WO2006095743A1 - Display apparatus, liquid crystal monitor, liquid crystal television receiver, and display method - Google Patents

Display apparatus, liquid crystal monitor, liquid crystal television receiver, and display method Download PDF

Info

Publication number
WO2006095743A1
WO2006095743A1 PCT/JP2006/304405 JP2006304405W WO2006095743A1 WO 2006095743 A1 WO2006095743 A1 WO 2006095743A1 JP 2006304405 W JP2006304405 W JP 2006304405W WO 2006095743 A1 WO2006095743 A1 WO 2006095743A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
luminance
frame
light source
display device
Prior art date
Application number
PCT/JP2006/304405
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Kumakura
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2007507130A priority Critical patent/JPWO2006095743A1/en
Publication of WO2006095743A1 publication Critical patent/WO2006095743A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • Display device liquid crystal monitor, liquid crystal television receiver and display method
  • the present invention relates to a display device that displays an image by dividing one frame into a plurality of subframes.
  • CRTs cathode ray tubes
  • TN Transmission
  • Patent Document 1 discloses a liquid crystal display device that switches a driving method of a TN panel depending on whether a displayed image is a moving image or a still image.
  • Patent Document 2 and Patent Document 3 there is a method in which one frame is divided and signal writing is performed multiple times on one pixel, and the signal writing voltage level is improved in combination.
  • liquid crystal display panels that require a wide viewing angle such as TV (television receiver), such as IPS (In-Plane-Switching) mode and VA (Vertical Alignment) mode, which are not in TN mode.
  • TV television receiver
  • IPS In-Plane-Switching
  • VA Very Alignment
  • a wide viewing angle is achieved by using liquid crystal.
  • the contrast is 10 or more in the range of 170 ° up, down, left, and right, and there is no gradation inversion.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2001-296841 (Release Date; October 26, 2001)
  • Patent Document 2 JP-A-5-68221 (Issue Date; March 19, 1993)
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-23707 (Publication Date; January 25, 2002)
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-321551 (Publication Date; November 24, 2000)
  • Patent Document 5 Japanese Patent Laid-Open No. 9-127917 (Publication Date; May 16, 1997)
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-4659 (Release Date; January 8, 2004)
  • Non-Patent Document 1 New edition Color Science Handbook; 2nd edition (University of Tokyo Press; Publication date; June 10, 1998)
  • the gradation characteristics change depending on the increase in the viewing angle.
  • the present invention has been made in view of the above-described conventional problems. And the objective is to provide the display apparatus which can suppress a white floating phenomenon.
  • the display device of the present invention is a display device that displays an image by dividing one frame into m (m; an integer of 2 or more) subframes.
  • a display unit that displays an image of luminance based on the voltage of the display signal, and a display signal for the first to m-th subframes so that the total luminance output from the display unit in one frame is not changed by dividing the frame.
  • the first to mth display signals are generated and output to the display unit.
  • This control unit is designed to dimm the light source of the display unit by the PWM dimming method. This is a configuration.
  • the display device displays an image using a display unit having a display screen made up of a liquid crystal display element.
  • the control unit drives the display unit by subframe display.
  • the sub-frame display is a display method in which one frame is divided into a plurality of sub-frames (1st to m-th sub-frames) (m pieces; m is an integer of 2 or more). That is, the control unit outputs a display signal to the display unit m times in one frame period (the first to m-th display signals that are display signals of the first to m-th subframes in order). Output) .
  • the control unit turns on all the gate lines on the display screen of the display unit once (m is turned on m times in one frame).
  • control unit preferably sets the output frequency (clock) of the display signal to m times (m times clock) during normal hold display.
  • the normal hold display is a normal display that does not divide the frame into subframes (display that turns on all the gate lines on the display screen only once in one frame period).
  • the display unit (display screen) is designed to display an image with a luminance based on the voltage of the display signal (voltage corresponding to the luminance gradation of the display signal) input by the control unit. Talk!
  • the control unit generates the first to m-th display signals so as not to change the total luminance (total luminance) output from the screen into one frame by dividing the frame (the display of these displays).
  • Set the signal voltage Note that the voltage of the display signal is a voltage (liquid crystal voltage) applied to the liquid crystal of each pixel in the display unit.
  • the brightness is the degree of brightness perceived by humans according to the brightness of the displayed image (see formulas (5) and (6) in the embodiments described later). If the sum of brightness output in one frame is unchanged, the sum of brightness output in one frame is not changed.
  • the planned brightness is the brightness (a value corresponding to the liquid crystal voltage) that should be displayed on the display screen.
  • the actual brightness is the brightness actually displayed on the screen, and is a value that changes according to the viewing angle. At the front of the screen, the actual brightness and the planned brightness are equal, and there is no brightness deviation. On the other hand, as the viewing angle increases, the brightness shift increases.
  • the control unit when displaying an image, it is preferable that the control unit causes the voltage of at least one of the first to mth display signals to be minimum or close to the maximum. As a result, the brightness deviation in at least one subframe can be made sufficiently small. As a result, the display device can suppress the lightness deviation compared to when performing normal hold display. It becomes possible to improve the field angle characteristics. For this reason, the white floating phenomenon can be satisfactorily suppressed.
  • the display quality of a moving image can be improved by performing the subframe display as described above.
  • the color and brightness of the previous frame can be seen at the same time. For this reason, the edge of the object is recognized as blurred.
  • this display device is designed to perform dimming by the PWM dimming method.
  • the display unit (liquid crystal display element) of this display device expresses gradation by controlling the amount of transmitted light. Therefore, some kind of light source (fluorescent tube, LED, EL, FED, etc.) is required.
  • a large-sized display element generally uses a fluorescent tube as a light source for efficiency.
  • the current dimming method is a method for controlling the magnitude (brightness) of light emitted from a light source by changing the amplitude of a current (lamp current) applied to the light source.
  • a current lamp current
  • the current dimming method has the disadvantage that the dimming range (brightness range that can be realized) cannot be widened. Therefore, it is preferable to use the PWM dimming method in a device that requires a wide dimming range such as a liquid crystal television.
  • the flitz force is such that the dimming frequency is close to n. 5 times the frame frequency (n is an integer). It becomes violent.
  • the dimming frequency is n times the frame frequency
  • the frequency force S of the transmitted waveform is equal to the S frame frequency, and thus the flicker force can be reduced to an inconspicuous level.
  • the dimming frequency is brought close to n times the frame frequency, horizontal stripes appear on the screen! / ⁇ ⁇ Interference phenomenon occurs.
  • the light source usually irradiates the entire screen with light at the same time.
  • the display usually irradiates the entire screen with light at the same time.
  • the (liquid crystal display element) is driven by line scanning. Therefore, each line on the display screen is turned ON and OFF at different times depending on the position. For this reason, on the lines at different positions, the ONZOFF timing of the response waveform of the liquid crystal shifts (slides with respect to time).
  • the dimming frequency is n.times.5 times the frame frequency
  • the light emission waveform of the light source has an opposite phase between adjacent frames. Therefore, the transmission waveform of each line force also has an opposite phase between adjacent frames. For this reason, the amount of transmitted light in two frames from each line can be made equal (it can be compensated for time), so the occurrence of horizontal stripes can be avoided.
  • the control unit sets the dimming frequency to “a value that is n. 5 times the frame frequency and 450 Hz or higher”. It is preferable to do.
  • the dimming frequency is n. 5 times the frame frequency, the horizontal stripes as described above do not occur.
  • the flicker force although the frequency of the transmission waveform in each line is half the frame frequency, the dimming frequency is sufficiently increased, so that the flicker force can be made inconspicuous.
  • the two lines on the display (referred to as line A ⁇ ⁇ ) have a reversed relationship for each frame (the light intensity of the first frame (second frame) of line 2 the second frame of line B (1 fl The same as the first program). If the lines having such a relationship can be densely arranged on the screen, the flicker force can be spatially compensated by allowing the user to visually recognize the light of these line forces at the same time.
  • the two lines having the above relationship are closer to each other on the screen as the dimming frequency is higher. Therefore, by sufficiently increasing the dimming frequency, the flits force can be made inconspicuous even if the value is set to n.5 times the frame frequency.
  • the dimming frequency to “a value that is n. 5 times the frame frequency and equal to or greater than 45 OHz”, it is possible to avoid the occurrence of both horizontal stripes and flickering force. It is like this.
  • the light emission waveform of the light source is a combination of a main light emission noise and a luminance compensation pulse, both having a frequency n. 5 times the frequency of the frame, and having opposite pulse phases and different pulse widths. This can be achieved.
  • the transmission amount of the main light emission pulse and the luminance compensation pulse has a reverse ratio for each force frame that increases or decreases for each frame. For example, if the generation ratio of the main light emission pulse (noise) for one line is 2.5 to 3 in the first frame to the second frame, the luminance compensation pulse is 3 to 2.5 in the opposite direction.
  • the dimming frequency can be made lower than 450Hz, so that it is possible to avoid a decrease in the driving efficiency of the light source. Since this configuration uses two pulses, there is a concern that efficiency may deteriorate. However, the pulse width of the luminance compensation pulse is very small compared to the frame period. Therefore, the effect of the luminance compensation pulse on the driving efficiency of the light source is sufficiently / J. [0041] Further, it is possible to control the dimming frequency to be n times the frame frequency. For example, the control unit emits a main light emission pulse having a frequency of n times the frame frequency and a relatively long pulse width from the light source. Then, the main light emission pulse is controlled to be phase-inverted every frame.
  • the control unit inserts the above-described luminance compensation pulse having a relatively short pulse width with respect to the light emission waveform of the light source at the same frequency and in the opposite phase as the main light emission noise. Furthermore, the control unit inserts a luminance compensation depletion pulse when there is a luminance compensation added pulse instead of the luminance compensation pulse at the timing when the phase of the main light emitting noise changes.
  • the luminance compensation added pulse is a pulse for turning on the light source, which is inserted when the main light emission pulse is continuously turned off (low).
  • the luminance compensation reduced pulse is a pulse for turning off the light source, which is inserted when the main light emission pulse is continuously turned on (noise).
  • the luminance compensation pulse is inserted to increase the light amount.
  • the luminance compensation is reduced. It is designed to reduce the amount of light by inserting a pulse.
  • the control unit sets the emission waveforms of at least two light sources to different phases. It is also preferable to do PWM dimming.
  • the emission waveform of each light source is shifted, so that the DC component of the mixed light including the light from all the light sources can be increased. Therefore, the amount of time variation in the light emission amount of the light source can be reduced. Further, the difference in light emission amount between the lines can be reduced. Therefore, it is possible to make interference phenomena such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
  • the control unit divides each light source into p groups (p is a natural number of 2 or more), and controls to shift the phase of the light emission waveform by 360 ° Zp for each group. It is preferable to carry out. This can greatly increase the DC component of the mixed light.
  • p is a natural number of 2 or more
  • the display unit is a transmissive or transflective display element.
  • the display unit is a reflective display element.
  • each light source has a gate line group (all gates) having a plurality of gate line forces close to itself. Light is sent to a group that forms part of the line.
  • control unit sets the frequency of the light emission waveform of the light source to n times the frequency of the frame, and "light emission of the light source when the gate line group assigned to each light source is turned on" It is preferable to perform PWM dimming so that the “waveform state” is the same for all light sources (all gate line groups).
  • the dimming frequency is n times the frame frequency, no flickering force is generated.
  • the phase relationship between the light emission waveform of the light source and the response waveform of the liquid crystal is the same in all the gate line groups. Therefore, in this configuration, it is possible to prevent the ratio of the time during which the transmission waveform is turned on (the time during which the luminance is high) from being different depending on the line position. Therefore, since there is no difference in the average luminance between lines, it is possible to avoid the occurrence of horizontal stripes.
  • control unit may be set to perform PWM dimming in a state where constant light emission power is supplied to the light source.
  • the light emission waveform becomes a waveform in which the amplitude corresponding to the PWM dimming is overlapped with the constant amplitude. Therefore, the DC component of the emission waveform can be easily increased.
  • the amount of time variation in the light emission amount of the light source can be reduced.
  • the difference in the amount of light emitted between lines can be reduced. Therefore, it is possible to make interference phenomena such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
  • the display unit has a reflection type.
  • V ⁇ should be designed so that the light from the light source is controlled according to the external light.
  • a luminance sensor that detects a luminance waveform of the external light applied to the display unit.
  • the control unit preferably performs PWM dimming so that the light emission waveform of the light source has the same frequency as that of the luminance waveform of the external light and has an opposite phase.
  • this configuration it is possible to irradiate the display unit with light having a large DC component mixed with light having the same frequency and opposite phase. Therefore, with this configuration, the amount of time variation in the amount of light emitted from the light source can be reduced. In addition, the difference in light emission between lines can be reduced. Therefore, it is possible to make interference phenomena such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
  • a fluorescent tube, LED, EL, FED, or the like can be used as the light source of the display device.
  • a liquid crystal monitor used in a personal computer or the like can be configured.
  • the image signal input unit is for transmitting an image signal input from the outside to the control unit.
  • the control unit of the display device generates a display signal based on the image signal transmitted from the image signal input unit and outputs the display signal to the display unit.
  • a liquid crystal television receiver can be configured by combining the present display device and a tuner unit.
  • the tuner unit is for receiving a television broadcast signal.
  • the control unit power of this display device and the tuner unit power are generated based on the transmitted television broadcast signal and output to the display unit.
  • the image display method (the present display method) of the present invention includes:
  • m an integer greater than or equal to 2
  • an output process of generating 1st to mth display signals, which are display signals of the 1st to mth subframes, and outputting the generated signals to a display unit having a liquid crystal display element power is further included.
  • This is a method including a dimming step of dimming the light source by a PWM dimming method.
  • This display method is a method used in the above-described display device. Therefore, in this display method, the brightness deviation can be suppressed to a smaller value than in the case of performing the normal hold display, and the viewing angle characteristics can be improved. For this reason, whitening phenomenon is good Can be suppressed. It is also possible to improve the display quality of moving images.
  • dimming can be performed in a wider range than when the current dimming method is used.
  • the display device of the present invention is a display device that displays an image by dividing one frame into m (m; an integer greater than or equal to 2) sub-frames.
  • the display signal for the first to mth sub-frames so that the sum of the luminances output from the display unit per frame is not changed by dividing the frame.
  • a control unit that generates 1st to mth display signals and outputs them to the display unit.
  • This control unit is designed to dimm the light source of the display unit using the PWM dimming method! It is.
  • the present display device by performing the sub-frame display, it is possible to suppress the lightness deviation as compared with the case of performing the normal hold display. Therefore, since the viewing angle characteristics can be improved, the white floating phenomenon can be satisfactorily suppressed. It is also possible to improve the display quality of moving images. Furthermore, dimming with a PWM dimming method enables dimming over a wider range than when using the current dimming method.
  • FIG. 1 is a block diagram showing a configuration of a display device according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the display brightness (relationship between planned brightness and actual brightness) output from the liquid crystal panel in the case of normal hold display.
  • FIG. 3 is a graph showing display luminance (relation between planned luminance and actual luminance) output from the liquid crystal panel when subframe display is performed in the display device shown in FIG.
  • FIG. 4 (a) is an explanatory diagram showing an image signal input to the frame memory of the display device shown in FIG. 1, and (b) is a diagram of the frame memory in the case of 3: 1 division. It is explanatory drawing which shows the image signal output to a front
  • FIG. 5 In the display device shown in FIG. It is explanatory drawing which shows the ON timing of the gate line regarding a display signal and a back
  • FIG. 6 is a graph showing the luminance graph shown in FIG. 3 converted to lightness.
  • FIG. 7 is a graph showing the relationship between planned brightness and actual brightness when the frame is divided into 3: 1 in the display device shown in FIG.
  • FIG. 8 is an explanatory diagram showing a display device in which the configuration of the display device shown in FIG. 1 is partially changed.
  • FIG. 9 is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period.
  • FIG. 9B is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
  • FIG. 10 (a) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 10 (b) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 10 (c) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 11 is a graph showing display luminance (relationship between planned luminance and actual luminance) output from a liquid crystal panel when subframe display is performed using liquid crystal with a slow response speed.
  • FIG. 12 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance force Lmax is 3Z4 and 1Z4.
  • ⁇ 13 (a)] is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
  • 13 (b)] is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period.
  • FIG. 14 (a) is an explanatory diagram showing four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (b) is an explanatory diagram showing the four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (c) is an explanatory diagram showing the four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (d) is an explanatory diagram showing four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG.15 The result of dividing the display into three equal subframes (dashed line and And a solid line) and a result of normal hold display (a chain line and a solid line).
  • FIG. 16 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
  • FIG. 17 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each subframe.
  • FIG. 19 is an explanatory diagram showing a current dimming method.
  • FIG. 20 is an explanatory diagram showing a PWM dimming method.
  • FIG. 22 is a block diagram showing an internal configuration of a display device that performs PWM dimming according to the present invention.
  • FIG. 24 is a graph showing similar waveforms when PWM dimming is combined with sub-frame display (in the case of low luminance).
  • FIG. 25 is a graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform of a light source when PWM dimming is combined with subframe display.
  • FIG. 26 is a graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform of the light source when the dimming frequency is set to “n.5 times the frame frequency and 450 Hz or higher”. It is.
  • FIG. 28 The light emission waveform of the light source when the phase of the light emission waveform of the light source is inverted for each frame. It is a graph which shows the example of the relationship between a liquid crystal response waveform and a transmission waveform.
  • ⁇ 29 A graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform of the light source when the light emission waveform of the light source is reversed in phase for each frame and a positive compensation pulse and a negative compensation pulse are added. It is.
  • FIG. 30 is a block diagram showing a configuration of a display device when the light emission waveform of a light source is controlled to include a direct current component (DC component).
  • DC component direct current component
  • FIG. 31 (a) and (b) show the emission waveform of the first fluorescent tube (first waveform), the emission waveform of the second fluorescent tube (second waveform), and both fluorescent tubes in the configuration shown in FIG. 5 is a graph showing an example of a waveform (mixed waveform) obtained by mixing the light emission waveforms.
  • FIG. 32 is a block diagram showing the configuration of the display device when the fluorescent tubes are divided into three types and controlled independently for each type.
  • FIGS. 33 (a) and 33 (b) are graphs showing examples of fluorescent tubes (first to third waveforms) and mixed waveforms (mixed waveforms) in the configuration shown in FIG.
  • FIG. 34 is an explanatory diagram showing a configuration of a liquid crystal display element having a direct type backlight.
  • FIG. 35 is an explanatory diagram showing a configuration of a knock light type liquid crystal display device including two LEDs as light sources on two sides of a light guide plate.
  • FIG. 36 is an explanatory diagram showing a configuration of a knock light type liquid crystal display device including two LEDs as light sources on one side of a light guide plate.
  • FIG. 37 is an explanatory diagram showing a configuration of a front-light type liquid crystal display device including two LEDs as light sources on two sides of a light guide plate.
  • FIG. 38 is an explanatory diagram showing a configuration of a front-light type liquid crystal display device including two LEDs as light sources on one side of a light guide plate.
  • FIG. 39 is a block diagram showing a configuration of a display device in the case where the light emission timing of the fluorescent tube is synchronized with the ON timing of the gate line of the liquid crystal panel.
  • FIG. 40 is a graph showing an example of the relationship between the light emission waveform of the light source, the liquid crystal response waveform, and the transmission waveform for the display device shown in FIG.
  • FIG. 41 is a block diagram showing a configuration of a display device that uses both the PWM dimming method and the current dimming method.
  • 42 is a graph showing an example of a current dimming control signal, a PWM dimming control signal, a lamp current, and a light emission waveform related to the display device shown in FIG. 41.
  • FIG. 43 is a diagram showing a configuration of a reflective display device that performs light source control in accordance with external light.
  • FIG. 44 (a) is a graph showing a luminance waveform of external light incident on the display device shown in FIG.
  • FIG. 44 (b) is a graph showing the light emission waveform of the light source in the display device shown in FIG.
  • FIG. 44 (c) is a graph showing a waveform of light incident on the liquid crystal panel of the display device shown in FIG.
  • FIG. 45 is a diagram showing a configuration of a transflective display device that performs light source control in accordance with external light.
  • FIG. 46 is an explanatory diagram showing a configuration of a liquid crystal television provided with the display device shown in FIG.
  • the liquid crystal display device (present display device) according to the present embodiment has a vertical alignment (VA) mode liquid crystal panel divided into a plurality of domains.
  • VA vertical alignment
  • the display device functions as a liquid crystal monitor that displays an externally input image signal on a liquid crystal panel.
  • FIG. 1 is a block diagram showing an internal configuration of the display device.
  • the display device includes a frame memory (F. M.) 11, a front LUT 12, a rear LUT 13, a display unit 14, and a control unit 15.
  • the frame memory (image signal input unit) 11 receives an image signal (R
  • the front-stage LUT (look-up table) 12 and the rear-stage LUT 13 are correspondence tables (conversion tables) between image signals input from the outside and display signals output to the display unit 14.
  • this display device displays subframes! /.
  • the subframe display is a method of displaying one frame divided into a plurality of subframes.
  • the present display device performs display using two subframes having the same size (period) at twice the frequency based on the image signal for one frame input in one frame period.
  • the previous LUT 12 is a correspondence table for display signals (previous display signal; second display signal) output in the previous subframe (previous subframe; second subframe).
  • the rear stage LUT 13 is a correspondence table for display signals (rear stage display signals; first display signals) output in a rear stage subframe (rear subframe; first subframe).
  • the display unit 14 includes a liquid crystal panel 21, a gate driver 22, and a source driver 23, and performs image display based on an input display signal.
  • the liquid crystal panel 21 is a VA mode active matrix (TFT) liquid crystal panel.
  • the control unit 15 is a central part of the display device that controls all operations in the display device.
  • the control unit 15 also generates a display signal from the image signal power accumulated in the frame memory 11 using the preceding LUT 12 and the latter LUT 13 and outputs the display signal to the display unit 14.
  • control unit 15 stores in the frame memory 11 an image signal transmitted at a normal output frequency (normal clock; for example, 25 MHz). Then, the control unit 15 outputs the image signal from the frame memory 11 twice with a clock having a frequency twice that of the normal clock (double clock; 50 MHz).
  • normal clock for example, 25 MHz
  • double clock twice that of the normal clock
  • control unit 15 generates a front display signal using the front LUT 12 based on the image signal output for the first time.
  • a rear display signal is generated using the rear LUT 13 based on the image signal output for the second time.
  • the display unit 14 displays different images once in one frame period based on two display signals that are sequentially input (all gates of the liquid crystal panel 21 in both subframe periods). Turn the line ON once).
  • the display signal output operation will be described in detail later.
  • the luminance gradation (signal gradation) of the display signal is in the range from 0 to 255.
  • L is the signal gradation (frame gradation) when displaying an image in one frame (when displaying an image with normal hold display)
  • Lmax is the maximum luminance gradation (255)
  • T is the display luminance
  • y is the correction value (usually 2.2).
  • the display brightness ⁇ output from the liquid crystal panel 21 in this case is shown as a graph in FIG.
  • This graph shows “luminance that should be output (scheduled luminance; value according to signal gradation, equivalent to the above display luminance ⁇ )” on the horizontal axis, and “actually output luminance (actual Brightness) ”.
  • the above two luminances are equal on the front surface (viewing angle 0 degree) of the liquid crystal panel 21.
  • the viewing angle is set to 60 degrees, the actual brightness becomes brighter with halftone brightness due to the change in the gradation ⁇ characteristics.
  • control unit 15 In this display device, the control unit 15 is
  • control unit 15 is designed to divide the frame equally into two subframes and display the luminance up to half of the maximum luminance by one subframe. .
  • luminance up to half of the maximum luminance is output in one frame.
  • the control unit 15 sets the previous subframe to the minimum luminance (black) and adjusts only the display luminance of the subsequent subframe to perform gradation representation (using only the subsequent subframe). Key expression).
  • the integrated luminance in one frame is “(minimum luminance + luminance of subsequent subframe) Z2”.
  • control unit 15 sets the rear subframe to the maximum luminance (white) and adjusts the display luminance of the previous subframe to adjust the level. Make a representation.
  • the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) Z 2”.
  • the signal gradation setting is performed by the control unit 15 shown in FIG.
  • the control unit 15 preliminarily calculates the frame gradation corresponding to the above-described threshold luminance (TmaxZ2) using the above-described equation (1).
  • control unit 15 obtains a frame gradation L based on the image signal output from the frame memory 11.
  • control unit 15 sets the luminance gradation (F as the previous stage display signal).
  • control unit 15 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255).
  • the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
  • F (L "y -0. 5 X Lmax" ⁇ ) "(1 / ⁇ ) (4)
  • the control unit 15 accumulates the previous stage display signal of the pixel (a number) of the first gate line with respect to the source driver 23 with a double clock.
  • control unit 15 turns on the first gate line by the gate driver 22 and writes the previous stage display signal to the pixels of this gate line. Thereafter, the control unit 15 similarly turns on the second to b-th gate lines with a double clock while changing the preceding display signal accumulated in the source driver 23. As a result, the previous stage display signal can be written to all the pixels in a half period of 1 frame (1Z2 frame period).
  • control unit 15 performs the same operation, and writes the post-stage display signal to the pixels of all the gate lines in the remaining 1Z2 frame period. As a result, the front display signal and the rear display signal are written to each pixel at an equal time (1Z2 frame period).
  • Fig. 3 shows the result (broken line and solid line) of the subframe display in which the preceding display signal and the subsequent display signal are divided into the front and rear subframes and output (the dotted line and the solid line). It is a graph shown together with a chain line and a solid line.
  • the deviation between the actual luminance at a large viewing angle and the planned luminance is minimum (0) when the display luminance is minimum or maximum.
  • the liquid crystal panel 21 that is the largest in the halftone (near the threshold luminance) is used.
  • subframe display is performed in which one frame is divided into subframes. Further, the period of the two subframes is set to be equal, and in the case of low luminance, the previous subframe is displayed in black and the display is performed using only the rear subframe within a range in which the integrated luminance in one frame is not changed. Therefore, since the deviation in the previous subframe is minimized, as shown by the broken line in FIG. 3, the total deviation between both subframes can be reduced to about half.
  • the overall shift can be reduced by about half compared to a configuration in which normal hold display is performed (a configuration in which an image is displayed in one frame without using a subframe). It is possible. For this reason, it is possible to suppress the phenomenon that a halftone image becomes bright and floats white as shown in FIG.
  • the white-floating phenomenon which is a problem in this display device, has the characteristics shown in Fig. 2 when the viewing angle is large. It is a phenomenon that looks white.
  • an image captured by a camera is usually a signal based on luminance.
  • the image is converted into a display signal using ⁇ shown in equation (1) (that is, the luminance signal is multiplied by ( ⁇ ⁇ ) and divided equally. To add gradation).
  • shown in equation (1)
  • an image displayed by a display device such as a liquid crystal panel has a display luminance represented by equation (1).
  • the human visual sense receives an image not as luminance but as brightness.
  • the lightness (lightness index) ⁇ is expressed by the following equations (5) and (6) (see Non-Patent Document 1).
  • M 116 XY '(lZ3) — 16, ⁇ > 0.008856 ⁇ ⁇ ⁇ (5)
  • y is the y value of tristimulus values in the xyz color system of an arbitrary color
  • yn is the y value of standard diffuse reflection surface light
  • yn 100.
  • FIG. 6 is a graph showing the luminance graph shown in FIG. 3 converted to lightness.
  • This graph shows the lightness that should be output on the horizontal axis (scheduled lightness; a value corresponding to the signal tone, equivalent to the lightness M above), and the lightness actually output (actual lightness) on the vertical axis. ing.
  • the above two brightness values are equal on the front surface of the liquid crystal panel 21 (viewing angle 0 degree).
  • ⁇ in this equation is about 2.5.
  • the subframe used for display when the luminance is low (the subframe that is maintained at the maximum luminance when the luminance is high) is set to a short period. Will be.
  • the control unit 15 when performing low-brightness display in which the maximum luminance of 1 to 4 (threshold luminance; TmaxZ4) is output in one frame, the control unit 15 sets the previous subframe to the minimum luminance (black). ) And gradation expression by adjusting only the display luminance of the subsequent sub-frame (representing gradation using only the subsequent sub-frame).
  • the integrated luminance in one frame is (minimum luminance + luminance of subsequent subframe) Z4.
  • the control unit 15 sets the rear subframe to the maximum luminance (white), and sets the display luminance of the previous subframe. Adjust and perform gradation expression.
  • the integrated luminance in one frame is (luminance of the previous subframe + maximum luminance) / 4.
  • the signal gradation setting of display signals (previous display signal and subsequent display signal) for obtaining such display luminance will be specifically described. Also in this case, the signal gradation (and output operation described later) is set so as to satisfy the conditions (a) and (b) described above.
  • control unit 15 preliminarily calculates the frame gradation corresponding to the above-described threshold luminance (TmaxZ4) using the above-described equation (1).
  • the control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11.
  • L is equal to or less than Lt
  • the control unit 15 sets the luminance gradation (F) of the preceding display signal to the minimum (0) using the preceding LUT 12.
  • control unit 15 determines the luminance gradation (R) of the rear display signal based on the equation (1).
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
  • Fig. 4 (a) is an image signal input to the frame memory 11, (b) is an image signal output from the frame memory 11 to the preceding LUT 12 in the case of 3: 1 division, and ( c)
  • FIG. 6 is an explanatory view showing an image signal output to the latter LUT 13 in the same manner.
  • FIG. 5 is an explanatory diagram showing the gate line ON timing related to the front display signal and the rear display signal in the same case of 3: 1 division.
  • the control unit 15 writes the preceding display signal of the first frame to the pixels of each gate line with a normal clock. Then, after the 3Z4 frame period, writing of the subsequent display signal is started. From this time, the front display signal and the rear display signal are written alternately with a double clock.
  • Fig. 7 is a graph showing the relationship between the planned brightness and the actual brightness when the frame is divided into 3: 1. As shown in this figure, in this configuration, the frame can be divided at the point where the difference between the planned brightness and the actual brightness is the largest. Therefore, compared with the result shown in FIG. 6, the difference between the planned brightness and the actual brightness when the viewing angle is 60 degrees is very small.
  • the front subframe in the case of low luminance (low brightness) up to “TmaxZ4”, the front subframe is displayed in black and only the rear subframe is used within a range in which the integrated luminance in one frame is not changed. Is displayed. Therefore, the deviation in the previous subframe (the difference between the actual brightness and the planned brightness) is minimized, and the total deviation in both subframes can be reduced to approximately half as shown by the broken line in FIG.
  • the display is performed by adjusting the luminance of only the previous subframe, with the subsequent subframe being displayed in white within the range in which the integrated luminance in one frame is not changed. For this reason, in this case as well, the shift of the subsequent subframe is minimized, so that the total shift of both subframes can be reduced to about half as shown by the broken line in FIG.
  • the present display device it is possible to reduce the brightness deviation to about half as a whole as compared with the configuration in which the normal hold display is performed. For this reason, it is possible to more effectively suppress the phenomenon in which the halftone image becomes brighter and whiter as shown in FIG. 2 (whitening phenomenon).
  • the previous stage display signal of the first frame is written to the pixels of each gate line with a normal clock. This is because the timing for writing the subsequent display signal has not been reached.
  • the control unit 15 outputs the previous sub-frame with the minimum luminance when outputting the luminance up to lZ (n + 1) (threshold luminance; Tmax / (n + 1)) of the maximum luminance in one frame (when the luminance is low). (Black), and gradation expression is performed by adjusting only the display luminance of the subsequent subframe (tone expression is performed using only the subsequent subframe).
  • the integrated luminance in one frame is (minimum luminance + luminance of subsequent subframe) / (n + 1).
  • the control unit 15 sets the rear subframe to the maximum luminance (white) and displays the previous subframe. Adjust the brightness to express the gradation.
  • the integral luminance in one frame is “(luminance of the previous subframe + maximum luminance) / (n + 1)”.
  • the signal gradation setting of the display signals (the front display signal and the rear display signal) for obtaining such display luminance. Also in this case, the signal gradation (and output operation described later) is set so as to satisfy the conditions (a) and (b) described above.
  • control unit 15 preliminarily calculates the frame gradation corresponding to the above threshold luminance (TmaxZ (n + 1)) using the above-described equation (1).
  • the control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11.
  • L is equal to or less than Lt
  • the control unit 15 sets the luminance gradation (F) of the preceding display signal to the minimum (0) using the preceding LUT 12.
  • control unit 15 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
  • n 2 or more
  • the clock needs to be very fast, which increases the device cost. Therefore, when n is 2 or more, it is preferable to alternately output the preceding display signal and the succeeding display signal as described above.
  • the ratio of the previous subframe and the rear subframe can be set to n: l. Can be doubled.
  • control unit 15 converts the image signal into a display signal using the front LUT 12 and the rear LUT 13.
  • front LUT12 provided in this display device
  • the latter LUT 13 may be plural.
  • FIG. 8 shows the configuration shown in FIG. 1 by replacing the front LUT 12 with three front LUTs 12a to
  • the rear stage LUT 13 is replaced with three rear stage LUTs 13a to 13c, and a temperature sensor 16 is further provided.
  • the liquid crystal panel 21 changes its response characteristics and gradation luminance characteristics depending on the environmental temperature (temperature of the environment where the display unit 14 is placed (air temperature)). For this reason, the optimum display signal corresponding to the image signal also changes according to the environmental temperature.
  • the first LUTs 12a to 12c are suitable for use in different temperature ranges.
  • the rear LUTs 13a to 13c are also rear LUTs suitable for use in different temperature ranges.
  • the temperature sensor 16 measures the ambient temperature in which the display device is placed, and transmits the measurement result to the control unit 15.
  • control unit 15 is designed to switch the LUT to be used based on the environmental temperature information transmitted from the temperature sensor 16. Therefore, in this configuration, a more appropriate display signal can be transmitted to the liquid crystal panel 21 with respect to the image signal. Therefore, it is possible to display an image with a more faithful luminance in the entire assumed temperature range (for example, a range of 0 ° C to 65 ° C).
  • the liquid crystal panel 21 is preferably driven by alternating current. This is because by using AC driving, the charge polarity of the pixel (the direction of the voltage between the pixel electrodes (voltage between the electrodes) sandwiching the liquid crystal) can be changed for each frame.
  • the present display device it is preferable to reverse the polarity of the voltage between the electrodes at a frame period (period of one frame time width).
  • a frame period period of one frame time width.
  • One method is to apply a voltage of the same polarity for one frame.
  • the voltage between the electrodes is reversed between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are driven with the same polarity. It is.
  • Figure 9 (a) shows the voltage polarity (polarity of the voltage between electrodes) and the voltage when the former method is used. It shows the relationship with the lemma cycle.
  • Figure 9 (b) shows the relationship between voltage polarity and frame period when the latter method is used.
  • the liquid crystal panel 21 is driven by sub-frame display, thereby suppressing whitening.
  • the response speed of the liquid crystal the speed at which the voltage applied to the liquid crystal (interelectrode voltage) becomes equal to the applied voltage
  • the effect of such subframe display may be diminished.
  • the relationship between the planned brightness and the actual brightness is as shown in FIG. In other words, even when subframe display is performed, it is not possible to perform display with luminance (minimum luminance / maximum luminance) in which the difference (shift) between the planned luminance and the actual luminance when the viewing angle is large is small.
  • the response speed of the liquid crystal in the liquid crystal panel 21 is designed to satisfy the following (c) (d): Is preferred.
  • control unit 15 is preferably designed so that the response speed of the liquid crystal can be monitored. If it is determined that the response speed of the liquid crystal becomes slow due to a change in the environmental temperature or the like, and the above (c) and (d) are not satisfied, the control unit 15 interrupts the sub-frame display, and the liquid crystal panel 21 May be set to be driven by normal hold display.
  • the display device functions as a liquid crystal monitor.
  • this display device can also function as a liquid crystal television receiver (liquid crystal television).
  • liquid crystal television can be realized by including a tuner unit 17 in the display device shown in FIG.
  • the tuner unit 17 receives a television broadcast signal and transmits the television broadcast signal to the control unit 15 via the frame memory 11.
  • control unit 15 generates a display signal based on the television broadcast signal.
  • a liquid crystal television can also be realized by including the tuner unit 17 in the display device shown in FIG.
  • the previous subframe in the case of low luminance, the previous subframe is black, and gradation expression is performed using only the rear subframe.
  • the luminance gradation (signal gradation) of the display signal is set using equation (1).
  • the actual panel has brightness even in the case of black display (gradation 0), and the response speed of the liquid crystal is finite. Therefore, these factors must be taken into account when setting the signal gradation. Is preferred. In other words, an actual image is displayed on the liquid crystal panel 21, the relationship between the signal gradation and the display luminance is measured, and the LUT (output table) is determined so as to meet the equation (1) based on the actual measurement result. Is preferred.
  • a shown in Formula (6a) is assumed to be in the range of 2.2 to 3.
  • This range is not strictly derived, but is a range that is considered to be almost appropriate for human visual sense.
  • y 2.2 is set according to the input signal gradation (display signal luminance gradation). A voltage signal is output to each pixel (liquid crystal) so that the display brightness obtained using equation (1) can be obtained.
  • Such a source driver 23 outputs the voltage signal used in the normal hold display as it is in each subframe according to the input signal gradation even when performing the subframe display. It becomes.
  • the source driver 23 is designed to output a voltage signal converted into divided luminance. That is, it is preferable that the source driver 23 is set so as to finely adjust the voltage (interelectrode voltage) applied to the liquid crystal according to the signal gradation. For this reason, it is preferable to design the source driver 23 for sub-frame display so that the fine adjustment described above can be performed.
  • the liquid crystal panel 21 is a VA panel!
  • the present invention is not limited to this, and even when a liquid crystal panel of a mode other than the VA mode is used, the white-out phenomenon can be suppressed by the sub-frame display of this display device.
  • the sub-frame display of this display device is a liquid crystal panel in which the planned brightness (scheduled brightness) and actual brightness (actual brightness) deviate when the viewing angle is increased. It is possible to suppress the white floating phenomenon for liquid crystal panels in changing modes.
  • the sub-frame display of the present display device is effective for a liquid crystal panel having a characteristic that the display luminance increases as the viewing angle is increased.
  • the liquid crystal panel 21 in the present display device may be NB (Normally Black) or NW (Normally White).
  • another display panel for example, an organic EL panel or a plasma display panel may be used instead of the liquid crystal panel 21.
  • the present invention it is preferable to divide the frame into 1: 3 to 1: 7.
  • the present invention is not limited to this, and the display device may be designed to divide the frame within the range of l: n or n: l (n is a natural number of 1 or more)!
  • the signal gradation of the display signal (the front display signal and the rear display signal) is set using the above-described equation (10).
  • the threshold luminance gradation Lt is a frame gradation of this luminance.
  • Lt may be a little more complicated, and the threshold luminance Tt may not be expressed by a simple formula. Therefore, it may be difficult to express Lt with Lmax. In such a case, to obtain Lt, it is preferable to use the result of measuring the luminance of the liquid crystal panel. In other words, when the sub-frame on one side has the maximum luminance and the luminance of the other sub-frame has the minimum luminance, the luminance emitted from the liquid crystal panel is measured and the luminance is defined as Tt. Then, the gradation Lt of spillage is determined by the following formula.
  • Lt obtained using Equation (10) is an ideal value, and is preferably used as a guideline.
  • FIG. 12 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance power Lmax is 3Z4 and 1Z4.
  • the voltage value applied to the liquid crystal (voltage value applied between pixel electrodes; absolute value) differs between sub-frames.
  • this display device it is preferable to invert the polarity of the liquid crystal voltage at the frame period.
  • One method is to apply a voltage of the same polarity for one frame.
  • the other method is a method in which the liquid crystal voltage is reversed in polarity between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are in the same polarity. is there.
  • Figure 13 (a) shows the voltage polarity (the polarity of the liquid crystal voltage) and the voltage when the former method is used. It is a graph which shows the relationship between a frame period and a liquid crystal voltage. On the other hand, Fig. 13 (b) is a similar graph when the latter method is used.
  • FIGS. 14A to 14D are explanatory diagrams showing the four pixels in the liquid crystal panel 21 and the polarities of the liquid crystal voltages of the respective pixels. As described above, it is preferable to reverse the polarity of the voltage applied to one pixel in the frame period. In this case, the polarity of the liquid crystal voltage of each pixel changes as shown in the order of FIGS. 14 (a) to (d) for each frame period.
  • the sum of the liquid crystal voltages applied to all the pixels of the liquid crystal panel 21 is preferably set to OV.
  • Such control can be realized, for example, by changing the voltage polarity between adjacent pixels as shown in FIGS. 14 (a) to (d).
  • the ratio (frame division ratio) between the previous subframe period and the subsequent subframe period it is preferable to set the ratio (frame division ratio) between the previous subframe period and the subsequent subframe period to 3: 1 to 7: 1.
  • the present invention is not limited to this, and the frame division ratio may be set to 1: 1 or 2: 1.
  • n 1
  • the division ratio may be n: l (n is a real number of 1 or more (more preferably, a real number greater than 1)). For example, by setting this division ratio to 1.5: 1, viewing angle characteristics can be improved as compared to 1: 1. In addition, it becomes easier to use a liquid crystal material with a slow response speed as compared with the case of 2: 1.
  • the front subframe When displaying low-brightness (low brightness) images up to 1 / (TmaxZ (n + l)) j, the front subframe should be displayed in black and only the back subframe should be used for display. Is preferred. Further, when displaying an image with a high luminance (high brightness) equal to or higher than “TmaxZ (n + 1)”, it is preferable to display the rear subframe with white and adjust only the luminance of the previous subframe. This ensures that one subframe is always in a state where there is no difference between the actual luminance and the planned luminance. Therefore, the viewing angle characteristics of the display device can be improved.
  • the sub-frame display of the display device is a display performed by dividing the frame into two sub-frames.
  • the present invention is not limited to this, and the display device may be designed to perform subframe display in which a frame is divided into three or more subframes.
  • Fig. 15 shows the result of dividing the frame into three equal sub-frames by this display device (dashed line and solid line) and the result of normal hold display (dashed line and solid line). The same as in FIG. 2). As shown in this graph, when the number of subframes is increased to 3, the actual brightness can be made very close to the planned brightness. Therefore, it can be seen that the viewing angle characteristics of the present display device can be improved.
  • Fig. 16 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame. As shown in this figure, even in this case, the total liquid crystal voltage in two frames can be OV.
  • FIG. 17 is a graph showing the transition of the liquid crystal voltage when the frame is similarly divided into three and the voltage polarity is inverted for each subframe.
  • the control unit 15 causes the Mth (M; l to! N) subframes between adjacent frames to have different polarities. It can be said that it is preferable to apply a voltage. As a result, the total liquid crystal voltage in two frames can be set to OV.
  • the liquid crystal voltage is set so that the total liquid crystal voltage in 2 frames (or more frames) is OV. It is preferable to reverse the polarity.
  • viewing angle characteristics can be improved by displaying at least one subframe in white (maximum luminance) or black (minimum luminance).
  • the luminance is not adjusted!
  • the luminance of the sub-frame may be set to "a value greater than the maximum or second predetermined value" instead of the maximum luminance.
  • “a minimum or a value smaller than the first predetermined value” may be used instead of setting the minimum luminance. Even in this case, the deviation (brightness deviation) between the actual brightness and the scheduled brightness in the sub-frame where the brightness is not adjusted can be sufficiently reduced. Therefore, the viewing angle characteristics of the present display device can be improved.
  • FIG. 18 shows the signal gradation (%: luminance gradation of the display signal) output to the display unit 14 and the actual luminance scale corresponding to each signal gradation in the sub-frame where the luminance is not adjusted. It is a graph showing the relationship (viewing angle gradation characteristics (actual measurement)) with tone (%).
  • the actual luminance gradation is defined as “the luminance (actual luminance) output from the liquid crystal panel 21 of the display unit 14 in accordance with each signal gradation, using the above equation (1). Converted into a key. ”
  • the above two gradations are equal on the front surface of the liquid crystal panel 21 (viewing angle 0 °).
  • the viewing angle is set to 60 degrees
  • the brightness gradation is actually halftone and brighter than the signal gradation due to whitening.
  • this whitening takes the maximum value when the luminance gradation is between 20% and 30% regardless of the viewing angle.
  • the viewing angle characteristics of the liquid crystal can be improved (whitening can be improved) by the sub-frame display.
  • the present invention is not limited to this, and the display quality of moving images can be improved by performing the subframe display as described above.
  • the present display device may be designed to perform dimming by a PWM dimming method.
  • a liquid crystal display element such as the liquid crystal panel 21 expresses gradation by controlling the amount of transmitted light. Therefore, some kind of light source (such as a fluorescent tube or LED) is required. In addition, at present, a large-sized liquid crystal display element generally uses a fluorescent tube as a light source for efficiency.
  • the light source dimming method there are generally used two methods: a current dimming method (or voltage dimming method) and a PWM dimming method.
  • the current dimming method is a method that controls the light intensity (brightness) by changing the amplitude of the current (lamp current) applied to the light source. is there.
  • the current dimming method has a drawback that the dimming range (brightness range that can be realized) cannot be widened. Therefore, for devices that require a wide dimming range, such as LCD TVs, it is preferable to use the PWM dimming method.
  • the PWM dimming method turns on the light source (fluorescent tube) at a frequency of 90 Hz or higher where humans do not feel flickering force (ON) Z turns off (OFF), and outputs time average Light intensity It is a method to let the user perceive as.
  • lighting Z extinction is controlled by a dimming signal (PWM dimming control signal) input from the outside.
  • FIG. 21 is a graph showing an example of a dimming signal waveform, a lamp current waveform, and a light emission waveform (waveform of light output from the fluorescent tube force) when a fluorescent tube is used as the light source.
  • the lamp current waveform has a constant amplitude and is turned OFF at a predetermined cycle.
  • the frequency of the lamp current waveform is tens of thousands of Hz, while that of the dimming signal is several hundred Hz. Therefore, the lamp current waveform is more powerful than shown in the figure.
  • FIG. 22 is a block diagram showing the internal configuration of the display device when such PWM dimming is performed in the display device.
  • This configuration includes the PWM dimming control circuit 31 and the light source drive circuit 32 in the configuration shown in FIG.
  • the light source of the liquid crystal panel 21 is a plurality of fluorescent tubes 33 which are direct type backlights (backlights on the back surface of the liquid crystal panel 21).
  • the control unit 15 generates a dimming rate signal indicating the amount of light to be output from the fluorescent tube 33, and outputs it to the PWM dimming control circuit 31.
  • the PWM dimming control circuit 31 generates a signal indicating a cycle related to the ONZOFF of the lamp current in accordance with the dimming rate signal, and transmits the signal to the light source driving circuit 32.
  • the light source driving circuit 32 is designed to generate a lamp current (pulse current) according to the transmitted signal and output it to all the fluorescent tubes 33.
  • Such PWM dimming can be combined with the above-described subframe display. However, if PWM dimming and subframe display are simply combined, interference phenomena such as flickering force and horizontal stripes may occur.
  • Figure 23 shows the light source emission waveform, liquid crystal electrode voltage waveform (liquid crystal response waveform), and light transmission light waveform (transmission waveform) when PWM dimming is combined with normal hold display. ) Is a graph showing an example of the relationship.
  • FIG. 24 is a graph showing similar waveforms when PWM dimming is combined with sub-frame display (in the case of low luminance).
  • the frame frequency is 60 Hz
  • the dimming frequency ONZOFF frequency of the light source
  • the dimming ratio ONZOFF period ratio of the light source
  • all waveforms Is shown by a rectangular wave.
  • the frequency of the transmitted waveform is the same as the dimming frequency (150 Hz) even when PWM dimming is performed.
  • the flicker force starts to be perceived when the frequency of the transmitted waveform falls below the fleat force threshold (90 Hz), and is clearly recognized when it falls below 60 Hz. Therefore, in the normal hold display, the user does not feel flickering force.
  • the dimming frequency interferes with the subframe frequency, and the frequency of the transmitted waveform is greater than the dimming frequency. (The frequency is 30Hz in Fig. 24). For this reason, the user feels a strong flick force.
  • FIG. 25 is a graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform when PWM dimming is combined with subframe display.
  • the dimming frequency 180Hz
  • the frame frequency 60Hz
  • liquid crystal response waveforms and transmission waveforms are shown for two lines ⁇ ⁇ ⁇ having different positions.
  • the frequency of the transmitted waveform is 60 Hz, which is the same as the frame frequency, on both lines ⁇ and ⁇ .
  • the light source normally irradiates the entire screen with light at the same time.
  • the liquid crystal panel is line scan driven. Therefore, each line on the screen is turned ON and OFF at different times depending on the position. Therefore, as shown in FIG. 25, the ON / OFF timing of the response waveform of the liquid crystal is shifted (sliding with respect to time) in the lines ⁇ ⁇ ⁇ at different positions.
  • the ratio of the time when the transmission waveform is turned on (time when the luminance is high) differs depending on the line position. Therefore, there is a difference in average brightness between lines, which is recognized as a horizontal stripe phenomenon.
  • the dimming frequency is exactly n times the frame frequency, the horizontal stripes stop on the screen. As the n-power boost is lost, horizontal stripes begin to flow up and down the screen. Furthermore, the horizontal stripes disappear when the dimming frequency deviates significantly from n times and approaches n.
  • the dimming frequency is n. 5 times the frame frequency
  • the light emission waveform of the light source is in the opposite phase between adjacent frames as shown in FIG. Therefore, the transmitted waveform from each line also has an opposite phase between adjacent frames. For this reason, the amount of transmitted light in two frames of each line force can be made equal (it can be compensated for time), so that no horizontal stripes are generated.
  • control unit 15 controls the circuits 31 and 32 to set the dimming frequency to “a value that is n.5 times the frame frequency and 450 Hz or more”.
  • FIG. 26 is a graph showing an example of the relationship between the light emission waveform, the liquid crystal response waveform, and the transmission waveform of the light source (fluorescent tube 33) in this case.
  • the dimming frequency (450Hz) is 7.5 times the frame frequency (60Hz).
  • Figure 25 show the liquid crystal response waveform and transmission waveform for two lines A and B at different positions! /
  • the dimming frequency is n. 5 times the frame frequency, the above horizontal stripes are not generated.
  • the frequency of the transmitted waveform is 30 Hz, which is half the frame frequency, in both lines A and ⁇ , but the dimming frequency is sufficiently raised, so the flicker force is not noticeable. It is possible to do.
  • the transmitted light quantity of lines ⁇ and ⁇ ⁇ shown in FIG. 26 is reversed for each frame (the light quantity of the first frame (second frame) of line ⁇ is the second frame of line B (one frame). Same as eye)). If the lines having such a relationship can be densely arranged on the screen, the flicker force can be spatially compensated by allowing the user to visually recognize the light of these line forces at the same time.
  • the two lines having the above relationship become closer to each other on the screen as the dimming frequency becomes higher. Therefore, by sufficiently increasing the dimming frequency, the flits force can be made inconspicuous even if the value is set to n.5 times the frame frequency. If the brightness of the previous sub-frame is barely black, and the brightness is 50% (when the black insertion rate is 50%), dimming Experimental results have shown that if the frequency is set to 450 Hz or higher, the flicker force will not be noticeable. In addition, the frits force is most noticeable when the black insertion rate is 50%.
  • the dimming frequency to “a value that is n. 5 times the frame frequency and equal to or greater than 45 OHz”, it is possible to avoid the occurrence of both horizontal stripes and flickering force. It is like this.
  • FIG. 27 is a graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform of the light source (fluorescent tube 33) in this case.
  • This figure also shows the liquid crystal response waveforms and transmission waveforms for two lines A and B at different positions, as in FIG.
  • the control unit 15 emits a main light emission pulse having a relatively long pulse width from the fluorescent tube 33 at a dimming frequency (330 Hz; 5.5 times the frame frequency (60 Hz)). .
  • the dimming frequency is n.5 times the frame frequency, the horizontal stripes as described above do not occur.
  • the frequency of the transmission waveform by the main light emission pulse is 30 Hz, which is half the frame frequency, in both lines ⁇ and ⁇ .
  • a luminance compensation pulse with a relatively short pulse width is inserted at the same frequency (330 Hz) as the main light emission pulse with strong anti-phase!
  • the transmission amount of the main light emission pulse and the luminance compensation pulse has a reverse ratio for each force frame that increases or decreases for each frame.
  • the generation ratio of the main light emission pulse (high) is 2.5 to 3 in the first frame to the second frame (pulses 3 to 5, pulses 8 to 10).
  • the reverse is 3 to 2.5.
  • the frequency (30Hz) of the transmitted waveform is small, the luminance difference within one cycle (within two frames) can be reduced by using the luminance compensation pulse (the luminance difference between frames). Can be reduced). Therefore, it is possible to make the flits force inconspicuous.
  • the PWM dimming frequency can be made lower than 450Hz, so a reduction in the driving efficiency of the light source can be avoided.
  • 330Hz luminance compensation pulse is inserted. Therefore, there is a concern about inefficiency.
  • the pulse width of the luminance compensation pulse is very small compared to the frame period. Therefore, the influence of the luminance compensation pulse insertion on the driving efficiency of the light source is sufficiently small.
  • the dimming frequency is assumed to be n. 5 times the frame frequency.
  • the present invention is not limited to this, and the dimming frequency may be n times the frame frequency.
  • the emission waveform of the light source may be controlled so as to invert the phase for each frame.
  • the transmission waveform from each line can be reversed in phase for each frame. Accordingly, the amount of transmitted light in two frames in each line can be made equal (time compensation can be performed), so that no horizontal stripes are generated.
  • the control unit 15 first sets the dimming frequency (300 Hz; frame frequency (60 Hz) 5
  • the main light emission pulse having a relatively long pulse width is emitted from the fluorescent tube 33.
  • the main light emission pulse is controlled to be phase-inverted every frame.
  • control unit 15 inserts a luminance compensation pulse having a relatively short pulse width into the light emission waveform of the light source at the same frequency (330 Hz) as that of the main light emission pulse and in an opposite phase.
  • control unit 15 inserts a luminance compensation added pulse or a luminance compensation reduced pulse in place of the luminance compensation pulse at the timing when the phase of the main light emission pulse changes (the boundary point of the frame in FIG. 29).
  • the luminance compensation added pulse is a pulse that turns on the light source and is inserted when the main light emission pulse is continuously turned OFF (low).
  • the luminance compensation reduced pulse is a pulse for turning off the light source, which is inserted when the main light emission pulse is continuously turned on (noise).
  • the luminance compensation pulse is inserted to increase the light amount.
  • the luminance compensation is reduced. It is designed to reduce the amount of light by inserting a pulse.
  • the light emission waveform is controlled to include a direct current component (DC component), thereby suppressing interference phenomena such as flaw force and horizontal stripes. Is also possible.
  • DC component direct current component
  • FIG. 30 is a block diagram showing a configuration of the present display device when such control is performed.
  • This configuration includes a first light source drive circuit 34 and a second light source drive circuit 35 in place of the light source drive circuit 32 in the configuration shown in FIG. 22, and further includes these circuits 34 and 35 and a PWM dimming control circuit 31.
  • the phase control circuit 36 is provided between the two.
  • every other fluorescent tube 33 is divided into a first fluorescent tube 33a and a second fluorescent tube 33b (fluorescent tubes 33a '33b are alternately arranged).
  • the first fluorescent tube 33a is a fluorescent tube 33 connected to the first light source drive circuit.
  • the second fluorescent tube 33b is a light source connected to the second light source driving circuit 35.
  • the control unit 15 generates a dimming rate signal indicating the amount of light to be output from the fluorescent tubes 33 a ′ 33 b and outputs the dimming rate signal to the PWM dimming control circuit 31. Then, in response to the dimming rate signal, the PWM dimming control circuit 31 and the phase control circuit 36 generate a signal indicating a period related to ONZOFF of the lamp current for the first fluorescent tube 33a, and the first light source driving circuit 34 And a signal indicating a period related to ONZOFF of the lamp current for the second fluorescent tube 33b is generated and transmitted to the second light source driving circuit 35. Further, the light source drive circuits 34 and 35 are designed to generate a lamp current (pulse current) in accordance with the transmitted signal and output it to the fluorescent tubes 33a'33b.
  • the two sets of fluorescent tubes 33a ′ 33b can emit light independently of each other.
  • 31 (a) and 31 (b) show the emission waveform of the first fluorescent tube 33a (first waveform), the emission waveform of the second fluorescent tube 33b (second waveform), and the two fluorescent tubes in the configuration shown in FIG. It is a graph which shows the example of the waveform (mixed waveform) which mixed the light emission waveform of light tube 33a'33b.
  • Fig. 31 (a) is for the case where the dimming rate (the ratio of the light emission amount to the maximum light emission amount in each fluorescent tube) is 75%
  • Fig. 31 (b) is for the case where the dimming rate is 50%. is there.
  • the control unit 15 controls the phases of the first waveform and the second waveform to change 180 ° from each other. Therefore, as shown in Fig. 31 (a), when the dimming rate is 75%, 75% of the emitted light is DC component. In addition, as shown in Fig. 31 (b), when the dimming rate is 50%, all of the light emission amount (100%) becomes the DC component (DC drive can be performed).
  • control for including the DC component in the light emission waveform of the light source is performed as described above. "Set the dimming frequency to n. 5 times the frame frequency and to a value of 450 Hz or more.” Such control may be combined with control using a luminance compensation pulse.
  • FIG. 32 is a block diagram showing a configuration of the present display device when such control is performed.
  • the fluorescent tube 33 is divided into three types (first fluorescent tube 33a, second fluorescent tube 33b, and third fluorescent tube 33c).
  • the fluorescent tubes 33a, 33b, and 33c are arranged in this order and periodically (every two fluorescent tubes of the same type are arranged).
  • a third light source driving circuit 37 is added between the phase control circuit 36 and the fluorescent tube 33.
  • the third light source driving circuit 37 drives the third fluorescent tube 33c (lamp current is applied!).
  • FIGS. 33 (a) and (b) are graphs showing examples of fluorescent tubes 33a to 33c (first to third waveforms) and their mixed waveforms (mixed waveforms) in the configuration shown in FIG. is there.
  • FIG. 33 (a) relates to the case where the dimming rate is 50%
  • FIG. 31 (b) relates to the case where the dimming rate is 25%.
  • the phases of the first to third waveforms are controlled to be shifted from each other by 120 °. Therefore, as shown in Fig. 33 (a) and (b), the dimming rate Even when 50% is the same, the DC component can be increased as compared with the case where the fluorescent tubes 33 are not blinked at the same time.
  • the amount of time variation in the light emission amount of the light source within one cycle (within two frames) can be reduced. Further, the difference in light emission amount between the lines can be reduced. Therefore, it is possible to make the interference phenomenon such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
  • the number of fluorescent tubes 33 (the number of groups of fluorescent tubes that are driven separately) can be set to an arbitrary number by providing as many light source driving circuits as the number of groups.
  • the phases of the 1st to p-th waveforms are controlled to be shifted by 360 ° Zp from each other. It is preferable to do.
  • PWM dimming may be performed so that the emission waveforms of at least two fluorescent tubes 33 have different phases. Even in this configuration, the light emission waveform of each light source is shifted, so that the DC component of the mixed light including the light from all the light sources can be increased.
  • the light source of the liquid crystal panel 21 is a plurality of fluorescent tubes 33 which are direct type backlights.
  • an LED (light emitting diode) that serves as a side-type knock light (a backlight at the side edge of the liquid crystal panel 21) may be used as the light source.
  • the display element shown in FIG. 35 has a configuration in which a light guide plate 41 is disposed on the back surface of the liquid crystal panel 21, and the first LED 42 and the second LED 43 are arranged on two opposite sides of the light guide plate 41. This configuration is designed so that the light emitted from the LED 42'43 is expanded by the light guide plate 41 and output to the liquid crystal panel 21 as planar light!
  • control unit 15 causes the phase of the light emission waveform (first waveform) of the first LED 42 and the light emission waveform (second waveform) of the second LED 43 to mutually differ. Control to change 180 degrees. Thereby, in the light guide plate 41, the light emission waveforms having the opposite phases can be mixed to create a DC component. Therefore, even in this configuration, the DC component of the light irradiated on the liquid crystal panel 21 is reduced.
  • two LEDs 42.43 may be disposed along the same side of the light guide plate 41 as shown in FIG. .
  • the liquid crystal panel 21 can be irradiated with light containing a large amount of DC components.
  • the two LEDs 42.43 can also be used as a side-type front light (a front light disposed on the side end of the liquid crystal panel 21). In this case, as shown in FIGS. 37 and 38, the liquid crystal panel 21 is configured as a front light type.
  • the liquid crystal panel 21 is a reflective liquid crystal display element. That is, in this configuration, the liquid crystal panel 21 receives the planar light from the light guide plate 41 from the front surface (user side surface). And, it is designed to display an image to the user by reflecting this planar light by the internal reflector.
  • each fluorescent tube 33 may be driven individually. In this case, if r fluorescent tubes 33 are used, it is preferable to shift the phase of the emission waveform from each fluorescent tube 33 by 360 ° / ⁇ .
  • Fig. 39 is a block diagram showing a configuration of the present display device in the case of performing the synchronization as described above.
  • the r fluorescent tubes 33 immediately below the liquid crystal panel 21 are designed to be driven by the first to r-th light source drive circuits 32a to 32r!
  • each fluorescent tube 33 irradiates light to a plurality of gate lines close to itself.
  • the number of gate lines corresponding to each fluorescent tube 33 is, for example, 42 to 43 when 18 fluorescent tubes 33 and 768 gate lines are provided.
  • the control unit 15 sends a synchronization signal to the phase control circuit 36 to turn on the gate line group corresponding to each fluorescent tube 33 (the scanning of this gate line group is started). ) To start driving the fluorescent tube 33 (more specifically, since the gate line groups are not all turned on at the same time, the drive start timing of the fluorescent tube 33 is Set to the average ON timing of the line group).
  • FIG. 40 is a graph showing an example of the relationship between the light emission waveform of the light source, the liquid crystal response waveform, and the transmission waveform when such control is performed.
  • the dimming frequency 180 Hz
  • the frame frequency 60 Hz.
  • This figure also shows the light source emission waveform, liquid crystal response waveform, and transmission waveform for two different gate line groups ⁇ ⁇ ⁇ .
  • the liquid crystal response waveform represents the voltage that is written to the pixel of the liquid crystal panel 21 at the ON timing of the gate line and is held until the next ON timing.
  • the frequency of the light emission waveform of the light source is three times the frequency of the frame. Therefore, in both the line groups ⁇ ⁇ ⁇ and ⁇ , the frequency of the transmission waveform is 60 Hz, which is the same as the frame frequency, and the generation of flickering force can be avoided.
  • the phase relationship between the emission waveform of the fluorescent tube 33 and the response waveform of the liquid crystal is the same in both the line groups ⁇ and ((the light source emission waveform for the line group ⁇ and the line The time lag from the light source emission waveform for ⁇ coincides with the lag in the liquid crystal response waveform between the line groups ⁇ and ⁇ ).
  • FIG. 41 is a block diagram showing a configuration of the display device in this case. In this configuration, a current dimming control circuit 51 is newly provided in the configuration shown in FIG.
  • the dimming rate signal indicating the amount of light that should be output from the fluorescent tube 33 by the control unit 15 Is output to the PWM dimming control circuit 31 and the current dimming control circuit 51. Also, the dimming control circuits 31 and 51 generate signals (current dimming control signal, PWM dimming control signal) indicating the period related to ONZOFF of the lamp current according to the dimming rate signal, and drive the light source Communicate to circuit 32.
  • the light source drive circuit 32 is designed to generate a lamp current (pulse current) according to the transmitted signal and output it to all the fluorescent tubes 33.
  • FIG. 42 is a graph showing examples of the current dimming control signal, the PWM dimming control signal, the lamp current, and the light emission waveform in this configuration.
  • the control unit 15 controls the dimming control circuits 31 and 51 to generate a constant current dimming control signal (a signal that gives constant light emission power) and PWM dimming control. The signal is output together with the signal.
  • the lamp current waveform of the fluorescent tube 33 becomes a waveform in which the amplitude according to the PWM dimming control signal overlaps with the constant amplitude according to the current dimming control signal. Therefore, the light emission waveform of the fluorescent tube 33 is a waveform having a DC component corresponding to a constant current dimming control signal as shown in FIG.
  • the DC component of the light emission waveform can be easily increased by using the PWM dimming method and the current dimming method together. This makes it possible to reduce the amount of time fluctuation in the light emission amount of the light source within one cycle (within 2 frames). Further, the difference in light emission amount between the lines can be reduced. Therefore, it is possible to make the interference phenomenon such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
  • the light from the light source can be controlled in accordance with the external light. preferable.
  • FIG. 43 is a diagram showing a configuration of the present display device that performs such control.
  • the liquid crystal panel 21 uses the light guide plate 41 to convert the light of the LED 63 serving as the light source into a planar light, and receives this from the front surface (user side surface). Then, the planar light is reflected by an internal reflecting plate to display an image to the user.
  • this configuration includes a light source dimming control circuit 62 for controlling the luminance of the LED 63.
  • This light source dimming control circuit 62 detects the luminance waveform of the external light and adjusts the luminance of the LED 63 so as to increase the DC component of the light irradiated on the liquid crystal panel 21. That is, when there is external light having a luminance waveform as shown in FIG. 44 (a), the light source dimming control circuit 62 performs the luminance waveform (light emission waveform) of the LED 63 as shown in FIG. 44 (b). ) Is controlled to have the same frequency as the external light luminance waveform and in the opposite phase. Therefore, the liquid crystal panel 21 can be irradiated with light having a large DC component as shown in FIG. 44 (c).
  • the transflective display device performs transmissive display using knocklight light under a relatively dark illumination such as indoors (transmission mode), whereas it emits the illumination light under a relatively bright illumination such as outdoors. It is used to perform reflection display (reflection mode). Thereby, a display with a high contrast ratio can be realized regardless of the brightness of the surroundings.
  • the light source dimming control circuit 62 controls the luminance waveform of the LED 63 so that the phase of the LED 63 differs from that of the external light luminance waveform by 180 °. As a result, it is possible to irradiate the liquid crystal panel 21 with light having a large DC component, as shown in FIG. 44 (c), in which light of the same frequency and opposite phase is mixed.
  • the present invention is not limited to this, and the light source of the present display device may be configured with either EL (Electro luminescence) or FED (Field Emission Display).
  • the light source may also be configured with a combination of fluorescent tubes, LEDs, EL and FED.
  • the light source is expressed in a bar shape.
  • the shape of the light source may be round or U-shaped. That is, in the present invention, the shape of the light source is not particularly limited.
  • the display unit 14 of the present display device is not limited to a liquid crystal display element, but is a non-self-luminous display element (an element that requires a light source). Any display element can be used.
  • the control unit 15 sends a display signal to the liquid crystal panel 21 and also controls PWM dimming.
  • PWM dimming control unit a member for controlling PWM dimming may be provided separately from the control unit 15.
  • this display device is a display device that displays an image by dividing one frame into m (m; an integer greater than or equal to 2) sub-frames, and displays an image with luminance based on the voltage of the display signal.
  • a PWM dimming control unit that dimmes the light source of the display unit using the PWM dimming method. It can be expressed as a structure that speaks.
  • the tuner unit 17 selects a channel of a television broadcast signal and transmits the television image signal of the selected channel to the control unit 15 via the frame memory 11. You may use what you do. In this configuration, the control unit 15 generates a display signal based on the television image signal. Further, the tuner unit 17 is used to select a channel of a television broadcast signal and transmit a television image signal of the selected channel to the control unit 15 via a circuit (not shown) that performs various video processing. It's okay.
  • the display device of the present invention has a luminance scale of an input display signal.
  • a control unit that generates and outputs the first and second display signals to the display unit. When the control unit displays a low brightness image, the control unit adjusts the luminance gradation of the first display signal.
  • the brightness gradation of the second display signal is set to a minimum or smaller value than the first predetermined value (e.g., 0.02% of the maximum gradation) and a high brightness image is displayed
  • the brightness of the first display signal is The gradation is greater than the maximum or second predetermined value (for example, 80% of the maximum gradation)
  • the luminance gradation of the second display signal is adjusted, and the ratio between the period of the first subframe and the period of the second subframe is 1 : n or n: 1 (n is a real number greater than 1)
  • the light source of the display unit is dimmed by the PWM dimming method.
  • the display device shown in FIG. 39 is a display device that displays an image by dividing one frame into m (m; an integer greater than or equal to 2) subframes.
  • the above display unit has a light source group in which a plurality of direct light sources are arranged, and each light source irradiates light to a gate line group having a plurality of gate line forces close to itself.
  • the above control unit is designed so that the frequency of the light emission waveform of the light source And the state of the emission waveform of the light source when the response waveform force SON of the liquid crystal corresponding to the gate line group assigned to each light source is SON. It can also be expressed as a configuration that performs PWM dimming so that the light source is the same.
  • the arithmetic unit (CPU or MPU) of the information processing apparatus reads the program recorded on the recording medium and executes the process. Therefore, it can be said that this program itself realizes processing.
  • a function expansion board or a function expansion boot mounted on a computer can be used in addition to a general computer (workstation or personal computer).
  • the above-mentioned program is a program code (execution format program, intermediate code program, source program, etc.) of software that realizes processing.
  • This program may be used alone or in combination with other programs (such as OS).
  • this program is stored in memory (RAM etc.) in the device after it has been read, and then read and executed again. But you can.
  • the recording medium on which the program is recorded may be one that can be easily separated from the information processing apparatus, or one that is fixed (attached) to the apparatus. It can also be connected to the device as an external storage device.
  • Such recording media include magnetic tapes such as video tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks and hard disks, optical disks such as CD, MO, MD, and DV D (magneto-optical disks). ), Memory cards such as IC cards and optical cards, semiconductor memories such as mask ROM, EPROM, EEPROM, and flash ROM.
  • a recording medium connected to the information processing apparatus via a network may be used.
  • the information processing apparatus acquires the program by downloading via the network. That is, the above program
  • Patent Document 6 describes a method for improving interference fringes that occurs when a black drive method that realizes a pseudo impulse mode by inserting black in one frame in a liquid crystal display device and a PWM dimming method of a light source. It is stated in. In the technique of this document, one frame period is divided into a black display period and an image display period, and the method of driving the liquid crystal under a certain ratio condition with respect to one black display period or a certain PWM dimming frequency. Improvements can be made by driving the knocklight under certain conditions, or by shifting the phase of the PWM dimming signal of multiple knocklights.
  • one frame is divided into a plurality of subframe periods, and each has high and low luminance subframes.
  • the screen Although it has the advantage of improving video performance such as edge blurring while suppressing the drop in display brightness, it causes interference when combined with a PWM dimming light source in the same way as black insertion. To do.
  • the light source is completely shut off, so changing the black insertion time does not change the gradation even if the overall absolute brightness changes.
  • the time-division gradation driving method there is a restriction that the luminance and gradation change when the time of each subframe is changed.
  • the light source light is modulated with the response waveform of the liquid crystal and transmitted even in the low-luminance subframe period, and the control timing is improved by synchronizing the light-off period of the light source during the insertion period. This method cannot be used.
  • the object of the present invention is to provide a display mechanism that mainly divides one frame period into two or more subframe periods and expresses gradation by time integration of each subframe. It is also possible to improve the interference phenomenon such as flick force that occurs when combining the pseudo impulse drive method with time division gradation and the light source of PWM dimming method without impairing gradation expression and screen display. .
  • the present invention can also be expressed as the following first to twenty-third display devices. That is, the first display device divides one frame period into two or more subframe periods, and a driving method including a display mechanism that expresses gradation by time integration of each subframe, and PWM dimming
  • This configuration includes means for controlling the PWM dimming signal so as to improve the interference phenomenon that occurs when combined with a light source of the type.
  • the second display device is configured to control the PWM dimming signal so that the light emission waveform of the light source is temporally and spatially compensated in order to improve the interference phenomenon in the first display device. It is.
  • the third display device is configured to control the PWM dimming signal so as to include as much DC components as possible in the light emission waveform of the light source in order to improve the interference phenomenon in the first display device. is there.
  • the fourth display device controls the PWM dimming signal so that the light emission waveform of the light source is temporally and spatially compensated in the first display device in order to improve the interference phenomenon. Furthermore, in order to improve the interference phenomenon, the PWM dimming signal is controlled so that as much DC component as possible is included in the light emission waveform of the light source.
  • the fifth display device is configured to drive the PWM dimming control signal at n. 5 times the frame frequency in the second display device.
  • the sixth display device is configured to be driven at a PWM dimming frequency of 450 Hz or more in the fifth display device at a black insertion rate of 50%.
  • the seventh display device is configured to include control means for generating a compensated dimming pulse so that the luminance is constant in the fifth display device.
  • the eighth display device is configured to drive the PWM dimming control signal at n times the frame frequency and invert the phase for each frame in the second display device.
  • the ninth display device is configured to include control means for generating a dimming pulse for compensating for the luminance to be constant in the eighth display device.
  • the tenth display device includes the first light source and the second light source in the third display device, and includes means for controlling each of the PWM dimming phases to be 180 ° different from each other.
  • the eleventh display device includes the first light source, the second light source, and the third light source in the third display device, and controls each of the PWM dimming phases to be different by 120 °. It is the composition which is equipped with.
  • the twelfth display device includes the first to nth light sources in the third display device.
  • the thirteenth display device has a configuration in which the light source is a direct type knock light in the tenth to twelfth display devices and is spatially arranged alternately.
  • the fourteenth display device in the tenth to twelfth display devices has a configuration in which the light source is a side-type knock light, and light sources having opposite phases are arranged at both ends, respectively.
  • the fifteenth display device is a configuration in which in the tenth to twelfth display devices, the light source is a side-type knock light, and a light source having an opposite phase is arranged at one end.
  • the sixteenth display device in the tenth to twelfth display devices has a configuration in which the light source is a front light and light sources having opposite phases are arranged at both ends.
  • the seventeenth display device is a configuration in which the light source is a front light, and a light source having an opposite phase is arranged at one end along the other end in the tenth to twelfth display devices.
  • the eighteenth display device is configured by combining any one of the fifth to eighth display devices with! Or the deviation of the thirteenth to sixteenth display devices.
  • the nineteenth display device is configured to scan-control a plurality of light sources arranged in parallel in synchronization with the line scan drive of the liquid crystal panel in order to improve the interference phenomenon.
  • the twentieth display device has a PWM dimming method and a current dimming method, and is configured to suppress the interference phenomenon by increasing the DC component of the light emission waveform of the light source in advance by the current dimming method. .
  • the 21st display device is configured to control the PWM dimming of the light source in the second display device so that the sensor unit for detecting external light and the detected luminance component have an opposite phase.
  • the twenty-second display device is configured to control PWM dimming of the front light source in the twenty-first display device so that the reflective liquid crystal has an opposite phase to the external light.
  • the PWM light control of the backlight light source is controlled so that the transflective liquid crystal has an opposite phase to the external light.
  • the twenty-third display device has a configuration in any one of the first to twenty-second display devices, in which the light source is any one or a combination of a fluorescent lamp, LED, EL, and FED.
  • the present invention can be suitably used for an apparatus having a display screen in which whitening occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

In this display apparatus, a control part (15) divides each frame into former and latter subframes, and causes a black display to be performed in the former subframe for a lower brightness, while causing a white display to be performed in the latter subframe for a higher brightness. This can suppress a white float effect. Moreover, the control part (15) modulates a light source of a display part (14) by use of a PWM light modulation method using a light modulation frequency that is n.5 times the frame frequency and that is equal to or greater than 450 Hz. This can prevent occurrence of horizontal stripes. In addition, since the light modulation frequency is sufficiently raised, the flickers can be made less noticeable.

Description

明 細 書  Specification
表示装置、液晶モニター、液晶テレビジョン受像機および表示方法 技術分野  Display device, liquid crystal monitor, liquid crystal television receiver and display method
[0001] 本発明は、 1フレームを、複数のサブフレームに分割して画像表示を行う表示装置 に関するものである。  The present invention relates to a display device that displays an image by dividing one frame into a plurality of subframes.
背景技術  Background art
[0002] 近年、 CRT (陰極線管)が用いられて ヽた分野で、液晶表示装置、特に TN(Twisted  In recent years, CRTs (cathode ray tubes) have been used in liquid crystal display devices, particularly TN (Twisted
Nematic)型の液晶表示パネル(TNモードの液晶パネル; TNパネル)を有するカラ 一液晶表示装置が多く用いられるようになってきている。例えば、特許文献 1には、 表示する画像が動画像であるか静止画像であるかによって TNパネルの駆動方法を 切り替える、液晶表示装置が開示されている。  Nematic liquid crystal display panels (TN mode liquid crystal panels; TN panels) have become increasingly popular. For example, Patent Document 1 discloses a liquid crystal display device that switches a driving method of a TN panel depending on whether a displayed image is a moving image or a still image.
[0003] ところで、このような TNパネルでは、 CRTに比して、視野角特性にやや問題がある 。このため、視線角度 (パネルを見る角度;パネルの法線方向と、パネルを見る方向と のなす角度)の増加に応じて階調特性が変わり、階調反転してしまう角度も存在する  [0003] By the way, such a TN panel has a slight problem in viewing angle characteristics as compared with a CRT. For this reason, the gradation characteristics change as the line-of-sight angle (the angle at which the panel is viewed; the angle between the normal direction of the panel and the direction at which the panel is viewed) increases, and there is an angle at which the gradation is reversed.
[0004] そこで、従来、光学フィルムを用いて視野角特性の改善する技術や、表示方法に 工夫を凝らすことで階調反転を抑制する記述が開発されている。例えば、特許文献 2 および特許文献 3では、 1フレームを分割して 1画素に複数回信号書込みを行う、ま たその信号書込み電圧レベルを組み合わせて改善する方法がある。 [0004] Therefore, a technique for improving viewing angle characteristics using an optical film and a description for suppressing gradation inversion by devising a display method have been developed. For example, in Patent Document 2 and Patent Document 3, there is a method in which one frame is divided and signal writing is performed multiple times on one pixel, and the signal writing voltage level is improved in combination.
[0005] また、 TV (テレビジョン受像機)などの広視野角を必要とする液晶表示パネルでは 、 TNモードではなぐ IPS (In- Plane- Switching)モードや VA (Vertical Alignment)モ ードなどの液晶を用いることによって、広視野角化を図っている。例えば、 VAモード の液晶パネル (VAパネル)では、上下左右 170° の範囲でコントラストが 10以上とな り、階調反転もなくなつている。  [0005] In addition, liquid crystal display panels that require a wide viewing angle such as TV (television receiver), such as IPS (In-Plane-Switching) mode and VA (Vertical Alignment) mode, which are not in TN mode. A wide viewing angle is achieved by using liquid crystal. For example, in a VA mode liquid crystal panel (VA panel), the contrast is 10 or more in the range of 170 ° up, down, left, and right, and there is no gradation inversion.
特許文献 1:特開 2001— 296841号公報 (公開日; 2001年 10月 26日)  Patent Document 1: Japanese Unexamined Patent Publication No. 2001-296841 (Release Date; October 26, 2001)
特許文献 2:特開平 5 - 68221号公報 (発行日; 1993年 3月 19日)  Patent Document 2: JP-A-5-68221 (Issue Date; March 19, 1993)
特許文献 3:特開 2002— 23707号公報 (公開日; 2002年 1月 25日) 特許文献 4:特開 2000— 321551号公報 (公開日; 2000年 11月 24日) 特許文献 5 :特開平 9— 127917号公報 (公開日; 1997年 5月 16日) Patent Document 3: Japanese Patent Laid-Open No. 2002-23707 (Publication Date; January 25, 2002) Patent Document 4: Japanese Patent Laid-Open No. 2000-321551 (Publication Date; November 24, 2000) Patent Document 5: Japanese Patent Laid-Open No. 9-127917 (Publication Date; May 16, 1997)
特許文献 6:特開 2004— 4659 (公開日; 2004年 1月 8日)  Patent Document 6: Japanese Patent Application Laid-Open No. 2004-4659 (Release Date; January 8, 2004)
非特許文献 1 :新編 色彩科学ハンドブック;第 2版 (東京大学出版会;公開日; 1998 年 6月 10曰)  Non-Patent Document 1: New edition Color Science Handbook; 2nd edition (University of Tokyo Press; Publication date; June 10, 1998)
発明の開示  Disclosure of the invention
[0006] しカゝしながら、広視野角と!ヽわれて ヽる VAパネルでも、視野角度による階調特性 の変化を完全になくすことはできず、例えば左右方向の視野角度が大きくなると階調 特性が悪化する。  [0006] However, even with a VA panel that is said to have a wide viewing angle, the change in gradation characteristics due to the viewing angle cannot be completely eliminated. For example, if the viewing angle in the horizontal direction increases, Adjustment characteristics deteriorate.
[0007] すなわち、図 2に示すように、視野角度が 60度となると、正面からパネルを望む場 合 (視野角度 0度)に対し、階調 γ特性が変わり、中間調の輝度が明るくなる白浮き 現象が起こってしまう。  That is, as shown in FIG. 2, when the viewing angle is 60 degrees, the gradation γ characteristic changes and the halftone brightness becomes brighter when the panel is desired from the front (viewing angle 0 degree). White floating phenomenon occurs.
[0008] また、 IPSモードの液晶パネルに関しても、光学フィルムなどの光学特性の設計に もよるが、程度の大小はあれ、視野角度の増加に応じて階調特性の変化が起こる。  [0008] Also, regarding the IPS mode liquid crystal panel, although depending on the design of optical characteristics such as an optical film, the gradation characteristics change depending on the increase in the viewing angle.
[0009] 本発明は、上記のような従来の問題点に鑑みてなされたものである。そして、その 目的は、白浮き現象を抑制可能な表示装置を提供することにある。  [0009] The present invention has been made in view of the above-described conventional problems. And the objective is to provide the display apparatus which can suppress a white floating phenomenon.
[0010] 上記の課題を解決するために、本発明の表示装置は、 1フレームを、 m個(m; 2以 上の整数)のサブフレームに分割して画像表示を行う表示装置であって、表示信号 の電圧に基づいた輝度の画像を表示する表示部と、 1フレームに表示部から出力さ れる輝度の総和をフレームの分割によって変えないように、第 1〜第 mサブフレーム の表示信号である第 1〜第 m表示信号を生成して表示部に出力する制御部とを備え ており、この制御部が、表示部の光源を PWM調光方式で調光するように設計されて V、る構成である。  [0010] In order to solve the above problems, the display device of the present invention is a display device that displays an image by dividing one frame into m (m; an integer of 2 or more) subframes. A display unit that displays an image of luminance based on the voltage of the display signal, and a display signal for the first to m-th subframes so that the total luminance output from the display unit in one frame is not changed by dividing the frame. The first to mth display signals are generated and output to the display unit. This control unit is designed to dimm the light source of the display unit by the PWM dimming method. This is a configuration.
[0011] 本表示装置は、液晶表示素子からなる表示画面を備えた表示部を用いて画像を表 示するものである。そして、本表示装置は、制御部が、サブフレーム表示によって表 示部を駆動するようになっている。ここで、サブフレーム表示とは、 1つのフレームを複 数 (m個; mは 2以上の整数)のサブフレーム(第 1〜第 mサブフレーム)に分けて行う 表示方法である。 [0012] すなわち、制御部は、 1フレーム期間に、表示部に対して、表示信号を m回出力す る(第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信号を順に出力する) 。これにより、制御部は、各サブフレーム期間で、表示部の表示画面の全ゲートライン を 1回ずつ ONとする(1フレームに m回 ONとする)こととなる。 The display device displays an image using a display unit having a display screen made up of a liquid crystal display element. In this display device, the control unit drives the display unit by subframe display. Here, the sub-frame display is a display method in which one frame is divided into a plurality of sub-frames (1st to m-th sub-frames) (m pieces; m is an integer of 2 or more). That is, the control unit outputs a display signal to the display unit m times in one frame period (the first to m-th display signals that are display signals of the first to m-th subframes in order). Output) . As a result, in each subframe period, the control unit turns on all the gate lines on the display screen of the display unit once (m is turned on m times in one frame).
[0013] また、制御部は、表示信号の出力周波数 (クロック)を、好ましくは通常ホールド表示 時の m倍(m倍クロック)とする。なお、通常ホールド表示とは、フレームをサブフレー ムに分割せずに行う通常の表示(1フレーム期間で、表示画面の全ゲートラインを 1回 だけ ONとする表示)のことである。  [0013] In addition, the control unit preferably sets the output frequency (clock) of the display signal to m times (m times clock) during normal hold display. The normal hold display is a normal display that does not divide the frame into subframes (display that turns on all the gate lines on the display screen only once in one frame period).
[0014] また、表示部(表示画面)は、制御部力 入力された表示信号の電圧 (表示信号の 輝度階調に応じた電圧)に基づ 、た輝度の画像を表示するように設計されて!ヽる。  [0014] Further, the display unit (display screen) is designed to display an image with a luminance based on the voltage of the display signal (voltage corresponding to the luminance gradation of the display signal) input by the control unit. Talk!
[0015] そして、制御部は、フレームを分割することで 1フレームに画面から出力される輝度 の総和 (全輝度)を変えないように、第 1〜第 m表示信号を生成する (これらの表示信 号の電圧を設定する)ようになつている。なお、表示信号の電圧は、表示部における 各画素の液晶に印加される電圧 (液晶電圧)である。  [0015] Then, the control unit generates the first to m-th display signals so as not to change the total luminance (total luminance) output from the screen into one frame by dividing the frame (the display of these displays). Set the signal voltage). Note that the voltage of the display signal is a voltage (liquid crystal voltage) applied to the liquid crystal of each pixel in the display unit.
[0016] ここで、通常、表示部の表示画面では、表示信号の電圧 (液晶電圧)を最小ある 、 は最大に近づける場合に、大きな視野角度での実際明度と予定明度とのズレ(明度 ズレ)を十分に小さくできる。  [0016] Here, in general, on the display screen of the display unit, when the voltage (liquid crystal voltage) of the display signal is minimum or close to the maximum, the difference between the actual brightness and the expected brightness at a large viewing angle (brightness deviation). ) Can be made sufficiently small.
[0017] ここで、明度とは、表示される画像の輝度に応じた、人間の感じる明るさの度合いで ある(後述する実施形態における(5) (6)式参照)。なお、 1フレームで出力される輝 度の総和が不変の場合、同じく 1フレームで出力される明度の総和も変わらない。  Here, the brightness is the degree of brightness perceived by humans according to the brightness of the displayed image (see formulas (5) and (6) in the embodiments described later). If the sum of brightness output in one frame is unchanged, the sum of brightness output in one frame is not changed.
[0018] また、予定明度とは、表示画面で表示されるはずの明度 (液晶電圧に応じた値)の ことである。また、実際明度とは、画面で実際に表示された明度のことであり、視野角 度に応じて変化する値である。画面の正面では、これら実際明度と予定明度とは等し くなり、明度ズレはない。一方、視野角を大きくするにつれて、明度ズレも大きくなる。  [0018] Further, the planned brightness is the brightness (a value corresponding to the liquid crystal voltage) that should be displayed on the display screen. The actual brightness is the brightness actually displayed on the screen, and is a value that changes according to the viewing angle. At the front of the screen, the actual brightness and the planned brightness are equal, and there is no brightness deviation. On the other hand, as the viewing angle increases, the brightness shift increases.
[0019] 従って、本表示装置では、画像を表示する際、制御部が、第 1〜第 m表示信号の 少なくとも 1つの電圧を最小あるいは最大に近づけることが好ましい。これにより、少 なくとも 1つのサブフレームでの明度ズレを十分に小さくできる。これにより、本表示装 置では、通常ホールド表示を行う場合に比して、明度ズレを小さく抑えられるので、視 野角特性を向上させることが可能となる。このため、白浮き現象を良好に抑制できる。 Therefore, in the present display device, when displaying an image, it is preferable that the control unit causes the voltage of at least one of the first to mth display signals to be minimum or close to the maximum. As a result, the brightness deviation in at least one subframe can be made sufficiently small. As a result, the display device can suppress the lightness deviation compared to when performing normal hold display. It becomes possible to improve the field angle characteristics. For this reason, the white floating phenomenon can be satisfactorily suppressed.
[0020] また、上記のようなサブフレーム表示を行うことによって、動画の表示品質を向上さ せることも可能となる。すなわち、通常ホールド表示で表示されている物体の動きを 視線追従すると、直前のフレームの色や明るさも同時に見えてしまう。このため、物体 のエッジがボケて認識される。  [0020] Further, the display quality of a moving image can be improved by performing the subframe display as described above. In other words, when following the line of sight of the movement of an object displayed in the normal hold display, the color and brightness of the previous frame can be seen at the same time. For this reason, the edge of the object is recognized as blurred.
[0021] 一方、サブフレーム表示 (特に低輝度)で動画を表示する場合には、各フレームの いずれかのサブフレームの輝度が低くなる。このため、視認しているフレームの画像 と、直前のフレームの画像 (色'明るさ)とが視覚上で混在することを抑制できる。 従 つて、上記のようなエッジボケを回避し、動画の表示品質を向上させられる。 [0021] On the other hand, when a moving image is displayed in subframe display (particularly low luminance), the luminance of any subframe of each frame is low. For this reason, it is possible to suppress the visual mixing of the image of the currently viewed frame and the image of the immediately preceding frame (color'brightness). Therefore, the edge blur as described above can be avoided and the display quality of the moving image can be improved.
[0022] また、本表示装置は、 PWM調光方式で調光を行うように設計されている。本表示 装置の表示部 (液晶表示素子)は、光の透過量を制御することで階調を表現するもの である。従って、何らかの光源(蛍光管、 LED, EL、 FEDなど)が必要である。また、 現在、大型の表示素子では、効率のよさから、光源として蛍光管を使用することが一 般的である。 In addition, this display device is designed to perform dimming by the PWM dimming method. The display unit (liquid crystal display element) of this display device expresses gradation by controlling the amount of transmitted light. Therefore, some kind of light source (fluorescent tube, LED, EL, FED, etc.) is required. In addition, at present, a large-sized display element generally uses a fluorescent tube as a light source for efficiency.
[0023] また、光源の調光方式として、一般的に、電流調光方式 (または電圧調光方式とも 言う)と PWM調光方式との 2通りが使用されている。  [0023] In addition, generally, there are two light source dimming methods, a current dimming method (or voltage dimming method) and a PWM dimming method.
[0024] 電流調光方式は、光源に印加する電流 (ランプ電流)の振幅を変動させることで、 光源から照射する光の大きさ(明るさ)を制御する方式である。なお、光源として蛍光 管を使用する場合、ランプ電流の振幅を小さくしすぎると、蛍光管が光らなくなる。こ のため、電流調光方式では、調光範囲(実現できる明るさの範囲)を広くできないとい う欠点がある。従って、液晶テレビなどの調光範囲の広さが求められる装置では、 P WM調光方式をとることが好まし 、と 、える。 The current dimming method is a method for controlling the magnitude (brightness) of light emitted from a light source by changing the amplitude of a current (lamp current) applied to the light source. When a fluorescent tube is used as the light source, if the lamp current amplitude is too small, the fluorescent tube will not shine. For this reason, the current dimming method has the disadvantage that the dimming range (brightness range that can be realized) cannot be widened. Therefore, it is preferable to use the PWM dimming method in a device that requires a wide dimming range such as a liquid crystal television.
[0025] なお、 PWM調光とサブフレーム表示とを単純に組み合わせると、フリツ力や横縞と いった干渉現象の発生する可能性がある。すなわち、サブフレーム表示では、 PWM 調光を行うと、調光周波数とサブフレームの周波数とが干渉してしまい、表示部を透 過する光の波形 (透過波形)の周波数が調光周波数よりも大きく下がってしまうことが ある。このような場合、ユーザーはフリツ力を強く感じることとなる。  [0025] Note that, when PWM dimming and subframe display are simply combined, interference phenomena such as flickering force and horizontal stripes may occur. In other words, when PWM dimming is performed in subframe display, the dimming frequency interferes with the subframe frequency, and the frequency of the light waveform that passes through the display (transmission waveform) is higher than the dimming frequency. It may drop greatly. In such a case, the user feels a strong flick force.
[0026] なお、このフリツ力は、調光周波数がフレーム周波数の n. 5倍 (nは整数)に近いほ ど激しくなる。また、調光周波数がフレーム周波数の n倍となると、透過波形の周波数 力 Sフレーム周波数と等しくなるため、フリツ力を目立たない程度に低減することが可能 となる。しかしながら、調光周波数をフレーム周波数の n倍に近づける場合、画面上 に横縞が発生すると!/ヽぅ干渉現象が起こる。 [0026] The flitz force is such that the dimming frequency is close to n. 5 times the frame frequency (n is an integer). It becomes violent. In addition, when the dimming frequency is n times the frame frequency, the frequency force S of the transmitted waveform is equal to the S frame frequency, and thus the flicker force can be reduced to an inconspicuous level. However, when the dimming frequency is brought close to n times the frame frequency, horizontal stripes appear on the screen! / ヽ ぅ Interference phenomenon occurs.
[0027] すなわち、光源は、通常、画面全体に対して同時刻に光を照射する。一方、表示部 That is, the light source usually irradiates the entire screen with light at the same time. On the other hand, the display
(液晶表示素子)はラインスキャンで駆動される。従って、表示画面の各ラインは、そ の位置に応じて、異なる時刻に ONZOFFされることとなる。このため、異なる位置に あるラインでは、液晶の応答波形の ONZOFFタイミングがずれる(時刻に対してスラ イドする)こととなる。  The (liquid crystal display element) is driven by line scanning. Therefore, each line on the display screen is turned ON and OFF at different times depending on the position. For this reason, on the lines at different positions, the ONZOFF timing of the response waveform of the liquid crystal shifts (slides with respect to time).
[0028] 従って、ライン位置によって、透過波形の ONとなる時間(高輝度となる時間)の割 合が異なることとなる。このため、ライン間で平均輝度に差が発生し、これが横縞現象 として認識される。  [0028] Therefore, the ratio of the time for which the transmission waveform is turned on (time for high luminance) varies depending on the line position. For this reason, there is a difference in average brightness between lines, which is recognized as a horizontal stripe phenomenon.
[0029] なお、調光周波数がフレーム周波数のちょうど n倍のとき、横縞は画面上で止まって いる。そして、 n倍力も外れるにつれて、横縞が画面を上下に流れ始める。さらに調光 周波数が n倍から大きく外れ、 n. 5倍の周波数に近づくと、横縞は消えてゆく。  [0029] When the dimming frequency is exactly n times the frame frequency, the horizontal stripes stop on the screen. As the n-power boost is lost, horizontal stripes begin to flow up and down the screen. Furthermore, the horizontal stripes disappear when the dimming frequency deviates significantly from n times and approaches n.
[0030] すなわち、調光周波数をフレーム周波数の n. 5倍とすると、光源の発光波形が隣 接するフレーム間で逆位相となる。従って、各ライン力もの透過波形についても、隣 接フレーム間で逆位相となる。このため、各ラインからの 2フレームでの透過光量を等 しくできる(時間補償できる)ので、横縞の発生を回避できる。  That is, when the dimming frequency is n.times.5 times the frame frequency, the light emission waveform of the light source has an opposite phase between adjacent frames. Therefore, the transmission waveform of each line force also has an opposite phase between adjacent frames. For this reason, the amount of transmitted light in two frames from each line can be made equal (it can be compensated for time), so the occurrence of horizontal stripes can be avoided.
[0031] そこで、本表示装置では、 PWM調光とサブフレーム表示とを組み合わせる場合、 制御部は、調光周波数を、「フレーム周波数の n. 5倍であって、 450Hz以上の値」に 設定することが好ましい。 [0031] Therefore, in this display device, when PWM dimming and subframe display are combined, the control unit sets the dimming frequency to “a value that is n. 5 times the frame frequency and 450 Hz or higher”. It is preferable to do.
[0032] この場合、調光周波数をフレーム周波数の n. 5倍としているため、上記したような横 縞は発生しない。また、フリツ力については、各ラインで透過波形の周波数がフレーム 周波数の半分となるものの、調光周波数を十分に上げているため、フリツ力を目立た なくすることが可能となって 、る。 [0032] In this case, since the dimming frequency is n. 5 times the frame frequency, the horizontal stripes as described above do not occur. Regarding the flicker force, although the frequency of the transmission waveform in each line is half the frame frequency, the dimming frequency is sufficiently increased, so that the flicker force can be made inconspicuous.
[0033] すなわち、表示部の 2本のライン (ライン A ·Βとする)には、フレームごとに逆転した 関係(ライン Αの 1フレーム目(2フレーム目)の光量力 ライン Bの 2フレーム目(1フレ ーム目)と同じ)となるものがある。そして、このような関係にあるラインを画面上で密に 配置できれば、これらのライン力 の光をユーザーに同時に視認させることで、フリツ 力を空間的に補償できることとなる。 [0033] That is, the two lines on the display (referred to as line A · Β) have a reversed relationship for each frame (the light intensity of the first frame (second frame) of line 2 the second frame of line B (1 fl The same as the first program). If the lines having such a relationship can be densely arranged on the screen, the flicker force can be spatially compensated by allowing the user to visually recognize the light of these line forces at the same time.
[0034] ここで、上記のような関係にある 2本のラインは、調光周波数が高くなるほど、画面 上での距離が近くなる。従って、調光周波数を十分に上げることで、その値をフレー ム周波数の n. 5倍に設定しても、フリツ力を目立たなくすることが可能となる。  [0034] Here, the two lines having the above relationship are closer to each other on the screen as the dimming frequency is higher. Therefore, by sufficiently increasing the dimming frequency, the flits force can be made inconspicuous even if the value is set to n.5 times the frame frequency.
[0035] なお、輝度 50%の場合 (黒挿入率 50%の場合)、調光周波数を 450Hz以上とす れば、フリツ力が目立たなくなるという実験結果を得ている。また、フリツ力は、黒挿入 率が 50%であるとき、もっとも目立つ。  [0035] It should be noted that, when the luminance is 50% (when the black insertion rate is 50%), the experimental result has been obtained that the flicker force becomes inconspicuous when the dimming frequency is set to 450 Hz or more. In addition, the frits force is most noticeable when the black insertion rate is 50%.
[0036] 従って、本表示装置では、調光周波数を、「フレーム周波数の n. 5倍であって、 45 OHz以上の値」とすることで、横縞とフリツ力との双方の発生を回避できるようになって いる。  Therefore, in the present display device, by setting the dimming frequency to “a value that is n. 5 times the frame frequency and equal to or greater than 45 OHz”, it is possible to avoid the occurrence of both horizontal stripes and flickering force. It is like this.
[0037] また、このように調光周波数を上げることなぐ干渉現象を抑制することも可能である 。これは、例えば、「光源の発光波形を、ともにフレームの周波数の n. 5倍の周波数 を有し、互いに逆位相でパルス幅の異なる主発光ノ ルスと輝度補償パルスとを組み 合わせた波形とする」ことによって実現できる。  [0037] In addition, it is possible to suppress the interference phenomenon without increasing the dimming frequency in this way. For example, “The light emission waveform of the light source is a combination of a main light emission noise and a luminance compensation pulse, both having a frequency n. 5 times the frequency of the frame, and having opposite pulse phases and different pulse widths. This can be achieved.
[0038] この構成では、各ラインの透過波形では、主発光パルスと輝度補償パルスとの透過 量は、フレーム毎に増減している力 フレーム毎に逆の比率となる。例えば、 1つのラ インに関し、主発光パルス (ノヽィ)の発生比率が 1フレーム目対 2フレーム目で 2. 5対 3である場合、輝度補償パルスでは、逆の 3対 2.5となる。  In this configuration, in the transmission waveform of each line, the transmission amount of the main light emission pulse and the luminance compensation pulse has a reverse ratio for each force frame that increases or decreases for each frame. For example, if the generation ratio of the main light emission pulse (noise) for one line is 2.5 to 3 in the first frame to the second frame, the luminance compensation pulse is 3 to 2.5 in the opposite direction.
[0039] このため、透過波形については、その周波数は小さいものの、輝度補償パルスを用 いることで、フレーム間の輝度差を小さくできる。従って、フリツ力を目立たなくすること が可能となる。  [0039] Therefore, although the frequency of the transmitted waveform is small, the luminance difference between frames can be reduced by using the luminance compensation pulse. Therefore, it is possible to make the flits force inconspicuous.
[0040] また、この構成では、調光周波数を 450Hzよりも小さくできるため、光源の駆動効 率の低下を回避できる。なお、この構成では、 2つのパルスを用いるため、効率の悪 化が懸念される。しカゝしながら、輝度補償パルスのパルス幅は、フレーム期間に比べ て非常に小さい。従って、輝度補償パルスが光源の駆動効率に与える影響は、十分 に/ J、さいとい免る。 [0041] また、調光周波数をフレーム周波数の n倍とするような制御も可能である。例えば、 制御部は、フレーム周波数の n倍の周波数を有する、パルス幅の比較的長い主発光 パルスを光源カゝら発光する。そして、この主発光パルスを、フレームごとに位相反転 するように制御する。 [0040] Further, in this configuration, the dimming frequency can be made lower than 450Hz, so that it is possible to avoid a decrease in the driving efficiency of the light source. Since this configuration uses two pulses, there is a concern that efficiency may deteriorate. However, the pulse width of the luminance compensation pulse is very small compared to the frame period. Therefore, the effect of the luminance compensation pulse on the driving efficiency of the light source is sufficiently / J. [0041] Further, it is possible to control the dimming frequency to be n times the frame frequency. For example, the control unit emits a main light emission pulse having a frequency of n times the frame frequency and a relatively long pulse width from the light source. Then, the main light emission pulse is controlled to be phase-inverted every frame.
[0042] なお、この場合、上記の横縞については回避できるものの、フリツ力についての対 策を講じることが好ましい。そこで、制御部は、光源の発光波形に対し、パルス幅の 比較的に短い上記した輝度補償パルスを、主発光ノ ルスと同じ周波数で、かつ逆位 相で挿入する。さら〖こ、制御部は、主発光ノ ルスの位相の変わるタイミングで、輝度 補償パルスに代えて、輝度補償加パルスある ヽは輝度補償減パルスを挿入する。  [0042] In this case, although the above horizontal stripes can be avoided, it is preferable to take measures against the flickering force. Therefore, the control unit inserts the above-described luminance compensation pulse having a relatively short pulse width with respect to the light emission waveform of the light source at the same frequency and in the opposite phase as the main light emission noise. Furthermore, the control unit inserts a luminance compensation depletion pulse when there is a luminance compensation added pulse instead of the luminance compensation pulse at the timing when the phase of the main light emitting noise changes.
[0043] ここで、輝度補償加パルスは、主発光パルスが連続して OFF (ロー)となるときに挿 入される、光源を ONとするパルスである。一方、輝度補償減パルスは、主発光パル スが連続して ON (ノヽィ)となるときに挿入される、光源を OFFとするパルスである。  Here, the luminance compensation added pulse is a pulse for turning on the light source, which is inserted when the main light emission pulse is continuously turned off (low). On the other hand, the luminance compensation reduced pulse is a pulse for turning off the light source, which is inserted when the main light emission pulse is continuously turned on (noise).
[0044] すなわち、この構成では、主発光パルスの光量が少なくなり過ぎるところで、輝度補 償加パルスを挿入して光量を上げる一方、主発光パルスの光量が多くなり過ぎるとこ ろで、輝度補償減パルスを挿入して光量を下げるように設計されて ヽる。  That is, in this configuration, when the light amount of the main light emission pulse is too small, the luminance compensation pulse is inserted to increase the light amount. On the other hand, when the light amount of the main light emission pulse is too large, the luminance compensation is reduced. It is designed to reduce the amount of light by inserting a pulse.
[0045] これにより、この構成では、各ラインにおけるフレーム間での輝度の差を少なくでき る(各フレームの時間平均輝度を一定に近づけられる)。従って、フリツ力を低減する ことが可能となる。  Thereby, in this configuration, the difference in luminance between frames in each line can be reduced (the time average luminance of each frame can be made close to constant). Accordingly, it is possible to reduce the flick force.
[0046] また、本表示装置でサブフレーム表示と PWM調光とを組み合わせる場合、表示部 が複数の光源を有しているときには、制御部は、少なくとも 2つの光源の発光波形が 互いに異なる位相となるように、 PWM調光を行うことも好まし 、。  [0046] Further, when subframe display and PWM dimming are combined in the present display device, when the display unit has a plurality of light sources, the control unit sets the emission waveforms of at least two light sources to different phases. It is also preferable to do PWM dimming.
[0047] この構成では、各光源の発光波形にずれが生じるため、全光源からの光を合わせ た混合光の DC成分を多くできる。従って、光源の発光量における時間変動量を小さ くできる。また、ライン間での発光量の差も低減できる。従って、調光信号の周波数を 上げなくとも、フリツ力や横縞などの干渉現象を目立たなくすることが可能となる。  In this configuration, the emission waveform of each light source is shifted, so that the DC component of the mixed light including the light from all the light sources can be increased. Therefore, the amount of time variation in the light emission amount of the light source can be reduced. Further, the difference in light emission amount between the lines can be reduced. Therefore, it is possible to make interference phenomena such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
[0048] また、この場合、制御部は、各光源を p個(pは 2以上の自然数)のグループにわけ、 光源の発光波形の位相を、グループごとに 360° Zpずつ、ずらすような制御を行う ことが好ましい。これにより、混合光の DC成分を非常に多くできる。 [0049] なお、上記のような複数の光源を使用する場合、光源としては、直下型のバックライ ト、サイド型のバックライト、サイド型のフロントライトなどを用いることが可能である。な お、ノ ックライトを用いる場合、表示部は透過型あるいは半透過型の表示素子となる 。また、フロントライトを用いる場合、表示部は反射型の表示素子となる。 [0048] Further, in this case, the control unit divides each light source into p groups (p is a natural number of 2 or more), and controls to shift the phase of the light emission waveform by 360 ° Zp for each group. It is preferable to carry out. This can greatly increase the DC component of the mixed light. [0049] Note that when a plurality of light sources as described above are used, it is possible to use a direct-type backlight, a side-type backlight, a side-type front light, or the like as the light source. When a knock light is used, the display unit is a transmissive or transflective display element. When a front light is used, the display unit is a reflective display element.
[0050] また、上記の表示部が、複数の直下型の光源を並べてなる光源群を有して 、る場 合、各光源は、自身に近い複数のゲートライン力もなるゲートライン群 (全ゲートライン の一部をなす群)に対して光を送ることとなる。  [0050] When the display unit includes a light source group in which a plurality of direct light sources are arranged, each light source has a gate line group (all gates) having a plurality of gate line forces close to itself. Light is sent to a group that forms part of the line.
[0051] この場合、制御部は、光源の発光波形の周波数をフレームの周波数の n倍とすると ともに、「各光源に割り当てられたゲートライン群が ONとなったときにおける、その光 源の発光波形の状態」を、全光源 (全ゲートライン群)で同一とするように、 PWM調光 を行うことが好ましい。  [0051] In this case, the control unit sets the frequency of the light emission waveform of the light source to n times the frequency of the frame, and "light emission of the light source when the gate line group assigned to each light source is turned on" It is preferable to perform PWM dimming so that the “waveform state” is the same for all light sources (all gate line groups).
[0052] この場合、調光周波数をフレーム周波数の n倍としているため、フリツ力は発生しな い。また、この構成では、全ゲートライン群で、光源の発光波形と液晶の応答波形と の位相の関係が一致している。従って、この構成では、ライン位置によって、透過波 形の ONとなる時間(高輝度となる時間)の割合が異なることを防止できる。従って、ラ イン間での平均輝度に差がでないので、横縞現象の発生を回避することが可能とな つている。  [0052] In this case, since the dimming frequency is n times the frame frequency, no flickering force is generated. In this configuration, the phase relationship between the light emission waveform of the light source and the response waveform of the liquid crystal is the same in all the gate line groups. Therefore, in this configuration, it is possible to prevent the ratio of the time during which the transmission waveform is turned on (the time during which the luminance is high) from being different depending on the line position. Therefore, since there is no difference in the average luminance between lines, it is possible to avoid the occurrence of horizontal stripes.
[0053] また、本表示装置でサブフレーム表示と PWM調光とを組み合わせる場合、制御部 は、光源に一定の発光電力を供給した状態で、 PWM調光を行うように設定されてい てもよい。  [0053] In addition, when sub-frame display and PWM dimming are combined in the present display device, the control unit may be set to perform PWM dimming in a state where constant light emission power is supplied to the light source. .
[0054] これにより、発光波形は、一定の振幅に、 PWM調光に応じた振幅が重なる波形と なる。従って、発光波形の DC成分を容易に高められる。  Thereby, the light emission waveform becomes a waveform in which the amplitude corresponding to the PWM dimming is overlapped with the constant amplitude. Therefore, the DC component of the emission waveform can be easily increased.
[0055] このため、光源の発光量における時間変動量を小さくできる。また、ライン間での発 光量の差も低減できる。従って、調光信号の周波数を上げなくとも、フリツ力や横縞な どの干渉現象を目立たなくすることが可能となる。 [0055] For this reason, the amount of time variation in the light emission amount of the light source can be reduced. In addition, the difference in the amount of light emitted between lines can be reduced. Therefore, it is possible to make interference phenomena such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
[0056] また、サブフレーム表示と PWM調光とを組み合わせる場合、表示部に反射型ある[0056] When the sub-frame display and PWM dimming are combined, the display unit has a reflection type.
Vヽは半透過型の液晶表示素子を用いるときには、光源の光を外光に合わせて制御 するように設計してちょい。 [0057] この構成では、表示部に照射される外光の輝度波形を検出する輝度センサーを備 えることが好ましい。そして、制御部は、光源の発光波形を、外光の輝度波形と同周 波数で逆位相とするように、 PWM調光を行うことが好ましい。 When using a transflective liquid crystal display element, V ヽ should be designed so that the light from the light source is controlled according to the external light. [0057] In this configuration, it is preferable to include a luminance sensor that detects a luminance waveform of the external light applied to the display unit. The control unit preferably performs PWM dimming so that the light emission waveform of the light source has the same frequency as that of the luminance waveform of the external light and has an opposite phase.
[0058] これにより、この構成では、表示部に対し、同周波数で逆位相の光の混合された、 DC成分の大きい光を照射することが可能となる。従って、この構成では、光源の発 光量における時間変動量を小さくできる。また、ライン間での発光量の差も低減でき る。従って、調光信号の周波数を上げなくとも、フリツ力や横縞などの干渉現象を目立 たなくすることが可能となる。また、本表示装置の光源としては、蛍光管、 LED、 EL、 FEDなどを用いることが可能である。  Accordingly, in this configuration, it is possible to irradiate the display unit with light having a large DC component mixed with light having the same frequency and opposite phase. Therefore, with this configuration, the amount of time variation in the amount of light emitted from the light source can be reduced. In addition, the difference in light emission between lines can be reduced. Therefore, it is possible to make interference phenomena such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal. In addition, a fluorescent tube, LED, EL, FED, or the like can be used as the light source of the display device.
[0059] また、本表示装置と画像信号入力部 (信号入力部)とを組み合わせることで、パーソ ナルコンピューターなどに使用される液晶モニターを構成することが可能である。  [0059] Further, by combining this display device and an image signal input unit (signal input unit), a liquid crystal monitor used in a personal computer or the like can be configured.
[0060] ここで、画像信号入力部とは、外部から入力された画像信号を制御部に伝達する ためのものである。この構成では、本表示装置の制御部が、画像信号入力部から伝 達された画像信号に基づいて、表示信号を生成して表示部に出力することとなる。  [0060] Here, the image signal input unit is for transmitting an image signal input from the outside to the control unit. In this configuration, the control unit of the display device generates a display signal based on the image signal transmitted from the image signal input unit and outputs the display signal to the display unit.
[0061] また、本表示装置とチューナ部とを組み合わせることで、液晶テレビジョン受像機を 構成することも可能である。  [0061] In addition, a liquid crystal television receiver can be configured by combining the present display device and a tuner unit.
[0062] ここで、チューナ部とは、テレビ放送信号を受信するためのものである。この構成で は、本表示装置の制御部力 チューナ部力 伝達されたテレビ放送信号に基づいて 表示信号を生成して表示部に出力することとなる。  Here, the tuner unit is for receiving a television broadcast signal. In this configuration, the control unit power of this display device and the tuner unit power are generated based on the transmitted television broadcast signal and output to the display unit.
[0063] また、本発明の画像表示方法 (本表示方法)は、  [0063] Further, the image display method (the present display method) of the present invention includes:
1フレームを、 m個(m; 2以上の整数)のサブフレームに分割して画像表示を行う表 示方法であって、 1フレームに表示部から出力される輝度の総和をフレームの分割に よって変えないように、第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信 号を生成して液晶表示素子力 なる表示部に出力する出力工程を含み、さらに、表 示部の光源を PWM調光方式で調光する調光工程を含んでいる方法である。  A display method in which one frame is divided into m (m; an integer greater than or equal to 2) sub-frames for image display, and the sum of the luminances output from the display unit in one frame is divided into frames. In order not to change, an output process of generating 1st to mth display signals, which are display signals of the 1st to mth subframes, and outputting the generated signals to a display unit having a liquid crystal display element power is further included. This is a method including a dimming step of dimming the light source by a PWM dimming method.
[0064] 本表示方法は、上記した本表示装置において使用されている方法である。従って、 この表示方法では、通常ホールド表示を行う場合に比して、明度ズレを小さく抑えら れるので、視野角特性を向上させることが可能となる。このため、白浮き現象を良好 に抑制できる。また、動画の表示品質を向上させることも可能となる。 [0064] This display method is a method used in the above-described display device. Therefore, in this display method, the brightness deviation can be suppressed to a smaller value than in the case of performing the normal hold display, and the viewing angle characteristics can be improved. For this reason, whitening phenomenon is good Can be suppressed. It is also possible to improve the display quality of moving images.
[0065] さらに、 PWM調光方式で調光を行うことにより、電流調光方式を用いる場合に比し て、より広い範囲での調光を行える。  [0065] Further, by performing dimming by the PWM dimming method, dimming can be performed in a wider range than when the current dimming method is used.
[0066] 以上のように、本発明の表示装置は、 1フレームを、 m個(m; 2以上の整数)のサブ フレームに分割して画像表示を行う表示装置であって、表示信号の電圧に基づ 、た 輝度の画像を表示する表示部と、 1フレームに表示部から出力される輝度の総和をフ レームの分割によって変えないように、第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信号を生成して表示部に出力する制御部とを備えており、この制御部 力 表示部の光源を PWM調光方式で調光するように設計されて!ヽる構成である。  [0066] As described above, the display device of the present invention is a display device that displays an image by dividing one frame into m (m; an integer greater than or equal to 2) sub-frames. The display signal for the first to mth sub-frames so that the sum of the luminances output from the display unit per frame is not changed by dividing the frame. A control unit that generates 1st to mth display signals and outputs them to the display unit. This control unit is designed to dimm the light source of the display unit using the PWM dimming method! It is.
[0067] 本表示装置では、サブフレーム表示を行うことにより、通常ホールド表示を行う場合 に比して、明度ズレを小さく抑えられる。従って、視野角特性を向上させられるため、 白浮き現象を良好に抑制できる。また、動画の表示品質を向上させることも可能とな る。さらに、 PWM調光方式で調光を行うことにより、電流調光方式を用いる場合に比 して、より広い範囲での調光を行える。  In the present display device, by performing the sub-frame display, it is possible to suppress the lightness deviation as compared with the case of performing the normal hold display. Therefore, since the viewing angle characteristics can be improved, the white floating phenomenon can be satisfactorily suppressed. It is also possible to improve the display quality of moving images. Furthermore, dimming with a PWM dimming method enables dimming over a wider range than when using the current dimming method.
[0068] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。  [0068] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0069] [図 1]本発明の一実施形態に力かる表示装置の構成を示すブロック図である。 [0069] FIG. 1 is a block diagram showing a configuration of a display device according to an embodiment of the present invention.
[図 2]通常ホールド表示の場合に液晶パネルから出力される表示輝度(予定輝度と実 際輝度との関係)を示すグラフである。  FIG. 2 is a graph showing the display brightness (relationship between planned brightness and actual brightness) output from the liquid crystal panel in the case of normal hold display.
[図 3]図 1に示した表示装置においてサブフレーム表示を行う場合に液晶パネルから 出力される表示輝度 (予定輝度と実際輝度との関係)を示すグラフである。  FIG. 3 is a graph showing display luminance (relation between planned luminance and actual luminance) output from the liquid crystal panel when subframe display is performed in the display device shown in FIG.
[図 4] (a)は、図 1に示した表示装置のフレームメモリに入力される画像信号を示す説 明図であり、(b)は、 3 : 1に分割する場合における、フレームメモリから前段 LUTに出 力される画像信号を示す説明図であり、(c)は、同じく後段 LUTに出力される画像信 号を示す説明図である。  [FIG. 4] (a) is an explanatory diagram showing an image signal input to the frame memory of the display device shown in FIG. 1, and (b) is a diagram of the frame memory in the case of 3: 1 division. It is explanatory drawing which shows the image signal output to a front | former stage LUT, (c) is explanatory drawing which shows the image signal similarly output to a back | latter stage LUT.
[図 5]図 1に示した表示装置においてフレームを 3 : 1に分割する場合における、前段 表示信号と後段表示信号とに関するゲートラインの ONタイミングを示す説明図であ る。 [FIG. 5] In the display device shown in FIG. It is explanatory drawing which shows the ON timing of the gate line regarding a display signal and a back | latter stage display signal.
[図 6]図 3に示した輝度のグラフを明度に変換したものを示すグラフである。  FIG. 6 is a graph showing the luminance graph shown in FIG. 3 converted to lightness.
[図 7]図 1に示した表示装置においてフレームを 3 : 1に分割した場合における、予定 明度と実際明度との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between planned brightness and actual brightness when the frame is divided into 3: 1 in the display device shown in FIG.
[図 8]図 1に示した表示装置の構成を一部変更した表示装置を示す説明図である。 圆 9(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 9(b)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。  8 is an explanatory diagram showing a display device in which the configuration of the display device shown in FIG. 1 is partially changed. {Circle around (9)} FIG. 9 is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period. {Circle around (9)} FIG. 9B is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
[図 10(a)]液晶の応答速度を説明するための図である。 FIG. 10 (a) is a diagram for explaining the response speed of the liquid crystal.
[図 10(b)]液晶の応答速度を説明するための図である。 FIG. 10 (b) is a diagram for explaining the response speed of the liquid crystal.
[図 10(c)]液晶の応答速度を説明するための図である。 FIG. 10 (c) is a diagram for explaining the response speed of the liquid crystal.
[図 11]応答速度の遅い液晶を用いてサブフレーム表示を行う場合に、液晶パネルか ら出力される表示輝度 (予定輝度と実際輝度との関係)を示すグラフである。  FIG. 11 is a graph showing display luminance (relationship between planned luminance and actual luminance) output from a liquid crystal panel when subframe display is performed using liquid crystal with a slow response speed.
[図 12(a)]表示輝度力Lmaxの 3Z4および 1Z4の場合に、前サブフレームおよび後 サブフレームによって表示される輝度を示すグラフである。 FIG. 12 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance force Lmax is 3Z4 and 1Z4.
圆 12(b)]液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で変えた場 合の、液晶電圧の遷移状態を示すグラフである。 [12 (b)] This is a graph showing the transition state of the liquid crystal voltage when the polarity of the voltage (liquid crystal voltage) applied to the liquid crystal is changed in the subframe period.
圆 13(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 13(b)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 13 (a)] is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period. 13 (b)] is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period.
[図 14(a)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明図 である。 FIG. 14 (a) is an explanatory diagram showing four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
[図 14(b)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明 図である。  FIG. 14 (b) is an explanatory diagram showing the four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
[図 14(c)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明図 である。  FIG. 14 (c) is an explanatory diagram showing the four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
[図 14(d)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明 図である。  FIG. 14 (d) is an explanatory diagram showing four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
[図 15]均等な 3つのサブフレームにフレームを分割して表示を行った結果 (破線およ び実線)と、通常ホールド表示を行った結果 (一点鎖線および実線)と合わせて示す グラフである。 [Fig.15] The result of dividing the display into three equal subframes (dashed line and And a solid line) and a result of normal hold display (a chain line and a solid line).
[図 16]フレームを 3つに分割し、フレームごとに電圧極性を反転した場合における、 液晶電圧の遷移を示すグラフである。  FIG. 16 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
[図 17]フレームを 3つに分割し、サブフレームごとに電圧極性を反転した場合におけ る、液晶電圧の遷移を示すグラフである。  FIG. 17 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each subframe.
圆 18]輝度を調整しないサブフレームにおける、表示部に出力される信号階調(%; 表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)との関係 (視野角 階調特性 (実測) )を示すグラフである。 圆 18] Relationship between the signal gradation (%; luminance gradation of the display signal) output to the display unit and the actual luminance gradation (%) corresponding to each signal gradation in the sub-frame where the luminance is not adjusted ( It is a graph which shows a viewing angle gradation characteristic (actual measurement).
[図 19]電流調光方式を示す説明図である。 FIG. 19 is an explanatory diagram showing a current dimming method.
[図 20]PWM調光方式を示す説明図である。 FIG. 20 is an explanatory diagram showing a PWM dimming method.
圆 21]光源として蛍光管を用いた場合における、調光信号の波形、ランプ電流波形 および発光波形 (蛍光管力も出力される光の波形)の例を示すグラフである。 21] A graph showing an example of a waveform of a dimming signal, a lamp current waveform, and a light emission waveform (a waveform of light that also outputs a fluorescent tube force) when a fluorescent tube is used as a light source.
[図 22]本発明に関する、 PWM調光を行う表示装置の内部構成を示すブロック図で ある。 FIG. 22 is a block diagram showing an internal configuration of a display device that performs PWM dimming according to the present invention.
[図 23]PWM調光を通常ホールド表示と組み合わせた場合における、光源の発光波 形、液晶の電極間電圧の波形 (液晶応答波形)、液晶を透過する光の波形 (透過波 形)の関係の例を示すグラフである。  [Figure 23] Relationship between light source emission waveform, liquid crystal electrode voltage waveform (liquid crystal response waveform), and light transmission light waveform (transmission waveform) when PWM dimming is combined with normal hold display It is a graph which shows the example of.
[図 24]PWM調光をサブフレーム表示 (低輝度の場合)と組み合わせた場合における 、同様の波形を示すグラフである。  FIG. 24 is a graph showing similar waveforms when PWM dimming is combined with sub-frame display (in the case of low luminance).
[図 25]PWM調光をサブフレーム表示と組み合わせた場合における、光源の発光波 形、液晶応答波形、透過波形の関係の例を示すグラフである。  FIG. 25 is a graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform of a light source when PWM dimming is combined with subframe display.
[図 26]調光周波数を「フレーム周波数の n. 5倍であって、 450Hz以上の値」に設定 した場合における、光源の発光波形、液晶応答波形、透過波形の関係の例を示すグ ラフである。 FIG. 26 is a graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform of the light source when the dimming frequency is set to “n.5 times the frame frequency and 450 Hz or higher”. It is.
圆 27]輝度補償パルスを用いた場合における、光源の発光波形、液晶応答波形、透 過波形の関係の例を示すグラフである。 [27] This is a graph showing an example of the relationship between the light emission waveform, the liquid crystal response waveform, and the transmission waveform when the luminance compensation pulse is used.
[図 28]光源の発光波形を、フレームごとに位相反転するにおける、光源の発光波形、 液晶応答波形、透過波形の関係の例を示すグラフである。 [FIG. 28] The light emission waveform of the light source when the phase of the light emission waveform of the light source is inverted for each frame. It is a graph which shows the example of the relationship between a liquid crystal response waveform and a transmission waveform.
圆 29]光源の発光波形をフレームごとに逆位相とするとともに、正補償パルスと負補 償パルスとを加える場合における、光源の発光波形、液晶応答波形、透過波形の関 係の例を示すグラフである。 圆 29] A graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform of the light source when the light emission waveform of the light source is reversed in phase for each frame and a positive compensation pulse and a negative compensation pulse are added. It is.
圆 30]光源の発光波形を、直流成分 (DC成分)を含むように制御する場合における 、表示装置の構成を示すブロック図である。 FIG. 30 is a block diagram showing a configuration of a display device when the light emission waveform of a light source is controlled to include a direct current component (DC component).
[図 31] (a) (b)は、図 30に示した構成における、第 1蛍光管の発光波形 (第 1波形)、 第 2蛍光管の発光波形 (第 2波形)と、両蛍光管の発光波形を混合した波形 (混合波 形)の例を示すグラフである。  [FIG. 31] (a) and (b) show the emission waveform of the first fluorescent tube (first waveform), the emission waveform of the second fluorescent tube (second waveform), and both fluorescent tubes in the configuration shown in FIG. 5 is a graph showing an example of a waveform (mixed waveform) obtained by mixing the light emission waveforms.
圆 32]蛍光管を 3種類に分け、種類ごとに独立に制御する場合における、表示装置 の構成を示すブロック図である。 [32] FIG. 32 is a block diagram showing the configuration of the display device when the fluorescent tubes are divided into three types and controlled independently for each type.
[図 33] (a) (b)は、図 30に示した構成における、蛍光管 (第 1〜第 3波形)と、これらを 混合した波形 (混合波形)の例を示すグラフである。  FIGS. 33 (a) and 33 (b) are graphs showing examples of fluorescent tubes (first to third waveforms) and mixed waveforms (mixed waveforms) in the configuration shown in FIG.
圆 34]直下型バックライトを有する液晶表示素子の構成を示す説明図である。 FIG. 34 is an explanatory diagram showing a configuration of a liquid crystal display element having a direct type backlight.
[図 35]光源としての 2本の LEDを導光板の 2辺に備えた、ノ ックライト型の液晶表示 素子の構成を示す説明図である。  FIG. 35 is an explanatory diagram showing a configuration of a knock light type liquid crystal display device including two LEDs as light sources on two sides of a light guide plate.
[図 36]光源としての 2本の LEDを導光板の 1辺に備えた、ノ ックライト型の液晶表示 素子の構成を示す説明図である。  FIG. 36 is an explanatory diagram showing a configuration of a knock light type liquid crystal display device including two LEDs as light sources on one side of a light guide plate.
[図 37]光源としての 2本の LEDを導光板の 2辺に備えた、フロントライト型の液晶表示 素子の構成を示す説明図である。  FIG. 37 is an explanatory diagram showing a configuration of a front-light type liquid crystal display device including two LEDs as light sources on two sides of a light guide plate.
[図 38]光源としての 2本の LEDを導光板の 1辺に備えた、フロントライト型の液晶表示 素子の構成を示す説明図である。  FIG. 38 is an explanatory diagram showing a configuration of a front-light type liquid crystal display device including two LEDs as light sources on one side of a light guide plate.
[図 39]蛍光管の発光タイミングと液晶パネルのゲートラインの ONタイミングとを同期さ せる場合における、表示装置の構成を示すブロック図である。  FIG. 39 is a block diagram showing a configuration of a display device in the case where the light emission timing of the fluorescent tube is synchronized with the ON timing of the gate line of the liquid crystal panel.
圆 40]図 39に示した表示装置に関する、光源の発光波形、液晶応答波形、透過波 形の関係の例を示すグラフである。 40] FIG. 40 is a graph showing an example of the relationship between the light emission waveform of the light source, the liquid crystal response waveform, and the transmission waveform for the display device shown in FIG.
[図 41]PWM調光方式と電流調光方式とを併用する表示装置の構成を示すブロック 図である。 [図 42]図 41に示した表示装置に関する、電流調光制御信号、 PWM調光制御信号、 ランプ電流および発光波形の例を示すグラフである。 FIG. 41 is a block diagram showing a configuration of a display device that uses both the PWM dimming method and the current dimming method. 42 is a graph showing an example of a current dimming control signal, a PWM dimming control signal, a lamp current, and a light emission waveform related to the display device shown in FIG. 41.
[図 43]外光に合わせた光源制御を行う、反射型の表示装置の構成を示す図である。  FIG. 43 is a diagram showing a configuration of a reflective display device that performs light source control in accordance with external light.
[図 44(a)]図 43に示した表示装置に入射される外光の輝度波形を示すグラフである。  FIG. 44 (a) is a graph showing a luminance waveform of external light incident on the display device shown in FIG.
[図 44(b)]図 43に示した表示装置における光源の発光波形を示すグラフである。  FIG. 44 (b) is a graph showing the light emission waveform of the light source in the display device shown in FIG.
[図 44(c)]図 43に示した表示装置の液晶パネルに入射される光の波形を示すグラフ である。  FIG. 44 (c) is a graph showing a waveform of light incident on the liquid crystal panel of the display device shown in FIG.
[図 45]外光に合わせた光源制御を行う、半透過型の表示装置の構成を示す図であ る。  FIG. 45 is a diagram showing a configuration of a transflective display device that performs light source control in accordance with external light.
[図 46]図 8に示した表示装置を備えた液晶テレビの構成を示す説明図である。  FIG. 46 is an explanatory diagram showing a configuration of a liquid crystal television provided with the display device shown in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0070] 本発明の一実施形態について説明する。 [0070] One embodiment of the present invention will be described.
[0071] 本実施の形態にかかる液晶表示装置 (本表示装置)は、複数のドメインに分割され た垂直配向(VA)モードの液晶パネルを有するものである。そして、本表示装置は、 外部から入力された画像信号を液晶パネルに表示する液晶モニターとして機能する ものである。  The liquid crystal display device (present display device) according to the present embodiment has a vertical alignment (VA) mode liquid crystal panel divided into a plurality of domains. The display device functions as a liquid crystal monitor that displays an externally input image signal on a liquid crystal panel.
[0072] 図 1は、本表示装置の内部構成を示すブロック図である。この図に示すように、本表 示装置は、フレームメモリ(F. M. ) 11、前段 LUT12、後段 LUT13、表示部 14およ び制御部 15を備えている。  FIG. 1 is a block diagram showing an internal configuration of the display device. As shown in this figure, the display device includes a frame memory (F. M.) 11, a front LUT 12, a rear LUT 13, a display unit 14, and a control unit 15.
[0073] フレームメモリ(画像信号入力部) 11は、外部の信号源から入力される画像信号 (R[0073] The frame memory (image signal input unit) 11 receives an image signal (R
GB信号)を 1フレーム分蓄積するものである。前段 LUT (look-up table) 12および後 段 LUT13は、外部から入力される画像信号と、表示部 14に出力する表示信号との 対応表 (変換表)である。 (GB signal) is stored for one frame. The front-stage LUT (look-up table) 12 and the rear-stage LUT 13 are correspondence tables (conversion tables) between image signals input from the outside and display signals output to the display unit 14.
[0074] なお、本表示装置は、サブフレーム表示を行うようになって!/、る。ここで、サブフレー ム表示とは、 1つのフレームを複数のサブフレームに分けて表示を行う方法である。 It should be noted that this display device displays subframes! /. Here, the subframe display is a method of displaying one frame divided into a plurality of subframes.
[0075] すなわち、本表示装置は、 1フレーム期間に入力される 1フレーム分の画像信号に 基づいて、その 2倍の周波数で、サイズ (期間)の等しい 2つのサブフレームによって 表示を行うように設計されて 、る。 [0076] そして、前段 LUT12は、前段のサブフレーム(前サブフレーム;第 2サブフレーム) において出力される表示信号 (前段表示信号;第 2表示信号)のための対応表である 。一方、後段 LUT13は、後段のサブフレーム(後サブフレーム;第 1サブフレーム)に おいて出力される表示信号 (後段表示信号;第 1表示信号)のための対応表である。 That is, the present display device performs display using two subframes having the same size (period) at twice the frequency based on the image signal for one frame input in one frame period. Designed. The previous LUT 12 is a correspondence table for display signals (previous display signal; second display signal) output in the previous subframe (previous subframe; second subframe). On the other hand, the rear stage LUT 13 is a correspondence table for display signals (rear stage display signals; first display signals) output in a rear stage subframe (rear subframe; first subframe).
[0077] 表示部 14は、図 1に示すように、液晶パネル 21、ゲートドライバー 22、ソースドライ バー 23を備えており、入力される表示信号に基づいて画像表示を行うものである。こ こで、液晶パネル 21は、 VAモードのアクティブマトリックス(TFT)液晶パネルである  As shown in FIG. 1, the display unit 14 includes a liquid crystal panel 21, a gate driver 22, and a source driver 23, and performs image display based on an input display signal. Here, the liquid crystal panel 21 is a VA mode active matrix (TFT) liquid crystal panel.
[0078] 制御部 15は、本表示装置における全動作を制御する、本表示装置の中枢部であ る。そして、制御部 15は、上記した前段 LUT12、後段 LUT13を用いて、フレームメ モリ 11に蓄積された画像信号力も表示信号を生成し、表示部 14に出力するものであ る。 The control unit 15 is a central part of the display device that controls all operations in the display device. The control unit 15 also generates a display signal from the image signal power accumulated in the frame memory 11 using the preceding LUT 12 and the latter LUT 13 and outputs the display signal to the display unit 14.
[0079] すなわち、制御部 15は、通常の出力周波数 (通常クロック;例えば 25MHz)で送ら れてくる画像信号をフレームメモリ 11に蓄える。そして、制御部 15は、この画像信号 を、通常クロックの 2倍の周波数を有するクロック(倍クロック; 50MHz)により、フレー ムメモリ 11から 2回出力する。  That is, the control unit 15 stores in the frame memory 11 an image signal transmitted at a normal output frequency (normal clock; for example, 25 MHz). Then, the control unit 15 outputs the image signal from the frame memory 11 twice with a clock having a frequency twice that of the normal clock (double clock; 50 MHz).
[0080] そして、制御部 15は、 1回目に出力する画像信号に基づいて、前段 LUT12を用い て前段表示信号を生成する。その後、 2回目に出力する画像信号に基づいて、後段 LUT13を用いて後段表示信号を生成する。そして、これらの表示信号を、倍クロック で順次的に表示部 14に出力する。  Then, the control unit 15 generates a front display signal using the front LUT 12 based on the image signal output for the first time. After that, a rear display signal is generated using the rear LUT 13 based on the image signal output for the second time. These display signals are sequentially output to the display unit 14 with a double clock.
[0081] これにより、表示部 14が、順に入力される 2つの表示信号に基づいて、 1フレーム 期間に、互いに異なる画像を 1回ずつ表示する(両サブフレーム期間で、液晶パネル 21の全ゲートラインを 1回ずつ ONとする)。なお、表示信号の出力動作については、 後により詳細に説明する。  Accordingly, the display unit 14 displays different images once in one frame period based on two display signals that are sequentially input (all gates of the liquid crystal panel 21 in both subframe periods). Turn the line ON once). The display signal output operation will be described in detail later.
[0082] ここで、制御部 15による、前段表示信号および後段表示信号の生成について説明 する。まず、液晶パネルに関する一般的な表示輝度 (パネルによって表示される画像 の輝度)について説明する。  Here, generation of the front display signal and the rear display signal by the control unit 15 will be described. First, the general display brightness (the brightness of the image displayed by the panel) related to the liquid crystal panel will be described.
[0083] 通常の 8ビットデータを、サブフレームを用いずに 1フレームで画像を表示する場合 (1フレーム期間で、液晶パネルの全ゲートラインを 1回だけ ONとする、通常ホールド 表示する場合)、表示信号の輝度階調 (信号階調)は、 0〜255までの段階となる。 [0083] When displaying normal 8-bit data in one frame without using subframes (In a single frame period, all the gate lines of the liquid crystal panel are turned ON only once, and in normal hold display), the luminance gradation (signal gradation) of the display signal is in the range from 0 to 255.
[0084] そして、液晶パネルにおける信号階調と表示輝度とは、以下の(1)式によって近似 的に表現される。 [0084] Then, the signal gradation and the display luminance in the liquid crystal panel are approximately expressed by the following equation (1).
( (T-TO) / (Tmax-TO) ) = (L/Lmax) " γ - - - (1)  ((T-TO) / (Tmax-TO)) = (L / Lmax) "γ---(1)
ここで、 Lは 1フレームで画像を表示する場合 (通常ホールド表示で画像を表示する 場合)の信号階調 (フレーム階調)、 Lmaxは最大の輝度階調 (255)、 Tは表示輝度 、 Tmaxは最大輝度(L = Lmax = 255のときの輝度;白)、 TOは最小輝度(L = 0のと きの輝度;黒)、 yは補正値 (通常 2. 2)である。なお、実際の液晶パネル 21では、 T 0 = 0ではない。し力しながら、説明を簡略化するため、以下では、 TO = 0とする。  Where L is the signal gradation (frame gradation) when displaying an image in one frame (when displaying an image with normal hold display), Lmax is the maximum luminance gradation (255), T is the display luminance, Tmax is the maximum brightness (brightness when L = Lmax = 255; white), TO is the minimum brightness (brightness when L = 0; black), and y is the correction value (usually 2.2). In the actual liquid crystal panel 21, T 0 = 0 is not satisfied. However, in order to simplify the explanation, TO = 0 is assumed below.
[0085] また、この場合 (通常ホールド表示の場合)に液晶パネル 21から出力される表示輝 度 Τを、図 2にグラフとして示す。このグラフは、横軸に『出力されるはずの輝度(予定 輝度;信号階調に応じた値、上記の表示輝度 Τに相当)』を、縦軸に『実際に出力さ れた輝度 (実際輝度)』を示して 、る。  [0085] Also, the display brightness Τ output from the liquid crystal panel 21 in this case (in the case of normal hold display) is shown as a graph in FIG. This graph shows “luminance that should be output (scheduled luminance; value according to signal gradation, equivalent to the above display luminance Τ)” on the horizontal axis, and “actually output luminance (actual Brightness) ”.
[0086] このグラフに示すように、この場合には、上記した 2つの輝度は、液晶パネル 21の 正面 (視野角度 0度)においては等しくなる。一方、視野角度を 60度としたときには、 実際輝度が、階調 γ特性の変化によって、中間調の輝度で明るくなつてしまう。  As shown in this graph, in this case, the above two luminances are equal on the front surface (viewing angle 0 degree) of the liquid crystal panel 21. On the other hand, when the viewing angle is set to 60 degrees, the actual brightness becomes brighter with halftone brightness due to the change in the gradation γ characteristics.
[0087] 次に、本表示装置における表示輝度について説明する。  [0087] Next, display luminance in the display device will be described.
本表示装置では、制御部 15が、  In this display device, the control unit 15
(a)「前サブフレームおよび後サブフレームのそれぞれにおいて表示部 14によって表 示される画像の輝度 (表示輝度)の総和(1フレームにおける積分輝度)を、通常ホー ルド表示を行う場合の 1フレームの表示輝度と等しくする」  (a) “The sum of the luminance (display luminance) of the image displayed by the display unit 14 in each of the previous subframe and the rear subframe (integrated luminance in one frame) Make it equal to the display brightness. ''
(b)「一方のサブフレームを黒 (最小輝度)、または白(最大輝度)にする」  (b) “Make one subframe black (minimum brightness) or white (maximum brightness)”
を満たすように階調表現を行うように設計されて!ヽる。  Designed to perform gradation expression to meet the requirements!
[0088] このために、本表示装置では、制御部 15が、フレームを 2つのサブフレームに均等 に分割し、 1つのサブフレームによって最大輝度の半分までの輝度を表示するように 設計されている。  [0088] To this end, in the present display device, the control unit 15 is designed to divide the frame equally into two subframes and display the luminance up to half of the maximum luminance by one subframe. .
[0089] すなわち、最大輝度の半分(閾輝度; TmaxZ2)までの輝度を 1フレームで出力す る場合 (低輝度の場合)、制御部 15は、前サブフレームを最小輝度(黒)とし、後サブ フレームの表示輝度のみを調整して階調表現を行う(後サブフレームのみを用いて 階調表現を行う)。この場合、 1フレームにおける積分輝度は『(最小輝度 +後サブフ レームの輝度) Z2』の輝度となる。 [0089] In other words, luminance up to half of the maximum luminance (threshold luminance; TmaxZ2) is output in one frame. In the case of low luminance, the control unit 15 sets the previous subframe to the minimum luminance (black) and adjusts only the display luminance of the subsequent subframe to perform gradation representation (using only the subsequent subframe). Key expression). In this case, the integrated luminance in one frame is “(minimum luminance + luminance of subsequent subframe) Z2”.
[0090] また、上記の閾輝度より高い輝度を出力する場合 (高輝度の場合)、制御部 15は、 後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調整して階調表 現を行う。 [0090] When the luminance higher than the above threshold luminance is output (in the case of high luminance), the control unit 15 sets the rear subframe to the maximum luminance (white) and adjusts the display luminance of the previous subframe to adjust the level. Make a representation.
[0091] この場合、 1フレームにおける積分輝度は『(前サブフレームの輝度 +最大輝度) Z 2』の輝度となる。  In this case, the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) Z 2”.
[0092] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。なお、信号階調設定について は、図 1に示した制御部 15が行う。制御部 15は、上記した(1)式を用いて、上記した 閾輝度 (TmaxZ2)に対応するフレーム階調をあら力じめ算出しておく。  Next, a specific description will be given of the signal gradation setting of display signals (previous display signal and subsequent display signal) for obtaining such display luminance. The signal gradation setting is performed by the control unit 15 shown in FIG. The control unit 15 preliminarily calculates the frame gradation corresponding to the above-described threshold luminance (TmaxZ2) using the above-described equation (1).
[0093] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、  [0093] That is, the frame gradation (threshold luminance gradation; Lt) corresponding to such display luminance is obtained from equation (1):
Lt = 0. 5" (ΐ/ γ ) X Lmax …(2)  Lt = 0.5 "(ΐ / γ) X Lmax… (2)
たたし、 Lmax= max y · · · (2aノ  However, Lmax = max y (2a
となる。  It becomes.
[0094] そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。  Then, when displaying an image, the control unit 15 obtains a frame gradation L based on the image signal output from the frame memory 11.
[0095] そして、この Lが Lt以下の場合、制御部 15は、前段表示信号の輝度階調 (Fとする[0095] When L is equal to or less than Lt, the control unit 15 sets the luminance gradation (F as the previous stage display signal).
)を、前段 LUT12によって最小 (0)とする。一方、制御部 15は、後段表示信号の輝 度階調 (Rとする)を、(1)式に基づいて、 ) To the minimum (0) by the front LUT12. On the other hand, the control unit 15 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
R = 0. 5" (ΐ/ γ ) X L …(3)  R = 0.5 "(ΐ / γ) X L (3)
となるように、後段 LUT13を用いて設定する。  Set by using the LUT13 at the latter stage.
[0096] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。一方、制御部 15は、前サブフレームの輝度階調 Fを、 (1) 式に基づいて、 F= (L" y -0. 5 X Lmax" γ ) " (1/ γ ) · · · (4) [0096] When the frame gradation L is larger than L, the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1). F = (L "y -0. 5 X Lmax" γ) "(1 / γ) (4)
とする。  And
[0097] 次に、本表示装置における表示信号の出力動作について、より詳細に説明する。  Next, the display signal output operation in the present display device will be described in more detail.
なお、以下では、液晶パネル 21の画素数を a X bとする。この場合、制御部 15は、ソ ースドライバー 23に対し、倍クロックで、 1番目のゲートラインの画素(a個)の前段表 示信号を蓄積する。  In the following, it is assumed that the number of pixels of the liquid crystal panel 21 is a X b. In this case, the control unit 15 accumulates the previous stage display signal of the pixel (a number) of the first gate line with respect to the source driver 23 with a double clock.
[0098] そして、制御部 15は、ゲートドライバー 22によって、 1番目のゲートラインを ONとし 、このゲートラインの画素に対して前段表示信号を書き込む。その後、制御部 15は、 ソースドライバー 23に蓄積する前段表示信号を変えながら、同様に、 2〜b番目のゲ 一トラインを倍クロックで ONしてゆく。これにより、 1フレームの半分の期間(1Z2フレ ーム期間)で、全ての画素に前段表示信号を書き込める。  Then, the control unit 15 turns on the first gate line by the gate driver 22 and writes the previous stage display signal to the pixels of this gate line. Thereafter, the control unit 15 similarly turns on the second to b-th gate lines with a double clock while changing the preceding display signal accumulated in the source driver 23. As a result, the previous stage display signal can be written to all the pixels in a half period of 1 frame (1Z2 frame period).
[0099] さらに、制御部 15は、同様の動作を行って、残りの 1Z2フレーム期間で、全ゲート ラインの画素に後段表示信号の書き込みを行う。これにより、各画素には、前段表示 信号と後段表示信号とが、それぞれ均等の時間(1Z2フレーム期間)書き込まれるこ とになる。  [0099] Further, the control unit 15 performs the same operation, and writes the post-stage display signal to the pixels of all the gate lines in the remaining 1Z2 frame period. As a result, the front display signal and the rear display signal are written to each pixel at an equal time (1Z2 frame period).
[0100] 図 3は、このような前段表示信号および後段表示信号を前'後サブフレームに分け て出力するサブフレーム表示を行った結果 (破線および実線)を、図 2に示した結果( 一点鎖線および実線)と合わせて示すグラフである。  [0100] Fig. 3 shows the result (broken line and solid line) of the subframe display in which the preceding display signal and the subsequent display signal are divided into the front and rear subframes and output (the dotted line and the solid line). It is a graph shown together with a chain line and a solid line.
[0101] 本表示装置では、図 2に示したように、大きな視野角度での実際輝度と予定輝度( 実線と同等)とのズレが、表示輝度が最小あるいは最大の場合に最小 (0)となる一方 、中間調(閾輝度近傍)で最も大きくなる液晶パネル 21を用いて 、る。  [0101] In this display device, as shown in Fig. 2, the deviation between the actual luminance at a large viewing angle and the planned luminance (equivalent to the solid line) is minimum (0) when the display luminance is minimum or maximum. On the other hand, the liquid crystal panel 21 that is the largest in the halftone (near the threshold luminance) is used.
[0102] そして、本表示装置では、 1つのフレームをサブフレームに分割するサブフレーム 表示を行っている。さらに、 2つのサブフレームの期間を等しく設定し、低輝度の場合 、 1フレームにおける積分輝度を変化させない範囲で、前サブフレームを黒表示とし 、後サブフレームのみを用いて表示を行っている。従って、前サブフレームでのズレ が最小となるので、図 3の破線に示すように、両サブフレームのトータルのズレを約半 分に減らせる。  [0102] In this display device, subframe display is performed in which one frame is divided into subframes. Further, the period of the two subframes is set to be equal, and in the case of low luminance, the previous subframe is displayed in black and the display is performed using only the rear subframe within a range in which the integrated luminance in one frame is not changed. Therefore, since the deviation in the previous subframe is minimized, as shown by the broken line in FIG. 3, the total deviation between both subframes can be reduced to about half.
[0103] 一方、高輝度の場合、 1フレームにおける積分輝度を変化させない範囲で、後サブ フレームを白表示とし、前サブフレームの輝度だけを調整して表示を行っている。こ のため、この場合にも、後サブフレームのズレが最小となるので、図 3の破線に示すよ うに、両サブフレームのトータルのズレを約半分に減らせる。 [0103] On the other hand, in the case of high luminance, within the range where the integrated luminance in one frame is not changed, The frame is displayed in white, and only the brightness of the previous subframe is adjusted. For this reason, in this case as well, the shift of the subsequent subframe is minimized, so that the total shift of both subframes can be reduced to about half as shown by the broken line in FIG.
[0104] このように、本表示装置では、通常ホールド表示を行う構成 (サブフレームを用いず に 1フレームで画像を表示する構成)に比して、全体的にズレを約半分に減らすこと が可能となっている。このため、図 2に示したような、中間調の画像が明るくなつて白く 浮!、てしまう現象(白浮き現象)を抑制することが可能である。 [0104] As described above, in this display device, the overall shift can be reduced by about half compared to a configuration in which normal hold display is performed (a configuration in which an image is displayed in one frame without using a subframe). It is possible. For this reason, it is possible to suppress the phenomenon that a halftone image becomes bright and floats white as shown in FIG.
[0105] なお、本実施の形態では、前サブフレームと後サブフレームとの期間が等しいとし ている。これは、最大値の半分までの輝度を 1つのサブフレームで表示するためであ る。し力しながら、これらのサブフレームの期間を、互いに異なる値に設定してもよい [0105] In the present embodiment, it is assumed that the periods of the previous subframe and the subsequent subframe are equal. This is because the luminance up to half of the maximum value is displayed in one subframe. However, the duration of these subframes may be set to different values.
[0106] すなわち、本表示装置において問題とされている白浮き現象は、視野角度の大き い場合に実際輝度が図 2のような特性を持つことで、中間調の輝度の画像が明るくな つて白く浮いて見える現象のことである。 [0106] In other words, the white-floating phenomenon, which is a problem in this display device, has the characteristics shown in Fig. 2 when the viewing angle is large. It is a phenomenon that looks white.
[0107] なお、通常、カメラに撮像された画像は、輝度に基づいた信号となる。そして、この 画像をデジタル形式で送信する場合には、(1)式に示した γを用いて画像を表示信 号に変換する (すなわち、輝度の信号を(ΐΖ γ )乗し、均等割りして階調をつける)。 そして、このような表示信号に基づいて、液晶パネル等の表示装置によって表示され る画像は、(1)式によって示される表示輝度を有することとなる。  [0107] Note that an image captured by a camera is usually a signal based on luminance. When this image is transmitted in digital format, the image is converted into a display signal using γ shown in equation (1) (that is, the luminance signal is multiplied by (ΐΖ γ) and divided equally. To add gradation). Based on such a display signal, an image displayed by a display device such as a liquid crystal panel has a display luminance represented by equation (1).
[0108] ところで、人間の視覚感覚は、画像を、輝度ではなく明度として受け取つている。ま た、明度(明度指数) Μとは、以下の(5) (6)式によって表されるものである(非特許文 献 1参照)。  [0108] By the way, the human visual sense receives an image not as luminance but as brightness. The lightness (lightness index) Μ is expressed by the following equations (5) and (6) (see Non-Patent Document 1).
[0109] M= 116 XY' (lZ3)— 16、 Υ>0. 008856 · · · (5)  [0109] M = 116 XY '(lZ3) — 16, Υ> 0.008856 · · · (5)
Μ = 903. 29 ΧΥ, Υ≤0. 008856 · · · (6)  Μ = 903. 29 ΧΥ, Υ≤0. 008856 (6)
ここで、 Υは、上記した実際輝度に相当するものであり、 Y= (yZyn)なる量である。 なお、 yは、任意な色の xyz表色系における三刺激値の y値であり、また、 ynは、完全 拡散反射面の標準の光による y値であり yn= 100と定められている。  Here, Υ corresponds to the actual luminance described above, and is an amount Y = (yZyn). Here, y is the y value of tristimulus values in the xyz color system of an arbitrary color, and yn is the y value of standard diffuse reflection surface light, and yn = 100.
[0110] これらの式より、人間は、輝度的に暗い映像に対して敏感であり、明るい映像に対 しては鈍感になっていく傾向がある。そして、白浮きに関しても、人間は、輝度のズレ ではなぐ明度のズレとして受け取っていると考えられる。 [0110] From these equations, humans are sensitive to dark images in terms of brightness and are sensitive to bright images. It tends to become insensitive. And even with regard to whitening, it is considered that human beings receive brightness deviations that are not luminance deviations.
[0111] ここで、図 6は、図 3に示した輝度のグラフを明度に変換したものを示すグラフである 。このグラフは、横軸に出力されるはずの明度 (予定明度;信号階調に応じた値、上 記の明度 Mに相当)を、縦軸に実際に出力された明度 (実際明度)を示している。こ のグラフに実線で示すように、上記した 2つの明度は、液晶パネル 21の正面 (視野角 度 0度)においては等しくなる。  [0111] Here, FIG. 6 is a graph showing the luminance graph shown in FIG. 3 converted to lightness. This graph shows the lightness that should be output on the horizontal axis (scheduled lightness; a value corresponding to the signal tone, equivalent to the lightness M above), and the lightness actually output (actual lightness) on the vertical axis. ing. As shown by the solid line in this graph, the above two brightness values are equal on the front surface of the liquid crystal panel 21 (viewing angle 0 degree).
[0112] 一方、このグラフの破線に示すように、視野角度を 60度とし、かつ、各サブフレーム の期間を均等とした場合 (すなわち、最大値の半分までの輝度を 1つのサブフレーム で表示する場合)には、実際明度と予定明度とのズレは、通常ホールド表示を行う従 来の場合よりは改善されている。従って、白浮き現象を、ある程度は抑制できているこ とがわかる。  [0112] On the other hand, as shown by the broken line in this graph, when the viewing angle is 60 degrees and the period of each subframe is equal (that is, the luminance up to half the maximum value is displayed in one subframe) The actual brightness and the scheduled brightness are improved compared to the conventional case of normal hold display. Therefore, it can be seen that the whitening phenomenon can be suppressed to some extent.
[0113] また、人間の視覚感覚にあわせて白浮き現象をより大きく抑制するためには、輝度 ではなぐ明度に合わせてフレームの分割割合を決定することがより好ましいといえる 。そして、実際明度と予定明度とのズレは、輝度の場合と同様に、予定明度における 最大値の半分の点で最も大きくなる。  [0113] In addition, it can be said that it is more preferable to determine the frame division ratio according to the brightness that is not the luminance, in order to suppress the white floating phenomenon more greatly in accordance with the human visual sense. The deviation between the actual brightness and the planned brightness is the largest at the half of the maximum value of the planned brightness, as in the case of luminance.
[0114] 従って、最大値の半分までの輝度を 1つのサブフレームで表示するようにフレーム を分割するよりも、最大値の半分までの明度を 1つのサブフレームで表示するようにフ レームを分割する方が、人間に感じられるズレ (すなわち白浮き)を改善できることに なる。  [0114] Therefore, rather than dividing the frame so that the luminance up to half the maximum value is displayed in one subframe, the frame is divided so that the brightness up to half the maximum value is displayed in one subframe. If you do this, you will be able to improve the gaps that humans feel (ie, whitening).
[0115] そこで、以下に、フレームの分割点における好ましい値について説明する。  [0115] Therefore, a preferable value at a frame division point will be described below.
まず、演算を簡単に行うために、上記した(5) (6)式を、以下の(6a)式のような形((1 First, in order to perform the calculation easily, the above equation (5) (6) is changed to a form like the following equation (6a) ((1
)式に類似の形)にまとめて近似する。 (Similar to equation)).
Μ=Υ" (1/ α ) - - - (6a)  Μ = Υ "(1 / α)---(6a)
このような形に変換した場合、この式の αは、約 2. 5となる。  When converted to this form, α in this equation is about 2.5.
[0116] また、この aの値が 2. 2〜3. 0の間にあれば、(6a)式における輝度 Yと明度 Mとの 関係は適切となる(人間の視覚感覚に対応している)と考えられている。 [0116] If the value of a is between 2.2 and 3.0, the relationship between brightness Y and brightness M in equation (6a) is appropriate (corresponding to human visual senses). )It is believed that.
[0117] そして、 1つのサブフレームで、最大値の半分の明度 Mを表示するためには、 2つ のサブフレームの期間を、 γ = 2. 2のときは約 1 : 3、 γ = 3. 0のときは約 1: 7とするこ とが好ましいことがわ力つている。なお、このようにフレームを分割する場合には、輝 度の小さいときに表示に使用する方のサブフレーム(高輝度の場合に最大輝度に維 持しておく方のサブフレーム)を短い期間とすることとなる。 [0117] And in order to display the lightness M that is half the maximum value in one subframe, two The subframe period is preferably about 1: 3 when γ = 2.2 and about 1: 7 when γ = 3.0. When dividing a frame in this way, the subframe used for display when the luminance is low (the subframe that is maintained at the maximum luminance when the luminance is high) is set to a short period. Will be.
[0118] 以下に、前サブフレームと後サブフレームとの期間を 3 : 1とする場合について説明 する。まず、この場合における表示輝度について説明する。  [0118] The case where the period between the previous subframe and the subsequent subframe is 3: 1 will be described below. First, display luminance in this case will be described.
[0119] この場合には、最大輝度の 1Ζ4 (閾輝度; TmaxZ4)までの輝度を 1フレームで出 力する表示する低輝度表示を行う際、制御部 15は、前サブフレームを最小輝度(黒) とし、後サブフレームの表示輝度のみを調整して階調表現を行う(後サブフレームの みを用いて階調表現を行う)。このときには、 1フレームにおける積分輝度は、(最小 輝度 +後サブフレームの輝度) Z4の輝度となる。  [0119] In this case, when performing low-brightness display in which the maximum luminance of 1 to 4 (threshold luminance; TmaxZ4) is output in one frame, the control unit 15 sets the previous subframe to the minimum luminance (black). ) And gradation expression by adjusting only the display luminance of the subsequent sub-frame (representing gradation using only the subsequent sub-frame). In this case, the integrated luminance in one frame is (minimum luminance + luminance of subsequent subframe) Z4.
[0120] また、閾輝度 (TmaxZ4)より高い輝度を 1フレームで出力する場合 (高輝度の場合 )、制御部 15は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を 調整して階調表現を行う。この場合、 1フレームにおける積分輝度は、(前サブフレー ムの輝度 +最大輝度) /4の輝度となる。  [0120] When the luminance higher than the threshold luminance (TmaxZ4) is output in one frame (in the case of high luminance), the control unit 15 sets the rear subframe to the maximum luminance (white), and sets the display luminance of the previous subframe. Adjust and perform gradation expression. In this case, the integrated luminance in one frame is (luminance of the previous subframe + maximum luminance) / 4.
[0121] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。なお、この場合にも、信号階調( および後述する出力動作)は、上記した (a)(b)の条件を満たすように設定される。  [0121] Next, the signal gradation setting of display signals (previous display signal and subsequent display signal) for obtaining such display luminance will be specifically described. Also in this case, the signal gradation (and output operation described later) is set so as to satisfy the conditions (a) and (b) described above.
[0122] まず、制御部 15は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ4)に対応 するフレーム階調をあら力じめ算出しておく。  First, the control unit 15 preliminarily calculates the frame gradation corresponding to the above-described threshold luminance (TmaxZ4) using the above-described equation (1).
[0123] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、  [0123] That is, the frame gradation (threshold luminance gradation; Lt) corresponding to such display luminance is obtained from equation (1):
Lt= (l/4) " (l/ y ) X Lmax · · · (7)  Lt = (l / 4) "(l / y) X Lmax (7)
そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。そして、この Lが Lt以下の場合、制御部 15 は、前段表示信号の輝度階調 (F)を、前段 LUT12を用いて最小 (0)とする。  Then, when the image is displayed, the control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11. When L is equal to or less than Lt, the control unit 15 sets the luminance gradation (F) of the preceding display signal to the minimum (0) using the preceding LUT 12.
[0124] 一方、制御部 15は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、 On the other hand, the control unit 15 determines the luminance gradation (R) of the rear display signal based on the equation (1).
R= (l/4) " (l/ y ) X L · · · (8) となるように、後段 LUT13を用いて設定する。 R = (l / 4) "(l / y) XL (8) Set by using the LUT13 at the latter stage.
[0125] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。一方、制御部 15は、前サブフレームの輝度階調 Fを、 (1) 式に基づいて、 [0125] When the frame gradation L is greater than L, the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
F= ( (L - (1/4) X Lmax" γ ) ) ΊΐΖ Ύ ) · · · (9)  F = ((L-(1/4) X Lmax "γ)) ΊΐΖ Ύ) (9)
とする。  And
[0126] 次に、このような前段表示信号および後段表示信号の出力動作について説明する 上記したように、フレームを均等分割する構成では、画素には、前段表示信号と後段 表示信号とが、それぞれ均等の時間(1Z2フレーム期間)書き込まれる。これは、倍 クロックで前段表示信号を全て書き込んだ後に、後段表示信号の書き込みを行うた め、各表示信号に関するゲートラインの ON期間が均等となったためである。  [0126] Next, the output operation of the preceding display signal and the succeeding display signal will be described. As described above, in the configuration in which the frame is divided equally, the preceding display signal and the succeeding display signal are respectively included in the pixels. Equal time (1Z2 frame period) is written. This is because the ON period of the gate line for each display signal is equalized because the subsequent display signal is written after all the previous display signals are written with the double clock.
[0127] 従って、後段表示信号の書き込みの開始タイミング (後段表示信号に関するゲートTherefore, the write start timing of the subsequent display signal (the gate related to the subsequent display signal)
ONタイミング)を変えることにより、分害の害合を変えられる。 By changing (ON timing), harm of harm can be changed.
[0128] 図 4 (a)は、フレームメモリ 11に入力される画像信号、(b)は、 3 : 1に分割する場合 における、フレームメモリ 11から前段 LUT12に出力される画像信号、そして、(c)は[0128] Fig. 4 (a) is an image signal input to the frame memory 11, (b) is an image signal output from the frame memory 11 to the preceding LUT 12 in the case of 3: 1 division, and ( c)
、同じく後段 LUT13に出力される画像信号を示す説明図である。また、図 5は、同じ く 3 : 1に分割する場合における、前段表示信号と後段表示信号とに関するゲートライ ンの ONタイミングを示す説明図である。 FIG. 6 is an explanatory view showing an image signal output to the latter LUT 13 in the same manner. FIG. 5 is an explanatory diagram showing the gate line ON timing related to the front display signal and the rear display signal in the same case of 3: 1 division.
[0129] これらの図に示すように、この場合、制御部 15は、 1フレーム目の前段表示信号を、 通常のクロックで各ゲートラインの画素に書き込んでゆく。そして、 3Z4フレーム期間 後に、後段表示信号の書き込みを開始する。このときからは、前段表示信号と後段表 示信号とを、倍クロックで、交互に書き込んでゆく。 As shown in these drawings, in this case, the control unit 15 writes the preceding display signal of the first frame to the pixels of each gate line with a normal clock. Then, after the 3Z4 frame period, writing of the subsequent display signal is started. From this time, the front display signal and the rear display signal are written alternately with a double clock.
[0130] すなわち、「全ゲートラインの 3Z4」番目のゲートラインの画素に前段表示信号を書 き込んだ後、ソースドライバー 23に 1番目のゲートラインに関する後段表示信号の蓄 積し、このゲートラインを ONする。次に、ソースドライバー 23に「全ゲートラインの 3/ 4」 + 1番目のゲートラインに関する前段表示信号を蓄積し、このゲートラインを ONす る。 [0131] このように 1フレーム目の 3Z4フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力することで、前サブフレームと後サブフレームとの割合 を 3 : 1とすることが可能となる。そして、これら 2つのサブフレームにおける表示輝度の 総和 (積分総和)が、 1フレームにおける積分輝度となる。なお、フレームメモリ 11に 蓄えられたデータは、ゲートタイミングにあわせてソースドライバー 23に出力されるこ とになる。 [0130] That is, after writing the previous display signal to the pixel of the “3Z4” gate line of all the gate lines, the subsequent display signal related to the first gate line is accumulated in the source driver 23, and this gate line is stored. Turn on. Next, the previous display signal related to “3/4 of all gate lines” + the first gate line is accumulated in the source driver 23, and this gate line is turned ON. [0131] In this way, after the 3Z4 frame period of the first frame, by alternately outputting the front display signal and the rear display signal with the double clock, the ratio of the front subframe and the rear subframe is 3: 1. It becomes possible. The total display luminance (integral sum) in these two sub-frames becomes the integrated luminance in one frame. Note that the data stored in the frame memory 11 is output to the source driver 23 in accordance with the gate timing.
[0132] また、図 7は、フレームを 3 : 1に分割した場合における、予定明度と実際明度との関 係を示すグラフである。この図に示すように、この構成では、予定明度と実際明度との ズレの最も大きくなる点でフレームを分割できている。従って、図 6に示した結果に比 ベて、視野角度を 60度とした場合における予定明度と実際明度との差が、非常に小 さくなつている。  [0132] Fig. 7 is a graph showing the relationship between the planned brightness and the actual brightness when the frame is divided into 3: 1. As shown in this figure, in this configuration, the frame can be divided at the point where the difference between the planned brightness and the actual brightness is the largest. Therefore, compared with the result shown in FIG. 6, the difference between the planned brightness and the actual brightness when the viewing angle is 60 degrees is very small.
[0133] すなわち、本表示装置では、「TmaxZ4」までの低輝度 (低明度)の場合、 1フレー ムにおける積分輝度を変化させない範囲で、前サブフレームを黒表示とし、後サブフ レームのみを用いて表示を行っている。従って、前サブフレームでのズレ(実際明度 と予定明度との差)が最小となるので、図 7の破線に示すように、両サブフレームのト 一タルのズレを約半分に減らせる。  That is, in this display device, in the case of low luminance (low brightness) up to “TmaxZ4”, the front subframe is displayed in black and only the rear subframe is used within a range in which the integrated luminance in one frame is not changed. Is displayed. Therefore, the deviation in the previous subframe (the difference between the actual brightness and the planned brightness) is minimized, and the total deviation in both subframes can be reduced to approximately half as shown by the broken line in FIG.
[0134] 一方、高輝度 (高明度)の場合、 1フレームにおける積分輝度を変化させない範囲 で、後サブフレームを白表示とし、前サブフレームの輝度だけを調整して表示を行つ ている。このため、この場合にも、後サブフレームのズレが最小となるので、図 7の破 線に示すように、両サブフレームのトータルのズレを約半分に減らせる。  On the other hand, in the case of high luminance (high lightness), the display is performed by adjusting the luminance of only the previous subframe, with the subsequent subframe being displayed in white within the range in which the integrated luminance in one frame is not changed. For this reason, in this case as well, the shift of the subsequent subframe is minimized, so that the total shift of both subframes can be reduced to about half as shown by the broken line in FIG.
[0135] このように、本表示装置では、通常ホールド表示を行う構成に比して、全体的に明 度のズレを約半分に減らすことが可能となっている。このため、図 2に示したような、中 間調の画像が明るくなつて白く浮いてしまう現象(白浮き現象)を、より効果的に抑制 することが可能である。  As described above, in the present display device, it is possible to reduce the brightness deviation to about half as a whole as compared with the configuration in which the normal hold display is performed. For this reason, it is possible to more effectively suppress the phenomenon in which the halftone image becomes brighter and whiter as shown in FIG. 2 (whitening phenomenon).
[0136] ここで、上記では、表示開始時から 3Z4フレーム期間までの間において、 1フレー ム目の前段表示信号を、通常のクロックで各ゲートラインの画素に書き込むとしてい る。これは、後段表示信号を書き込むべきタイミングに達していないからである。  Here, in the above, during the period from the start of display to the 3Z4 frame period, the previous stage display signal of the first frame is written to the pixels of each gate line with a normal clock. This is because the timing for writing the subsequent display signal has not been reached.
[0137] し力しながら、このような措置に変えて、ダミーの後段表示信号を用いて、表示開始 時力も倍クロックでの表示を行うようにしてもよい。すなわち、表示開始時から 3Z4フ レーム期間までの間に、前段表示信号と、信号階調 0の後段表示信号 (ダミーの後段 表示信号)とを交互に出力するようにしてもょ 、。 [0137] With a force, change to such a measure and start display using a dummy rear display signal The time power may be displayed with a double clock. In other words, during the period from the start of display to the 3Z4 frame period, the former display signal and the latter display signal of signal gradation 0 (dummy latter display signal) may be output alternately.
[0138] ここで、以下に、より一般的に、前サブフレームと後サブフレームとの割合を n: 1とす る場合について説明する。この場合、制御部 15は、最大輝度の lZ (n+ l) (閾輝度 ; Tmax/ (n+ 1) )までの輝度を 1フレームで出力する場合 (低輝度の場合)、前サブ フレームを最小輝度(黒)とし、後サブフレームの表示輝度のみを調整して階調表現 を行う(後サブフレームのみを用いて階調表現を行う)。 [0138] Here, a case where the ratio of the front subframe and the rear subframe is generally set to n: 1 will be described below. In this case, the control unit 15 outputs the previous sub-frame with the minimum luminance when outputting the luminance up to lZ (n + 1) (threshold luminance; Tmax / (n + 1)) of the maximum luminance in one frame (when the luminance is low). (Black), and gradation expression is performed by adjusting only the display luminance of the subsequent subframe (tone expression is performed using only the subsequent subframe).
この場合、 1フレームにおける積分輝度は (最小輝度 +後サブフレームの輝度) / (n + 1)の輝度となる。  In this case, the integrated luminance in one frame is (minimum luminance + luminance of subsequent subframe) / (n + 1).
[0139] また、閾輝度 (TmaxZ (n+ l) )より高い輝度を出力する場合 (高輝度の場合)、制 御部 15は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調整 して階調表現を行う。この場合、 1フレームにおける積分輝度は『(前サブフレームの 輝度 +最大輝度) / (n+ 1)』の輝度となる。  [0139] When the luminance higher than the threshold luminance (TmaxZ (n + l)) is output (in the case of high luminance), the control unit 15 sets the rear subframe to the maximum luminance (white) and displays the previous subframe. Adjust the brightness to express the gradation. In this case, the integral luminance in one frame is “(luminance of the previous subframe + maximum luminance) / (n + 1)”.
[0140] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。なお、この場合にも、信号階調( および後述する出力動作)は、上記した (a)(b)の条件を満たすように設定される。  [0140] Next, a specific description will be given of the signal gradation setting of the display signals (the front display signal and the rear display signal) for obtaining such display luminance. Also in this case, the signal gradation (and output operation described later) is set so as to satisfy the conditions (a) and (b) described above.
[0141] まず、制御部 15は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ (n+ l) ) に対応するフレーム階調をあら力じめ算出しておく。  First, the control unit 15 preliminarily calculates the frame gradation corresponding to the above threshold luminance (TmaxZ (n + 1)) using the above-described equation (1).
[0142] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、 [0142] That is, the frame gradation (threshold luminance gradation; Lt) according to such display luminance is obtained from the equation (1):
Figure imgf000026_0001
X Lmax · · · (10)
Figure imgf000026_0001
X Lmax (10)
そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。そして、この Lが Lt以下の場合、制御部 15 は、前段表示信号の輝度階調 (F)を、前段 LUT12を用いて最小 (0)とする。  Then, when the image is displayed, the control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11. When L is equal to or less than Lt, the control unit 15 sets the luminance gradation (F) of the preceding display signal to the minimum (0) using the preceding LUT 12.
[0143] 一方、制御部 15は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、On the other hand, the control unit 15 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
Figure imgf000026_0002
Figure imgf000026_0002
となるように、後段 LUT13を用いて設定する。 [0144] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。一方、制御部 15は、前サブフレームの輝度階調 Fを、 (1) 式に基づいて、 Set by using the LUT13 at the latter stage. [0144] When the frame gradation L is greater than L, the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
F=((L -(l/(n+l))XLmax ))"(l/y)---(12)  F = ((L-(l / (n + l)) XLmax)) "(l / y) --- (12)
とする。  And
[0145] また、表示信号の出力動作については、フレームを 3: 1に分けた場合の動作にお いて、 1フレーム目の nZ(n+l)フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力するように設計すればよい。  [0145] In addition, regarding the display signal output operation, in the case where the frame is divided into 3: 1, after the nZ (n + l) frame period of the first frame, the previous display signal is output with a double clock. It is sufficient to design so that and the subsequent display signal are output alternately.
[0146] また、フレームを均等分割する構成は、以下のような構成であるといえる。すなわち 、 1フレームを「l+n( = l)」のサブフレーム期間に分割する。そして、通常クロックの 「l+n( = l)」倍のクロックで、 1つのサブフレーム期間に前段表示信号を出力し、後 の n( = l)個のサブフレーム期間に後段表示信号を連続的に出力する。  [0146] Further, it can be said that the structure for equally dividing the frame is as follows. That is, one frame is divided into subframe periods of “l + n (= l)”. Then, with a clock that is “l + n (= l)” times the normal clock, the previous stage display signal is output in one subframe period, and the subsequent stage display signal is continued in the subsequent n (= l) subframe periods. To output automatically.
[0147] し力しながら、この構成では、 nが 2以上となると、クロックを非常に速める必要がある ため、装置コストが増大する。従って、 nが 2以上となる場合には、上記したような前段 表示信号と後段表示信号とを交互に出力する構成とすることが好ましい。この場合に は、後段表示信号の出力タイミングを調整することで、前サブフレームと後サブフレー ムとの割合を n:lとすることが可能となるため、必要となるクロック周波数を、通常の 2 倍に維持できる。  However, in this configuration, when n is 2 or more, the clock needs to be very fast, which increases the device cost. Therefore, when n is 2 or more, it is preferable to alternately output the preceding display signal and the succeeding display signal as described above. In this case, by adjusting the output timing of the rear display signal, the ratio of the previous subframe and the rear subframe can be set to n: l. Can be doubled.
[0148] また、本実施の形態では、制御部 15が、前段 LUT12、後段 LUT13を用いて、画 像信号を表示信号に変換するとしている。ここで、本表示装置に備える前段 LUT12 [0148] In the present embodiment, the control unit 15 converts the image signal into a display signal using the front LUT 12 and the rear LUT 13. Here, the front LUT12 provided in this display device
、後段 LUT13を、複数としてもよい。 The latter LUT 13 may be plural.
[0149] 図 8は、図 1に示した構成において、前段 LUT12に変えて 3つの前段 LUT12a〜[0149] FIG. 8 shows the configuration shown in FIG. 1 by replacing the front LUT 12 with three front LUTs 12a to
12c、後段 LUT13に代えて 3つの後段 LUT13a〜13cを備え、さらに、温度センサ 一 16を備えた構成である。 12c, the rear stage LUT 13 is replaced with three rear stage LUTs 13a to 13c, and a temperature sensor 16 is further provided.
[0150] すなわち、液晶パネル 21は、環境温度 (表示部 14のおかれている環境の温度 (気 温))により、その応答特性や階調輝度特性の変化するものである。このため、画像信 号に応じた最適な表示信号も、環境温度に応じて変化する。 That is, the liquid crystal panel 21 changes its response characteristics and gradation luminance characteristics depending on the environmental temperature (temperature of the environment where the display unit 14 is placed (air temperature)). For this reason, the optimum display signal corresponding to the image signal also changes according to the environmental temperature.
[0151] そして、上記の前段 LUT12a〜12cは、互いに異なる温度範囲での使用に適した 前段 LUTである。また、後段 LUT13a〜13cも、互いに異なる温度範囲での使用に 適した後段 LUTである。 [0151] The first LUTs 12a to 12c are suitable for use in different temperature ranges. The front LUT. The rear LUTs 13a to 13c are also rear LUTs suitable for use in different temperature ranges.
[0152] また、温度センサー 16は、本表示装置のおかれている環境温度を計測し、計測結 果を制御部 15に伝達するものである。 [0152] The temperature sensor 16 measures the ambient temperature in which the display device is placed, and transmits the measurement result to the control unit 15.
[0153] そして、この構成では、制御部 15は、温度センサー 16から伝達された環境温度の 情報に基づいて、使用する LUTを切り替えるように設計されている。従って、この構 成では、画像信号に対してより適切な表示信号を液晶パネル 21に伝達できる。従つ て、想定される全ての温度範囲(例えば 0°C〜65°Cの範囲)で、より忠実な輝度での 画像表示を行うことが可能となる。 In this configuration, the control unit 15 is designed to switch the LUT to be used based on the environmental temperature information transmitted from the temperature sensor 16. Therefore, in this configuration, a more appropriate display signal can be transmitted to the liquid crystal panel 21 with respect to the image signal. Therefore, it is possible to display an image with a more faithful luminance in the entire assumed temperature range (for example, a range of 0 ° C to 65 ° C).
[0154] また、液晶パネル 21は、交流により駆動されることが好ましい。これは、交流駆動と することにより、フレーム毎に、画素の電荷極性 (液晶を挟む画素電極間の電圧(電 極間電圧)の向き)を変えられるからである。 [0154] The liquid crystal panel 21 is preferably driven by alternating current. This is because by using AC driving, the charge polarity of the pixel (the direction of the voltage between the pixel electrodes (voltage between the electrodes) sandwiching the liquid crystal) can be changed for each frame.
[0155] 直流駆動とすると、電極間に偏った電圧が力かるため、電極に電荷がたまる。そし て、この状態が続くと、電圧を印加していないときでも、電極間に電位差が発生した 状態 ( 、わゆる焼き付きと 、う状態)になってしまう。 [0155] When direct current drive is used, a biased voltage is applied between the electrodes, so that charges accumulate on the electrodes. If this state continues, even when no voltage is applied, a state in which a potential difference is generated between the electrodes (a so-called seizure state) will occur.
[0156] ここで、本表示装置のようにサブフレーム表示を行う場合、サブフレーム間で、画素 電極間に印加される電圧値 (絶対値)が異なることが多!、。 Here, when sub-frame display is performed as in the present display device, the voltage value (absolute value) applied between the pixel electrodes is often different between sub-frames!
[0157] 従って、電極間電圧の極性をサブフレーム周期で反転させると、前サブフレームと 後サブフレームとの電圧値の違いにより、印加される電極間電圧に偏りが生じる。こ のため、液晶パネル 21を長時間駆動させると、電極に電荷がたまり、上記した焼き付 きゃフリツ力などの発生する可能性がある。 Therefore, when the polarity of the interelectrode voltage is inverted at the subframe period, the applied interelectrode voltage is biased due to the difference in voltage value between the previous subframe and the subsequent subframe. For this reason, when the liquid crystal panel 21 is driven for a long time, electric charges are accumulated on the electrodes, and there is a possibility that the above-described seizure will generate a frit force.
[0158] そこで、本表示装置では、電極間電圧の極性をフレーム周期(1フレームの時間幅 の周期)で反転させることが好ましい。なお、電極間電圧の極性をフレーム周期で反 転させる方法は 2つある。 1つの方法は、 1フレームの間、同極性の電圧を印加する 方法である。また、もう 1つの方法は、 1フレーム内の 2つのサブフレーム間で電極間 電圧を逆極性とし、さらに、後サブフレームと、 1つ後のフレームの前サブフレームと を同極性で駆動する方法である。 [0158] Therefore, in the present display device, it is preferable to reverse the polarity of the voltage between the electrodes at a frame period (period of one frame time width). There are two methods for reversing the polarity of the interelectrode voltage in the frame period. One method is to apply a voltage of the same polarity for one frame. In another method, the voltage between the electrodes is reversed between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are driven with the same polarity. It is.
[0159] 図 9 (a)に、前者の方法をとつた場合における、電圧極性 (電極間電圧の極性)とフ レーム周期との関係を示す。また、図 9 (b)に、後者の方法をとつた場合における、電 圧極性とフレーム周期との関係を示す。このようにフレーム周期で電極間電圧を交流 化することにより、サブフレーム間で電極間電圧が大きく異なっていても、焼き付きや フリツ力を防止できる。 [0159] Figure 9 (a) shows the voltage polarity (polarity of the voltage between electrodes) and the voltage when the former method is used. It shows the relationship with the lemma cycle. Figure 9 (b) shows the relationship between voltage polarity and frame period when the latter method is used. By making the interelectrode voltage alternating in the frame period in this way, even if the interelectrode voltage differs greatly between subframes, it is possible to prevent seizure and flicking force.
[0160] また、上記のように、本表示装置では、サブフレーム表示によって液晶パネル 21を 駆動しており、これにより、白浮きを抑制している。しかしながら、液晶の応答速度 (液 晶にカゝかる電圧 (電極間電圧)が印加電圧と等しくなるまでの速度)が遅い場合、この ようなサブフレーム表示による効果が薄れてしまうことがある。  [0160] Further, as described above, in the present display device, the liquid crystal panel 21 is driven by sub-frame display, thereby suppressing whitening. However, if the response speed of the liquid crystal (the speed at which the voltage applied to the liquid crystal (interelectrode voltage) becomes equal to the applied voltage) is slow, the effect of such subframe display may be diminished.
[0161] すなわち、通常ホールド表示を行う場合、 TFT液晶パネルでは、ある輝度階調に 対して 1つの液晶状態が対応する。従って、液晶の応答特性は、表示信号の輝度階 調に依存しない。  [0161] That is, when performing normal hold display, one liquid crystal state corresponds to a certain luminance gradation in the TFT liquid crystal panel. Therefore, the response characteristics of the liquid crystal do not depend on the luminance gradation of the display signal.
[0162] 一方、本表示装置のようにサブフレーム表示を行う場合、前サブフレームが最小輝 度(白)で後サブフレームが最大輝度となる、中間階調の表示信号を表示する場合、 1フレームで液晶に印加される電圧は、図 10 (a)に示すように変動する。また、電極 間電圧は、液晶の応答速度 (応答特性)に従って、図 10 (b)に実線 Xで示すように変 化する。  [0162] On the other hand, when subframe display is performed as in the present display device, when displaying a display signal of intermediate gradation in which the previous subframe has the minimum luminance (white) and the rear subframe has the maximum luminance, 1 The voltage applied to the liquid crystal in the frame varies as shown in Fig. 10 (a). The interelectrode voltage changes as shown by the solid line X in Fig. 10 (b) according to the response speed (response characteristics) of the liquid crystal.
[0163] ここで、液晶の応答速度が遅い場合、このような中間調表示を行うと、電極間電圧( 実線 X)は、図 10 (c)に示すように変化する。従って、この場合には、前サブフレーム の表示輝度が最小とならないとともに、後サブフレームの表示輝度が最大とならない  Here, when the response speed of the liquid crystal is slow, when such halftone display is performed, the voltage between electrodes (solid line X) changes as shown in FIG. 10 (c). Therefore, in this case, the display brightness of the previous subframe is not minimized, and the display brightness of the subsequent subframe is not maximized.
[0164] このため、予定輝度と実際輝度との関係は、図 11に示すようになる。すなわち、サ ブフレーム表示を行っても、視野角度の大きい場合における予定輝度と実際輝度と の差 (ズレ)の少なくなる輝度 (最小輝度 ·最大輝度)での表示を行えなくなる。 [0164] Therefore, the relationship between the planned brightness and the actual brightness is as shown in FIG. In other words, even when subframe display is performed, it is not possible to perform display with luminance (minimum luminance / maximum luminance) in which the difference (shift) between the planned luminance and the actual luminance when the viewing angle is large is small.
このため、白浮き現象の抑制効果が減少する。  For this reason, the effect of suppressing the whitening phenomenon is reduced.
[0165] 従って、本表示装置のようなサブフレーム表示を良好に行うためには、液晶パネル 21における液晶の応答速度が、以下の (c)(d)を満足するように設計されていることが 好ましい。 [0165] Therefore, in order to satisfactorily perform sub-frame display like this display device, the response speed of the liquid crystal in the liquid crystal panel 21 is designed to satisfy the following (c) (d): Is preferred.
[0166] (c)最小輝度 (黒;最小明度に相当)を表示している液晶に最大輝度(白;最大明度 に相当)となるための電圧信号 (表示信号に基づいてソースドライバー 23によって生 成されるもの)を与えたときに、短い方のサブフレーム期間内で、液晶の電圧(電極間 電圧)が、電圧信号の電圧における 90%以上の値に到達する(正面の実際明度が 最大明度の 90%に到達する。 ) [0166] (c) Maximum brightness (white; maximum brightness) on a liquid crystal displaying minimum brightness (black; equivalent to minimum brightness) The voltage of the liquid crystal (the voltage between the electrodes) within the shorter subframe period when a voltage signal (generated by the source driver 23 based on the display signal) is applied. A value of 90% or more in the voltage of the voltage signal is reached (the actual brightness of the front reaches 90% of the maximum brightness)
(d)最大輝度 (白)を表示して 、る液晶に最小輝度 (黒)となるための電圧信号を与え たときに、短い方のサブフレーム期間内で、液晶の電圧 (電極間電圧)が、電圧信号 の電圧における 5%以下の値に到達する(正面の実際明度が最小明度の 5%に到達 する)。  (d) When the maximum luminance (white) is displayed and a voltage signal is applied to the liquid crystal to achieve the minimum luminance (black), the voltage of the liquid crystal (interelectrode voltage) within the shorter subframe period. However, it reaches a value of 5% or less in the voltage of the voltage signal (the actual brightness of the front reaches 5% of the minimum brightness).
[0167] また、制御部 15は、液晶の応答速度をモニターできるように設計されていることが 好ましい。そして、環境温度の変化等によって液晶の応答速度が遅くなり、上記の (c) (d)を満足できなくなつたと判断した場合、制御部 15は、サブフレーム表示を中断して 、液晶パネル 21を、通常ホールド表示によって駆動するように設定されていてもよい  [0167] Further, the control unit 15 is preferably designed so that the response speed of the liquid crystal can be monitored. If it is determined that the response speed of the liquid crystal becomes slow due to a change in the environmental temperature or the like, and the above (c) and (d) are not satisfied, the control unit 15 interrupts the sub-frame display, and the liquid crystal panel 21 May be set to be driven by normal hold display.
[0168] これにより、サブフレーム表示によって白浮き現象がかえって顕著となってしまった 場合に、液晶パネル 21の表示方式を通常ホールド表示に切り替えられる。 [0168] This makes it possible to switch the display method of the liquid crystal panel 21 to the normal hold display when the white floating phenomenon becomes noticeable due to the subframe display.
[0169] また、本実施の形態では、本表示装置が液晶モニターとして機能するとしている。  [0169] In this embodiment, the display device functions as a liquid crystal monitor.
しかしながら、本表示装置を、液晶テレビジョン受像機 (液晶テレビ)として機能させる ことも可能である。このような液晶テレビは、図 46に示すように、図 8に示した本表示 装置に、チューナ部 17を備えることで実現できる。このチューナ部 17は、テレビ放送 信号を受信し、このテレビ放送信号を、フレームメモリ 11を介して制御部 15に伝達す るためのものである。  However, this display device can also function as a liquid crystal television receiver (liquid crystal television). As shown in FIG. 46, such a liquid crystal television can be realized by including a tuner unit 17 in the display device shown in FIG. The tuner unit 17 receives a television broadcast signal and transmits the television broadcast signal to the control unit 15 via the frame memory 11.
[0170] この構成では、制御部 15が、このテレビ放送信号に基づいて表示信号を生成する こととなる。なお、図 1に示した本表示装置にチューナ部 17を備えることでも、液晶テ レビを実現することは可能である。  [0170] With this configuration, the control unit 15 generates a display signal based on the television broadcast signal. Note that a liquid crystal television can also be realized by including the tuner unit 17 in the display device shown in FIG.
[0171] なお、本実施の形態では、低輝度の場合に前サブフレームを黒とし、後サブフレー ムのみを用いて階調表現を行うとしている。し力しながら、サブフレームの前後関係を 交換しても(低輝度の場合に後サブフレームを黒として、前サブフレームのみを用い て階調表現を行うようにしても)、同様の表示を得られる。 [0172] また、本実施の形態では、(1)式を用いて表示信号 (前段表示信号および後段表 示信号)の輝度階調 (信号階調)を設定するとしている。しかしながら、実際のパネル では、黒表示(階調 0)の場合でも輝度を有し、さらに液晶の応答速度は有限である ため、従って、信号階調の設定に関しては、これらの要素を加味することが好ましい。 すなわち、液晶パネル 21によって実際の画像を表示させて、信号階調と表示輝度と の関係を実測し、実測結果に基づいて、(1)式に合うよう LUT (出力テーブル)を決 めることが好ましい。 [0171] Note that, in this embodiment, in the case of low luminance, the previous subframe is black, and gradation expression is performed using only the rear subframe. However, even if the subframe contexts are exchanged (if the luminance is low, the subsequent subframe is black and the gradation is expressed using only the previous subframe), the same display is obtained. can get. In this embodiment, the luminance gradation (signal gradation) of the display signal (the preceding display signal and the succeeding display signal) is set using equation (1). However, the actual panel has brightness even in the case of black display (gradation 0), and the response speed of the liquid crystal is finite. Therefore, these factors must be taken into account when setting the signal gradation. Is preferred. In other words, an actual image is displayed on the liquid crystal panel 21, the relationship between the signal gradation and the display luminance is measured, and the LUT (output table) is determined so as to meet the equation (1) based on the actual measurement result. Is preferred.
[0173] また、本実施の形態では、式(6a)に示した aを、 2. 2〜3の範囲であるとしている。  [0173] Further, in the present embodiment, a shown in Formula (6a) is assumed to be in the range of 2.2 to 3.
この範囲は、厳密に導き出されたものではないが、人間の視覚感覚的にほぼ妥当で あるとされて 、る範囲である。  This range is not strictly derived, but is a range that is considered to be almost appropriate for human visual sense.
[0174] また、本表示装置のソースドライバー 23として通常ホールド表示用のソースドライバ 一を用いると、入力される信号階調 (表示信号の輝度階調)に応じて、 y = 2. 2とし た(1)式を用いて得られる表示輝度を得られるように、各画素 (液晶)に対して電圧信 号が出力される。  [0174] In addition, when one source driver for normal hold display is used as the source driver 23 of this display device, y = 2.2 is set according to the input signal gradation (display signal luminance gradation). A voltage signal is output to each pixel (liquid crystal) so that the display brightness obtained using equation (1) can be obtained.
[0175] そして、このようなソースドライバー 23は、サブフレーム表示を行う場合でも、各サブ フレームにおいて、入力される信号階調に応じて、通常ホールド表示で使用する電 圧信号をそのまま出力することとなる。  [0175] Such a source driver 23 outputs the voltage signal used in the normal hold display as it is in each subframe according to the input signal gradation even when performing the subframe display. It becomes.
[0176] しかしながら、このような電圧信号の出力方法では、サブフレーム表示における 1フ レーム内での輝度の総和を、通常ホールド表示での値と同一にできない (信号階調 を表現しきれな ヽ)ことがある。  [0176] However, with such a voltage signal output method, the sum of the luminance within one frame in the subframe display cannot be made the same as the value in the normal hold display (the signal gradation cannot be fully expressed). )Sometimes.
[0177] 従って、サブフレーム表示では、ソースドライバー 23は、分割した輝度に換算した 電圧信号を出力するように設計されていることが好ましい。すなわち、ソースドライバ 一 23が、信号階調に応じて、液晶に印加する電圧 (電極間電圧)を微調整するように 設定されていることが好ましい。このため、ソースドライバー 23をサブフレーム表示用 に設計し、上記のような微調整を行えるようにしておくことが好ま 、。  Therefore, in the sub-frame display, it is preferable that the source driver 23 is designed to output a voltage signal converted into divided luminance. That is, it is preferable that the source driver 23 is set so as to finely adjust the voltage (interelectrode voltage) applied to the liquid crystal according to the signal gradation. For this reason, it is preferable to design the source driver 23 for sub-frame display so that the fine adjustment described above can be performed.
[0178] また、本実施の形態では、液晶パネル 21が VAパネルであるとして!/、る。しかしなが ら、これに限らず、 VAモード以外の他のモードの液晶パネルを用いても、本表示装 置のサブフレーム表示によって、白浮き現象を抑制することが可能である。 [0179] すなわち、本表示装置のサブフレーム表示は、視野角度を大きくしたときに予定輝 度 (予定明度)と実際輝度 (実際明度)とがずれてしまう液晶パネル (階調ガンマの視 野角特性変化するモードの液晶パネル)に対しては、白浮き現象を抑制することが可 能である。 [0178] In the present embodiment, it is assumed that the liquid crystal panel 21 is a VA panel! However, the present invention is not limited to this, and even when a liquid crystal panel of a mode other than the VA mode is used, the white-out phenomenon can be suppressed by the sub-frame display of this display device. [0179] In other words, the sub-frame display of this display device is a liquid crystal panel in which the planned brightness (scheduled brightness) and actual brightness (actual brightness) deviate when the viewing angle is increased. It is possible to suppress the white floating phenomenon for liquid crystal panels in changing modes.
[0180] また、特に、本表示装置のサブフレーム表示は、視野角度を増加させると表示輝度 の強くなるような特性を有している液晶パネルに有効である。また、本表示装置にお ける液晶パネル 21は、 NB (Normally Black;ノーマリーブラック)であっても、また、 N W (Normally White;ノーマリーホワイト)であってもよい。さらに、本表示装置では、液 晶パネル 21に変えて、他の表示パネル(例えば有機 ELパネルやプラズマディスプレ ィパネル)を用いてもよい。  [0180] In particular, the sub-frame display of the present display device is effective for a liquid crystal panel having a characteristic that the display luminance increases as the viewing angle is increased. Further, the liquid crystal panel 21 in the present display device may be NB (Normally Black) or NW (Normally White). Further, in this display device, another display panel (for example, an organic EL panel or a plasma display panel) may be used instead of the liquid crystal panel 21.
[0181] また、本実施の形態では、フレームを 1:3〜1: 7に分割することが好ましいとしてい る。しかしながら、これに限らず、本表示装置を、フレームを l:nあるいは n:l(nは 1 以上の自然数)の範囲で分割するように設計してもよ!/、。  [0181] In the present embodiment, it is preferable to divide the frame into 1: 3 to 1: 7. However, the present invention is not limited to this, and the display device may be designed to divide the frame within the range of l: n or n: l (n is a natural number of 1 or more)!
[0182] また、本実施の形態では、上記した(10)式を用いて、表示信号 (前段表示信号お よび後段表示信号)の信号階調設定を行うとしている。しかしながら、この設定は、液 晶の応答速度を Omsとし、かつ、 TO (最小輝度) =0とした設定方法である。このため 、実使用の際には、さらに工夫を重ねることが好ましい。  [0182] In the present embodiment, the signal gradation of the display signal (the front display signal and the rear display signal) is set using the above-described equation (10). However, this setting is a setting method in which the response speed of the liquid crystal is set to Oms and TO (minimum luminance) = 0. For this reason, it is preferable to further devise in actual use.
[0183] すなわち、片側のサブフレーム (後サブフレーム)で出力できる最大の輝度(閾輝度 )は、液晶応答が Omsで T0 = 0の場合には、 TmaxZ(n+l)となる。そして、閾輝度 階調 Ltは、この輝度のフレーム階調である。  That is, the maximum luminance (threshold luminance) that can be output in one subframe (sub-subframe) is TmaxZ (n + l) when the liquid crystal response is Oms and T0 = 0. The threshold luminance gradation Lt is a frame gradation of this luminance.
Lt = ( (Tmax/(n + 1)— TO) Z (Tmax -ΤΟ))"(ΐ/γ)  Lt = ((Tmax / (n + 1) — TO) Z (Tmax -ΤΟ)) "(ΐ / γ)
(γ =2.2、Τ0 = 0)  (γ = 2.2, Τ0 = 0)
液晶の応答速度が 0でない場合、例えば、黒→白がサブフレーム内で Υ%の応答、 白→黒がサブフレーム内で Ζ%の応答、 ΤΟ=ΤΟとすると、閾輝度 (Ltの輝度) Ttは、 Tt=((Tmax-TO) XY/100+ (Tmax -TO) XZ/100)/2  If the response speed of the liquid crystal is not 0, for example, black → white is Υ% response in the subframe, white → black is Ζ% response in the subframe, and ΤΟ = ΤΟ, the threshold brightness (Lt brightness) Tt is Tt = ((Tmax-TO) XY / 100 + (Tmax -TO) XZ / 100) / 2
となる。従って、  It becomes. Therefore,
Lt= ( (Tt TO) / (Tmax -TO) )"(ΐ/γ)  Lt = ((Tt TO) / (Tmax -TO)) "(ΐ / γ)
(y=2.2) となる。 (y = 2.2) It becomes.
[0184] また、実際には、 Ltはもう少し複雑になることもあり、閾輝度 Ttを単純な式では表せ ないこともある。従って、 Ltを Lmaxで表現することが困難なこともある。このような場 合に Ltを求めるには、液晶パネルの輝度を測定した結果を用いることが好ましい。す なわち、片側のサブフレームが最大の輝度、かつ、他方のサブフレームの輝度が最 小輝度の場合に液晶パネルから照射される輝度を測定して、その輝度を Ttとする。 そして、下式により、こぼれだしの階調 Ltを決める。  [0184] In practice, Lt may be a little more complicated, and the threshold luminance Tt may not be expressed by a simple formula. Therefore, it may be difficult to express Lt with Lmax. In such a case, to obtain Lt, it is preferable to use the result of measuring the luminance of the liquid crystal panel. In other words, when the sub-frame on one side has the maximum luminance and the luminance of the other sub-frame has the minimum luminance, the luminance emitted from the liquid crystal panel is measured and the luminance is defined as Tt. Then, the gradation Lt of spillage is determined by the following formula.
Lt= ( (Tt TO) / (Tmax-TO) ) " (ΐ/ γ )  Lt = ((Tt TO) / (Tmax-TO)) "(ΐ / γ)
( y = 2. 2)  (y = 2.2)
このように、 (10)式を用いて求めた Ltについては、理想的な値であり、目安として 使用することが好まし 、場合もあると 、える。  Thus, Lt obtained using Equation (10) is an ideal value, and is preferably used as a guideline.
[0185] ここで、本表示装置において、電極間電圧の極性をフレーム周期で反転させること が好ましい点について、より詳細に説明する。図 12 (a)は、表示輝度力Lmaxの 3Z 4および 1Z4の場合に、前サブフレームおよび後サブフレームによって表示される輝 度を示すグラフである。この図に示すように、本表示装置のようにサブフレーム表示を 行う場合、サブフレーム間で、液晶に印加される電圧値 (画素電極間に印加される電 圧値;絶対値)は異なる。  Here, in the present display device, the point that it is preferable to invert the polarity of the interelectrode voltage at the frame period will be described in more detail. FIG. 12 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance power Lmax is 3Z4 and 1Z4. As shown in this figure, when sub-frame display is performed as in the present display device, the voltage value applied to the liquid crystal (voltage value applied between pixel electrodes; absolute value) differs between sub-frames.
[0186] 従って、液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で反転させ ると、図 12 (b)に示すように、前サブフレームと後サブフレームとの電圧値の違いによ り、印加される液晶電圧に偏りが生じる(トータルの印加電圧が (ことならない)。この ため、液晶電圧の直流成分をキャンセルできなくなり、液晶パネル 21を長時間駆動 させると、電極に電荷がたまり、焼き付きゃフリツ力などの発生する可能性がある。  Therefore, when the polarity of the voltage applied to the liquid crystal (liquid crystal voltage) is reversed at the subframe period, the difference in voltage value between the previous subframe and the subsequent subframe as shown in FIG. 12 (b). As a result, the applied liquid crystal voltage is biased (the total applied voltage is (never)). For this reason, the DC component of the liquid crystal voltage cannot be canceled and the liquid crystal panel 21 is driven for a long time. There is a possibility that flickering force may occur if the image is accumulated.
[0187] そこで、本表示装置では、液晶電圧の極性をフレーム周期で反転させることが好ま しい。なお、液晶電圧の極性をフレーム周期で反転させる方法は 2つある。 1つの方 法は、 1フレームの間、同極性の電圧を印加する方法である。また、もう 1つの方法は 、 1フレーム内の 2つのサブフレーム間で液晶電圧を逆極性とし、さらに、後サブフレ ームと、 1つ後のフレームの前サブフレームとを同極性とする方法である。  [0187] Therefore, in this display device, it is preferable to invert the polarity of the liquid crystal voltage at the frame period. There are two ways to invert the polarity of the liquid crystal voltage with the frame period. One method is to apply a voltage of the same polarity for one frame. The other method is a method in which the liquid crystal voltage is reversed in polarity between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are in the same polarity. is there.
[0188] 図 13 (a)は、前者の方法をとつた場合における、電圧極性 (液晶電圧の極性)とフ レーム周期および液晶電圧との関係を示すグラフである。一方、図 13 (b)は、後者の 方法をとつた場合の、同様のグラフである。 [0188] Figure 13 (a) shows the voltage polarity (the polarity of the liquid crystal voltage) and the voltage when the former method is used. It is a graph which shows the relationship between a frame period and a liquid crystal voltage. On the other hand, Fig. 13 (b) is a similar graph when the latter method is used.
[0189] これらのグラフに示すように、液晶電圧を 1フレーム周期で反転させる場合、隣り合 う 2つのフレーム間で、前サブフレームどうしのトータル電圧、および、後サブフレーム のトータル電圧を、 0Vとできる。従って、 2フレームでのトータル電圧を 0Vとできるの で、印加電圧の直流成分をキャンセルすることが可能となる。  [0189] As shown in these graphs, when the liquid crystal voltage is inverted in one frame period, the total voltage of the previous subframe and the total voltage of the subsequent subframe are set to 0 V between two adjacent frames. And can. Therefore, the total voltage in two frames can be set to 0V, so that the DC component of the applied voltage can be canceled.
このようにフレーム周期で液晶電圧を交流化することにより、サブフレーム間で液晶 電圧が大きく異なって 、ても、焼き付きゃフリツ力を防止できる。  By making the liquid crystal voltage alternating in the frame period in this way, even if the liquid crystal voltage is greatly different between subframes, it is possible to prevent the flicking force if it is burned.
[0190] また、図 14 (a)〜(d)は、液晶パネル 21における 4つの画素と、各画素の液晶電圧 の極性を示す説明図である。上記したように、 1つの画素に印加される電圧について は、フレーム周期で極性を反転させることが好ましい。この場合、各画素の液晶電圧 の極性は、フレーム周期ごとに、図 14 (a)〜(d)の順で示すように変化することとなる  [0190] FIGS. 14A to 14D are explanatory diagrams showing the four pixels in the liquid crystal panel 21 and the polarities of the liquid crystal voltages of the respective pixels. As described above, it is preferable to reverse the polarity of the voltage applied to one pixel in the frame period. In this case, the polarity of the liquid crystal voltage of each pixel changes as shown in the order of FIGS. 14 (a) to (d) for each frame period.
[0191] ここで、液晶パネル 21の全画素に印加される液晶電圧の和については、 OVとする ことが好ましい。このような制御については、例えば、図 14 (a)〜(d)に示すように、隣 接する画素間で電圧極性を変えることで実現できる。 Here, the sum of the liquid crystal voltages applied to all the pixels of the liquid crystal panel 21 is preferably set to OV. Such control can be realized, for example, by changing the voltage polarity between adjacent pixels as shown in FIGS. 14 (a) to (d).
[0192] また、本実施の形態では、前サブフレーム期間と後サブフレーム期間との比(フレ ームの分割比)を、 3 : 1〜7 : 1に設定することが好ましいとしている。し力しながら、こ れに限らず、フレームの分割比を、 1 : 1あるいは 2 : 1に設定してもよい。  [0192] Also, in this embodiment, it is preferable to set the ratio (frame division ratio) between the previous subframe period and the subsequent subframe period to 3: 1 to 7: 1. However, the present invention is not limited to this, and the frame division ratio may be set to 1: 1 or 2: 1.
[0193] 例えば、フレームの分割比を 1: 1とする場合、図 3に示したように、通常ホールド表 示に比して、実際輝度を予定輝度に近づけることが可能となる。また、図 6に示したよ うに、明度に関しても、通常ホールド表示に比して、実際明度を予定明度に近くでき る。従って、この場合でも、通常ホールド表示に比して、視野角特性を改善できること は明らかである。  [0193] For example, when the frame division ratio is 1: 1, as shown in FIG. 3, it is possible to bring the actual luminance closer to the planned luminance as compared to the normal hold display. In addition, as shown in Fig. 6, regarding the brightness, the actual brightness can be made closer to the planned brightness compared to the normal hold display. Accordingly, even in this case, it is clear that the viewing angle characteristics can be improved as compared with the normal hold display.
[0194] また、液晶パネル 21では、液晶電圧 (液晶に印加される電圧;電極間電圧)を表示 信号に応じた値とするまでに、液晶の応答速度に応じた時間がかかる。従って、いず れかのサブフレーム期間が短すぎると、この期間内に、液晶の電圧を表示信号に応 じた値にまで上げられな 、可能性がある。 [0195] 従って、前サブフレームと後サブフレーム期間との比を、 1 : 1あるいは 2 : 1に設定す ることで、一方のサブフレーム期間を短くしすぎることを防止できる。従って、応答速 度の遅い液晶を用いても、適切な表示を行える。 [0194] In addition, in the liquid crystal panel 21, it takes time according to the response speed of the liquid crystal before the liquid crystal voltage (voltage applied to the liquid crystal; voltage between electrodes) is set to a value corresponding to the display signal. Therefore, if any of the subframe periods is too short, there is a possibility that the voltage of the liquid crystal cannot be increased to a value corresponding to the display signal within this period. [0195] Therefore, by setting the ratio of the previous subframe period to the subsequent subframe period to 1: 1 or 2: 1, it is possible to prevent one of the subframe periods from becoming too short. Therefore, an appropriate display can be performed even with a liquid crystal having a slow response speed.
[0196] また、フレームの分割比(前サブフレームと後サブフレームとの比)については、 n: 1  [0196] For the frame division ratio (ratio between the previous subframe and the subsequent subframe), n: 1
(nは 7以上の自然)に設定してもよい。また、この分割比を、 n: l (nは 1以上の実数( より好ましくは 1より大きい実数))としてもよい。例えば、この分割比を 1. 5 : 1に設定 することで、 1 : 1とする場合に比して視野角特性を向上させられる。また、 2 : 1とする 場合に比べて、応答速度の遅い液晶材料を使用することが容易となる。  (n is a natural value of 7 or more). The division ratio may be n: l (n is a real number of 1 or more (more preferably, a real number greater than 1)). For example, by setting this division ratio to 1.5: 1, viewing angle characteristics can be improved as compared to 1: 1. In addition, it becomes easier to use a liquid crystal material with a slow response speed as compared with the case of 2: 1.
[0197] また、フレームの分割比を n: 1 (nは 1以上の実数)とする場合でも、「最大輝度の (n  [0197] Even when the frame division ratio is n: 1 (n is a real number greater than or equal to 1), the maximum luminance (n
+ 1)分の 1 (TmaxZ (n+ l) ) jまでの低輝度 (低明度)の画像を表示する際には、 前サブフレームを黒表示とし、後サブフレームのみを用いて表示を行うことが好まし い。また、「TmaxZ (n+ l)」以上の高輝度(高明度)の画像を表示するときには、後 サブフレームを白表示とし、前サブフレームの輝度だけを調整して表示を行うことが 好ましい。これにより、常に 1つのサブフレームを、実際輝度と予定輝度との差のない 状態としておける。従って、本表示装置の視野角特性を良好にできる。  +1) When displaying low-brightness (low brightness) images up to 1 / (TmaxZ (n + l)) j, the front subframe should be displayed in black and only the back subframe should be used for display. Is preferred. Further, when displaying an image with a high luminance (high brightness) equal to or higher than “TmaxZ (n + 1)”, it is preferable to display the rear subframe with white and adjust only the luminance of the previous subframe. This ensures that one subframe is always in a state where there is no difference between the actual luminance and the planned luminance. Therefore, the viewing angle characteristics of the display device can be improved.
[0198] ここで、フレームの分割比を n: 1にする場合、前フレームを nとしても後フレーム nと しても実質的に同じ効果が狙える。すなわち n: lと l :nは視野角改善効果に関しては 同一である。また、 nは 1以上の実数とした場合でも、上記した(10)〜(12)式を用い た輝度階調の制御にっ 、ては有効である。  [0198] Here, when the frame division ratio is n: 1, the same effect can be aimed at whether the previous frame is n or the subsequent frame n. That is, n: l and l: n are the same in terms of viewing angle improvement effect. In addition, even when n is a real number of 1 or more, it is effective for controlling the luminance gradation using the above equations (10) to (12).
[0199] また、本実施の形態では、本表示装置のサブフレーム表示を、フレームを 2つのサ ブフレームに分割して行う表示であるとしている。しかしながら、これに限らず、本表 示装置を、フレームを 3つ以上のサブフレームに分割したサブフレーム表示を行うよう に設計してもよい。  [0199] In the present embodiment, the sub-frame display of the display device is a display performed by dividing the frame into two sub-frames. However, the present invention is not limited to this, and the display device may be designed to perform subframe display in which a frame is divided into three or more subframes.
[0200] フレームを m個に分割する場合のサブフレーム表示では、輝度の非常に低い場合 には、 m— 1個のサブフレームを黒表示とする一方、 1つのサブフレームの輝度 (輝度 階調)だけを調整して表示を行う。そして、このサブフレームだけでは表現できないく らい輝度の高くなつた場合に、このサブフレームを白表示とする。そして、 m— 2個の サブフレームを黒表示とする一方、残った 1つのサブフレームの輝度を調整して表示 を行う。 [0200] In the subframe display when the frame is divided into m, if the luminance is very low, m—one subframe is displayed in black, while the luminance of one subframe (luminance gradation) ) Only to display. Then, when the luminance becomes so high that it cannot be expressed only by this subframe, this subframe is displayed in white. M—Two subframes are displayed in black, while the luminance of the remaining one subframe is adjusted for display. I do.
[0201] すなわち、フレームを m個に分割する場合でも、 2個に分割するときと同様に、輝度 を調整する(変化させる)サブフレームを常に 1つとし、他のサブフレームを白表示あ るいは黒表示としておくことが好ましい。これにより、 m—l個のサブフレームを、実際 輝度と予定輝度とのズレのない状態とできる。従って、本表示装置の視野角特性を 良好にできる。  [0201] That is, even when a frame is divided into m pieces, as in the case of dividing into two pieces, one subframe for adjusting (changing) the luminance is always set to one, and the other subframes are displayed in white. Is preferably displayed in black. As a result, m−l subframes can be in a state where there is no deviation between the actual luminance and the planned luminance. Therefore, the viewing angle characteristics of the display device can be improved.
[0202] 図 15は、本表示装置によって、均等な 3つのサブフレームにフレームを分割して表 示を行った結果 (破線および実線)と、通常ホールド表示を行った結果 (一点鎖線お よび実線;図 2に示したものと同様)と合わせて示すグラフである。このグラフに示すよ うに、サブフレームを 3つに増やした場合、実際輝度を予定輝度に非常に近づけるこ とが可能となる。従って、本表示装置の視野角特性をより良好な状態とできることがわ かる。  [0202] Fig. 15 shows the result of dividing the frame into three equal sub-frames by this display device (dashed line and solid line) and the result of normal hold display (dashed line and solid line). The same as in FIG. 2). As shown in this graph, when the number of subframes is increased to 3, the actual brightness can be made very close to the planned brightness. Therefore, it can be seen that the viewing angle characteristics of the present display device can be improved.
[0203] また、フレームを m個に分割する場合でも、上記した極性反転駆動を行うことが好ま しい。図 16は、フレームを 3つに分割し、フレームごとに電圧極性を反転した場合に おける、液晶電圧の遷移を示すグラフである。この図に示すように、この場合でも、 2 フレームでのトータルの液晶電圧を OVとできる。  [0203] Also, even when the frame is divided into m, it is preferable to perform the polarity inversion driving described above. Fig. 16 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame. As shown in this figure, even in this case, the total liquid crystal voltage in two frames can be OV.
[0204] また、図 17は、同様にフレームを 3つに分割し、サブフレームごとに電圧極性を反 転した場合における、液晶電圧の遷移を示すグラフである。このように、フレームを奇 数個に分割する場合には、サブフレームごとに電圧極性を反転させても、 2フレーム でのトータルの液晶電圧を OVとできる。従って、フレームを m個(m; 2以上の整数)に 分割した場合には、制御部 15は、隣接するフレーム間の M番目(M ; l〜! n)のサブ フレームどうし力 異なる極性の液晶電圧を印加されている状態とすることが好ましい といえる。これにより、 2フレームでのトータルの液晶電圧を OVとできる。  [0204] FIG. 17 is a graph showing the transition of the liquid crystal voltage when the frame is similarly divided into three and the voltage polarity is inverted for each subframe. Thus, when the frame is divided into an odd number, the total liquid crystal voltage in two frames can be set to OV even if the voltage polarity is inverted for each subframe. Therefore, when the frame is divided into m (m; an integer greater than or equal to 2), the control unit 15 causes the Mth (M; l to! N) subframes between adjacent frames to have different polarities. It can be said that it is preferable to apply a voltage. As a result, the total liquid crystal voltage in two frames can be set to OV.
[0205] また、フレームを m個(m; 2以上の整数)に分割した場合には、 2フレーム(ある 、は より多くのフレーム)でのトータルの液晶電圧を OVとするように、液晶電圧の極性を反 転させることが好ま ヽと 、える。 [0205] When the frame is divided into m (m; an integer greater than or equal to 2), the liquid crystal voltage is set so that the total liquid crystal voltage in 2 frames (or more frames) is OV. It is preferable to reverse the polarity.
[0206] また、上記では、フレームを m個に分割する場合、輝度を調整するサブフレームを 常に 1つとし、他のサブフレームを白表示 (最大輝度)あるいは黒表示 (最小輝度)と することが好ま U、として 、る。 [0206] Also, in the above, when dividing a frame into m frames, there is always one subframe for adjusting the luminance, and the other subframes are displayed as white (maximum luminance) or black (minimum luminance). U prefer to do as
[0207] し力しながら、これに限らず、輝度を調整するサブフレームを 2つ以上としてもょ 、。 [0207] Although not limited to this, it is possible to have two or more subframes for adjusting the brightness.
この場合でも少なくとも 1つのサブフレームを白表示 (最大輝度)あるいは黒表示 (最 小輝度)とすることで、視野角特性を向上させられる。  Even in this case, viewing angle characteristics can be improved by displaying at least one subframe in white (maximum luminance) or black (minimum luminance).
[0208] また、輝度を調整しな!、サブフレームの輝度を、最大輝度とする代わりに「最大また は第 2所定値より大きい値」としてもよい。また、最小輝度とする代わりに、「最小また は第 1所定値より小さい値」としてもよい。この場合でも、輝度を調整しないサブフレー ムにおける実際明度と予定明度とのズレ(明度ズレ)を十分に小さくできる。従って、 本表示装置の視野角特性を向上させられる。 [0208] Also, the luminance is not adjusted! The luminance of the sub-frame may be set to "a value greater than the maximum or second predetermined value" instead of the maximum luminance. Further, instead of setting the minimum luminance, “a minimum or a value smaller than the first predetermined value” may be used. Even in this case, the deviation (brightness deviation) between the actual brightness and the scheduled brightness in the sub-frame where the brightness is not adjusted can be sufficiently reduced. Therefore, the viewing angle characteristics of the present display device can be improved.
[0209] ここで、図 18は、輝度を調整しないサブフレームにおける、表示部 14に出力される 信号階調 (%;表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)と の関係 (視野角階調特性 (実測) )を示すグラフである。 Here, FIG. 18 shows the signal gradation (%: luminance gradation of the display signal) output to the display unit 14 and the actual luminance scale corresponding to each signal gradation in the sub-frame where the luminance is not adjusted. It is a graph showing the relationship (viewing angle gradation characteristics (actual measurement)) with tone (%).
[0210] なお、実際輝度階調とは、「各信号階調に応じて表示部 14の液晶パネル 21から出 力された輝度 (実際輝度)を、上記した(1)式を用いて輝度階調に変換したもの」であ る。 [0210] The actual luminance gradation is defined as “the luminance (actual luminance) output from the liquid crystal panel 21 of the display unit 14 in accordance with each signal gradation, using the above equation (1). Converted into a key. ”
[0211] このグラフに示すように、上記した 2つの階調は、液晶パネル 21の正面 (視野角度 0 度)においては等しくなる。一方、視野角度を 60度としたときには、白浮きのため、実 際輝度階調が中間調で信号階調より明るくなる。また、この白浮きは、視野角度によ らず、輝度階調が 20%〜30%の間となるときに最大値をとる。  [0211] As shown in this graph, the above two gradations are equal on the front surface of the liquid crystal panel 21 (viewing angle 0 °). On the other hand, when the viewing angle is set to 60 degrees, the brightness gradation is actually halftone and brighter than the signal gradation due to whitening. In addition, this whitening takes the maximum value when the luminance gradation is between 20% and 30% regardless of the viewing angle.
[0212] ここで、このような白浮きについては、上記のグラフに破線で示した「最大値の 10% 」を越えて 、な 、場合には、本表示装置の十分に表示品位を保てる(上記した明度 ズレを十分に小さくできる)ことがわ力つている。また、白浮きが「最大値の 10%」を越 えないような信号階調の範囲は、信号階調の最大値の 80〜100%、および、 0〜0. 02%である。また、この範囲は、視野角度が変化しても不変である。  [0212] Here, with regard to such whitening, it exceeds "10% of the maximum value" indicated by the broken line in the above graph. In this case, the display quality of the display device can be sufficiently maintained ( The brightness deviation mentioned above can be made sufficiently small. In addition, the range of signal gradation that does not exceed 10% of the maximum value is 80 to 100% and 0 to 0.02% of the maximum value of the signal gradation. This range does not change even if the viewing angle changes.
[0213] 従って、上記した第 2所定値としては、最大輝度の 80%に設定することが好ましぐ また、第 1所定値としては、最大輝度の 0. 02%に設定することが好ましいといえる。  [0213] Therefore, it is preferable to set 80% of the maximum luminance as the second predetermined value. Also, it is preferable to set the first predetermined value to 0.02% of the maximum luminance. I can say that.
[0214] また、輝度を調整しないサブフレームを設けなくてもよい。すなわち、 m個のサブフ レームで表示を行う場合、各サブフレームの表示状態に差をつけなくてもよい。この ような構成であっても、上記したような、フレーム周期で液晶電圧の極性を反転する 極性反転駆動を行うことが好ましい。なお、 m個のサブフレームで表示を行う場合、 各サブフレームの表示状態に少しでも差をつけるだけで、液晶パネル 21の視野角特 性を向上させることは可能である。 [0214] Further, it is not necessary to provide a subframe in which the luminance is not adjusted. That is, when displaying with m subframes, there is no need to make a difference in the display state of each subframe. this Even with such a configuration, it is preferable to perform the polarity inversion driving that inverts the polarity of the liquid crystal voltage in the frame period as described above. Note that when displaying in m subframes, the viewing angle characteristics of the liquid crystal panel 21 can be improved by making a slight difference in the display state of each subframe.
[0215] また、本実施形態では、サブフレーム表示によって、液晶の視野角特性を向上でき る(白浮きを改善できる)としている。しかしながら、これに限らず、上記のようなサブフ レーム表示を行うことによって、動画の表示品質を向上させることが可能となる。  [0215] In this embodiment, the viewing angle characteristics of the liquid crystal can be improved (whitening can be improved) by the sub-frame display. However, the present invention is not limited to this, and the display quality of moving images can be improved by performing the subframe display as described above.
[0216] すなわち、通常ホールド表示で表示されている物体の動きを視線追従すると、直前 のフレームの色や明るさも同時に見えてしまう。このため、物体のエッジがボケて認識 される。一方、サブフレーム表示 (特に低輝度)で動画を表示する場合には、各フレ ームのいずれかのサブフレームの輝度が低くなる。このため、視認しているフレーム の画像と、直前のフレームの画像 (色'明るさ)とが視覚上で混在することを抑制でき る。従って、上記のようなエッジボケを回避し、動画の表示品質を向上させられる。 [0216] That is, when the movement of an object displayed in the normal hold display is followed by the line of sight, the color and brightness of the immediately preceding frame can be seen at the same time. For this reason, the edge of the object is recognized as blurred. On the other hand, when a moving image is displayed in subframe display (particularly low luminance), the luminance of any subframe of each frame is low. For this reason, it is possible to suppress the visual mixing of the image of the currently viewed frame and the image of the previous frame (color 'brightness). Therefore, the edge blur as described above can be avoided and the display quality of the moving image can be improved.
[0217] また、本表示装置を、 PWM調光方式で調光を行うように設計してもよい。  [0217] In addition, the present display device may be designed to perform dimming by a PWM dimming method.
液晶パネル 21のような液晶表示素子は、光の透過量を制御することで階調を表現す るものである。従って、何らかの光源 (蛍光管や LEDなど)が必要である。また、現在 、大型の液晶表示素子では、効率のよさから、光源として蛍光管を使用することが一 般的である。  A liquid crystal display element such as the liquid crystal panel 21 expresses gradation by controlling the amount of transmitted light. Therefore, some kind of light source (such as a fluorescent tube or LED) is required. In addition, at present, a large-sized liquid crystal display element generally uses a fluorescent tube as a light source for efficiency.
[0218] また、光源の調光方式として、一般的に、電流調光方式 (または電圧調光方式とも 言う)と PWM調光方式との 2通りが使用されている。  [0218] Also, as the light source dimming method, there are generally used two methods: a current dimming method (or voltage dimming method) and a PWM dimming method.
[0219] 電流調光方式は、図 19に示すように、光源に印加する電流(ランプ電流)の振幅を 変動させることで、光源力も照射する光の大きさ(明るさ)を制御する方式である。な お、光源として蛍光管を使用する場合、ランプ電流の振幅を小さくしすぎると、蛍光 管が光らなくなる。このため、電流調光方式では、調光範囲(実現できる明るさの範囲 )を広くできないという欠点がある。従って、液晶 TVなどの調光範囲の広さが求めら れる装置では、 PWM調光方式をとることが好まし ヽと 、える。 [0219] As shown in Fig. 19, the current dimming method is a method that controls the light intensity (brightness) by changing the amplitude of the current (lamp current) applied to the light source. is there. When using a fluorescent tube as the light source, if the amplitude of the lamp current is too small, the fluorescent tube will not shine. For this reason, the current dimming method has a drawback that the dimming range (brightness range that can be realized) cannot be widened. Therefore, for devices that require a wide dimming range, such as LCD TVs, it is preferable to use the PWM dimming method.
[0220] PWM調光方式は、図 20に示すように、人間がフリツ力を感じない 90Hz以上の周 波数で光源 (蛍光管)を点灯 (ON) Z消灯 (OFF)し、時間平均の出力光量を明るさ としてユーザーに知覚させる方式である。なお、点灯 Z消灯の制御は、一般に、外部 から入力される調光信号 (PWM調光制御信号)によってなされる。 [0220] As shown in Fig. 20, the PWM dimming method turns on the light source (fluorescent tube) at a frequency of 90 Hz or higher where humans do not feel flickering force (ON) Z turns off (OFF), and outputs time average Light intensity It is a method to let the user perceive as. In general, lighting Z extinction is controlled by a dimming signal (PWM dimming control signal) input from the outside.
[0221] 図 21は、光源として蛍光管を用いた場合における、調光信号の波形、ランプ電流 波形および発光波形 (蛍光管力 出力される光の波形)の例を示すグラフである。こ の図に示すように、この場合には、ランプ電流波形は、一定の振幅を有するとともに、 所定周期で OFFとなる。なお、実際には、ランプ電流波形の周波数は数万 Hzである 一方、調光信号のそれは数百 Hzである。従って、ランプ電流波形は、図で表される よりも細力べなる。 FIG. 21 is a graph showing an example of a dimming signal waveform, a lamp current waveform, and a light emission waveform (waveform of light output from the fluorescent tube force) when a fluorescent tube is used as the light source. As shown in this figure, in this case, the lamp current waveform has a constant amplitude and is turned OFF at a predetermined cycle. In practice, the frequency of the lamp current waveform is tens of thousands of Hz, while that of the dimming signal is several hundred Hz. Therefore, the lamp current waveform is more powerful than shown in the figure.
[0222] 図 22は、本表示装置においてこのような PWM調光を行う場合における、本表示装 置の内部構成を示すブロック図である。この構成は、図 1に示した構成において、 P WM調光制御回路 31および光源駆動回路 32を備えた構成である。なお、この図に 示した例では、液晶パネル 21の光源を、直下型バックライト (液晶パネル 21の裏面に あるバックライト)である、複数の蛍光管 33としている。  FIG. 22 is a block diagram showing the internal configuration of the display device when such PWM dimming is performed in the display device. This configuration includes the PWM dimming control circuit 31 and the light source drive circuit 32 in the configuration shown in FIG. In the example shown in this figure, the light source of the liquid crystal panel 21 is a plurality of fluorescent tubes 33 which are direct type backlights (backlights on the back surface of the liquid crystal panel 21).
[0223] この構成では、制御部 15が、蛍光管 33から出力すべき光量を示す調光率信号を 生成し、 PWM調光制御回路 31に出力する。また、 PWM調光制御回路 31が、この 調光率信号に応じて、ランプ電流の ONZOFFに関する周期を示す信号を生成し、 光源駆動回路 32に伝達する。そして、光源駆動回路 32が、伝達された信号に応じ てランプ電流 (パルス電流)を生成し、全蛍光管 33に出力するように設計されている。  In this configuration, the control unit 15 generates a dimming rate signal indicating the amount of light to be output from the fluorescent tube 33, and outputs it to the PWM dimming control circuit 31. In addition, the PWM dimming control circuit 31 generates a signal indicating a cycle related to the ONZOFF of the lamp current in accordance with the dimming rate signal, and transmits the signal to the light source driving circuit 32. The light source driving circuit 32 is designed to generate a lamp current (pulse current) according to the transmitted signal and output it to all the fluorescent tubes 33.
[0224] また、このような PWM調光については、上記したサブフレーム表示と組み合わせる ことも可能である。し力しながら、 PWM調光とサブフレーム表示とを単純に組み合わ せると、フリツ力や横縞といった干渉現象の発生する可能性がある。  [0224] Such PWM dimming can be combined with the above-described subframe display. However, if PWM dimming and subframe display are simply combined, interference phenomena such as flickering force and horizontal stripes may occur.
[0225] 図 23は、 PWM調光を通常ホールド表示と組み合わせた場合における、光源の発 光波形、液晶の電極間電圧の波形 (液晶応答波形)、液晶を透過する光の波形 (透 過波形)の関係の例を示すグラフである。  [0225] Figure 23 shows the light source emission waveform, liquid crystal electrode voltage waveform (liquid crystal response waveform), and light transmission light waveform (transmission waveform) when PWM dimming is combined with normal hold display. ) Is a graph showing an example of the relationship.
[0226] また、図 24は、 PWM調光をサブフレーム表示 (低輝度の場合)と組み合わせた場 合における、同様の波形を示すグラフである。なお、これらの図に示した例では、フレ ーム周波数を 60Hz、調光周波数 (光源の ONZOFFの周波数)を 150Hz、調光比 (光源の ONZOFFの期間比)を 50%としている。また、簡単のために、全ての波形 を矩形波で示している。 FIG. 24 is a graph showing similar waveforms when PWM dimming is combined with sub-frame display (in the case of low luminance). In the examples shown in these figures, the frame frequency is 60 Hz, the dimming frequency (ONZOFF frequency of the light source) is 150 Hz, and the dimming ratio (ONZOFF period ratio of the light source) is 50%. Also, for simplicity, all waveforms Is shown by a rectangular wave.
[0227] 図 23に示すように、通常ホールド表示では、 PWM調光を行った場合でも、透過波 形の周波数が調光周波数と同様(150Hz)となる。ここで、フリツ力は、透過波形の周 波数がフリツ力閾値(90Hz)以下となると知覚されはじめ、 60Hzを下回ると明確に視 認される。従って、通常ホールド表示では、ユーザーは、フリツ力を感じることはない。  As shown in FIG. 23, in the normal hold display, the frequency of the transmitted waveform is the same as the dimming frequency (150 Hz) even when PWM dimming is performed. Here, the flicker force starts to be perceived when the frequency of the transmitted waveform falls below the fleat force threshold (90 Hz), and is clearly recognized when it falls below 60 Hz. Therefore, in the normal hold display, the user does not feel flickering force.
[0228] 一方、図 24に示すように、サブフレーム表示では、 PWM調光を行うと、調光周波 数とサブフレームの周波数とが干渉してしま 、、透過波形の周波数が調光周波数より も大きく下がってしまう(図 24では 30Hzとなる)。このため、ユーザーはフリツ力を強く 感じることとなる。  On the other hand, as shown in FIG. 24, when PWM dimming is performed in the subframe display, the dimming frequency interferes with the subframe frequency, and the frequency of the transmitted waveform is greater than the dimming frequency. (The frequency is 30Hz in Fig. 24). For this reason, the user feels a strong flick force.
[0229] なお、このようなフリツ力は、調光周波数がフレーム周波数の n. 5倍 (nは整数)に近 いほど激しくなる。また、調光周波数がフレーム周波数の n倍となると、透過波形の周 波数がフレーム周波数と等しくなる。従って、フリツ力を目立たない程度に低減するこ とが可能となる。し力しながら、調光周波数をフレーム周波数の n倍に近づける場合、 画面上に横縞が発生すると!/ヽぅ干渉現象が起こる。  [0229] Note that such flickering force increases as the dimming frequency approaches n.5 times the frame frequency (n is an integer). When the dimming frequency is n times the frame frequency, the frequency of the transmitted waveform is equal to the frame frequency. Therefore, it is possible to reduce the flickering force to an inconspicuous level. However, when the dimming frequency is made close to n times the frame frequency, horizontal stripes appear on the screen! / ヽ ぅ Interference phenomenon occurs.
[0230] 図 25は、 PWM調光をサブフレーム表示と組み合わせた場合における、光源の発 光波形、液晶応答波形、透過波形の関係の例を示すグラフである。このグラフに示 す例では、調光周波数(180Hz)がフレーム周波数 (60Hz)の 3倍となっている。また 、この図では、図 24と異なり、位置の異なる 2つのライン Α·Βに関する液晶応答波形 および透過波形を示している。この図に示すように、ライン Α·Βの双方で、透過波形 の周波数は、フレーム周波数と同様の 60Hzとなっている。  FIG. 25 is a graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform when PWM dimming is combined with subframe display. In the example shown in this graph, the dimming frequency (180Hz) is three times the frame frequency (60Hz). Also, in this figure, unlike FIG. 24, liquid crystal response waveforms and transmission waveforms are shown for two lines Α · Β having different positions. As shown in this figure, the frequency of the transmitted waveform is 60 Hz, which is the same as the frame frequency, on both lines Α and Β.
[0231] ここで、光源は、通常、画面全体に対して同時刻に光を照射する。一方、液晶パネ ルはラインスキャン駆動である。従って、画面の各ラインは、その位置に応じて、異な る時刻に ONZOFFされることとなる。従って、図 25に示すように、異なる位置にある ライン Α·Βでは、液晶の応答波形の ONZOFFタイミングがずれている(時刻に対し てスライドしている)。  Here, the light source normally irradiates the entire screen with light at the same time. On the other hand, the liquid crystal panel is line scan driven. Therefore, each line on the screen is turned ON and OFF at different times depending on the position. Therefore, as shown in FIG. 25, the ON / OFF timing of the response waveform of the liquid crystal is shifted (sliding with respect to time) in the lines Α · Β at different positions.
[0232] このため、ライン位置によって、透過波形の ONとなる時間(高輝度となる時間)の割 合が異なることとなる。従って、ライン間で平均輝度に差が発生し、これが横縞現象と して認識される。 [0233] なお、調光周波数がフレーム周波数のちょうど n倍のとき、横縞は画面上で止まって いる。そして、 n倍力も外れるにつれて、横縞が画面を上下に流れ始める。さらに調光 周波数が n倍から大きく外れ、 n. 5倍の周波数に近づくと、横縞は消えてゆく。 [0232] For this reason, the ratio of the time when the transmission waveform is turned on (time when the luminance is high) differs depending on the line position. Therefore, there is a difference in average brightness between lines, which is recognized as a horizontal stripe phenomenon. [0233] When the dimming frequency is exactly n times the frame frequency, the horizontal stripes stop on the screen. As the n-power boost is lost, horizontal stripes begin to flow up and down the screen. Furthermore, the horizontal stripes disappear when the dimming frequency deviates significantly from n times and approaches n.
[0234] すなわち、調光周波数をフレーム周波数の n. 5倍とすると、図 24に示したように、 光源の発光波形が、隣接フレーム間で逆位相となる。従って、各ラインからの透過波 形についても、隣接フレーム間で逆位相となる。このため、各ライン力もの 2フレーム での透過光量を等しくできる(時間補償できる)ため、横縞が発生しなくなる。  That is, when the dimming frequency is n. 5 times the frame frequency, the light emission waveform of the light source is in the opposite phase between adjacent frames as shown in FIG. Therefore, the transmitted waveform from each line also has an opposite phase between adjacent frames. For this reason, the amount of transmitted light in two frames of each line force can be made equal (it can be compensated for time), so that no horizontal stripes are generated.
[0235] そこで、本表示装置では、 PWM調光とサブフレーム表示とを組み合わせる場合、 以下のような制御を行う。すなわち、制御部 15が、回路 31 · 32を制御して、調光周波 数を、「フレーム周波数の n. 5倍であって、 450Hz以上の値」に設定する。  [0235] Therefore, in the present display device, when PWM dimming and subframe display are combined, the following control is performed. That is, the control unit 15 controls the circuits 31 and 32 to set the dimming frequency to “a value that is n.5 times the frame frequency and 450 Hz or more”.
[0236] 図 26は、この場合における、光源 (蛍光管 33)の発光波形、液晶応答波形、透過 波形の関係の例を示すグラフである。このグラフに示す例では、調光周波数 (450Hz )がフレーム周波数(60Hz)の 7. 5倍となっている。また、この図でも、図 25と同様に 、位置の異なる 2つのライン A · Bに関する液晶応答波形および透過波形を示して!/、 る。  FIG. 26 is a graph showing an example of the relationship between the light emission waveform, the liquid crystal response waveform, and the transmission waveform of the light source (fluorescent tube 33) in this case. In the example shown in this graph, the dimming frequency (450Hz) is 7.5 times the frame frequency (60Hz). Also in this figure, as in Figure 25, show the liquid crystal response waveform and transmission waveform for two lines A and B at different positions! /
[0237] この場合、調光周波数をフレーム周波数の n. 5倍としているため、上記したような横 縞は発生していない。また、フリツ力については、ライン A ·Βの双方で透過波形の周 波数がフレーム周波数の半分の 30Hzとなって 、るものの、調光周波数を十分に上 げているため、フリツ力を目立たなくすることが可能となっている。  [0237] In this case, since the dimming frequency is n. 5 times the frame frequency, the above horizontal stripes are not generated. Regarding the flicker force, the frequency of the transmitted waveform is 30 Hz, which is half the frame frequency, in both lines A and Β, but the dimming frequency is sufficiently raised, so the flicker force is not noticeable. It is possible to do.
[0238] すなわち、図 26に示したライン Α·Βの透過光量は、フレームごとに逆転した関係( ライン Αの 1フレーム目(2フレーム目)の光量が、ライン Bの 2フレーム目(1フレーム目 )と同じ)となっている。そして、このような関係にあるラインを画面上で密に配置でき れば、これらのライン力 の光をユーザーに同時に視認させることで、フリツ力を空間 的に補償できることとなる。  That is, the transmitted light quantity of lines Β and 示 し shown in FIG. 26 is reversed for each frame (the light quantity of the first frame (second frame) of line Α is the second frame of line B (one frame). Same as eye)). If the lines having such a relationship can be densely arranged on the screen, the flicker force can be spatially compensated by allowing the user to visually recognize the light of these line forces at the same time.
[0239] ここで、上記のような関係にある 2本のラインは、調光周波数が高くなるほど、画面 上での距離が近くなる。従って、調光周波数を十分に上げることで、その値をフレー ム周波数の n. 5倍に設定しても、フリツ力を目立たなくすることが可能となる。なお、前 サブフレームがぎりぎり黒表示となる輝度 50%の場合 (黒挿入率 50%の場合)、調光 周波数を 450Hz以上とすれば、フリツ力が目立たなくなるという実験結果を得ている 。また、フリツ力は、黒挿入率が 50%であるとき、もっとも目立つ。 [0239] Here, the two lines having the above relationship become closer to each other on the screen as the dimming frequency becomes higher. Therefore, by sufficiently increasing the dimming frequency, the flits force can be made inconspicuous even if the value is set to n.5 times the frame frequency. If the brightness of the previous sub-frame is barely black, and the brightness is 50% (when the black insertion rate is 50%), dimming Experimental results have shown that if the frequency is set to 450 Hz or higher, the flicker force will not be noticeable. In addition, the frits force is most noticeable when the black insertion rate is 50%.
[0240] 従って、本表示装置では、調光周波数を、「フレーム周波数の n. 5倍であって、 45 OHz以上の値」とすることで、横縞とフリツ力との双方の発生を回避できるようになって いる。 Therefore, in the present display device, by setting the dimming frequency to “a value that is n. 5 times the frame frequency and equal to or greater than 45 OHz”, it is possible to avoid the occurrence of both horizontal stripes and flickering force. It is like this.
[0241] また、このように調光周波数を上げることなぐ干渉現象を抑制することも可能である 。これは、例えば、調光周波数をフレーム周波数の n. 5倍に設定するとともに、発光 波形に輝度補償パルスを挿入することによって実現できる。  [0241] In addition, it is possible to suppress the interference phenomenon without increasing the dimming frequency in this way. This can be achieved, for example, by setting the dimming frequency to n.5 times the frame frequency and inserting a luminance compensation pulse into the light emission waveform.
[0242] 図 27は、この場合における、光源 (蛍光管 33)の発光波形、液晶応答波形、透過 波形の関係の例を示すグラフである。この図でも、図 26と同様に、位置の異なる 2つ のライン A · Bに関する液晶応答波形および透過波形を示して!/、る。このグラフに示 す例では、制御部 15は、調光周波数(330Hz ;フレーム周波数(60Hz)の 5. 5倍) で、蛍光管 33からパルス幅の比較的長い主発光パルスを発光している。この場合、 調光周波数をフレーム周波数の n. 5倍としているため、上記したような横縞は発生し ない。  FIG. 27 is a graph showing an example of the relationship between the light emission waveform, liquid crystal response waveform, and transmission waveform of the light source (fluorescent tube 33) in this case. This figure also shows the liquid crystal response waveforms and transmission waveforms for two lines A and B at different positions, as in FIG. In the example shown in this graph, the control unit 15 emits a main light emission pulse having a relatively long pulse width from the fluorescent tube 33 at a dimming frequency (330 Hz; 5.5 times the frame frequency (60 Hz)). . In this case, since the dimming frequency is n.5 times the frame frequency, the horizontal stripes as described above do not occur.
[0243] また、フリツ力については、ライン Α·Βの双方で、主発光パルスによる透過波形の周 波数が、フレーム周波数の半分の 30Hzとなっている。し力し、この構成では、パルス 幅の比較的に短い輝度補償パルスを、主発光パルスと同じ周波数(330Hz)で、力 つ逆位相で挿入するようになって!/ヽる。  [0243] Regarding the flits force, the frequency of the transmission waveform by the main light emission pulse is 30 Hz, which is half the frame frequency, in both lines Α and Β. However, in this configuration, a luminance compensation pulse with a relatively short pulse width is inserted at the same frequency (330 Hz) as the main light emission pulse with strong anti-phase!
[0244] そして、ライン A ·Βの透過波形では、主発光パルスと輝度補償パルスとの透過量は 、フレーム毎に増減している力 フレーム毎に逆の比率となっている。例えば、主発光 パルス(ハイ)の発生比率は、 1フレーム目対 2フレーム目で 2. 5対 3である(パルス 3 〜5、パルス 8〜10)。一方、輝度補償パルスでは、逆の 3対 2.5である。  [0244] In the transmission waveform of line A · 量, the transmission amount of the main light emission pulse and the luminance compensation pulse has a reverse ratio for each force frame that increases or decreases for each frame. For example, the generation ratio of the main light emission pulse (high) is 2.5 to 3 in the first frame to the second frame (pulses 3 to 5, pulses 8 to 10). On the other hand, for luminance compensation pulses, the reverse is 3 to 2.5.
[0245] このため、透過波形については、その周波数(30Hz)は小さいものの、輝度補償パ ルスを用いることで、 1周期内(2フレーム内)での輝度差を小さくできる(フレーム間の 輝度差を小さくできる)。従って、フリツ力を目立たなくすることが可能となる。  [0245] Therefore, although the frequency (30Hz) of the transmitted waveform is small, the luminance difference within one cycle (within two frames) can be reduced by using the luminance compensation pulse (the luminance difference between frames). Can be reduced). Therefore, it is possible to make the flits force inconspicuous.
[0246] また、この構成では、 PWM調光周波数を 450Hzよりも小さくできるため、光源の駆 動効率の低下を回避できる。なお、この構成では、 330Hzの輝度補償パルスを挿入 するため、効率の悪ィ匕が懸念される。しカゝしながら、輝度補償パルスのパルス幅は、 フレーム期間に比べて非常に小さい。従って、輝度補償パルスの挿入が光源の駆動 効率に与える影響は、十分に小さい。 [0246] Also, with this configuration, the PWM dimming frequency can be made lower than 450Hz, so a reduction in the driving efficiency of the light source can be avoided. In this configuration, 330Hz luminance compensation pulse is inserted. Therefore, there is a concern about inefficiency. However, the pulse width of the luminance compensation pulse is very small compared to the frame period. Therefore, the influence of the luminance compensation pulse insertion on the driving efficiency of the light source is sufficiently small.
[0247] また、上記では、調光周波数をフレーム周波数の n. 5倍とするとしている。しかしな がら、これに限らず、調光周波数をフレーム周波数の n倍としてもよい。この場合、上 記した横縞の発生を防ぐためには、図 28に示すように、光源の発光波形を、フレーム ごとに位相反転するように制御すればよい。これにより、各ラインからの透過波形をフ レームごとに逆位相とできる。従って、各ラインにおける 2フレームでの透過光量を等 しくできる(時間補償できる)ため、横縞が発生しなくなる。  [0247] In the above description, the dimming frequency is assumed to be n. 5 times the frame frequency. However, the present invention is not limited to this, and the dimming frequency may be n times the frame frequency. In this case, in order to prevent the occurrence of the horizontal stripes described above, as shown in FIG. 28, the emission waveform of the light source may be controlled so as to invert the phase for each frame. As a result, the transmission waveform from each line can be reversed in phase for each frame. Accordingly, the amount of transmitted light in two frames in each line can be made equal (time compensation can be performed), so that no horizontal stripes are generated.
[0248] しかし、単に光源の発光波形をフレームごとに逆位相とすると、図 28に示すように、 各ライン Α·Βの透過波形の周期が 30Hzとなり、フリツ力を発生させてしまう。  However, if the light emission waveform of the light source is simply reversed in phase for each frame, the cycle of the transmission waveform of each line Α · Β becomes 30 Hz as shown in FIG.
[0249] そこで、上記のように光源の発光波形をフレームごとに逆位相とする場合、図 29に 示すように、制御部 15は、まず、調光周波数(300Hz ;フレーム周波数(60Hz)の 5 倍)で、蛍光管 33からパルス幅の比較的長い主発光パルスを発光する。そして、この 主発光パルスを、フレームごとに位相反転するように制御する。  [0249] Therefore, when the light emission waveform of the light source has an opposite phase for each frame as described above, as shown in FIG. 29, the control unit 15 first sets the dimming frequency (300 Hz; frame frequency (60 Hz) 5 The main light emission pulse having a relatively long pulse width is emitted from the fluorescent tube 33. Then, the main light emission pulse is controlled to be phase-inverted every frame.
[0250] また、制御部 15は、光源の発光波形に対し、パルス幅の比較的に短い輝度補償パ ルスを、主発光パルスと同じ周波数(330Hz)で、かつ逆位相で挿入する。  [0250] In addition, the control unit 15 inserts a luminance compensation pulse having a relatively short pulse width into the light emission waveform of the light source at the same frequency (330 Hz) as that of the main light emission pulse and in an opposite phase.
さらに、制御部 15は、主発光パルスの位相の変わるタイミング(図 29におけるフレー ムの境界点)で、輝度補償パルスに代えて、輝度補償加パルスあるいは輝度補償減 パルスを挿入する。  Furthermore, the control unit 15 inserts a luminance compensation added pulse or a luminance compensation reduced pulse in place of the luminance compensation pulse at the timing when the phase of the main light emission pulse changes (the boundary point of the frame in FIG. 29).
[0251] ここで、輝度補償加パルスは、主発光パルスが連続して OFF (ロー)となるときに挿 入される、光源を ONとするパルスである。一方、輝度補償減パルスは、主発光パル スが連続して ON (ノヽィ)となるときに挿入される、光源を OFFとするパルスである。  Here, the luminance compensation added pulse is a pulse that turns on the light source and is inserted when the main light emission pulse is continuously turned OFF (low). On the other hand, the luminance compensation reduced pulse is a pulse for turning off the light source, which is inserted when the main light emission pulse is continuously turned on (noise).
[0252] すなわち、この構成では、主発光パルスの光量が少なくなり過ぎるところで、輝度補 償加パルスを挿入して光量を上げる一方、主発光パルスの光量が多くなり過ぎるとこ ろで、輝度補償減パルスを挿入して光量を下げるように設計されて ヽる。  That is, in this configuration, when the light amount of the main light emission pulse is too small, the luminance compensation pulse is inserted to increase the light amount. On the other hand, when the light amount of the main light emission pulse is too large, the luminance compensation is reduced. It is designed to reduce the amount of light by inserting a pulse.
[0253] これにより、この構成では、各ラインにおけるフレーム間での輝度の差を少なくでき る(各フレームの時間平均輝度を一定に近づけられる)。従って、フリツ力を低減する ことが可能となる。 [0253] Thus, with this configuration, the difference in luminance between frames in each line can be reduced (the time average luminance of each frame can be made close to constant). Therefore, reducing the flickering force It becomes possible.
[0254] また、 PWM調光とサブフレーム表示とを組み合わせる場合、光源の発光波形を、 直流成分 (DC成分)を含むように制御することで、フリツ力や横縞などの干渉現象を 抑制することも可能である。  [0254] Also, when combining PWM dimming and subframe display, the light emission waveform is controlled to include a direct current component (DC component), thereby suppressing interference phenomena such as flaw force and horizontal stripes. Is also possible.
[0255] 図 30は、このような制御を行う場合における、本表示装置の構成を示すブロック図 である。この構成は、図 22に示した構成において、光源駆動回路 32に代えて、第 1 光源駆動回路 34、第 2光源駆動回路 35を備え、さらに、これら回路 34· 35と PWM 調光制御回路 31との間に、位相制御回路 36を備えた構成である。  FIG. 30 is a block diagram showing a configuration of the present display device when such control is performed. This configuration includes a first light source drive circuit 34 and a second light source drive circuit 35 in place of the light source drive circuit 32 in the configuration shown in FIG. 22, and further includes these circuits 34 and 35 and a PWM dimming control circuit 31. The phase control circuit 36 is provided between the two.
[0256] また、この構成では、蛍光管 33が、一つおきに、第 1蛍光管 33aと第 2蛍光管 33bと に分けられている(蛍光管 33a' 33bが交互に並んでいる)。ここで、第 1蛍光管 33a は、第 1光源駆動回路 34に接続されている蛍光管 33である。また、第 2蛍光管 33b は、第 2光源駆動回路 35に接続されている光源である。  [0256] In this configuration, every other fluorescent tube 33 is divided into a first fluorescent tube 33a and a second fluorescent tube 33b (fluorescent tubes 33a '33b are alternately arranged). Here, the first fluorescent tube 33a is a fluorescent tube 33 connected to the first light source drive circuit. The second fluorescent tube 33b is a light source connected to the second light source driving circuit 35.
[0257] この構成では、制御部 15が、蛍光管 33a ' 33bから出力すべき光量を示す調光率 信号を生成し、 PWM調光制御回路 31に出力する。そして、この調光率信号に応じ て、 PWM調光制御回路 31および位相制御回路 36が、第 1蛍光管 33aに対するラン プ電流の ONZOFFに関する周期を示す信号を生成し、第 1光源駆動回路 34に伝 達するとともに、第 2蛍光管 33bに対するランプ電流の ONZOFFに関する周期を示 す信号を生成し、第 2光源駆動回路 35に伝達する。さらに、光源駆動回路 34 · 35が 、伝達された信号に応じてランプ電流 (パルス電流)を生成し、蛍光管 33a' 33bに出 力するように設計されている。  In this configuration, the control unit 15 generates a dimming rate signal indicating the amount of light to be output from the fluorescent tubes 33 a ′ 33 b and outputs the dimming rate signal to the PWM dimming control circuit 31. Then, in response to the dimming rate signal, the PWM dimming control circuit 31 and the phase control circuit 36 generate a signal indicating a period related to ONZOFF of the lamp current for the first fluorescent tube 33a, and the first light source driving circuit 34 And a signal indicating a period related to ONZOFF of the lamp current for the second fluorescent tube 33b is generated and transmitted to the second light source driving circuit 35. Further, the light source drive circuits 34 and 35 are designed to generate a lamp current (pulse current) in accordance with the transmitted signal and output it to the fluorescent tubes 33a'33b.
[0258] このように、図 30の構成では、 2組の蛍光管 33a ' 33bを、それぞれ独立に発光させ ることが可能となっている。図 31 (a)および (b)は、図 30に示した構成における、第 1 蛍光管 33aの発光波形 (第 1波形)、第 2蛍光管 33bの発光波形 (第 2波形)と、両蛍 光管 33a' 33bの発光波形を混合した波形 (混合波形)の例を示すグラフである。な お、図 31 (a)は、調光率 (各蛍光管における最大の発光量に対する、発光量の割合 ) 75%の場合、図 31 (b)は調光率 50%の場合に関するものである。  As described above, in the configuration of FIG. 30, the two sets of fluorescent tubes 33a ′ 33b can emit light independently of each other. 31 (a) and 31 (b) show the emission waveform of the first fluorescent tube 33a (first waveform), the emission waveform of the second fluorescent tube 33b (second waveform), and the two fluorescent tubes in the configuration shown in FIG. It is a graph which shows the example of the waveform (mixed waveform) which mixed the light emission waveform of light tube 33a'33b. Fig. 31 (a) is for the case where the dimming rate (the ratio of the light emission amount to the maximum light emission amount in each fluorescent tube) is 75%, and Fig. 31 (b) is for the case where the dimming rate is 50%. is there.
[0259] これらの図に示す例では、制御部 15が、第 1波形と第 2波形との位相を、互いに 18 0° 変えるように制御している。従って、図 31 (a)に示すように、調光率 75%の場合、 発光量の 75%が DC成分となる。また、図 31 (b)に示すように、調光率 50%の場合、 発光量の全て (100%)が DC成分となる (DC的な駆動を行える)。 [0259] In the examples shown in these figures, the control unit 15 controls the phases of the first waveform and the second waveform to change 180 ° from each other. Therefore, as shown in Fig. 31 (a), when the dimming rate is 75%, 75% of the emitted light is DC component. In addition, as shown in Fig. 31 (b), when the dimming rate is 50%, all of the light emission amount (100%) becomes the DC component (DC drive can be performed).
[0260] このような制御を行うことにより、 1周期内(2フレーム内)での光源の発光量における 時間変動量を小さくできる。また、ライン間での発光量の差も低減できる。従って、調 光信号の周波数を上げなくとも、フリツ力や横縞などの干渉現象を目立たなくすること が可能となる。 By performing such control, it is possible to reduce the amount of time fluctuation in the light emission amount of the light source within one cycle (within two frames). Further, the difference in light emission amount between the lines can be reduced. Therefore, it is possible to make the interference phenomenon such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
[0261] ここで、上記のように光源の発光波形に DC成分を含ませる制御を、上記した「調光 周波数を、フレーム周波数の n. 5倍であって、 450Hz以上の値に設定する」ような制 御、あるいは、輝度補償パルスを用いる制御などと組み合わせてもよい。  [0261] Here, as described above, the control for including the DC component in the light emission waveform of the light source is performed as described above. "Set the dimming frequency to n. 5 times the frame frequency and to a value of 450 Hz or more." Such control may be combined with control using a luminance compensation pulse.
[0262] なお、光源の発光波形に DC成分を含ませる制御において、調光周波数を、フレー ム周波数の n. 5倍であって 270Hz以上の値に設定した場合でも、フリツ力や横縞な どの干渉現象を十分に目立たなくできることを、実験により確認している。  [0262] In the control that includes the DC component in the light emission waveform of the light source, even if the dimming frequency is set to a value that is n. Experiments have confirmed that the interference phenomenon can be made sufficiently inconspicuous.
[0263] また、図 30に示した構成では、光源の発光波形に DC成分をつくるために、蛍光管 33を 2種類に分けている。し力しながら、これに限らず、蛍光管 33を、 3種類に分け、 種類ごとに独立に制御するようにしてもよい。図 32は、このような制御を行う場合にお ける、本表示装置の構成を示すブロック図である。  [0263] In the configuration shown in Fig. 30, the fluorescent tube 33 is divided into two types in order to create a DC component in the light emission waveform of the light source. However, the present invention is not limited to this, and the fluorescent tube 33 may be divided into three types and controlled independently for each type. FIG. 32 is a block diagram showing a configuration of the present display device when such control is performed.
[0264] この構成では、蛍光管 33が、 3種類 (第 1蛍光管 33a、第 2蛍光管 33b、第 3蛍光管 33c)に分けられている。そして、各蛍光管 33a、 33b、 33cは、この順で、かつ周期 的に配列されている(同種の蛍光管が 2つおきに配されている)。また、この構成では 、位相制御回路 36と蛍光管 33との間に、第 3光源駆動回路 37を加えている。そして 、この第 3光源駆動回路 37によって、第 3蛍光管 33cを駆動 (ランプ電流を印力!])する ようになっている。  [0264] In this configuration, the fluorescent tube 33 is divided into three types (first fluorescent tube 33a, second fluorescent tube 33b, and third fluorescent tube 33c). The fluorescent tubes 33a, 33b, and 33c are arranged in this order and periodically (every two fluorescent tubes of the same type are arranged). In this configuration, a third light source driving circuit 37 is added between the phase control circuit 36 and the fluorescent tube 33. The third light source driving circuit 37 drives the third fluorescent tube 33c (lamp current is applied!).
[0265] この構成では、 3組の蛍光管 33a〜33cを、それぞれ独立に発光させることが可能 となっている。図 33 (a)および (b)は、図 30に示した構成における、蛍光管 33a〜33 c (第 1〜第 3波形)と、これらを混合した波形 (混合波形)の例を示すグラフである。  [0265] In this configuration, the three sets of fluorescent tubes 33a to 33c can emit light independently of each other. FIGS. 33 (a) and (b) are graphs showing examples of fluorescent tubes 33a to 33c (first to third waveforms) and their mixed waveforms (mixed waveforms) in the configuration shown in FIG. is there.
[0266] なお、図 33 (a)は、調光率 50%の場合、図 31 (b)は調光率 25%の場合に関する ものである。また、これらの図に示す例では、第 1〜第 3波形の位相を、互いに 120° ずつ、ずらすように制御している。従って、図 33 (a)および (b)に示すように、調光率 50%を同じくする場合でも、蛍光管 33をグループに分類せずに同時に明滅させる 場合に比して、 DC成分を多くできる。 Note that FIG. 33 (a) relates to the case where the dimming rate is 50%, and FIG. 31 (b) relates to the case where the dimming rate is 25%. In the examples shown in these figures, the phases of the first to third waveforms are controlled to be shifted from each other by 120 °. Therefore, as shown in Fig. 33 (a) and (b), the dimming rate Even when 50% is the same, the DC component can be increased as compared with the case where the fluorescent tubes 33 are not blinked at the same time.
[0267] このような制御を行うことにより、 1周期内(2フレーム内)での光源の発光量における 時間変動量を小さくできる。また、ライン間での発光量の差も低減できる。従って、調 光信号の周波数を上げなくとも、フリツ力や横縞などの干渉現象を目立たなくすること が可能となる。 By performing such control, the amount of time variation in the light emission amount of the light source within one cycle (within two frames) can be reduced. Further, the difference in light emission amount between the lines can be reduced. Therefore, it is possible to make the interference phenomenon such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
[0268] なお、蛍光管 33の分類数 (別々に駆動する蛍光管のグループ数)については、グ ループの数だけ光源駆動回路を設けることで、任意の数に設定できる。なお、図 34 に示すように、蛍光管 33の分類数を p (pは 2以上の自然数)とした場合、第 1〜第 p波 形の位相を、互いに 360° Zpずつ、ずらすように制御することが好ましい。しかし、 少なくとも 2つの蛍光管 33の発光波形が互いに異なる位相となるように PWM調光を 行うだけでもよい。この構成でも、各光源の発光波形にずれが生じるため、全光源か らの光を合わせた混合光の DC成分を多くできる。  [0268] The number of fluorescent tubes 33 (the number of groups of fluorescent tubes that are driven separately) can be set to an arbitrary number by providing as many light source driving circuits as the number of groups. As shown in Fig. 34, when the number of fluorescent tubes 33 is p (p is a natural number of 2 or more), the phases of the 1st to p-th waveforms are controlled to be shifted by 360 ° Zp from each other. It is preferable to do. However, PWM dimming may be performed so that the emission waveforms of at least two fluorescent tubes 33 have different phases. Even in this configuration, the light emission waveform of each light source is shifted, so that the DC component of the mixed light including the light from all the light sources can be increased.
[0269] また、上記では、液晶パネル 21の光源を、直下型バックライトである、複数の蛍光 管 33としている。し力しながら、これに限らず、光源として、サイド型のノ ックライト (液 晶パネル 21の側端部にあるバックライト)となる、 LED (発光ダイオード)を用いてもよ い。図 35に示した表示素子は、液晶パネル 21の裏面に導光板 41を配置し、さらに、 この導光板 41の対向する 2辺に、第 1LED42、第 2LED43を配した構成である。こ の構成は、 LED42'43から出射された光を導光板 41によって拡げ、面状光として液 晶パネル 21に出力するように設計されて!、る。  [0269] In the above description, the light source of the liquid crystal panel 21 is a plurality of fluorescent tubes 33 which are direct type backlights. However, the present invention is not limited to this, and an LED (light emitting diode) that serves as a side-type knock light (a backlight at the side edge of the liquid crystal panel 21) may be used as the light source. The display element shown in FIG. 35 has a configuration in which a light guide plate 41 is disposed on the back surface of the liquid crystal panel 21, and the first LED 42 and the second LED 43 are arranged on two opposite sides of the light guide plate 41. This configuration is designed so that the light emitted from the LED 42'43 is expanded by the light guide plate 41 and output to the liquid crystal panel 21 as planar light!
[0270] この構成では、図 30に示した構成と同様に、制御部 15が、第 1LED42の発光波 形 (第 1波形)と第 2LED43の発光波形 (第 2波形)との位相を、互いに 180度変える ように制御する。これにより、導光板 41内で、逆位相の発光波形を混合し、 DC成分 を作り出せる。従って、この構成でも、液晶パネル 21に照射される光の DC成分を多 くでさる。  In this configuration, similarly to the configuration shown in FIG. 30, the control unit 15 causes the phase of the light emission waveform (first waveform) of the first LED 42 and the light emission waveform (second waveform) of the second LED 43 to mutually differ. Control to change 180 degrees. Thereby, in the light guide plate 41, the light emission waveforms having the opposite phases can be mixed to create a DC component. Therefore, even in this configuration, the DC component of the light irradiated on the liquid crystal panel 21 is reduced.
[0271] なお、上記のように 2本の LED42.43を用いる場合、図 36に示すように、導光板 4 1の同一の辺に沿って、 2本の LED42.43を配置してもよい。この構成でも、図 35の 構成と同様に、 DC成分を多く含む光を液晶パネル 21に照射できる。 [0272] また、 2本の LED42.43をサイド型のフロントライト (液晶パネル 21の側端部に配さ れるフロントライト)として用いることも可能である。この場合、図 37·図 38に示すように 、液晶パネル 21は、フロントライト型に構成される。 [0271] When two LEDs 42.43 are used as described above, two LEDs 42.43 may be disposed along the same side of the light guide plate 41 as shown in FIG. . In this configuration, similarly to the configuration in FIG. 35, the liquid crystal panel 21 can be irradiated with light containing a large amount of DC components. [0272] The two LEDs 42.43 can also be used as a side-type front light (a front light disposed on the side end of the liquid crystal panel 21). In this case, as shown in FIGS. 37 and 38, the liquid crystal panel 21 is configured as a front light type.
[0273] 上記の構成では、液晶パネル 21は反射型の液晶表示素子となる。すなわち、この 構成では、液晶パネル 21は、導光板 41からの面状光を前面 (ユーザー側の面)から 受ける。そして、この面状光を内部の反射板により反射することによって、ユーザーに 画像を表示するように設計されて 、る。  [0273] In the above configuration, the liquid crystal panel 21 is a reflective liquid crystal display element. That is, in this configuration, the liquid crystal panel 21 receives the planar light from the light guide plate 41 from the front surface (user side surface). And, it is designed to display an image to the user by reflecting this planar light by the internal reflector.
[0274] また、図 34に示した構成では、多数の蛍光管 33を p個のグループに分類し、第 1〜 第 P波形の位相を、互いに 360° Zpずつ、ずらすように制御するとしている。しかし ながら、これに限らず、各蛍光管 33を個別に駆動するようにしてもよい。この場合、 r 本の蛍光管 33を用いるとすれば、各蛍光管 33からの発光波形の位相を、 360° /τ ずつ、ずらすことが好ましい。  In the configuration shown in FIG. 34, a large number of fluorescent tubes 33 are classified into p groups, and the phases of the first to P-th waveforms are controlled to be shifted from each other by 360 ° Zp. . However, the present invention is not limited to this, and each fluorescent tube 33 may be driven individually. In this case, if r fluorescent tubes 33 are used, it is preferable to shift the phase of the emission waveform from each fluorescent tube 33 by 360 ° / τ.
[0275] また、このような多数の蛍光管 33を個別に駆動する構成では、蛍光管 33の発光タ イミングと液晶パネル 21のゲートラインの ONタイミングとを同期させることが好ましい  [0275] In such a configuration in which a large number of fluorescent tubes 33 are individually driven, it is preferable to synchronize the light emission timing of the fluorescent tubes 33 and the ON timing of the gate lines of the liquid crystal panel 21.
[0276] 図 39は、上記のような同期を行う場合における、本表示装置の構成を示すブロック 図である。この構成では、液晶パネル 21の直下にある r本の蛍光管 33を、第 1〜第 r 光源駆動回路 32a〜32rによって駆動するように設計されて!、る。 [0276] Fig. 39 is a block diagram showing a configuration of the present display device in the case of performing the synchronization as described above. In this configuration, the r fluorescent tubes 33 immediately below the liquid crystal panel 21 are designed to be driven by the first to r-th light source drive circuits 32a to 32r!
[0277] また、上記の構成では、各蛍光管 33は、自身に近い複数のゲートラインに対して光 を照射することとなる。なお、各蛍光管 33に対応するゲートライン数は、例えば蛍光 管 33が 18本、ゲートライン数が 768本であれば、 42〜43本である。  [0277] Further, in the above configuration, each fluorescent tube 33 irradiates light to a plurality of gate lines close to itself. The number of gate lines corresponding to each fluorescent tube 33 is, for example, 42 to 43 when 18 fluorescent tubes 33 and 768 gate lines are provided.
[0278] そして、制御部 15は、位相制御回路 36に同期信号を送ることによって、各蛍光管 3 3に対応するゲートライン群が ONとなったとき(このゲートライン群のスキャンが開始さ れるとき)に、その蛍光管 33の駆動を開始するように制御する(なお、より詳細には、 ゲートライン群は全て同時に ONとなるわけではないため、蛍光管 33の駆動開始タイ ミングは、ゲートライン群の平均の ONタイミングに設定される)。  [0278] Then, the control unit 15 sends a synchronization signal to the phase control circuit 36 to turn on the gate line group corresponding to each fluorescent tube 33 (the scanning of this gate line group is started). ) To start driving the fluorescent tube 33 (more specifically, since the gate line groups are not all turned on at the same time, the drive start timing of the fluorescent tube 33 is Set to the average ON timing of the line group).
[0279] 図 40は、このような制御を行う場合における、光源の発光波形、液晶応答波形、透 過波形の関係の例を示すグラフである。このグラフに示す例では、調光周波数(180 Hz)がフレーム周波数(60Hz)の 3倍となっている。また、この図では、異なる 2つの ゲートライン群 Α·Βに関する光源の発光波形、液晶応答波形および透過波形を示し ている。なお、液晶応答波形は、ゲートラインの ONタイミングで液晶パネル 21の画 素に書き込まれ、次の ONタイミングまで保持される電圧を表すものである。 FIG. 40 is a graph showing an example of the relationship between the light emission waveform of the light source, the liquid crystal response waveform, and the transmission waveform when such control is performed. In the example shown in this graph, the dimming frequency (180 Hz) is three times the frame frequency (60 Hz). This figure also shows the light source emission waveform, liquid crystal response waveform, and transmission waveform for two different gate line groups Α · Β. The liquid crystal response waveform represents the voltage that is written to the pixel of the liquid crystal panel 21 at the ON timing of the gate line and is held until the next ON timing.
[0280] この図に示すように、この構成では、光源の発光波形の周波数がフレームの周波数 の 3倍となっている。従って、ライン群 Α·Βの双方で、透過波形の周波数が、フレーム 周波数と同様の 60Hzとなり、フリツ力の発生を回避できる。  [0280] As shown in this figure, in this configuration, the frequency of the light emission waveform of the light source is three times the frequency of the frame. Therefore, in both the line groups と な り and Β, the frequency of the transmission waveform is 60 Hz, which is the same as the frame frequency, and the generation of flickering force can be avoided.
[0281] また、この構成では、ライン群 Α·Βの双方で、蛍光管 33の発光波形と液晶の応答 波形との位相の関係が一致している (ライン群 Α用の光源発光波形とライン Β用の光 源発光波形との時間的なずれが、ライン群 Α·Β間での、液晶応答波形のずれと一致 している)。  [0281] In this configuration, the phase relationship between the emission waveform of the fluorescent tube 33 and the response waveform of the liquid crystal is the same in both the line groups Α and ((the light source emission waveform for the line group Α and the line The time lag from the light source emission waveform for Β coincides with the lag in the liquid crystal response waveform between the line groups Α and Β).
[0282] 従って、この構成では、ライン位置によって、透過波形の ONとなる時間(高輝度と なる時間)の割合が異なることを防止できる。従って、ライン間で平均輝度に差がでな [0282] Therefore, with this configuration, it is possible to prevent the ratio of the time during which the transmission waveform is turned on (the time during which the luminance is high) from being different depending on the line position. Therefore, there is no difference in average brightness between lines.
V、ので、横縞現象の発生を回避することが可能となって 、る。 V, so it is possible to avoid the occurrence of the horizontal stripe phenomenon.
[0283] なお、上記では、各蛍光管 33に対応するゲートライン群が ONとなったとき (このゲ 一トライン群のスキャンが開始されるとき)に、その蛍光管 33の駆動を開始するように 制御する、としている。 In the above description, when the gate line group corresponding to each fluorescent tube 33 is turned on (when scanning of this gate line group is started), the driving of the fluorescent tube 33 is started. To control.
[0284] し力しながら、『「各蛍光管 33に対応するゲートライン群が ONとなったときにおける 、その蛍光管 33の波形の状態」を、全蛍光管 33 (全ゲートライン群)で同一とするよう に制御する』ことでも、蛍光管 33の発光波形と液晶の応答波形との位相の関係を、 全ゲートライン群で一致させられる。従って、このような制御によっても、蛍光管 33の 発光とゲートライン群の ONタイミングとを同期させて横縞を防ぐことが可能である。  [0284] However, “The state of the waveform of the fluorescent tube 33 when the gate line group corresponding to each fluorescent tube 33 is turned ON” is expressed by the total fluorescent tube 33 (all gate line group). By controlling so that they are the same ”, the phase relationship between the light emission waveform of the fluorescent tube 33 and the response waveform of the liquid crystal can be matched in all the gate line groups. Therefore, even by such control, it is possible to prevent the horizontal stripes by synchronizing the light emission of the fluorescent tube 33 and the ON timing of the gate line group.
[0285] また、本実施形態では、光源の調光方式として、 PWM調光方式を用いるとして 、 る。し力しながら、これに限らず、 PWM調光方式と電流調光方式とを併用するように してもよい。図 41は、この場合における本表示装置の構成を示すブロック図である。 この構成は、図 22に示した構成において、新たに電流調光制御回路 51を備えたも のである。  [0285] In the present embodiment, the PWM dimming method is used as the dimming method of the light source. However, the present invention is not limited to this, and the PWM dimming method and the current dimming method may be used in combination. FIG. 41 is a block diagram showing a configuration of the display device in this case. In this configuration, a current dimming control circuit 51 is newly provided in the configuration shown in FIG.
[0286] 上記の構成では、制御部 15が、蛍光管 33から出力すべき光量を示す調光率信号 を生成し、 PWM調光制御回路 31および電流調光制御回路 51に出力する。また、 調光制御回路 31 · 51が、この調光率信号に応じて、ランプ電流の ONZOFFに関す る周期を示す信号 (電流調光制御信号、 PWM調光制御信号)を生成し、光源駆動 回路 32に伝達する。そして、光源駆動回路 32が、伝達された信号に応じてランプ電 流 (パルス電流)を生成し、全蛍光管 33に出力するように設計されている。 [0286] In the above configuration, the dimming rate signal indicating the amount of light that should be output from the fluorescent tube 33 by the control unit 15 Is output to the PWM dimming control circuit 31 and the current dimming control circuit 51. Also, the dimming control circuits 31 and 51 generate signals (current dimming control signal, PWM dimming control signal) indicating the period related to ONZOFF of the lamp current according to the dimming rate signal, and drive the light source Communicate to circuit 32. The light source drive circuit 32 is designed to generate a lamp current (pulse current) according to the transmitted signal and output it to all the fluorescent tubes 33.
[0287] 図 42は、この構成における電流調光制御信号、 PWM調光制御信号、ランプ電流 および発光波形の例を示すグラフである。この図に示すように、この構成では、制御 部 15が、調光制御回路 31 · 51を制御して、一定の電流調光制御信号 (一定の発光 電力を与える信号)を、 PWM調光制御信号とともに出力するようになっている。  FIG. 42 is a graph showing examples of the current dimming control signal, the PWM dimming control signal, the lamp current, and the light emission waveform in this configuration. As shown in this figure, in this configuration, the control unit 15 controls the dimming control circuits 31 and 51 to generate a constant current dimming control signal (a signal that gives constant light emission power) and PWM dimming control. The signal is output together with the signal.
[0288] これにより、蛍光管 33のランプ電流波形は、電流調光制御信号に応じた一定の振 幅に、 PWM調光制御信号に応じた振幅が重なる波形となる。従って、蛍光管 33の 発光波形は、図 42に示すように、一定の電流調光制御信号に応じた DC成分を有す る波形となる。  As a result, the lamp current waveform of the fluorescent tube 33 becomes a waveform in which the amplitude according to the PWM dimming control signal overlaps with the constant amplitude according to the current dimming control signal. Therefore, the light emission waveform of the fluorescent tube 33 is a waveform having a DC component corresponding to a constant current dimming control signal as shown in FIG.
[0289] このように、 PWM調光方式と電流調光方式とを併用することで、発光波形の DC成 分を容易に高められる。これにより、 1周期内(2フレーム内)での光源の発光量にお ける時間変動量を小さくできる。また、ライン間での発光量の差も低減できる。従って 、調光信号の周波数を上げなくとも、フリツ力や横縞などの干渉現象を目立たなくす ることが可能となる。  [0289] Thus, the DC component of the light emission waveform can be easily increased by using the PWM dimming method and the current dimming method together. This makes it possible to reduce the amount of time fluctuation in the light emission amount of the light source within one cycle (within 2 frames). Further, the difference in light emission amount between the lines can be reduced. Therefore, it is possible to make the interference phenomenon such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
[0290] また、液晶パネル 21として反射型の液晶表示素子を用い、本表示装置をフロントラ イト型の反射型液晶表示装置として構成する場合、光源の光を外光に合わせて制御 することが好ましい。  [0290] Further, when a reflective liquid crystal display element is used as the liquid crystal panel 21 and the display device is configured as a front light type reflective liquid crystal display device, the light from the light source can be controlled in accordance with the external light. preferable.
[0291] 図 43は、このような制御を行う本表示装置の構成を示す図である。この図に示すよ うに、この構成では、液晶パネル 21は、光源となる LED63の光を導光板 41で面状 光とし、これを前面 (ユーザー側の面)から受ける。そして、この面状光を内部の反射 板により反射することによって、ユーザーに画像を表示する。  FIG. 43 is a diagram showing a configuration of the present display device that performs such control. As shown in this figure, in this configuration, the liquid crystal panel 21 uses the light guide plate 41 to convert the light of the LED 63 serving as the light source into a planar light, and receives this from the front surface (user side surface). Then, the planar light is reflected by an internal reflecting plate to display an image to the user.
[0292] また、この構成は、 LED63の輝度を制御するための、光源調光制御回路 62を備え ている。この光源調光制御回路 62は、外光の輝度波形を検知し、液晶パネル 21に 照射される光の DC成分を大きくするように、 LED63の輝度を調整するものである。 [0293] すなわち、図 44 (a)に示すような輝度波形を有する外光のある場合、光源調光制 御回路 62は、図 44 (b)に示すように、 LED63の輝度波形 (発光波形)を、外光輝度 波形と同周波数で、逆位相となるように制御する。このため、液晶パネル 21に対し、 図 44 (c)に示すような、 DC成分の大きい光を照射することが可能となる。 [0292] Also, this configuration includes a light source dimming control circuit 62 for controlling the luminance of the LED 63. This light source dimming control circuit 62 detects the luminance waveform of the external light and adjusts the luminance of the LED 63 so as to increase the DC component of the light irradiated on the liquid crystal panel 21. That is, when there is external light having a luminance waveform as shown in FIG. 44 (a), the light source dimming control circuit 62 performs the luminance waveform (light emission waveform) of the LED 63 as shown in FIG. 44 (b). ) Is controlled to have the same frequency as the external light luminance waveform and in the opposite phase. Therefore, the liquid crystal panel 21 can be irradiated with light having a large DC component as shown in FIG. 44 (c).
[0294] これにより、この構成では、 1周期内(2フレーム内)での光源の発光量における時 間変動量を小さくできる。また、ライン間での発光量の差も低減できる。従って、調光 信号の周波数を上げなくとも、フリツ力や横縞などの干渉現象を目立たなくすることが 可能となる。  [0294] Thus, in this configuration, the amount of time variation in the light emission amount of the light source within one cycle (within two frames) can be reduced. Further, the difference in light emission amount between the lines can be reduced. Therefore, it is possible to make interference phenomena such as flickering force and horizontal stripes inconspicuous without increasing the frequency of the dimming signal.
[0295] なお、液晶パネル 21として、図 45に示すようなバックライト型の半透過型の液晶表 示素子を用いる場合でも、光源調光制御回路 62を用いた制御を行うことは可能であ る。半透過型の表示装置は、屋内などの比較的に暗い照明下では、ノ ックライト光を 利用して透過表示を行う(透過モード)一方、屋外などの比較的に明るい照明下では 、照明光を利用して反射表示を行う(反射モード)ものである。これにより、周囲の明る さに拘らず、コントラスト比の高い表示を実現できる。  [0295] Even when a backlight type transflective liquid crystal display element as shown in Fig. 45 is used as the liquid crystal panel 21, control using the light source dimming control circuit 62 is possible. The The transflective display device performs transmissive display using knocklight light under a relatively dark illumination such as indoors (transmission mode), whereas it emits the illumination light under a relatively bright illumination such as outdoors. It is used to perform reflection display (reflection mode). Thereby, a display with a high contrast ratio can be realized regardless of the brightness of the surroundings.
[0296] 上記の構成でも、光源調光制御回路 62は、 LED63の輝度波形を、外光輝度波形 と位相の 180° 異なるように制御する。これにより、液晶パネル 21に対し、図 44 (c) に示すような、同周波数で逆位相の光の混合された、 DC成分の大きい光を照射す ることが可能となる。  [0296] Even in the above configuration, the light source dimming control circuit 62 controls the luminance waveform of the LED 63 so that the phase of the LED 63 differs from that of the external light luminance waveform by 180 °. As a result, it is possible to irradiate the liquid crystal panel 21 with light having a large DC component, as shown in FIG. 44 (c), in which light of the same frequency and opposite phase is mixed.
[0297] また、本実施形態では、本表示装置の光源として、蛍光管や LEDを用いるとして ヽ る。し力しながら、これに限らず、本表示装置の光源については、これらにカ卩えて、 E L (Electro luminescence)、 FED (Field Emission Display)のいずれ力力ら構成しても よい。また、光源を、蛍光管、 LED、 ELおよび FEDを組み合わせたもの力も構成し てもよい。また、図 34〜図 38等では、光源を棒状に表現している。し力しながら、光 源の形状としては、丸型形状でも U字型形状でもよい。すなわち、本発明では、光源 の形状には特にとらわれな 、。  [0297] In the present embodiment, it is assumed that a fluorescent tube or an LED is used as the light source of the display device. However, the present invention is not limited to this, and the light source of the present display device may be configured with either EL (Electro luminescence) or FED (Field Emission Display). The light source may also be configured with a combination of fluorescent tubes, LEDs, EL and FED. Further, in FIGS. 34 to 38, etc., the light source is expressed in a bar shape. However, the shape of the light source may be round or U-shaped. That is, in the present invention, the shape of the light source is not particularly limited.
[0298] また、サブフレーム表示と PWM調光とを組み合わせる場合、本表示装置の表示部 14については、液晶表示素子に限らず、非自発光型の表示素子 (光源を必要とする 素子)であれば、どのような表示素子を用いてもょ 、。 [0299] また、本実施形態では、制御部 15が、液晶パネル 21に表示信号を送るとともに、 P WM調光の制御も行うとしている。し力しながら、これに限らず、制御部 15とは別に、 PWM調光を制御する部材 (PWM調光制御部)を設けてもよい。従って、本表示装 置を、 1フレームを、 m個(m; 2以上の整数)のサブフレームに分割して画像表示を行 う表示装置であって、表示信号の電圧に基づいた輝度の画像を表示する、液晶表示 素子力 なる表示画面を備えた表示部と、 1フレームに表示部から出力される輝度の 総和をフレームの分割によって変えないように、第 1〜第 mサブフレームの表示信号 である第 1〜第 m表示信号を生成して表示部に出力する制御部とを備えており、さら に、表示部の光源を PWM調光方式で調光する PWM調光制御部を備えて ヽる構成 である、と表現することちできる。 [0298] When subframe display and PWM dimming are combined, the display unit 14 of the present display device is not limited to a liquid crystal display element, but is a non-self-luminous display element (an element that requires a light source). Any display element can be used. [0299] Also, in the present embodiment, the control unit 15 sends a display signal to the liquid crystal panel 21 and also controls PWM dimming. However, the present invention is not limited to this, and a member for controlling PWM dimming (PWM dimming control unit) may be provided separately from the control unit 15. Therefore, this display device is a display device that displays an image by dividing one frame into m (m; an integer greater than or equal to 2) sub-frames, and displays an image with luminance based on the voltage of the display signal. A display unit with a display screen that displays the power of the device and a display signal for the 1st to mth sub-frames so that the total luminance output from the display unit per frame is not changed by dividing the frame. And a PWM dimming control unit that dimmes the light source of the display unit using the PWM dimming method. It can be expressed as a structure that speaks.
[0300] また、本表示装置を液晶テレビとする場合、チューナ部 17として、テレビ放送信号 のチャネルを選択し、選択されたチャネルのテレビ画像信号を、フレームメモリ 11を 介して制御部 15に伝達するものを用いてもよい。この構成では、制御部 15が、この テレビ画像信号に基づいて表示信号を生成することとなる。また、チューナ部 17とし て、テレビ放送信号のチャネルを選択し、選択されたチャネルのテレビ画像信号を、 各種映像処理を行う回路(図示せず)を介して制御部 15に伝達するものを用 、てもよ い。  [0300] When the display device is a liquid crystal television, the tuner unit 17 selects a channel of a television broadcast signal and transmits the television image signal of the selected channel to the control unit 15 via the frame memory 11. You may use what you do. In this configuration, the control unit 15 generates a display signal based on the television image signal. Further, the tuner unit 17 is used to select a channel of a television broadcast signal and transmit a television image signal of the selected channel to the control unit 15 via a circuit (not shown) that performs various video processing. It's okay.
[0301] また、本発明の表示装置を、 1フレームを、第 1および第 2サブフレーム力 なる 2つ のサブフレームに分割して画像表示を行う表示装置において、入力された表示信号 の輝度階調に基づいた輝度の画像を表示する表示部と、 1フレームに表示部から出 力される輝度の総和をフレームの分割によって変えないように、第 1および第 2サブフ レームの表示信号である第 1および第 2表示信号を生成し、表示部に出力する制御 部とを備えており、この制御部が、低明度の画像を表示する場合に、第 1表示信号の 輝度階調を調整する一方、第 2表示信号の輝度階調を最小または第 1所定値 (例え ば最大階調の 0. 02%)より小さい値とし、高明度の画像を表示する場合に、第 1表 示信号の輝度階調を最大または第 2所定値 (例えば最大階調の 80%)より大きい値 とする一方、第 2表示信号の輝度階調を調整し、第 1サブフレームの期間と第 2サブ フレームの期間との比を、 1 : nあるいは n : 1 (nは 1より大きい実数)に設定するとともに 、表示部の光源を PWM調光方式で調光する構成である、と表現することもできる。 [0301] In addition, in the display device that displays an image by dividing one frame into two subframes having the first and second subframe forces, the display device of the present invention has a luminance scale of an input display signal. A display unit that displays an image with luminance based on the key, and a display signal that is a display signal of the first and second subframes so that the total luminance output from the display unit in one frame is not changed by dividing the frame. And a control unit that generates and outputs the first and second display signals to the display unit. When the control unit displays a low brightness image, the control unit adjusts the luminance gradation of the first display signal. When the brightness gradation of the second display signal is set to a minimum or smaller value than the first predetermined value (e.g., 0.02% of the maximum gradation) and a high brightness image is displayed, the brightness of the first display signal is The gradation is greater than the maximum or second predetermined value (for example, 80% of the maximum gradation) On the other hand, the luminance gradation of the second display signal is adjusted, and the ratio between the period of the first subframe and the period of the second subframe is 1 : n or n: 1 (n is a real number greater than 1) And set to It can also be expressed that the light source of the display unit is dimmed by the PWM dimming method.
[0302] また、図 39に示した表示装置を、 1フレームを、 m個(m; 2以上の整数)のサブフレ ームに分割して画像表示を行う表示装置であって、表示信号の電圧に基づいた輝 度の画像を表示する、液晶表示素子力 なる表示画面を備えた表示部と、 1フレーム に表示部から出力される輝度の総和をフレームの分割によって変えないように、第 1 〜第 mサブフレームの表示信号である第 1〜第 m表示信号を生成して表示部に出力 する制御部とを備えており、この制御部が、表示部の光源を PWM調光方式で調光 するようになっており、上記の表示部が、複数の直下型の光源を並べてなる光源群を 有しており、各光源が、自身に近い複数のゲートライン力 なるゲートライン群に光を 照射するように設計されており、上記の制御部は、光源の発光波形の周波数をフレ ームの周波数の n倍とするとともに、「各光源に割り当てられたゲートライン群に応じた 液晶の応答波形力 SONとなっているときにおける、その光源の発光波形の状態」を、 全光源で同一とするように、 PWM調光を行う構成である、と表現することもできる。 [0302] The display device shown in FIG. 39 is a display device that displays an image by dividing one frame into m (m; an integer greater than or equal to 2) subframes. A display unit with a display screen that has the power of a liquid crystal display element that displays images based on the brightness of the display, and the first to the second so that the total luminance output from the display unit per frame is not changed by dividing the frame. A control unit that generates the first to m-th display signals that are display signals of the m-th subframe and outputs them to the display unit. This control unit dims the light source of the display unit by the PWM dimming method. The above display unit has a light source group in which a plurality of direct light sources are arranged, and each light source irradiates light to a gate line group having a plurality of gate line forces close to itself. The above control unit is designed so that the frequency of the light emission waveform of the light source And the state of the emission waveform of the light source when the response waveform force SON of the liquid crystal corresponding to the gate line group assigned to each light source is SON. It can also be expressed as a configuration that performs PWM dimming so that the light source is the same.
[0303] また、上記では、本表示装置における全ての処理を、制御部 15の制御により行うと している。し力しながら、これに限らず、これらの処理を行うためのプログラムを記録媒 体に記録し、このプログラムを読み出すことのできる情報処理装置を、制御部 15に代 えて用いるようにしてもよい。 [0303] In the above description, all the processes in the display device are performed under the control of the control unit 15. However, the present invention is not limited thereto, and a program for performing these processes may be recorded on a recording medium, and an information processing apparatus that can read the program may be used instead of the control unit 15. .
[0304] この構成では、情報処理装置の演算装置 (CPUや MPU)が、記録媒体に記録さ れているプログラムを読み出して処理を実行する。従って、このプログラム自体が処 理を実現するといえる。 [0304] In this configuration, the arithmetic unit (CPU or MPU) of the information processing apparatus reads the program recorded on the recording medium and executes the process. Therefore, it can be said that this program itself realizes processing.
[0305] ここで、上記の情報処理装置としては、一般的なコンピューター(ワークステーション やパソコン)の他に、コンピューターに装着される、機能拡張ボードや機能拡張ュ-ッ トを用いることができる。  [0305] Here, as the above information processing apparatus, a function expansion board or a function expansion boot mounted on a computer can be used in addition to a general computer (workstation or personal computer).
[0306] また、上記のプログラムとは、処理を実現するソフトウェアのプログラムコード (実行 形式プログラム、中間コードプログラム、ソースプログラム等)のことである。このプログ ラムは、単体で使用されるものでも、他のプログラム (OS等)と組み合わせて用いられ るものでもよい。また、このプログラムは、記録媒体力 読み出された後、装置内のメ モリ (RAM等)にいつたん記憶され、その後再び読み出されて実行されるようなもの でもよい。 [0306] Also, the above-mentioned program is a program code (execution format program, intermediate code program, source program, etc.) of software that realizes processing. This program may be used alone or in combination with other programs (such as OS). Also, this program is stored in memory (RAM etc.) in the device after it has been read, and then read and executed again. But you can.
[0307] また、プログラムを記録させる記録媒体は、情報処理装置と容易に分離できるもの でもよいし、装置に固定 (装着)されるものでもよい。さらに、外部記憶機器として装置 に接続するものでもよ ヽ。  [0307] Further, the recording medium on which the program is recorded may be one that can be easily separated from the information processing apparatus, or one that is fixed (attached) to the apparatus. It can also be connected to the device as an external storage device.
[0308] このような記録媒体としては、ビデオテープやカセットテープ等の磁気テープ、フロ ッピー(登録商標)ディスクやハードディスク等の磁気ディスク、 CD、 MO、 MD、 DV D等の光ディスク (光磁気ディスク)、 ICカード、光カード等のメモリカード、マスク RO M、 EPROM、 EEPROM、フラッシュ ROM等の半導体メモリなどを適用できる。  [0308] Such recording media include magnetic tapes such as video tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks and hard disks, optical disks such as CD, MO, MD, and DV D (magneto-optical disks). ), Memory cards such as IC cards and optical cards, semiconductor memories such as mask ROM, EPROM, EEPROM, and flash ROM.
[0309] また、ネットワーク (イントラネット'インターネット等)を介して情報処理装置と接続さ れている記録媒体を用いてもよい。この場合、情報処理装置は、ネットワークを介する ダウンロードによりプログラムを取得する。すなわち、上記のプログラムを、ネットワーク [0309] Further, a recording medium connected to the information processing apparatus via a network (intranet 'Internet or the like) may be used. In this case, the information processing apparatus acquires the program by downloading via the network. That is, the above program
(有線回線あるいは無線回線に接続されたもの)等の伝送媒体 (流動的にプログラム を保持する媒体)を介して取得するようにしてもよい。なお、ダウンロードを行うための プログラムは、装置内(あるいは送信側装置'受信側装置内)にあらかじめ記憶されて 、ることが好まし!/、。 You may make it acquire via transmission media (medium which holds a program fluidly), such as (a thing connected to a wired line or a wireless line). It is preferable that the program for downloading is stored in advance in the device (or in the transmitting device 'receiving device)! /.
[0310] なお、また、液晶応答波形は、ゲートラインの ONタイミングで出力されるものである 。液晶画素に書き込まれ、次の ONタイミングまで液晶画素の電圧が保持され形成さ れるものであるともいえる。また、液晶表示装置において 1フレームに黒を挿入するこ とで擬似インパルスモードを実現する黒色駆動方式と光源の PWM調光方式を組み 合わせたときに生じる干渉縞の改善方法については、特許文献 6で述べられている。 この文献の技術では、 1フレーム期間を黒色表示期間と画像表示期間とに分けてお り、この黒色表示期間を 1フレームに対してある比率条件で液晶を駆動する方法や、 ある PWM調光周波数条件でのノ ックライトを駆動する方法または複数のノ ックライト の PWM調光信号の位相をずらすと ヽつた方法で改善を図って ヽる。  [0310] The liquid crystal response waveform is output at the ON timing of the gate line. It can be said that the voltage written in the liquid crystal pixel is held and formed until the next ON timing. Also, Patent Document 6 describes a method for improving interference fringes that occurs when a black drive method that realizes a pseudo impulse mode by inserting black in one frame in a liquid crystal display device and a PWM dimming method of a light source. It is stated in. In the technique of this document, one frame period is divided into a black display period and an image display period, and the method of driving the liquid crystal under a certain ratio condition with respect to one black display period or a certain PWM dimming frequency. Improvements can be made by driving the knocklight under certain conditions, or by shifting the phase of the PWM dimming signal of multiple knocklights.
[0311] 一方、液晶の駆動方法で擬似インパルスモードを実現する手法として、特許文献 3 のように 1フレームを複数のサブフレーム期間に分割し、高輝度と低輝度のサブフレ ームを持ち、すべてのサブフレームの時間積分によって階調を表現する方式(時分 割階調駆動方式)がある。この方式の場合、黒を常に挿入する方法に比べて画面の 表示輝度が落ちるのを抑制しつつエッジボケ改善などの動画性能を改善することが できるという利点があるが、黒挿入する方式と同様に PWM調光方式の光源と組み合 わせると干渉現象が発生する。 [0311] On the other hand, as a technique for realizing the pseudo impulse mode by the liquid crystal drive method, as shown in Patent Document 3, one frame is divided into a plurality of subframe periods, and each has high and low luminance subframes. There is a method (time-division gradation drive method) that expresses gradation by time integration of subframes. In this method, compared to the method of always inserting black, the screen Although it has the advantage of improving video performance such as edge blurring while suppressing the drop in display brightness, it causes interference when combined with a PWM dimming light source in the same way as black insertion. To do.
[0312] さらに、黒色駆動方式による擬似インパルスモードの場合は、完全に光源が遮断さ れるため黒挿入時間を変化させると全体の絶対輝度は変わっても階調が変化するこ とはないが、時分割階調駆動方式の場合は、各サブフレームの時間を変化させると 輝度および階調も変化してしまうという制約がある。また、低輝度のサブフレーム期間 にも光源の光が液晶の応答波形で変調されて透過しており、挿入期間に光源の消 灯している期間を同期するなどといった制御タイミングを調整して改善する手法も採 用できない。 [0312] Furthermore, in the pseudo impulse mode using the black drive method, the light source is completely shut off, so changing the black insertion time does not change the gradation even if the overall absolute brightness changes. In the case of the time-division gradation driving method, there is a restriction that the luminance and gradation change when the time of each subframe is changed. In addition, the light source light is modulated with the response waveform of the liquid crystal and transmitted even in the low-luminance subframe period, and the control timing is improved by synchronizing the light-off period of the light source during the insertion period. This method cannot be used.
[0313] このようなこと力ら、本発明の目的は、主に 1フレーム期間を 2つ以上のサブフレー ム期間に分割して、各サブフレームの時間積分によって階調を表現する表示機構を 備えた時分割階調による擬似インパルス駆動方法と、 PWM調光方式の光源を組み 合わせたときに生じるフリツ力などの干渉現象を階調表現や画面表示を損なわずに 改善することにあるとも 、える。  [0313] For these reasons, the object of the present invention is to provide a display mechanism that mainly divides one frame period into two or more subframe periods and expresses gradation by time integration of each subframe. It is also possible to improve the interference phenomenon such as flick force that occurs when combining the pseudo impulse drive method with time division gradation and the light source of PWM dimming method without impairing gradation expression and screen display. .
[0314] また、本発明を、以下の第 1〜第 23表示装置として表現することもできる。すなわち 、第 1表示装置は、 1フレーム期間を 2つ以上のサブフレーム期間に分割して、各サ ブフレームの時間積分によって階調を表現する表示機構を備えた駆動方法と、 PW M調光方式の光源とを組み合わせたときに生じる干渉現象を改善するように、 PWM 調光信号を制御する手段を備える構成である。  [0314] The present invention can also be expressed as the following first to twenty-third display devices. That is, the first display device divides one frame period into two or more subframe periods, and a driving method including a display mechanism that expresses gradation by time integration of each subframe, and PWM dimming This configuration includes means for controlling the PWM dimming signal so as to improve the interference phenomenon that occurs when combined with a light source of the type.
[0315] また、第 2表示装置は、第 1表示装置において、干渉現象を改善するために、光源 の発光波形が時間的かつ空間的に補償されるように PWM調光信号を制御する構 成である。  [0315] In addition, the second display device is configured to control the PWM dimming signal so that the light emission waveform of the light source is temporally and spatially compensated in order to improve the interference phenomenon in the first display device. It is.
[0316] また、第 3表示装置は、第 1表示装置において、干渉現象を改善するために、光源 の発光波形になるべく DC成分が多く含まれるように、 PWM調光信号を制御する構 成である。  [0316] In addition, the third display device is configured to control the PWM dimming signal so as to include as much DC components as possible in the light emission waveform of the light source in order to improve the interference phenomenon in the first display device. is there.
[0317] また、第 4表示装置は、第 1表示装置において、干渉現象を改善するために、光源 の発光波形が時間的かつ空間的に補償されるように PWM調光信号を制御するとと もに、干渉現象を改善するために、光源の発光波形になるべく DC成分が多く含まれ るように、 PWM調光信号を制御する構成である。 [0317] Also, the fourth display device controls the PWM dimming signal so that the light emission waveform of the light source is temporally and spatially compensated in the first display device in order to improve the interference phenomenon. Furthermore, in order to improve the interference phenomenon, the PWM dimming signal is controlled so that as much DC component as possible is included in the light emission waveform of the light source.
[0318] また、第 5表示装置は、第 2表示装置において、 PWM調光の制御信号をフレーム 周波数の n. 5倍で駆動する構成である。 [0318] The fifth display device is configured to drive the PWM dimming control signal at n. 5 times the frame frequency in the second display device.
[0319] また、第 6表示装置は、第 5表示装置において、黒挿入率 50%では、 450Hz以上 の PWM調光の周波数で駆動する構成である。 [0319] The sixth display device is configured to be driven at a PWM dimming frequency of 450 Hz or more in the fifth display device at a black insertion rate of 50%.
[0320] また、第 7表示装置は、第 5表示装置において、輝度が一定になるように補償調光 パルスを発生する制御手段を備える構成である。  [0320] Further, the seventh display device is configured to include control means for generating a compensated dimming pulse so that the luminance is constant in the fifth display device.
[0321] また、第 8表示装置は、第 2表示装置において、 PWM調光の制御信号をフレーム 周波数の n倍で駆動しフレーム毎に位相を反転する構成である。  [0321] Further, the eighth display device is configured to drive the PWM dimming control signal at n times the frame frequency and invert the phase for each frame in the second display device.
[0322] また、第 9表示装置は、第 8表示装置において、輝度が一定になるように補償する 調光パルスを発生する制御手段を備える構成である。 [0322] Further, the ninth display device is configured to include control means for generating a dimming pulse for compensating for the luminance to be constant in the eighth display device.
[0323] また、第 10表示装置は、第 3表示装置において、第 1の光源と第 2の光源を備え、 それぞれの PWM調光の位相が 180° 異なるように制御する手段を備える構成であ る。 [0323] Further, the tenth display device includes the first light source and the second light source in the third display device, and includes means for controlling each of the PWM dimming phases to be 180 ° different from each other. The
[0324] また、第 11表示装置は、第 3表示装置において、第 1の光源と第 2の光源と第 3の 光源を備え、それぞれの PWM調光の位相が 120° 異なるように制御する手段を備 える構成である。  [0324] Also, the eleventh display device includes the first light source, the second light source, and the third light source in the third display device, and controls each of the PWM dimming phases to be different by 120 °. It is the composition which is equipped with.
[0325] 第 12表示装置は、第 3表示装置において、第 1〜第 nの光源を備え、それぞれの P [0325] The twelfth display device includes the first to nth light sources in the third display device.
WM調光の位相が(360° Zn)異なるように制御する手段を備える構成である。 This is a configuration comprising means for controlling the WM dimming phase to be different by (360 ° Zn).
[0326] また、第 13表示装置は、第 10〜第 12表示装置において、光源は直下型のノ ック ライトで、空間的に交互に配置されている構成である。 [0326] Further, the thirteenth display device has a configuration in which the light source is a direct type knock light in the tenth to twelfth display devices and is spatially arranged alternately.
[0327] また、第 14表示装置は、第 10〜第 12表示装置において、光源はサイド型のノック ライトで、それぞれ両端に逆位相の光源が配置されて 、る構成である。 [0327] Further, the fourteenth display device in the tenth to twelfth display devices has a configuration in which the light source is a side-type knock light, and light sources having opposite phases are arranged at both ends, respectively.
[0328] また、第 15表示装置は、第 10〜第 12表示装置において、光源はサイド型のノ ック ライトで、片端に逆位相の光源が配置されて 、る構成である。 [0328] Further, the fifteenth display device is a configuration in which in the tenth to twelfth display devices, the light source is a side-type knock light, and a light source having an opposite phase is arranged at one end.
[0329] また、第 16表示装置は、第 10〜第 12表示装置において、光源はフロントライトで、 それぞれ両端に逆位相の光源が配置されている構成である。 [0330] また、第 17表示装置は、第 10〜第 12表示装置において、光源はフロントライトで、 片端に逆位相の光源が片端に 、つしよに配置されて 、る構成である。 [0329] In addition, the sixteenth display device in the tenth to twelfth display devices has a configuration in which the light source is a front light and light sources having opposite phases are arranged at both ends. [0330] In addition, the seventeenth display device is a configuration in which the light source is a front light, and a light source having an opposite phase is arranged at one end along the other end in the tenth to twelfth display devices.
[0331] また、第 18表示装置は、第 5〜第 8表示装置のいずれかと、第 13〜第 16表示装置 の!、ずれかとを組み合わせた構成である。 [0331] Further, the eighteenth display device is configured by combining any one of the fifth to eighth display devices with! Or the deviation of the thirteenth to sixteenth display devices.
[0332] また、第 19表示装置は、干渉現象を改善するために、液晶パネルのラインスキャン 駆動に同期して、複数並行に配置した光源をスキャン制御する構成である。 In addition, the nineteenth display device is configured to scan-control a plurality of light sources arranged in parallel in synchronization with the line scan drive of the liquid crystal panel in order to improve the interference phenomenon.
[0333] また、第 20表示装置は、 PWM調光方式と電流調光方式を備え、電流調光方式に より光源の発光波形の DC成分をあらかじめ増やすことで、干渉現象を抑制する構成 である。 [0333] Further, the twentieth display device has a PWM dimming method and a current dimming method, and is configured to suppress the interference phenomenon by increasing the DC component of the light emission waveform of the light source in advance by the current dimming method. .
[0334] また、第 21表示装置は、第 2表示装置において、外光を検出するセンサー部と検 出した輝度成分と逆位相〖こなるように光源の PWM調光を制御する構成である。  [0334] In addition, the 21st display device is configured to control the PWM dimming of the light source in the second display device so that the sensor unit for detecting external light and the detected luminance component have an opposite phase.
[0335] 第 22表示装置は、第 21表示装置において、反射型液晶において、外光と逆位相 になるようにフロントライト光源の PWM調光を制御する構成である。また、第 21表示 装置において、半透過型液晶において、外光と逆位相になるようにバックライト光源 の PWM調光を制御する構成である。  [0335] The twenty-second display device is configured to control PWM dimming of the front light source in the twenty-first display device so that the reflective liquid crystal has an opposite phase to the external light. In the twenty-first display device, the PWM light control of the backlight light source is controlled so that the transflective liquid crystal has an opposite phase to the external light.
[0336] また、第 23表示装置は、第 1〜第 22表示装置のいずれかにおいて、光源が蛍光 灯、 LED、 EL、 FEDのいずれかまたは組み合わせたものである構成である。  [0336] Further, the twenty-third display device has a configuration in any one of the first to twenty-second display devices, in which the light source is any one or a combination of a fluorescent lamp, LED, EL, and FED.
産業上の利用の可能性  Industrial applicability
[0337] 本発明は、白浮き現象の生じる表示画面を備えた装置に対し、好適に使用できるも のである。 [0337] The present invention can be suitably used for an apparatus having a display screen in which whitening occurs.

Claims

請求の範囲 The scope of the claims
[1] 1フレームを、 m個(m; 2以上の整数)のサブフレームに分割して画像表示を行う表 示装置であって、  [1] A display device that displays an image by dividing one frame into m (m; an integer of 2 or more) subframes,
表示信号の電圧に基づ!、た輝度の画像を表示する、液晶表示素子からなる表示 画面を備えた表示部と、  Based on the voltage of the display signal! A display unit having a display screen made up of a liquid crystal display element for displaying an image with high brightness; and
1フレームに表示部から出力される輝度の総和をフレームの分割によって変えない ように、第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信号を生成して表 示部に出力する制御部とを備えており、  Generates 1st to mth display signals, which are display signals of the 1st to mth sub-frames, and outputs them to the display unit so that the total luminance output from the display unit in 1 frame is not changed by dividing the frame. And a control unit to
この制御部が、表示部の光源を PWM調光方式で調光することを特徴とする表示 装置。  A display device in which the control unit dimmes the light source of the display unit by a PWM dimming method.
[2] 上記の制御部が、光源の発光波形の周波数を、フレームの周波数の n. 5倍であつ て (nは整数)、 450Hz以上の値とするように、 PWM調光を行うことを特徴とする請求 項 1に記載の表示装置。  [2] The above control unit performs PWM dimming so that the frequency of the light emission waveform of the light source is n.5 times the frequency of the frame (n is an integer) and is a value of 450 Hz or more. The display device according to claim 1, wherein the display device is characterized.
[3] 上記の制御部が、光源の発光波形を、ともにフレームの周波数の n. 5倍の周波数 を有し、互いに逆位相でパルス幅の異なる主発光ノ ルスと輝度補償パルスとを組み 合わせた波形とするように、 PWM調光を行うことを特徴とする請求項 1に記載の表示 装置。  [3] The above control unit combines the light emission waveform of the light source with the main light emission pulse and the luminance compensation pulse, both of which have a frequency n. 5 times the frequency of the frame and have opposite pulse phases and different pulse widths. 2. The display device according to claim 1, wherein PWM dimming is performed so as to obtain a waveform.
[4] 上記の制御部が、  [4] The above control unit
光源の発光波形を、フレーム周波数の n倍の周波数を有するとともに、フレームごと に位相を反転する主発光パルスと、主発光ノ ルスと同じ周波数で、このパルスと逆位 相の輝度補償パルスとを組み合わせた波形とするとともに、  The light emission waveform of the light source has a frequency that is n times the frame frequency, and a main light emission pulse that inverts the phase for each frame, and a luminance compensation pulse that has the same frequency as that of the main light emission pulse and an inverted phase luminance compensation pulse. As a combined waveform,
光源の発光波形に対し、  For the emission waveform of the light source,
主発光ノ ルスが連続して OFFとなるときに、輝度補償パルスに代えて、光源を ON とする輝度補償加パルスを挿入する一方、  When the main light emission noise is continuously turned OFF, instead of the luminance compensation pulse, a luminance compensation additional pulse for turning on the light source is inserted,
主発光ノ ルスが連続して ONとなるときに、輝度補償パルスに代えて、光源を OFF とする輝度補償減パルスを挿入するように、 PWM調光を行うことを特徴とする請求項 1に記載の表示装置。  The PWM dimming is performed in such a manner that when the main light emission noise is continuously turned on, a luminance compensation reduced pulse for turning off the light source is inserted instead of the luminance compensation pulse. The display device described.
[5] 上記の表示部が複数の光源を有しており、 上記の制御部力 少なくとも 2つの光源の発光波形が互いに異なる位相となるよう に、 PWM調光を行うことを特徴とする請求項 1〜4のいずれかに記載の表示装置。 [5] The display unit has a plurality of light sources, 5. The display device according to claim 1, wherein PWM dimming is performed so that the light emission waveforms of at least two light sources have different phases from each other.
[6] 上記の制御部が、各光源を p個(pは 2以上の自然数)のグループにわけ、光源の発 光波形の位相を、グループごとに 360° Zpずつ、ずらすように設計されていることを 特徴とする請求項 5に記載の表示装置。 [6] The above control unit is designed to divide each light source into p groups (p is a natural number of 2 or more) and to shift the phase of the light emission waveform by 360 ° Zp for each group. The display device according to claim 5, wherein:
[7] 上記の光源が、直下型のバックライトであることを特徴とする請求項 5に記載の表示 装置。 7. The display device according to claim 5, wherein the light source is a direct type backlight.
[8] 上記の光源が、サイド型のバックライトであることを特徴とする請求項 5に記載の表 示装置。  [8] The display device according to [5], wherein the light source is a side-type backlight.
[9] 上記の光源が、サイド型のフロントライトであることを特徴とする請求項 5に記載の表 示装置。  [9] The display device according to [5], wherein the light source is a side-type front light.
[10] 上記の表示部が、複数の直下型の光源を並べてなる光源群を有しており、各光源 力 自身に近い複数のゲートライン力 なるゲートライン群に光を照射するように設計 されており、  [10] The display unit described above has a light source group in which a plurality of direct light sources are arranged, and is designed to irradiate light to a gate line group having a plurality of gate line forces close to each light source force itself. And
上記の制御部は、  The above control unit
光源の発光波形の周波数をフレームの周波数の n倍とするとともに、  The frequency of the light emission waveform of the light source is set to n times the frequency of the frame,
各光源に割り当てられたゲートライン群が ONとなったときにおける、その光源の発 光波形の状態を、全光源で同一とするように、 PWM調光を行うことを特徴とする請求 項 1に記載の表示装置。  The PWM dimming is performed such that when the gate line group assigned to each light source is turned ON, the state of the light emission waveform of the light source is the same for all the light sources. The display device described.
[11] 上記制御部は、 [11] The control unit
光源に一定の発光電力を供給した状態で、 PWM調光を行うことを特徴とする請求 項 1に記載の表示装置。  2. The display device according to claim 1, wherein PWM dimming is performed in a state where constant light emission power is supplied to the light source.
[12] 上記表示部がフロントライト型の光源を有する反射型の表示素子であり、 [12] The display unit is a reflective display element having a front light type light source,
表示部に照射される外光の輝度波形を検出する輝度センサーを備え、 上記制御部は、  A luminance sensor for detecting a luminance waveform of external light irradiated on the display unit;
光源の発光波形を、外光の輝度波形と同周波数で逆位相とするように、 PWM調光 を行うことを特徴とする請求項 1に記載の表示装置。  2. The display device according to claim 1, wherein PWM dimming is performed so that the light emission waveform of the light source has the same frequency as that of the luminance waveform of external light and has an opposite phase.
[13] 上記表示部が半透過型の表示素子であり、 表示部に照射される外光の輝度波形を検出する輝度センサーを備え、 上記制御部は、 [13] The display unit is a transflective display element, A luminance sensor for detecting a luminance waveform of external light irradiated on the display unit;
光源の発光波形を、外光の輝度波形と同周波数で逆位相とするように、 PWM調光 を行うことを特徴とする請求項 1に記載の表示装置。  2. The display device according to claim 1, wherein PWM dimming is performed so that the light emission waveform of the light source has the same frequency as that of the luminance waveform of external light and has an opposite phase.
[14] 上記の光源が、蛍光管、 LED、 EL、 FEDの 、ずれかからなることを特徴とする請 求項 1〜13のいずれかに記載の表示装置。 [14] The display device according to any one of claims 1 to 13, wherein the light source includes any one of a fluorescent tube, LED, EL, and FED.
[15] 請求項 1に記載の表示装置と、 [15] The display device according to claim 1,
外部カゝら入力された画像信号を制御部に伝達するための信号入力部とを備え、 表示装置の制御部が、この画像信号に基づいて表示信号を生成するように設計さ れて 、ることを特徴とする液晶モニター。  A signal input unit for transmitting an image signal input from an external cover to the control unit, and the control unit of the display device is designed to generate a display signal based on the image signal. LCD monitor characterized by that.
[16] 請求項 1に記載の表示装置と、 [16] The display device according to claim 1,
テレビ放送信号を受信するチューナ部とを備え、  A tuner unit for receiving TV broadcast signals,
表示装置の制御部が、このテレビ放送信号に基づ!、て表示信号を生成するように設 計されていることを特徴とする液晶テレビジョン受像器。  A liquid crystal television receiver, wherein a control unit of a display device is designed to generate a display signal based on the television broadcast signal.
[17] 1フレームを、 m個(m; 2以上の整数)のサブフレームに分割して画像表示を行う表 示方法であって、 [17] A display method for displaying an image by dividing one frame into m (m; an integer of 2 or more) subframes,
1フレームに表示部から出力される輝度の総和をフレームの分割によって変えない ように、第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信号を生成して液 晶表示素子力 なる表示部に出力する出力工程を含み、  The 1st to mth display signals, which are the display signals of the 1st to mth sub-frames, are generated so that the total luminance output from the display unit in one frame is not changed by dividing the frame. Including an output process for outputting to the display unit,
さらに、表示部の光源を PWM調光方式で調光する調光工程を含んで ヽることを特 徴とする表示方法。  The display method further includes a dimming step of dimming the light source of the display unit by a PWM dimming method.
PCT/JP2006/304405 2005-03-11 2006-03-07 Display apparatus, liquid crystal monitor, liquid crystal television receiver, and display method WO2006095743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507130A JPWO2006095743A1 (en) 2005-03-11 2006-03-07 Display device, liquid crystal monitor, liquid crystal television receiver and display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005069749 2005-03-11
JP2005-069749 2005-03-11

Publications (1)

Publication Number Publication Date
WO2006095743A1 true WO2006095743A1 (en) 2006-09-14

Family

ID=36953337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304405 WO2006095743A1 (en) 2005-03-11 2006-03-07 Display apparatus, liquid crystal monitor, liquid crystal television receiver, and display method

Country Status (2)

Country Link
JP (1) JPWO2006095743A1 (en)
WO (1) WO2006095743A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090096724A1 (en) * 2007-10-16 2009-04-16 Sony Corporation Display apparatus, quantity-of-light adjusting method for display apparatus and electronic equipment
JP2010026281A (en) * 2008-07-22 2010-02-04 Seiko Epson Corp Electrooptical apparatus, driving method and electronic device
JP2010156856A (en) * 2008-12-27 2010-07-15 Seiko Epson Corp Electrooptical apparatus and electronic device
WO2012132049A1 (en) * 2011-03-29 2012-10-04 株式会社ナナオ System for calculating response speed of display device, and method for calculating response speed of display device
JP2013242585A (en) * 2006-12-04 2013-12-05 Samsung Display Co Ltd Display device
US8736541B2 (en) 2008-02-26 2014-05-27 Sony Corporation Reducing scrolling effect for LCD lamps
JP2019148784A (en) * 2017-09-26 2019-09-05 セイコーエプソン株式会社 Projector and drive method for projector
WO2023149337A1 (en) * 2022-02-07 2023-08-10 コニカミノルタ株式会社 Display light measuring device and light measuring method, data processing device, and program
CN117153075A (en) * 2022-05-30 2023-12-01 荣耀终端有限公司 Screen brightness adjusting method, electronic device and computer readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295692A (en) * 1998-04-15 1999-10-29 Sony Corp Liquid crystal display device
JP2001125547A (en) * 1999-10-28 2001-05-11 Sony Corp Liquid crystal display device and display method therefor
JP2002354823A (en) * 2001-05-18 2002-12-06 Advanced Display Inc Pwm system inverter
JP2003255913A (en) * 2002-03-05 2003-09-10 Seiko Epson Corp Luminance controller and monitor device
JP2004004659A (en) * 2002-03-28 2004-01-08 Matsushita Electric Ind Co Ltd Liquid crystal display
JP2004240317A (en) * 2003-02-07 2004-08-26 Sanyo Electric Co Ltd Display method, display device and data writing circuit to be used for the device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568221A (en) * 1991-09-05 1993-03-19 Toshiba Corp Driving method for liquid crystal display device
JPH07294881A (en) * 1994-04-20 1995-11-10 Kodo Eizo Gijutsu Kenkyusho:Kk Liquid crystal display device
US6801220B2 (en) * 2001-01-26 2004-10-05 International Business Machines Corporation Method and apparatus for adjusting subpixel intensity values based upon luminance characteristics of the subpixels for improved viewing angle characteristics of liquid crystal displays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295692A (en) * 1998-04-15 1999-10-29 Sony Corp Liquid crystal display device
JP2001125547A (en) * 1999-10-28 2001-05-11 Sony Corp Liquid crystal display device and display method therefor
JP2002354823A (en) * 2001-05-18 2002-12-06 Advanced Display Inc Pwm system inverter
JP2003255913A (en) * 2002-03-05 2003-09-10 Seiko Epson Corp Luminance controller and monitor device
JP2004004659A (en) * 2002-03-28 2004-01-08 Matsushita Electric Ind Co Ltd Liquid crystal display
JP2004240317A (en) * 2003-02-07 2004-08-26 Sanyo Electric Co Ltd Display method, display device and data writing circuit to be used for the device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITO H. ET AL.: "A method of improving AMLCD motion picture quality", ITE TECHNICAL REPORT, vol. 28, no. 22, 22 August 2004 (2004-08-22), pages 13 - 16, XP003003350 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242585A (en) * 2006-12-04 2013-12-05 Samsung Display Co Ltd Display device
US20090096724A1 (en) * 2007-10-16 2009-04-16 Sony Corporation Display apparatus, quantity-of-light adjusting method for display apparatus and electronic equipment
US8830157B2 (en) * 2007-10-16 2014-09-09 Sony Corporation Display apparatus, quantity-of-light adjusting method for display apparatus and electronic equipment
US8736541B2 (en) 2008-02-26 2014-05-27 Sony Corporation Reducing scrolling effect for LCD lamps
JP2010026281A (en) * 2008-07-22 2010-02-04 Seiko Epson Corp Electrooptical apparatus, driving method and electronic device
JP2010156856A (en) * 2008-12-27 2010-07-15 Seiko Epson Corp Electrooptical apparatus and electronic device
WO2012132049A1 (en) * 2011-03-29 2012-10-04 株式会社ナナオ System for calculating response speed of display device, and method for calculating response speed of display device
JP2012208176A (en) * 2011-03-29 2012-10-25 Nanao Corp Display device response speed calculation system and response speed calculation method
JP2019148784A (en) * 2017-09-26 2019-09-05 セイコーエプソン株式会社 Projector and drive method for projector
JP7102886B2 (en) 2017-09-26 2022-07-20 セイコーエプソン株式会社 Projector and how to drive the projector
WO2023149337A1 (en) * 2022-02-07 2023-08-10 コニカミノルタ株式会社 Display light measuring device and light measuring method, data processing device, and program
CN117153075A (en) * 2022-05-30 2023-12-01 荣耀终端有限公司 Screen brightness adjusting method, electronic device and computer readable storage medium

Also Published As

Publication number Publication date
JPWO2006095743A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
US9019195B2 (en) Apparatus and method for driving backlight using scanning backlight scheme, liquid crystal display device and its driving method using scanning backlight scheme
US7932884B2 (en) Liquid crystal display and driving method thereof
JP4567052B2 (en) Display device, liquid crystal monitor, liquid crystal television receiver and display method
JP4768344B2 (en) Display device
US7911430B2 (en) Liquid crystal display
JP5031553B2 (en) Display device, liquid crystal monitor, liquid crystal television receiver and display method
US8648780B2 (en) Motion adaptive black data insertion
US9202419B2 (en) Liquid crystal display and method of driving the same
US20080198117A1 (en) Display Device, Liquid Crystal Monitor, Liquid Crystal Television Receiver, and Display Method
WO2006095743A1 (en) Display apparatus, liquid crystal monitor, liquid crystal television receiver, and display method
KR102453288B1 (en) Liquid crystal display and dimming control method therof
US8816953B2 (en) Liquid crystal display and scanning back light driving method thereof
US20070152945A1 (en) Liquid crystal display of field sequential color type and method for driving the same
JP2006227617A (en) Black point insertion method
KR101963784B1 (en) Apparatus and method for driving back light, liquid crystal display device and driving method the same
WO2005081217A1 (en) Video display device
US20080297461A1 (en) Driving apparatus for displayer and metheod thereof
JP2007140217A (en) Display device
JP2011141557A (en) Display device
KR101415062B1 (en) Liquid crystal display device and drivign method thereof
JP2003316335A (en) Liquid crystal display device and method for driving the same
KR101633114B1 (en) Liquid crystal display and picture quality controlling method thereof
JP2009237323A (en) Liquid crystal display device
KR101441381B1 (en) Driving apparatus for liquid crystal display device and method for driving the same
JP2009145788A (en) Liquid crystal display device and method of driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507130

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11885281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728724

Country of ref document: EP

Kind code of ref document: A1