasserstoff stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 3:
Verbindungen der allgemeinen Formel I-A, worin R1 für Methyl und R2 für Wasserstoff stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 4: Verbindungen der allgemeinen Formel I-A, worin R1 für Trifluormethyl und R2 für Wasserstoff stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 5:
Verbindungen der allgemeinen Formel I-A, worin R1 für Methoxy und R2 für Wasser- stoff stehen und B jeweils einer Zeile der Tabelle A entspricht. Tabelle 6:
Verbindungen der allgemeinen Formel I-A, worin R1 für Cl und R2 für Methyl stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 7:
Verbindungen der allgemeinen Formel I-A, worin R1 für F und R2 für Methyl stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 8: Verbindungen der allgemeinen Formel I-A, worin R1 für Methyl und R2 für Methyl stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 9:
Verbindungen der allgemeinen Formel I-A, worin R1 für Trifluormethyl und R2 für Methyl stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 10:
Verbindungen der allgemeinen Formel I-A, worin R1 für Methoxy und R2 für Methyl stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle n :
Verbindungen der allgemeinen Formel I-A, worin R1 für Cl und R2 für Ethyl stehen und
B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 12:
Verbindungen der allgemeinen Formel I-A, worin R1 für F und R2 für Ethyl stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 13: Verbindungen der allgemeinen Formel I-A, worin R1 für Methyl und R2 für Ethyl stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 14:
Verbindungen der allgemeinen Formel I-A, worin R1 für Trifluormethyl und R2 für Ethyl stehen und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 15:
Verbindungen der allgemeinen Formel I-A, worin R1 für Methoxy und R2 für Ethyl stehen und B jeweils einer Zeile der Tabelle A entspricht. Tabelle 16:
Verbindungen der allgemeinen Formel I-B, worin R1 für Cl steht und B jeweils einer
Zeile der Tabelle A entspricht.
Tabelle 17:
Verbindungen der allgemeinen Formel I-B, worin R1 für F steht und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 18: Verbindungen der allgemeinen Formel I-B, worin R1 für Methyl steht und B jeweils einer Zeile der Tabelle A entspricht.
Tabelle 19:
Verbindungen der allgemeinen Formel I-B, worin R1 für Trifluormethyl steht und B je- weils einer Zeile der Tabelle A entspricht.
Tabelle 20:
Verbindungen der allgemeinen Formel I-B, worin R1 für Methoxy steht und B jeweils einer Zeile der Tabelle A entspricht.
Ganz besonders bevorzugt sind die folgenden Nicotinsäureanilide der Formel I:
2-Chlor-N-(3',4'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(31,5'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(3'-chlor-4'-fluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(4'-chlor-3'-fluorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(3',4'-difluorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(2',4'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(2',5'-difluorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(4'-chlor-2'-fluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(2',4'-difluorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(4-fluor-2',4'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(3',4',5'-trifluorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(2',4',5'-trifluorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(4'-chlor-2'-fluor-5'-methoxybiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(3',4'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Trifluormethyl-N-(4-fluor-2',4'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Trifluormethyl-N-(3I,4',5'-trifluorbiphenyl-2-yl)-nicotinamid,
2-Trifluormethyl-N-(2',4',5'-trifluorbiphenyl-2-yl)-nicotinamid,
2-Trifluormethyl-N-(4'-chlor-2'-fluor-5'-methoxybiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(3',4'-difluorbiphenyl-2-yl)-nicotinamid,
2-Trifluormethyl-N-(3',5'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Trifluormethyl-N-(2',4'-dichlorbiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(3'-chlor-4'-fluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(3',4',5'-trifluorbiphenyl-2-yl)-N-methylnicotinamid und 2-Trifluormethyl-N-(3',4',5'-trifluorbiphenyl-2-yl)-N-ethylnicotinamid.
Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Peronosporomyce- ten (syn. Oomyceten) und Basidiomyceten. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt-, Boden- und Beizfungizide eingesetzt werden.
Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Rasen, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbissen, sowie an den Samen dieser Pflanzen.
Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:
Alternaria Arten an Gemüse, Raps, Zuckerrüben und Obst und Reis, z.B. A. solani oder A. alternata an Kartoffeln und Tomaten, - Aphanomyces Arten an Zuckerrüben und Gemüse,
Ascochyta Arten an Getreide and Gemüse,
Bipolaris und Drechslera Arten an Mais, Getreide, Reis und Rasen, z.B. D. maydis an Mais,
Blumeria graminis (Echter Mehltau) an Getreide, - Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Blumen und Weinreben,
Bremia lactucae an Salat,
Cercospora Arten an Mais, Sojabohnen, Reis und Zuckerrüben,
Cochliobolus Arten an Mais, Getreide, Reis, z.B. Cochliobolus sativus an Getreide,
Cochliobolus miyabeanus an Reis, - Colletotricum Arten an Sojabohnen und Baumwolle,
Drechslera Arten, Pyrenophora Arten an Mais, Getreide, Reis und Rasen, z.B. D. teres an Gerste oder D. tritici-repentis an Weizen,
Esca an Weinrebe, verursacht durch Phaeoacremonium chlamydosporium, Ph.
Aleophilum und Formitipora punctata (syn. Phellinus punctatus), - Exserohilum Arten an Mais,
Erysiphe cichoracearum und Sphaerotheca fuliginea an Gurkengewächsen,
Fusarium und Verticillium Arten an verschiedenen Pflanzen, z.B. F. graminearum oder F. culmorum an Getreide oder F. oxysporum an einer Vielzahl von Pflanzen, z.B. Tomaten, - Gaeumanomyces graminis an Getreide,
Gibberella Arten an Getreide und Reis (z.B. Gibberella fujikuroi an Reis),
Grainstaining comp/ex an Reis, Helminthosporium Arten an Mais und Reis,
Michrodochium nivale an Getreide,
Mycosphaerella Arten an Getreide, Bananen und Erdnüssen, z.B. M. graminicola an Weizen oder M. fijiesis an Bananen, - Peronospora-Aύen an Kohl und Zwiebelgewächsen, z.B. P. brassicae an Kohl oder P. destructor an Zwiebel,
Phakopsara pachyrhizi und Phakopsara meibomiae an Sojabohnen,
Phomopsis Arten an Sojabohnen und Sonnenblumen,
Phytophthora infestans an Kartoffeln und Tomaten, - Phytophthora Arten an verschiedenen Pflanzen, z.B. P. capsici an Paprika,
Plasmopara viticola an Weinreben,
Podosphaera leucotricha an Apfel,
Pseudocercosporella herpotrichoides an Getreide,
Pseudoperonospora an verschiedenen Pflanzen, z.B. P. cubensis an Gurke oder P. humili an Hopfen,
Puccinia Arten an verschiedenen Pflanzen, z.B. P. triticina , P. striformins , P. hordei oder P. graminis an Getreide oder P. asparagi an Spargel,
Pyricularia oryzae , Corticium sasakii , Sarocladium oryzae, S. attenuatum, Enty- loma oryzae an Reis, - Pyricularia grisea an Rasen und Getreide,
Pythium spp. an Rasen, Reis, Mais, Baumwolle, Raps, Sonnenblumen, Zuckerrüben, Gemüse und anderen Pflanzen, z.B. P. ultiυmum an verschiedenen Pflanzen, P. aphanidermatum an Rasen,
Rhizoctonia Arten an Baumwolle, Reis, Kartoffeln, Rasen, Mais, Raps, Zuckerrü- ben, Gemüse und an verschiedenen Pflanzen, z.B. R. solani an Rüben und verschiedenen Pflanzen,
Rhynchosporium secalis an Gerste, Roggen und Triticale,
Sclerotinia Arten an Raps und Sonnenblumen,
Septoria tritici und Stagonospora nodorum an Weizen, - Erysiphe (syn. Uncinula) necator an Weinrebe,
Setospaeria Arten an Mais und Rasen,
Sphacelotheca reilinia an Mais,
Thievaliopsis Arten an Sojabohnen und Baumwolle,
Tilletia Arten an Getreide, - Ustilago Arten an Getreide, Mais und Zuckerrohr, z.B. U. maydis an Mais,
Venturia Arten (Schorf) an Äpfeln und Birnen, z.B. V. inaequalis an Apfel.
Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz. Im Holzschutz finden insbesondere folgende Schadpilze Beachtung: Ascomyceten wie Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, ScIe- rophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidi- omyceten wie Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., P/et/- rotus spp., Porta spp., Serpula spp. und Tyromyces spp., Deuteromyceten wie Aspergillus spp., Cladosportum spp., Penicillium spp., Trtchoderma spp., Alternaria spp., Paecilomyces spp. und Zygomycetenwe Mucorspp., darüber hinaus im Material- schütz folgende Hefepilze: Candida spp. und Saccharomyces cerevisae.
Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.
Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95 Gew.-%, vorzugsweise zwischen 0,5 und 90 Gew.-%, Wirkstoff.
Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.
Bei der Saatgutbehandlung, z.B. durch Bestäuben, Beschichten oder Tränken von Saatgut, werden im allgemeinen Wirkstoffmengen von 1 bis 1000 g/100 kg, vorzugs- weise 5 bis 100 g/100 kg, Saatgut benötigt.
Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Kubikmeter behandelten Materials.
Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung I gewährleisten.
Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwen- düng von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:
- Wasser, aromatische Lösungsmittel (z.B. Solvesso® Produkte, XyIoI), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Keto- ne (z.B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (N-Methylpyrrolidon und NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und
Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden. - Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen- Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin- Sulfitablaugen und Methylcellulose.
Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsul- fonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfa- tierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfonier- tem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethy- lenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphe- nolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkyl- arylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpoly- glykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.
Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldis- persionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kero- sin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xy- lol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.
Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver und andere feste Trägerstoffe.
Formulierungen für die Saatgutbehandlung können zusätzlich Bindemittel und/oder Geliermittel und gegebenenfalls Farbstoffe enthalten. Bindemittel können zugesetzt werden, um Haftung der Wirkstoffe auf dem Saatgut nach der Behandlung zu erhöhen. Geeignete Bindemittel sind beispielsweise EO/PO Blockcopolymer-Tenside, aber auch Polyvinylalcohole, Ppolyvinylpyrrolidone, Polyacry- late, Polymethacrylate, Polybutene, Polyisobutylene, Polystyrole, Polyethylenamine, Polyethylenamide, Polyethylenimine (Lupasol®, Polymin®), Polyether, Polyurethane, Polyvinylacetate, Tylose und Copolymere aus diesen Polymeren. Ein geeignetes Geliermittel ist beispielsweise Carrageen (Satiagel®).
Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugs- weise zwischen 0,1 und 90 Gew.-%, des Wirkstoffs I. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.
Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1 %.
Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.
Für die Saatgutbehandlung ergeben die betreffenden Formulierungen nach zwei- bis zehnfacher Verdünnung Wirkstoffkonzentrationen von 0,01 bis 60 Gew.-%, bevorzugt 0,1 bis 40 Gew.-% in den fertig verwendbaren Zubereitungen.
Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser
A) Wasserlösliche Konzentrate (SL)
10 Gew.-Teile einer erfindungsgemäßen Verbindung I werden mit 90 Gew.-Teilen Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff. Man erhält auf diese Weise eine Formulierung mit einem Wirkstoffgehalt von 10 Gew.- %.
B) Dispergierbare Konzentrate (DC)
20 Gew.-Teile einer erfindungsgemäßen Verbindung I werden in 70 Gew.-Teilen Cyc- lohexanon unter Zusatz von 10 Gew.-Teilen eines Dispergiermittels z.B. Polyvinylpyr- rolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion. Der Wirkstoffgehalt beträgt 20 Gew.-%.
C) Emulgierbare Konzentrate (EC)
15 Gew.-Teile einer erfindungsgemäßen Verbindung I werden in 75 Gew.-Teilen XyIoI unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 Gew.- Teile) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion. Die Formulierung hat einen Wirkstoffgehalt von 15 Gew.-%.
D) Emulsionen (EW, EO)
25 Gew.-Teile einer erfindungsgemäßen Verbindung I werden in 35 Gew.-Teilen XyIoI unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 Gew.- Teile) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (z.B. Ultraturax) in 30 Gew.Teile Wasser gegeben und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion. Die Formulierung hat einen Wirkstoffgehalt von 25 Gew.-%.
E) Suspensionen (SC, OD)
20 Gew.-Teile einer erfindungsgemäßen Verbindung I werden unter Zusatz von 10 Gew.-Teilen Dispergier- und Netzmitteln und 70 Gew.-Teilen Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs. Der Wirkstoffgehalt in der Formulierung beträgt 20 Gew.-% .
F) Wasserdispergierbare und wasserlösliche Granulate (WG, SG)
50 Gew.-Teile einer erfindungsgemäßen Verbindung I werden unter Zusatz von 50 Gew-Teilen Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dis- persion oder Lösung des Wirkstoffs. Die Formulierung hat einen Wirkstoffgehalt von 50 Gew.-%.
G) Wasserdispergierbare und wasserlösliche Pulver (WP, SP) 75 Gew.-Teile einer erfindungsgemäßen Verbindung I werden unter Zusatz von 25 Gew.-Teilen Dispergier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermählen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs. Der Wirkstoffgehalt der Formulierung beträgt 75 Gew.-%.
2. Produkte für die Direktapplikation
H) Stäube (DP)
5 Gew.-Teile einer erfindungsgemäßen Verbindung I werden fein gemahlen und mit 95
Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubemittel mit einem Wirkstoffgehalt von 5 Gew.-%.
J) Granulate (GR1 FG1 GG, MG)
0,5 Gew.-Teile einer erfindungsgemäßen Verbindung I werden fein gemahlen und mit 99,5 Gew.-Teilen Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation mit einem Wirkstoffgehalt von 0,5 Gew.-%.
K) ULV-Lösungen (UL)
10 Gew.-Teile einer erfindungsgemäßen Verbindung I werden in 90 Gew.-Teilen eines organischen Lösungsmittels, z.B. XyIoI, gelöst. Dadurch erhält man ein Produkt für die Direktapplikation mit einem Wirkstoffgehalt von 10 Gew.-%.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubmitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Ver- wendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.
Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet wer- den. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.
Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.
Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können üblicherweise zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1 :100 bis 100:1 , bevorzugt 1 :10 bis 10:1, gemischt werden.
Als Adjuvants in diesem Sinne kommen insbesondere in Frage: organisch modifizierte Polysiloxane, z.B. Break Thru S 240®; Alkoholalkoxylate, z. B. Atplus 245®, Atplus MBA 1303®, Plurafac LF 300® und Lutensol ON 30®; EO-PO-Blockpolymeiϊsate, z. B. Pluro- nic RPE 2035® und Genapol B®; Alkoholethoxylate, z. B. Lutensol XP 80®; und Natri- umdioctylsulfosuccinat, z. B. Leophen RA®.
Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren wie Prohexadion-Ca, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel mit einem oder mehreren weiteren Wirkstoffen, insbesondere Fungiziden, kann in vielen Fällen das Wirkungsspektrum verbreitert oder Resistenzentwicklungen vorgebeugt werden. In vielen Fällen erhält man dabei synergistische Effekte.
Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken :
Strobilurine
Azoxystrobin, Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim-methyl, Metomi- nostrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin, Orysastrobin, (2-Chlor-5-[1-(3- methyl-benzyloxyimino)-ethyl]-benzyl)-carbaminsäuremethylester, (2-Chlor-5-[1 -(6- methyl-pyridin-2-ylmethoxyimino)-ethyl]-benzyl)-carbaminsäuremethyl ester, 2-(ortho- (2,5-Dimethylphenyl-oxymethylen)phenyl)-3-methoxy-acrylsäuremethylester;
Carbonsäureamide - Carbonsäureanilide: Benalaxyl, Benodanil, Boscalid, Carboxin, Mepronil, Fenfuram, Fenhexamid, Flutolanil, Furametpyr, Metalaxyl, Ofurace, Oxadixyl, Oxycarboxin, Penthiopyrad, Thifluzamid, Tiadinil, 4-Difluormethyl-2-methyl-thiazol-5-carbonsäure- (4'-brom-biphenyl-2-yl)-amid, 4-Difluormethyl-2-methyl-thiazol-5-carbonsäure-(4'-tri- fluormethyl-biphenyl-2-yl)-amid, 4-Difluormethyl-2-methyl-thiazol-5-carbonsäure-(4'- chlor-3'-fluor-biphenyl-2-yl)-amid, 3-Difluormethyl-1 -methyl-pyrazol-4-carbonsäure- (3',4'-dichlor-4-fluor-biphenyl-2-yl)-amid, 3,4-Dichlor-isothiazol-5-carbonsäure-(2- cyano-phenyl)-amid;
- Carbonsäuremorpholide: Dimethomorph, Flumorph;
- Benzoesäureamide: Flumetover, Fluopicolid (Picobenzamid), Zoxamid; - Sonstige Carbonsäureamide: Carpropamid, Diclocymet, Mandipropamid, N-(2-(4-[3- (4-Chlor-phenyl)-prop-2-inyloxy]-3-methoxy-phenyl)-ethyl)-2-methansulfonylamino- 3-methyl-butyramid, N-(2-(4-[3-(4-Chlor-phenyl)-prop-2-inyloxy]-3-methoxy-phenyl)- ethyl)-2-ethansulfonylamino-3-methyl-butyramid;
Azole
- Triazole: Bitertanol, Bromuconazol, Cyproconazol, Difenoconazol, Diniconazol, Enilconazol, Epoxiconazol, Fenbuconazol, Flusilazol, Fluquinconazol, Flutriafol, Hexaconazol, Imibenconazol, Ipconazol, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prothioconazol, Simeconazol, Tebuconazol, Tetraconazol, Triadi- menol, Triadimefon, Triticonazol;
- Imidazole: Cyazofamid, Imazalil, Pefurazoat, Prochloraz, Triflumizol; - Benzimidazole: Benomyl, Carbendazim, Fuberidazol, Thiabendazol;
- Sonstige: Ethaboxam, Etridiazol, Hymexazol;
Stickstoffhaltige Heterocyclylverbindungen
- Pyridine: Fluazinam, Pyrifenox, 3-[5-(4-Chlor-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]- pyridin;
- Pyrimidine: Bupirimat, Cyprodinil, Ferimzone, Fenarimol, Mepanipyrim, Nuarimol, Pyrimethanil;
- Piperazine: Triforin;
- Pyrrole: Fludioxonil, Fenpiclonil; - Morpholine: Aldimorph, Dodemorph, Fenpropimorph, Tridemorph;
- Dicarboximide: Iprodione, Procymidon, Vinclozolin;
- sonstige: Acibenzolar-S-methyl, Anilazin, Captan, Captafol, Dazomet, Diclomezin, Fenoxanil, Folpet, Fenpropidin, Famoxadon, Fenamidon, Octhilinone, Probenazol, Proquinazid, Pyroquilon, Quinoxyfen, Tricyclazol, 5-Chlor-7-(4-methyl-piperidin-1- yl)-6-(2,4,6-trifluor-phenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidin, 2-Butoxy-6-iodo-3-propyl- chromen-4-on, 3-(3-Brom-6-fluoro-2-methyl-indol-1 -sulfonyl)-[1 ,2,4]triazol-1 -sulfon- säuredimethylamid;
Carbamate und Dithiocarbamate - Dithiocarbamate: Ferbam, Mancozeb, Maneb, Metiram, Metam, Propineb, Thiram, Zineb, Ziram;
- Carbamate: Diethofencarb, Flubenthiavalicarb, Iprovalicarb, Propamocarb, 3-(4-Chlor-phenyl)-3-(2-isopropoxycarbonylamino-3-methyl-butyrylamino)-propion- säuremethylester, N-(1 -(1 -(4-cyanophenyl)ethansulfonyl)-but-2-yl)-carbaminsäure- (4-fluorphenyl)ester;
Sonstige Fungizide
- Guanidine: Dodin, Iminoctadin, Guazatin;
- Antibiotika: Kasugamycin, Polyoxin, Streptomycin, Validamycin A; - Organometallverbindungen: Fentin-Salze;
- Schwefelhaltige Heterocyclylverbindungen: Isoprothiolan, Dithianon;
- Organophosphorverbindungen: Edifenphos, Fosetyl, Fosetyl-aluminium, Iprobenfos, Pyrazophos, Tolclofos-methyl, Phosphorige Säure und ihre Salze;
- Organochlorverbindungen: Thiophanat-Methyl, Chlorthalonil, Dichlofluanid, ToIyIfIu- anid, Flusulfamid, Phthalid, Hexachlorbenzol, Pencycuron, Quintozen;
- Nitrophenylderivate: Binapacryl, Dinocap, Dinobuton; - Anorganische Wirkstoffe: Bordeaux Brühe, Kupferacetat, Kupferhydroxid, Kupfer- oxychlorid, basisches Kupfersulfat, Schwefel;
- Sonstige: Spiroxamine, Cyflufenamid, Cymoxanil, Metrafenon.
Synthesebeispiele
Beispiel 1 : ΛAß^'-Dichlorbiphenyl^-yl^-ttrifluormethyOnicotinamid Zu einer Lösung von 0,20 g 2-(Trifluormethyl)nicotinsäure und 0,21 g Triethylamin in 30 ml Dichlormethan wurden bei 00C 0,25 g 3',4'-Dichlor-2-aminobiphenyl und 0,40 g Bis- (2-oxo-3-oxazolidinyl)phosphorylchlorid gegeben. Die Mischung wurde 15 Minuten bei 00C und anschließend für 12 Stunden bei Raumtemperatur gerührt. Danach wurde sukzessive mit verdünnter Salzsäure, zwei mal mit wässriger Natriumhydrogencarbo- natlösung und mit Wasser gewaschen. Die organische Phase wurde getrocknet und eingeengt. Das Rohprodukt wurde durch Säulenchromatographie mit Cyclohe- xan/Methyl-fe/ϊ-butylether 1 :2 an Kieselgel gereinigt. Man erhielt dadurch 0,21 g des gewünschten Produktes als beige Kristalle.
2-Chlor-N-(4'-chlor-2'-fluorbiphenyl-2-yl)-nicotinamid:
Zu einer Lösung von 0,29 g 4'-Chlor-2'-fluor-2-aminobiphenyl und 0,15 g Pyridin in 10 ml Toluol wurden bei Raumtemperatur 0,23 g 2-Chlornicotinsäurechlorid getropft und das Gemisch 16 Stunden bei Raumtemperatur nachgerührt. Es wurden 10 ml Tetra- hydrofuran und 30 ml Methyl- fe/f-butylether zugesetzt und die organische Phase wurde sukzessive mit 2%iger Salzsäure, 2%iger Natronlauge und anschließend mit verdünnter wässriger Natriumchloridlösung gewaschen. Die organische Phase wurde getrocknet und im Vakuum eingeengt. Das Rohprodukt wurde mit 5 ml Diisopropylether verrührt, der zurückgebliebene Feststoff abgetrennt und getrocknet. Dabei erhielt man 0,34 g des gewünschten Produkts als weißes Pulver vom Fp. 124-1260C.
Nach den hier angegebenen Vorschriften wurden die in der nachfolgenden Tabelle 21 angegebenen Verbindungen der allgemeinen Formel I mit W = O hergestellt.
Figure imgf000024_0001
Figure imgf000025_0001
Beispiele für die Wirkung gegen Schadpilze
Die fungizide Wirkung der Verbindungen der Formel I ließ sich durch die folgenden Versuche zeigen:
Anwendungsbeispiele
Die Wirkstoffe wurden als eine Stammlösung aufbereitet mit 25 mg Wirkstoff, welcher mit einem Gemisch aus Aceton und/oder Dimethylsulfoxid und dem Emulgator Unipe- rol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Al- kylphenole) im Volumen-Verhältnis Lösungsmittel-Emulgator von 99 zu 1 ad 10 ml aufgefüllt wurde. Anschließend wurde ad 100 ml mit Wasser aufgefüllt. Diese Stammlösung wurde mit dem beschriebenen Lösungsmittel-Emulgator-Wasser Gemisch zu der gewünschten Wirkstoffkonzentration verdünnt. Anwendungsbeispiel 1 - Wirksamkeit gegen die Dürrfleckenkrankheit der Tomate verursacht durch Alternaria solani
Blätter von Topfpflanzen der Sorte "Goldene Königin" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer wässrigen Sporenaufschwemmung von Alternaria solani'm 2 % Biomalzlösung mit einer Dichte von 0.17 x 106 Sporen/ml infiziert. Anschließend wurden die Pflanzen in einer wasserdampf-gesättigten Kammer bei Temperaturen zwischen 20 und 22°C aufgestellt. Nach 5 Tagen hatte sich die Krankheit auf den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.
In diesem Test zeigten die mit 250 mg/l der Verbindungen 21.1, 21.2, 21.3, 21.4, 21.5 und 2i.7 aus Tabelle 21 behandelten Pflanzen maximal 20 % Befall, während die un- behandelten Pflanzen zu 64 % befallen waren.
Anwendungsbeispiel 2 - Wirksamkeit gegen die Netzfleckenkrankheit der Gerste verursacht durch Pyrenophora teres bei 1 Tag protektiver Anwendung
Blätter von in Töpfen gewachsenen Gerstenkeimlingen der Sorte "Hanna" wurden mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. 24 Stunden nach dem Antrocknen des Spritzbelages wurden die Versuchspflanzen mit einer wässrigen Sporensuspension von Pyrenophora [syn. Drechslera] teres, dem Erreger der Netzfleckenkrankheit inokuliert. Anschließend wurden die Ver- suchspflanzen im Gewächshaus bei Temperaturen zwischen 20 und 24° C und 95 bis 100 % relativer Luftfeuchtigkeit aufgestellt. Nach 6 Tagen wurde das Ausmaß der Krankheitsentwicklung visuell in % Befall der gesamten Blattfläche ermittelt.
In diesem Test zeigten die mit 250 mg/l der Verbindungen 21.1 , 21.2, 21.3, 21.4, 21.5 und 21.7 aus Tabelle 21 behandelten Pflanzen maximal 15 % Befall, während die unbehandelten Pflanzen zu 80 % befallen waren.

Claims

Patentansprüche:
1. Nicotinsäureanilide der Formel I
Figure imgf000027_0001
in der die Variablen folgende Bedeutungen haben:
n 0,1 oder 2; m 2 oder 3;
X1 F oder Chlor, wobei im Falle von n = 2 die beiden Reste X1 verschiedene Bedeutungen haben können;
X2 Halogen, wobei die Reste X2 verschiedene Bedeutungen haben können;
Y CN, NO2, Ci-C4-Alkyl, CrC4-Halogenalkyl, Methoxy oder Methylthio; p Null oder 1 ;
R1 Halogen, Methyl, d-C4-Halogenalkyl, Methoxy, Methylthio, Methylsulfinyl oder Methylsulfonyl;
R2 Wasserstoff, Methyl oder Ethyl;
W Sauerstoff oder Schwefel.
2. Nicotinsäureanilide der Formel I nach Anspruch 1 , in der die Variablen folgende Bedeutungen haben:
X2 F oder Chlor;
Y Ci-C4-Alkyl, Ci-C4-Halogenalkyl oder Methoxy; R1 Halogen, Methyl, Trifluormethyl oder Methoxy; R2 Wasserstoff oder Methyl; W Sauerstoff.
3. Nicotinsäureanilide der Formel I nach Anspruch 1 , in der die Variablen folgende Bedeutungen haben:
X2 F oder Chlor; Y Methyl, Difluormethyl, Trifluormethyl oder Methoxy;
R1 F, Cl, Methyl oder Trifluormethyl;
R2 Wasserstoff oder Methyl;
W Sauerstoff. 4. Nicotinsäureanilide der Formel I nach einem der Ansprüche 1 bis 3, in der die Variablen folgende Bedeutungen haben: n Null;
P Nun;
X2 F oder Chlor;
R1 F1 Cl, Methyl oder Trifluormethyl;
R2 Wasserstoff;
W Sauerstoff.
Nicotinsäureanilide der Formel I nach einem der Ansprüche 1 bis 3, in der die
Variablen folgende Bedeutungen haben: n Null;
P Null;
X2 F oder Chlor;
R1 F oder Chlor;
R2 Wasserstoff;
W Sauerstoff.
6. Nicotinsäureanilide der Formel I nach Anspruch 1 , ausgewählt aus der Gruppe bestehend aus:
2-Chlor-N-(3',4'-dichlorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(3',5l-dichlorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(3'-chlor-4'-fluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(4'-chlor-3'-fluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(3',4'-difluorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(2',4'-dichlorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(2',5'-difluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(4'-chlor-2'-fluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(2',4I-difluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(4-fluor-2',4l-dichlorbiphenyl-2-yl)-nicotinamid,
2-Chlor-N-(3',4',5'-trifluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(2',4',51-trifluorbiphenyl-2-yl)-nicotinamidl 2-Chlor-N-(4'-chlor-2'-fluor-5'-methoxybiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(3',4'-dichlorbiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(4-fluor-2',4'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Trifluormethyl-N-(3I,4I,5'-trifluorbiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(2',4',5'-trifluorbiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(4I-chlor-2'-fluor-5'-methoxybiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(3',4I-difluorbiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(3',5'-dichlorbiphenyl-2-yl)-nicotinamid,
2-Trifluormethyl-N-(2',4'-dichlorbiphenyl-2-yl)-nicotinamid, 2-Trifluormethyl-N-(3'-chlor-4'-fluorbiphenyl-2-yl)-nicotinamid, 2-Chlor-N-(3I,4l,5'-trifluorbiphenyl-2-yl)-N-methylnicotinamid und 2-Trifluormethyl-N-(31 I4',5'-trifluorbiphenyl-2-yl)-N-ethylnicotinamid.
7. Mittel zur Bekämpfung von pflanzenpathogenen Schadpilzen, enthaltend eine fungizide Menge einer Verbindung der Formel I gemäß einem der Ansprüche 1 bis 6 und mindestens einen inerten Zusatzstoff.
8. Mittel nach Anspruch 7, enthaltend zusätzlich einen weiteren Wirkstoff.
9. Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Schadpilze, ihren Lebensraum und/oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer fungizid wirksamen Menge einer Verbindung der Formel I gemäß einem der Ansprüche 1 bis 6 behandelt.
10. Verwendung der Verbindungen I gemäß einem der Ansprüche 1 bis 6 zur Bekämpfung von pflanzenpathogenen Schadpilzen.
11. Saatgut enthaltend eine Verbindung der Formel I gemäß einem der Ansprüche 1 bis 6 in einer Menge von 1 bis 1000 g/100 kg.
PCT/EP2006/060754 2005-03-16 2006-03-15 Nicotinsäureanilide, verfahren zu ihrer herstellung und sie enthaltende mittel zur bekämpfung von schadpilzen WO2006097490A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06708777A EP1861369A1 (de) 2005-03-16 2006-03-15 Nicotinsäureanilide, verfahren zu ihrer herstellung und sie enthaltende mittel zur bekämpfung von schadpilzen
BRPI0608709-4A BRPI0608709A2 (pt) 2005-03-16 2006-03-15 nicotinanilidas, agente e processo para combater fungos nocivos fitopatogênicos, uso de um composto, e, semente
US11/885,990 US20080171774A1 (en) 2005-03-16 2006-03-15 Nicotinanilides, Method for Production Thereof and Agents Comprising the Same for Prevention of Fungal Pests
JP2008501303A JP2008533097A (ja) 2005-03-16 2006-03-15 ニコチンアニリド類、その製造方法、およびこれを含む菌類を防除するための組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005012485.2 2005-03-16
DE102005012485 2005-03-16

Publications (1)

Publication Number Publication Date
WO2006097490A1 true WO2006097490A1 (de) 2006-09-21

Family

ID=36581354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/060754 WO2006097490A1 (de) 2005-03-16 2006-03-15 Nicotinsäureanilide, verfahren zu ihrer herstellung und sie enthaltende mittel zur bekämpfung von schadpilzen

Country Status (7)

Country Link
US (1) US20080171774A1 (de)
EP (1) EP1861369A1 (de)
JP (1) JP2008533097A (de)
CN (1) CN101142190A (de)
AR (1) AR053176A1 (de)
BR (1) BRPI0608709A2 (de)
WO (1) WO2006097490A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131739A1 (en) * 2015-02-18 2016-08-25 Bayer Cropscience Aktiengesellschaft Substituted 2-difluoromethyl-nicotin(thio)carboxanilide derivatives and their use as fungicides
WO2017042142A1 (en) 2015-09-07 2017-03-16 Bayer Cropscience Aktiengesellschaft Substituted 2-difluoromethyl-nicotin(thio)carhoxanilide derivatives and their use as fungicides

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105432620B (zh) * 2015-01-12 2017-11-14 四川利尔作物科学有限公司 杀菌组合物及其应用
CN113912534B (zh) * 2021-11-10 2023-07-25 江苏科技大学 一种联苯类杂环化合物、其合成方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545099A2 (de) * 1991-11-22 1993-06-09 BASF Aktiengesellschaft Säureanilid-Derivate und ihre Verwendung zur Bekämpfung von Botrytis
EP0589301A1 (de) * 1992-09-21 1994-03-30 BASF Aktiengesellschaft Carbonsäureanilide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen
JP2001302605A (ja) * 2000-04-20 2001-10-31 Sumitomo Chem Co Ltd ビフェニル化合物およびその用途
WO2002056688A1 (de) * 2001-01-18 2002-07-25 Basf Aktiengesellschaft Fungizide mischungen aus benzophenonen und n-biphenylnikotinamiden

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545099A2 (de) * 1991-11-22 1993-06-09 BASF Aktiengesellschaft Säureanilid-Derivate und ihre Verwendung zur Bekämpfung von Botrytis
EP0589301A1 (de) * 1992-09-21 1994-03-30 BASF Aktiengesellschaft Carbonsäureanilide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen
JP2001302605A (ja) * 2000-04-20 2001-10-31 Sumitomo Chem Co Ltd ビフェニル化合物およびその用途
WO2002056688A1 (de) * 2001-01-18 2002-07-25 Basf Aktiengesellschaft Fungizide mischungen aus benzophenonen und n-biphenylnikotinamiden

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131739A1 (en) * 2015-02-18 2016-08-25 Bayer Cropscience Aktiengesellschaft Substituted 2-difluoromethyl-nicotin(thio)carboxanilide derivatives and their use as fungicides
WO2017042142A1 (en) 2015-09-07 2017-03-16 Bayer Cropscience Aktiengesellschaft Substituted 2-difluoromethyl-nicotin(thio)carhoxanilide derivatives and their use as fungicides

Also Published As

Publication number Publication date
EP1861369A1 (de) 2007-12-05
AR053176A1 (es) 2007-04-25
CN101142190A (zh) 2008-03-12
JP2008533097A (ja) 2008-08-21
BRPI0608709A2 (pt) 2010-01-26
US20080171774A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
EP1856055B1 (de) Pyrazolcarbonsäureanilide, verfahren zu ihrer herstellung und sie enthaltende mittel zur bekämpfung von schadpilzen
WO2006120219A1 (de) Pyrazolcarbonsäureamide als fungizide
WO2008053044A2 (de) Hetarylcarbonsäure-n-(biphen-2-yl)amid-verbindungen
WO2006092428A2 (de) 2-substituierte 7-amino-azolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1910373A1 (de) Fungizide 6-phenyl-triazolopyrimidinylamine
WO2006092412A1 (de) 5,6-dialkyl-7-amino-azolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1861369A1 (de) Nicotinsäureanilide, verfahren zu ihrer herstellung und sie enthaltende mittel zur bekämpfung von schadpilzen
EP1888545B1 (de) Thiazolcarbonsäureanilide
WO2006092414A1 (de) 5,6-dialkyl-7-amino-azolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1910372A1 (de) Fungizide 5-alkyl-6-phenyl-pyrazolopyrimidin-7-ylamine
WO2007048734A1 (de) Verwendung von 5-amino-pyrazolen zur bekämpfung pflanzenpathogener schadpilze, neue 5-amino-pyrazole, verfahren zu ihrer herstellung und sie enthaltende mittel
WO2006092411A1 (de) 5,6-dialkyl-7-amino-azolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1910371A1 (de) Fungizide 5-methyl-6-phenyl-pyrazolopyrimidin-7-ylamine
EP1915376B1 (de) Fungizide 6-phenyl-pyrazolopyrimidin-7-ylamine
EP1909580A1 (de) Fungizide 5-methyl-6-phenyl-triazolopyrimidinylamine
DE102005021367A1 (de) Thiazolcarbonsäureanilide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006708777

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11885990

Country of ref document: US

Ref document number: 3362/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008501303

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680008584.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006708777

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0608709

Country of ref document: BR

Kind code of ref document: A2