WO2006095536A1 - Method of growing single crystal and single crystal growing apparatus - Google Patents

Method of growing single crystal and single crystal growing apparatus Download PDF

Info

Publication number
WO2006095536A1
WO2006095536A1 PCT/JP2006/302409 JP2006302409W WO2006095536A1 WO 2006095536 A1 WO2006095536 A1 WO 2006095536A1 JP 2006302409 W JP2006302409 W JP 2006302409W WO 2006095536 A1 WO2006095536 A1 WO 2006095536A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crucible
flux
pressure vessel
reaction vessel
Prior art date
Application number
PCT/JP2006/302409
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiro Imai
Makoto Iwai
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2007507020A priority Critical patent/JP4919949B2/en
Publication of WO2006095536A1 publication Critical patent/WO2006095536A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/02Single-crystal growth from melt solutions using molten solvents by evaporation of the molten solvent
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Definitions

  • the present invention relates to a method for growing a single crystal and a single crystal growing apparatus.
  • the present invention relates to a method and apparatus for growing a nitride single crystal by a so-called Na flux method.
  • Gallium nitride thin film crystals are attracting attention as an excellent blue light-emitting device, put into practical use in light-emitting diodes, and expected as a blue-violet semiconductor laser device for optical pickups.
  • Jpn. J. Appl. Phys. Vol. 42, (2003) page L4-L6 is a method for growing a gallium nitride single crystal by the Na flux method.
  • the pressure is 50 atmospheres, and when using a mixed gas atmosphere of 40% ammonia and 60% nitrogen, the total pressure is 5 atmospheres.
  • the pressure is set to 10 to 100 atm using a mixed gas of nitrogen and ammonia.
  • the atmospheric pressure during the growth is 100 atm or less, and in the examples 2, 3, 5 MPa (about 20 atm, 30 atm, 50 atm) It is.
  • the growth temperatures are all 100 ° C. or lower, and in the examples, all are 85 ° C. or lower.
  • Aluminum nitride has a large band gap of 6.2 eV and high thermal conductivity, making it an excellent substrate material for light emitting devices in the ultraviolet region (LED, LD). Development is desired. So far, production techniques for A 1 N single crystals by the sublimation method and the HVPE method have been proposed. Also, the manufacturing method of A 1 N by the flux method (solution method) is disclosed in Japanese Patent Application Laid-Open No. 2000-3 1 1 90 09, Mat. Res. Bull. Vol. 9 (1974) 331-336. Is disclosed. In Japanese Patent Laid-Open No. 2 0 0 3-1 1 9 0 9 9, a transition metal is used as a flux. Mat. Res. Bull. Vol. 9 (1974) pp. 331-336, A 1 N single crystals are obtained from Ca 3 N 2 and A 1 N powders.
  • the present inventor has attempted to grow a gallium nitride single crystal and an aluminum nitride single crystal in a high temperature and high pressure region using a hot isostatic press (HIP) apparatus in comparison with the above-mentioned literature (Japanese Patent Application No. 20). 0 4— 1 0 3 0 9 3).
  • An object of the present invention is to provide a heater, a furnace material, and a movable mechanism using flux metal vapor generated from a flux in a crucible when a single crystal is grown using a flux containing Al force or Al force earth metal. It is to prevent corrosion of structural parts.
  • the present invention provides a flat containing at least an alkali or alkaline earth metal.
  • the present invention is an apparatus for growing a single crystal using a flux containing at least an alkali or alkaline earth metal, and contains a crucible for accommodating a flux, a lid for the crucible, and a crucible.
  • a single crystal growth apparatus comprising a pressure vessel for filling an atmosphere containing at least nitrogen gas, and a flux metal vapor absorber disposed inside the pressure vessel and outside the crucible. It is related to.
  • the present inventor provides a crucible for containing a flux and provides a flux metal vapor absorber in a pressure vessel for filling an atmosphere containing at least nitrogen gas, thereby providing a gap between the crucible and the lid.
  • a single crystal can be grown using an apparatus suitable for processing at high temperature and high pressure using an alkali or alkaline earth-containing flux.
  • FIG. 1 is a cross-sectional view schematically showing a reaction vessel that can be used in an embodiment of the present invention.
  • FIG. 2 is a view showing a state in which the reaction vessel of FIG. 1 is set in the HIP apparatus.
  • BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below by taking gallium nitride crystal growth by the Na flux method as an example.
  • the crucible containing the flux is housed in a pressure vessel and heated under high pressure using a hot isostatic press. At this time, the atmospheric gas containing nitrogen is compressed to a predetermined pressure and supplied into the pressure vessel, and the total pressure and the nitrogen partial pressure in the pressure vessel are controlled.
  • a reaction vessel for accommodating the crucible is provided in the pressure vessel, and a sodium vapor absorber is provided in the reaction vessel.
  • a discharge path forming means for guiding the vapor leaked from the opening between the crucible and the lid to contact with the sodium vapor absorber.
  • the form of the discharge path forming member is not particularly limited.
  • the discharge channel forming member can be a container without a bottom, and a crucible can be accommodated in the bottomless container so that gas can escape from the gap between the bottomless container and the bottom surface of the reaction container.
  • the discharge channel forming member is a bottomed container, the crucible is accommodated in the bottomed container, one or more discharge paths are provided on the top or side of the bottomed container, and sodium vapor is provided at the outlet of each discharge path.
  • Absorber can be installed. FIG.
  • FIG. 1 is a cross-sectional view schematically showing a reaction vessel 16, a discharge passage forming member 20, a sodium vapor absorber 19 and a crucible 25 for installation in a pressure vessel according to the present invention.
  • FIG. 2 is a diagram schematically showing a single crystal growth apparatus 1 that can be used in the present invention.
  • the reaction vessel 16 of FIG. 1 when the reaction vessel 16 of FIG. 1 is accommodated in the pressure vessel 2 of the HIP (hot isostatic press) apparatus, the state schematically shown in FIG. 2 is obtained.
  • H I P Hot Isostatic Press
  • the jacket 3 is fixed in the pressure vessel 2 of the apparatus, and the reaction vessel 16 is installed in the jacket 3.
  • the reaction vessel 16 contains a raw material containing at least sodium constituting the flux.
  • the mixed gas cylinder is filled with a mixed gas of a predetermined composition.
  • This mixed gas is compressed by a compressor to a predetermined pressure, and is supplied into the pressure vessel 2 through the supply pipe 10 as indicated by an arrow B. .
  • Nitrogen in this atmosphere becomes a nitrogen source, and inert gases such as argon gas suppress the evaporation of sodium.
  • This pressure is monitored by a pressure gauge (not shown).
  • a heater 4 is installed around the reaction vessel 16 so that the growth temperature in the crucible can be controlled.
  • the reaction vessel 16 includes a reaction vessel main body 17 and a lid 23.
  • a circular protrusion 2 3 a is formed on the lid 2 3.
  • the lid 2 3 is fitted to the body 1 7 to form a reaction vessel 16.
  • a discharge path forming means 20 is installed in the space 1 8 of the reaction vessel 16.
  • a circular protrusion 2 2 a is formed on the lid 2 2.
  • the discharge path forming means 20 of this example is a bottomless container in which a crucible 25 is accommodated.
  • the Na flux 8 and the substrate 7 are accommodated in the inner space 24 of the crucible 25.
  • the Na vapor generated from the Na flux 8 passes through the gap between the lid and the crucible 25 from the space 24 as indicated by arrow C, and between the crucible 25 and the discharge channel forming means 20.
  • the cylindrical gap 2 8 formed on the I will give you.
  • the Na vapor further rises as indicated by an arrow E through a gap 29 between the discharge path forming means 20 and the reaction vessel main body 17.
  • a sodium vapor absorber 19 is installed between the reaction vessel main body 17 and the discharge path forming means 20, and the steam discharged along the discharge path forming means is indicated by an arrow F. Guided to contact with sodium vapor absorber 19.
  • the gas passes through the gap 30 between the lid 2 3 and the reaction vessel body 17 as indicated by the arrow G, and is released into the pressure vessel 2 as indicated by the arrow H. .
  • the flux metal vapor absorber is a member having the property of absorbing one or more metal vapors among the metals constituting the flux.
  • This absorbent material preferably has at least the ability to absorb Al-strength metal or Al-strength earth metal constituting the flux. Particularly preferably, it has the ability to absorb sodium or lithium or calcium metal.
  • the type of the flux metal vapor absorber is not particularly limited, and may be, for example, the following.
  • Porous material such as Ryuichi Bonn, activated carbon, silica gel, zeolite
  • the following single crystals can be suitably grown by the growth method and apparatus of the present invention.
  • more specific single crystals and their growth procedures will be exemplified.
  • a gallium nitride single crystal can be grown using a flux containing at least sodium metal.
  • This flux is mixed with gallium source material.
  • gallium source materials include gallium simple metal, Although gallium alloys and gallium compounds can be applied, gallium simple metals are also preferable in terms of handling.
  • This flux can contain metals other than sodium, such as lithium.
  • the usage ratio of the gallium raw material and the flux raw material such as sodium may be appropriate, but in general, the use of an excess amount of Na is considered. Of course, this is not limiting.
  • a gallium nitride single crystal is grown under an atmosphere of a mixed gas containing nitrogen gas under a total pressure of 300 atm or more and 20000 atm or less.
  • a high-quality gallium nitride single crystal can be grown in a high temperature region of, for example, 900 ° C. or higher, and more preferably in a high temperature region of 950 ° C. or higher. It was. The reason for this is not clear, but it is presumed that nitrogen solubility increases with increasing temperature, and nitrogen dissolves efficiently in the growth solution.
  • the total pressure of the atmosphere is 200 atm or higher, the density of the high-pressure gas and the density of the growth solution become considerably close, which makes it difficult to hold the growth solution in the crucible.
  • the nitrogen partial pressure in the growth atmosphere is set to 100 atm or more and 2 000 atm or less.
  • the nitrogen partial pressure is set to 100 atm or higher, it was possible to promote the dissolution of nitrogen in the flux and grow a high-quality gallium nitride single crystal, for example, in a high temperature region of 1000 ° C or higher. From this viewpoint, it is more preferable to set the nitrogen partial pressure of the atmosphere to 200 atm or higher. Further, it is preferable that the nitrogen partial pressure is practically 1 000 atm or less.
  • a gas other than nitrogen in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable.
  • the partial pressure of gases other than nitrogen is the total pressure minus the nitrogen gas partial pressure.
  • the growth temperature of the gallium nitride single crystal is 950 ° C. or higher, more preferably 1000 ° C. or higher.
  • a high-quality gallium nitride single crystal is grown even in such a high temperature region. Is possible.
  • the temperature of the gallium nitride single crystal is preferably set to 1500 ° C or less. From this viewpoint, 1 200 ° C More preferably, it is as follows.
  • the material of the growth substrate for epitaxial growth of gallium nitride crystals is not limited, but sapphire, A1N template, GaN template, silicon single crystal, SiC single crystal, MgO single crystal, spinel (M g A 1204) s L i a 102s L i G a 02s L a a 10 35 L a a G a 03 3 NdGa0 Bae Robusukai preparative composite oxide such as 3 can be exemplified. Further, the composition formula [Ai- y (S r _ X B a x!) Y ] C (A 1 x _ z G a z) _ u ⁇ D U D 0 3 (A is a rare earth element;!
  • SCAM ScAlMgO 4
  • y 0.3-3. 9 8
  • z 0 to l
  • u 0. 1 5 to 0.4 9
  • x + z 0.1 to 2
  • cubic perovskite structure complex oxide Can be used.
  • SCAM ScAlMgO 4
  • a yoke frame type HIP (hot isostatic pressing) device was used.
  • a reaction vessel 16 a sodium vapor absorber 19, a discharge path forming means 20, a crucible 25, and a lid 2 2 were installed.
  • a 1 N template 7 with a diameter of 2 inches was used as a seed crystal.
  • An A 1 N template is an A 1 N single crystal epitaxial thin film formed on a sapphire single crystal substrate. The thickness of the A 1 N thin film was 1 micron.
  • Metal gallium and metal sodium were weighed in a glove box so that the mol ratio was 27:73, and placed in an alumina crucible 25.
  • the crucible 25 has a cylindrical shape with a diameter of 100 mm and a height of 120 mm.
  • An inert mixed gas having a nitrogen concentration of 50% (remaining argon) was supplied from a cylinder 12, pressurized to 40 MPa (approximately 400 atm) in a compressor, and heated to 110 ° C.
  • the nitrogen partial pressure at this time is approximately 200 atmospheres. This gas was fed into the pressure vessel. This was maintained for 100 hours. Next, after cooling to room temperature, the weight of the crucible 25 containing the raw material, the weight of the reaction vessel main body 17 containing the crucible 25 and the weight of the lid 23 were measured. The weight of the crucible 25 was reduced by about 1%, which is thought to be due to the evaporation of metallic sodium in the flux. The weight of the reaction vessel body 1 7 (including the crucible) and the weight of the lid 2 3 were not changed. Therefore, it can be seen that the evaporated sodium was trapped by the absorbent 19. In addition, no leakage of metallic sodium outside the reaction vessel was observed, and no corrosion was observed in the heat vessel or the heat insulation inside the pressure vessel.
  • Example 1 a comparative experiment was performed except for the sodium vapor absorber 19. However, the same as above except that the sodium vapor absorber 19 was omitted.
  • the weight of the crucible 25 containing the raw material, the weight of the reaction vessel main body 17 with the crucible 25 contained, and the weight of the lid 23 were measured.
  • the weight of the crucible was reduced by about 1%, which may be due to evaporation of metallic sodium in the flux.
  • the weight of the reaction vessel body 17 (including the crucible) was also reduced by 1%. Therefore, it was confirmed that the sodium evaporated from the crucible leaked into the space outside the reaction vessel 17. In addition, when the heat inside the pressure vessel and the heat insulating material were checked, some corrosion was observed.
  • a 1 N single crystal was grown in the same manner as in Example 1.
  • the flux material containing A 1 and Ca was weighed in a globe box.
  • the weighed raw material was filled into an alumina crucible 25.
  • a 1 N template 7 (1 m thick aluminum nitride on sapphire single crystal wafer) Nyum thin film (epitaxially grown) was used.
  • Nitrogen-alkane mixed gas (nitrogen 10%) was used as an atmosphere and maintained at a predetermined temperature and pressure for 100 hours.
  • the weight of the crucible 25 containing the raw material, the weight of the reaction vessel main body 17 containing the crucible 25, and the weight of the lid 23 were measured.
  • the weight of the crucible 25 was reduced by about 0.1%.
  • the weight of the reaction vessel body 1 7 (including the crucible) and the weight of the lid 2 3 were not changed. In addition, no corrosion was observed on the heater or insulation in the pressure vessel.
  • the amount of flux evaporated from the crucible is considered to be determined by the vapor pressure at the growth temperature.
  • Table 2 shows the vapor pressures of sodium, lithium, and calcium, which are representative flux materials, compared with the vapor pressures of aluminum and gallium. Table 2 '

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Growing of a single crystal from flux (8) containing at least an alkali or alkaline earth metal is carried out by the use of crucible (25) for accommodating the flux (8), cover (20) for the crucible (25), a pressure vessel for accommodating the crucible (25) and enclosing an atmosphere and flux metal vapor absorbing material (19) disposed inside the pressure vessel and outside the crucible (25).

Description

明細書  Specification
単結晶を育成する方法および単結晶育成装置 発明の属する技術分野  TECHNICAL FIELD The present invention relates to a method for growing a single crystal and a single crystal growing apparatus.
本発明は、 いわゆる N aフラックス法により窒化物単結晶を育成する 方法および装置に関するものである。  The present invention relates to a method and apparatus for growing a nitride single crystal by a so-called Na flux method.
背景技術  Background art
窒化ガリゥム薄膜結晶は、 優れた青色発光素子として注目を集めてお り、 発光ダイオードにおいて実用化され、 光ピックアップ用の青紫色半 導体レ一ザ一素子としても期待されている。 N aフラックス法によって 窒化ガリウム単結晶を育成する方法としては、 例えば、 Jpn. J. Appl. Phys. Vol.42, (2003) ページ L4-L6では、 窒素のみの雰囲気を使用した 場合には雰囲気圧力は 5 0気圧であり、 アンモニア 40 %、 窒素 6 0 % の混合ガス雰囲気を用いた場合は、 全圧は 5気圧である。  Gallium nitride thin film crystals are attracting attention as an excellent blue light-emitting device, put into practical use in light-emitting diodes, and expected as a blue-violet semiconductor laser device for optical pickups. For example, Jpn. J. Appl. Phys. Vol. 42, (2003) page L4-L6 is a method for growing a gallium nitride single crystal by the Na flux method. The pressure is 50 atmospheres, and when using a mixed gas atmosphere of 40% ammonia and 60% nitrogen, the total pressure is 5 atmospheres.
また、 例えば、 特開 2 0 02— 2 9 3 6 9 6号公報では、 窒素とアン モニァの混合ガスを用いて 1 0から 1 0 0気圧としている。 特開 2 00 3 - 2 9 2400号公報でも、 育成時の雰囲気圧力は 1 0 0気圧以下で あり、 実施例では 2、 3、 5 MP a (約 2 0気圧、 30気圧、 5 0気圧) である。 また、 いずれの従来技術においても、 育成温度はすべて 1 00 0 °C以下であり、 実施例ではすべて 8 5 0 °C以下である。  Further, for example, in Japanese Patent Laid-Open No. 2 02-02-2 9 3 6 96, the pressure is set to 10 to 100 atm using a mixed gas of nitrogen and ammonia. Also in Japanese Patent Laid-Open No. 2000-329 2400, the atmospheric pressure during the growth is 100 atm or less, and in the examples 2, 3, 5 MPa (about 20 atm, 30 atm, 50 atm) It is. In any of the conventional techniques, the growth temperatures are all 100 ° C. or lower, and in the examples, all are 85 ° C. or lower.
また、 窒化アルミニウムは、 バンドギャップが 6. 2 e Vと大きく、 熱伝導率が高いため、 紫外領域の発光素子 (L E D、 LD) 用の基板材 料として優れており、 単結晶ウェハ製造技術の開発が望まれている。 こ れまで、 昇華法、 H VP E法による A 1 N単結晶の製造技術が提案され ている。 また、 フラックス法 (溶液法) での A 1 Nの製造技術が、 特開 2 00 3— 1 1 9 0 9 9、 Mat. Res. Bull. Vol. 9 (1974 ) 331〜336頁 に開示されている。 特開 2 0 0 3 - 1 1 9 0 9 9では、 遷移金属をフラ ックスとして使用している。 Mat . Res . Bul l . Vo l . 9 ( 1974 ) 331〜336 頁では、 C a 3 N 2と A 1 N粉末とから A 1 N単結晶を得ている。 Aluminum nitride has a large band gap of 6.2 eV and high thermal conductivity, making it an excellent substrate material for light emitting devices in the ultraviolet region (LED, LD). Development is desired. So far, production techniques for A 1 N single crystals by the sublimation method and the HVPE method have been proposed. Also, the manufacturing method of A 1 N by the flux method (solution method) is disclosed in Japanese Patent Application Laid-Open No. 2000-3 1 1 90 09, Mat. Res. Bull. Vol. 9 (1974) 331-336. Is disclosed. In Japanese Patent Laid-Open No. 2 0 0 3-1 1 9 0 9 9, a transition metal is used as a flux. Mat. Res. Bull. Vol. 9 (1974) pp. 331-336, A 1 N single crystals are obtained from Ca 3 N 2 and A 1 N powders.
最近、 N aを触媒に用いることによって、 低温 '低圧で高品質のバル ク状窒化ガリウム単結晶を合成できることが報告されている (特開 2 0 0 0— 3 2 7 4 9 5 )。 この原料はガリゥムとアジ化ナトリウムである。 また、 Phys. Stat. Sol. Vol.188 (2001 ) ρ415·419によれば、 アジ化 ナトリウムとガリゥムとアルミニウムとを原料として N aフラックスを 製造し、 この N aフラックスを用いて 7 5 0 °Cまたは 8 0 0 °C;、 および 約 1 0 0〜 1 1 0気圧の圧力で A 1 G a N固溶体単結晶の育成に成功し ている。 発明の開示  Recently, it has been reported that high-quality bulk gallium nitride single crystals can be synthesized at low temperatures and low pressures by using Na as a catalyst (Japanese Patent Laid-Open No. 2 00 0-3 2 7 4 9 5). The raw materials are gallium and sodium azide. According to Phys. Stat. Sol. Vol.188 (2001) ρ415 · 419, Na a flux is produced from sodium azide, gallium and aluminum as raw materials. C or 80 ° C; and a pressure of about 100 to 110 atmospheres has successfully grown A 1 GaN solid solution single crystals. Disclosure of the invention
本発明者は、 熱間等方圧プレス (H I P ) 装置を用いて、 上記文献に あるよりも高温高圧領域で窒化ガリウム単結晶ゃ窒化アルミニウム単結 晶の育成を試みている (特願 2 0 0 4— 1 0 3 0 9 3 )。  The present inventor has attempted to grow a gallium nitride single crystal and an aluminum nitride single crystal in a high temperature and high pressure region using a hot isostatic press (HIP) apparatus in comparison with the above-mentioned literature (Japanese Patent Application No. 20). 0 4— 1 0 3 0 9 3).
H I P装置を用いてフラックス法により結晶育成を行う場合には、 圧 力容器の内部にヒー夕一、 断熱材 (炉材) および可動機構などの構造部 品を収容する必要があるが、 前記のような高温高圧領域においては、 こ れらがルヅボ内のフラックスから発生したフラックス金属蒸気によって 腐食を受けることが判明してきた。  When crystal growth is performed by the flux method using a HIP apparatus, it is necessary to accommodate structural components such as heat and heat insulating materials (furnace materials) and movable mechanisms inside the pressure vessel. In such a high temperature and high pressure region, it has been found that they are corroded by the flux metal vapor generated from the flux in the crucible.
本発明の課題は、 アル力リまたはアル力リ土類金属を含むフラックス を使用して単結晶を育成するのに際して、 ルヅボ内のフラックスから発 生したフラックス金属蒸気によるヒーター、 炉材ゃ可動機構などの構造 部品の腐食を防止することである。  An object of the present invention is to provide a heater, a furnace material, and a movable mechanism using flux metal vapor generated from a flux in a crucible when a single crystal is grown using a flux containing Al force or Al force earth metal. It is to prevent corrosion of structural parts.
本発明は、 少なく ともアルカリまたはアル力リ土類金属を含むフラッ クスを使用して単結晶を育成する方法であって、 フラックスを収容する ためのルツボ、 このルツボ用の蓋、 ルツボを収容し、 少なく とも窒素ガ スを含む雰囲気を充填するための圧力容器、 および圧力容器内かつルヅ ボ外に配置されているフラックス金属蒸気吸収材を使用し、 単結晶を育 成することを特徴とする方法に係るものである。 The present invention provides a flat containing at least an alkali or alkaline earth metal. A method of growing a single crystal using a glass, a crucible for containing flux, a lid for the crucible, a pressure vessel for containing a crucible and filling an atmosphere containing at least nitrogen gas, And a method of growing a single crystal using a flux metal vapor absorber disposed inside a pressure vessel and outside a crucible.
また、 本発明は、 少なくともアルカリまたはアルカリ土類金属を含む フラックスを使用して単結晶を育成するための装置であって、 フラック スを収容するためのルツボ、 このルヅボ用の蓋、 ルツボを収容し、 少な くとも窒素ガスを含む雰囲気を充填するための圧力容器、 および圧力容 器内かつルヅボ外に配置されているフラックス金属蒸気吸収材を備えて いることを特徴とする、 単結晶育成装置に係るものである。  Further, the present invention is an apparatus for growing a single crystal using a flux containing at least an alkali or alkaline earth metal, and contains a crucible for accommodating a flux, a lid for the crucible, and a crucible. A single crystal growth apparatus comprising a pressure vessel for filling an atmosphere containing at least nitrogen gas, and a flux metal vapor absorber disposed inside the pressure vessel and outside the crucible. It is related to.
本発明者は、 フラックスを収容するためのルツボを収容し、 少なくと も窒素ガスを含む雰囲気を充填するための圧力容器内にフラックス金属 蒸気吸収材を設けることによって、 ルヅボと蓋との間の隙間から漏出す るフラックス金属蒸気を吸収し、 ヒーター、 断熱材や可動部分などの腐 食を防止することに成功した。 これによつて、 アルカリまたはアルカリ 土類含有フラックスを用いて、 高温高圧での処理に適した装置を利用し て単結晶を育成することができる。 図面の簡単な説明  The present inventor provides a crucible for containing a flux and provides a flux metal vapor absorber in a pressure vessel for filling an atmosphere containing at least nitrogen gas, thereby providing a gap between the crucible and the lid. We absorbed the flux metal vapor leaking from the gap and succeeded in preventing corrosion of heaters, heat insulating materials and moving parts. Thus, a single crystal can be grown using an apparatus suitable for processing at high temperature and high pressure using an alkali or alkaline earth-containing flux. Brief Description of Drawings
図 1は、 本発明の実施形態において使用可能な反応容器を概略的に示 す断面図である。  FIG. 1 is a cross-sectional view schematically showing a reaction vessel that can be used in an embodiment of the present invention.
図 2は、 H I P装置に図 1の反応容器をセツ トした状態を示す図であ る。 発明を実施するための最良の形態 以下に、 Na フラックス法による窒化ガリウム結晶育成を例として、 本発明の詳細について説明する。 FIG. 2 is a view showing a state in which the reaction vessel of FIG. 1 is set in the HIP apparatus. BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below by taking gallium nitride crystal growth by the Na flux method as an example.
好適な実施形態においては、 フラックスを収容したルヅボを圧力容器 内に収容し、 熱間等方圧プレス装置を用いて高圧下で加熱する。 この際 には、窒素を含む雰囲気ガスを所定圧力に圧縮し、圧力容器内に供給し、 圧力容器内の全圧および窒素分圧を制御する。  In a preferred embodiment, the crucible containing the flux is housed in a pressure vessel and heated under high pressure using a hot isostatic press. At this time, the atmospheric gas containing nitrogen is compressed to a predetermined pressure and supplied into the pressure vessel, and the total pressure and the nitrogen partial pressure in the pressure vessel are controlled.
ただし、 例えばこのような H I P装置を用いて N aフラックス法によ り窒化ガリウム単結晶を育成した場合には、 ヒー夕一、 駆動機構、 圧力 容器の内壁の断熱材などに腐食が生じており、 これが N aフラックスか ら発生した N a蒸気によることを確認した。 本発明においては、 このよ うな圧力容器内の各部材の腐食を防止するために、 ナトリゥム蒸気吸収 材を圧力容器の内側に設置する。  However, for example, when a gallium nitride single crystal is grown by the Na flux method using such a HIP apparatus, corrosion has occurred in the heat dissipation, drive mechanism, heat insulation of the inner wall of the pressure vessel, etc. It was confirmed that this was due to Na vapor generated from Na flux. In the present invention, in order to prevent such corrosion of each member in the pressure vessel, a sodium vapor absorbing material is installed inside the pressure vessel.
好適な実施形態においては、 ルヅボを収容するための反応容器を圧力 容器内に設け、 反応容器内にナト リウム蒸気吸収材を設ける。 これによ つて、 反応容器の外側に、 ヒーター、 断熱材などの腐食を受け易い部材 を設置することができ、これらの部材の腐食防止の点で更に有利である。 また、 好適な実施形態においては、 ルヅボと蓋との間の開口部から漏 れ出た蒸気を、 ナトリウム蒸気吸収材との接触に導くための排出路形成 手段を設ける。 これによつて、 ルヅボから漏れ出たナトリウム蒸気を確 実に吸収材との接触に導くことができる。  In a preferred embodiment, a reaction vessel for accommodating the crucible is provided in the pressure vessel, and a sodium vapor absorber is provided in the reaction vessel. This makes it possible to install members that are susceptible to corrosion, such as heaters and heat insulating materials, outside the reaction vessel, which is further advantageous in terms of preventing corrosion of these members. In a preferred embodiment, there is provided a discharge path forming means for guiding the vapor leaked from the opening between the crucible and the lid to contact with the sodium vapor absorber. As a result, sodium vapor leaking from the crucible can be surely guided to contact with the absorbent.
排出路形成部材の形態は特に限定されない。 例えば、 排出路成形部材 を底のない容器とし、 ルヅボをこの無底容器内に収容し、 無底容器と反 応容器の底面との隙間からガスを逃がすことができる。 また、 排出路形 成部材を有底容器とし、 この有底容器中にルツボを収容し、 有底容器の 上面あるいは側面に一つあるいは複数の排出路を設け、 各排出路の出口 にナトリゥム蒸気吸収材を設置することができる。 図 1は、 本発明に従って圧力容器内に設置するための反応容器 1 6、 排出路形成部材 2 0、 ナトリゥム蒸気吸収材 1 9およびルツボ 2 5を概 略的に示す断面図である。 図 2は、 本発明において使用可能な単結晶の 育成装置 1を模式的に示す図である。 The form of the discharge path forming member is not particularly limited. For example, the discharge channel forming member can be a container without a bottom, and a crucible can be accommodated in the bottomless container so that gas can escape from the gap between the bottomless container and the bottom surface of the reaction container. In addition, the discharge channel forming member is a bottomed container, the crucible is accommodated in the bottomed container, one or more discharge paths are provided on the top or side of the bottomed container, and sodium vapor is provided at the outlet of each discharge path. Absorber can be installed. FIG. 1 is a cross-sectional view schematically showing a reaction vessel 16, a discharge passage forming member 20, a sodium vapor absorber 19 and a crucible 25 for installation in a pressure vessel according to the present invention. FIG. 2 is a diagram schematically showing a single crystal growth apparatus 1 that can be used in the present invention.
例えば H I P (熱間等方圧プレス) 装置の圧力容器 2中に、 図 1の反 応容器 1 6を収容すると、 図 2に模式的に示す状態となる。 H I P (熱 間等方圧プレス) 装置の圧力容器 2の中にジャケヅ ト 3を固定し、 ジャ ケッ ト 3内に反応容器 1 6を設置する。 反応容器 1 6の中に、 フラック スを構成する少なくともナトリウムを含む原料を収容する。  For example, when the reaction vessel 16 of FIG. 1 is accommodated in the pressure vessel 2 of the HIP (hot isostatic press) apparatus, the state schematically shown in FIG. 2 is obtained. H I P (Hot Isostatic Press) The jacket 3 is fixed in the pressure vessel 2 of the apparatus, and the reaction vessel 16 is installed in the jacket 3. The reaction vessel 16 contains a raw material containing at least sodium constituting the flux.
圧力容器 2の外部に、 図示しない混合ガスボンベを設ける。 混合ガス ボンべ内には、 所定組成の混合ガスが充填されており、 この混合ガスを 圧縮機によって圧縮して所定圧力とし、 供給管 1 0を通して圧力容器 2 内に矢印 Bのように供給する。 この雰囲気中の窒素は窒素源となり、 ァ ルゴンガス等の不活性ガスはナトリゥムの蒸発を抑制する。この圧力は、 図示しない圧力計によって監視する。 反応容器 1 6の周囲にはヒーター 4が設置されており、 ルツボ内の育成温度を制御可能となっている。 図 1に示すように、 反応容器 1 6は、 反応容器本体 1 7と蓋 2 3とか らなる。 蓋 2 3には円形突出部 2 3 aが形成されている。 蓋 2 3を本体 1 7にはめ合わせて反応容器 1 6を形成する。 反応容器 1 6の空間 1 8 に排出路形成手段 2 0が設置されている。 蓋 2 2には円形突起 2 2 aが 形成されている。 本例の排出路形成手段 2 0は無底容器であり、 その中 にルヅボ 2 5が収容されている。 ルヅボ 2 5の内側空間 2 4には N aフ ラックス 8と基板 7とが収容される。  Install a gas cylinder (not shown) outside the pressure vessel 2. The mixed gas cylinder is filled with a mixed gas of a predetermined composition. This mixed gas is compressed by a compressor to a predetermined pressure, and is supplied into the pressure vessel 2 through the supply pipe 10 as indicated by an arrow B. . Nitrogen in this atmosphere becomes a nitrogen source, and inert gases such as argon gas suppress the evaporation of sodium. This pressure is monitored by a pressure gauge (not shown). A heater 4 is installed around the reaction vessel 16 so that the growth temperature in the crucible can be controlled. As shown in FIG. 1, the reaction vessel 16 includes a reaction vessel main body 17 and a lid 23. A circular protrusion 2 3 a is formed on the lid 2 3. The lid 2 3 is fitted to the body 1 7 to form a reaction vessel 16. A discharge path forming means 20 is installed in the space 1 8 of the reaction vessel 16. A circular protrusion 2 2 a is formed on the lid 2 2. The discharge path forming means 20 of this example is a bottomless container in which a crucible 25 is accommodated. The Na flux 8 and the substrate 7 are accommodated in the inner space 24 of the crucible 25.
本例では、 N aフラックス 8から発生した N a蒸気は、 空間 2 4から 蓋とルヅボ 2 5との隙間を矢印 Cのように抜け、 ルツボ 2 5と排出路形 成手段 2 0との間に形成された円筒形状の隙間 2 8を矢印 Dのように降 下する。 そして、 この N a蒸気は、 更に排出路形成手段 2 0と反応容器 本体 1 7との隙間 2 9を通って矢印 Eのように上昇する。 In this example, the Na vapor generated from the Na flux 8 passes through the gap between the lid and the crucible 25 from the space 24 as indicated by arrow C, and between the crucible 25 and the discharge channel forming means 20. The cylindrical gap 2 8 formed on the I will give you. The Na vapor further rises as indicated by an arrow E through a gap 29 between the discharge path forming means 20 and the reaction vessel main body 17.
ここで、 反応容器本体 1 7と排出路形成手段 2 0との間にナトリゥム 蒸気吸収材 1 9が設置されており、 排出路形成手段に沿って排出されて きた蒸気が矢印: Fのようにナトリゥム蒸気吸収材 1 9との接触に導かれ る。 ここで排ガスから N a蒸気を吸収した後、 ガスは矢印 Gのように蓋 2 3と反応容器本体 1 7との隙間 3 0を通り、矢印 Hのように圧力容器 2内へと放出される。  Here, a sodium vapor absorber 19 is installed between the reaction vessel main body 17 and the discharge path forming means 20, and the steam discharged along the discharge path forming means is indicated by an arrow F. Guided to contact with sodium vapor absorber 19. Here, after absorbing Na vapor from the exhaust gas, the gas passes through the gap 30 between the lid 2 3 and the reaction vessel body 17 as indicated by the arrow G, and is released into the pressure vessel 2 as indicated by the arrow H. .
フラックス金属蒸気吸収材とは、 フラックスを構成する金属のうち一 種または二種以上の金属蒸気を吸収する性質を持つ部材を言う。 この吸 収材は、 少なくともフラックスを構成するアル力リ金属またはアル力リ 土類金属の吸収能力を有することが好ましい。 特に好ましくは、 これが ナトリウムまたはリチウムまたはカルシウム金属の吸収能力を有する。 フラツクス金属蒸気吸収材の種類は特に限定されず、 例えば以下のも のであってよい。  The flux metal vapor absorber is a member having the property of absorbing one or more metal vapors among the metals constituting the flux. This absorbent material preferably has at least the ability to absorb Al-strength metal or Al-strength earth metal constituting the flux. Particularly preferably, it has the ability to absorb sodium or lithium or calcium metal. The type of the flux metal vapor absorber is not particularly limited, and may be, for example, the following.
材質: 力一ボン、 活性炭、 シリカゲル、 ゼォライ トなどの多孔体材 料  Material: Porous material such as Ryuichi Bonn, activated carbon, silica gel, zeolite
形態: 綿状体、 ファイバー、 シート、 顆粒状  Form: Cotton, fiber, sheet, granule
本発明の育成方法および装置によって、 例えば以下の単結晶を好適に 育成できる。  For example, the following single crystals can be suitably grown by the growth method and apparatus of the present invention.
窒化ガリウム、 窒化アルミニウム、 窒化ホウ素およびこれらの固溶体 以下、 更に具体的な単結晶およびその育成手順について例示する。 Gallium nitride, aluminum nitride, boron nitride and their solid solutions Hereinafter, more specific single crystals and their growth procedures will be exemplified.
(窒化ガリウム単結晶の育成例) (Gallium nitride single crystal growth example)
本発明を利用し、 少なくともナトリウム金属を含むフラックスを使用 して窒化ガリウム単結晶を育成できる。 このフラックスには、 ガリウム 原料物質を混合する。 ガリウム原料物質としては、 ガリウム単体金属、 ガリウム合金、 ガリウム化合物を適用できるが、 ガリウム単体金属が取 扱いの上からも好適である。 Utilizing the present invention, a gallium nitride single crystal can be grown using a flux containing at least sodium metal. This flux is mixed with gallium source material. Examples of gallium source materials include gallium simple metal, Although gallium alloys and gallium compounds can be applied, gallium simple metals are also preferable in terms of handling.
このフラックスには、 ナトリウム以外の金属、 例えばリチウムを含有 させることができる。 ガリゥム原料物質とナトリウムなどのフラックス 原料物質との使用割合は、 適宜であってよいが、 一般的には、 Na過剰 量を用いることが考慮される。 もちろん、 このことは限定的ではない。  This flux can contain metals other than sodium, such as lithium. The usage ratio of the gallium raw material and the flux raw material such as sodium may be appropriate, but in general, the use of an excess amount of Na is considered. Of course, this is not limiting.
この実施形態においては、 窒素ガスを含む混合ガスからなる雰囲気下 で、 全圧 300気圧以上、 2 00 0気圧以下の圧力下で窒化ガリゥム単 結晶を育成する。 全圧を 3 0 0気圧以上とすることによって、 例えば 9 0 0 °C以上の高温領域において、 更に好ましくは 9 50 °C以上の高温領 域において、 良質の窒化ガリウム単結晶を育成可能であった。 この理由 は、 定かではないが、 温度上昇に伴って窒素溶解度が上昇し、 育成溶液 に窒素が効率的に溶け込むためと推測される。 また、 雰囲気の全圧を 2 0 00気圧以上とすると、 高圧ガスの密度と育成溶液の密度がかなり近 くなるために、 育成溶液をるつぼ内に保持することが困難になるために 好ましくない。  In this embodiment, a gallium nitride single crystal is grown under an atmosphere of a mixed gas containing nitrogen gas under a total pressure of 300 atm or more and 20000 atm or less. By setting the total pressure to 300 atm or higher, a high-quality gallium nitride single crystal can be grown in a high temperature region of, for example, 900 ° C. or higher, and more preferably in a high temperature region of 950 ° C. or higher. It was. The reason for this is not clear, but it is presumed that nitrogen solubility increases with increasing temperature, and nitrogen dissolves efficiently in the growth solution. In addition, if the total pressure of the atmosphere is 200 atm or higher, the density of the high-pressure gas and the density of the growth solution become considerably close, which makes it difficult to hold the growth solution in the crucible.
各種材料の密度 (g/cm 金属 s§表 アルゴン ナトリウム Density of various materials (g / cm metal s§table argon sodium
80 0 °C · 1気圧 0.7 5 0.0 0 03 0 . 0 0 0  80 0 ° C 1 atmosphere 0.7 5 0.0 0 03 0. 0 0 0
4  Four
9 2 7 °C · 30 0気圧 0.0 8 0.1 1  9 2 7 ° C30 0 bar 0.0 8 0.1 1
9 2 7 °C · 1 00 0気圧 0.2 1 0.3 3  9 2 7 ° C 1 00 0 bar 0.2 1 0.3 3
9 2 7。0 2 00 0気圧 0.3 (推定) 0.5  9 2 7. 0 2 00 0 Atmospheric pressure 0.3 (estimated) 0.5
(推定) 好適な実施形態においては、 育成時雰囲気中の窒素分圧を 100気圧 以上、 2 000気圧以下とする。 この窒素分圧を 100気圧以上とする ことによって、 例えば 1000 °c以上の高温領域において、 フラックス 中への窒素の溶解を促進し、 良質の窒化ガリゥム単結晶を育成可能であ つた。 この観点からは、 雰囲気の窒素分圧を 200気圧以上とすること が更に好ましい。 また、 窒素分圧は実用的には 1 000気圧以下とする ことが好ましい。 (Estimated) In a preferred embodiment, the nitrogen partial pressure in the growth atmosphere is set to 100 atm or more and 2 000 atm or less. By setting the nitrogen partial pressure to 100 atm or higher, it was possible to promote the dissolution of nitrogen in the flux and grow a high-quality gallium nitride single crystal, for example, in a high temperature region of 1000 ° C or higher. From this viewpoint, it is more preferable to set the nitrogen partial pressure of the atmosphere to 200 atm or higher. Further, it is preferable that the nitrogen partial pressure is practically 1 000 atm or less.
雰囲気中の窒素以外のガスは限定されないが、不活性ガスが好ましく、 アルゴン、ヘリウム、ネオンが特に好ましい。窒素以外のガスの分圧は、 全圧から窒素ガス分圧を除いた値である。  A gas other than nitrogen in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable. The partial pressure of gases other than nitrogen is the total pressure minus the nitrogen gas partial pressure.
好適な実施形態においては、 窒化ガリウム単結晶の育成温度は、 95 0°C以上であり、 1000 °c以上とすることが更に好ましく、 このよう な高温領域においても良質な窒化ガリウム単結晶が育成可能である。 ま た、 高温での育成が可能なことから、 生産性を向上させ得る可能性があ る。  In a preferred embodiment, the growth temperature of the gallium nitride single crystal is 950 ° C. or higher, more preferably 1000 ° C. or higher. A high-quality gallium nitride single crystal is grown even in such a high temperature region. Is possible. In addition, it is possible to improve productivity because it can be grown at high temperatures.
窒化ガリウム単結晶の育成温度の上限は特にないが、 育成温度が高す ぎると結晶が成長しにく くなるので、 1500 °C以下とすることが好ま しく、 この観点からは、 1 200 °C以下とすることが更に好ましい。 窒化ガリウム結晶をェピタキシャル成長させるための育成用基板の材 質は限定されないが、 サファイア、 A1Nテンプレート、 GaNテンプ レート、 シリコン単結晶、 S i C単結晶、 Mg O単結晶、 スピネル (M g A 1204 )s L i A 102s L i G a 02s L a A 1035 L a G a 033 NdGa03等のぺロブスカイ ト型複合酸化物を例示できる。 また、 組成式 〔Ai— y ( S r! _XB ax) y〕 C (A 1 x _z G a z) !_u · DUD 03 (Aは、 希土類元素である ; Dは、 ニオブおよびタン タルからなる群より選ばれた一種以上の元素である ; y = 0. 3〜 0. 9 8 ; x二 0〜 l ; z = 0〜 l ; u= 0. 1 5〜0. 4 9 ; x + z = 0. 1〜2 ) の立方晶系のぺロブスカイ ト構造複合酸化物も使用できる。 ま た、 SCAM (ScAlMgO4) も使用できる。 There is no upper limit on the growth temperature of the gallium nitride single crystal, but since it becomes difficult for the crystal to grow if the growth temperature is too high, the temperature is preferably set to 1500 ° C or less. From this viewpoint, 1 200 ° C More preferably, it is as follows. The material of the growth substrate for epitaxial growth of gallium nitride crystals is not limited, but sapphire, A1N template, GaN template, silicon single crystal, SiC single crystal, MgO single crystal, spinel (M g A 1204) s L i a 102s L i G a 02s L a a 10 35 L a a G a 03 3 NdGa0 Bae Robusukai preparative composite oxide such as 3 can be exemplified. Further, the composition formula [Ai- y (S r _ X B a x!) Y ] C (A 1 x _ z G a z) _ u · D U D 0 3 (A is a rare earth element;! D Is one or more elements selected from the group consisting of niobium and tantalum; y = 0.3-3. 9 8; x 2 0 to l; z = 0 to l; u = 0. 1 5 to 0.4 9; x + z = 0.1 to 2) cubic perovskite structure complex oxide Can be used. SCAM (ScAlMgO 4 ) can also be used.
(A 1 N単結晶の育成例)  (A 1 N single crystal growth example)
本発明は、 少なくともアルミニウムとアルカリ土類を含むフラックス を含む融液を特定の条件下で窒素含有雰囲気中で加圧することによって、 A 1 N単結晶を育成する場合にも有効であることが確認できた。 実施例  It is confirmed that the present invention is also effective when growing an A 1 N single crystal by pressurizing a melt containing a flux containing at least aluminum and an alkaline earth in a nitrogen-containing atmosphere under specific conditions. did it. Example
(実施例 1 )  (Example 1)
図 1、 図 2の装置を使用し、 図 1、 図 2を参照しつつ説明した前記手 順に従って、 種結晶 7上に窒化ガリウム単結晶膜を育成した。  Using the apparatus shown in FIGS. 1 and 2, a gallium nitride single crystal film was grown on the seed crystal 7 in accordance with the procedure described with reference to FIGS.
具体的には、 ヨークフレームタイプの H I P (熱間等方圧プレス) 装 置を使用した。この圧力容器 2中に、図 1に示すように、反応容器 1 6、 ナトリウム蒸気吸収材 1 9、 排出路形成手段 2 0、 ルツボ 2 5、 蓋 2 2 を設置した。  Specifically, a yoke frame type HIP (hot isostatic pressing) device was used. In this pressure vessel 2, as shown in FIG. 1, a reaction vessel 16, a sodium vapor absorber 19, a discharge path forming means 20, a crucible 25, and a lid 2 2 were installed.
直径 2インチの A 1 Nテンプレート 7を種結晶として使用した。 A 1 Nテンプレートとは A l N単結晶ェピタキシャル薄膜をサファイア単結 晶基板上に作成したものを言う。 このときの A 1 N薄膜の膜厚は 1 ミク ロンとした。 金属ガリウムと金属ナトリウムとを、 mo l比で 27 : 7 3となるようにグローブボックス中で秤量し、 アルミナルヅボ 2 5内に 入れた。 ルツボ 2 5は、 直径 1 0 0ミ リ、 高さ 1 2 0ミ リの円筒形であ る。 窒素濃度が 5 0 % (残部アルゴン) の不活性混合ガスをボンべ 1 2 から供給し、圧縮機において 40MP a (およそ 40 0気圧)に加圧し、 1 1 0 0 °Cに加熱した。このときの窒素分圧はおよそ 2 0 0気圧である。 このガスを圧力容器中に供給した。 このままで 1 00時間保持した。 次いで、 室温まで冷却後、 原料の入ったルツボ 2 5の重量、 ルツボ 2 5の入ったままの反応容器本体 1 7の重量、 蓋 2 3の重量を測定した。 ルヅボ 2 5の重量は約 1 %減少していたが、 これはフラックス中の金属 ナトリゥムの蒸発によるものと考えられる。反応容器本体 1 7の重量(ル ッボを含む)、 蓋 2 3の重量は変化していなかった。従って、 吸収材 1 9 によって、 蒸発したナトリウムがトラップされていたことが分かる。 ま た、 金属ナトリウムの反応容器外への漏出は見られず、 圧力容器内のヒ 一夕一や断熱材には腐食は見られなかった。 A 1 N template 7 with a diameter of 2 inches was used as a seed crystal. An A 1 N template is an A 1 N single crystal epitaxial thin film formed on a sapphire single crystal substrate. The thickness of the A 1 N thin film was 1 micron. Metal gallium and metal sodium were weighed in a glove box so that the mol ratio was 27:73, and placed in an alumina crucible 25. The crucible 25 has a cylindrical shape with a diameter of 100 mm and a height of 120 mm. An inert mixed gas having a nitrogen concentration of 50% (remaining argon) was supplied from a cylinder 12, pressurized to 40 MPa (approximately 400 atm) in a compressor, and heated to 110 ° C. The nitrogen partial pressure at this time is approximately 200 atmospheres. This gas was fed into the pressure vessel. This was maintained for 100 hours. Next, after cooling to room temperature, the weight of the crucible 25 containing the raw material, the weight of the reaction vessel main body 17 containing the crucible 25 and the weight of the lid 23 were measured. The weight of the crucible 25 was reduced by about 1%, which is thought to be due to the evaporation of metallic sodium in the flux. The weight of the reaction vessel body 1 7 (including the crucible) and the weight of the lid 2 3 were not changed. Therefore, it can be seen that the evaporated sodium was trapped by the absorbent 19. In addition, no leakage of metallic sodium outside the reaction vessel was observed, and no corrosion was observed in the heat vessel or the heat insulation inside the pressure vessel.
また、 この結果、 厚さ約 5 m m、 直径 2インチの G a N単結晶が成長 した。  As a result, a GaN single crystal with a thickness of about 5 mm and a diameter of 2 inches grew.
(比較例 1 )  (Comparative Example 1)
実施例 1において、 ナトリゥム蒸気吸収材 1 9を除いて比較実験を行 つた。 ただし、 ナトリウム蒸気吸収材 1 9を除いた点以外は上記と同様 とした。  In Example 1, a comparative experiment was performed except for the sodium vapor absorber 19. However, the same as above except that the sodium vapor absorber 19 was omitted.
室温まで冷却後、 原料の入ったルツポ 2 5の重量、 ルヅボ 2 5の入つ たままの反応容器本体 1 7の重量、 蓋 2 3の重量を測定した。 ルヅボの 重量は約 1 %減少していたが、 これはフラヅクス中の金属ナトリウムの 蒸発によるものと考えられる。反応容器本体 1 7の重量(ルヅボを含む) も 1 %減少していた。 従って、 ルヅボから蒸発したナトリゥムが反応容 器 1 7外の空間に漏れ出たことが確認された。 更に、 圧力容器内のヒ一 夕一や断熱材を確認すると、 若干の腐食が見られた。  After cooling to room temperature, the weight of the crucible 25 containing the raw material, the weight of the reaction vessel main body 17 with the crucible 25 contained, and the weight of the lid 23 were measured. The weight of the crucible was reduced by about 1%, which may be due to evaporation of metallic sodium in the flux. The weight of the reaction vessel body 17 (including the crucible) was also reduced by 1%. Therefore, it was confirmed that the sodium evaporated from the crucible leaked into the space outside the reaction vessel 17. In addition, when the heat inside the pressure vessel and the heat insulating material were checked, some corrosion was observed.
(実施例 2 )  (Example 2)
実施例 1と同様にして A 1 N単結晶を育成した。 本例では、 A 1およ び C aを含むフラックス原料をグロ一ブボックス中で秤量した。 秤量済 の原料をアルミナるつぼ 2 5に充填した。 また、 種結晶として、 A 1 N テンプレート 7 (サファイア単結晶ウェハ上に厚さ 1 mの窒化アルミ ニゥム薄膜をェピタキシャル成長させたもの) を用いた。 窒素一ァルゴ ン混合ガス (窒素 1 0 % ) を雰囲気として、 所定の温度 ·圧力にて 1 0 0時間保持した。 A 1 N single crystal was grown in the same manner as in Example 1. In this example, the flux material containing A 1 and Ca was weighed in a globe box. The weighed raw material was filled into an alumina crucible 25. As a seed crystal, A 1 N template 7 (1 m thick aluminum nitride on sapphire single crystal wafer) Nyum thin film (epitaxially grown) was used. Nitrogen-alkane mixed gas (nitrogen 10%) was used as an atmosphere and maintained at a predetermined temperature and pressure for 100 hours.
次いで、 室温まで冷却後、 原料の入ったルヅボ 2 5の重量、 ルヅボ 2 5の入ったままの反応容器本体 1 7の重量、 蓋 2 3の重量を測定した。 ルツボ 2 5の重量は約 0.1 %減少していた。反応容器本体 1 7の重量(ル ヅボを含む)、 蓋 2 3の重量は変化していなかった。 また、 圧力容器内の ヒーターや断熱材には腐食は見られなかった。  Next, after cooling to room temperature, the weight of the crucible 25 containing the raw material, the weight of the reaction vessel main body 17 containing the crucible 25, and the weight of the lid 23 were measured. The weight of the crucible 25 was reduced by about 0.1%. The weight of the reaction vessel body 1 7 (including the crucible) and the weight of the lid 2 3 were not changed. In addition, no corrosion was observed on the heater or insulation in the pressure vessel.
この結果, 厚さ約 1 mmの窒化アルミニウム単結晶が、 A 1 Nテンプ レート上に成長したことを確認した。  As a result, it was confirmed that an aluminum nitride single crystal with a thickness of about 1 mm grew on the A 1 N template.
ルヅボから蒸発するフラックスの量は、 育成温度における蒸気圧によ つて決まると考えられる。 代表的なフラックス原料であるナトリウム、 リチウム、 カルシウムの蒸気圧を、 アルミニウム、 ガリウムの蒸気圧と 比較して表 2に示す。 表 2 '  The amount of flux evaporated from the crucible is considered to be determined by the vapor pressure at the growth temperature. Table 2 shows the vapor pressures of sodium, lithium, and calcium, which are representative flux materials, compared with the vapor pressures of aluminum and gallium. Table 2 '
出典:金属便覧 Source: Metal Handbook
Na Li Ca Al Ga  Na Li Ca Al Ga
1000°C 2.6 0.1 0.005 2 X 10— 7 ほぼ 0 1000 ° C 2.6 0.1 0.005 2 X 10- 7 substantially 0
1100。C 5.1 0.2 0.02 データ無し デ一夕無し  1100. C 5.1 0.2 0.02 No data No data
1200°C 9 0.5 0.05 1.4 X 10— 5 1.5 X 10— 4 1200 ° C 9 0.5 0.05 1.4 X 10— 5 1.5 X 10— 4

Claims

請求の範囲 The scope of the claims
1 . 少なくともアル力リまたはアル力リ土類金属を含むフラックス を使用して単結晶を育成する方法であって、 1. A method of growing a single crystal using a flux containing at least Al-strength or Al-strength earth metal,
前記フラヅクスを収容するためのルツボ、  A crucible for containing the flux;
このルヅボ用の蓋、  The lid for this robot,
前記ルツボを収容し、 少なくとも窒素ガスを含む雰囲気を充填するた めの圧力容器、 および  A pressure vessel for containing the crucible and filling an atmosphere containing at least nitrogen gas; and
前記圧力容器内かつ前記ルツボ外に配置されているフラックス金属蒸 気吸収材を使用し、 前記単結晶を育成することを特徴とする、 単結晶の 育成方法。  A method for growing a single crystal, comprising using a flux metal vapor absorbent disposed in the pressure vessel and outside the crucible, to grow the single crystal.
2 . 前記圧力容器内に設けられ、 前記ルツボを収容する反応容器を 使用し、 前記反応容器内に前記フラックス金属蒸気吸収材を設けること を特徴とする、 請求項 1記載の方法。  2. The method according to claim 1, wherein a reaction vessel provided in the pressure vessel and containing the crucible is used, and the flux metal vapor absorber is provided in the reaction vessel.
' 3 . 前記ルツボと前記蓋との間の開口部から漏れ出た蒸気を、 前記 フラックス金属蒸気吸収材との接触に導くための排出路形成手段を用い ることを特徴とする、 請求項 1または 2記載の方法。  3. The discharge path forming means for guiding the vapor leaking from the opening between the crucible and the lid to contact with the flux metal vapor absorber is used. Or the method according to 2.
4 . 前記単結晶が窒化物単結晶であることを特徴とする、 請求項 1 〜 3のいずれか一つの請求項に記載の方法。  4. The method according to any one of claims 1 to 3, wherein the single crystal is a nitride single crystal.
5 . 窒素ガスを含む混合ガスからなる雰囲気下で、 全圧 3 0 0気圧 以上、 2 0 0 0気圧以下の圧力下で前記窒化物単結晶を育成することを 特徴とする、 請求項 4記載の方法。  5. The nitride single crystal is grown under an atmosphere of a mixed gas containing nitrogen gas under a total pressure of not less than 300 atm and not more than 200 atm. the method of.
6 . 熱間等方圧プレス装置を用いて前記単結晶を育成することを特 徴とする、 請求項 1〜 5のいずれか一つの請求項に記載の方法。  6. The method according to any one of claims 1 to 5, wherein the single crystal is grown using a hot isostatic pressing apparatus.
7 . 請求項 1〜 6のいずれか一つの請求項に記載の方法によって育 成されたことを特徴とする、 単結晶。 7. Raised by the method according to any one of claims 1-6. A single crystal characterized by being formed.
8 . 少なくともアル力リまたはアル力リ土類金属を含むフラックス を使用して単結晶を育成するための装置であって、  8. An apparatus for growing a single crystal using a flux containing at least Al or Li earth metal,
前記フラックスを収容するためのルヅボ、  A crucible for containing the flux,
このルツボ用の蓋、  This crucible lid,
前記ルヅボを収容し、 少なくとも窒素ガスを含む雰囲気を充填するた めの圧力容器、 および  A pressure vessel for containing the crucible and filling an atmosphere containing at least nitrogen gas; and
前記圧力容器内かつ前記ルツボ外に配置されている、 フラックス金属 蒸気吸収材  Flux metal, vapor absorber disposed in the pressure vessel and outside the crucible
を備えていることを特徴とする、 単結晶育成装置。 An apparatus for growing a single crystal, comprising:
9 . 前記圧力容器内に設けられ、 前記ルツボを収容する反応容器を 備えており、 前記反応容器内に前記フラックス金属蒸気吸収材が設けら れていることを特徴とする、 請求項 8記載の装置。  9. The reaction vessel according to claim 8, further comprising a reaction vessel provided in the pressure vessel and containing the crucible, wherein the flux metal vapor absorber is provided in the reaction vessel. apparatus.
1 0 . 前記ルヅボと前記蓋との間の開口部から漏れ出た蒸気を、 前 記フラックス金属蒸気吸収材との接触に導くための排出路形成手段を備 えていることを特徴とする、 請求項 8または 9記載の装置。  10. Equipped with a discharge path forming means for guiding the steam leaking from the opening between the crucible and the lid to contact with the flux metal vapor absorber. Item 8 or 9 device.
1 1 . 前記単結晶が、 窒化物単結晶であることを特徴とする、 請求 項 8〜 1 0のいずれか一つの請求項に記載の装置。  11. The apparatus according to any one of claims 8 to 10, wherein the single crystal is a nitride single crystal.
1 2 . 加熱および加圧のための熱間等方圧プレス機構を備えている ことを特徴とする、 請求項 8〜 1 1のいずれか一つの請求項に記載の装  12. A device according to any one of claims 8 to 11, further comprising a hot isostatic pressing mechanism for heating and pressurization.
PCT/JP2006/302409 2005-03-04 2006-02-07 Method of growing single crystal and single crystal growing apparatus WO2006095536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507020A JP4919949B2 (en) 2005-03-04 2006-02-07 Method for growing single crystal and single crystal growing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005060296 2005-03-04
JP2005-060296 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006095536A1 true WO2006095536A1 (en) 2006-09-14

Family

ID=36953138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302409 WO2006095536A1 (en) 2005-03-04 2006-02-07 Method of growing single crystal and single crystal growing apparatus

Country Status (2)

Country Link
JP (1) JP4919949B2 (en)
WO (1) WO2006095536A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099720A1 (en) * 2007-02-15 2008-08-21 Ngk Insulators, Ltd. Melt composition for gallium nitride single crystal growth and method for growing gallium nitride single crystal
US7833347B2 (en) * 2006-03-23 2010-11-16 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
US8337617B2 (en) 2005-03-14 2012-12-25 Ricoh Company, Ltd. Manufacturing method and manufacturing apparatus of a group III nitride crystal
JP2018039720A (en) * 2016-09-06 2018-03-15 豊田合成株式会社 Method of manufacturing group iii nitride semiconductor
CN110098144A (en) * 2019-04-11 2019-08-06 深圳市华星光电半导体显示技术有限公司 A kind of crucible fetching device
CN110387581A (en) * 2018-04-19 2019-10-29 松下电器产业株式会社 The manufacturing method of group III-nitride crystallization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313099A (en) * 2002-04-22 2003-11-06 Ricoh Co Ltd Apparatus for growing group iii nitride crystal
WO2004013385A1 (en) * 2002-07-31 2004-02-12 Osaka Industrial Promotion Organization Method for producing group iii element nitride single crystal and group iii element nitride transparent single crystal prepared thereby
JP2005263572A (en) * 2004-03-19 2005-09-29 Ricoh Co Ltd Group iii nitride crystal growth method and crystal growth apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313099A (en) * 2002-04-22 2003-11-06 Ricoh Co Ltd Apparatus for growing group iii nitride crystal
WO2004013385A1 (en) * 2002-07-31 2004-02-12 Osaka Industrial Promotion Organization Method for producing group iii element nitride single crystal and group iii element nitride transparent single crystal prepared thereby
JP2005263572A (en) * 2004-03-19 2005-09-29 Ricoh Co Ltd Group iii nitride crystal growth method and crystal growth apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337617B2 (en) 2005-03-14 2012-12-25 Ricoh Company, Ltd. Manufacturing method and manufacturing apparatus of a group III nitride crystal
US9376763B2 (en) 2005-03-14 2016-06-28 Ricoh Company, Ltd. Manufacturing method and manufacturing apparatus of a group III nitride crystal, utilizing a melt containing a group III metal, an alkali metal, and nitrogen
US7833347B2 (en) * 2006-03-23 2010-11-16 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
WO2008099720A1 (en) * 2007-02-15 2008-08-21 Ngk Insulators, Ltd. Melt composition for gallium nitride single crystal growth and method for growing gallium nitride single crystal
US8657955B2 (en) 2007-02-15 2014-02-25 Ngk Insulators, Ltd Melt composition for gallium nitride single crystal growth and method for growing gallium nitride single crystal
JP2018039720A (en) * 2016-09-06 2018-03-15 豊田合成株式会社 Method of manufacturing group iii nitride semiconductor
CN110387581A (en) * 2018-04-19 2019-10-29 松下电器产业株式会社 The manufacturing method of group III-nitride crystallization
JP2019189479A (en) * 2018-04-19 2019-10-31 パナソニック株式会社 Method for manufacturing group iii nitride crystal
CN110098144A (en) * 2019-04-11 2019-08-06 深圳市华星光电半导体显示技术有限公司 A kind of crucible fetching device
CN110098144B (en) * 2019-04-11 2021-07-23 深圳市华星光电半导体显示技术有限公司 Crucible taking and placing device

Also Published As

Publication number Publication date
JPWO2006095536A1 (en) 2008-08-14
JP4919949B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
US9551088B2 (en) Method for growing group III-nitride crystals in supercritical ammonia using an autoclave
WO2005095682A1 (en) Gallium nitride single crystal growing method and gallium nitride single crystal
US8444765B2 (en) Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
US20080193363A1 (en) Metal Nitrides and Process for Production Thereof
EP2071062B1 (en) Process for producing group iii element nitride crystal
US8231729B2 (en) Apparatus for producing nitride single crystal
US8568532B2 (en) Method for growing single crystal of group III metal nitride and reaction vessel for use in same
US20070234946A1 (en) Method for growing large surface area gallium nitride crystals in supercritical ammonia and lagre surface area gallium nitride crystals
WO2006095536A1 (en) Method of growing single crystal and single crystal growing apparatus
US7833347B2 (en) Process and apparatus for producing nitride single crystal
KR100914941B1 (en) Container for easily oxidizable or hygroscopic substance, and method for heating and pressuring treatment of easily oxidizable or hygroscopic substance
US6881680B2 (en) Low nitrogen concentration carbonaceous material and manufacturing method thereof
JP2009263229A (en) Apparatus for producing nitride crystal
US10041186B2 (en) Method for producing nitride crystal
US6676752B1 (en) Forming metal nitrides
WO2007108498A1 (en) Nitride single crystal manufacturing apparatus
JP5046490B2 (en) Reaction vessel for single crystal growth and single crystal growth method
US20130239878A1 (en) Apparatus and method for production of aluminum nitride single crystal
JP5082213B2 (en) Metal nitride and method for producing metal nitride
JP4077643B2 (en) Group III nitride crystal growth apparatus and group III nitride crystal growth method
JP6989924B2 (en) Method for Producing Group III Nitride Crystal
JP2006103998A (en) Group iii nitride polycrystal, method for producing the same, group iii nitride single crystal, and method for producing the same
JP2010105850A (en) Method for producing group iii element nitride crystal, group iii element nitride crystal, substrate for forming semiconductor device and semiconductor device
US20050087123A1 (en) Low nitrogen concentration carbonaceous material and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507020

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06713551

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713551

Country of ref document: EP