WO2006097031A1 - Procede de transmission de message dans le reseau du protocole internet mobile - Google Patents

Procede de transmission de message dans le reseau du protocole internet mobile Download PDF

Info

Publication number
WO2006097031A1
WO2006097031A1 PCT/CN2006/000238 CN2006000238W WO2006097031A1 WO 2006097031 A1 WO2006097031 A1 WO 2006097031A1 CN 2006000238 W CN2006000238 W CN 2006000238W WO 2006097031 A1 WO2006097031 A1 WO 2006097031A1
Authority
WO
WIPO (PCT)
Prior art keywords
firewall
message
packet
mobile node
home agent
Prior art date
Application number
PCT/CN2006/000238
Other languages
English (en)
French (fr)
Inventor
Hongke Zhang
Sidong Zhang
Shen Yang
Wei Su
Yan Ren
Zuzhou Zheng
Yajuan Qin
Shuai Gao
Jianglin Wang
Ying Liu
Fuyou Miao
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to AT06705659T priority Critical patent/ATE497334T1/de
Priority to DE602006019827T priority patent/DE602006019827D1/de
Priority to EP06705659A priority patent/EP1853031B1/en
Publication of WO2006097031A1 publication Critical patent/WO2006097031A1/zh
Priority to US11/855,696 priority patent/US8015603B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/029Firewall traversal, e.g. tunnelling or, creating pinholes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • H04L63/164Implementing security features at a particular protocol layer at the network layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • H04W80/045Network layer protocols, e.g. mobile IP [Internet Protocol] involving different protocol versions, e.g. MIPv4 and MIPv6
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless

Definitions

  • the present invention relates to Mobile Internet Protocol (MIP) technology, and more particularly to a message delivery method in a mobile internet protocol network.
  • MIP Mobile Internet Protocol
  • the MIPv6 network it mainly includes network entities such as mobile nodes, communication peers, and home agents.
  • the mobile node refers to a mobile terminal device;
  • the communication peer refers to a node that communicates with the mobile node, which may be mobile or fixed;
  • the home agent is running on the mobile node's home network link.
  • the router which intercepts the message sent to the mobile node from the home link, and forwards the intercepted message to the mobile node.
  • each mobile node has a permanent IP address called a home address, and the home address does not change with the location of the mobile node; in addition, when the mobile node is in the foreign network, it also has a care-of address. That is, the temporary address used by the mobile node to identify the location where it is located, and the care-of address changes as the location of the mobile node changes.
  • the home address is bound to the care-of address currently used by the mobile node, and when the care-of address changes, the home address and the current care-of address are re-established. Binding relationship.
  • the binding between the above home address and the care-of address is achieved by a binding update process specified by the protocol. Referring to Figure 2, the existing binding update process includes The following steps are based on:
  • Step 201 The mobile node sends a binding update message (BU) to the home agent to bind the home address with the current care-of address.
  • BU binding update message
  • Serial number (seq#): The home agent uses the serial number to identify the order of the BU, and the mobile node pairs the issued BU with the received binding update confirmation message (BA) according to the serial number.
  • Lifetime Indicates the effective time of the BU, which is the difference between the current time and the expiration time of the BU. If the time to live is 0, the home agent will delete the binding corresponding to the BU.
  • Alternate - of Address option Indicates the care-of address to be updated. Although the source address of the BU is usually the care-of address to be updated, since the source address is not protected by the IPsec protocol, it is prone to tampering due to the attack. Therefore, the MIPv6 protocol is forwarded through the update of the local office.
  • the address option carries the care-of address in the BU to be protected by the IPsec protocol.
  • Step 202 The home agent returns a BA message to the mobile node, indicating the acceptance of the BU corresponding to the BA by the home agent.
  • the BA message in this step carries the following cells:
  • Status Indicates the processing of the BU corresponding to the BA by the home agent. For example, a status of 0 indicates that the home agent accepted the binding update requested by the BU corresponding to the BA.
  • Lifetime The home agent notifies the mobile node of the validity time of the current binding through Lifetime in the BA.
  • Binding Refresh Advice option The home agent uses this option to indicate to the mobile node when the BU needs to be sent again to refresh the binding.
  • the time value carried in the binding update suggestion option is usually less than Lifetime. Value.
  • the mobile node interacts with the home agent to complete the hometown.
  • a binding update between the address and the current care-of address is Moreover, when the home agent accepts the binding update proposed by the mobile node, the home agent records the correspondence between the home address of the mobile node and the current care-of address.
  • the mobile node and the communication peer exchange the packets through the bidirectional tunnel mode or the route optimization mode.
  • the two-way tunnel refers to a packet tunnel established between the communication node and the mobile node through the home agent.
  • the bidirectional tunnel mode ensures that the mobile node can always be accessed.
  • Route optimization refers to the process of directly interacting between a mobile node and a communication peer that supports MIPv6.
  • the route optimization mode eliminates the transmission delay associated with bidirectional tunneling and provides sufficient performance for time-critical traffic services such as Voice over Internet Protocol (VoIP).
  • VoIP Voice over Internet Protocol
  • the mobile node and the communication peer use the bidirectional tunnel mode and the route optimization mode to implement packet exchange as follows:
  • the packet between the mobile node and the home agent is marked with the internal IP header and the external IP header, and the two IP headers contain the source address and the destination address.
  • the source address of the external IP header of the mobile node to the home agent is the current care-of address of the mobile node, and the destination address is the address of the home agent; the internal IP header
  • the source address is the home address of the mobile node, and the destination address is the address of the communication peer.
  • the peer end, thereby realizing the message transmission from the mobile node to the communication peer.
  • the packet sent by the communication peer contains only one IP header, where the source address is the address of the communication peer, the destination address is the home address of the mobile node, and the home agent intercepts the 4 After the text, the IP header is encapsulated outside the original IP header.
  • the source address of the encapsulated IP header is the address of the home agent, and the destination address is the current care-of address of the mobile node. Then, after the home agent encapsulates the packet, Routing to the mobile node, thereby enabling the communication of the communication peer to the mobile node. At this point, the packet interaction between the mobile node and the communication peer in the bidirectional tunnel mode is completed. In the route optimization mode, before the packet is exchanged, the mobile node needs to register the binding relationship between the home address and the current care-of address on the communication peer end, and then the packet from the communication peer end to the mobile node is used as the address of the communication peer end. The source address and the current care-of address of the mobile node are used as the destination address; and the current care-of address is used as the source address and the address of the communication peer is used in the packet from the mobile node to the communication peer.
  • the communication peer When the communication peer sends a message to the mobile node, the communication peer first searches in the binding relationship saved by itself, and finds the current care-of address of the mobile node; then, the communication peer directly sends the message to the mobile node. At the current care-of address, the message arrives at the mobile node. When the mobile node sends a message to the communication terminal, the message from the mobile node is directly sent to the communication peer. So far, the message interaction between the mobile node and the communication peer in the route optimization mode is implemented.
  • a firewall is a collection of components that are located between multiple networks and implement inter-network access control.
  • a network that includes a firewall all network traffic between the internal network and the external network must pass through the firewall. Only traffic that conforms to the security policy can pass through the firewall, and the firewall itself has strong anti-attack immunity.
  • the port number indicated in the (UDP) section determines the connection type of the packet. If the connection is secure and allowed to pass, the firewall allows the packet to traverse. Otherwise, the packet is directly discarded.
  • the message can reach the destination; and those messages that do not meet the firewall traversal condition are directly discarded by the firewall.
  • IPsec network security
  • the packets between the mobile node and the home agent encapsulated by the network security (IPsec) protocol include an IP address, an encapsulated secure payload protocol (ESP), TCP/UDP, and data (Data).
  • ESP encapsulated secure payload protocol
  • TCP/UDP TCP/UDP
  • Data data
  • the ESP, TCP/UDP, and Data sections are encrypted by the IPsec protocol.
  • the IPsec packet is not allowed to pass. Therefore, the existence of a firewall that does not support IPsec blocks the normal between the mobile node and the home agent.
  • the shortcomings of the data transmission method of the existing MIPv6 network are: When there is a firewall between the home agent and the mobile node that does not support the IPsec protocol, the BU message sent by the mobile node to the home agent will be directly lost. Abandoned, the home agent is unable to receive the binding of the home address and the care-of address because the BU message is not received. In the case that the binding update fails, the packet interaction between the mobile node and the communication peer cannot be implemented, regardless of whether the bidirectional tunnel mode or the route optimization mode is adopted.
  • the transmission path of the message is: mobile node-home agent-communication peer, or communication peer-home agent-mobile node, because there is no support for IPsec between the home agent and the mobile node
  • the firewall of the protocol cannot perform normal packet interaction.
  • the object of the present invention is to provide a message transmission method in a mobile internet protocol network.
  • a firewall that does not support the IPsec protocol exists between the mobile node and the home agent, the mobile node and the communication peer can perform the message. Interaction.
  • the present invention provides a message transmission method in a MIP network, characterized in that the method comprises the following steps:
  • the mobile node sends a first firewall detection packet encapsulated only by the network security IPsec protocol to the home agent and sends another second firewall detection packet encapsulated by the IPsec protocol and the user datagram protocol UDP;
  • the mobile node determines, according to the received firewall detection response message from the home agent, whether there is a firewall blocking the IPsec message between the mobile node and the home agent, and if yes, continues to perform binding update and packet interaction.
  • the process uses the UDP protocol to encapsulate the exchanged packets. Otherwise, the binding update and packet interaction process are continued.
  • the method for determining whether there is a firewall blocking the IPsec message between the mobile node and the home agent is as follows: If the mobile node determines that the received firewall detection response message is the first firewall detection response message, it is determined that there is no firewall blocking the IPsec message between the mobile node and the home agent; if it is determined to be received The firewall detects that the response packet is the second firewall detection response packet, and determines that there is a firewall blocking the IPsec packet between the mobile node and the home agent.
  • the method further includes: when the home agent returns a first firewall detection response message to the mobile node, the firewall detection response message carries the same as the first or second firewall detection logo.
  • the determining method for receiving the first firewall detection response message in the step B1 is: the mobile node parses the received firewall detection response message, and extracts the identifier carried in the firewall detection response message, and The first firewall detects that the identifiers carried in the packets are compared. If they are consistent, it is determined that the first firewall response is received. Otherwise, it is determined that the second firewall detection response packet is received.
  • the maximum number of retransmissions is set in advance, and the step B further includes:
  • the mobile node determines whether the number of times the first firewall detection packet and the second firewall detection packet are sent exceeds the maximum number of retransmissions. If the packet is exceeded, the packet is terminated. The transfer process; if not exceeded, the number of retransmissions is incremented by one, and the step A is returned.
  • the second firewall detection packet includes: a UDP part, configured to carry a UDP port number of the packet;
  • the second firewall detection response packet includes: a UDP part, which is used to carry the UDP port number of the packet.
  • the method for encapsulating packets using the UDP protocol is as follows:
  • the information represented by the TCP/UDP part of the Transmission Control Protocol in the message is stored in the UDP part and inserted into the message.
  • the mobile node and the communication peer can still perform the interaction of the text.
  • the present invention has the following beneficial effects: 1.
  • the mobile node sends a FD (Firewall Detection) packet encapsulated by the UDP protocol and an FD packet encapsulated by the UDP protocol to the home agent, and
  • the received firewall detection reply (FDR, Firewall Detection Reply) message it is determined whether there is a firewall blocking the IPsec message between the mobile node and the home agent, and in the case where the firewall exists, the UDP protocol is used for all subsequent
  • the packet is encapsulated to ensure that the message transmission in the MIP network is not interrupted by the presence of the firewall.
  • the present invention only uses the UDP protocol to encapsulate the packet when the firewall is blocked between the mobile node and the home agent, instead of encapsulating the UDP protocol for all the packets, that is, the UDP can be dynamically configured. Encapsulation reduces network load and reduces network resource consumption.
  • Figure 1 is a schematic diagram of a MIPv6 network structure
  • 2 is a flow chart of binding update signaling of a message transmission method in an existing MIP network
  • FIG. 3 is a flowchart of a message transmission method in a MIP network according to the present invention. Mode for carrying out the invention
  • the present invention is a packet transmission method in a MIP network, and the basic idea is: Before performing the binding update, the mobile node sends two FD packets to the home agent, one of which is encrypted by the IPsec protocol, and the other is encrypted. The FD packet is encrypted by the IPsec protocol and encapsulated by the UDP protocol. The mobile node determines, according to the received FDR packet, whether there is a firewall blocking the IPsec packet between the mobile node and the home agent. If yes, the subsequent binding update is performed. Packets are exchanged and all packets are encapsulated using the UDP protocol; otherwise, subsequent binding updates and packet interactions are performed.
  • the format of the IPsec packet encapsulated by UDP is as shown in Table 2.
  • the UDP part stores the information represented by the TCP/UP part when it is not encrypted. It can be seen that the firewall that does not support IPsec can obtain the TCP/UDP port number of the packet from the UDP part when receiving the packet encapsulated by the UDP protocol, so that the security of the packet can be identified. Therefore, packets encapsulated by the UDP protocol cannot pass through the firewall that does not support IPsec due to the encryption of the TCP UDP part.
  • the present invention detects the existence of the firewall by using a UDP-packaged FD packet and an FD packet not encapsulated by the UDP protocol before the MIP network packet is transmitted.
  • the message transmission method in the MIP network of the present invention includes the following steps:
  • Step 301 The mobile node sends the first FD packet and the second FD packet to the home agent, where the first FD packet is encapsulated by the IPsec protocol, and the second FD packet is encapsulated by the IPsec protocol and the UDP protocol.
  • the second FD packet encapsulated by the UDP can traverse the firewall to reach the home agent, and the first FD packet not encapsulated by the UDP protocol is thrown away.
  • the first and second FD packets in the step carry the cookie identifier. Only FDs and FDRs with the same cookie identifier can correspond to each other.
  • the second FD packet encapsulated by the UDP protocol in this step is: inserting a UDP part in the FD packet not encapsulated by the UDP protocol, the UDP part carrying the UDP port number of the packet, so as to block The firewall of the IPsec packet can be identified and allowed to traverse.
  • Steps 302 to 304 The mobile node determines whether it receives the FDR packet, and if yes, performs step 305; otherwise, determines whether the maximum number of retransmissions is exceeded, and if yes, ends the packet transmission process, if not, Add 1 to the number of retransmissions and return to step 301.
  • the home agent Each time the home agent receives an FD packet, it returns an FDR packet to the mobile node, and returns a second FDR packet encapsulated in UDP when receiving the second FD packet encapsulated in UDP.
  • a FDR packet that is not encapsulated in UDP is returned.
  • the cookie identifier carried in the FDR packet is the same as the cookie identifier in the corresponding FD packet.
  • the mobile node will receive FDR packets; however, when the network If the two FD packets sent in step 301 are lost, the home agent will not return FDR packets to the mobile node.
  • the method of resending the FD packet can be used to effectively detect the firewall.
  • the network administrator presets the maximum number of times. Only when the number of retransmissions of the FD packet is less than or equal to the maximum number of retransmissions, the number of retransmissions is incremented by one, and then the process returns to step 301 to send the FD packet again.
  • Steps 305 to 307. The mobile node determines whether the first FDR packet corresponding to the first FD encapsulated by the IPsec protocol is received, and if yes, performs subsequent binding update and packet interaction; otherwise, performs binding.
  • the update interacts with the message and encapsulates all the packets using the UDP protocol.
  • the method for the mobile node to determine whether to receive the first FDR packet corresponding to the first FD encapsulated by the IPsec protocol is: the mobile node parses the received FDR, and extracts the cookie flag carried therein And if it is consistent, it is determined that the first FDR report corresponding to the first FD encapsulated only by the IPsec protocol is received, if it is consistent with the cookie identifier included in the first FD packet encapsulated by the unused UDP protocol.
  • the binding update process and the packet interaction process in the MIP network are continued.
  • the difference between the existing binding update process and the packet exchange process is as follows: To ensure that each IPsec packet can traverse the firewall, all IPsec packets are encapsulated in UDP protocol, that is, in each packet. The information represented by the TCP/UDP part when it is not encrypted is stored in the UDP part and inserted into the message.

Description

一种移动互联网协议网络中的报文传送方法 技术领域
本发明涉及移动互联网协议(MIP )技术, 尤其涉及一种移动互联网协议 网络中的报文传送方法。 发明背景
目前, 随着硬件技术水平的不断提高, 笔记本电脑、 被称为掌上电脑的个 人数字助理(PDA ) 以及移动电话等移动终端设备的使用越来越普及; 另外, 由于互联网 (Internet ) 的飞速发展, 网絡不仅要为用户继续提供已有的数据业 务、 多媒体音视频业务等, 还要为使用移动终端设备的移动用户提供无线互联 网接入业务。 为了实现移动节点在互联网协议(IP )网络中的可移动性, MIPv6 协议应运而生。
参见图 1, 在 MIPv6网络中, 主要包括移动节点、 通信对端以及家乡代理 等网络实体。 其中, 移动节点是指一个移动终端设备; 通信对端是指与移动节 点进行通信的节点, 它既可以是移动的, 也可以是固定的; 家乡代理是运行在 移动节点的家乡网络链路上的路由器, 它能够从家乡链路上截获发送给移动节 点的报文, 并将所截获的报文转发给移动节点。 在 MIPv6网络中, 每个移动节 点都具有一个被称为是家乡地址的永久 IP地址,家乡地址不随移动节点的位置 改变而发生变化; 另外, 当移动节点处于外地网络时, 还具有一个转交地址, 即移动节点为标识自身所处的位置而使用的临时地址, 转交地址随着移动节点 的位置改变而发生变化。
为了能够实现移动节点与通信对端之间的互通, 家乡地址与移动节点当前 所使用的转交地址之间要进行绑定, 并且在转交地址发生改变时, 重新建立家 乡地址与当前转交地址之间的绑定关系。 上述家乡地址与转交地址之间的绑定 通过协议规定的绑定更新过程得以实现。 参见图 2, 现有的绑定更新过程包括 以下步據:
步骤 201. 移动节点向家乡代理发送绑定更新报文(BU ), 对家乡地址与当 前的转交地址进行绑定。
本步骤的 BU报文中携带了以下信元:
1.序列号(seq# ): 家乡代理使用序列号标识 BU的顺序, 移动节点根据序 列号对发出的 BU与接收到的绑定更新确认报文(BA )进行配对。
2. 生存时间 (Lifetime ): 表明该 BU的有效时间, 即当前时间与该 BU的 失效时间之间的差值。 如果生存时间为 0, 则家乡代理将删除该 BU所对应的 绑定。
3. 更新转交地址选项(Alternate - of Address option ): 表明所要更新的转交 地址。 尽管通常情况下, BU 的源地址即为所要更新的转交地址, 但是由于该 源地址不受 IPsec协议的保护, 则容易发生因受到攻击而被篡改的情况, 因此 MIPv6协议通过本处的更新转交地址选项, 将转交地址携带于 BU中, 以受到 IPsec协议的保护。
步骤 202. 家乡代理向移动节点返回 BA报文, 指明家乡代理对该 BA所对 应的 BU的接受情况。 . 本步骤的 BA消息携带了以下信元:
1. 状态 (Status ): 表明家乡代理对该 BA所对应的 BU的处理, 例如, 状 态为 0表示家乡代理接受了该 BA对应的 BU所请求的绑定更新。
2. seq#: 用以标识相对应的 BU和 BA。
3. Lifetime: 家乡代理通过 BA中的 Lifetime来将当前绑定所剩余的有效时 间通知给移动节点。
4. 绑定更新建议选项 (Binding Refresh Advice option ): 家乡代理利用该选 项来向移动节点指明需要再次发送 BU以便刷新绑定的时间, 绑定更新建议选 项中所携带的时间值通常小于 Lifetime的数值。
通过上述步骤 201至 202, 移动节点与家乡代理通过交互, 完成了对家乡 地址和当前转交地址之间的绑定更新。 并且, 在家乡代理接受了移动节点所提 出的绑定更新时, 家乡代理在自身记录下该移动节点的家乡地址与当前转交地 址的对应关系。
完成绑定更新后, 移动节点与通信对端之间通过双向隧道模式或者路由最 佳化模式实现报文的交互。 其中双向隧道是指通过家乡代理在通信节点和移动 节点间建立的数据包隧道。 在通信对端不支持 MIPv6、 并且移动节点移动到外 地网络的情况下, 双向隧道模式能够确保移动节点总是能够被访问。 路由最佳 化是指在移动节点和支持 MIPv6的通信对端间直接交互报文的过程。路由最佳 化模式消除了与双向隧道相关联的传输延迟, 并能够为具有时间要求的流量业 务提供充足的性能, 例如语音互联网协议业务(VoIP )等。
参见图 1 , 移动节点和通信对端使用双向隧道模式以及路由最佳化模式实 现报文交互的过程如下:
在双向隧道模式下,移动节点和家乡代理之间的报文以内部 IP头和外部 IP 头来标明该报文的地址, 上述两个 IP头中均含有源地址和目的地址两个部分。 当移动节点向通信对端发送报文时, 在移动节点到家乡代理的报文中, 其外部 IP头的源地址为移动节点的当前转交地址、 目的地址为家乡代理的地址; 内部 IP头的源地址为移动节点的家乡地址、 目的地址为通信对端的地址。 移动节点 发出的报文首先根据外部 IP头路由到家乡代理, 家乡代理再将外部 IP头去掉, 并根据内部 IP头的目的地址, 将内部 IP头和该 ^=艮文的其余部分转发给通信对 端, 从而实现移动节点到通信对端的报文传送。 当通信对端向移动节点发送报 文时, 通信对端发出的报文中只包含一个 IP头, 其中的源地址为通信对端的地 址, 目的地址为移动节点的家乡地址; 家乡代理截获该 4艮文后, 在原来的 IP头 外部再封装一个 IP头, 封装的 IP头的源地址是家乡代理的地址、 目的地址是 移动节点的当前转交地址; 而后, 经过家乡代理封装后的报文再路由到移动节 点, 从而实现通信对端到移动节点的拫文传送。 至此, 完成了移动节点与通信 对端在双向隧道模式下的报文交互。 在路由最佳化模式下, 交互报文之前, 移动节点需要在通信对端上注册家 乡地址与当前转交地址的绑定关系, 此后从通信对端到移动节点的报文以通信 对端的地址作为源地址、 以移动节点的当前转交地址作为目的地址; 并且移动 节点到通信对端的报文中将当前的转交地址作为源地址、 将通信对端的地址作
5 为目的地址。 当通信对端向移动节点发送 文时, 首先通信对端在自身所保存 的绑定关系中进行检索, 找到移动节点的当前转交地址; 然后, 通信对端直接 将该报文发送到移动节点的当前转交地址上, 使得该报文到达移动节点。 当移 动节点向通信终端发送报文时, 来自于移动节点的报文直接被发送到通信对端 上。 至此, 实现了移动节点与通信对端在路由最佳化模式下的报文交互。
3 目前, 信息安全问题越来越受到人们的关注, 因此防火墙被广泛的应用于 网络的各个环节中。 所谓防火墙是指位于多个网络之间、 实施网络间访问控制 的一组组件的集合。 在包含防火墙的网络中, 内部网络和外部网絡之间的所有 网络数据流均必须经过防火墙,只有符合安全策略的数据流才能够通过防火墙, 并且防火墙自身具有较强的抗攻击免疫力。
5 防火墙在工作时, 根据报文中的传输控制协议(TCP ) /用户数据报协议
( UDP )部分中所表明的端口号, 判断该报文的连接类型, 如果该连接是安全 的且被允许通过, 则防火墙允许该报文穿越, 否则, 将该报文直接丢弃。
在图 1所示的 MIPv6网络中, 如果移动节点与家乡代理之间存在防火墙, 则两者之间所有的报文均需经过防火墙的过滤, 并且只有防火墙允许穿越的报
) 文, 才能够到达目的地; 而那些不符合防火墙穿越条件的报文则被防火墙直接 丟弃。 如表 1所示, 采用网絡安全(IPsec )协议封装的移动节点与家乡代理之 间的报文包括 IP地址、 封装安全载荷协议( ESP )、 TCP/UDP以及数据(Data ) 等部分。 其中 ESP、 TCP/UDP以及 Data部分均是经过 IPsec协议加密的。 当不 支持 IPsec协议的防火墙接收到上述格式的报文时, 由于无法从该报文中获取
; 到 TCP/UDP端口号, 而无法判断该报文的安全性, 则不允许上述 IPsec报文通 过。 因此不支持 IPsec 的防火墙的存在阻挡了移动节点与家乡代理之间的正常
Figure imgf000007_0001
可见, 现有的 MIPv6网络的数据报文传送方法中存在的缺点是: 当家乡代 理与移动节点之间存在不支持 IPsec协议的防火墙时, 移动节点发送给家乡代 理的 BU报文将被直接丟弃, 家乡代理也由于接收不到 BU报文而无法进行家 乡地址与转交地址的绑定更新。 在绑定更新失败的情况下, 无论采用双向隧道 模式还是路由最佳化模式, 移动节点与通信对端之间无法实现报文的交互。 另 夕卜, 采用双向隧道模式时, 报文的传送路径为: 移动节点 -家乡代理-通信对 端, 或者通信对端 -家乡代理-移动节点, 由于家乡代理与移动节点之间存在 不支持 IPsec协议的防火墙, 则无法正常进行报文的交互。 发明内容
有鉴于此, 本发明的目的在于提供一种移动互联网协议网络中的报文传送 方法, 当移动节点与家乡代理之间存在不支持 IPsec协议的防火墙时, 移动节 点和通信对端能够进行报文的交互。
为实现上述目的, 本发明提供了一种 MIP网絡中的报文传送方法, 其特征 在于, 该方法包括以下步骤:
A. 移动节点向家乡代理发送一个只用网络安全 IPsec协议封装的第一防火 墙检测报文以及发送另一个用 IPsec协议和用户数据报协议 UDP封装的第二防 火墙检测报文;
B. 移动节点根据接收到的来自家乡代理的防火墙检测应答报文,判断所述 移动节点与家乡代理之间是否存在阻挡 IPsec报文的防火墙, 如果是, 则继续 执行绑定更新和报文交互过程, 并采用 UDP协议封装交互的报文, 否则, 继续 执行绑定更新和报文交互过程。
步骤 B所述判断所述移动节点与家乡代理之间是否存在阻挡 IPsec报文的 防火墙的方法为: Bl. 所述移动节点如果确定接收到的防火墙检测应答报文为第一防火墙检 测应答报文, 则判定所述移动节点与家乡代理之间不存在阻挡 IPsec报文的防 火墻; 如果确定接收到的防火墙检测应答报文为第二防火墙检测应答报文, 则 判定所迷移动节点与家乡代理之间存在阻挡 IPsec报文的防火墙。
所述步驟 B1之前,该方法进一步包括: 所述家乡代理向移动节点返回第一 防火墙检测应答报文时, 在所述防火墙检测应答报文中携带与所述第一或第二 防火墙检测相同的标识。
步骤 B1中所述确定接收第一防火墙检测应答报文的确定方法为: 所述移动节点解析所述接收到的防火墙检测应答报文, 提取所述防火墙检 测应答报文中携带的标识, 并与所述第一防火墙检测报文中携带的标识进行比 较, 若一致, 则确定接收到第一防火墙应答^ ^艮文; 否则, 确定接收到第二防火 墙检测应答报文。
预先设置最大重发次数, 则所述步驟 B中进一步包括:
若所述移动节点未接收到所述防火墙检测应答报文, 则判断自身发送第一 防火墙检测报文和第二防火墙检测报文的次数是否超过最大重发次数,若超过, 则结束本报文传送流程; 若未超过, 则将重发次数加 1 , 返回执行所述步骤 A。
所述第二防火墙检测报文包括: UDP部分, 用于携带该报文的 UDP端口 号;
所述第二防火墙检测应答报文包括: UDP部分, 用于携带该报文的 UDP 端口号。
采用 UDP协议封装报文的方法为:
将所述报文中的传输控制协议 TCP/UDP部分在未加密时所代表的信息保 存于 UDP部分中, 并插入到所述拫文中。
应用本发明, 当移动节点与家乡代理之间存在不支持 IPsec协议的防火墙 时, 移动节点和通信对端仍能够进行 4艮文的交互。 具体而言, 本发明具有如下 有益效果: 1. 本发明在进行绑定更新和报文交互之前, 移动节点向家乡代理发送一个 用 UDP协议封装的防火墙检测(FD, Firewall Detection )报文和一个未用 UDP 协议封装的 FD报文,并根据接收到的防火墙检测应答(FDR, Firewall Detection Reply )报文,判断移动节点与家乡代理之间是否存在阻挡 IPsec报文的防火墙, 并在存在上述防火墙的情况下,使用 UDP协议对后续的所有报文进行封装,从 而保证 MIP网络中的报文传送不会因为防火墙的存在而中断。
2. 本发明只有在确定了移动节点与家乡代理之间存在阻挡 IPsec报文的防 火墙时, 才用 UDP协议封装报文, 而非对所有报文均进行 UDP协议的封装, 即能够动态配置 UDP封装, 减轻了网络负担, 减少网络资源的消耗。 附图简要说明
图 1为 MIPv6网络结构示意图;
图 2为现有的 MIP网络中报文传送方法的绑定更新信令流程图;
图 3为本发明的 MIP网络中报文传送方法流程图。 实施本发明的方式
为使本发明的目的、 技术方案更加清楚明白, 以下参照附图并举实施例, 对本发明做进一步的详细说明。
本发明为一种 MIP网络中的报文传送方法, 其基本思想是: 在进行绑定更 新之前, 移动节点向家乡代理发送两个 FD报文, 其中一个 FD报文采用 IPsec 协议加密, 另一个 FD报文采用 IPsec协议加密并用 UDP协议封装, 移动节点 根据接收到的 FDR报文, 判断移动节点与家乡代理之间是否存在阻挡 IPsec报 文的防火墙, 如果是, 则执行后续的绑定更新和报文交互过程, 并使用 UDP协 议封装所有报文; 否则, 执行后续的绑定更新和报文交互过程。
本发明中, 经过 UDP封装的 IPsec报文的格式如表 2所示。
Figure imgf000009_0001
表 2 其中 UDP部分保存的是 TCP/U P部分未加密时所代表的信息。 可见, 不 支持 IPsec的防火墙在接收到经过 UDP协议封装的报文时, 由于能够从 UDP 部分获取到该报文的 TCP/UDP端口号, 从而能够识别该报文的安全性。 因此 经过 UDP协议封装的报文不会由于其 TCP UDP部分的加密而无法穿越不支持 IPsec的防火墙。
基于上述思想, 本发明在 MIP网络报文传送之前, 通过一个经过 UDP封 装的 FD报文和一个未经过 UDP协议封装的 FD报文来检测防火墙的存在。
参见图 3 , 本发明 MIP网络中的报文传送方法包括以下步骤:
步骤 301. 移动节点向家乡代理发送第一 FD报文和第二 FD报文, 其中第 一 FD报文只用 IPsec协议封装, 第二 FD报文用 IPsec协议和 UDP协议封装。
本步驟中, 当移动节点与家乡代理之间存在不支持 IPsec的防火墙时,经过 UDP封装的第二 FD报文能够穿越该防火墙到达家乡代理,而未用 UDP协议封 装的第一 FD报文则被丟弃。并且,为了在后续步驟中便于分辨发出的 FD报文 与接收到的 FDR报文间的对应关系, 本步骤中的第一和第二 FD报文中均携带 有 cookie标识。只有含有相同 cookie标识的 FD和 FDR才能够相互对应。另夕卜, 本步驟中用 UDP协议封装的第二 FD报文是指:在未用 UDP协议封装的 FD报 文中插入 UDP部分,该 UDP部分携带有该报文的 UDP端口号,以便阻挡 IPsec 报文的防火墙能够进行识别, 并允许该报文穿越。
步驟 302 ~ 304. 移动节点判断自身是否接收到 FDR报文, 如果是, 则执行 步骤 305; 否则, 判断是否超过最大重发次数, 如果超过, 则结束本报文传送 流程, 如果未超过, 则将重发次数加 1, 并返回执行步驟 301。
家乡代理每收到一个 FD报文, 都会向移动节点返回一个 FDR报文, 并且 接收到用 UDP封装的第二 FD报文时,返回一个用 UDP封装的第二 FDR报文; 接收到未用 UDP封装的第一 FD报文时, 返回一个未用 UDP封装的笫一 FDR 报文。 另夕卜, FDR报文中所携带的 cookie标识与对应的 FD报文中的 cookie标 识相同。 在网络正常的情况下, 移动节点都会接收到 FDR报文; 但是, 当网絡 状况比较恶劣时, 步骤 301 中所发出的两个 FD报文均丟失, 则家乡代理不会 向移动节点返回 FDR报文。
当移动节点接收不到 FDR报文时, 可以采用重发 FD报文的方法来达到有 效的检测防火墙的目的。 为了避免多次重发报文, 网络管理者预先设置最大重 大次数。 只有在重发 FD报文的次数小于等于该最大重发次数时, 才将重发次 数加 1后, 返回执行步骤 301 , 再次发送 FD报文。
步骤 305 ~ 307. 移动节点判断是否接收到与只用 IPsec协议封装的第一 FD 相对应的第一 FDR报文, 如果是, 则执行后续的绑定更新和报文交互; 否则, 执行绑定更新和报文交互, 并采用 UDP协议封装所有的报文。
此处移动节点判断是否接收到与只用 IPsec协议封装的第一 FD相对应的第 一 FDR报文的方法为: 移动节点对所接收到的 FDR进行解析, 将其中所携带 的 cookie标只提取出来,并与发送出去的未用 UDP协议封装的第一 FD报文中 包含的 cookie标识相比较, 如果一致, 则判定接收到了与只用 IPsec协议封装 的第一 FD相对应的第一 FDR报文, 表明移动节点与家乡代理之间不存在防火 墙或者存在的防火墙支持 IPsec协议; 否则, 判定未接收到与只用 IPsec协议封 装的第一 FD相对应的第一 FDR报文, 表明移动节点之间存在不支持 IPsec协 议的防火墙。
当存在不支持 IPsec协议的防火墙时, 继续执行绑定更新过程以及 MIP网 络中的报文交互过程。但是与现有的绑定更新过程及报文交互过程所不同的是: 为了保证各个 IPsec报文能够穿越防火墙, 此处将所有的 IPsec报文都用 UDP 协议进行封装, 即将各个报文中的 TCP/UDP部分在未加密时所代表的信息保 存于 UDP部分中, 并插入到报文中。 当不存在防火墙或者存在的防火墙支持 IPsec协议时, 由于 IPsec报文能够被顺利发送, 因此继续执行现有的绑定更新 以及^ =艮文交互。
至此, 本发明 MIP网络中的报文传送过程完成。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权利要求书
1、 一种移动互联网协议网络中的报文传送方法, 其特征在于, 该方法包括 以下步骤:
A. 移动节点向家乡代理发送一个只用网络安全 IPsec协议封装的第一防火 墙检测报文以及发送另一个用 IPsec协议和用户数据报协议 UDP封装的第二防 火墙检测报文;
B. 移动节点根据接收到的来自家乡代理的防火墙检测应答报文,判断所述 移动节点与家乡代理之间是否存在阻挡 IPsec报文的防火墙, 如果是, 则继续 执行绑定更新和报文交互过程, 并采用 UDP协议封装交互的报文, 否则, 继续 执行绑定更新和报文交互过程。
2、根据权利要求 1所述的方法, 其特征在于, 步骤 B所述判断所述移动节 点与家乡代理之间是否存在阻挡 IPsec报文的防火墙的方法为:
B1. 所述移动节点如果确定接收到的防火墙检测应答报文为第一防火墙检 测应答报文, 则判定所述移动节点与家乡代理之间不存在阻挡 IPsec报文的防 火墙; 如果确定接收到的防火墙检测应答报文为第二防火墙检测应答报文, 则 判定所述移动节点与家乡代理之间存在阻挡 IPsec报文的防火墙。
3、 根据权利要求 2所述的方法, 其特征在于, 所述步骤 B1之前, 该方法 进一步包括: 所述家乡代理向移动节点返回防火墙检测应答报文时, 在所述防 火墙检测应答报文中携带与所述第一或第二防火墙检测报文相同的标识。
4、 根据权利要求 3所述的方法, 其特征在于, 步骤 B1中所述确定接收到 的防火墙检测应答报文的方法为:
所述移动节点解析所述接收到的防火墙检测应答报文, 提取所述防火墙检 测应答报文中携带的标识, 并与所述第一防火墙检测报文中携带的标识进行比 较, 若一致, 则确定接收到第一防火墙应答报文; 否则, 确定接收到第二防火 墙检测应答报文。
5、 根据权利要求 1所述的方法, 其特征在于, 预先设置最大重发次数, 则 所述步骤 B中进一步包括:
若所述移动节点未接收到所述防火墙检测应答报文, 则判断自身发送第一 防火墙检测报文和第二防火墙检测报文的次数是否超过最大重发次数,若超过, 则结束本报文传送流程; 若未超过, 则将重发次数加 1 , 返回执行所述步骤 A。
6、 根据权利要求 1所述的方法, 其特征在于, 所述第二防火墙检测报文包 括: UDP部分, 用于携带该报文的 UDP端口号;
所述第二防火墙检测应答报文包括: UDP部分, 用于携带该报文的 UDP 端口号。
7、 根据权利要求 6所述的方法, 其特征在于, 采用 UDP协议封装报文的 方法为:
将所述报文中的传输控制协议 TCP/UDP 部分在未加密时所代表的信息保 存于 UDP部分中, 并插入到所述报文中。
PCT/CN2006/000238 2005-03-15 2006-02-20 Procede de transmission de message dans le reseau du protocole internet mobile WO2006097031A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT06705659T ATE497334T1 (de) 2005-03-15 2006-02-20 Verfahren und vorrichtung zur nachrichtenübertragung in einem mobile-ip-netz
DE602006019827T DE602006019827D1 (de) 2005-03-15 2006-02-20 Verfahren und vorrichtung zur nachrichtenübertragung in einem mobile-ip-netz
EP06705659A EP1853031B1 (en) 2005-03-15 2006-02-20 Method and apparatus for transmitting messages in a mobile internet protocol network
US11/855,696 US8015603B2 (en) 2005-03-15 2007-09-14 Method and mobile node for packet transmission in mobile internet protocol network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510055313.8 2005-03-15
CNB2005100553138A CN100414929C (zh) 2005-03-15 2005-03-15 一种移动互联网协议网络中的报文传送方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/855,696 Continuation US8015603B2 (en) 2005-03-15 2007-09-14 Method and mobile node for packet transmission in mobile internet protocol network

Publications (1)

Publication Number Publication Date
WO2006097031A1 true WO2006097031A1 (fr) 2006-09-21

Family

ID=36991275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000238 WO2006097031A1 (fr) 2005-03-15 2006-02-20 Procede de transmission de message dans le reseau du protocole internet mobile

Country Status (6)

Country Link
US (1) US8015603B2 (zh)
EP (1) EP1853031B1 (zh)
CN (1) CN100414929C (zh)
AT (1) ATE497334T1 (zh)
DE (1) DE602006019827D1 (zh)
WO (1) WO2006097031A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149086A (zh) * 2010-02-10 2011-08-10 华为技术有限公司 一种移动ip节点的地址更新方法及ip节点设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964327B1 (en) * 2005-12-23 2009-06-24 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Method and apparatus for route optimization in a telecommunication network
CN101399754B (zh) * 2007-09-28 2011-04-20 华为技术有限公司 一种移动ip穿越防火墙的方法及设备
CN101150511B (zh) * 2007-10-26 2011-09-07 杭州华三通信技术有限公司 网络节点发送协议报文的方法及装置
CN101534289B (zh) * 2008-03-14 2012-05-23 华为技术有限公司 防火墙穿越方法、节点设备和系统
CN102932767B (zh) * 2011-08-11 2017-02-01 中兴通讯股份有限公司 一种信息传输方法、分组数据网关及策略和计费规则功能
US9100324B2 (en) 2011-10-18 2015-08-04 Secure Crossing Research & Development, Inc. Network protocol analyzer apparatus and method
TWI535246B (zh) * 2015-03-05 2016-05-21 智邦科技股份有限公司 封包傳輸方法
US11539668B2 (en) * 2020-06-03 2022-12-27 Juniper Networks, Inc. Selective transport layer security encryption

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317792A (en) * 1996-09-18 1998-04-01 Secure Computing Corp Virtual Private Network for encrypted firewall
US20020174335A1 (en) * 2001-03-30 2002-11-21 Junbiao Zhang IP-based AAA scheme for wireless LAN virtual operators
EP1424828A2 (en) * 2002-11-28 2004-06-02 NTT DoCoMo, Inc. Communication control apparatus, firewall apparatus, and data communication method

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898830A (en) * 1996-10-17 1999-04-27 Network Engineering Software Firewall providing enhanced network security and user transparency
US5983350A (en) * 1996-09-18 1999-11-09 Secure Computing Corporation Secure firewall supporting different levels of authentication based on address or encryption status
FI105753B (fi) * 1997-12-31 2000-09-29 Ssh Comm Security Oy Pakettien autentisointimenetelmä verkko-osoitemuutosten ja protokollamuunnosten läsnäollessa
US7032242B1 (en) * 1998-03-05 2006-04-18 3Com Corporation Method and system for distributed network address translation with network security features
US6957346B1 (en) * 1999-06-15 2005-10-18 Ssh Communications Security Ltd. Method and arrangement for providing security through network address translations using tunneling and compensations
US7051365B1 (en) * 1999-06-30 2006-05-23 At&T Corp. Method and apparatus for a distributed firewall
US7023863B1 (en) * 1999-10-29 2006-04-04 3Com Corporation Apparatus and method for processing encrypted packets in a computer network device
US7058973B1 (en) * 2000-03-03 2006-06-06 Symantec Corporation Network address translation gateway for local area networks using local IP addresses and non-translatable port addresses
US6668282B1 (en) * 2000-08-02 2003-12-23 International Business Machines Corporation System and method to monitor and determine if an active IPSec tunnel has become disabled
AU2002239249A1 (en) * 2000-11-13 2002-06-03 Ecutel, Inc System and method for secure network mobility
US20020083344A1 (en) * 2000-12-21 2002-06-27 Vairavan Kannan P. Integrated intelligent inter/intra networking device
US7246175B1 (en) * 2001-12-07 2007-07-17 Cisco Technology, Inc. IPv6 over MPLS IPv4 core
US7079520B2 (en) * 2001-12-28 2006-07-18 Cisco Technology, Inc. Methods and apparatus for implementing NAT traversal in mobile IP
US20030135616A1 (en) * 2002-01-11 2003-07-17 Carrico Sandra Lynn IPSec Through L2TP
US7181612B1 (en) * 2002-01-17 2007-02-20 Cisco Technology, Inc. Facilitating IPsec communications through devices that employ address translation in a telecommunications network
US7979528B2 (en) * 2002-03-27 2011-07-12 Radvision Ltd. System and method for traversing firewalls, NATs, and proxies with rich media communications and other application protocols
US7188365B2 (en) * 2002-04-04 2007-03-06 At&T Corp. Method and system for securely scanning network traffic
US7095738B1 (en) * 2002-05-07 2006-08-22 Cisco Technology, Inc. System and method for deriving IPv6 scope identifiers and for mapping the identifiers into IPv6 addresses
US7143188B2 (en) * 2002-06-13 2006-11-28 Nvidia Corporation Method and apparatus for network address translation integration with internet protocol security
US7310356B2 (en) * 2002-06-24 2007-12-18 Paradyne Corporation Automatic discovery of network core type
US7346770B2 (en) * 2002-10-31 2008-03-18 Microsoft Corporation Method and apparatus for traversing a translation device with a security protocol
US7283542B2 (en) * 2002-11-15 2007-10-16 Nortel Networks Limited Network address translator and secure transfer device for interfacing networks
US7305481B2 (en) * 2003-01-07 2007-12-04 Hexago Inc. Connecting IPv6 devices through IPv4 network and network address translator (NAT) using tunnel setup protocol
US20040148428A1 (en) * 2003-01-28 2004-07-29 George Tsirtsis Methods and apparatus for supporting an internet protocol (IP) version independent mobility management system
US6865184B2 (en) * 2003-03-10 2005-03-08 Cisco Technology, Inc. Arrangement for traversing an IPv4 network by IPv6 mobile nodes
US7260840B2 (en) * 2003-06-06 2007-08-21 Microsoft Corporation Multi-layer based method for implementing network firewalls
JP2004364141A (ja) * 2003-06-06 2004-12-24 Hitachi Communication Technologies Ltd Ipアドレス変換装置およびパケット転送装置
US7559082B2 (en) * 2003-06-25 2009-07-07 Microsoft Corporation Method of assisting an application to traverse a firewall
US7421734B2 (en) * 2003-10-03 2008-09-02 Verizon Services Corp. Network firewall test methods and apparatus
US7685434B2 (en) * 2004-03-02 2010-03-23 Advanced Micro Devices, Inc. Two parallel engines for high speed transmit IPsec processing
US20050268331A1 (en) * 2004-05-25 2005-12-01 Franck Le Extension to the firewall configuration protocols and features
US7647492B2 (en) * 2004-09-15 2010-01-12 Check Point Software Technologies Inc. Architecture for routing and IPSec integration
JP2006087039A (ja) * 2004-09-17 2006-03-30 Fujitsu Ltd モバイルip通信端末装置およびモバイルip通信方法
US20060294584A1 (en) * 2005-06-22 2006-12-28 Netdevices, Inc. Auto-Configuration of Network Services Required to Support Operation of Dependent Network Services
EP1886457B1 (en) * 2005-06-03 2010-08-25 Telefonaktiebolaget LM Ericsson (publ) MOBILE IPv6 ROUTE OPTIMIZATION IN DIFFERENT ADDRESS SPACES
US7810149B2 (en) * 2005-08-29 2010-10-05 Junaid Islam Architecture for mobile IPv6 applications over IPv4
US8281385B2 (en) * 2005-09-29 2012-10-02 Rockwell Automation Technologies, Inc. Internet friendly proxy server extending legacy software connectivity
CN1901449B (zh) * 2006-07-19 2010-05-12 华为技术有限公司 一种网络接入的方法和网络通信系统
US20090016246A1 (en) * 2007-07-12 2009-01-15 Motorola, Inc. Method and apparatus for data transmission in an unlicensed mobile access network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317792A (en) * 1996-09-18 1998-04-01 Secure Computing Corp Virtual Private Network for encrypted firewall
US20020174335A1 (en) * 2001-03-30 2002-11-21 Junbiao Zhang IP-based AAA scheme for wireless LAN virtual operators
EP1424828A2 (en) * 2002-11-28 2004-06-02 NTT DoCoMo, Inc. Communication control apparatus, firewall apparatus, and data communication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149086A (zh) * 2010-02-10 2011-08-10 华为技术有限公司 一种移动ip节点的地址更新方法及ip节点设备

Also Published As

Publication number Publication date
ATE497334T1 (de) 2011-02-15
EP1853031A1 (en) 2007-11-07
CN100414929C (zh) 2008-08-27
EP1853031B1 (en) 2011-01-26
CN1835474A (zh) 2006-09-20
US20080069009A1 (en) 2008-03-20
EP1853031A4 (en) 2008-07-09
US8015603B2 (en) 2011-09-06
DE602006019827D1 (de) 2011-03-10

Similar Documents

Publication Publication Date Title
US10462229B2 (en) Method and apparatus for initiating and maintaining sessions between endpoints
WO2006097031A1 (fr) Procede de transmission de message dans le reseau du protocole internet mobile
US11751192B2 (en) Tethering policy for cellular networks
EP2144416B1 (en) Mobile network managing apparatus and mobile information managing apparatus for controlling access requests
JP4715521B2 (ja) 通信システム,及び呼制御サーバ
KR20140030307A (ko) 정보 중심 네트워크를 위한 일반화된 듀얼 모드 데이터 포워딩 플레인
Amadeo et al. Design and analysis of a transport-level solution for content-centric VANETs
CN104184646A (zh) Vpn网络数据交互方法和系统及其网络数据交互设备
JP4911222B2 (ja) 通信システム、通信システムにおける通信方法、及び中継装置
WO2009109128A1 (zh) 一种完全头部信息报文配置的方法和装置
CN101123575A (zh) 一种支持混合ip的多主机接入方法、系统及设备
Davison et al. A split stack approach to mobility-providing performance-enhancing proxies
CN102377829B (zh) 基于hip的通信方法、系统及设备
KR101410510B1 (ko) Sctp를 이용한 데이터 전송 방법 및 장치
WO2015013883A1 (zh) 一种数据传输方法及设备
WO2012059010A1 (zh) 一种hap切换的方法和系统
WO2022056794A1 (zh) 一种通信方法及装置
KR100691286B1 (ko) 유비쿼터스 환경에서의 끊김없는 이동성 지원 장치 및 그방법
Badami et al. Port address translation based route optimization for mobile IP
Kimura et al. Mobility-aware application protocols
WO2011014145A1 (en) Maintaining persistent connection with user level transmission control protocol
Khairnar MOBILE-IP FOR 2.5 G and 3.0 G. ENVIRONMENTS
KR20060117808A (ko) 모바일 인터넷 프로토콜 기반의 네트워크에서 반사 공격방지 방법
Mark et al. AN EXPOSITION ON WIRELESS/IP INTERWORKING
JP2009523334A (ja) 汎用の移動性及び無線認識トランスポートのためのエンドツーエンドアーキテクチャ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11855696

Country of ref document: US

Ref document number: 2006705659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006705659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11855696

Country of ref document: US