WO2006095640A1 - Powdery oxygen absorbent material and process for producing the same - Google Patents

Powdery oxygen absorbent material and process for producing the same Download PDF

Info

Publication number
WO2006095640A1
WO2006095640A1 PCT/JP2006/304044 JP2006304044W WO2006095640A1 WO 2006095640 A1 WO2006095640 A1 WO 2006095640A1 JP 2006304044 W JP2006304044 W JP 2006304044W WO 2006095640 A1 WO2006095640 A1 WO 2006095640A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
powdery
thermoplastic polymer
oxygen absorbent
oxygen absorption
Prior art date
Application number
PCT/JP2006/304044
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Hayashi
Toshiaki Oono
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2007507076A priority Critical patent/JPWO2006095640A1/en
Publication of WO2006095640A1 publication Critical patent/WO2006095640A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3418Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • A23L3/3427Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O in which an absorbent is placed or used
    • A23L3/3436Oxygen absorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene

Definitions

  • the present invention relates to a powdery oxygen absorbent material that can be suitably used for storage of metal products, foods, pharmaceuticals, photographic films, old documents, paintings, electronic products and the like.
  • an iron-based oxygen absorbing material is mainly used, but an oxygen absorbing material mainly composed of catechol, ascorbic acid, and a resin that easily reacts with oxygen has also been proposed.
  • iron-based oxygen absorbers are used is that oxygen absorption per lg of iron-based oxygen absorber is 68cc, and the oxygen absorption rate is 18cc / (g'hr). This is the main factor.
  • an oxygen absorbing material which mainly contains a resin that easily reacts with catechol, ascorbic acid or oxygen.
  • oxygen absorbers based on resins that easily react with oxygen do not require moisture for oxygen absorption reactions and can be used in low humidity environments.
  • Patent Document 1 discloses a powdery oxygen absorbent material (hereinafter referred to as Prior Art 1) composed of a liquid butadiene polymer, tall oil fatty acid, soybean oil fatty acid cobalt and zeolite, and Patent Document 2 includes a butadiene oligomer, Powdered oxygen absorbent material (hereinafter referred to as Conventional Technology 2) crosslinked by adding cobalt stearate and organic peroxide (di-2-t-butylperoxyisopropylbenzene).
  • Patent Document 3 is obtained by emulsion polymerization.
  • spherical particles of syndiotactic 1, 2 polybutadiene hereinafter referred to as Conventional Technology 3 have been proposed.
  • the collecting material can absorb oxygen without the need for moisture.
  • the oxygen absorption performance of the iron-based oxygen absorber that is, the amount of oxygen absorbed per gram of oxygen absorber is 68 cc, and the oxygen absorption rate is iron-based.
  • the oxygen absorption rate is iron-based.
  • Patent Document 1 Japanese Patent Laid-Open No. 29741
  • Patent Document 2 Japanese Patent Laid-Open No. 11-70331
  • Patent Document 3 JP-A-9-291120
  • the present invention is a powder that can be applied to a metal detector, can be applied to a microwave oven, has no characteristics of moisture, and has an oxygen absorption rate and an oxygen absorption amount higher than those of iron-based oxygen absorbers. It aims at providing a gaseous oxygen absorber.
  • thermoplastic resin having hydrogen in its molecule and hydrogen bonded to tertiary carbon in the molecule, it is possible to achieve iron that cannot be achieved by the prior art by applying appropriate additive formulations and appropriate shapes.
  • the present inventors have found that a powdery oxygen absorber having an oxygen absorption rate and an oxygen absorption amount equal to or higher than those of the system oxygen absorber can be obtained, and the present invention has been made.
  • the present invention is as follows.
  • Allyl hydrogen and Z or Class 3 having Mooney viscosity of 10 to 400 and no crystal melting peak or melting point of less than 75 ° C as measured by differential scanning calorimetry (DSC)
  • a powdery oxygen absorbent comprising a thermoplastic polymer (A) having hydrogen bonded to carbon in a molecule and an oxidation promoting component (B), and having a specific surface area force of S60 cm 2 Zg or more.
  • thermoplastic polymer (A) has a viscosity of 20 to 150.
  • thermoplastic polymer (A) contains 50% by weight or more of butadiene units
  • thermoplastic polymer (A) is a block or random structure copolymer comprising 50 to 99% by weight of butadiene units and 1 to 50% by weight of styrene units.
  • powdery oxygen absorbent according to any one of the above.
  • thermoplastic polymer (A) contains 50 to:! OOOppm of antioxidant (C), characterized in that the above (1) to (4) Powdered oxygen absorber.
  • thermoplastic polymer (A), the oxidation promoting component (B), and the thermoplastic polymer (A) contain fine particles (D) that have adhesion but are difficult to adhere to each other.
  • the particle diameter is 10 xm to 5 mm, and at least a part of the fine particles (D) is located on the surface of the powder (A) and (B)
  • the powdery oxygen absorber according to any one of the above.
  • a method for producing a powdery oxygen absorbent comprising the following steps.
  • DSC differential scanning calorimeter
  • Step (Z) A step of exposing the molten mixture obtained in step (X) or the pulverized material obtained in step (Y) to radiation of 2 kyrogray or more.
  • the powdered oxygen absorbent material of the present invention can be used in a low humidity environment, which is a characteristic of a resin-based oxygen absorbent material, can detect foreign matter with a metal detector, and can be used without any problems even when placed in a microwave oven. It has the effect of having both characteristics such as points and oxygen absorption and oxygen absorption rate superior to those of iron-based oxygen absorbers. Furthermore, unlike conventional iron-based and organic oxygen-absorbing materials, it has an effect of absorbing oxygen even in a carbon dioxide atmosphere, and is particularly preferable because it can be applied to gas replacement packaging using carbon dioxide.
  • FIG. 1 is a diagram showing oxygen absorption curves of Example 1 and Comparative Examples 1 to 4.
  • FIG. 2 is a graph showing the relationship between the amount of antioxidant (C) added in Example 3 and the induction period of the powdered oxygen absorber.
  • FIG. 1 it will be shown using FIG. 1 that the present invention is superior in oxygen absorption performance compared to the prior arts 1 to 3.
  • FIG. 1 shows the oxygen absorption amount obtained from the oxygen concentration for each elapsed time in a container containing each powdery oxygen absorbent according to the oxygen absorption measurement method described later. It is the figure taken on the axis. Curve 1 in FIG.
  • Example 1 is the oxygen absorption curve of the powdered oxygen absorber of the present invention (Example 1)
  • curve 2 is the oxygen absorption curve of the powdered oxygen absorber of the prior art 1 (Comparative Example 1)
  • curve 3 is Oxygen absorption curve of powdered oxygen absorber of Conventional Technology 2 (Comparative Example 2)
  • Curve 4 is the oxygen absorption curve of powdered oxygen absorber of Conventional Technology 3 (Comparative Example 3)
  • Curve 5 is a commercially available iron-based oxygen absorber The oxygen absorption curve of the material (Comparative Example 4) is shown.
  • the oxygen absorption amount per lg of powdered oxygen absorbent is defined as “saturated oxygen absorption amount” (unit: cc / g), and the maximum slope of the oxygen absorption curve was defined as “maximum oxygen absorption rate” (unit: cc / (g′hr)).
  • saturated oxygen absorption amount unit: cc / g
  • maximum oxygen absorption rate unit: cc / (g′hr)
  • the powdered oxygen absorbing material of the present invention is very excellent in oxygen absorbing characteristics as compared with commercially available iron-based oxygen absorbing materials.
  • the oxygen absorption amount is 2 cc / g even after 4 hours, and the maximum oxygen absorption rate is lc after 16 hours from the start of measurement. c / (g'hr). Also, the oxygen absorption reached saturation after 3 days, and the saturated oxygen absorption at that time was 41 cc / g.
  • the powdered oxygen absorber of the present invention absorbs oxygen even in an atmosphere containing carbon dioxide.
  • Carbon dioxide is bacteriostatic
  • gas replacement packaging which is one of CA packaging (Controlled Atmosphere Packaging) or MA packaging (Modified Atomosphere Packaging) for maintaining freshness. Therefore, the powdery oxygen absorbent material of the present invention has the advantage that it can be applied to gas replacement packaging in which conventional oxygen absorbent materials cannot be used.
  • Thermoplastic resin (A) having hydrogen in the molecule and hydrogen bonded to Z or tertiary carbon are polybutadiene, polyisoprene, butadiene / isoprene copolymer, styrene / butadiene copolymer, styrene Z isoprene.
  • Copolymer butadiene / isoprene / styrene copolymer, copolymer of ethylene and cyclic alkylene, resin containing cyclohexene group, polypropylene, ethylene Z propylene copolymer, MXD6 polyamide (metaxylene / nylon adipate) ) And the like are exemplified as a resin mainly composed of at least one selected from the group consisting of. Those having 1,2-bonds and 1,4 bonds, such as polybutadiene and polyisoprene, may be single or mixed. In addition, those having Cis- and Trans structures may be single or mixed.
  • a polymer containing 50% by weight or more of butadiene units preferred by polybutadiene, polyisoprene, and styrene / butadiene copolymer from the viewpoint of high oxygen absorption and oxygen absorption rate, or A copolymer is more preferred.
  • a block or random structure copolymer comprising 50 to 99% by weight of butadiene units and 1 to 50% by weight of styrene units is preferable 60 to copolymers of block structure consisting of 80 weight 0/0 of butadiene units and 20 to 40 weight 0/0 of styrene unit are more preferred.
  • the reason for this is not clear, but it is thought that the oxygen absorption rate is improved because the styrene unit part becomes the oxygen permeation path and oxygen diffusion is improved.
  • the inclusion of a styrene unit as the copolymer component is also preferable from the viewpoint of making the mixture of the thermoplastic polymer (A) and the oxidation promoting component (B) brittle and making the pulverization process easy.
  • those having different stereoregularities such as isotactic, syndiotactic and atactic may each be single or mixed.
  • those with atactic structure are preferred.
  • a copolymer of ethylene and a cyclic alkylene and a resin containing a cyclohexene group are also preferable, and an ethylene / vinylcyclohexene copolymer, an ethylene / cyclopentene copolymer, and an ethylene / cyclopentene / 4 are particularly preferable.
  • thermoplastic resin (A) is a random copolymer or a block copolymer with another monomer, which may be a homopolymer, for the purpose of improving characteristics and the like. It may be a blend with other polymers.
  • the thermoplastic resin (A) of the present invention has a Mooney viscosity of 10 to 400 for exhibiting excellent oxygen absorption performance. Within this range, the shape of the powdery oxygen absorber can be maintained without supporting the thermoplastic resin (A) on the carrier, and excellent oxygen absorption performance can be exhibited. In addition, the handleability of the powdery oxygen absorber is improved. Furthermore, since it is difficult for the particles to be fused, it is possible to develop excellent high-temperature storage suitability.
  • the Mooney viscosity is preferably 20 to 300, more preferably 20 to 150.
  • Mooney viscosity is affected by various factors such as the molecular weight, molecular weight distribution, branched structure, entanglement, and point density of the polymer. Since these various factors affect the Mooney viscosity in a complicated manner, it is difficult to determine them uniquely from only the Mooney viscosity value.
  • thermoplastic resin (A) by adding a peroxide to the thermoplastic resin (A), heating the thermoplastic resin (A), and further irradiating the thermoplastic resin (A) with an electron beam, radiation, or the like.
  • the one that is bridged over has a Mooney viscosity of over 400.
  • substantially crosslinked refers to a state in which a thermoplastic resin subjected to crosslinking treatment does not dissolve even when immersed in toluene at 25 ° C. for 24 hours.
  • the powdery oxygen absorber of the present invention dissolves easily when immersed in toluene.
  • the viscosity of the resin layer 121 means that the thermoplastic resin (A) constituting the powdered oxygen absorbing material of the present invention is dissolved in powdered oxygen by a reprecipitation method as described later. Separated from the material, JIS K6 According to 300, preheating time is 1 minute, rotor rotation time is 4 minutes, and measured with Mooney viscometer under test temperature of 100 ° C.
  • the viscosity of the thermoplastic resin (A) has almost no effect even if it contains an oxidation promoting component (B) described later in an amount within the range of the present invention. Even if the oxidation promoting component (B) remains, it can be measured in the state where it is.
  • FT Fourier transform near-infrared spectrophotometer
  • the coefficient H is a value determined by experiment, and is 504, for example, when the thermoplastic resin (A) is polybutadiene.
  • thermoplastic resin (A) of the present invention has a crystal melting peak or a crystal melting peak when measured with a differential scanning calorimeter (DSC) for exhibiting excellent oxygen absorption performance.
  • the melting point is less than 75 ° C.
  • a crystal melting peak having a melting point of 75 ° C or higher is not preferable because the molecular motion of the resin is limited and the oxygen absorption performance deteriorates.
  • the melting point is preferably less than 5 ° C, more preferably less than 50 ° C, and even more preferably no crystal melting peak.
  • the thermoplastic resin (A) of the present invention preferably has a crystal melting energy of less than lOOmjZmg from the viewpoint of preventing the molecular motion of the resin from being restricted and deteriorating the oxygen absorption performance.
  • the crystal melting energy is preferably less than 50 mj / mg, more preferably the crystal melting energy is 20 mjZmg, and even more preferably no crystal melting peak.
  • the crystal melting peak (melting point) and crystal melting energy in the present invention are obtained from a DSC curve measured by differential scanning calorimetry, and this measuring method is as follows.
  • thermoplastic resin (A) constituting the powdery oxygen absorbing material of the present invention is separated from the powdered oxygen absorbing material by a dissolution reprecipitation method, and a sample of about 10 mg from _50 ° C to 200 ° C according to JIS K7121. Increase the temperature at a rate of 10 ° C / min between ° C and hold for 5 minutes, then decrease the temperature from 200 ° C to _50 ° C at a rate of 10 ° C / min, hold for 5 minutes and then further _
  • the melting point is the crystal melting peak temperature of the DSC curve obtained at the second temperature increase from 50 ° C to 200 ° C at a rate of 10 ° CZ.
  • the energy per unit weight of the area enclosed by a straight baseline drawn from the melting start temperature to the melting end temperature in this DSC curve was defined as the crystal melting energy.
  • the DSC measurement of the thermoplastic resin (A) has almost no effect even if it contains an oxidation promoting component (B) to be described later in an amount within the range of the present invention.
  • the measurement may be performed with the oxidation promoting component (B) remaining.
  • the oxidation promoting component (B) has a catalytic action for promoting the oxidation of the thermoplastic resin (A) in the presence of oxygen.
  • an oxidation catalyst such as a transition metal catalyst, a zinc compound or an aluminum compound is preferably used, as is known in the auto-oxidation of ordinary organic compounds.
  • initiators such as photoinitiators and thermal initiators, and exothermic agents.
  • the transition metal catalyst is a metal salt selected from the first, second or third transition series of the periodic table, which can be easily interconverted between at least two oxidation states.
  • the oxidation state of the metal at the time of introduction is not limited to the active form.
  • Suitable counterions for this metal include salt ions, acetate ions, stearate ions, palmitate ions, 2-ethylhexanoate ions, neodecanoate ions, oleate ions, linoleate ions, Linolenic acid ion, ota Examples thereof include tyrate ion or naphthenate ion.
  • these salts include cobalt 2-ethylhexanoate (II), cobalt oleate (II), cobalt neodecanoate (II), cobalt naphthenate, copper naphthenate, and iron naphthenate. it can.
  • silver oxide, titanium oxide, zinc oxide, zinc naphthenate, antibacterial agents containing silver ions, and the like are also preferable examples.
  • the oxidation promoting component (B) is a metal fatty acid salt or the like
  • the component containing a carbon-carbon unsaturated bond in the fatty acid portion is the oxidation promoting component (B) in the powdery oxygen absorbent. Is incorporated into the resin structure, and the powdered oxygen absorbent component force catalyst is less likely to leak, which is preferable.
  • oxidation catalysts for aluminum compounds include alkylaluminum such as triethylaluminum, triisobutylaluminum, jetylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, and tri-n_octylaluminum. Examples can be exemplified.
  • Examples of the photoinitiator include a radical photopolymerization initiator, a cationic photopolymerization initiator, an anion photopolymerization initiator, and the like, and benzophenone, anthraquinone, naphthoquinone, and benzoquinone are preferred. It is done.
  • the content of the oxidation promoting component (B) is preferably 0.0001 wt% or more and 5 wt% or less in the thermoplastic resin (A). Preferably it is 0.001 to 3 weight%. In the case of a transition metal catalyst, based on the metal content (excluding ligands, counterions, etc.), preferably in the thermoplastic resin (A), preferably from 0.0001% to 5% by weight More preferably, it is in the range of 0.001 wt% to 2 wt%, more preferably 0.01 wt% to 1.5 wt%.
  • the powdery oxygen absorber of the present invention increases the reactivity with oxygen by increasing the specific surface area, the larger the specific surface area, the less the oxidation promoting component (B) may be. In some cases, only a small amount of the polymerization catalyst remaining in the resin (A) can be an effective oxidation catalyst.
  • the powdery oxygen absorber of the present invention may include various components exemplified below.
  • Antioxidant (C) are all substances that block the oxidative degradation or crosslinking of polymers, such as phenolic antioxidants, phosphoric antioxidants, phenolic antioxidants, hindered amine antioxidants, and An example is a rataton antioxidant.
  • the antioxidant (C) is contained in the thermoplastic polymer (A) in an amount of 50 ppm to 1000 ppm.
  • the amount of the antioxidant (C) is preferably 50 ppm to 1000 ppm force S, more preferably 100 ppm to 800 ppm force S.
  • the induction period refers to the time from when the powdered oxygen absorber is exposed to oxygen until the start of useful oxygen absorption. In other words, it is the period from when the user wants an oxygen absorption effect and starts using the powdered oxygen absorber until it begins to develop useful oxygen absorption performance, and is the waiting period until the effect is achieved by the user. is there.
  • This induction period is preferably a few hours to a few days, depending on the application. In particular, when it is used for fast-scratched foods such as buns, fruit cakes, doll baked foods, side dishes and lunch boxes, this induction period should be shorter than 6 hours as an example.
  • the oxygen is absorbed during the period from when the user exposes the powdered oxygen absorber to oxygen until it is packaged with various items that are susceptible to alteration by oxygen (user working time).
  • a length of a certain length or more is preferable, 30 minutes or more is preferable.
  • the antioxidant (C) is preferably one having a radical scavenging effect, more preferably one having a peroxy radical scavenging effect.
  • these include phenolic antioxidants and hindered amine antioxidants.
  • phenolic antioxidants examples include 2,6bis (2'-hydroxy-3'-t-butyl-5-methylbenzyl) -4 methylphenol, 4,4-methylene bis (6-t-butyl-2- Methyl phenol), 4,4-methylene bis (2, 6-di-tert-butylenophenol), 2,6-di-t_butyl _4_methyl phenol, 4, mono-bis-bis (6_t_butyl _3_methyl phenol), 4, 1-Butylidenebis (6_t_Butyl_3_Methylphenol), 2, 2 '—Methylenebis (4-methyl-6_t_Butylphenol), 2, 2'—Methylenebis (4-ethyl) _6_t _Butylphenol), 2, 6 —Di _t_Butyl _4_Ethylphenol, 1, 1,3-Tris (2-methyl _4—Hydroxy _5_t_Butylphenyl) butane, n-
  • Examples of phosphorus antioxidants include triphenyl phosphite, tris (2-ethylhexyleno) phosphite, tridecino phosphite, tris (tridecino) phosphite, tetra (trideci Nore) 4, A '—isopropylidene didiphenol diphosphite, trilauryl monotrithiophosphite, tris (2,4 di-t-butylphenyl) phosphite, tris (nonilated-phenenole) phosphite, distearyl pentaerythritol Examples include diphosphite, 2,2-methylenebis (4,6-di_t_butylphenyl) octyl phosphite, and bis (2,6-di_t_butyl monomethylphenyl) pentaerythritol monodiphosphite.
  • thio antioxidants include tetrakis [methylene _ 3 _ (dodecylthio) propionate] methane, Ni _ dibutyl 1 dithio 1 force rubamate, Zn_dibutyl 1 dithio 1 force rubamate, Cd_ethyl 1 phenyl 1 dithiol rubamate, thiourea, 2_menolecapto-benzimidazole, dilauryl thiodipropionate, distearyl thiodipropionate pionate.
  • hindered amine antioxidants include dimethyl succinate _ 1 _ (2-hydroxyethynole) _ 4-hydroxy-1,2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ (6 1, 3,3 tetramethylbutyl) amino 1,3,5 triazine 1,2,4-diyl) ⁇ ⁇ ((2,2,6,6 tetramethyl-1-piperidyl) imino ⁇ hexamethylene ⁇ (2, 2, 6,6 tetramethyl-1-4-piperidyl) imino ⁇ ], N, N'-bis (3-aminopropyl) ethylenediamine-1,2,4-bis [N butynole N- (1, 2, 2, 6, 6-pentamethyl 1-piperidyl) amino] 6-chloro-1,3,5-triazine condensate.
  • Examples of the rataton antioxidant include a reaction product of 3hydroxy-5,7-di-butyl-furan-2-one and o-xylene.
  • phenolic antioxidants are added at 50 ppm to 1000 ppm, and other types of antioxidants are added at 50 ppm or more to ensure stable processing. This is preferable because it is easy to achieve both high performance and high oxygen absorption performance.
  • the fine particles (D) give and maintain an appropriate shape to the main agent composed of the thermoplastic resin (A) and the oxidation promoting component (B), and are at least as described above under the conditions at the time of production and storage of the powdery oxygen absorbent.
  • the main agent has a function of making it difficult to adhere to each other.
  • At least a partial force of the fine particles (D) is integrated with the main agent so as to be positioned on at least a part of the surface of the main agent. This prevents the adhesion of the main ingredients Become.
  • the fine particles (D) are positioned over the entire surface of the main agent.
  • the fine particles (D) preferably have an average primary particle size of 0.01 ⁇ m to 1 mm, more preferably 0.05 ⁇ m to 500 ⁇ m, and still more preferably 0.1 ⁇ m. m to 100 ⁇ m. Within such a range, irregularities occur on the surface of the powdery oxygen absorber, and adhesion between the powdery oxygen absorbers is prevented and as a result, a large surface area is secured.
  • the value S1 .:! To 500,000 obtained by dividing the average particle size of the main agent by the primary particle size of the fine particles (D) is preferably S, more preferably 2 to: 10000, more preferably 5 to 1000. Within this range, the fine particles (D) form irregularities on the surface of the oxygen absorber (A), and adhesion between the powdery oxygen absorber particles is less likely to occur.
  • inorganic particles (D1) or organic particles (D2) may be used as long as they are ordinary solid particles that do not easily adhere to each other in a high temperature environment (for example, 40 ° C). But it ’s okay. Whether or not it is difficult to adhere to each other is determined by placing the primary particles of the fine particles (D) in a container and leaving them at 40 ° C for 1 day, and then observing them with secondary microscopes by observation with an optical microscope or electron microscope. It can be judged by whether or not aggregation occurs.
  • adhesion means that two different types of substances adhere to each other by forces such as mechanical interaction, physical interaction, chemical interaction, and electrostatic interaction.
  • the content of the fine particles (D) in the powdery oxygen absorbent is such that the content of the fine particles (D) is small in view of increasing the stoichiometric oxygen absorption per unit weight of the oxygen absorbent. Although it is preferable, when the content of the fine particles (D) is small, the adhesion preventing effect between the powdery oxygen absorbent particles tends to be small.
  • the content range of the fine particles (D) is 10 to 1000 parts by weight, preferably 30 to 450 parts by weight, with respect to 100 parts by weight of the thermoplastic resin (A) in the powdery oxygen absorbent. Part.
  • the inorganic particles (D1) include particles of metals, metal compounds, and other inorganic substances.
  • Examples of the metal particles include iron powder, aluminum powder, gold powder, copper powder, magnesium powder, and magnesium powder (alloy powder of aluminum and magnesium), preferably iron powder and aluminum powder. It is.
  • Examples of the metal compound particles include oxide, hydroxide, aluminate, aluminosilicate, sulfate, phosphate, and the like.
  • aluminum compound particles More preferred are aluminum oxide and hydroxide particles.
  • Aluminum oxide and hydroxide particles include ⁇ -alumina, ⁇ -alumina, r-aminoremina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, anhydrous aluminum compounds such as activated alumina, and Al (OH) or AlO.
  • Monohydrate of aluminum compounds such as rube-mite and diaspore, and todite (
  • particles such as 5A1 ⁇ ⁇ ⁇ ⁇ ) and anoreminagenore (A1 ⁇ ⁇ ⁇ ). More preferred
  • boehmite and activated alumina particles.
  • Other preferred examples include particles such as zeolite.
  • silica gel As particles of other inorganic substances, silica gel, activated clay, activated carbon, pearlite, sand, rock, metamorphic rock, igneous rock, sedimentary rock, granite, carbide, chromium oxide, diamond, nitrided nitride, zirconia, boron nitride , Etc., and preferably particles such as activated carbon and pearlite.
  • Examples of the organic particles (D2) include resin powder, food powder, and other organic particles.
  • the resin powder may be thermoplastic resin particles or thermosetting resin particles.
  • resin particles for example, polyethylene, polytetrafluoroethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl alcohol, polyacrylonitrile, poly 1 Butene, poly (vinyl acetate), poly (vinyl fluoride), poly (4-methylpentene) 1, poly (vinylidene chloride), poly (vinylidene fluoride), poly (methyl methacrylate), poly (chlorotrichloroethylene), polybutadiene, polyisoprene, polychloroprene, poly (3-hydroxybutyrate) , Poly-3-hydroxyvalerate, polylactic acid, poly ⁇ -force prolacton, polyethylene succinate, polybutylene succinate, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate Polyamide 1-4 Polycyclohexylene dimethylene tere
  • Natural rubber latex Natural rubber latex, styrene butadiene rubber latex, nitrile rubber latex, chloroprene rubber latex, isoprene rubber latex, DPL (depolymerization latex), EPDM (ethylene propylene rubber), acrylic emulsion, polyurethane latex, etc.
  • the latex is also a preferred example.
  • Examples of the food powder include boiled and dried, kelp, sesame or cherry shrimp, or powder such as wheat flour, udon powder, buckwheat flour, coffee powder or tea powder. Examples include flour. Examples of other organic particles include paper and grass powder.
  • a deodorant or a deodorant (E) may be added to the powdery oxygen absorbent of the present invention during or after production. This is because a decomposition reaction occurs when the oxidation reaction of the thermoplastic resin (A) proceeds, which may generate malodors such as low molecular weight aldehydes, ketones, esters, etc., and is suitable for removing such odors. It is.
  • Examples of the deodorizer include activated carbon, zeolite, amorphous silica, cyclodextrin, sepiolite, ceramics, silica gel, and the like, which are obtained by chemically treating activated carbon with a substance such as amines, for example, manufactured by Nippon Environment Chemicals Co., Ltd.
  • the granular birch GAAx is a preferred example.
  • Deodorants include polyalkylene imines such as polyethyleneimine, vitamin E, tocophenol, titanium oxide, hydrazine derivatives, ammine compounds (pentaethylenehexamine, triethylenetetramine, polybuluoxazoline, Etc.), inorganic base compounds (calcium oxide, calcium hydroxide, calcium carbonate, etc.), flavonoid deodorants, polyphenol, turpentine oil, active aluminum oxide, magnesium silicate, aluminum silicate, etc.
  • polyalkylene imines such as polyethyleneimine, vitamin E, tocophenol, titanium oxide, hydrazine derivatives, ammine compounds (pentaethylenehexamine, triethylenetetramine, polybuluoxazoline, Etc.), inorganic base compounds (calcium oxide, calcium hydroxide, calcium carbonate, etc.), flavonoid deodorants, polyphenol, turpentine oil, active aluminum oxide, magnesium silicate, aluminum silicate, etc.
  • the oxygen absorbing material of the present invention is powdery.
  • the powdery state means “Kona-like state (Iwanami Shoten “From Kanjitsu 2nd edition)", Kona means “Smashed and crushed. Powder (From Iwanami Shoten 2nd edition)".
  • powder form it may be in any form such as powder form, fine particle form, granular form, spherical form, plate form, columnar form, cylindrical form, needle form, granular form, flake form, fibrous form, etc.
  • a shape such as a powder, a fine particle, a plate, a needle, or a flake is easy to come into contact with.
  • the powdery oxygen absorber of the present invention has a specific surface area force of 60 cm 2 Zg or more, preferably 600 cm 2 / g or more, more preferably, from the viewpoint of the effective surface area that should contribute to oxygen absorption, by the Kr gas adsorption method. More than 2000cm 2 Zg.
  • the powdered oxygen absorbent material of the present invention was obtained by the method described later for reasons such as the oxygen absorption performance of the powdered oxygen absorbent material, ease of handling, and difficulty in powder leakage when placed in a sachet.
  • the average particle size is generally from 0.01 / im to 5 mm, preferably from 0.01 ⁇ to 1 ⁇ .
  • the primary particle diameter is about 0.01 to about 10 ⁇ , preferably Is from 0.01 ⁇ ⁇ to 5 / ⁇ m. Further, a structure in which these primary particles are aggregated to form aggregated particles (aggregated structure) is preferable from the viewpoint of oxygen absorption performance and structural stabilization.
  • the average particle size of the aggregated particles is generally 0.01 / im to 5 mm, preferably 0.1 / im to 3 mm, and more preferably 1 / im to 1 mm.
  • the primary particle diameter of the main agent composed of the thermoplastic resin (A) and the oxidation promoting component (B) is about 0.01 to 111111, preferably Is from 0.02 to 100 zm, more preferably from 0.05 to lO xm.
  • the average particle diameter of the aggregated particles is usually 0.01 ⁇ to 5 ⁇ , preferably 10 ⁇ m to 5 mm, and more preferably 10 ⁇ m to 3 mm.
  • the method for producing a powdery oxygen absorbent according to the present invention comprises the following steps (X), (Y), (Z), (S), (X), (Y) or (X), (Y ), (Z) or (X), (Z), (Y) or (X), (Y), (S) or (X), (S), (Y) or (X), (Y ), (Z), (S) or (X), (Y), (s), (z) or (X), (Z), (Y), (S) or (X), (S), (Y), (Z) or (X), (Z), (S), (Y) or (X), (S), (Z), (Y) are preferably performed in this order.
  • the step (X) in the present invention is a step in which the thermoplastic resin (A) and the oxidation promoting component (B) are physically stirred or dissolved by heat, a solvent or the like and mixed.
  • this step (X) may be omitted when only a trace amount of the polymerization catalyst remaining in the thermoplastic resin (A) becomes an effective oxidation catalyst.
  • the antioxidant polymer (C) is contained in an amount of 50 ppm to:! OOOppm relative to the thermoplastic polymer (A).
  • Antioxidant (C) is added to, and if it is too much, antioxidant (C) is reduced.
  • the thermoplastic resin (A) is dissolved in a good solvent of the thermoplastic resin (A), and then the thermoplastic resin (A) is a poor solvent and oxidized in the next stage.
  • Examples thereof include a method in which a substance that is a good solvent for the inhibitor (C) is added to precipitate only the thermoplastic resin (A), a so-called dissolution reprecipitation method, an extraction method using a Soxhlet extraction apparatus, and the like.
  • the oxidation promoting component (B) When the oxidation promoting component (B) is added, it may be added before or after the separation step of the antioxidant (C), but it is preferable to add it after.
  • a preferred method and method of step (X) is a method of melt-mixing the thermoplastic polymer (A) and the oxidation promoting component (B) in a heated and melted state.
  • thermothermoplastic plastic resin resin (AA)
  • acid Add the oxidation promotion promoting component ((BB)) to the specified blending ratio, and if necessary, add other additions.
  • Henchen Schermi-Mixixar, Reribobon Blender, VV Type Blender, etc. to mix evenly and uniformly.
  • a method for mixing and kneading using a kneading and kneading machine can be illustrated as an example. .
  • the temperature of the kneading and kneading of each component is determined by the temperature at which the thermothermoplastic plastic-polymer composite ((AA)) is in a melt-melt-melt state. It would be fine if the temperature was correct, but it would be possible to take into account such factors as the deterioration of resin resin fats and the use of bridge bridges to make Gegerl. It would be desirable if it is less than 228800 ° CC for preference and less than 225500 ° CC for more preference. .
  • the order of mixing and kneading order of each component and the method of mixing are the following: Thermothermoplastic plastic-polymerized polymer ((AA)), Promotion of acid oxidation promotion A method of mixing the kneaded ingredients ((BB)) and other other ingredients together and kneading and kneading, ((AA)), ( (BB)) After mixing and kneading a part of the other components, the remaining components including other components are included. Examples of how to knead and knead the ingredients can be illustrated by examples. .
  • the process ((YY)) in the present invention means the thermothermoplastic plastic polymer composite ((AA)) and acid oxidation as described above. Mixing and mixing the mixture of the accelerating and promoting component ((BB)) in the process of the polymerization polymerization process as will be described later. According to other methods such as the method of obtaining a compound, etc., the powder with a specific surface area of 6600ccmm 22 // gg or more This is the process of forming a powdery shape. .
  • Examples of the shape and shape of the above-mentioned mixed mixture are, for example, peperretto-like, sushitoto-like, film-like, liquid-liquid, lump-like, cotton-like Examples include shapes, fibers, fibers, beverles, slab rubs, flakes, kukuramram, and powderer. .
  • the powdered soot according to the present invention is, for example, the Atotomize method, the Memelrutos spippining method, the rotating rotating electrode method Cool with a cold refrigerant medium such as pulverized powder by mechanical and mechanical process, powdered powder by chemical process and liquid nitrogen nitride.
  • a powder powder manufacturing method such as a method of pulverizing and pulverizing the powder ((freeze-freezing and pulverizing and pulverizing method)), etc. can be used. .
  • methods that can be used as desired are the powder pulverization method and the freeze-frozen and pulverized powder pulverization method by mechanical mechanical processing. .
  • the step (Z) in the present invention is a step in which the mixture or the powdery product is exposed to radiation of at least 2 chloroplasts and Z or heated.
  • the radiation includes ionizing radiation such as gamma rays, X-rays, alpha rays, beta rays, electron rays, acceleration ions, neutron rays, preferably gamma rays and electron rays.
  • ionizing radiation such as gamma rays, X-rays, alpha rays, beta rays, electron rays, acceleration ions, neutron rays, preferably gamma rays and electron rays.
  • Gamma rays are preferred.
  • the absorbed dose is usually at least 2 kGy or more, preferably 5 to 1000 kGy, more preferably 20 to 300 kGy. Treatment with less than 2 kGy does not shorten the induction period much, and if it exceeds 10 OOkGy, there is a high possibility that the oxygen absorption performance will decrease due to the generation of gel due to the crosslinking reaction, and the productivity will decrease. Become.
  • Examples of the method of exposure to radiation include, for example, the above mixture or a powder-like product in a degassed state or nitrogen, carbon dioxide and a mixed gas thereof, and, if necessary, oxygen at a partial pressure of less than 20%.
  • Examples include a method of exposing to radiation in a container or bag in a state filled with an inert gas such as a gas mixed in (1).
  • the heating temperature varies depending on the heating time. Generally, the heating temperature is 100 ° C to 300 ° C, preferably 110 ° C to 200 ° C. When the treatment is performed at a temperature lower than 100 ° C, the induction period is not shortened so much, and when the temperature exceeds 300 ° C, thermal decomposition or fusion of the above-mentioned mixture or powdered oxygen absorbent occurs, resulting in a decrease in productivity. Is likely to occur.
  • the heating time is generally 0.1 second to 1 hour, preferably 0.5 second to 30 minutes, more preferably 1 second to 10 minutes.
  • the heating method may be, for example, a method in which hot air of an inert gas is directly blown onto the mixture or the oxygen absorbent material in a powder form, a degassing state or a state in which the inert gas is filled, Examples of the method include heating in a bag and vacuum heating.
  • the step (s) in the present invention is a step of storing the above mixture or the powdered product in a low oxygen atmosphere.
  • “preserving in a low oxygen atmosphere” means, for example, packaging using a barrier packaging material, and using an inert gas replacement method and Z or other deoxidizing material as necessary.
  • the powdery oxygen absorbing material is a step of storing it in a low oxygen concentration atmosphere.
  • the low oxygen concentration means that the oxygen concentration is less than 20%, preferably less than 5%, and more preferably less than 1%.
  • This step (S) is preferable because it has the effect of shortening the induction period of the powdered oxygen absorber.
  • the storage period varies depending on the storage temperature, the components constituting the powdered oxygen absorber and the production method, but is generally 1 day to several years, preferably 3 days to 6 months. More preferably, it is 1 week to 3 months.
  • the treatment period of less than 1 day does not shorten the induction period so much, and if it exceeds several years, there is a high possibility that adhesion of powdery oxygen absorbers and a decrease in productivity due to an extended inventory retention period will occur. Become.
  • thermoplastic polymer (A) is a styrene / butadiene copolymer
  • this length is the same as the stock storage period when the powdered oxygen absorbent is distributed. Therefore, stock storage at the time of distribution also serves as the step (S) and is particularly preferable.
  • the temperature during storage is generally 0 ° C to 100 ° C, preferably 5 ° C to 80 ° C, more preferably 10 ° C to 60 ° C.
  • the induction period is not shortened so much, and when the temperature exceeds 100 ° C, the oxygen absorbing materials are fused with each other, and the possibility that productivity is lowered is increased.
  • thermoplastic polymer (A) and the oxidation promoting component (B) are melt-mixed in a heated and melted state (X), the molten mixture is pulverized (Y), the melt A method for producing a powdery oxygen absorbent comprising the step (Z) of exposing the mixture or pulverized product to gamma rays of 2 kg or more and the step (S) of storing the molten mixture or pulverized product in a low oxygen atmosphere is particularly preferred. It is an example.
  • the powdered oxygen absorbing material of the present invention is used as a deoxidizing material in the form of being powdered and placed in a breathable sachet, or a compression molded piece or a piece mixed with a thermoplastic resin.
  • the raw packaging material can be used in various forms for some or all of packaging bags and packaging containers.
  • the deoxidized material When the deoxidized material is placed in a breathable sachet, polyethylene, a copolymer of propylene and olefin, an ethylene monobutyl monomer copolymer, polypropylene, polystyrene, a copolymer of styrene and olefin, Examples thereof include a state in which an oxygen absorbing material is encapsulated in a polymer such as polyester, which has a large oxygen permeation amount, or a sachet made of paper, non-woven cloth, fine cloth, microporous film, or a multilayered body thereof.
  • the sachet may be perforated from the viewpoint of air permeability.
  • a film or sheet it may be composed only of the layer (L1) containing the powdery oxygen absorber, but at least one layer (L2) or more composed of other materials.
  • L2 a laminated film composed of L2 is composed of thermoplastic polyester resin, thermoplastic polyurethane resin, thermoplastic polyolefin resin (LDPE (low density polyethylene), VLDPE (very low density polyethylene), LLDPE (linear low density polyethylene), HDPE).
  • a laminated film obtained by laminating a layer (L3) having an oxygen barrier property on the powdery oxygen absorbing material-containing layer (L1) is a preferred embodiment.
  • L1 is configured to be positioned closer to the package than L3.
  • L3 includes EVOH (ethylene-vinyl alcohol copolymer), PVDC (polyvinylidene chloride), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PTT (polytetramethylene terephthalate), PEN (polyethylene naphthalate).
  • the film surface or intermediate layer may be coated with a barrier organic material or an inorganic material such as alumina, silica or amorphous carbon.
  • the powdery oxygen absorber of the present invention can be applied to food, medicine, test kits, medical equipment, iron pipes, capacitors, dry batteries packaging, bottle cap seals, labels, etc.
  • the powdery oxygen absorber of the present invention can be applied to food, medicine, test kits, medical equipment, iron pipes, capacitors, dry batteries packaging, bottle cap seals, labels, etc.
  • the viscosity of the powdery oxygen absorber of the present invention (ML1 + 4Z100 ° C) was obtained by adding 250 g of toluene to 30 g of the powdered oxygen absorbent of the present invention and dissolving it, and removing unnecessary components with a glass filter or the like. Thereafter, methanol lOOOg was added to this solution and reprecipitated to separate the thermoplastic resin (A) from the powdery oxygen absorber, and 35 ° C using a vacuum dryer DP63 (trade name) manufactured by Yamato Scientific Co., Ltd.
  • the crystal melting peak (melting point) of the powdered oxygen absorber of the present invention was determined by adding 250 g of toluene to 30 g of the powdered oxygen absorber of the present invention and dissolving it, removing unnecessary components with a glass filter etc., and then adding methanol to this solution. lOOOg is collected and re-precipitated to separate the thermoplastic resin (A) from the powdered oxygen absorber and vacuum dried at 35 ° C for 48 hours using the Yamato Kagaku vacuum dryer DP63 (trade name).
  • the energy per unit weight of the area surrounded by a straight base line drawn from the melting start temperature to the melting end temperature on this DSC curve was defined as the crystal melting angle ⁇ energy.
  • the specific surface area of the powdered oxygen absorber of the present invention is a pore distribution / specific surface area manufactured by Shimadzu Corporation.
  • the powdery oxygen absorbent material of the present invention is taken in a standard cell and degassed at a temperature of 35 ° C for about 6 hours in the sample pretreatment section of the device. Measurements were made using the BET approximation by the Kr gas adsorption method.
  • the average particle size was determined by randomly selecting 50 particles using the results of observation of secondary electrons in high vacuum mode with JEOL's scintillation electron microscope i3 ⁇ 4JSM_5600LV (trade name).
  • the average particle size required is the average particle size of the aggregated particles, not the average particle size of the primary particles.
  • the container was sealed and replaced with a mixed gas having an oxygen capacity of 21% and nitrogen of 79% by volume. After that, place these containers under conditions of a temperature of 23 ° C and humidity of 17% RH, and monitor the time-dependent changes in oxygen concentration in the containers using the PBI gas concentration measuring device Dansensor CheckMate9900 (trade name).
  • the oxygen absorption amount was calculated.
  • the oxygen absorption per lg oxygen absorber when the oxygen concentration reached saturation was defined as the saturated oxygen absorption (Vos, unit: cc / g).
  • the maximum slope is the maximum oxygen absorption rate (Ros, unit Was defined as ccZ (g 'hr)).
  • the period (unit: hr or day) from the start of measurement until the oxygen concentration in the container was 20.6% or less was defined as the induction period.
  • Gen 55AE trade name
  • thermoplastic resin (A) is dissolved in 12 g of toluene, and naphthenic acid cobalt 0 ⁇ 05 g (0% as cobalt atom) manufactured by Wako Pure Chemical Industries, Ltd. is used as oxidation promoting component (B).
  • oxidation promoting component (B) what was stirring well with the addition of 1 wt 0/0), placed in a glass petri dish with a diameter of 8.5 cm, by Ri at 35 ° C in Yamato scientific Co., Ltd. of vacuum dryer DP63 (trade name), 48 By vacuum drying for a time, a transparent sheet having a thickness of about 300 ⁇ m was obtained.
  • the structure in which such small and large particles coexist and fine particles aggregate together keeps the contact area with oxygen large and prevents adhesion between powders, contributing to excellent oxygen absorption performance. It is considered a thing.
  • the Dora-yaki weighing about 80 g and the above sachet sample are sealed in the above sampling bag, and after one day, the oxygen concentration in the barrier bag is measured and the odor of the air in the bag is smelled.
  • the oxygen concentration was 0.1% and the sachet Sampnole absorbed oxygen and did not feel an unpleasant odor.
  • the Dora-yaki and small sachet samples are sealed in a barrier bag made of PP / PA / EVOH / LL DPE and left for a day to measure the oxygen concentration in the barrier bag (0.1%). After heating in a microwave oven, I smelled the odor of the air in the bag.
  • Example 1 of Patent Document 1 0.5 g of liquid polybutadiene having a molecular weight of 10,000 and a viscosity of less than 5 is 0.5 g, 0.5 g of soybean oil manufactured by Wako Pure Chemical Industries, Ltd. A mixture of 0.2 g of cobalt naphthenate manufactured by Yakuhin Kogyo Co., Ltd. is impregnated in 5 g of activated carbon manufactured by Wako Pure Chemical Industries, Ltd., and 0.5 g of slaked lime is applied to the surface of the impregnated activated carbon to absorb powdered oxygen. Made the material.
  • a powdery oxygen absorbent was prepared from 0.8 mmol of naphthenic acid cobalt salt, 2.4 mmol of triethylaluminum, 240 ml of butadiene, and 1.6 mmol of carbon disulfide.
  • the powdery oxygen absorber had a spherical shape with a diameter of 200 ⁇ , a melting point of 147 ° C., and a Mooney viscosity exceeding 400, which was not measurable.
  • Example 1 instead of 0.05 g of cobalt naphthenate, 0.03 g of silver oxide (1) 0.03 g (1.0% by weight as silver atoms) manufactured by Wako Pure Chemical Industries, Ltd. was used, and the oxygen absorbing material was used in exactly the same manner. Created.
  • the powdery oxygen absorber had a specific surface area of 9,450 cm 2 Zg and an average particle size of 0.78 mm.
  • antioxidant a phenolic antioxidant manufactured by Ciba 'Specialty' Chemicals ⁇ IRGANOX 1076 (trade name) (octadecyl) 1- (3,5-di-tert-butyl-4-hydroxyphenyl) propylene disulfide) added to 260ppm, 650ppm, 1300ppm, 1800ppm, added by Sumitomo Chemical Co., Ltd.
  • Example 2 In the same manner as in Example 1, the amount of added calorie of the Zio-based antioxidant 'Sumilizer TPS (trade name) (distealino reci-gi diplopi genius ⁇ - ⁇ ) was changed to 100 ppm, 250 ppm, 500 ppm, 180 Oppm. A powdery oxygen absorber was prepared. Their specific surface area and average particle diameter were substantially the same as those in Example 1.
  • Fig. 2 is a graph in which the vertical axis represents the induction period of the powdery oxygen absorbent, and the horizontal axis represents the amount of antioxidant (C) added.
  • C antioxidant
  • indicates that the phenolic antioxidant is added
  • Mouth indicates that the phenolic antioxidant is added.
  • the induction time can be controlled by adding the antioxidant (C).
  • the pellets were pulverized using a disc grinder pulverizer GPC_140 (trade name) manufactured by Nishimura Machinery Co., Ltd. Created.
  • This powdery oxygen absorbing material was a light blue solid powder and did not stick even when returned to room temperature, and had a shape that was easy to handle.
  • this powdery oxygen absorber was observed with a scanning electron microscope, it had a structure in which particles having a size of about 20 ⁇ m to about 1 mm were mixed. Further, when this particle was further enlarged, it was observed that primary particles of about 0.5 zm to about 20 zm aggregated.
  • the powdery oxygen absorber had an average particle size of 0.78 mm and a specific surface area of 2,400 cm 2 Zg. Further, the content of the antioxidant in the powdery oxygen absorbent was analyzed by the above-mentioned method and found to be 410 ppm. DSC measurement of the powdery oxygen absorber showed no crystal melting peak.
  • the powdery oxygen absorber was deaerated and packaged in an oxygen barrier bag made of EVH / Ny, and irradiated with 240 kGy of Kobanoleto-60 gamma rays. After the irradiation, the viscosity of the powdery oxygen absorbent was measured and found to be 165.
  • An oxygen absorbent was prepared in exactly the same manner as in Example 5, except that the gamma, line f, and amount of fountain were changed to 30 kGy, 120 kGy, and 500 kGyi.
  • the powder viscosities of the powdery oxygen absorbers were 135, 150, and 180, respectively.
  • the powdered oxygen absorbers were evaluated by the above method. These oxygen-absorbing materials had a Vos of approximately 102cc / g and a Ros of approximately 20cc / (g-hr). The power that was not.
  • the induction period is 30, 120, 240, and 500, while the induction period is 24 hours, 8 hours, 4 hours, and 0.5 hours, respectively. It was found that the induction period can be controlled easily.
  • the powdered oxygen absorbing material of Example 5 was further deoxidized material Ageless ZP— It was deaerated and packed in an oxygen barrier bag made by EVOH / Ny with 200 (trade name) and stored at 40 ° C for 10, 20, 30, and 60 days.
  • Vos was approximately 102cc / g
  • Ros was approximately 20cc / (g'hr)
  • the force was not affected by the low oxygen atmosphere storage period. It was.
  • the induction period is 4 hours, 2 hours, 1 hour, respectively for the low oxygen atmosphere preservation period 0 days, 10 days, 20 days, 30 days, 60 days. It was 1 hour and 1 hour, and the induction period became shorter as the low oxygen atmosphere preservation period became longer, and it became almost constant after 20 days.
  • the powdery oxygen absorbing material of the present invention can be suitably used in the field of preservation of metal products, foods, pharmaceuticals, photographic films, old documents, pictures, electronic products and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

A powdery oxygen absorbent material that has the properties of being responsive to metal detectors, being responsive to microwave ovens and moisture unwanted, and that exhibits an amount of oxygen absorbed and rate of oxygen absorption equal to or greater than those of iron based oxygen absorbent materials. There is provided a powdery oxygen absorbent material characterized by containing thermoplastic polymer (A) of 10 to 400 Mooney viscosity which in the measuring by differential scanning calorimeter (DSC) has no crystal melting peak or has a melting point of < 75°C, the thermoplastic polymer containing an allyl hydrogen and/or a hydrogen bonded with tertiary carbon in its molecule, and oxidation accelerating component (B), and characterized by having a specific surface area of ≥ 60 cm2/g.

Description

明 細 書  Specification
粉状酸素吸収材及びその製造法  Powdered oxygen absorber and method for producing the same
技術分野  Technical field
[0001] 本発明は、金属製品、食品、医薬品、写真フィルム、古文書、絵画、電子製品等の 保存に好適に用レ、られる粉状酸素吸収材に関する。  [0001] The present invention relates to a powdery oxygen absorbent material that can be suitably used for storage of metal products, foods, pharmaceuticals, photographic films, old documents, paintings, electronic products and the like.
背景技術  Background art
[0002] 金属製品、食品、医薬品、写真フィルム、古文書、絵画や電子製品に代表される、 酸素の影響を受けて変質し易い各種物品の劣化を防止する目的で、これら物品を収 納した包装容器や包装袋内の酸素除去を行う脱酸素材が従来より使用されている。  [0002] These products were stored for the purpose of preventing deterioration of various products that are easily affected by oxygen, such as metal products, food, pharmaceuticals, photographic films, old documents, paintings, and electronic products. A deoxidizing material for removing oxygen in a packaging container or a packaging bag has been conventionally used.
[0003] 脱酸素材としては、鉄系酸素吸収材が主に用いられているが、カテコール、ァスコ ルビン酸、酸素と反応しやすい樹脂を主成分とした酸素吸収材も提案されている。  [0003] As a deoxidizing material, an iron-based oxygen absorbing material is mainly used, but an oxygen absorbing material mainly composed of catechol, ascorbic acid, and a resin that easily reacts with oxygen has also been proposed.
[0004] 鉄系酸素吸収材が主に用いられている要因としては、鉄系酸素吸収材 lg当たりの 酸素吸収量が 68cc、酸素吸収速度が 18cc/ (g 'hr)と酸素吸収性能に優れること が主要因となっている。  [0004] The main reason why iron-based oxygen absorbers are used is that oxygen absorption per lg of iron-based oxygen absorber is 68cc, and the oxygen absorption rate is 18cc / (g'hr). This is the main factor.
[0005] 一方、鉄系酸素吸収材は、これを食品等の包装体に適応した場合に金属探知機 による異物検知が出来なレ、、電子レンジによる加熱で放電 ·発火する可能性がある 等の問題も指摘されている。  [0005] On the other hand, when iron-based oxygen absorbers are applied to packages such as foods, foreign objects cannot be detected by metal detectors, and there is a possibility of discharge and ignition by heating with a microwave oven, etc. The problem is also pointed out.
[0006] この問題に対しては、カテコール、ァスコルビン酸や酸素と反応しやすい樹脂を主 成分とした酸素吸収材が提案されている。特に、酸素と反応しやすい樹脂を主成分 とした酸素吸収材は、酸素吸収反応に水分を必要とせず湿度の低い環境下でも利 用可能なので、今後の展開が期待される。  [0006] To solve this problem, an oxygen absorbing material has been proposed which mainly contains a resin that easily reacts with catechol, ascorbic acid or oxygen. In particular, oxygen absorbers based on resins that easily react with oxygen do not require moisture for oxygen absorption reactions and can be used in low humidity environments.
[0007] 特許文献 1には、液状のブタジエン重合物、トール油脂肪酸、大豆油脂肪酸コバル ト及びゼオライトからなる粉状酸素吸収材 (以下、従来技術 1という)、特許文献 2には ブタジエンオリゴマー、ステアリン酸コバルト及び有機過酸化物(ジー 2— t ブチル パーォキシイソプロピルベンゼン)を加え架橋させた粉状酸素吸収材(以下、従来技 術 2という)、特許文献 3には乳化重合により得られたシンジオタクチック 1 , 2 ポリ ブタジエンの球状粒子(以下、従来技術 3という)が提案されている。これらの酸素吸 収材は、水分を必要とせずに酸素吸収することができる。し力しながら、従来技術 1、 従来技術 2、従来技術 3では、鉄系酸素吸収材の酸素吸収性能、即ち酸素吸収材 1 g当りの酸素吸収量が 68cc、且つ、酸素吸収速度が鉄系酸素吸収材の 18cc/ (g* hr)に比べ劣るものしか得られていないのが実情である。 [0007] Patent Document 1 discloses a powdery oxygen absorbent material (hereinafter referred to as Prior Art 1) composed of a liquid butadiene polymer, tall oil fatty acid, soybean oil fatty acid cobalt and zeolite, and Patent Document 2 includes a butadiene oligomer, Powdered oxygen absorbent material (hereinafter referred to as Conventional Technology 2) crosslinked by adding cobalt stearate and organic peroxide (di-2-t-butylperoxyisopropylbenzene). Patent Document 3 is obtained by emulsion polymerization. In addition, spherical particles of syndiotactic 1, 2 polybutadiene (hereinafter referred to as Conventional Technology 3) have been proposed. These oxygen absorbers The collecting material can absorb oxygen without the need for moisture. However, in the conventional technology 1, the conventional technology 2, and the conventional technology 3, the oxygen absorption performance of the iron-based oxygen absorber, that is, the amount of oxygen absorbed per gram of oxygen absorber is 68 cc, and the oxygen absorption rate is iron-based. Actually, only inferior to 18cc / (g * hr) of oxygen absorbing material is obtained.
[0008] 特許文献 1 :特開平 4一 29741号公報 [0008] Patent Document 1: Japanese Patent Laid-Open No. 29741
特許文献 2:特開平 11 - 70331号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-70331
特許文献 3:特開平 9一 291120号公報  Patent Document 3: JP-A-9-291120
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、金属探知機に対応可能、電子レンジに対応可能、水分不要といった特 性を保持し、且つ、鉄系酸素吸収材以上の酸素吸収速度および酸素吸収量を有す る粉状酸素吸収材を提供することを目的とする。 [0009] The present invention is a powder that can be applied to a metal detector, can be applied to a microwave oven, has no characteristics of moisture, and has an oxygen absorption rate and an oxygen absorption amount higher than those of iron-based oxygen absorbers. It aims at providing a gaseous oxygen absorber.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者等は、前記課題を解決するため鋭意検討を重ねた結果、ムーニー粘度が  [0010] As a result of intensive studies to solve the above problems, the present inventors have found that Mooney viscosity is
10〜400であり、且つ示差走査熱量計 (DSC)で測定したとき結晶融解ピークを有さ ない又は融点が 75°C未満である、すなわち実質的に架橋しておらず、実質的に非 晶のァリル水素および/または 3級炭素と結合した水素を分子中に有する熱可塑性 樹脂を用い、適切な添加剤の処方と適切な形状を付与することにより、従来技術で は成しえなかった鉄系酸素吸収材と同等以上の酸素吸収速度および酸素吸収量を 有する粉状酸素吸収材が得られることを見出し、本発明をなすに至った。  10 to 400 and has no crystalline melting peak as measured with a differential scanning calorimeter (DSC) or has a melting point of less than 75 ° C., i.e. substantially non-crosslinked, substantially amorphous By using a thermoplastic resin having hydrogen in its molecule and hydrogen bonded to tertiary carbon in the molecule, it is possible to achieve iron that cannot be achieved by the prior art by applying appropriate additive formulations and appropriate shapes. The present inventors have found that a powdery oxygen absorber having an oxygen absorption rate and an oxygen absorption amount equal to or higher than those of the system oxygen absorber can be obtained, and the present invention has been made.
[0011] すなわち、本発明は以下の通りである。  [0011] That is, the present invention is as follows.
(1)ムーニー粘度が 10〜400であり、且つ示差走查熱量計 (DSC)で測定したとき結 晶融解ピークを有さない又は融点が 75°C未満である、ァリル水素および Zまたは 3 級炭素と結合した水素を分子中に有する熱可塑性重合体 (A)及び酸化促進成分( B)を含み、比表面積力 S60cm2Zg以上であることを特徴とする粉状酸素吸収材。 (1) Allyl hydrogen and Z or Class 3 having Mooney viscosity of 10 to 400 and no crystal melting peak or melting point of less than 75 ° C as measured by differential scanning calorimetry (DSC) A powdery oxygen absorbent comprising a thermoplastic polymer (A) having hydrogen bonded to carbon in a molecule and an oxidation promoting component (B), and having a specific surface area force of S60 cm 2 Zg or more.
(2)熱可塑性重合体 (A)のム一二一粘度が 20〜150であることを特徴とする上記(1 )に記載の粉状酸素吸収材。  (2) The powdery oxygen absorbent as described in (1) above, wherein the thermoplastic polymer (A) has a viscosity of 20 to 150.
(3)熱可塑性重合体 (A)がブタジエン単位を 50重量%以上含む重合体又は共重合 体であることを特徴とする上記(1)または(2)に記載の粉状酸素吸収材。 (3) Polymer or copolymer in which thermoplastic polymer (A) contains 50% by weight or more of butadiene units The powdery oxygen absorbent according to (1) or (2) above, which is a body.
(4)熱可塑性重合体 (A)が 50〜99重量%のブタジエン単位および 1〜50重量%の スチレン単位からなる、ブロック又はランダム構造の共重合体であることを特徴とする 、上記(1)〜(3)のレ、ずれかに記載の粉状酸素吸収材。  (4) The thermoplastic polymer (A) is a block or random structure copolymer comprising 50 to 99% by weight of butadiene units and 1 to 50% by weight of styrene units. ) To (3), the powdery oxygen absorbent according to any one of the above.
(5)熱可塑性重合体 (A)中に 50〜: !OOOppmの酸化防止剤(C)を含有することを特 徴とする、上記(1)〜(4)のレ、ずれかに記載の粉状酸素吸収材。  (5) The thermoplastic polymer (A) contains 50 to:! OOOppm of antioxidant (C), characterized in that the above (1) to (4) Powdered oxygen absorber.
(6)熱可塑性重合体 (A)、酸化促進成分 (B)、及び熱可塑性重合体 (A)には付着 性を有するが相互には付着しにくい微粒子(D)を含有してなり、平均粒径が 10 x m 〜5mmで、かつ前記微粒子(D)の少なくとも一部が(A)および(B)力 なる粉体の 表面に位置することを特徴とする、上記(1)〜(5)のいずれかに記載の粉状酸素吸 収材。  (6) The thermoplastic polymer (A), the oxidation promoting component (B), and the thermoplastic polymer (A) contain fine particles (D) that have adhesion but are difficult to adhere to each other. (1) to (5) above, wherein the particle diameter is 10 xm to 5 mm, and at least a part of the fine particles (D) is located on the surface of the powder (A) and (B) The powdery oxygen absorber according to any one of the above.
(7)以下の工程からなる粉状酸素吸収材の製造方法。  (7) A method for producing a powdery oxygen absorbent comprising the following steps.
工程 (X):ム一二一粘度が 10〜400であり、且つ示差走査熱量計(DSC)で測定し たとき結晶融解ピークを有さない又は融点が 75°C未満であるァリル水素および/ま たは 3級炭素と結合した水素を分子中に有する熱可塑性重合体 (A)及び酸化促進 成分 (B)を加熱溶融状態にぉレ、て溶融混合する工程 Step (X): Allyl hydrogen having a viscosity of 10 to 400 and having no crystal melting peak as measured with a differential scanning calorimeter (DSC) or having a melting point of less than 75 ° C. and / or Alternatively, a process of melting and mixing the thermoplastic polymer (A) having hydrogen bonded to tertiary carbon in the molecule and the oxidation promoting component (B) in a heated and molten state.
工程 (Y):工程 (X)で得られた溶融混合物を粉碎する工程 Process (Y): Process of pulverizing the molten mixture obtained in process (X)
工程 (Z):工程 (X)で得られた溶融混合物又は工程 (Y)で得られた粉砕物を 2キログ レイ以上の放射線に曝す工程 Step (Z): A step of exposing the molten mixture obtained in step (X) or the pulverized material obtained in step (Y) to radiation of 2 kyrogray or more.
工程 (S):前記溶融混合物又は粉碎物を低酸素雰囲気で保存する工程 Step (S): A step of storing the molten mixture or powdered product in a low oxygen atmosphere.
発明の効果 The invention's effect
本発明の粉状酸素吸収材は、樹脂系酸素吸収材の特徴である湿度の低い環境で も使用できる点、金属探知機による異物検知が出来る点、電子レンジに入れても問 題なく使用できる点等の特徴と、鉄系酸素吸収材よりも優れた酸素吸収量及び酸素 吸収速度を併せ持つという効果を有する。更には、従来の鉄系、有機系酸素吸収材 とは異なり、二酸化炭素雰囲気下でも酸素吸収する効果を有しており、二酸化炭素 を利用したガス置換包装にも応用できるため特に好ましい。  The powdered oxygen absorbent material of the present invention can be used in a low humidity environment, which is a characteristic of a resin-based oxygen absorbent material, can detect foreign matter with a metal detector, and can be used without any problems even when placed in a microwave oven. It has the effect of having both characteristics such as points and oxygen absorption and oxygen absorption rate superior to those of iron-based oxygen absorbers. Furthermore, unlike conventional iron-based and organic oxygen-absorbing materials, it has an effect of absorbing oxygen even in a carbon dioxide atmosphere, and is particularly preferable because it can be applied to gas replacement packaging using carbon dioxide.
図面の簡単な説明 [0013] [図 1]実施例 1および比較例 1〜4の酸素吸収曲線を示す図である。 Brief Description of Drawings FIG. 1 is a diagram showing oxygen absorption curves of Example 1 and Comparative Examples 1 to 4.
[図 2]実施例 3の酸化防止剤(C)の添加量と粉状酸素吸収材の誘導期間の関係を示 す図である。  FIG. 2 is a graph showing the relationship between the amount of antioxidant (C) added in Example 3 and the induction period of the powdered oxygen absorber.
符号の説明  Explanation of symbols
[0014] 1 実施例 1の粉状酸素吸収材の酸素吸収曲線  [0014] 1 Oxygen absorption curve of powdery oxygen absorber of Example 1
2 比較例 1の粉状酸素吸収材の酸素吸収曲線  2 Oxygen absorption curve of powdered oxygen absorber of Comparative Example 1
3 比較例 2の粉状酸素吸収材の酸素吸収曲線  3 Oxygen absorption curve of powdered oxygen absorber of Comparative Example 2
4 比較例 3の粉状酸素吸収材の酸素吸収曲線  4 Oxygen absorption curve of powdered oxygen absorber of Comparative Example 3
5 比較例 4の鉄系酸素吸収材の酸素吸収曲線  5 Oxygen absorption curve of iron-based oxygen absorber of Comparative Example 4
♦ 実施例 3の酸化防止剤としてフエノール系酸化防止剤を用いた場合  ♦ When using a phenolic antioxidant as the antioxidant in Example 3
□ 実施例 3の酸化防止剤としてィォゥ系酸化防止剤を用いた場合  □ In the case of using Zio antioxidant as the antioxidant of Example 3
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明について、以下具体的に説明する。 [0015] The present invention will be specifically described below.
[0016] 先ず、本発明が従来技術 1〜3に比べ酸素吸収性能に優れることを、図 1を用いて 示す。  First, it will be shown using FIG. 1 that the present invention is superior in oxygen absorption performance compared to the prior arts 1 to 3.
[0017] 図 1は、後述する酸素吸収量測定法に従い、各粉状酸素吸収材を内包した容器内 の経過時間毎の酸素濃度から求められた酸素吸収量を縦軸に、経過時間を横軸に とった図である。図 1中の曲線 1は本発明の粉状酸素吸収材(実施例 1 )の酸素吸収 曲線、曲線 2は従来技術 1の粉状酸素吸収材 (比較例 1)の酸素吸収曲線、曲線 3は 従来技術 2の粉状酸素吸収材(比較例 2)の酸素吸収曲線、曲線 4は従来技術 3の 粉状酸素吸収材 (比較例 3)の酸素吸収曲線、曲線 5は市販の鉄系酸素吸収材(比 較例 4)の酸素吸収曲線を示す。  [0017] FIG. 1 shows the oxygen absorption amount obtained from the oxygen concentration for each elapsed time in a container containing each powdery oxygen absorbent according to the oxygen absorption measurement method described later. It is the figure taken on the axis. Curve 1 in FIG. 1 is the oxygen absorption curve of the powdered oxygen absorber of the present invention (Example 1), curve 2 is the oxygen absorption curve of the powdered oxygen absorber of the prior art 1 (Comparative Example 1), and curve 3 is Oxygen absorption curve of powdered oxygen absorber of Conventional Technology 2 (Comparative Example 2), Curve 4 is the oxygen absorption curve of powdered oxygen absorber of Conventional Technology 3 (Comparative Example 3), Curve 5 is a commercially available iron-based oxygen absorber The oxygen absorption curve of the material (Comparative Example 4) is shown.
[0018] ここで酸素濃度が飽和に達した時点での粉状酸素吸収材 lgあたりの酸素吸収量 を「飽和酸素吸収量」(単位は cc/g)とし、また酸素吸収曲線の最大の傾きの大きさ を「最大酸素吸収速度」(単位は cc/ (g 'hr) )として定義した。飽和酸素吸収量が大 きいと、使用する酸素吸収材の量を減らすことができるため、製品を目立たない形状 にできる、コストを安くできる、等の長所がある。また最大酸素吸収速度が大きい及び /または酸素吸収速度が最大になるまでの時間が短いと、饅頭、フルーツケーキ、 人形焼、惣菜や弁当類等の傷みの速い食品等に利用する場合に特に好ましぐ巿 販の小袋型酸素吸収材は、一般には酸素吸収速度が最大になるまでの時間が 4時 間以下に設定されている。 [0018] Here, when the oxygen concentration reaches saturation, the oxygen absorption amount per lg of powdered oxygen absorbent is defined as “saturated oxygen absorption amount” (unit: cc / g), and the maximum slope of the oxygen absorption curve Was defined as “maximum oxygen absorption rate” (unit: cc / (g′hr)). If the saturated oxygen absorption amount is large, the amount of oxygen absorbing material to be used can be reduced, so that the product can be made inconspicuous and the cost can be reduced. If the maximum oxygen absorption rate is large and / or the time until the oxygen absorption rate is maximum is short, This is especially preferred when used for fast-scratched foods such as doll-yaki, side dishes and lunch boxes. In general, sachet-type oxygen absorbers sold in the market generally take less than 4 hours to reach the maximum oxygen absorption rate. Is set to
[0019] 図 1において、曲線 1として示す本発明の粉状酸素吸収材では、測定開始直後か ら酸素吸収を開始し、 0. 5時間後には 18cc/g酸素吸収し、 0. 5時間後という比較 的短時間のうちに酸素吸収速度は最大となり、最大酸素吸収速度は 38cc/ (g 'hr) であった。また 0. 5時間後以降は徐々に酸素吸収速度は低下しながら、酸素吸収量 は、 24時間後には 190ccZg、約 48時間では略飽和に達し、その際の飽和酸素吸 収量は 230ccZgまで達した。 In FIG. 1, in the powdery oxygen absorbent material of the present invention shown as curve 1, oxygen absorption starts immediately after the start of measurement, 18 cc / g oxygen is absorbed 0.5 hours later, and 0.5 hours later In a relatively short time, the oxygen absorption rate reached its maximum, and the maximum oxygen absorption rate was 38 cc / (g'hr). After 0.5 hours, the oxygen absorption rate gradually decreased, but the oxygen absorption reached 190 ccZg after 24 hours, almost saturated after about 48 hours, and the saturated oxygen absorption reached 230 ccZg. .
[0020] 一方、曲線 5として示す市販の鉄系酸素吸収材では、 0. 5時間後に酸素吸収速度 が最大となり 18cc/ (g 'hr)で、酸素吸収量は約 24時間後にほぼ飽和に達して、そ の際の飽和酸素吸収量は 68ccZgであった。 [0020] On the other hand, in the commercially available iron-based oxygen absorber shown as curve 5, the oxygen absorption rate reaches its maximum after 0.5 hours and reaches 18 cc / (g'hr), and the oxygen absorption reaches almost saturation after about 24 hours. At that time, the amount of saturated oxygen absorbed was 68 ccZg.
[0021] 従って、本発明の粉状酸素吸収材は市販の鉄系酸素吸収材に比べても、非常に 酸素吸収特性に優れたものであることがわかる。 [0021] Therefore, it can be seen that the powdered oxygen absorbing material of the present invention is very excellent in oxygen absorbing characteristics as compared with commercially available iron-based oxygen absorbing materials.
[0022] これに対し、曲線 2として示す従来技術 1では、 4時間後でも酸素吸収量は 2cc/g で、最大酸素吸収速度を示すのは測定開始後 16時間後で最大酸素吸収速度は lc c/ (g 'hr)であった。また、酸素吸収量は 3日後にほぼ飽和に達して、その際の飽和 酸素吸収量は 41 cc/gであった。 [0022] On the other hand, in the prior art 1 shown as curve 2, the oxygen absorption amount is 2 cc / g even after 4 hours, and the maximum oxygen absorption rate is lc after 16 hours from the start of measurement. c / (g'hr). Also, the oxygen absorption reached saturation after 3 days, and the saturated oxygen absorption at that time was 41 cc / g.
[0023] 次に曲線 3として示す従来技術 2では、測定開始後 8時間までの初期の酸素吸収 量が市販の鉄系酸素吸収材よりも低ぐ最大酸素吸収速度は 14cc/ (g 'hr)であつ た。また、酸素吸収量は 3日後にほぼ飽和に達して、その際の飽和酸素吸収量は 13[0023] Next, in the prior art 2 shown as curve 3, the maximum oxygen absorption rate at which the initial oxygen absorption amount until 8 hours after the start of measurement is lower than that of commercially available iron-based oxygen absorbers is 14 cc / (g'hr) It was. In addition, the oxygen absorption reached saturation after 3 days, and the saturated oxygen absorption at that time was 13
2cc/gであった。 It was 2cc / g.
[0024] 更に、曲線 4として示す従来技術 3では、 24時間後で殆ど酸素吸収性能を示さず、 最大酸素吸収速度はほぼ OccZ (g 'hr)であった。また、酸素吸収量は、 30日後に ほぼ飽和に達して、その際の飽和酸素吸収量は 18cc/gであった。  [0024] Furthermore, in the prior art 3 shown as curve 4, the oxygen absorption performance was hardly exhibited after 24 hours, and the maximum oxygen absorption rate was approximately OccZ (g'hr). The oxygen absorption reached almost saturation after 30 days, and the saturated oxygen absorption at that time was 18 cc / g.
[0025] 以上のように、本発明は従来技術に比べて、格段の効果を有することが分かる。 [0025] As described above, it can be seen that the present invention has a marked effect compared to the prior art.
[0026] 更に本発明の粉状酸素吸収材は、従来の鉄系酸素吸収材ゃ有機系酸素吸収材と は異なり、二酸化炭素が存在する雰囲気下でも酸素吸収する。二酸化炭素は静菌 効果を有する為に、鮮度保持を目的とした CA包装(Controlled Atmosphere P ackaging)又は MA包装 (Modified Atomosphere Packaging)のひとつである ガス置換包装によく用いられる。従って本発明の粉状酸素吸収材は、従来の酸素吸 収材が利用出来なかったガス置換包装にも応用できるとレ、う特長も有してレ、る。 [0026] Furthermore, unlike the conventional iron-based oxygen absorbers and organic oxygen absorbers, the powdered oxygen absorber of the present invention absorbs oxygen even in an atmosphere containing carbon dioxide. Carbon dioxide is bacteriostatic In order to have an effect, it is often used for gas replacement packaging, which is one of CA packaging (Controlled Atmosphere Packaging) or MA packaging (Modified Atomosphere Packaging) for maintaining freshness. Therefore, the powdery oxygen absorbent material of the present invention has the advantage that it can be applied to gas replacement packaging in which conventional oxygen absorbent materials cannot be used.
[0027] 以下に本発明の粉状酸素吸収材を構成する成分について説明する。  [0027] The components constituting the powdery oxygen absorbing material of the present invention will be described below.
(1一 1)熱可塑性樹脂 (A)  (1 1 1) Thermoplastic resin (A)
ァリル水素および Zまたは 3級炭素と結合した水素を分子中に有する熱可塑性樹 脂 (A)としては、ポリブタジエン、ポリイソプレン、ブタジエン/イソプレン共重合体、ス チレン/ブタジエン共重合体、スチレン Zイソプレン共重合体、ブタジエン/イソプレ ン/スチレン共重合体、エチレン及び環状アルキレンの共重合体、シクロへキセン基 を含有する樹脂、ポリプロピレン、エチレン Zプロピレン共重合体、 MXD6ポリアミド( メタキシレン/アジピン酸ナイロン)等からなる群より選ばれる少なくともひとつを主成 分とする樹脂が例示される。ポリブタジエン、ポリイソプレン等のように、 1 , 2—結合、 1 , 4 結合が存在するものは、各々単一でも混合体でも良い。また、 Cis—、 Trans 構造が存在するものも、各々単一でも混合体でも良い。  Thermoplastic resin (A) having hydrogen in the molecule and hydrogen bonded to Z or tertiary carbon are polybutadiene, polyisoprene, butadiene / isoprene copolymer, styrene / butadiene copolymer, styrene Z isoprene. Copolymer, butadiene / isoprene / styrene copolymer, copolymer of ethylene and cyclic alkylene, resin containing cyclohexene group, polypropylene, ethylene Z propylene copolymer, MXD6 polyamide (metaxylene / nylon adipate) ) And the like are exemplified as a resin mainly composed of at least one selected from the group consisting of. Those having 1,2-bonds and 1,4 bonds, such as polybutadiene and polyisoprene, may be single or mixed. In addition, those having Cis- and Trans structures may be single or mixed.
[0028] これ等の内、酸素吸収量および酸素吸収速度が大きいという観点から、ポリブタジ ェン、ポリイソプレン、スチレン/ブタジエン共重合体が好ましぐブタジエン単位を 5 0重量%以上含む重合体又は共重合体がより好ましい。  [0028] Among these, a polymer containing 50% by weight or more of butadiene units preferred by polybutadiene, polyisoprene, and styrene / butadiene copolymer from the viewpoint of high oxygen absorption and oxygen absorption rate, or A copolymer is more preferred.
[0029] これ等の内、酸素吸収速度が大きいという観点から、 50〜99重量%のブタジエン 単位および 1〜50重量%のスチレン単位からなるブロック又はランダム構造の共重 合体が好ましぐ 60〜80重量0 /0のブタジエン単位および 20〜40重量0 /0のスチレン 単位からなるブロック構造の共重合体がより好ましい。この理由は明らかではないが、 スチレン単位部分が酸素の透過パスとなり酸素拡散性が向上するために、酸素吸収 速度が向上するものと思われる。また、共重合成分としてスチレン単位を含有すること は、熱可塑性重合体 (A)及び酸化促進成分 (B)の混合物が脆くなり粉砕工程が容 易になる観点からも、好ましい。 Of these, from the viewpoint of a high oxygen absorption rate, a block or random structure copolymer comprising 50 to 99% by weight of butadiene units and 1 to 50% by weight of styrene units is preferable 60 to copolymers of block structure consisting of 80 weight 0/0 of butadiene units and 20 to 40 weight 0/0 of styrene unit are more preferred. The reason for this is not clear, but it is thought that the oxygen absorption rate is improved because the styrene unit part becomes the oxygen permeation path and oxygen diffusion is improved. In addition, the inclusion of a styrene unit as the copolymer component is also preferable from the viewpoint of making the mixture of the thermoplastic polymer (A) and the oxidation promoting component (B) brittle and making the pulverization process easy.
[0030] また、イソタクチック、シンジオタクチック、ァタクチックといった異なる立体規則性を とるものは、各々単一でも混合体でも良い。これらの内、酸素吸収性能の観点から、 ァタクチックの構造を有するものが好ましレ、。 [0030] In addition, those having different stereoregularities such as isotactic, syndiotactic and atactic may each be single or mixed. Among these, from the viewpoint of oxygen absorption performance, Those with atactic structure are preferred.
[0031] また、エチレン及び環状アルキレンの共重合体、シクロへキセン基を含有する樹脂 も好ましく、特に好ましくは、エチレン/ビニルシクロへキセン共重合体、エチレン/ シクロペンテン共重合体、エチレン/シクロペンテン /4—ビュルシクロへキセン共重 合体、エチレン/メチルアタリレート Zシクロへキセニルメチルアタリレート共重合体、 シクロへキセニルメチルアタリレート/エチレン共重合体、シクロへキセニルメチルメタ タリレート Zスチレン共重合体、シクロへキセニルメチルアタリレートホモポリマーまた はメチルアタリレート zシクロへキセニルメチルアタリレート共重合体等が挙げられる。  [0031] In addition, a copolymer of ethylene and a cyclic alkylene and a resin containing a cyclohexene group are also preferable, and an ethylene / vinylcyclohexene copolymer, an ethylene / cyclopentene copolymer, and an ethylene / cyclopentene / 4 are particularly preferable. —Buylcyclohexene copolymer, ethylene / methyl acrylate, Z cyclohexenyl methyl acrylate copolymer, cyclohexenyl methyl acrylate / ethylene copolymer, cyclohexenyl methyl methacrylate Z styrene copolymer And cyclohexenylmethyl attalate homopolymer or methyl acrylate z-cyclohexenyl methyl acrylate copolymer.
[0032] また上記熱可塑性樹脂 (A)は、特性を改良する目的等で、単独重合体であっても よぐ他の単量体とのランダム共重合体やブロック共重合体等であってもよぐまたそ の他の重合体とのブレンド体であっても構わなレ、。  [0032] The thermoplastic resin (A) is a random copolymer or a block copolymer with another monomer, which may be a homopolymer, for the purpose of improving characteristics and the like. It may be a blend with other polymers.
[0033] 本発明の熱可塑性樹脂 (A)は、優れた酸素吸収性能を発揮させる上でムーニー 粘度は 10〜400である。この範囲で、熱可塑性樹脂 (A)を担体に担持等させなくと も粉状酸素吸収材の形状を保持可能であり、優れた酸素吸収性能が発揮できる。ま た、粉状酸素吸収材の取り扱い性も良好となる。さらに、粒子どうしの融着も生じにく いため、優れた高温保管適性を発現させることが可能となる。ムーニー粘度は好まし くは 20〜300であり、より好ましくは 20〜: 150である。  [0033] The thermoplastic resin (A) of the present invention has a Mooney viscosity of 10 to 400 for exhibiting excellent oxygen absorption performance. Within this range, the shape of the powdery oxygen absorber can be maintained without supporting the thermoplastic resin (A) on the carrier, and excellent oxygen absorption performance can be exhibited. In addition, the handleability of the powdery oxygen absorber is improved. Furthermore, since it is difficult for the particles to be fused, it is possible to develop excellent high-temperature storage suitability. The Mooney viscosity is preferably 20 to 300, more preferably 20 to 150.
[0034] ムーニー粘度は、ポリマーの分子量、分子量分布、分岐構造、絡み合レ、点密度、 等の各種因子によって影響を受ける。これら各種因子は複雑にムーニー粘度に影響 するため、ムーニー粘度の値だけからこれらを一意的に決定することは困難である。  [0034] Mooney viscosity is affected by various factors such as the molecular weight, molecular weight distribution, branched structure, entanglement, and point density of the polymer. Since these various factors affect the Mooney viscosity in a complicated manner, it is difficult to determine them uniquely from only the Mooney viscosity value.
[0035] また熱可塑性樹脂 (A)に過酸化物を添加したり、熱可塑性樹脂 (A)を加熱したり、 更には熱可塑性樹脂 (A)に電子線や放射線等を照射することによって実質的に架 橋させたものは、ムーニー粘度が 400を超える。ここで「実質的に架橋させた」とは、 架橋処理を行なった熱可塑性樹脂を 25°Cのトルエンに 24時間浸漬しても溶解しな い状態を指す。本発明の粉状酸素吸収材は、トルエンに浸漬すると容易に溶解する  [0035] Further, by adding a peroxide to the thermoplastic resin (A), heating the thermoplastic resin (A), and further irradiating the thermoplastic resin (A) with an electron beam, radiation, or the like. The one that is bridged over has a Mooney viscosity of over 400. Here, “substantially crosslinked” refers to a state in which a thermoplastic resin subjected to crosslinking treatment does not dissolve even when immersed in toluene at 25 ° C. for 24 hours. The powdery oxygen absorber of the present invention dissolves easily when immersed in toluene.
[0036] なお、本発明でレ、ぅム一二一粘度とは、後述するように本発明の粉状酸素吸収材を 構成する熱可塑性樹脂 (A)を溶解再沈法により粉状酸素吸収材より分離し、 JIS K6 300に従って予備加熱時間 1分間、ロータの回転時間 4分間、試験温度 100°Cの条 件下にてムーニー粘度計で測定された値である。 [0036] In the present invention, the viscosity of the resin layer 121 means that the thermoplastic resin (A) constituting the powdered oxygen absorbing material of the present invention is dissolved in powdered oxygen by a reprecipitation method as described later. Separated from the material, JIS K6 According to 300, preheating time is 1 minute, rotor rotation time is 4 minutes, and measured with Mooney viscometer under test temperature of 100 ° C.
[0037] ここで熱可塑性樹脂 (A)のム一二一粘度は、後述する酸化促進成分 (B)を本発明 の範囲内の量であれば含んでいても殆ど影響がないので、その場合には酸化促進 成分 (B)が残存してレ、る状態で測定しても良レ、。  [0037] Here, the viscosity of the thermoplastic resin (A) has almost no effect even if it contains an oxidation promoting component (B) described later in an amount within the range of the present invention. Even if the oxidation promoting component (B) remains, it can be measured in the state where it is.
[0038] また、測定に供するまでの間に酸素吸収材が酸素を吸収して、ムーニー粘度が変 化してしまうことが懸念される場合には、フーリエ変換近赤外分光光度計(以下、 FT _IRと略す)で測定した酸素吸収反応により生成したカルボキシル基のピーク(例え ば、 l YlOcnT1のピーク)を熱可塑性樹脂(A)の 1 , 4トランス基のピーク(967cm—1) により除した値から下記式 1より酸素吸収量値を求め、この値を基に酸素を吸収する 前のムーニー粘度に補正する必要がある。 1, 4トランス基のピークが不明瞭な場合 は、 1, 4シス基やビュル基のピークを用いる。 [0038] If there is a concern that the oxygen absorber absorbs oxygen before the measurement and the Mooney viscosity changes, a Fourier transform near-infrared spectrophotometer (hereinafter referred to as FT) is used. The peak of the carboxyl group generated by the oxygen absorption reaction (abbreviated as _IR) (for example, l YlOcnT 1 peak) was divided by the 1, 4 trans group peak (967 cm- 1 ) of the thermoplastic resin (A). It is necessary to obtain the oxygen absorption value from the following formula 1 based on the value, and to correct the Mooney viscosity before absorbing oxygen based on this value. If the peak of the 1,4 trans group is unclear, use the peak of the 1,4 cis group or the bull group.
(式 1)酸素吸収量値(cc/g) = {FT—IRで測定した 1710cm_ 1のピーク高さ(cm) /FT— IRで測定した 967cm_ 1のピーク高さ(cm) } X係数 H (Equation 1) Oxygen absorption amount value (cc / g) = {FT -IR peak height of 1710 cm _ 1 was measured (cm) / FT-967 cm _ 1 peak height measured by IR (cm)} X Factor H
係数 Hは、実験により決められる値であり、熱可塑性樹脂 (A)がポリブタジエンの場 合、例えば、 504である。  The coefficient H is a value determined by experiment, and is 504, for example, when the thermoplastic resin (A) is polybutadiene.
[0039] 本発明の熱可塑性樹脂 (A)は、優れた酸素吸収性能を発揮させる上で示差走査 熱量計(DSC)で測定したとき結晶融解ピークを有さなレ、又は結晶融解ピークを有す る場合は融点が 75°C未満である。  [0039] The thermoplastic resin (A) of the present invention has a crystal melting peak or a crystal melting peak when measured with a differential scanning calorimeter (DSC) for exhibiting excellent oxygen absorption performance. In this case, the melting point is less than 75 ° C.
[0040] 結晶融解ピークを有し、融点が 75°C以上の場合は、樹脂の分子運動が制限されて 酸素吸収性能が悪化してしまうため好ましくない。同様の理由により、好ましくは融点 力 ¾5°C未満であり、より好ましくは融点が 50°C未満であり、さらに好ましくは結晶融解 ピークを有さなレ、ことである。  [0040] A crystal melting peak having a melting point of 75 ° C or higher is not preferable because the molecular motion of the resin is limited and the oxygen absorption performance deteriorates. For the same reason, the melting point is preferably less than 5 ° C, more preferably less than 50 ° C, and even more preferably no crystal melting peak.
[0041] また、本発明の熱可塑性樹脂 (A)は、樹脂の分子運動が制限されて酸素吸収性 能が悪化してしまうのを防ぐ観点から、結晶融解エネルギーは好ましくは lOOmjZm g未満である。同様の理由により、好ましくは結晶融解エネルギーが 50mj/mg未満 であり、より好ましくは結晶融解エネルギーが 20mjZmgであり、さらに好ましくは結 晶融解ピークを有さないことである。 [0042] 本発明における結晶融解ピーク(融点)及び結晶融解エネルギーとは、示差走査 熱量分析で測定した DSC曲線から得られるものであり、この測定方法は次に示すと おりである。 [0041] In addition, the thermoplastic resin (A) of the present invention preferably has a crystal melting energy of less than lOOmjZmg from the viewpoint of preventing the molecular motion of the resin from being restricted and deteriorating the oxygen absorption performance. . For the same reason, the crystal melting energy is preferably less than 50 mj / mg, more preferably the crystal melting energy is 20 mjZmg, and even more preferably no crystal melting peak. [0042] The crystal melting peak (melting point) and crystal melting energy in the present invention are obtained from a DSC curve measured by differential scanning calorimetry, and this measuring method is as follows.
[0043] 本発明の粉状酸素吸収材を構成する熱可塑性樹脂 (A)を溶解再沈法により粉状 酸素吸収材より分離し、 JIS K7121に準じ、試料約 lOmgを _ 50°Cから 200°Cの間 で 10°C/分の速度で昇温し、 5分間保持した後 200°Cから _ 50°Cの間で 10°C/分 の速度で降温し、 5分間保持した後更に _ 50°Cから 200°Cの間で 10°CZ分の速度 で昇温した 2度目の昇温で得られた DSC曲線の結晶融解ピーク温度を融点とする。 また、 JIS K7122に準じ、この DSC曲線に融解開始温度から融解終了温度の間に 引いた直線のベースラインで囲んだ面積の単位重量当たりのエネルギーを結晶融解 エネノレギ一とした。  [0043] The thermoplastic resin (A) constituting the powdery oxygen absorbing material of the present invention is separated from the powdered oxygen absorbing material by a dissolution reprecipitation method, and a sample of about 10 mg from _50 ° C to 200 ° C according to JIS K7121. Increase the temperature at a rate of 10 ° C / min between ° C and hold for 5 minutes, then decrease the temperature from 200 ° C to _50 ° C at a rate of 10 ° C / min, hold for 5 minutes and then further _ The melting point is the crystal melting peak temperature of the DSC curve obtained at the second temperature increase from 50 ° C to 200 ° C at a rate of 10 ° CZ. In addition, according to JIS K7122, the energy per unit weight of the area enclosed by a straight baseline drawn from the melting start temperature to the melting end temperature in this DSC curve was defined as the crystal melting energy.
[0044] ここで、熱可塑性樹脂 (A)の DSC測定は、後述する酸化促進成分 (B)を本発明の 範囲内の量であれば含んでいても殆ど影響がないので、その場合には酸化促進成 分 (B)が残存している状態で測定しても良い。  [0044] Here, the DSC measurement of the thermoplastic resin (A) has almost no effect even if it contains an oxidation promoting component (B) to be described later in an amount within the range of the present invention. The measurement may be performed with the oxidation promoting component (B) remaining.
(1 2)酸化促進成分 (B)  (1 2) Oxidation promoting component (B)
酸化促進成分 (B)は、酸素の存在下において熱可塑性樹脂 (A)の酸化を促進す る触媒作用を有する。酸化促進成分 (B)としては、通常の有機化合物の自動酸化に おいて知られているように、遷移金属触媒、亜鉛化合物やアルミニウム化合物等の酸 化触媒が好ましく用いられる。また、光開始剤、熱開始剤等の開始剤や発熱剤等も 挙げられる。  The oxidation promoting component (B) has a catalytic action for promoting the oxidation of the thermoplastic resin (A) in the presence of oxygen. As the oxidation accelerating component (B), an oxidation catalyst such as a transition metal catalyst, a zinc compound or an aluminum compound is preferably used, as is known in the auto-oxidation of ordinary organic compounds. Also included are initiators such as photoinitiators and thermal initiators, and exothermic agents.
[0045] ここで遷移金属触媒とは、周期表の第 1、第 2または第 3遷移系列から選択された 金属の塩で、少なくとも 2種の酸化状態の間で容易に相互転化し得るものが好ましい 具体的には、マンガン (II)または(111)、鉄(II)または(111)、コバルト(II)または(III )、ニッケル (II)または (III)、銅 (I)または (II)、ロジウム (II)、 (III)または (IV)、銀 (I) または (II)およびノレテニゥム(II)または(III)等が挙げられる。導入時の金属の酸化 状態は、活性形状のものに限られない。この金属の適当な対イオンには塩ィ匕物ィォ ン、酢酸イオン、ステアリン酸イオン、パルミチン酸イオン、 2—ェチルへキサン酸ィォ ン、ネオデカン酸イオン、ォレイン酸イオン、リノール酸イオン、リノレン酸イオン、オタ チル酸イオンまたはナフテン酸イオン等が例示できる。これ等の塩としては、 2—ェチ ルへキサン酸コバルト(II)、ォレイン酸コバルト(II)、ネオデカン酸コバルト(II)、ナフ テン酸コバルト、ナフテン酸銅、ナフテン酸鉄、等が例示できる。また、酸化銀、酸化 チタン、酸化亜鉛、ナフテン酸亜鉛、銀イオンを含有した抗菌剤等も好ましい例とし て挙げられる。 [0045] Here, the transition metal catalyst is a metal salt selected from the first, second or third transition series of the periodic table, which can be easily interconverted between at least two oxidation states. Preferable specifically, manganese (II) or (111), iron (II) or (111), cobalt (II) or (III), nickel (II) or (III), copper (I) or (II) Rhodium (II), (III) or (IV), silver (I) or (II), and norenium (II) or (III). The oxidation state of the metal at the time of introduction is not limited to the active form. Suitable counterions for this metal include salt ions, acetate ions, stearate ions, palmitate ions, 2-ethylhexanoate ions, neodecanoate ions, oleate ions, linoleate ions, Linolenic acid ion, ota Examples thereof include tyrate ion or naphthenate ion. Examples of these salts include cobalt 2-ethylhexanoate (II), cobalt oleate (II), cobalt neodecanoate (II), cobalt naphthenate, copper naphthenate, and iron naphthenate. it can. Further, silver oxide, titanium oxide, zinc oxide, zinc naphthenate, antibacterial agents containing silver ions, and the like are also preferable examples.
[0046] また、酸化促進成分 (B)が金属の脂肪酸塩などの場合、脂肪酸部分に炭素一炭 素不飽和結合を含んでいるものは、粉状酸素吸収材中の酸化促進成分 (B)が樹脂 構造中に取り込まれるため、粉状酸素吸収材成分力 触媒が漏れ出すことが少なく なり、好ましい。  [0046] Further, when the oxidation promoting component (B) is a metal fatty acid salt or the like, the component containing a carbon-carbon unsaturated bond in the fatty acid portion is the oxidation promoting component (B) in the powdery oxygen absorbent. Is incorporated into the resin structure, and the powdered oxygen absorbent component force catalyst is less likely to leak, which is preferable.
[0047] アルミニウム化合物等の酸化触媒としては、トリェチルアルミニウム、トリイソブチル アルミニウム、ジェチルアルミニウムクロライド、ェチルアルミニウムセスキク口ライド、ェ チルアルミニウムジクロライド、トリ— n_オタチルアルミニウム等のアルキルアルミユウ ム類等が、例示できる。  [0047] Examples of oxidation catalysts for aluminum compounds include alkylaluminum such as triethylaluminum, triisobutylaluminum, jetylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, and tri-n_octylaluminum. Examples can be exemplified.
[0048] 光開始剤としては、ラジカル系光重合開始剤、カチオン系光重合開始剤、ァニオン 系光重合開始剤などが挙げられ、ベンゾフエノン、アントラキノン、ナフトキノン、ベン ゾキノンが好ましレ、例として挙げられる。  [0048] Examples of the photoinitiator include a radical photopolymerization initiator, a cationic photopolymerization initiator, an anion photopolymerization initiator, and the like, and benzophenone, anthraquinone, naphthoquinone, and benzoquinone are preferred. It is done.
[0049] 酸化促進成分 (B)の含有量は、熱可塑性樹脂 (A)中に 0. 0001重量%以上 5重 量%以下とするのが好ましい。好ましくは 0. 001重量%以上 3重量%以下である。遷 移金属触媒の場合は、金属含有量 (配位子、対イオン等を除く)を基準にして、熱可 塑性榭脂 (A)中に、好ましくは 0. 0001重量%以上 5重量%以下、より好ましくは 0.0 01重量%〜2重量%、更に好ましくは 0. 01重量%〜: 1. 5重量%の範囲である。  [0049] The content of the oxidation promoting component (B) is preferably 0.0001 wt% or more and 5 wt% or less in the thermoplastic resin (A). Preferably it is 0.001 to 3 weight%. In the case of a transition metal catalyst, based on the metal content (excluding ligands, counterions, etc.), preferably in the thermoplastic resin (A), preferably from 0.0001% to 5% by weight More preferably, it is in the range of 0.001 wt% to 2 wt%, more preferably 0.01 wt% to 1.5 wt%.
[0050] ただし、本発明の粉状酸素吸収材は比表面積を大きくすることで酸素との反応性が 高まるため、比表面積が大きいほど酸化促進成分 (B)は少なくて良ぐ上記熱可塑 性樹脂 (A)中に残留してレ、る微量の重合触媒のみで、有効な酸化触媒となる場合も ある。  [0050] However, since the powdery oxygen absorber of the present invention increases the reactivity with oxygen by increasing the specific surface area, the larger the specific surface area, the less the oxidation promoting component (B) may be. In some cases, only a small amount of the polymerization catalyst remaining in the resin (A) can be an effective oxidation catalyst.
(1一 3)その他の成分  (1 1 3) Other ingredients
本発明の粉状酸素吸収材は、各種の下記に例示した成分を含んでもよい。 (1一 3— 1)酸化防止剤 (C) 酸化防止剤(c)は、重合体の酸化分解または架橋を阻止する全ての物質で、フエ ノール系酸化防止剤、リン酸系酸化防止剤、ィォゥ系酸化防止剤、ヒンダードァミン 系酸化防止剤、及びラタトン系酸化防止剤が例示出来る。 The powdery oxygen absorber of the present invention may include various components exemplified below. (1 3-1) Antioxidant (C) Antioxidants (c) are all substances that block the oxidative degradation or crosslinking of polymers, such as phenolic antioxidants, phosphoric antioxidants, phenolic antioxidants, hindered amine antioxidants, and An example is a rataton antioxidant.
[0051] 本発明の粉状酸素吸収材において、酸化防止剤(C)を熱可塑性重合体 (A)中に 50ppm〜1000ppm含有することカ好ましレヽ。  [0051] In the powdery oxygen absorbing material of the present invention, it is preferable that the antioxidant (C) is contained in the thermoplastic polymer (A) in an amount of 50 ppm to 1000 ppm.
[0052] 酸化防止剤(C)の存在量が多すぎると粉状酸素吸収材の酸素吸収反応を妨げる ために、誘導期間が非常に長くなつてしまう。一方その存在量が少なすぎると、後述 する好ましい本発明の粉状酸素吸収材の製法における溶融混合工程などの成型カロ ェ中等に熱可塑性重合体が酸化してしまい粉状酸素吸収材としての酸素吸収性能 が低下してしまったり、誘導期間が短すぎてユーザーが使用する際に酸素に曝して 力 食品等の物品と共に包装するまでの間(ユーザーの作業時間)に大気中の酸素 と反応して酸素吸収特性が消費されてしまったりする。これらの理由により、酸化防止 斉 IJ (C)の添カロ量は、 50ppm〜1000ppm力 S好ましく、 100ppm〜800ppm力 Sより好ま しい。  [0052] If the amount of the antioxidant (C) is too large, the oxygen absorption reaction of the powdery oxygen absorbent is hindered, and the induction period becomes very long. On the other hand, if the abundance is too small, the thermoplastic polymer is oxidized during the molding calorie such as the melt mixing step in the production method of the preferred powdery oxygen absorbent material of the present invention described later, and the oxygen as the powdery oxygen absorbent material. Absorption performance is reduced, or the induction period is too short, so that it is exposed to oxygen when used by the user. Oxygen absorption characteristics are consumed. For these reasons, the amount of added calories in the antioxidant IJ (C) is preferably 50 ppm to 1000 ppm force S, more preferably 100 ppm to 800 ppm force S.
[0053] ここで、誘導期間とは、粉状酸素吸収材が酸素に曝された時点から有用な酸素吸 収を開始するまでの時間のことを言う。すなわち、ユーザーが酸素吸収効果を所望し 粉状酸素吸収材を使用開始してから有用な酸素吸収性能を発現し始めるまでの期 間のことであり、ユーザーにおける効果発現までの待機期間のことである。この誘導 期間は、用途にもよる力 一般には数時間から数日以内であることが好ましい。特に 、饅頭、フルーツケーキ、人形焼、惣菜や弁当類等の傷みの速い食品等に利用する 場合は、この誘導期間は短いほうがよぐ一例として 6時間以下が良い。また、あまり にも誘導期間が短すぎると、ユーザーが粉状酸素吸収材を酸素に曝してから酸素の 影響を受けて変質し易い各種物品とともに包装するまでの間(ユーザーの作業時間) に酸素吸収特性が消費されるため、ある程度の長さ以上が好ましぐ一例として 30分 以上が好ましい。  Here, the induction period refers to the time from when the powdered oxygen absorber is exposed to oxygen until the start of useful oxygen absorption. In other words, it is the period from when the user wants an oxygen absorption effect and starts using the powdered oxygen absorber until it begins to develop useful oxygen absorption performance, and is the waiting period until the effect is achieved by the user. is there. This induction period is preferably a few hours to a few days, depending on the application. In particular, when it is used for fast-scratched foods such as buns, fruit cakes, doll baked foods, side dishes and lunch boxes, this induction period should be shorter than 6 hours as an example. Also, if the induction period is too short, the oxygen is absorbed during the period from when the user exposes the powdered oxygen absorber to oxygen until it is packaged with various items that are susceptible to alteration by oxygen (user working time). As an example in which absorption characteristics are consumed, a length of a certain length or more is preferable, 30 minutes or more is preferable.
[0054] ここで誘導期間を制御する上では、酸化防止剤(C)はラジカル捕捉効果のあるもの が好ましぐより好ましくはパーォキシラジカル捕捉効果のあるものである。これらのも のとして、フエノール系酸化防止剤、ヒンダードアミン系酸化防止剤が挙げられる。 [0055] フエノール系酸化防止剤を例示すれば、 2, 6 ビス(2' —ヒドロキシー 3' — t ブチルー 5—メチルベンジル)ー4 メチルフエノール、 4, 4ーメチレン ビス一(6— tーブチルー 2—メチルフエノール)、 4, 4ーメチレン ビスー(2, 6—ジ tーブチノレ フエノール)、 2, 6—ジ _t_ブチル _4_メチルフエノール、 4, 一チォ一ビス一( 6_t_ブチル _3_メチルフエノール)、 4, 一ブチリデンビス一(6_t_ブチル _3_メチルフエノール)、 2, 2' —メチレン一ビス一(4—メチル _6_t_ブチルフエ ノール)、 2, 2' —メチレン一ビス一(4—ェチル _ 6 _t_ブチルフエノール)、 2, 6 —ジ _t_ブチル _4_ェチルフエノール、 1, 1, 3—トリス(2—メチル _4—ヒドロキ シ _5_t_ブチルフエニル)ブタン、 n—ォクタデシル一 3_(4—ヒドロキシ _3, 5- ジ _t_ブチルフエニル)プロピオネート、テトラキス [メチレン一 3_ (3, 5—ジ _t_ ブチル _4—ヒドロキシフエニル)プロピオネート]メタン、 2, 5_ジ一 t—アミルヒドロキ ノン、 2, 5_ジ一 t—ブチルヒドロキノン、ハイドロキノン、 p—メトキシフエノール、 2_t ブチルハイドロキノン、 n ォクタデシルー 3—( ーヒドロキシ 3 , 5 —ジー t ブチルフエ二ノレ)プロピオネート、トリエチレングリコール ビス [3—(3— t ブチ ノレ一 5—メチル 4—ヒドロキシフエニル)プロピオネート]、 1, 6—へキサンジオール —ビス [3— (3, 5 ジ一 t ブチル 4 ヒドロキシフエニル)プロピオネート]、 2, 4 ビス一(n—ォクチルチオ) -6- (4ーヒドロキシ 3, 5—ジ tーブチルァニリノ) —1, 3, 5—トリァジン、ペンタエリスリチル一テトラキス [3— (3, 5—ジ一 t ブチノレ 4ーヒドロキシフエ二ノレ)プロピオネート]、 2, 2 チォージエチレンビス [3— (3, 5 —ジ一 t ブチル 4—ヒドロキシフエニル)プロピオネート]、ォクタデシルー 3— (3, 5—ジ tーブチルー 4ーヒドロキシフエニル)プロピオネート、 N, N' —へキサメチレ ンビス(3, 5—ジ _t_ブチル _4—ヒドロキシ一ヒドロシンナムアミド)、 3, 5_ジ一 t —ブチル _4—ヒドロキシ一ベンジルフォスフォネート一ジェチルエステル、 1, 3, 5 —トリメチノレ一2, 4, 6_トリス(3, 5_ジ一ブチル _4—ヒドロキシベンジル)ベンゼン 、 2, 4_ビス [(ォクチルチオ)メチル ]_o_クレゾール、その他ひ一トコフエロール等 のトコール誘導体等が挙げられる。 [0054] In controlling the induction period, the antioxidant (C) is preferably one having a radical scavenging effect, more preferably one having a peroxy radical scavenging effect. These include phenolic antioxidants and hindered amine antioxidants. [0055] Examples of phenolic antioxidants include 2,6bis (2'-hydroxy-3'-t-butyl-5-methylbenzyl) -4 methylphenol, 4,4-methylene bis (6-t-butyl-2- Methyl phenol), 4,4-methylene bis (2, 6-di-tert-butylenophenol), 2,6-di-t_butyl _4_methyl phenol, 4, mono-bis-bis (6_t_butyl _3_methyl phenol), 4, 1-Butylidenebis (6_t_Butyl_3_Methylphenol), 2, 2 '—Methylenebis (4-methyl-6_t_Butylphenol), 2, 2'—Methylenebis (4-ethyl) _6_t _Butylphenol), 2, 6 —Di _t_Butyl _4_Ethylphenol, 1, 1,3-Tris (2-methyl _4—Hydroxy _5_t_Butylphenyl) butane, n-octadecyl 1_ (4-Hydroxy _3,5 -Di_t_butylphenyl) pro Onate, tetrakis [methylene mono 3_ (3,5-di-t_butyl _4-hydroxyphenyl) propionate] methane, 2,5-di-t-amylhydroquinone, 2,5-di-di-t-butylhydroquinone, hydroquinone, p-methoxyphenol, 2_t butylhydroquinone, n-octadecyl-3-(-hydroxy-3,5--di-t-butylphenol) propionate, triethyleneglycol bis [3- (3-t-butylphenol 5-methyl-4-hydroxyphenyl) Propionate], 1, 6-hexanediol —bis [3— (3, (3,5 di-tert-butyl 4-hydroxyphenyl) propionate], 2,4 bis- (n-octylthio) -6- (4-hydroxy 3,5 —Di-tert-butylanilino) —1, 3, 5-triazine, pentaerythrityl tetrakis [3— (3, 5-didibutynole 4-hydroxypheninole Propionate], 2, 2 thiodiethylenebis [3— (3,5—di-tert-butyl 4-hydroxyphenyl) propionate], octadecyl-3— (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N '—hexamethylenbis (3,5-di-t_butyl_4-hydroxymonohydrocinnamamide), 3,5_di-t-butyl _4-hydroxy monobenzylphosphonate monojetyl ester, 1 , 3, 5 — Trimethylolene 2, 4, 6_tris (3, 5_dibutyl _4-hydroxybenzyl) benzene, 2, 4_bis [(octylthio) methyl] _o_cresol, other tocopherols, etc. And tocol derivatives.
[0056] リン系酸化防止剤を例示すれば、トリフヱニルホスファイト、トリス(2—ェチルへキシ ノレ)ホスファイト、トリデシノレホスファイト、トリス(トリデシノレ)ホスファイト、テトラ(トリデシ ノレ) 4, A' —イソプロピリデン一ジフエ二ノレ一ジホスフアイト、トリラウリル一トリチォ ホスファイト、トリス(2, 4 ジ一 t ブチルフエニル)ホスファイト、トリス(ノニレイティド —フエ二ノレ)ホスファイト、ジステアリルペンタエリスリトールジホスフアイト、 2, 2—メチ レンビス(4, 6—ジ _t _ブチルフエニル)ォクチルホスファイト、ビス(2, 6—ジ _t _ ブチル一メチルフヱニル)ペンタエリスリトール一ジホスファイトが挙げられる。 [0056] Examples of phosphorus antioxidants include triphenyl phosphite, tris (2-ethylhexyleno) phosphite, tridecino phosphite, tris (tridecino) phosphite, tetra (trideci Nore) 4, A '—isopropylidene didiphenol diphosphite, trilauryl monotrithiophosphite, tris (2,4 di-t-butylphenyl) phosphite, tris (nonilated-phenenole) phosphite, distearyl pentaerythritol Examples include diphosphite, 2,2-methylenebis (4,6-di_t_butylphenyl) octyl phosphite, and bis (2,6-di_t_butyl monomethylphenyl) pentaerythritol monodiphosphite.
[0057] ィォゥ系酸化防止剤を例示すれば、テトラキス [メチレン _ 3 _ (ドデシルチオ)プロ ピオネート]メタン、 Ni _ジブチル一ジチォ一力ルバメート、 Zn_ジブチル一ジチォ —力ルバメート、 Cd_ェチル一フエニル一ジチォ一力ルバメート、チォ尿素、 2 _メノレ カプト—ベンズイミダゾール、ジラウリルチオジプロピオネート、ジステアリルチオジプ 口ピオネート等が挙げられる。  [0057] Examples of thio antioxidants include tetrakis [methylene _ 3 _ (dodecylthio) propionate] methane, Ni _ dibutyl 1 dithio 1 force rubamate, Zn_dibutyl 1 dithio 1 force rubamate, Cd_ethyl 1 phenyl 1 dithiol rubamate, thiourea, 2_menolecapto-benzimidazole, dilauryl thiodipropionate, distearyl thiodipropionate pionate.
[0058] ヒンダードアミン系酸化防止剤としては、コハク酸ジメチル _ 1 _ (2—ヒドロキシェチ ノレ) _ 4—ヒドロキシ一2, 2, 6, 6—テトラメチルピペリジン重縮合物、ポリ [ { (6 1 , 3, 3 テトラメチルブチル)ァミノ一 1 , 3 , 5 トリアジン一 2, 4—ジィル) } { ( (2, 2 , 6 , 6 テトラメチル一 4—ピペリジル)イミノ}へキサメチレン { (2, 2, 6 , 6 テトラメ チル一 4—ピペリジル)ィミノ }]、 N, N '—ビス(3—ァミノプロピル)エチレンジァミン一 2, 4—ビス [N ブチノレ一 N— ( 1 , 2, 2, 6, 6—ペンタメチル一 4ピペリジル)ァミノ] 6—クロロー 1 , 3, 5—トリアジン縮合物などが挙げられる。  [0058] Examples of hindered amine antioxidants include dimethyl succinate _ 1 _ (2-hydroxyethynole) _ 4-hydroxy-1,2,2,6,6-tetramethylpiperidine polycondensate, poly [{(6 1, 3,3 tetramethylbutyl) amino 1,3,5 triazine 1,2,4-diyl)} {((2,2,6,6 tetramethyl-1-piperidyl) imino} hexamethylene {(2, 2, 6,6 tetramethyl-1-4-piperidyl) imino}], N, N'-bis (3-aminopropyl) ethylenediamine-1,2,4-bis [N butynole N- (1, 2, 2, 6, 6-pentamethyl 1-piperidyl) amino] 6-chloro-1,3,5-triazine condensate.
[0059] ラタトン系酸化防止剤としては 3 ヒドロキシ 5, 7 ジ tーブチルーフランー2— オンと o キシレンとの反応生成物などが挙げられる。  [0059] Examples of the rataton antioxidant include a reaction product of 3hydroxy-5,7-di-butyl-furan-2-one and o-xylene.
[0060] 2種類以上の酸化防止剤を併用して配合する場合、フエノール系酸化防止剤を 50 ppm〜1000ppm配合し、他の種類の酸化防止剤を 50ppm以上配合することは、安 定した加工性と高い酸素吸収性能を両立させやすいため好ましい。  [0060] When two or more types of antioxidants are used in combination, phenolic antioxidants are added at 50 ppm to 1000 ppm, and other types of antioxidants are added at 50 ppm or more to ensure stable processing. This is preferable because it is easy to achieve both high performance and high oxygen absorption performance.
( 1— 3— 2)微粒子 (D)  (1— 3— 2) Fine particles (D)
微粒子 (D)は、熱可塑性樹脂 (A)と酸化促進成分 (B)からなる主剤に適当な形状 を付与および維持し、少なくとも粉状酸素吸収材の製造時及び保管時の条件下で前 記主剤が相互に付着しにくくなる働きを有する。  The fine particles (D) give and maintain an appropriate shape to the main agent composed of the thermoplastic resin (A) and the oxidation promoting component (B), and are at least as described above under the conditions at the time of production and storage of the powdery oxygen absorbent. The main agent has a function of making it difficult to adhere to each other.
[0061] 微粒子(D)の少なくとも一部力 前記主剤の表面の少なくとも一部に位置するよう にして前記主剤に一体化する。これにより、前記主剤どうしの付着を防止できるように なる。好ましくは、前記主剤の表面全体に微粒子(D)を位置せしめることである。 [0061] At least a partial force of the fine particles (D) is integrated with the main agent so as to be positioned on at least a part of the surface of the main agent. This prevents the adhesion of the main ingredients Become. Preferably, the fine particles (D) are positioned over the entire surface of the main agent.
[0062] 微粒子(D)は、その一次粒子の平均粒径が 0. 01 μ m〜lmmであることが好ましく 、より好ましくは 0. 05 μ m〜500 μ m、さらに好ましくは 0. 1 μ m〜100 μ mである。 このような範囲で、粉状酸素吸収材の表面に凹凸が生じて、粉状酸素吸収材相互の 付着が防止されやすぐその結果、大きい表面積が確保される。  The fine particles (D) preferably have an average primary particle size of 0.01 μm to 1 mm, more preferably 0.05 μm to 500 μm, and still more preferably 0.1 μm. m to 100 μm. Within such a range, irregularities occur on the surface of the powdery oxygen absorber, and adhesion between the powdery oxygen absorbers is prevented and as a result, a large surface area is secured.
[0063] また同様の理由により、前記主剤の平均粒径を、前記微粒子(D)の一次粒径で除 した値力 S1.:!〜 500000であること力 S好ましく、より好ましくは 2〜: 10000、さらに好ま しくは 5〜: 1000である。この範囲で、微粒子(D)が酸素吸収材 (A)の表面に凹凸を 形成し、粉状酸素吸収材粒子同士の付着が生じにくくなる。  [0063] For the same reason, the value S1 .:! To 500,000 obtained by dividing the average particle size of the main agent by the primary particle size of the fine particles (D) is preferably S, more preferably 2 to: 10000, more preferably 5 to 1000. Within this range, the fine particles (D) form irregularities on the surface of the oxygen absorber (A), and adhesion between the powdery oxygen absorber particles is less likely to occur.
[0064] このような微粒子(D)としては、高温環境下(例えば 40°C)で互いに付着しにくい通 常の固体粒子であればよぐ無機物の粒子(D1)でも有機物の粒子(D2)でも構わな レ、。なお、相互に付着しにくいか否かの判断は、微粒子(D)の一次粒子を容器に入 れて 40°Cに 1日放置し、光学顕微鏡又は電子顕微鏡等による観察によって二次粒 子への;凝集が生じるか否かで判断することができる。  [0064] As such fine particles (D), inorganic particles (D1) or organic particles (D2) may be used as long as they are ordinary solid particles that do not easily adhere to each other in a high temperature environment (for example, 40 ° C). But it ’s okay. Whether or not it is difficult to adhere to each other is determined by placing the primary particles of the fine particles (D) in a container and leaving them at 40 ° C for 1 day, and then observing them with secondary microscopes by observation with an optical microscope or electron microscope. It can be judged by whether or not aggregation occurs.
[0065] ここでいう付着とは、機械的相互作用、物理的相互作用、化学的相互作用、静電 相互作用等の力によって種類の異なる二物質が互いに固着してレ、ることをレ、う。  [0065] As used herein, adhesion means that two different types of substances adhere to each other by forces such as mechanical interaction, physical interaction, chemical interaction, and electrostatic interaction. Yeah.
[0066] 粉状酸素吸収材における微粒子(D)の含有量は、酸素吸収材の単位重量あたり の化学量論的な酸素吸収量を大きくする観点では微粒子(D)の含有量は小さいほ ど好ましいが、微粒子 (D)の含有量が小さいと粉状酸素吸収材粒子同士の付着防 止効果が小さくなる傾向にある。微粒子(D)の含有量の範囲は、粉状酸素吸収材中 の熱可塑性樹脂 (A) 100重量部に対して、 10〜: 1000重量部が好ましぐより好まし くは 30〜450重量部である。無機物の粒子(D1)としては、金属、金属化合物、その 他の無機物質の粒子が挙げられる。  [0066] The content of the fine particles (D) in the powdery oxygen absorbent is such that the content of the fine particles (D) is small in view of increasing the stoichiometric oxygen absorption per unit weight of the oxygen absorbent. Although it is preferable, when the content of the fine particles (D) is small, the adhesion preventing effect between the powdery oxygen absorbent particles tends to be small. The content range of the fine particles (D) is 10 to 1000 parts by weight, preferably 30 to 450 parts by weight, with respect to 100 parts by weight of the thermoplastic resin (A) in the powdery oxygen absorbent. Part. Examples of the inorganic particles (D1) include particles of metals, metal compounds, and other inorganic substances.
[0067] 金属の粒子としては、鉄粉、アルミニウム粉、洋金粉、銅粉、マグネシウム粉、マグ ナリウム粉 (アルミとマグネシウムの合金粉)、等が挙げられ、好ましくは、鉄粉、アルミ ニゥム粉である。  [0067] Examples of the metal particles include iron powder, aluminum powder, gold powder, copper powder, magnesium powder, and magnesium powder (alloy powder of aluminum and magnesium), preferably iron powder and aluminum powder. It is.
[0068] 金属化合物の粒子としては、酸化物、水酸化物、アルミン酸塩、アルミノケィ酸塩、 硫酸塩、リン酸塩等の粒子が挙げられる。好ましくは、アルミニウム化合物の粒子であ り、より好ましいのはアルミニウムの酸化物と水酸化物の粒子である。アルミニウムの 酸化物と水酸化物の粒子としては、 α—アルミナ、 γ—アルミナ、 r?ーァノレミナ、 δ アルミナ、 χ アルミナ、 ρ アルミナ、活性アルミナ等の無水アルミニウム化合物 や、 Al (OH) または Al〇 - 3H Oで表されるギブサイト、バイャライト、ノルストランダ [0068] Examples of the metal compound particles include oxide, hydroxide, aluminate, aluminosilicate, sulfate, phosphate, and the like. Preferably, aluminum compound particles More preferred are aluminum oxide and hydroxide particles. Aluminum oxide and hydroxide particles include α-alumina, γ-alumina, r-aminoremina, δ-alumina, χ-alumina, ρ-alumina, anhydrous aluminum compounds such as activated alumina, and Al (OH) or AlO. -Gibbsite, bayerite, norstranda represented by 3H O
3 2 3 2  3 2 3 2
イト等のアルミニウム化合物の三水和物や、 Α1〇(ΟΗ)または Al〇 · Η〇で表され  It is represented by trihydrate of aluminum compounds such as Ito and Α10 (ΟΗ) or Al〇 · · 〇
2 3 2  2 3 2
るべ一マイト、ダイァスポア等のアルミニウム化合物の一水和物や、さらにトーダイト( Monohydrate of aluminum compounds such as rube-mite and diaspore, and todite (
5A1 Ο · Η〇)や、ァノレミナゲノレ (A1〇 · ηΗ Ο)等の粒子が挙げられる。更に好ましAnd particles such as 5A1 Η · Η〇) and anoreminagenore (A1〇 ηΗ Ο). More preferred
2 3 2 2 3 2 2 3 2 2 3 2
い例として、ベーマイト、活性アルミナの粒子が挙げられる。その他に、好ましい例と してゼォライト等の粒子が挙げられる。  Examples thereof include boehmite and activated alumina particles. Other preferred examples include particles such as zeolite.
[0069] その他の無機物質の粒子として、シリカゲル、活性白土、活性炭、パーライト、砂、 岩石、変成岩、火成岩、堆積岩、花崗岩、炭化ケィ素、酸化クロム、ダイヤモンド、窒 化ケィ素、ジルコユア、窒化ホウ素、等の粒子が挙げられ、好ましくは活性炭、パーラ イト等の粒子が挙げられる。  [0069] As particles of other inorganic substances, silica gel, activated clay, activated carbon, pearlite, sand, rock, metamorphic rock, igneous rock, sedimentary rock, granite, carbide, chromium oxide, diamond, nitrided nitride, zirconia, boron nitride , Etc., and preferably particles such as activated carbon and pearlite.
[0070] 有機物の粒子 (D2)としては、樹脂粉、食品粉、その他の有機物質の粒子が挙げら れる。  [0070] Examples of the organic particles (D2) include resin powder, food powder, and other organic particles.
[0071] 樹脂粉としては熱可塑性樹脂の粒子でも熱硬化性樹脂の粒子でもよぐたとえば、 ポリエチレン、ポリ 4フッ化工チレン、ポリプロピレン、ポリ塩化ビエル、ポリスチレン、ポ リビニルアルコール、ポリアクリロニトリル、ポリ 1ブテン、ポリ酢酸ビュル、ポリフッ化ビ ニル、ポリ 4メチルペンテン 1、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリメタタリ ノレ酸メチル、ポリ塩化 3フッ化工チレン、ポリブタジエン、ポリイソプレン、ポリクロロプレ ン、ポリ 3ヒドロキシブチレート、ポリ 3ヒドロキシバリレート、ポリ乳酸、ポリ ε力プロラクト ン、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリエチレンテレフタレート、 ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、 ポリ 1—4シクロへキシレンジメチレンテレフタレート、ポリアミド 6、ポリアミド 12、ポリア ミド 46、ポリアミド 66、ポリアミド 610、ポリノ ラフェニレンテレフタノレアミド、ポリメタフエ 二レンイソフタルアミド、ポリオキシメチレン、ポリエチレンォキシド、ポリフエ二レンォキ シド、ポリフエ二レンスルフイド、ポリエーテルスルホン、ポリエーテルエーテルケトン、 ポリジメチノレシロキサン、ポリカーボネート、ポリウレタン、ポリイミド、エポキシ樹脂、尿 素樹脂、メラミン樹脂、フエノール樹脂、不飽和ポリエステル樹脂、アクリロニトリル一 ブタジエン一スチレン、スチレンアクリロニトリル、エチレン酢酸ビエル、等の粉が挙げ られる。また、天然ゴムラテックス、スチレンブタジエンゴムラテックス、二トリルゴムラテ ッタス、クロロプレンゴムラテックス、イソプレンゴムラテックス、 DPL (解重合ラテックス) 、 EPDM (エチレンプロピレンジェンゴム)、アクリルェマルジヨン、ポリウレタン系のラ テックス等のラテックスも好ましい例として挙げられる。 [0071] The resin powder may be thermoplastic resin particles or thermosetting resin particles. For example, polyethylene, polytetrafluoroethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl alcohol, polyacrylonitrile, poly 1 Butene, poly (vinyl acetate), poly (vinyl fluoride), poly (4-methylpentene) 1, poly (vinylidene chloride), poly (vinylidene fluoride), poly (methyl methacrylate), poly (chlorotrichloroethylene), polybutadiene, polyisoprene, polychloroprene, poly (3-hydroxybutyrate) , Poly-3-hydroxyvalerate, polylactic acid, poly ε-force prolacton, polyethylene succinate, polybutylene succinate, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate Polyamide 1-4 Polycyclohexylene dimethylene terephthalate, Polyamide 6, Polyamide 12, Polyamide 46, Polyamide 66, Polyamide 610, Polyphenylene terephthalanolamide, Polymetaphenylene diisophthalamide, Polyoxymethylene, Polyethylene Koxide, Polyphenylene oxide, Polyphenylene sulfide, Polyethersulfone, Polyetheretherketone, Polydimethylolsiloxane, Polycarbonate, Polyurethane, Polyimide, Epoxy resin, Urine Examples thereof include powders of an organic resin, a melamine resin, a phenol resin, an unsaturated polyester resin, acrylonitrile monobutadiene styrene, styrene acrylonitrile, ethylene acetate vinyl, and the like. Natural rubber latex, styrene butadiene rubber latex, nitrile rubber latex, chloroprene rubber latex, isoprene rubber latex, DPL (depolymerization latex), EPDM (ethylene propylene rubber), acrylic emulsion, polyurethane latex, etc. The latex is also a preferred example.
[0072] 食品粉としては、煮干し、昆布、ゴマ若しくは桜海老等の粉砕物、または、小麦粉、 うどん粉、そば粉、コーヒー粉若しくは茶粉などの粉末等が例として挙げられ、好まし くは小麦粉が挙げられる。その他の有機物質の粒子として、紙や草の粉末等が挙げ られる。 [0072] Examples of the food powder include boiled and dried, kelp, sesame or cherry shrimp, or powder such as wheat flour, udon powder, buckwheat flour, coffee powder or tea powder. Examples include flour. Examples of other organic particles include paper and grass powder.
(1一 3_ 3)脱臭剤、消臭剤 (E)  (1-3_3) Deodorant, Deodorant (E)
また本発明の粉状酸素吸収材には、製造中もしくは製造後に脱臭剤や消臭剤 (E) を添加しても良い。これは、熱可塑性樹脂 (A)の酸化反応が進行する際に分解反応 が起こり、低分子量アルデヒド、ケトン、エステルなどの悪臭を発生する場合があり、そ の臭いを取り除くのに適しているからである。  In addition, a deodorant or a deodorant (E) may be added to the powdery oxygen absorbent of the present invention during or after production. This is because a decomposition reaction occurs when the oxidation reaction of the thermoplastic resin (A) proceeds, which may generate malodors such as low molecular weight aldehydes, ketones, esters, etc., and is suitable for removing such odors. It is.
[0073] 脱臭剤としては、例えば活性炭、ゼォライト、アモルファスシリカ、シクロデキストリン 、セピオライト、セラミックス、シリカゲル等があり、活性炭にアミン類等の物質を化学 処理したもの、例えば、 日本エンバイロケミカノレズ社製の粒状白鷺 GAAxは好ましい 例である。  [0073] Examples of the deodorizer include activated carbon, zeolite, amorphous silica, cyclodextrin, sepiolite, ceramics, silica gel, and the like, which are obtained by chemically treating activated carbon with a substance such as amines, for example, manufactured by Nippon Environment Chemicals Co., Ltd. The granular birch GAAx is a preferred example.
[0074] 消臭剤としては、ポリエチレンィミン等のポリアルキレンィミン、ビタミン E、トコフエノ ール、酸化チタン、ヒドラジン誘導体、ァミン化合物(ペンタエチレンへキサミン、トリエ チレンテトラミン、ポリビュルォキサゾリン、等)、無機塩基化合物(酸化カルシウム、水 酸化カルシウム、炭酸カルシウム、等)、フラボノイド防臭剤、ポリフエノール、テレビン 油、活性酸化アルミニウム、ケィ酸マグネシウム、ケィ酸アルミニウム、等が挙げられる  [0074] Deodorants include polyalkylene imines such as polyethyleneimine, vitamin E, tocophenol, titanium oxide, hydrazine derivatives, ammine compounds (pentaethylenehexamine, triethylenetetramine, polybuluoxazoline, Etc.), inorganic base compounds (calcium oxide, calcium hydroxide, calcium carbonate, etc.), flavonoid deodorants, polyphenol, turpentine oil, active aluminum oxide, magnesium silicate, aluminum silicate, etc.
[0075] 以下に、本発明の粉状酸素吸収材の構造について説明する。 [0075] The structure of the powdery oxygen absorbent of the present invention will be described below.
(2— 1)形状  (2-1) Shape
本発明の酸素吸収材は粉状である。ここで粉状とは「こなのような状態 (岩波書店 広辞苑 第 2版より)」であり、こなとは「砕けてこまかになったもの。粉末。 (岩波書店 広辞苑 第 2版より)」のことである。粉状であれば、粉末状、微粒子状、粒状、球状、 板状、円柱状、円筒状、針状、顆粒状、燐片状、繊維状等のいずれの形状でも良い 、比表面積が大きく酸素と接触しやすい粉末状、微粒子状、板状、針状、燐片状 等の形状がより好ましい。 The oxygen absorbing material of the present invention is powdery. Here, the powdery state means “Kona-like state (Iwanami Shoten "From Kanjitsu 2nd edition)", Kona means "Smashed and crushed. Powder (From Iwanami Shoten 2nd edition)". As long as it is in powder form, it may be in any form such as powder form, fine particle form, granular form, spherical form, plate form, columnar form, cylindrical form, needle form, granular form, flake form, fibrous form, etc. A shape such as a powder, a fine particle, a plate, a needle, or a flake is easy to come into contact with.
(2— 2)比表面積  (2-2) Specific surface area
本発明の粉状酸素吸収材は、酸素吸収に寄与すべき有効表面積の観点から、 Kr ガス吸着法により求められる比表面積力 60cm2Zg以上であり、好ましくは 600cm2 /g以上、さらに好ましくは 2000cm2Zg以上である。 The powdery oxygen absorber of the present invention has a specific surface area force of 60 cm 2 Zg or more, preferably 600 cm 2 / g or more, more preferably, from the viewpoint of the effective surface area that should contribute to oxygen absorption, by the Kr gas adsorption method. More than 2000cm 2 Zg.
(2— 3)粒子径  (2-3) Particle size
本発明の粉状酸素吸収材は、粉状酸素吸収材の酸素吸収性能と取扱いのし易さ や小袋に入れた場合の粉漏れし難さ等の理由により、後述する方法によって求めら れた平均粒径が一般には 0. 01 /i m〜5mmであり、好ましくは 0. 01 μ ΐη〜1ιηπιで ある。  The powdered oxygen absorbent material of the present invention was obtained by the method described later for reasons such as the oxygen absorption performance of the powdered oxygen absorbent material, ease of handling, and difficulty in powder leakage when placed in a sachet. The average particle size is generally from 0.01 / im to 5 mm, preferably from 0.01 μΐη to 1ιηπι.
[0076] 微粒子 (D)を含まずに熱可塑性樹脂 (Α)及び酸化促進剤 (Β)からなる粉状酸素 吸収材では、一次粒子径は 0. 01〜: 10 μ ΐη程度であり、好ましくは 0. 01 μ ΐη〜5 /ι mである。また、これらの一次粒子が凝集して凝集粒子を形成している構造 (凝集構 造)は、酸素吸収性能および構造の安定化の観点等から好ましい。この凝集粒子とし ての平均粒径は、一般には 0. 01 /i m〜5mmであり、好ましくは 0. l /i m〜3mmで あり、より好ましくは 1 /i m〜: 1mmである。特に、 10 /i m程度の粒子径を持つ比較的 大きな一次粒子の表面の少なくとも一部分に、 0. 1 μ ΐη以下の比較的小さな粒子径 をもつ一次粒子の少なくとも一部が位置している構造であると粉状酸素吸収材の構 造を更に維持しやすくなる。  [0076] In the powdery oxygen absorbent material which does not contain the fine particles (D) and is composed of the thermoplastic resin (Α) and the oxidation accelerator (Β), the primary particle diameter is about 0.01 to about 10 μΐη, preferably Is from 0.01 μ ΐη to 5 / ι m. Further, a structure in which these primary particles are aggregated to form aggregated particles (aggregated structure) is preferable from the viewpoint of oxygen absorption performance and structural stabilization. The average particle size of the aggregated particles is generally 0.01 / im to 5 mm, preferably 0.1 / im to 3 mm, and more preferably 1 / im to 1 mm. In particular, a structure in which at least a part of primary particles having a relatively small particle size of 0.1 μΐη or less is located on at least a part of the surface of a relatively large primary particle having a particle size of about 10 / im. If it exists, it becomes easier to maintain the structure of the powdery oxygen absorber.
[0077] また微粒子 (D)を含む粉状酸素吸収材では、熱可塑性樹脂 (A)と酸化促進成分( B)からなる主剤の一次粒子径は 0. 01 111〜5111111程度でぁり、好ましくは0. 02〜1 00 z mであり、更に好ましくは 0. 05〜: lO x mである。また凝集粒子の平均粒径は 通常 0. 01 μ πι〜5ιηιηであり、好ましくは 10 μ m〜5mmであり、更に好ましくは 10 μ m〜3mmであ 。 [0078] 以下に、本発明の粉状酸素吸収材の好ましい製造方法を説明する。 [0077] In the powdery oxygen absorbent containing fine particles (D), the primary particle diameter of the main agent composed of the thermoplastic resin (A) and the oxidation promoting component (B) is about 0.01 to 111111, preferably Is from 0.02 to 100 zm, more preferably from 0.05 to lO xm. The average particle diameter of the aggregated particles is usually 0.01 μπι to 5ιηιη, preferably 10 μm to 5 mm, and more preferably 10 μm to 3 mm. [0078] Hereinafter, a preferred method for producing the powdery oxygen absorbent material of the present invention will be described.
[0079] 本発明の粉状酸素吸収材の製造方法は、下記の工程 (X)、(Y)、(Z)、(S)を、 (X )、(Y)もしくは (X)、 (Y)、(Z)もしくは (X)、(Z)、(Y)もしくは (X)、(Y)、(S)もしく は (X)、(S)、(Y)もしくは (X)、 (Y)、 (Z)、 (S)もしくは (X)、(Y)、 (s)、 (z)もしくは (X)、(Z)、(Y)、(S)もしくは (X)、(S)、(Y)、(Z)もしくは (X)、 (Z)、 (S)、 (Y)もし くは (X)、(S)、(Z)、(Y)の順に行うことが好ましい。 [0079] The method for producing a powdery oxygen absorbent according to the present invention comprises the following steps (X), (Y), (Z), (S), (X), (Y) or (X), (Y ), (Z) or (X), (Z), (Y) or (X), (Y), (S) or (X), (S), (Y) or (X), (Y ), (Z), (S) or (X), (Y), (s), (z) or (X), (Z), (Y), (S) or (X), (S), (Y), (Z) or (X), (Z), (S), (Y) or (X), (S), (Z), (Y) are preferably performed in this order.
工程 (X):熱可塑性樹脂 (A)及び酸化促進成分 (B)を混合する工程、  Step (X): a step of mixing the thermoplastic resin (A) and the oxidation promoting component (B),
工程 (Y):上記の混合物を、比表面積が 60cm2/g以上の粉状の形状にする工程、 工程 (Z):上記の混合物又は粉状の形状にした物を、 2キログレイ以上の放射線に曝 すおよび/又は加熱する工程、 Step (Y): Step of making the above mixture into a powdery shape with a specific surface area of 60 cm 2 / g or more Step (Z): Radiation of 2 kg or more of the above mixture or the powdered shape Exposure to and / or heating,
工程 (S):上記の混合物又は粉状の形状にした物を、低酸素雰囲気で保存する工程 以下に、各工程について詳しく説明する。  Step (S): Step of storing the mixture or powdered product in a low-oxygen atmosphere Hereinafter, each step will be described in detail.
(3— 1 )工程 (X)  (3-1) Process (X)
本発明における工程 (X)とは、上記の熱可塑性樹脂 (A)及び酸化促進成分 (B)を 物理的に攪拌したり、熱や溶媒等によって溶解したりして混合する工程である。  The step (X) in the present invention is a step in which the thermoplastic resin (A) and the oxidation promoting component (B) are physically stirred or dissolved by heat, a solvent or the like and mixed.
[0080] 上述のように、熱可塑性樹脂 (A)中に残留してレ、る微量の重合触媒のみで有効な 酸化触媒となる場合は、本工程 (X)は省略されてもよい。  [0080] As described above, this step (X) may be omitted when only a trace amount of the polymerization catalyst remaining in the thermoplastic resin (A) becomes an effective oxidation catalyst.
[0081] さらに上述のように、熱可塑性重合体(A)に対し 50ppm〜: ! OOOppmの酸ィ匕防止 剤(C)を含有することが好ましいため、酸化防止剤の存在量が少なすぎる場合には 酸化防止剤 (C)を添加したり、存在量が多すぎる場合には、酸化防止剤 (C)を減ら したりする。この酸化防止剤 (C)を減らす作業には、熱可塑性樹脂 (A)を熱可塑性 樹脂 (A)の良溶媒で溶解させ、次レ、で熱可塑性樹脂 (A)の貧溶媒でありかつ酸化 防止剤 (C)の良溶媒である物質を加えて、熱可塑性樹脂 (A)のみを析出させる方法 、いわゆる溶解再沈法、やソックスレー抽出装置等を用いた抽出手法などが例示で きる。酸化促進成分 (B)を添加する場合は、酸化防止剤 (C)の分離工程の前後いず れでも構わないが、後に添加されるほうが好ましレ、。  [0081] Further, as described above, it is preferable that the antioxidant polymer (C) is contained in an amount of 50 ppm to:! OOOppm relative to the thermoplastic polymer (A). Antioxidant (C) is added to, and if it is too much, antioxidant (C) is reduced. In order to reduce the antioxidant (C), the thermoplastic resin (A) is dissolved in a good solvent of the thermoplastic resin (A), and then the thermoplastic resin (A) is a poor solvent and oxidized in the next stage. Examples thereof include a method in which a substance that is a good solvent for the inhibitor (C) is added to precipitate only the thermoplastic resin (A), a so-called dissolution reprecipitation method, an extraction method using a Soxhlet extraction apparatus, and the like. When the oxidation promoting component (B) is added, it may be added before or after the separation step of the antioxidant (C), but it is preferable to add it after.
[0082] 工程 (X)の好ましレ、方法として熱可塑性重合体 (A)及び酸化促進成分 (B)を加熱 溶融状態において溶融混合する方法が挙げられる。 [0083] 溶溶融融混混合合ののたためめのの具具体体的的なな方方法法ととししててはは、、熱熱可可塑塑性性樹樹脂脂 ((AA))、、酸酸化化促促進進成成分分 ((BB)) をを所所定定のの配配合合割割合合ににてて、、必必要要ででああれればばそそのの他他のの添添加加物物とと共共にに、、ヘヘンンシシェェルルミミキキササーー、、 リリボボンンブブレレンンダダーー、、 VV型型ブブレレンンダダ一一等等をを用用いいてて均均一一にに混混ぜぜたた後後、、ババンンババリリ一一ミミキキササーー、、 ニニーーダダーー、、ロローールル、、一一軸軸又又はは二二軸軸等等のの多多軸軸混混練練押押出出機機等等のの混混練練機機をを用用いいてて混混練練すす るる方方法法がが例例示示ででききるる。。 [0082] A preferred method and method of step (X) is a method of melt-mixing the thermoplastic polymer (A) and the oxidation promoting component (B) in a heated and melted state. [0083] As a concrete method for melting, melt-blending and mixing, there are thermothermoplastic plastic resin resin ((AA)), acid Add the oxidation promotion promoting component ((BB)) to the specified blending ratio, and if necessary, add other additions. In addition to the objects, use Henchen Schermi-Mixixar, Reribobon Blender, VV Type Blender, etc. to mix evenly and uniformly. After mixing, such as Baban Bambari-ri Mixer, Ninida Dader, Roller, Single-shaft or Double-Two-shaft, etc. A method for mixing and kneading using a kneading and kneading machine can be illustrated as an example. .
[0084] 均均一一にに混混ぜぜるる際際にに、、酸酸化化促促進進成成分分 ((BB))をを均均一一にに分分散散ささせせるる為為にに、、流流動動パパララフフィィンン(( 例例ええばば、、松松村村石石油油研研究究所所製製 ススモモイイルル等等))、、ミミネネララルルオオイイルル、、等等をを添添加加ししててももよよいい。。  [0084] In order to disperse and disperse the acid oxidation promotion promoting component ((BB)) evenly when mixing uniformly. In addition, fluid flow dynamic paraffins (for example, Susumoiiruru, etc., manufactured by Matsumatsumura-Muraishi Petroleum Institute, Ltd.), Mine Mineral Lulu Oil, etc. May be added. .
[0085] 各各成成分分のの混混練練のの温温度度はは、、熱熱可可塑塑性性重重合合体体 ((AA))がが溶溶融融状状態態ににななるる温温度度ででああれればば良良 いいがが、、樹樹脂脂のの劣劣化化、、架架橋橋にによよるるゲゲルル化化等等をを考考慮慮にに入入れれるるとと好好ままししくくはは 228800°°CC以以下下、、よよ りり好好ままししくくはは 225500°°CC以以下下ででああるるここととがが望望ままししいい。。更更にに、、各各成成分分のの混混練練順順序序及及びび方方法法はは 、、熱熱可可塑塑性性重重合合体体 ((AA))、、酸酸化化促促進進成成分分 ((BB))、、そそのの他他のの成成分分をを一一括括ししてて混混練練すするる方方法法 、、((AA))、、((BB))のの内内のの一一部部をを混混練練ししたた後後、、そそのの他他のの成成分分をを含含めめたた残残りりのの成成分分をを混混練練すするる 方方法法等等がが例例示示ででききるる。。 [0085] The temperature of the kneading and kneading of each component is determined by the temperature at which the thermothermoplastic plastic-polymer composite ((AA)) is in a melt-melt-melt state. It would be fine if the temperature was correct, but it would be possible to take into account such factors as the deterioration of resin resin fats and the use of bridge bridges to make Gegerl. It would be desirable if it is less than 228800 ° CC for preference and less than 225500 ° CC for more preference. . Furthermore, the order of mixing and kneading order of each component and the method of mixing are the following: Thermothermoplastic plastic-polymerized polymer ((AA)), Promotion of acid oxidation promotion A method of mixing the kneaded ingredients ((BB)) and other other ingredients together and kneading and kneading, ((AA)), ( (BB)) After mixing and kneading a part of the other components, the remaining components including other components are included. Examples of how to knead and knead the ingredients can be illustrated by examples. .
((33 -- 22))工工程程 ((YY))  ((33-22)) Process schedule ((YY))
本本発発明明ににおおけけるる工工程程 ((YY))ととはは、、上上記記のの熱熱可可塑塑性性重重合合体体 ((AA))及及びび酸酸化化促促進進成成分分 ((BB)) のの混混合合物物をを、、粉粉碎碎ままたたはは後後述述すするるよよううにに重重合合工工程程でで混混合合物物をを得得るる方方法法等等ののそそのの他他のの 方方法法にによよりり、、比比表表面面積積がが 6600ccmm22//gg以以上上のの粉粉状状のの形形状状ににすするる工工程程ででああるる。。上上記記のの混混 合合物物のの形形状状はは、、例例ええばばペペレレッットト状状、、シシーートト状状、、フフィィルルムム状状、、液液状状、、塊塊状状、、綿綿状状、、繊繊維維状状 、、ベベーールル状状、、ススララブブ状状、、フフレレーークク状状、、ククララムム状状、、パパウウダダーー状状ななどどがが例例示示ででききるる。。 The process ((YY)) in the present invention means the thermothermoplastic plastic polymer composite ((AA)) and acid oxidation as described above. Mixing and mixing the mixture of the accelerating and promoting component ((BB)) in the process of the polymerization polymerization process as will be described later. According to other methods such as the method of obtaining a compound, etc., the powder with a specific surface area of 6600ccmm 22 // gg or more This is the process of forming a powdery shape. . Examples of the shape and shape of the above-mentioned mixed mixture are, for example, peperretto-like, sushitoto-like, film-like, liquid-liquid, lump-like, cotton-like Examples include shapes, fibers, fibers, beverles, slab rubs, flakes, kukuramram, and powderer. .
[0086] 本本発発明明のの粉粉碎碎ととはは、、例例ええばば、、アアトトママイイズズ法法、、メメルルトトススピピニニンンググ法法、、回回転転電電極極法法、、機機械械 的的ププロロセセススにによよるる粉粉砕砕、、化化学学的的ププロロセセススにによよるる粉粉碎碎、、液液体体窒窒素素等等のの冷冷媒媒でで冷冷却却しし粉粉 砕砕すするる方方法法 ((凍凍結結粉粉砕砕法法))、、等等のの粉粉末末製製造造法法がが利利用用ででききるる。。好好ままししいい方方法法ととししてて、、機機 械械的的ププロロセセススにによよるる粉粉砕砕やや凍凍結結粉粉砕砕法法がが挙挙げげらられれるる。。  [0086] The powdered soot according to the present invention is, for example, the Atotomize method, the Memelrutos spippining method, the rotating rotating electrode method Cool with a cold refrigerant medium such as pulverized powder by mechanical and mechanical process, powdered powder by chemical process and liquid nitrogen nitride. A powder powder manufacturing method such as a method of pulverizing and pulverizing the powder ((freeze-freezing and pulverizing and pulverizing method)), etc. can be used. . Examples of methods that can be used as desired are the powder pulverization method and the freeze-frozen and pulverized powder pulverization method by mechanical mechanical processing. .
[0087] 機機械械的的ププロロセセススにによよるる粉粉砕砕のの方方法法ととししててはは、、例例ええばばジジョョーーククララッッシシャャーー、、ロローールルミミルル、、 カカッッタターーミミルル、、ハハンンママーーミミルル、、ピピンンミミノノレレ、、アアトトママイイザザ一一、、ボボーーノノレレミミノノレレ、、遊遊星星ボボーールルミミルル、、スス パパイイララノノレレミミノノレレ、、イインンペペララ一一ミミルル、、シシンンググルルトトララッッククジジェェッットトミミルル、、ジジェェッットト''ォォーーミミルル、、磨磨砕砕式式 ミミルル、、ググラライインンダダーー、、石石臼臼、、冷冷凍凍粉粉砕砕シシスステテムム、、窒窒素素ガガスス粉粉砕砕シシスステテムム、、化化学学粉粉砕砕シシスス
Figure imgf000021_0001
[0088] また、重合工程で混合物を得る方法として、懸濁重合により製造する方法、乳化重 合により製造する方法、溶液重合により製造された重合体が溶解している溶液を水 等の媒体中にいれて激しくかき混ぜて分散させる方法、沈殿重合により製造する方 法などが挙げられ、乳化重合等が好ましい例として挙げられる。
[0087] As a method of pulverizing and pulverizing according to mechanical and mechanical processes, for example, for example, Jojo Clarashasher, Loro Lulu Mimir, Kakatta Tami Mi Lulu, Hahan Mamma Mi Milulu, Pippin Mi Minorelle, Ato Toma My Isaichi, Bobono Norre Mimino Norre, Planetary Bobo Lurumi LULU Graly indander, stone millstone, cold-frozen frozen powder crushed system system, nitrogen nitrogen gagasu powder crushed system system, chemical chemistry powder crushed system Soot
Figure imgf000021_0001
[0088] Further, as a method of obtaining a mixture in the polymerization step, a method of producing by suspension polymerization, a method of producing by emulsion polymerization, and a solution in which a polymer produced by solution polymerization is dissolved in a medium such as water. Examples of the preferred method include emulsion polymerization and the like.
(3— 3)工程 (Z)  (3-3) Process (Z)
本発明における工程 (Z)とは、上記の混合物又は粉状の形状にした物を、 2キログ レイ以上の放射線に曝すおよび Z又は加熱する工程である。  The step (Z) in the present invention is a step in which the mixture or the powdery product is exposed to radiation of at least 2 chloroplasts and Z or heated.
[0089] ここで放射線とは、ガンマ線、エックス線、アルファ線、ベータ線、電子線、加速ィォ ン、中性子線等の電離性放射線が挙げられ、好ましくはガンマ線、電子線であり、さ らに好ましくはガンマ線である。  Here, the radiation includes ionizing radiation such as gamma rays, X-rays, alpha rays, beta rays, electron rays, acceleration ions, neutron rays, preferably gamma rays and electron rays. Gamma rays are preferred.
[0090] 吸収線量は、通常少なくとも 2kGy以上、好ましくは 5〜: 1000kGy、より好ましくは 2 0〜300kGyである。 2kGy未満での処理では誘導期間があまり短縮されず、また 10 OOkGyを超えると架橋反応によるゲルの発生が原因と思われる酸素吸収性能の低 下や生産性の低下等が発生する可能性が高くなる。  [0090] The absorbed dose is usually at least 2 kGy or more, preferably 5 to 1000 kGy, more preferably 20 to 300 kGy. Treatment with less than 2 kGy does not shorten the induction period much, and if it exceeds 10 OOkGy, there is a high possibility that the oxygen absorption performance will decrease due to the generation of gel due to the crosslinking reaction, and the productivity will decrease. Become.
[0091] 放射線に曝す方法としては、例えば、上記の混合物又は粉状の形状にした物を脱 気状態または窒素、二酸化炭素及びそれらの混合ガス、また必要に応じ酸素を 20% 未満の分圧で混合したガス等の不活性ガスを満たした状態で容器や袋に入れて放 射線に曝す方法などが例示できる。  [0091] Examples of the method of exposure to radiation include, for example, the above mixture or a powder-like product in a degassed state or nitrogen, carbon dioxide and a mixed gas thereof, and, if necessary, oxygen at a partial pressure of less than 20%. Examples include a method of exposing to radiation in a container or bag in a state filled with an inert gas such as a gas mixed in (1).
[0092] 加熱する温度は、加熱する時間によっても異なってくる力 一般的には 100°C〜30 0°C、好ましくは 110°C〜200°Cである。 100°C未満での処理では誘導期間はあまり 短縮されず、また 300°Cを超えると上記の混合物又は粉状の形状にした酸素吸収材 の熱分解ゃ融着が発生し、生産性の低下が発生する可能性が高くなる。加熱する時 間は、一般的には 0. 1秒〜 1時間、好ましくは 0. 5秒〜 30分、より好ましくは 1秒〜 1 0分である。  [0092] The heating temperature varies depending on the heating time. Generally, the heating temperature is 100 ° C to 300 ° C, preferably 110 ° C to 200 ° C. When the treatment is performed at a temperature lower than 100 ° C, the induction period is not shortened so much, and when the temperature exceeds 300 ° C, thermal decomposition or fusion of the above-mentioned mixture or powdered oxygen absorbent occurs, resulting in a decrease in productivity. Is likely to occur. The heating time is generally 0.1 second to 1 hour, preferably 0.5 second to 30 minutes, more preferably 1 second to 10 minutes.
[0093] また加熱する方法は、例えば、上記の混合物又は粉状の形状にした酸素吸収材に 直接不活性ガスの熱風を吹き付ける方法、脱気状態または不活性ガスを満たした状 態で容器や袋に入れて熱を加える方法、真空加熱、などが挙げられる。  [0093] The heating method may be, for example, a method in which hot air of an inert gas is directly blown onto the mixture or the oxygen absorbent material in a powder form, a degassing state or a state in which the inert gas is filled, Examples of the method include heating in a bag and vacuum heating.
(3-4)工程(S) 本発明における工程(s)とは、上記の混合物又は粉状の形状にした物を、低酸素 雰囲気で保存する工程である。 (3-4) Process (S) The step (s) in the present invention is a step of storing the above mixture or the powdered product in a low oxygen atmosphere.
[0094] ここで、「低酸素雰囲気で保存する」とは、例えば、バリア性包材を用いて包装し、 必要に応じて不活性ガス置換法及び Z又は他の脱酸素材を利用して、該粉状酸素 吸収材を低酸素濃度雰囲気の状態で保存しておく工程のことである。ここで、低酸素 濃度とは、酸素濃度が 20%未満のことであり、好ましくは 5%未満であり、さらに好ま しくは 1%未満である。本工程 (S)は、粉状酸素吸収材の誘導期間を短縮する効果 があり好ましい。  Here, “preserving in a low oxygen atmosphere” means, for example, packaging using a barrier packaging material, and using an inert gas replacement method and Z or other deoxidizing material as necessary. The powdery oxygen absorbing material is a step of storing it in a low oxygen concentration atmosphere. Here, the low oxygen concentration means that the oxygen concentration is less than 20%, preferably less than 5%, and more preferably less than 1%. This step (S) is preferable because it has the effect of shortening the induction period of the powdered oxygen absorber.
[0095] 保存する期間は、保存する温度、粉状酸素吸収材を構成する成分や製造方法によ つても異なってくるが、一般的には 1日〜数年、好ましくは 3日〜6ヶ月、より好ましくは 1週間〜 3ヶ月である。 1日未満での処理では誘導期間はあまり短縮されず、また数 年を超えると粉状酸素吸収材同士の付着、在庫保持期間が長くなることによる生産 性の低下等が発生する可能性が高くなる。好ましい保存期間の一例として、例えば 熱可塑性重合体 (A)がスチレン/ブタジエン共重合体である場合は 20日であり、こ の長さは粉状酸素吸収材の流通時の在庫保管期間と同程度の長さであるため、流 通時の在庫保管が工程 (S)の役割を兼ねることになり特に好ましい。  [0095] The storage period varies depending on the storage temperature, the components constituting the powdered oxygen absorber and the production method, but is generally 1 day to several years, preferably 3 days to 6 months. More preferably, it is 1 week to 3 months. The treatment period of less than 1 day does not shorten the induction period so much, and if it exceeds several years, there is a high possibility that adhesion of powdery oxygen absorbers and a decrease in productivity due to an extended inventory retention period will occur. Become. As an example of a preferable storage period, for example, when the thermoplastic polymer (A) is a styrene / butadiene copolymer, it is 20 days, and this length is the same as the stock storage period when the powdered oxygen absorbent is distributed. Therefore, stock storage at the time of distribution also serves as the step (S) and is particularly preferable.
[0096] 保存時の温度は、一般的には 0°C〜100°C、好ましくは 5°C〜80°C、より好ましくは 10°C〜60°Cである。 0°C未満での処理では誘導期間はあまり短縮されず、また 100 °Cを超えると酸素吸収材同士が融着して生産性が低下する可能性が高くなる。  [0096] The temperature during storage is generally 0 ° C to 100 ° C, preferably 5 ° C to 80 ° C, more preferably 10 ° C to 60 ° C. When the treatment is performed at a temperature lower than 0 ° C, the induction period is not shortened so much, and when the temperature exceeds 100 ° C, the oxygen absorbing materials are fused with each other, and the possibility that productivity is lowered is increased.
[0097] これらの工程の組合せのうち、熱可塑性重合体 (A)及び酸化促進成分 (B)を加熱 溶融状態において溶融混合する工程 (X)、溶融混合物を粉砕する工程 (Y)、前記 溶融混合物又は粉砕物を 2キログレイ以上のガンマ線に曝す工程 (Z)、前記溶融混 合物又は粉砕物を低酸素雰囲気で保存する工程 (S)よりなる、粉状酸素吸収材の 製造方法は特に好ましい例である。  [0097] Among the combinations of these steps, the thermoplastic polymer (A) and the oxidation promoting component (B) are melt-mixed in a heated and melted state (X), the molten mixture is pulverized (Y), the melt A method for producing a powdery oxygen absorbent comprising the step (Z) of exposing the mixture or pulverized product to gamma rays of 2 kg or more and the step (S) of storing the molten mixture or pulverized product in a low oxygen atmosphere is particularly preferred. It is an example.
[0098] 次に本発明の粉状酸素吸収材は、例えば、粉状のままで通気性の小袋に入れた 形態の脱酸素材として用いたり、圧縮成形した小片や熱可塑性樹脂と混合した小片 を小袋に入れた形態の脱酸素材として用いたり、ラベル、カード、パッキングなどの形 態の脱酸素材として用いたり、熱可塑性樹脂に混合してフィルムやシートなどの脱酸 素包装材料として、包装袋や包装容器の一部または全部に種々の形態で用いたり すること等が可能である。 [0098] Next, the powdered oxygen absorbing material of the present invention is used as a deoxidizing material in the form of being powdered and placed in a breathable sachet, or a compression molded piece or a piece mixed with a thermoplastic resin. Can be used as a deoxidizing material in the form of a sachet, used as a deoxidizing material in the form of a label, card, packing, etc., or mixed with a thermoplastic resin to deoxidize films, sheets, etc. The raw packaging material can be used in various forms for some or all of packaging bags and packaging containers.
[0099] 通気性小袋に入れた脱酸素材にする場合は、ポリエチレン、プロピレンとォレフィン との共重合体、エチレン一ビュルモノマー共重合体、ポリプロピレン、ポリスチレン、ス チレンとォレフインとの共重合体、ポリエステル等の酸素透過量が大きい重合体や、 紙、不繊布、繊布、微多孔膜、またはこれらの多層体からなる小袋中に酸素吸収材 を封入した状態にすることが挙げられる。また小袋には、通気性の観点から、穿孔が 施されていても良い。  [0099] When the deoxidized material is placed in a breathable sachet, polyethylene, a copolymer of propylene and olefin, an ethylene monobutyl monomer copolymer, polypropylene, polystyrene, a copolymer of styrene and olefin, Examples thereof include a state in which an oxygen absorbing material is encapsulated in a polymer such as polyester, which has a large oxygen permeation amount, or a sachet made of paper, non-woven cloth, fine cloth, microporous film, or a multilayered body thereof. In addition, the sachet may be perforated from the viewpoint of air permeability.
[0100] フィルムやシートの場合は、粉状酸素吸収材を含有する層(L1)のみで構成された ものであってよレ、が、他の材料からなる少なくとも一層(L2)以上の層とから構成され た積層フィルムであってもよレ、。 L2を構成する材料としては、熱可塑性ポリエステル 樹脂、熱可塑性ポリウレタン樹脂、熱可塑性ポリオレフイン樹脂 (LDPE (低密度ポリ エチレン)、 VLDPE (超低密度ポリエチレン)、 LLDPE (直鎖状低密度ポリエチレン) 、 HDPE (高密度ポリエチレン)、プロピレン系樹脂、ブテン— 1系樹脂等)、ポリアミド 樹脂、ポリ塩ィヒビニル、スチレン系樹脂、エチレン 酢酸ビュル共重合体、エチレン (メタ)アクリル酸アルキル共重合体、エチレン (メタ)アクリル酸共重合体および エチレン (メタ)アクリル酸アイオノマー等が挙げられる。  [0100] In the case of a film or sheet, it may be composed only of the layer (L1) containing the powdery oxygen absorber, but at least one layer (L2) or more composed of other materials. Even a laminated film composed of L2 is composed of thermoplastic polyester resin, thermoplastic polyurethane resin, thermoplastic polyolefin resin (LDPE (low density polyethylene), VLDPE (very low density polyethylene), LLDPE (linear low density polyethylene), HDPE). (High-density polyethylene), propylene resin, butene-1 resin, etc.), polyamide resin, polyvinyl chloride, styrene resin, ethylene acetate copolymer, ethylene (meth) alkyl acrylate copolymer, ethylene (meta ) Acrylic acid copolymer and ethylene (meth) acrylic acid ionomer.
[0101] また、粉状酸素吸収材含有層(L1)に酸素バリア性を有する層(L3)が積層されて なる積層フィルムは好ましい態様である。 L1は、 L3よりも、被包装物側に位置する構 成とする。 L3としては、 EVOH (エチレン一ビエルアルコール共重合体)、 PVDC (ポ リビニリデンク口ライド)、 PET (ポリエチレンテレフタレート)、 PBT (ポリブチレンテレフ タレート)、 PTT (ポリテトラメチレンテレフタレート)、 PEN (ポリエチレンナフタレート) 、 PVA (ポリビュルアルコール)、 PAN (ポリアクリロニトリル)、 PA (ポリアミド)及びこ れ等の共重合体等が例示出来、また例えばクレイ等の無機層状化合物を含有する 樹脂組成物でも良い。また、フィルム表面あるいは中間層にバリア性有機材料や、ァ ルミナ、シリカ、非晶質カーボンなどの無機系材料がコーティングされていても良い。  [0101] Further, a laminated film obtained by laminating a layer (L3) having an oxygen barrier property on the powdery oxygen absorbing material-containing layer (L1) is a preferred embodiment. L1 is configured to be positioned closer to the package than L3. L3 includes EVOH (ethylene-vinyl alcohol copolymer), PVDC (polyvinylidene chloride), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PTT (polytetramethylene terephthalate), PEN (polyethylene naphthalate). ), PVA (polybutyl alcohol), PAN (polyacrylonitrile), PA (polyamide) and copolymers thereof, and the like, and a resin composition containing an inorganic layered compound such as clay may be used. The film surface or intermediate layer may be coated with a barrier organic material or an inorganic material such as alumina, silica or amorphous carbon.
[0102] 本発明の粉状酸素吸収材は食品の外にも、医薬品、検査キット、医療用具、鉄管、 コンデンサ、乾電池等の包装、また、ボトルのキャップシール、ラベル等へも応用でき る。 [0102] The powdery oxygen absorber of the present invention can be applied to food, medicine, test kits, medical equipment, iron pipes, capacitors, dry batteries packaging, bottle cap seals, labels, etc. The
実施例  Example
[0103] 以下本発明について、実施例を挙げて更に詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
まず、本発明に用いた測定方法及び評価方法を以下にまとめて示す。  First, the measurement method and evaluation method used in the present invention are summarized below.
<ム一二一粘度 >  <Various viscosity>
本発明の粉状酸素吸収材のム一二一粘度 (ML1 +4Z100°C)は、本発明の粉状 酸素吸収材 30gにトルエン 250gを加え溶解させ、ガラスフィルタ一等で不要成分を 除去した後、この溶液にメタノール lOOOgをカ卩えて再沈させることにより粉状酸素吸 収材より熱可塑性樹脂 (A)を分離し、ャマト科学社製の真空乾燥機 DP63 (商品名) により 35°Cで、 48時間真空乾燥したものを、上島製作所社製ム一二一粘度計 MVR — 1130 (商品名)を用いて、 JIS K6300に準拠して予備加熱時間 1分間、ロータの 回転時間 4分間、試験温度 100°Cの条件下にて測定した。  The viscosity of the powdery oxygen absorber of the present invention (ML1 + 4Z100 ° C) was obtained by adding 250 g of toluene to 30 g of the powdered oxygen absorbent of the present invention and dissolving it, and removing unnecessary components with a glass filter or the like. Thereafter, methanol lOOOg was added to this solution and reprecipitated to separate the thermoplastic resin (A) from the powdery oxygen absorber, and 35 ° C using a vacuum dryer DP63 (trade name) manufactured by Yamato Scientific Co., Ltd. Then, after drying for 48 hours in vacuum, using a murine and viscometer MVR-1130 (trade name) manufactured by Ueshima Seisakusho, preheating time 1 minute according to JIS K6300, rotor rotation time 4 minutes, The measurement was performed at a test temperature of 100 ° C.
<結晶融解ピーク(融点)及び結晶融解エネルギー >  <Crystal melting peak (melting point) and crystal melting energy>
本発明の粉状酸素吸収材の結晶融解ピーク (融点)は、本発明の粉状酸素吸収材 30gにトルエン 250gを加え溶解させ、ガラスフィルタ一等で不要成分を除去した後、 この溶液にメタノール lOOOgをカ卩えて再沈させることにより粉状酸素吸収材より熱可 塑性樹脂 (A)を分離し、ャマト科学社製の真空乾燥機 DP63 (商品名)により 35°Cで 、 48時間真空乾燥したものを、 Perkin Elmer社製示差走查熱量分析装置「PYRI S DIAMOND DSC」(商品名)を用いて、 JIS K7121に準拠して、試料約 10mg を _ 50°Cから 200°Cの間で 10°C/分の速度で昇温し、 5分間保持した後 200°Cか ら— 50°Cの間で 10°C/分の速度で降温し、更に 5分間保持した後 _ 50°Cから 200 °Cの間で 10°CZ分の速度で昇温した 2度目の昇温で得られた DSC曲線の結晶融 解ピーク温度を用いた。  The crystal melting peak (melting point) of the powdered oxygen absorber of the present invention was determined by adding 250 g of toluene to 30 g of the powdered oxygen absorber of the present invention and dissolving it, removing unnecessary components with a glass filter etc., and then adding methanol to this solution. lOOOg is collected and re-precipitated to separate the thermoplastic resin (A) from the powdered oxygen absorber and vacuum dried at 35 ° C for 48 hours using the Yamato Kagaku vacuum dryer DP63 (trade name). Using a Perkin Elmer differential scanning calorimeter “PYRI S DIAMOND DSC” (trade name), approximately 10 mg of a sample between _50 ° C and 200 ° C according to JIS K7121 Temperature is increased at a rate of 10 ° C / min, held for 5 minutes, then from 200 ° C to 50 ° C, the temperature is decreased at a rate of 10 ° C / min, and further maintained for 5 minutes _ 50 ° C The crystal melting peak temperature of the DSC curve obtained at the second temperature increase from 10 to 200 ° C at a rate of 10 ° CZ was used.
[0104] また、 JIS K7122に準じ、この DSC曲線に融解開始温度から融解終了温度の間 に引いた直線のベースラインで囲んだ面積の単位重量当たりのエネルギーを結晶融 角军エネノレギ一とした。 [0104] Further, in accordance with JIS K7122, the energy per unit weight of the area surrounded by a straight base line drawn from the melting start temperature to the melting end temperature on this DSC curve was defined as the crystal melting angle 军 energy.
<比表面積 >  <Specific surface area>
本発明の粉状酸素吸収材の比表面積は、島津製作所社製細孔分布/比表面積 測定装置 ASAP— 2010 (商品名)を用い、本発明の粉状酸素吸収材を、標準セル に採り、装置の試料前処理部で、温度 35°Cで約 6時間、脱ガス処理して、 Krガス吸 着法により、 B. E. T.近似式を用いて測定した。 The specific surface area of the powdered oxygen absorber of the present invention is a pore distribution / specific surface area manufactured by Shimadzu Corporation. Using the measuring device ASAP-2010 (trade name), the powdery oxygen absorbent material of the present invention is taken in a standard cell and degassed at a temperature of 35 ° C for about 6 hours in the sample pretreatment section of the device. Measurements were made using the BET approximation by the Kr gas adsorption method.
<平均粒径 >  <Average particle size>
平均粒径は、 JEOL社製の走查型電子顕微 i¾JSM_ 5600LV (商品名)にて、高 真空モードで二次電子を観察した結果を用いて、 50個の粒子をランダムに選択して The average particle size was determined by randomly selecting 50 particles using the results of observation of secondary electrons in high vacuum mode with JEOL's scintillation electron microscope i¾JSM_5600LV (trade name).
、各粒子が写真中で占める面積と同じ面積の円の直径を求め、それらの単純平均値 とした。 Then, the diameter of a circle having the same area as the area occupied by each particle in the photograph was obtained, and the simple average value thereof was obtained.
[0105] 尚、平均粒径として求められるのは、一次粒子の平均粒径ではなぐ凝集粒子の平 粒径である。  [0105] The average particle size required is the average particle size of the aggregated particles, not the average particle size of the primary particles.
く飽和酸素吸収量 (Vos) >  Saturated oxygen absorption (Vos)>
粉状酸素吸収材の試料約 0. lgを、 200cm3の体積を持つ壁面の厚みが 80 x m で酸素透過量が 30cm3/ (m2' day' MPa)未満であるポリ塩化ビニリデン製バリア性 容器に入れ、該容器中を酸素容量 21 %、窒素 79容量%の混合ガスで置換して密封 した。その後、これらの容器を温度 23°C、湿度 17%RHの条件下におき、 PBI社製ガ ス濃度測定装置 Dansensor CheckMate9900 (商品名)を用いて、容器中の酸素 濃度の経時変化をモニタリングし、酸素吸収量を算出した。酸素濃度が飽和に達し た時点での酸素吸収材 lgあたりの酸素吸収量を、飽和酸素吸収量 (Vos、単位は cc /g)として定義した。 A sample of about 0. lg of powdered oxygen absorbent, the wall thickness is oxygen permeation amount 30 cm 3 / at 80 xm (m 2 'day' MPa) less than a is polyvinylidene chloride made barrier with the volume of 200 cm 3 The container was sealed and replaced with a mixed gas having an oxygen capacity of 21% and nitrogen of 79% by volume. After that, place these containers under conditions of a temperature of 23 ° C and humidity of 17% RH, and monitor the time-dependent changes in oxygen concentration in the containers using the PBI gas concentration measuring device Dansensor CheckMate9900 (trade name). The oxygen absorption amount was calculated. The oxygen absorption per lg oxygen absorber when the oxygen concentration reached saturation was defined as the saturated oxygen absorption (Vos, unit: cc / g).
<最大酸素吸収速度 (Ros)、誘導期間 >  <Maximum oxygen absorption rate (Ros), induction period>
上記酸素吸収量測定法で得られた酸素吸収量を縦軸に、経過時間を横軸にとつ た曲線 (酸素吸収曲線)において、最大の傾きの大きさを最大酸素吸収速度 (Ros、 単位は ccZ (g 'hr) )として定義した。  In the curve (oxygen absorption curve) with the oxygen absorption obtained by the above oxygen absorption measurement method on the vertical axis and the elapsed time on the horizontal axis (oxygen absorption curve), the maximum slope is the maximum oxygen absorption rate (Ros, unit Was defined as ccZ (g 'hr)).
[0106] また、上記酸素吸収量測定法において、測定開始時から容器中の酸素濃度が 20 . 6%以下になるまでの期間(単位は hrまたは day)を誘導期間として定義した。 [0106] Further, in the above oxygen absorption measurement method, the period (unit: hr or day) from the start of measurement until the oxygen concentration in the container was 20.6% or less was defined as the induction period.
<酸化防止剤の定量方法 >  <Quantification method of antioxidants>
粉状酸素吸収材の試料約 3gに酸化防止剤を標準添加して、クロロホノレム/メタノ ール再沈し、濾液を濃縮乾燥固化後、メタノールで 10mlにメスアップしてサンプノレを 作成した。このサンプルを Waters社製液体クロマトグラフ装置 600 (商品名)を用い、 カラムとしてマイクロボンダパック C18、送液条件としてメタノール:水 = 80 : 20 (開始) 、リニアグラジェント(0〜5分)、メタノール:水 = 100 : 0 (5〜20分)、流量は lml/分 、注入量は 30 μ 1、検出器として Waters社製 UV検出器 996 (商品名)(検出波長 28 5nm)の条件にて、標準添加法で、液体クロマトグラフ測定をして測定した。 Add antioxidant to 3g of powdered oxygen absorber as standard, reprecipitate chlorophenol / methanol, concentrate the filtrate to dryness, solidify to 10ml with methanol, and remove sampnore. Created. Using this liquid chromatograph 600 (trade name) manufactured by Waters, the sample was Microbonder Pack C18 as a column, methanol: water = 80:20 (start), linear gradient (0-5 minutes), Methanol: water = 100: 0 (5 to 20 minutes), flow rate is lml / min, injection volume is 30 μ1, and the detector is Waters UV detector 996 (trade name) (detection wavelength 285 nm) The liquid chromatograph was measured by the standard addition method.
[実施例 1] [Example 1]
ムーニー粘度が 55の旭化成ケミカルズ社製ポリブタジエンゴム.ジェン 55AE (商 品名)(以下 BRと略す。) 3gに対し、良溶媒としてトルエン 25gを加えよく攪拌し、完 全に溶解させた。次に、貧溶媒としてメタノール 250gを良くかき混ぜながら添加して ポリマーの塊を沈殿させ、濾紙を用いて上澄みの液を取り除き、この操作を 3回繰返 して沈殿物を得た。熱可塑性樹脂 (A)として上記の溶解再沈法により得られた BRを トルエン 12gで溶解し、酸化促進成分 (B)として和光純薬工業社製ナフテン酸コバ ルト 0· 05g (コバルト原子として 0· 1重量0 /0)を添加してよく攪拌したものを、直径 8.5 cmのガラス製シャーレ中に入れ、ャマト科学社製の真空乾燥機 DP63 (商品名)によ り 35°Cで、 48時間真空乾燥することにより透明で厚み約 300 μ mのシートを得た。 次に、 SPEX社製フリーザーミル SPEX6700 (商品名)を用いて、該シート lgを窒 素ガスを充填した粉砕管に入れ液体窒素で 10分間冷却した後に、 5分間の凍結粉 砕を行うことで、粉状酸素吸収材を得た。この粉状酸素吸収材は、白色の固体粉末 で、常温に戻してもベた付かず、取扱い易い形状を有していた。また該粉状酸素吸 収材を走査型電子顕微鏡にて観察したところ、数 μ m〜約 1000 μ mの大きさの粒 子が混在している構造となっていた。また、この粒子をさらに拡大すると、約 0. 5 /i m 〜約 5 μ mの一次粒子が凝集しあう様子が観察された。このような大小の粒子が混在 し、微小な粒子が凝集しあう構造が、酸素との接触面積を大きいまま維持すると共に 粉体同士の密着を防止し、優れた酸素吸収性能に寄与しているものと考えられる。 該粉状酸素吸収材の比表面積は 2, 920cm2/g,平均粒径は 0. 95mmであった。 該粉状酸素吸収材の DSC測定をしたところ、結晶融解ピークは有さなかった。尚、 該粉状酸素吸収材はトルエン浸漬後 1日で、原型をとどめない程度にまで完全に溶 解してしまい、実質的に架橋していなかった。 [0108] 該粉状酸素吸収材について、上記方法にて評価を行ったところ、 Vos = 230cc/g 、 Ros = 38cc/ (g 'hr)であり、優れた酸素吸収量と酸素吸収速度を示した。 Polybutadiene rubber manufactured by Asahi Kasei Chemicals Co., Ltd. having a Mooney viscosity of 55. Gen 55AE (trade name) (hereinafter abbreviated as BR), 25 g of toluene as a good solvent was added to 3 g and stirred well to completely dissolve. Next, 250 g of methanol as a poor solvent was added while stirring well to precipitate the polymer mass, the supernatant liquid was removed using filter paper, and this operation was repeated three times to obtain a precipitate. BR obtained by the above-described dissolution and reprecipitation method as thermoplastic resin (A) is dissolved in 12 g of toluene, and naphthenic acid cobalt 0 · 05 g (0% as cobalt atom) manufactured by Wako Pure Chemical Industries, Ltd. is used as oxidation promoting component (B). - what was stirring well with the addition of 1 wt 0/0), placed in a glass petri dish with a diameter of 8.5 cm, by Ri at 35 ° C in Yamato scientific Co., Ltd. of vacuum dryer DP63 (trade name), 48 By vacuum drying for a time, a transparent sheet having a thickness of about 300 μm was obtained. Next, using a freezer mill SPEX6700 (trade name) manufactured by SPEX, the sheet lg was placed in a pulverizing tube filled with nitrogen gas, cooled with liquid nitrogen for 10 minutes, and then freeze-ground for 5 minutes. A powdery oxygen absorber was obtained. This powdery oxygen absorbent material was a white solid powder and did not stick even when returned to room temperature, and had a shape that was easy to handle. Further, when the powdery oxygen absorbing material was observed with a scanning electron microscope, it was found that particles having a size of several μm to about 1000 μm were mixed. Further, when the particles were further enlarged, it was observed that primary particles of about 0.5 / im to about 5 μm aggregated. The structure in which such small and large particles coexist and fine particles aggregate together keeps the contact area with oxygen large and prevents adhesion between powders, contributing to excellent oxygen absorption performance. It is considered a thing. The powder oxygen absorber had a specific surface area of 2,920 cm 2 / g and an average particle size of 0.95 mm. DSC measurement of the powdery oxygen absorber did not have a crystal melting peak. The powdery oxygen absorber was completely dissolved within a day after soaking in toluene to the extent that it did not retain its original shape and was not substantially crosslinked. [0108] The powdery oxygen absorber was evaluated by the above method. As a result, Vos = 230cc / g, Ros = 38cc / (g'hr), and an excellent oxygen absorption amount and oxygen absorption rate were exhibited. It was.
[0109] また該粉状酸素吸収材 lgと日本エンバイ口ケミカルズ社製活性炭粒状白鷺 GAAx  [0109] Further, the powdery oxygen absorber lg and activated carbon granular white birch GAAx manufactured by Nippon Enviguchi Chemicals
(商品名) 0. 5gをガーレー試験機法 (iIS _P_ 8117)に準拠した透気度が 8, 000 秒の袋材からなる小袋中に充填したもの(以下小袋サンプルと呼ぶ)を、容積 2Lの近 江ォドエア一サービス社製試料採取用袋.フレックスサンプラー F (商品名)にレヽれて 、空気を充填して封をした状態で酸素吸収させ、一日後に袋の中の空気を嗅いだと ころ、不快な臭気は感じられなかった。また、理研計器社製ホルムアルデヒド検知器 FP_ 30 (商品名)を用いて、袋中の空気のホルムアルデヒドを測定したところ、検出 限界(0. Olppm)以下であった。  (Product name) 0.5 g filled in a sachet made of bag material with an air permeability of 8,000 seconds in accordance with the Gurley tester method (iIS _P_ 8117) (hereinafter referred to as sachet sample) Omi Air Air Service Co., Ltd. Sampling Bag. Flex Sampler F (trade name) was placed on the air and filled with air to absorb oxygen and sniff the air in the bag a day later. However, no unpleasant odor was felt. The formaldehyde detector FP_30 (trade name) manufactured by Riken Keiki Co., Ltd. was used to measure the formaldehyde in the air in the bag, and it was below the detection limit (0. Olppm).
[0110] また、重量約 80gのドラ焼きと上記小袋サンプルとを上記試料採取用袋中に密閉し 、一日後にバリア性袋内の酸素濃度の測定と袋内の空気の臭気を嗅いだところ、酸 素濃度は 0. 1%と小袋サンプノレは酸素吸収しており且つ不快な臭気は感じられず、 ドラ焼きのよい香りがした。また、ドラ焼きと小袋サンプルとを PP/PA/EVOH/LL DPEからなるバリア性袋中に密閉し、一日放置してバリア性袋内の酸素濃度を測定( 0. 1 %)し、その後に電子レンジで加熱した後に袋内の空気の臭気を嗅いだところ、 不快な臭気は感じられず、ドラ焼きのよい香りがした。  [0110] In addition, the Dora-yaki weighing about 80 g and the above sachet sample are sealed in the above sampling bag, and after one day, the oxygen concentration in the barrier bag is measured and the odor of the air in the bag is smelled. The oxygen concentration was 0.1% and the sachet Sampnole absorbed oxygen and did not feel an unpleasant odor. In addition, the Dora-yaki and small sachet samples are sealed in a barrier bag made of PP / PA / EVOH / LL DPE and left for a day to measure the oxygen concentration in the barrier bag (0.1%). After heating in a microwave oven, I smelled the odor of the air in the bag.
[比較例 1]  [Comparative Example 1]
上記特許文献 1の実施例 1の製法にならい、分子量 10, 000でム一二一粘度 5未 満の液状のポリブタジエンが 0. 5g、和光純薬工業社製大豆油が 0. 5g、和光純薬 工業社製ナフテン酸コバルトが 0. 2gからなる混合物を、和光純薬工業社製活性炭 5 gに含浸させ、消石灰 0. 5gをこの含浸させた活性炭の表面にまぶして、粉状酸素吸 収材を作成した。  Following the production method of Example 1 of Patent Document 1, 0.5 g of liquid polybutadiene having a molecular weight of 10,000 and a viscosity of less than 5 is 0.5 g, 0.5 g of soybean oil manufactured by Wako Pure Chemical Industries, Ltd. A mixture of 0.2 g of cobalt naphthenate manufactured by Yakuhin Kogyo Co., Ltd. is impregnated in 5 g of activated carbon manufactured by Wako Pure Chemical Industries, Ltd., and 0.5 g of slaked lime is applied to the surface of the impregnated activated carbon to absorb powdered oxygen. Made the material.
[0111] 該粉状酸素吸収材について、上記方法にて評価を行ったところ、図 1に示すように 、 Vos = 41cc/g、 Ros = lccZ (g 'hr)と、本発明の粉状酸素吸収材に比べ劣って いた。このようにムーニー粘度が 5未満と本発明のムーニー粘度よりも低い成分を酸 素吸収反応に用レ、ると、粉同士が相互に再付着し易いという理由や、坦持体のような 酸素吸収反応とは無関係の成分を主成分として含有していると酸素吸収材全量あた りの酸素吸収性能が相対的に低くなるという理由、等により酸素吸収量、酸素吸収速 度が本発明の酸素吸収材に比べ低かった。 [0111] The powder oxygen absorber was evaluated by the above method. As shown in Fig. 1, Vos = 41cc / g, Ros = lccZ (g'hr), and the powder oxygen of the present invention. It was inferior to the absorbent material. As described above, when components having a Mooney viscosity of less than 5 and lower than the Mooney viscosity of the present invention are used for the oxygen absorption reaction, it is easy to reattach the powders to each other, or oxygen such as a carrier. If the main component contains components unrelated to the absorption reaction, The oxygen absorption capacity and oxygen absorption speed were lower than the oxygen absorbent material of the present invention due to the reason that the oxygen absorption performance was relatively low.
[比較例 2]  [Comparative Example 2]
実施例 1の混合工程において、ナフテン酸コバルト 0. 05gに加え更に日本油脂社 製有機過酸化物 ·ジ— 2 _t_ブチルパーォキシイソプロピルベンゼン(商品名パー ブチル P) 0. 3gを 60°Cで混合した外は同じ方法で混合物を作成し、該混合物を窒 素置換した容器中で 180°Cで 10分加熱した後に冷却した。これを実施例 1の粉砕ェ 程と同様に粉砕して、粉状酸素吸収材を作成した。この粉状酸素吸収材のム一二一 粘度は 400を超えて測定不能であった。トルエンには全く溶解しなかった。また該粉 状酸素吸収材の比表面積は 2, 850cm2Zg、平均粒径は 0. 82mmであった。 In the mixing process of Example 1, in addition to 0.05 g of cobalt naphthenate, organic peroxide di- 2 _t_butylperoxyisopropylbenzene (trade name: perbutyl P) 0.3 g from Nippon Oil & Fats Co., 60 ° A mixture was prepared in the same manner except that it was mixed at C. The mixture was heated at 180 ° C. for 10 minutes in a nitrogen-substituted container and then cooled. This was pulverized in the same manner as in the pulverization step of Example 1 to prepare a powdery oxygen absorbent. This powder oxygen absorber had a viscosity of more than 400 and could not be measured. It did not dissolve at all in toluene. The powder oxygen absorber had a specific surface area of 2,850 cm 2 Zg and an average particle size of 0.82 mm.
[0112] 該粉状酸素吸収材について、上記方法にて評価を行ったところ、 Vos = 132cc/g 、 Ros = 14ccZ (g 'hr)だった。このように、粉状酸素吸収材が架橋していることによ り酸素吸収反応に必要な二重結合が減少したり、分子運動が制限されてしまったり すること等の理由により、酸素吸収量、酸素吸収速度が本発明の酸素吸収材に比べ 低かった。 [0112] The powdery oxygen absorber was evaluated by the above-described method. As a result, Vos = 132cc / g and Ros = 14ccZ (g'hr). As described above, the oxygen absorption amount is reduced because the double bond necessary for the oxygen absorption reaction is reduced or the molecular motion is restricted due to the cross-linking of the powdery oxygen absorber. The oxygen absorption rate was lower than that of the oxygen absorbing material of the present invention.
[比較例 3]  [Comparative Example 3]
上記特許文献 3の実施例 1の製法にならい、ナフテン酸コバルト塩 0. 8mmol、トリ ェチルアルミニウム 2. 4mmol、ブタジエン 240ml及び二硫化炭素 1 · 6mmolから、 粉状酸素吸収材を作成した。該粉状酸素吸収材は、直径 200 μ ΐηの球状で、融点 は 147°C、ムーニー粘度は 400を超えて測定不能であった。  According to the production method of Example 1 of Patent Document 3, a powdery oxygen absorbent was prepared from 0.8 mmol of naphthenic acid cobalt salt, 2.4 mmol of triethylaluminum, 240 ml of butadiene, and 1.6 mmol of carbon disulfide. The powdery oxygen absorber had a spherical shape with a diameter of 200 μΐη, a melting point of 147 ° C., and a Mooney viscosity exceeding 400, which was not measurable.
[0113] 該粉状酸素吸収材について、上記方法にて評価を行ったところ、 Vosは 18cc/g で、 Rosは略ゼロであった。 [0113] When the powdery oxygen absorbent was evaluated by the above method, Vos was 18 cc / g and Ros was substantially zero.
[0114] このように、融点が 147°Cと本発明の粉状酸素吸収材の融点よりも高い粉状酸素吸 収材では、分子運動が制限されてしまうこと等の理由により、酸素吸収量、酸素吸収 速度が本発明の酸素吸収材に比べ低かった。 [0114] Thus, in the powdery oxygen absorber having a melting point of 147 ° C, which is higher than the melting point of the powdery oxygen absorber of the present invention, the amount of oxygen absorbed due to the reason that molecular motion is limited. The oxygen absorption rate was lower than that of the oxygen absorbent material of the present invention.
[比較例 4]  [Comparative Example 4]
三菱ガス化学社製鉄系酸素吸収材エージレス ZP— 50 (商品名)について、上記方 法にて評価を行ったところ、 Vos = 68cc/g、 Ros = 18cc/ (g'hr)であった。 [実施例 2] As a result of evaluating the iron-based oxygen absorber AGELESS ZP-50 (trade name) manufactured by Mitsubishi Gas Chemical Company using the above method, Vos = 68cc / g and Ros = 18cc / (g'hr). [Example 2]
実施例 1において、ナフテン酸コバルト 0. 05gの代わりに、和光純薬工業社製酸化 銀 (1) 0. 03g (銀原子として 1.0重量%)を使用した外はまったく同じ方法で酸素吸収 材を作成した。該粉状酸素吸収材の比表面積は 9, 450cm2Zg、平均粒径は 0. 78 mmで 3つた。 In Example 1, instead of 0.05 g of cobalt naphthenate, 0.03 g of silver oxide (1) 0.03 g (1.0% by weight as silver atoms) manufactured by Wako Pure Chemical Industries, Ltd. was used, and the oxygen absorbing material was used in exactly the same manner. Created. The powdery oxygen absorber had a specific surface area of 9,450 cm 2 Zg and an average particle size of 0.78 mm.
[0115] 該粉状酸素吸収材について、上記方法にて評価を行ったところ、 Vos = 153cc/g 、 Ros = 19ccZ (g *hr)であり、優れた酸素吸収量および酸素吸収速度を示した。  [0115] The powdered oxygen absorber was evaluated by the above method. Vos = 153cc / g, Ros = 19ccZ (g * hr), and showed an excellent oxygen absorption amount and oxygen absorption rate. .
[実施例 3]  [Example 3]
実施例 1の混合工程において、溶解再沈法により得られた BRに対し、酸化防止剤 (C)としてチバ'スぺシャリティ'ケミカルズ社製フヱノール系酸化防止剤 · IRGANOX 1076 (商品名)(ォクタデシル一 3— (3, 5—ジ一 t—ブチル一4—ヒドロキシフエニル )プロピ才ネー卜)の添カロ量を、 260ppm、 650ppm、 1300ppm、 1800ppmと変えて 添加したもの、また住友化学社製ィォゥ系酸化防止剤 ' Sumilizer TPS (商品名)( ジステアリノレチ才ジプロピ才才ヽー卜)の添カロ量を 100ppm、 250ppm、 500ppm、 180 Oppmと変えて添加したのものについて実施例 1とまったく同じ方法で粉状酸素吸収 材を作成した。これ等の比表面積及び平均粒径は実施例 1と略同等であった。  In the mixing step of Example 1, for the BR obtained by the dissolution reprecipitation method, as a antioxidant (C), a phenolic antioxidant manufactured by Ciba 'Specialty' Chemicals · IRGANOX 1076 (trade name) (octadecyl) 1- (3,5-di-tert-butyl-4-hydroxyphenyl) propylene disulfide) added to 260ppm, 650ppm, 1300ppm, 1800ppm, added by Sumitomo Chemical Co., Ltd. In the same manner as in Example 1, the amount of added calorie of the Zio-based antioxidant 'Sumilizer TPS (trade name) (distealino reci-gi diplopi genius 卜-卜) was changed to 100 ppm, 250 ppm, 500 ppm, 180 Oppm. A powdery oxygen absorber was prepared. Their specific surface area and average particle diameter were substantially the same as those in Example 1.
[0116] 該粉状酸素吸収材について、上記方法にて評価を行ったところ、全てのサンプル は Vosが略 230cc/g、 Rosが略 38cc/ (g -hr)であった。  [0116] When the powdery oxygen absorber was evaluated by the above method, all samples had Vos of about 230 cc / g and Ros of about 38 cc / (g-hr).
[0117] ここで、これらの粉状酸素吸収材の誘導期間について図 2にまとめて示し、誘導期 間が酸化防止剤(C)によって制御できることを説明する。  [0117] Here, the induction period of these powdery oxygen absorbers is shown together in Fig. 2, and the induction period can be controlled by the antioxidant (C).
[0118] 図 2は、縦軸に上記粉状酸素吸収材の誘導期間を、横軸には酸化防止剤 (C)の 添カ卩量をとつた図である。図中「♦」印はフエノール系酸化防止剤を添加した場合に っレ、て、「口」印はィォゥ系酸化防止剤を添加した場合にっレ、て示してレ、る。  [0118] Fig. 2 is a graph in which the vertical axis represents the induction period of the powdery oxygen absorbent, and the horizontal axis represents the amount of antioxidant (C) added. In the figure, “♦” indicates that the phenolic antioxidant is added, and “Mouth” indicates that the phenolic antioxidant is added.
[0119] 図 2において、酸化防止剤(C)を添加することによって誘導時間が制御できること 力わ力、る。  In FIG. 2, the induction time can be controlled by adding the antioxidant (C).
[0120] 特に図中「♦」印のフエノール系酸化防止剤の場合には、フエノール系酸化防止剤 の添加量と誘導期間との間には直線関係が見られ、所望の誘導時間に制御すること が容易であることが分かる。またフエノール系酸化防止剤の場合には、その添加量が 50〜: 1 , OOOppmの場合に誘導期間が約 3時間〜 3日程度となる。 [0120] In particular, in the case of the phenolic antioxidants marked with "♦" in the figure, a linear relationship is observed between the amount of the phenolic antioxidant added and the induction period, and the desired induction time is controlled. It turns out that it is easy. In the case of phenolic antioxidants, the amount added is 50 ~: 1, In case of OOOppm, the induction period is about 3 hours to 3 days.
[実施例 4]  [Example 4]
特開平 05— 017507の実施例 2の SBゴムラテックスの製法に倣レ、、 1 , 3—ブタジ ェン 18. 0重量部、アタリロニトリノレ 2. 0重量部、 t—ドデシルメルカプタン 0. 1重量 部、不均化ロジン酸カリウム塩 0. 067重量部、牛脂ケン化石ケン 0. 033重量部、過 硫酸ナトリウム 0. 075重量部、苛性ソーダ 0. 03重量部、重炭酸ソーダ 0. 10重量部 、脱イオン水 60. 0重量部を、内部を真空に脱気したオートクレープに投入し、 65°C にて乳化重合法によって重合した。  According to the manufacturing method of SB rubber latex in Example 2 of JP-A-05-017507, 1,3-butadiene 18.0 parts by weight, Atalilonitrinore 2.0 parts by weight, t-dodecyl mercaptan 0.1 Parts by weight, disproportionated potassium rosin acid salt 0.067 parts by weight, beef tallow saponified fossil sapon 0.03 parts by weight, sodium persulfate 0.075 parts by weight, caustic soda 0.03 parts by weight, sodium bicarbonate 0.10 parts by weight 60.0 parts by weight of ionic water was put into an autoclave whose inside was evacuated to vacuum, and polymerized at 65 ° C. by an emulsion polymerization method.
[0121] 尚、重合開始 2. 5時間目力 5時間にかけて、 1 , 3_ブタジエンを 70. 0重量部、 スチレンを 10. 0重量部、 t—ドデシルメルカプタンを 0. 3重量部、不均化ロジン酸力 リウム塩を 0. 67重量部、牛脂ケン化石ケンを 0. 33重量部、過硫酸ナトリウムを 0. 1 重量部、苛性ソーダを 0. 05重量部、重炭酸ソーダを 0. 15重量部、酸化促進成分( B)として日本化学産業社製ナフテン酸亜鉛(商品名ナフテックス Zn8%T)を 0. 5重 量部(亜 ii、原子として 0. 04重量部)、脱イオン水を 50. 0重量部とをオートクレープ に連続添加しながら重合し、粉状酸素吸収材を製造した。  [0121] Initiation of polymerization 2. 5 hours power 5 hours over 1 hour, 1,3_butadiene 70.0 parts by weight, styrene 10.0 parts by weight, t-dodecyl mercaptan 0.3 parts by weight, disproportionation Rosin acid potassium salt 0.67 parts by weight, beef fat saponified fossil ken 0.33 parts by weight, sodium persulfate 0.1 parts by weight, caustic soda 0.05 parts by weight, sodium bicarbonate 0.15 parts by weight, oxidized 0.5 parts by weight of zinc naphthenate (product name: naphthex Zn8% T) manufactured by Nippon Kagaku Sangyo Co., Ltd. as the accelerating component (B) and 50.0 parts by weight of deionized water Were polymerized with continuous addition to the autoclave to produce a powdery oxygen absorbent.
[0122] 該粉状酸素吸収材の平均粒径は 3. 5 /i m、比表面積は 19, 500cm2/gで、融点 は有さなかった。また、該粉状酸素吸収材のム一二一粘度は 80であった。乾燥させ た該粉状酸素吸収材について、上記方法にて評価を行ったところ、 Vos = 140cc/ g、 Ros = 26cc/ (g 'hr)であり、優れた酸素吸収量および酸素吸収速度を示した。 [0122] The average particle size of the powder-like oxygen-absorbing material 3. 5 / im, the specific surface area is 19, 500cm 2 / g, the melting point had no. Further, the powder oxygen absorber had a viscosity of 80. The dried powdery oxygen absorber was evaluated by the above method. As a result, Vos = 140cc / g, Ros = 26cc / (g′hr), and an excellent oxygen absorption amount and oxygen absorption rate were exhibited. It was.
[実施例 5]  [Example 5]
ムーニー粘度が 190の旭化成ケミカルズ社製スチレン/ブタジエン共重合体'アサ プレン T420 (商品名)に対して和光純薬工業社製ナフテン酸コバルトを 1. 67重量 % (コバルト原子として 0. 1重量%)ブレンダ一にて均一になるまで混合した後に、こ れら混合物を池貝鉄工社製二軸押出機 PCM_45 (商品名)を用いて 215°Cで溶融 混練した。ダイから出てきたストランド状樹脂組成物を水冷し、続いて勝製作所社製 水冷式ペレタイザ一 KN— 150 (商品名)を用いてペレット状にカッティングし乾燥後 、酸素バリア性袋中にいれて密封保管した。次に、該ペレットを西村機械製作所社製 ディスクグラインダー粉砕機 GPC_ 140 (商品名)を用いて粉砕し粉状酸素吸収材を 作成した。この粉状酸素吸収材は、淡青色の固体粉末で、常温に戻してもベた付か ず、取扱い易い形状を有していた。またこの粉状酸素吸収材を走査型電子顕微鏡に て観察したところ、約 20 μ m〜約 lmmの大きさの粒子が混在している構造となって いた。また、この粒子をさらに拡大すると、約 0. 5 z m〜約 20 z mの一次粒子が凝集 しあう様子が観察された。該粉状酸素吸収材の平均粒径は 0. 78mm,比表面積は 2, 400cm2Zgであった。また、該粉状酸素吸収材中の酸化防止剤の含有量を上述 の方法で分析したところ、 410ppmであった。該粉状酸素吸収材の DSC測定をした ところ、結晶融解ピークは有さなかった。 Wako Pure Chemical Industries Co., Ltd. Cobalt Naphthenate Co. 1.67% by weight (0.1% by weight as cobalt atom) to Asahi Kasei Chemicals Co., Ltd. After mixing until uniform in a blender, these mixtures were melt-kneaded at 215 ° C using a twin screw extruder PCM_45 (trade name) manufactured by Ikekai Tekko. The strand-shaped resin composition coming out of the die is water-cooled, then cut into pellets using a water-cooled pelletizer KN-150 (trade name) manufactured by Katsu Seisakusho, and then placed in an oxygen barrier bag. Stored sealed. Next, the pellets were pulverized using a disc grinder pulverizer GPC_140 (trade name) manufactured by Nishimura Machinery Co., Ltd. Created. This powdery oxygen absorbing material was a light blue solid powder and did not stick even when returned to room temperature, and had a shape that was easy to handle. When this powdery oxygen absorber was observed with a scanning electron microscope, it had a structure in which particles having a size of about 20 μm to about 1 mm were mixed. Further, when this particle was further enlarged, it was observed that primary particles of about 0.5 zm to about 20 zm aggregated. The powdery oxygen absorber had an average particle size of 0.78 mm and a specific surface area of 2,400 cm 2 Zg. Further, the content of the antioxidant in the powdery oxygen absorbent was analyzed by the above-mentioned method and found to be 410 ppm. DSC measurement of the powdery oxygen absorber showed no crystal melting peak.
[0123] 該粉状酸素吸収材を、 EV〇H/Ny製の酸素バリア性の袋内に脱気包装し、コバ ノレト—60ガンマ線を 240kGy照射した。照射後に該粉状酸素吸収材のム一二一粘 度を測定したところ 165であった。  [0123] The powdery oxygen absorber was deaerated and packaged in an oxygen barrier bag made of EVH / Ny, and irradiated with 240 kGy of Kobanoleto-60 gamma rays. After the irradiation, the viscosity of the powdery oxygen absorbent was measured and found to be 165.
[0124] 該粉状酸素吸収材について、上記方法にて評価を行ったところ、 Vos = 102cc/g 、 Ros = 20cc/ (g 'hr)、誘導期間は 4時間であり、優れた酸素吸収量と酸素吸収速 度を示した。  [0124] When the powdery oxygen absorber was evaluated by the above method, Vos = 102cc / g, Ros = 20cc / (g'hr), induction period was 4 hours, and excellent oxygen absorption amount And the oxygen absorption rate.
[0125] なお該粉状酸素吸収材を 25°C、相対湿度 20%RHの大気中に 4時間放置した後 に、上記方法にて評価を行ったところ、酸素吸収量と酸素吸収速度は変わらなかつ た。  [0125] When the powdery oxygen absorber was left in the atmosphere at 25 ° C and relative humidity 20% RH for 4 hours and then evaluated by the above method, the amount of oxygen absorbed and the rate of oxygen absorption changed. Natsuki.
[実施例 6]  [Example 6]
実施 こおレヽて、ガンマ ,線の f 、射 f泉量を、 30kGy、 120kGy、また ίま 500kGyiこ 変えた外は実施例 5とまったく同じ方法で酸素吸収材を作成した。尚、各粉状酸素吸 収材のム一二一粘度はそれぞれ、 135、 150、 180であった。該粉状酸素吸収材に ついて上記方法にて評価を行ったところ、これ等の酸素吸収材料の Vosは略 102cc /g、 Rosは略 20cc/ (g -hr)でガンマ線の照射線量には影響されな力 た。  Implementation An oxygen absorbent was prepared in exactly the same manner as in Example 5, except that the gamma, line f, and amount of fountain were changed to 30 kGy, 120 kGy, and 500 kGyi. The powder viscosities of the powdery oxygen absorbers were 135, 150, and 180, respectively. The powdered oxygen absorbers were evaluated by the above method. These oxygen-absorbing materials had a Vos of approximately 102cc / g and a Ros of approximately 20cc / (g-hr). The power that was not.
[0126] 一方誘導期間は、ガンマ線の照射量が 30、 120、 240、 500に対して、誘導期間 はそれぞれ 24時間、 8時間、 4時間、 0. 5時間であり、ガンマ線の照射線量によって 、容易に誘導期間を制御できることが分かった。 [0126] On the other hand, the induction period is 30, 120, 240, and 500, while the induction period is 24 hours, 8 hours, 4 hours, and 0.5 hours, respectively. It was found that the induction period can be controlled easily.
[実施例 7]  [Example 7]
実施例 5の粉状酸素吸収材を、更に三菱瓦斯化学社製脱酸素材エージレス ZP— 200 (商品名)とともに EVOH/Ny製の酸素バリア性の袋内に脱気包装して、 40°C で 10日、 20日、 30日、 60日間保存した。保存後の粉状酸素吸収材について、上記 方法にて評価を行ったところ、 Vosは略 102cc/g、 Rosは略 20cc/ (g 'hr)で低酸 素雰囲気保存期間には影響されな力 た。 The powdered oxygen absorbing material of Example 5 was further deoxidized material Ageless ZP— It was deaerated and packed in an oxygen barrier bag made by EVOH / Ny with 200 (trade name) and stored at 40 ° C for 10, 20, 30, and 60 days. When the powdered oxygen absorber after storage was evaluated by the above method, Vos was approximately 102cc / g, Ros was approximately 20cc / (g'hr), and the force was not affected by the low oxygen atmosphere storage period. It was.
[0127] 一方、誘導期間に着目してみると低酸素雰囲気保存期間が 0日、 10日、 20日、 30 日、 60日に対して、誘導期間はそれぞれ 4時間、 2時間、 1時間、 1時間、 1時間であ り、低酸素雰囲気保存期間が長くなるにつれて誘導期間は短くなつてゆき 20日を越 えるとほぼ一定になった。 [0127] On the other hand, focusing on the induction period, the induction period is 4 hours, 2 hours, 1 hour, respectively for the low oxygen atmosphere preservation period 0 days, 10 days, 20 days, 30 days, 60 days. It was 1 hour and 1 hour, and the induction period became shorter as the low oxygen atmosphere preservation period became longer, and it became almost constant after 20 days.
産業上の利用可能性  Industrial applicability
[0128] 本発明の粉状酸素吸収材は、金属製品、食品、医薬品、写真フィルム、古文書、絵 画、電子製品等の保存の分野で好適に利用できる。 [0128] The powdery oxygen absorbing material of the present invention can be suitably used in the field of preservation of metal products, foods, pharmaceuticals, photographic films, old documents, pictures, electronic products and the like.

Claims

請求の範囲 The scope of the claims
[1] ムーニー粘度が 10〜400であり、且つ示差走查熱量計 (DSC)で測定したとき結晶 融解ピークを有さない又は融点が 75°C未満である、ァリル水素および Zまたは 3級 炭素と結合した水素を分子中に有する熱可塑性重合体 (A)及び酸化促進成分 (B) を含み、比表面積が 60cm2/g以上であることを特徴とする粉状酸素吸収材。 [1] Allyl hydrogen and Z or tertiary carbon with Mooney viscosity of 10 to 400 and no crystalline melting peak or melting point less than 75 ° C as measured by differential scanning calorimetry (DSC) A powdery oxygen absorbent comprising a thermoplastic polymer (A) having hydrogen bonded to the molecule and an oxidation promoting component (B) and having a specific surface area of 60 cm 2 / g or more.
[2] 熱可塑性重合体 (A)のム一二一粘度が 20〜 150であることを特徴とする、請求項 1 に記載の粉状酸素吸収材。  [2] The powdery oxygen absorbent according to claim 1, wherein the thermoplastic polymer (A) has a viscosity of 20 to 150.
[3] 熱可塑性重合体 (A)がブタジエン単位を 50重量%以上含む重合体又は共重合体 であることを特徴とする、請求項 1または 2に記載の粉状酸素吸収材。  [3] The powdery oxygen absorbent according to claim 1 or 2, wherein the thermoplastic polymer (A) is a polymer or copolymer containing 50% by weight or more of butadiene units.
[4] 熱可塑性重合体 (A)が 50〜99重量%のブタジエン単位および:!〜 50重量%のス チレン単位からなる、ブロック又はランダム構造の共重合体であることを特徴とする、 請求項 1〜3のいずれかに記載の粉状酸素吸収材。  [4] The thermoplastic polymer (A) is a block or random structure copolymer comprising 50 to 99% by weight of butadiene units and:! To 50% by weight of styrene units. Item 4. The powdery oxygen absorber according to any one of Items 1 to 3.
[5] 熱可塑性重合体 (A)中に 50〜: !OOOppmの酸化防止剤(C)を含有することを特徴と する、請求項 1〜4のいずれかに記載の粉状酸素吸収材。  [5] The powdery oxygen absorbent according to any one of claims 1 to 4, characterized in that the thermoplastic polymer (A) contains 50-: OOOOppm of antioxidant (C).
[6] 熱可塑性重合体 (A)、酸化促進成分 (B)、及び熱可塑性重合体 (A)には付着性を 有するが相互には付着しにくい微粒子(D)を含有してなり、平均粒径が 10 z m〜5 mmで、かつ前記微粒子(D)の少なくとも一部が(A)及び(B)力 なる粉体の表面に 位置することを特徴とする、請求項 1〜5のいずれかに記載の粉状酸素吸収材。  [6] The thermoplastic polymer (A), the oxidation promoting component (B), and the thermoplastic polymer (A) contain fine particles (D) that have adhesion but are difficult to adhere to each other. The particle size is 10 zm to 5 mm, and at least a part of the fine particles (D) is located on the surface of the powder (A) and (B) force. The powdery oxygen absorber according to crab.
[7] 以下の工程からなる粉状酸素吸収材の製造方法。  [7] A method for producing a powdery oxygen absorbent comprising the following steps.
工程 (X):ム一二一粘度が 10〜400であり、且つ示差走查熱量計(DSC)で測定し たとき結晶融解ピークを有さない又は融点が 75°C未満であるァリル水素および Zま たは 3級炭素と結合した水素を分子中に有する熱可塑性重合体 (A)及び酸化促進 成分 (B)を加熱溶融状態において溶融混合する工程  Step (X): Allyl hydrogen having a viscosity of 10 to 400 and having no crystal melting peak as measured with a differential scanning calorimeter (DSC) or having a melting point of less than 75 ° C. A process of melt-mixing a thermoplastic polymer (A) having hydrogen bonded to Z or tertiary carbon in its molecule (A) and an oxidation promoting component (B) in a heated and melted state.
工程 (Y):工程 (X)で得られた溶融混合物を粉砕する工程  Step (Y): Step of pulverizing the molten mixture obtained in step (X)
工程 (Z):工程 (X)で得られた溶融混合物又は工程 (Y)で得られた粉砕物を 2キログ レイ以上の放射線に曝す工程  Step (Z): A step of exposing the molten mixture obtained in step (X) or the pulverized material obtained in step (Y) to radiation of 2 kyrogray or more.
工程 (S):前記溶融混合物又は粉碎物を低酸素雰囲気で保存する工程  Step (S): A step of storing the molten mixture or powdered product in a low oxygen atmosphere.
PCT/JP2006/304044 2005-03-07 2006-03-03 Powdery oxygen absorbent material and process for producing the same WO2006095640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507076A JPWO2006095640A1 (en) 2005-03-07 2006-03-03 Powdered oxygen absorber and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005062601 2005-03-07
JP2005-062601 2005-03-07
JP2005257670 2005-09-06
JP2005-257670 2005-09-06

Publications (1)

Publication Number Publication Date
WO2006095640A1 true WO2006095640A1 (en) 2006-09-14

Family

ID=36953240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304044 WO2006095640A1 (en) 2005-03-07 2006-03-03 Powdery oxygen absorbent material and process for producing the same

Country Status (3)

Country Link
JP (1) JPWO2006095640A1 (en)
TW (1) TW200633771A (en)
WO (1) WO2006095640A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073628A (en) * 2006-09-22 2008-04-03 Asahi Kasei Chemicals Corp Oxygen absorbing composition and manufacturing method thereof
JP2009298889A (en) * 2008-06-11 2009-12-24 Kyoraku Co Ltd Oxygen-absorbing polyamide-based resin composition and method for producing the same
WO2014038659A1 (en) * 2012-09-07 2014-03-13 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition and oxygen-absorbing multilayer body using same
JP2017039900A (en) * 2015-08-21 2017-02-23 横浜ゴム株式会社 Production method of modified polymer, modified polymer, rubber composition and pneumatic tire
WO2017169036A1 (en) * 2016-03-30 2017-10-05 三菱瓦斯化学株式会社 Oxygen absorber composition, oxygen-absorbing multilayer body, oxygen-absorbing packaging container, and method for storing article
JP2020507672A (en) * 2017-02-09 2020-03-12 トレビラ ホールディングス ゲーエムベーハー Polymer blends for improved gas barrier properties

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115776A (en) * 1991-04-02 1993-05-14 W R Grace & Co Mixture, product and method for scavenging oxygen
JPH06313016A (en) * 1993-04-28 1994-11-08 Asahi Chem Ind Co Ltd Production of rubber-reinforced resin
JPH08502202A (en) * 1992-10-01 1996-03-12 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト Improved oxygen scavenging composition for use at low temperatures
JPH1076157A (en) * 1996-09-03 1998-03-24 Ube Ind Ltd Production of oxygen absorbent made of polybutadiene
JPH1170331A (en) * 1997-06-30 1999-03-16 Mitsubishi Gas Chem Co Inc Deoxygenation component
JP2002506904A (en) * 1998-03-18 2002-03-05 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Oxygen scavenger compositions and products
JP2004269735A (en) * 2003-03-10 2004-09-30 Mitsubishi Gas Chem Co Inc Oxygen-absorbing resin composition and method for producing the same
JP2005186060A (en) * 2003-12-04 2005-07-14 Nippon Zeon Co Ltd Oxygen absorbent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115776A (en) * 1991-04-02 1993-05-14 W R Grace & Co Mixture, product and method for scavenging oxygen
JPH08502202A (en) * 1992-10-01 1996-03-12 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト Improved oxygen scavenging composition for use at low temperatures
JPH06313016A (en) * 1993-04-28 1994-11-08 Asahi Chem Ind Co Ltd Production of rubber-reinforced resin
JPH1076157A (en) * 1996-09-03 1998-03-24 Ube Ind Ltd Production of oxygen absorbent made of polybutadiene
JPH1170331A (en) * 1997-06-30 1999-03-16 Mitsubishi Gas Chem Co Inc Deoxygenation component
JP2002506904A (en) * 1998-03-18 2002-03-05 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Oxygen scavenger compositions and products
JP2004269735A (en) * 2003-03-10 2004-09-30 Mitsubishi Gas Chem Co Inc Oxygen-absorbing resin composition and method for producing the same
JP2005186060A (en) * 2003-12-04 2005-07-14 Nippon Zeon Co Ltd Oxygen absorbent

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073628A (en) * 2006-09-22 2008-04-03 Asahi Kasei Chemicals Corp Oxygen absorbing composition and manufacturing method thereof
JP2009298889A (en) * 2008-06-11 2009-12-24 Kyoraku Co Ltd Oxygen-absorbing polyamide-based resin composition and method for producing the same
WO2014038659A1 (en) * 2012-09-07 2014-03-13 三菱瓦斯化学株式会社 Oxygen-absorbing resin composition and oxygen-absorbing multilayer body using same
US9758666B2 (en) 2012-09-07 2017-09-12 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition and oxygen-absorbing multilayer body using the same
JP2017039900A (en) * 2015-08-21 2017-02-23 横浜ゴム株式会社 Production method of modified polymer, modified polymer, rubber composition and pneumatic tire
WO2017033693A1 (en) * 2015-08-21 2017-03-02 横浜ゴム株式会社 Method for producing modified polymer, modified polymer, rubber composition and pneumatic tire
CN107849159A (en) * 2015-08-21 2018-03-27 横滨橡胶株式会社 Polymer-modified manufacture method, polymer-modified, rubber composition and pneumatic tire
WO2017169036A1 (en) * 2016-03-30 2017-10-05 三菱瓦斯化学株式会社 Oxygen absorber composition, oxygen-absorbing multilayer body, oxygen-absorbing packaging container, and method for storing article
JPWO2017169036A1 (en) * 2016-03-30 2019-02-14 三菱瓦斯化学株式会社 Oxygen absorbent composition, oxygen-absorbing multilayer body, oxygen-absorbing packaging container, and article storage method
JP2020507672A (en) * 2017-02-09 2020-03-12 トレビラ ホールディングス ゲーエムベーハー Polymer blends for improved gas barrier properties

Also Published As

Publication number Publication date
JPWO2006095640A1 (en) 2008-08-14
TW200633771A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
JP6093747B2 (en) Particulate water absorbent
AU2004270651B2 (en) Oxygen scavenger block copolymers and compositions
WO2006095640A1 (en) Powdery oxygen absorbent material and process for producing the same
JP5410018B2 (en) Water-absorbent resin composition, method for producing the same, and absorbent article
EP3932541A1 (en) Water absorbing agent, and water absorbent core using the agent
EP1699710B1 (en) Oxygen scavenger compositions
KR20120081113A (en) Particulate water absorbent and method for producing same
CN1256707A (en) Photoinitiators and oxygen scanvenging compositions
MXPA02000006A (en) Oxygen scavenging composition.
KR20010032351A (en) Oxygen Scavenging Composition
RU2011143621A (en) COMPOSITION FOR ABSORPTION OF OXYGEN, TARE, PACKAGING AND COOKING AGENT CONTAINING THE SPECIFIED COMPOSITION
NZ503554A (en) Oxygen scavenging composition containing an ethylene-cinyl unsaturated alicyclic derived unit and a transition metal catalyst, use in film and packaging materials
CA2599689A1 (en) Oxygen scavenging polymers
WO2008032743A1 (en) Oxygen-absorbing resin composition
WO2005053837A1 (en) Oxygen absorber
TW457216B (en) Oxygen scavenging compositions and methods for making same
US7022258B2 (en) Oxygen scavenging compositions comprising polymers derived from benzenedimethanol monomers
KR20080048460A (en) Pellet for oxygen-absorbing resin composition and oxygen-absorbing resin composition
JP4178335B2 (en) Deoxidation component
AU2004270650A1 (en) Ionomeric oxygen scavenger compositions
JP2005186060A (en) Oxygen absorbent
JP4314848B2 (en) Oxygen-absorbing resin composition and method for producing the same
JP2014024014A (en) Oxygen absorbent and oxygen-absorbing laminate
JP2021534273A (en) Coating product, its article and its preparation method
JP4178334B2 (en) Oxygen absorber package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507076

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715127

Country of ref document: EP

Kind code of ref document: A1