WO2006095513A1 - Ofdm diversity receiving device - Google Patents

Ofdm diversity receiving device Download PDF

Info

Publication number
WO2006095513A1
WO2006095513A1 PCT/JP2006/301753 JP2006301753W WO2006095513A1 WO 2006095513 A1 WO2006095513 A1 WO 2006095513A1 JP 2006301753 W JP2006301753 W JP 2006301753W WO 2006095513 A1 WO2006095513 A1 WO 2006095513A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
signal
calculating
czn
transmission line
Prior art date
Application number
PCT/JP2006/301753
Other languages
French (fr)
Japanese (ja)
Inventor
Handa Chen
Original Assignee
Mega Chips Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mega Chips Corporation filed Critical Mega Chips Corporation
Priority to KR1020077022766A priority Critical patent/KR101283512B1/en
Priority to CN2006800073218A priority patent/CN101138178B/en
Publication of WO2006095513A1 publication Critical patent/WO2006095513A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0845Weighted combining per branch equalization, e.g. by an FIR-filter or RAKE receiver per antenna branch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to an OFDM receiver. Specifically, the present invention relates to a diversity reception technique for receiving an OFDM transmission signal using a plurality of antennas.
  • an OFDM (Orthogonal Frequency Division Multiplexing) system is adopted as a transmission system.
  • the OFDM system is one of the multicarrier transmission systems that divides a transmission signal into multiple carriers and transmits it.
  • the spectrum of each subchannel, which is strong against frequency selective fading of the multipath transmission path, can be arranged densely, There are advantages such as high utilization efficiency.
  • a weighting coefficient W (i, k) is calculated and weighted to each signal X (i, k).
  • Equation 1 H (i, k) is the pth bran
  • H * G, k) is the channel response of the kth subcarrier of the i-th symbol
  • N is the total number of branches.
  • Equation (2) Y (i, k)
  • Equation 1 the weighting coefficient W (i, k) depends on the amplitude of the transmission line response H.
  • the CZN ratio may vary greatly depending on the antenna position. In this case, there is a large difference in the C / N ratio of the MRC combining branch.
  • the MRC synthesis algorithm is an algorithm developed under the assumption that there is no significant difference in the CZN of the branch to be synthesized.
  • each branch signal is weighted based on the CZN ratio
  • a method of performing synthesis has been proposed. However, this method can be applied to 13-segment OFDM receivers and is not suitable for the 1-segment method.
  • FIG. 6 is a diagram showing the spectrum of an OFDN symbol signal.
  • the horizontal axis represents frequency f and the vertical axis represents signal strength.
  • there are 8192 subcarriers in one symbol of which 5617 are data signals (in this case, data signals include pilot data such as SP (Scattered pilot) signals in addition to actual data).
  • Control signals such as signals and AC (Auxiliary Channel) signals Is also included.
  • Figure 2 shows that in a single-symbol signal, the central 2575 subcarriers are carriers carrying dummy data, and there are 5617 subcarriers for carrying data signals at both ends. .
  • the OFD M signal in which the data signal and the dummy data signal are embedded in the OFDM transmitter is received by the receiver via the transmission path, and again subjected to the FFT operation and demodulated. Therefore, the demodulated signal of the subcarrier in which the dummy data signal is embedded is a pure noise signal.
  • the 13-segment OFDM receiver a filter that covers frequency band Fa as shown in the figure is used. Therefore, in the 13-segment method, a part of the carrier signal with zero padding is received. Therefore, in Japanese Patent Application No. 2004-259634, the zero / padded carrier signal is used as a noise signal to calculate the C / N ratio, and the weighting coefficient of each branch is determined based on this CZN ratio. It is doing so.
  • the one-segment OFDM receiver a filter that covers the frequency band Fb as shown in the figure is used. Therefore, the one-segment method cannot receive a carrier signal with zero padding. For this reason, in the one-segment method, the method proposed in Japanese Patent Application No. 2004-259634 cannot be used! /.
  • the present invention is a 1-segment OFDM receiver that can receive diversity with high adaptability to the reception environment and can obtain stable reception quality. It is an issue to provide.
  • the invention according to claim 1 is characterized in that a plurality of antennas that receive diversity transmission of OFDM transmission signals, and signals of each branch received by the plurality of antennas are respectively FFT processed.
  • the invention according to claim 2 is the OFDM diversity receiver according to claim 1, wherein the means for calculating the first weighting coefficient includes: the relative ratio and the first weighting coefficient of each branch. It includes a lookup table that converts the CZN ratio of each branch into a first weighting coefficient and outputs it by referring to the associated table.
  • the invention according to claim 3 is the OFDM diversity receiver according to claim 1 or 2, further comprising: a frequency domain transmission path for a pilot signal included in the signal of each branch after the FFT operation.
  • a signal power of a signal including noise is calculated from a function, a transmission line response power in the time domain is calculated, and a CZN ratio is calculated from the signal power and the noise power.
  • the invention according to claim 4 is the OFDM diversity receiver according to claim 3, wherein the CZN calculation means outputs a signal whose signal strength is equal to or less than a predetermined threshold in the time domain transmission path response. It is determined that the signal corresponds to noise, and the power of a signal equal to or lower than the predetermined threshold is calculated as the noise power.
  • the invention according to claim 5 is a plurality of antennas for diversity reception of OFDM transmission signals, means for FFT calculation of signals of each branch received by the plurality of antennas, and after the FFT calculation Using the pilot signal included in the signal of each branch, IFFT transform is performed on the frequency domain transmission path transfer function of each branch and the frequency domain transmission path transfer function of each branch.
  • Means for calculating the weighting coefficient of each branch means for calculating the transmission line response of each branch, and multiplying the signal of each branch after the FFT operation by each first weighting coefficient, thereby obtaining the first weighting signal of each branch
  • Means for calculating the weighted transmission line response of each branch by multiplying the transmission line response of each branch by each first weighting coefficient, and each weighted transmission line response and each first weighted signal means for performing MRC synthesis using.
  • the invention according to claim 6 is the OFDM diversity receiver according to claim 5, wherein the CZN calculation means outputs a signal having a signal strength of a predetermined threshold value or less in the time domain transmission line response. It is determined that the signal corresponds to noise, and the power of a signal equal to or lower than the predetermined threshold is calculated as the noise power.
  • the invention according to claim 7 is the OFDM diversity receiver according to claim 5 or claim 6, wherein the means for calculating the first weighting factor is a relative CZN ratio calculated for each branch. Based on the ratio, the first weighting coefficient of each branch is calculated.
  • the invention according to claim 8 is the OFDM diversity receiver according to claim 7, wherein the means for calculating the first weighting factor includes the relative ratio and the first weighting factor of each branch. It includes a lookup table that converts the CZN ratio of each branch into a first weighting coefficient and outputs it by referring to the associated table.
  • the invention according to claim 9 is the OFDM diversity receiver according to any one of claims 1 to 8, further comprising: a plurality of CZN ratios of each branch calculated by the CZN calculating means are set to a plurality of CZN ratios; Smoothing means that averages over the symbols and outputs an average CZN ratio, and the means for calculating the first weighting coefficient includes the first weighting coefficient using the average CZN ratio as the CZN ratio of each branch. Is calculated.
  • the invention according to claim 10 is the OFDM da- ta according to any one of claims 1 to 9.
  • the combining means calculates a second weighting coefficient for each branch by dividing the conjugate complex value of each weighted transmission line response by the sum of squares of the weighted transmission line responses of all branches. Means for multiplying each first weighting signal by each second weighting factor to calculate a second weighting signal for each branch and adding the second weighting signal for each branch Means for calculating a received signal.
  • the weighting coefficient of each branch is determined based on the relative CZN ratio of each branch, the received signal and the transmission path response are weighted, and then MRC synthesis is performed. It is possible to output a composite signal by assigning a large weight to the signal of the above, or assigning a small weight to the signal of the branch when the CZN ratio is bad. This improves the quality of the composite signal.
  • the weighting coefficient is determined based on the relative CZN ratio, it is possible to obtain a high-quality composite signal even when the absolute CZN ratio is not reliable.
  • the pilot signal force included in the signal of each branch calculates the transmission path transfer function in the frequency domain and the transmission path response in the time domain. Then, the frequency domain transmission function force and signal power are calculated, and the time domain transmission response force is noise power, and MRC synthesis is performed based on the C / N ratio obtained from these values. This makes it possible to improve the calculation accuracy of the CZN ratio even when a carrier signal with zero padding cannot be received.
  • FIG. 1 is a block diagram of an OFDM diversity receiver.
  • FIG. 2 is a diagram illustrating a transmission path transfer function in a virtual frequency domain without noise.
  • FIG. 3 is a diagram showing a transmission path transfer function in a frequency domain including noise.
  • FIG. 4 is a diagram showing a virtual time-domain transmission line response without noise.
  • FIG. 5 is a diagram showing a time-domain transmission line response including noise.
  • FIG. 6 shows a spectrum of an OFDM symbol signal.
  • Figure 1 shows the book It is a block diagram of OFDM diversity receiver DR according to an embodiment of the invention.
  • the diversity receiver DR is a receiver with two branches.
  • two antennas 11 and 11 are provided, and two systems of braces received from the antennas 11 and 11 are used.
  • the configuration and processing contents of the receiving apparatuses DR and DR will be described.
  • DR has the same configuration, so in the following, the configuration and processing of each branch
  • Antennas 11 and 11 The received signals are received by the front end processing units 12 and 12, respectively.
  • the received signal is subjected to frequency conversion and filtering.
  • the received digital signal is input to FFT calculation units 13 and 13.
  • FFT calculators 13 and 13 hour
  • the OFDM symbol signal in the 1 2 1 2 domain is converted to an OFDM symbol signal in the frequency domain.
  • the output frequency domain signal is represented by X (i, k). Where p is the branch number
  • the SP Scattered Pilot
  • the SP signal is a pilot signal embedded in the OFDM signal.
  • the pilot signal is PRBS (Pseudo Random Binary Series) fg whose subcarrier position, amplitude, and phase are embedded.
  • the division units 14 and 14 also input the SP signal to the FFT calculation units 13 and 13 and store them in the memory.
  • the pilot pattern is data in which the position and amplitude of a pilot signal having a known complex amplitude are recorded. Then, using a pilot signal having a known complex amplitude, the SP response, which is a received pilot signal, is divided by this complex amplitude to calculate a transmission line response.
  • Division units 14 and 14 use the calculated transmission line responses as IFFT operation units 15 and 15 and transmission line estimation unit 16 respectively.
  • IFFT calculation units 15 and 15 are
  • FIG. 4 is a diagram illustrating a frequency-domain transmission path transfer function of a virtual received OFDM symbol signal. However, noise is generally mixed in the received OFDM symbol.
  • FIG. 3 is a diagram showing a transfer function in the frequency domain of a signal mixed with noise.
  • FIG. 4 is a diagram showing a time-domain transmission path response of a virtual received OFDM symbol signal in which noise is not mixed. In other words, the transmission line response shown in Fig. 2 is IFFT transformed.
  • FIG. 5 is a diagram showing a transmission path response in the time domain of the received OFDM symbol signal mixed with noise. In other words, the transmission path response shown in Fig. 3 is an IFFT transform.
  • the transmission path estimators 16 and 16 convert the transmission path responses input from the dividers 14 and 14 into symbol directions.
  • the transmission line response of this SP signal is interpolated to estimate the transmission line response to other data signals. To do.
  • the obtained transmission path response H (i, k) is output to the multiplier circuits 22 and 22.
  • the CZN calculation units 17 and 17 receive the transmission line responses from the division units 14 and 14, and the IFF
  • the transmission line response converted into the time domain is input from the T calculation units 15 and 15.
  • C / N The transmission line response converted into the time domain is input from the T calculation units 15 and 15.
  • the calculation units 17 and 17 calculate the CZN ratio of the SP signal by performing the following processing.
  • the transmission path transfer function in the frequency domain is represented by a sine wave or the sum of a number of sine waves.
  • the transmission path transfer function in the frequency domain where noise is mixed has noise and the waveform collapses. Therefore, it is difficult to calculate separately such waveform force noise and sine wave power.
  • the time domain transmission line response has a peak at a specific time. The Therefore, even when noise is mixed as shown in FIG. 5, it is possible to separate the real signal portion from the noise portion. This characteristic is used in the present embodiment.
  • the CZN calculation units 17 and 17 calculate the absolute value of the frequency response after the IFFT calculation.
  • a threshold value is determined from the maximum value. For example, 50% of the maximum value is set as the threshold. All signals smaller than the threshold are determined to be noise, and the power of the noise signal is calculated. It should be noted that here, the force with 50% of the maximum value as the threshold, this percentage may be changed to an optimal one through experience and testing.
  • the number of data signals above the threshold is smaller than the number of data signals below the threshold. Therefore, the noise power can be calculated by calculating the power of the signal below the threshold value. Is low. In particular, when the CZN ratio is low or there is ray-leaf aging, the calculation accuracy is not reliable.
  • the signal power before the IFFT operation that is, the data power of the transmission line transfer function in the frequency domain shown in FIG. 3 is calculated, and the signal power of the noise is calculated.
  • the signal power of the real signal with high reliability is calculated by subtracting the calculated noise power from the data power after IFFT calculation.
  • Formula 3 is a calculation formula for calculating the CZN ratio.
  • W is the real signal and noise signal sp
  • No. power In other words, it is the signal power calculated using the frequency transfer function data in the frequency domain before the IFFT calculation.
  • W is the signal power of noise. In other words, it is the signal power calculated using the time domain transmission line response data after the IFFT calculation. Therefore, in Equation 3, the denominator is the noise power, the numerator is the signal power of the actual signal, and the CZN ratio is calculated. This calculation is possible because the signal power does not change before and after the IFFT operation.
  • Equation 3 Since the number of signals of the OFDM signal in the equation is as small as 1Z13 compared to the 13-segment OFDM signal, the CZN ratio obtained in Equation 3 may become unstable due to various disturbances. Therefore, in the smoothing processing units 18 and 18, several tens of symbols worth are obtained.
  • the CZN ratio for weight calculation is an average CZN ratio obtained by averaging the CZN ratios of several tens of symbols before the current symbol alone.
  • the N ratio is output to the first weight calculator 19.
  • the first weight calculation unit 19 includes a CZN table 191.
  • the CZN table 191 is a lookup table, and as shown in Table 1, the branch corresponding to the receiving device DR
  • This table correlates the first weighting coefficients ( ⁇ 1, ⁇ 2).
  • Weighting coefficient ⁇ is a weighting coefficient of the branch corresponding to the receiving device DR, and the first weighting coefficient
  • is a weighting coefficient of a branch corresponding to the receiving device DR.
  • the first weight calculator 19 calculates the CZN specific force relative CZN ratio.
  • the value obtained by dividing CN by CN is used as the relative CZN ratio.
  • the first weight calculation unit 19 When calculating the relative CZN ratio, the first weight calculation unit 19 outputs the weighting coefficient of each branch corresponding to the relative CZN ratio.
  • the relative CZN ratio (CN 1
  • ZCN Zikaolin
  • the first weighting factor is a look-up table method, which eliminates complicated calculations and reduces the circuit scale.
  • the first weight calculation unit 19 calculates the first weighting coefficients ⁇ 1 and ⁇ of each branch.
  • the transmission line responses ⁇ ⁇ and ⁇ and the first weighting coefficients ⁇ and ⁇ are identical to the transmission line responses ⁇ ⁇ and ⁇ and the first weighting coefficients ⁇ and ⁇ .
  • Arithmetic circuit 22 force The output ⁇ ⁇ ⁇ ⁇ ⁇ is applied to the second weight calculators 23 and 23 of each branch. It is output.
  • each of the second weight calculation units 23 and 23 outputs the multiplication circuits 22 and 22 of each branch.
  • the calculation results ⁇ H and ⁇ H are input, and the second weighting factors W and W are calculated based on these two values.
  • the second weight calculator 23 calculates the operation result output from the multiplier circuits 22 and 22.
  • ⁇ H and ⁇ H are input to calculate the second weighting coefficient W, and the second weight calculation unit 23
  • Equation 4 is an equation for calculating the second weighting factors W 1, W obtained by the second weight calculators 23, 23.
  • Equation 4 H * (i, k) is a complex conjugate of H (i, k).
  • the adder circuit 25 outputs the output value W of each multiplier circuit 24, 24.
  • Equation 5 The combined signal Y (i, k) shown in Equation 5 is output.
  • ⁇ (ha) ⁇ W m (i, k) c5-mX m (i, k)
  • the output synthesized signal Y (i, k) is returned to an integer signal by the demapping process in the demapping unit 26 and then output to the FEC (forward error coding) unit.
  • FEC forward error coding
  • FEC Department In this case, Viterbi decoding and Reed-Solomon decoding are performed.
  • the CZN ratio for each symbol of the received OFDM signal is calculated, and the first weighting factors ⁇ and ⁇ are obtained based on the relative CZN ratio between the branches.
  • the power of the real signal and noise is calculated from the transmission path transfer function in the frequency domain, the transmission line response power noise in the time domain is calculated, and these value powers are also calculated. Calculate the CZN ratio of the branch. Therefore, even a 1-segment receiver that does not receive zero-filled subcarriers! / Can calculate the CZN ratio with high accuracy.
  • each functional unit constituting the receiving device DR is configured by a hardware circuit, but some or all of these may be realized by software processing. Good.
  • the power for explaining the case where the number of branches is two.
  • the present invention is also applicable to the case where the number of branches is three or more.
  • CN, CN, CN, and CN are calculated as CZN ratios for each of the four receivers.
  • the average of CN and CN is CN, and the average of CN and CN is CN.
  • the first weighting coefficients ⁇ 1 and ⁇ are calculated by the same method as in the above-described embodiment. That means
  • the first weighting factors ⁇ and ⁇ are calculated using the relative CZN ratio (CN ZCN). And then
  • the first weighting factor ⁇ is further divided into two branches based on the relative CZN ratio between CN and CN. Based on the relative CZN ratio between CN and CN, the first weighting factor ⁇
  • a CP Continuous Pilot
  • SP Session Signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

A synthetic signal of a higher quality than that of a single reception is acquired in an OFDM diversity reception. Signals received by individual antennas (111, 112) are subjected to FFT treatments, and C/N ratios for individual symbols are then calculated at C/N operation units (171, 172) and are averaged at smoothing units (181, 182). A first weight calculation unit (19) inputs averaged C/N ratios (CN1, CN2) of the individual branches, and determines first weighting coefficients (σ1 and σ2) on the basis of those ratios (CN1/CN2). Signals (X1, X2) and transmission line responses (H1, H2) are multiplied by those weighting values (σ1, σ2). Second weighting coefficients (W1, W2) are calculated from transmission line responses (σ1H1, σ2H2), and weighted signals (σ1X1, σ2X2) are multiplied by the second weighting coefficients (W1, W2), thereby to perform an MRC synthesization.

Description

明 細 書  Specification
OFDMダイバーシティ受信装置  OFDM diversity receiver
技術分野  Technical field
[0001] 本発明は OFDM受信装置に関する。詳しくは、複数のアンテナを利用して OFDM 送信信号を受信するダイバーシティ受信技術に関する。  [0001] The present invention relates to an OFDM receiver. Specifically, the present invention relates to a diversity reception technique for receiving an OFDM transmission signal using a plurality of antennas.
背景技術  Background art
[0002] 日本の地上波デジタルテレビ放送では、伝送方式として OFDM (直交周波数分割 多重; Orthogonal Frequency Division Multiplexing)方式が採用されている。 OFDM 方式は、送信信号を複数の搬送波に分割して送信するマルチキャリア伝送方式の 1 つであり、マルチパス伝送路の周波数選択性フェージングに強い、各サブチャネル のスペクトルが密に配置でき、周波数利用効率が高い、などの利点がある。  [0002] In Japanese terrestrial digital television broadcasting, an OFDM (Orthogonal Frequency Division Multiplexing) system is adopted as a transmission system. The OFDM system is one of the multicarrier transmission systems that divides a transmission signal into multiple carriers and transmits it. The spectrum of each subchannel, which is strong against frequency selective fading of the multipath transmission path, can be arranged densely, There are advantages such as high utilization efficiency.
[0003] また、 日本の規格では、 6MHz〜8MHzの帯域幅をもつシンボル信号のスぺクトラ ムを複数の階層に分割して伝送するという、所謂「階層伝送」が可能である。また、 O FDM受信装置においては、これら複数の階層の中から一部の階層のみを部分的に 抽出して受信する「部分受信」という受信形態も行われる。そして、移動通信端末や 携帯通信端末においては、これら複数の階層の中で 1セグメントのみかなる階層を受 信する「1セグメント方式」の受信形態も行われて 、る。  [0003] In addition, in Japanese standards, so-called "hierarchical transmission" is possible in which a spectrum of a symbol signal having a bandwidth of 6 MHz to 8 MHz is divided into a plurality of layers and transmitted. Also, in the OFDM receiving apparatus, a reception mode called “partial reception” is performed in which only a part of the layers is extracted and received. In mobile communication terminals and mobile communication terminals, a “one-segment method” reception mode is also performed in which a layer consisting of only one segment is received among the plurality of layers.
[0004] 一方、 OFDM方式を採用した車載用受信装置などにぉ 、て、デジタル放送を移動 受信する場合には、受信信号の品質向上を図るためダイバーシティ受信が行われる 。このダイバーシティ受信された複数のブランチの信号を合成するアルゴリズムとして 最大匕合成 (MRC: Maximum ratio combining)法がある。  [0004] On the other hand, when a digital broadcast is mobilely received by an in-vehicle receiving apparatus or the like that employs the OFDM method, diversity reception is performed in order to improve the quality of a received signal. There is a maximum ratio combining (MRC) method as an algorithm for combining signals of a plurality of branches received with diversity.
[0005] そして、最近では、上記のようにダイバーシティ受信を行う車載用受信装置にお ヽ ても、 1セグメント方式の受信形態の需要が生じている。また、従来空間ダイバーシテ ィ性が乏し!/ヽと考えられて ヽた携帯通信端末にぉ 、ても、新 ヽアンテナの開発によ り空間ダイバーシティ性を持つことが可能となっている。このような理由力も空間ダイ バーシティ性を利用した高性能の 1セグメント方式受信アルゴリズムの需要が高まつ ている。 [0006] MRC法は各ブランチのサブキャリアごとの伝送路伝達関数のパワーに基づ 、て、 各ブランチのサブキャリアへの重み付け係数を決定し、重み付けられたサブキャリア ごとの信号を合成する方法である。 MRC法は、ブランチの伝送路応答 (伝達関数) の振幅が大きい =そのブランチの CZN比(Carrier to Noise ratio)が良いという前提 で信号を合成する方法である。 [0005] And recently, there is a demand for a 1-segment reception form even in an in-vehicle reception apparatus that performs diversity reception as described above. In addition, even for mobile communication terminals that were previously considered to have poor spatial diversity! / ヽ, the development of a new antenna has made it possible to have spatial diversity. For this reason as well, there is a growing demand for high-performance one-segment reception algorithms that utilize spatial diversity. [0006] The MRC method is a method of determining a weighting coefficient for a subcarrier of each branch based on the power of a transmission path transfer function for each subcarrier of each branch and combining signals for each weighted subcarrier. It is. The MRC method synthesizes signals on the assumption that the amplitude of the transmission line response (transfer function) of a branch is large = the CZN ratio (Carrier to Noise ratio) of that branch is good.
[0007] 具体的に従来の MRC法による合成方法を説明する。 FFT演算された p番目のブラ ンチの i番目のシンボルの k番目のサブキャリア信号を、 X (i,k)と表す。そして、各信  [0007] Specifically, a conventional synthesis method using the MRC method will be described. The k-th subcarrier signal of the i-th symbol of the p-th branch obtained by the FFT operation is expressed as X (i, k). And each
P  P
号 X (i,k)に対しては、それぞれ重み付け係数 W (i,k)が算出され、各信号 X (i,k)に重 For each signal X (i, k), a weighting coefficient W (i, k) is calculated and weighted to each signal X (i, k).
P P P P P P
み付け係数 W (i,k)が乗算されて合成される。  It is synthesized by multiplying the weighting coefficient W (i, k).
P  P
[0008] この重み付け係数 W (i,k)は数 1式で表される。数 1式中、 H (i,k)は、 p番目のブラン  [0008] This weighting coefficient W (i, k) is expressed by Equation 1. In Equation 1, H (i, k) is the pth bran
P P  P P
チの i番目のシンボルの k番目のサブキャリアの伝送路応答であり、 H *G,k)は、その  H * G, k) is the channel response of the kth subcarrier of the i-th symbol
P  P
複素共役を表す。また、 Nはブランチの総数である。  Represents a complex conjugate. N is the total number of branches.
[0009] [数 1] [0009] [Equation 1]
, H P (i,k) , H P (i, k)
W p (i,k) =  W p (i, k) =
N 2  N 2
∑ I H」(i,k) I  ∑ I H ”(i, k) I
[0010] また、重み付け係数 W (i,k)が乗算された各ブランチの信号を合成した合成信号、 [0010] Further, a synthesized signal obtained by synthesizing the signal of each branch multiplied by the weighting coefficient W (i, k),
P  P
つまり、 i番目のシンボルの k番目のサブキャリア合成信号を Y(i,k)とすると、 Y(i,k)は、 数 2式で表される。ここで、 S(i,k) X H (i,k) =X (i,k)より、数 2式が成立することが分 m m  In other words, if the k-th subcarrier composite signal of the i-th symbol is Y (i, k), Y (i, k) is expressed by Equation (2). Where S (i, k) X H (i, k) = X (i, k)
かる。 S(i,k)は受信信号 X(i,k)に含まれる希望信号である。つまり、合成信号 Y(i,k)= S(i,k)であり、希望信号 S(i,k)は完全に復元される。  Karu. S (i, k) is a desired signal included in the received signal X (i, k). That is, the composite signal Y (i, k) = S (i, k), and the desired signal S (i, k) is completely restored.
[0011] [数 2] [0011] [Equation 2]
N N
丫( k) I Wm(i,k) X m(i,k) 丫 (k) IW m (i, k) X m (i, k)
m=1
Figure imgf000004_0001
[0012] 数 1式で表されるように、重み付け係数 W (i,k)は、伝送路応答 Hの振幅に依存して
m = 1
Figure imgf000004_0001
[0012] As expressed by Equation 1, the weighting coefficient W (i, k) depends on the amplitude of the transmission line response H.
P  P
いる。つまり、伝送路応答 Hの振幅の大きい信号に大きな重み付け係数 Wを乗算し、 そのブランチの信号が強調されるのである。しかし、実際には、伝送路応答 Hの振幅 が大き 、場合であっても、当該ブランチの信号が強 、ある 、は当該ブランチの CZN 比が良!ヽとは限らな!/、場合がある。  Yes. In other words, a signal with a large amplitude in the transmission line response H is multiplied by a large weighting factor W, and the signal in that branch is emphasized. However, in practice, even if the amplitude of the transmission line response H is large, even if the signal of the branch is strong, the CZN ratio of the branch is good! It's not always a samurai! / There may be cases.
[0013] 例えば、あるブランチの信号の CZN比が悪ぐ振幅も小さいが、受信するときに A GC(automatically gain control)の働きで、振幅が大きくなり、伝送路応答 Hの振幅も 大きくなる場合がある。このような場合、従来の MRC法で合成すると、 CZN比の良 いブランチが CZN比の悪いブランチに足を引っ張られ、合成後の CZN比が悪くな る。 [0013] For example, when the CZN ratio of a signal in a certain branch is bad and the amplitude is small, the amplitude increases due to the action of AGC (automatically gain control) when receiving, and the amplitude of the transmission line response H also increases There is. In such a case, when the conventional MRC method is used for synthesis, a branch with a good CZN ratio is pulled by a branch with a poor CZN ratio, resulting in a poor CZN ratio after synthesis.
[0014] 実際に車載用受信装置で 13セグメント OFDM信号をダイバーシティ受信し、 MR C法により受信信号を合成する実験を行った場合、合成するブランチ信号の CZN比 に大きな差があると、ダイバーシティ合成後の BER(bit error rate)が、 CZN比のよい ブランチでシングル受信した場合の BERより悪 ヽと 、う問題が発生した。  [0014] When a 13-segment OFDM signal is diversity-received by an on-vehicle receiver and the received signal is synthesized by the MRC method, diversity combining is performed if there is a large difference in the CZN ratio of the branch signals to be synthesized. The later BER (bit error rate) was worse than the BER for single reception on a branch with a good CZN ratio.
[0015] 移動受信の場合、アンテナの位置によって、 CZN比が大きく変わる場合があるの で、その場合は MRC合成ブランチの C/N比に大きな差が出る。 MRC合成アルゴリ ズムでは合成するブランチの CZNに大差がな 、と 、う仮定で開発されたァルゴリズ ムなので、ブランチの CZNに大差がある場合には対応し切れないのである。  [0015] In the case of mobile reception, the CZN ratio may vary greatly depending on the antenna position. In this case, there is a large difference in the C / N ratio of the MRC combining branch. The MRC synthesis algorithm is an algorithm developed under the assumption that there is no significant difference in the CZN of the branch to be synthesized.
[0016] そこで、未だ公知となって 、な 、技術であるが、本願出願人によって出願された特 願 2004— 259634号においては、 CZN比に基づいて各ブランチ信号に重み付け を行った上で信号合成を行う方法が提案されている。しかし、この方法は、 13セグメ ント方式の OFDM受信装置において適用可能な方法であり、 1セグメント方式には 向いていない。  [0016] Therefore, although it is still a well-known technology, in Japanese Patent Application No. 2004-259634 filed by the applicant of the present application, each branch signal is weighted based on the CZN ratio, A method of performing synthesis has been proposed. However, this method can be applied to 13-segment OFDM receivers and is not suitable for the 1-segment method.
[0017] 図 6は、 OFDNシンボル信号のスペクトルを示す図である。図中、横軸は周波数 f、 縦軸は信号強度を示している。図に示すように、 1シンボルの OFDM信号の中に、 無信号区間がある。モード 3では、 1シンボルに 8192本のサブキャリアがあり、その中 で、 5617本は、データ信号(ここで言うデータ信号には、実データのほかに、 SP(Sca ttered pilot)信号などのパイロット信号や AC(Auxiliary Channel)信号などの制御信号 も含まれる。)が搬送されるキャリアであり、残り 2575本は、送信装置側で IFFT変換 する際に、ゼロ埋めされたダミーデータが搬送されるキャリアである。図 2は、 1シンポ ルの信号中、中央の 2575本のサブキャリアはダミーデータを搬送するキャリアであり 、両端に合わせて 5617本のデータ信号搬送用のサブキャリアが存在することを示し ている。 [0017] FIG. 6 is a diagram showing the spectrum of an OFDN symbol signal. In the figure, the horizontal axis represents frequency f and the vertical axis represents signal strength. As shown in the figure, there is a no-signal interval in one symbol OFDM signal. In mode 3, there are 8192 subcarriers in one symbol, of which 5617 are data signals (in this case, data signals include pilot data such as SP (Scattered pilot) signals in addition to actual data). Control signals such as signals and AC (Auxiliary Channel) signals Is also included. ) Are the carriers that are transported, and the remaining 2575 are carriers that carry dummy data with zero padding when IFFT conversion is performed on the transmitter side. Figure 2 shows that in a single-symbol signal, the central 2575 subcarriers are carriers carrying dummy data, and there are 5617 subcarriers for carrying data signals at both ends. .
[0018] OFDM送信装置にぉ 、てデータ信号およびダミーデータ信号が埋められた OFD M信号は、伝送路を経て受信装置において受信され、再び FFT演算され復調される 。したがって、ダミーデータ信号が埋められたサブキャリアの復調された信号は、純粋 なノイズ信号である。  [0018] The OFD M signal in which the data signal and the dummy data signal are embedded in the OFDM transmitter is received by the receiver via the transmission path, and again subjected to the FFT operation and demodulated. Therefore, the demodulated signal of the subcarrier in which the dummy data signal is embedded is a pure noise signal.
[0019] そして、 13セグメント方式の OFDM受信装置では、図に示すような周波数帯域 Fa をカバーするフィルタが用いられる。したがって、 13セグメント方式では、ゼロ埋めさ れたキャリアの信号も一部受信することとなる。そこで、特願 2004— 259634号にお いては、このゼロ埋めされたキャリアの信号をノイズ信号として利用して C/N比を算 出し、この CZN比に基づいて各ブランチの重み付け係数を決定するようにしている のである。  In the 13-segment OFDM receiver, a filter that covers frequency band Fa as shown in the figure is used. Therefore, in the 13-segment method, a part of the carrier signal with zero padding is received. Therefore, in Japanese Patent Application No. 2004-259634, the zero / padded carrier signal is used as a noise signal to calculate the C / N ratio, and the weighting coefficient of each branch is determined based on this CZN ratio. It is doing so.
[0020] しかし、 1セグメント方式の OFDM受信装置では、図に示すような周波数帯域 Fbを カバーするフィルタが用いられる。したがって、 1セグメント方式では、ゼロ埋めされた キャリアの信号を受信することができない。このため、 1セグメント方式では、特願 200 4— 259634号で提案されて 、る方法を利用することができな!/、。  However, in the one-segment OFDM receiver, a filter that covers the frequency band Fb as shown in the figure is used. Therefore, the one-segment method cannot receive a carrier signal with zero padding. For this reason, in the one-segment method, the method proposed in Japanese Patent Application No. 2004-259634 cannot be used! /.
発明の開示  Disclosure of the invention
[0021] そこで、本発明は前記問題点に鑑み、 1セグメント方式の OFDM受信装置におい ても、受信環境に適応性の強いダイバーシティ受信が可能であり、安定的な受信品 質が得られる受信装置を提供することを課題とする。  [0021] Therefore, in view of the above problems, the present invention is a 1-segment OFDM receiver that can receive diversity with high adaptability to the reception environment and can obtain stable reception quality. It is an issue to provide.
[0022] 上記課題を解決するため、請求項 1記載の発明は、 OFDM方式の伝送信号をダイ バーシティ受信する複数のアンテナと、前記複数のアンテナにより受信された各ブラ ンチの信号をそれぞれ FFT演算する手段と、前記 FFT演算後の各ブランチの信号 につ 、て CZN比を算出する CZN演算手段と、各ブランチにつ 、て算出された CZ N比の相対比に基づいて各ブランチの第 1の重み付け係数を算出する手段と、各ブ ランチの伝送路応答を算出する手段と、前記 FFT演算後の各ブランチの信号に各 第 1の重み付け係数を乗算し、各ブランチの第 1の重み付け信号を算出する手段と、 各ブランチの伝送路応答に対して各第 1の重み付け係数を乗算し、各ブランチの重 み付け伝送路応答を算出する手段と、各重み付け伝送路応答と各第 1の重み付け 信号を用いて MRC合成を行う合成手段と、を備えることを特徴とする。 [0022] In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a plurality of antennas that receive diversity transmission of OFDM transmission signals, and signals of each branch received by the plurality of antennas are respectively FFT processed. A means for calculating, a CZN calculating means for calculating a CZN ratio for the signal of each branch after the FFT calculation, and a first of each branch based on the relative ratio of the CZN ratio calculated for each branch. Means for calculating the weighting factor of 1 and each block Means for calculating the transmission line response of the lunch, means for calculating the first weighting signal of each branch by multiplying the signal of each branch after the FFT operation by each first weighting factor, and the transmission line of each branch A means for multiplying the response by each first weighting coefficient to calculate a weighted transmission line response for each branch, and a combining means for performing MRC combining using each weighted transmission line response and each first weighted signal And.
[0023] 請求項 2記載の発明は、請求項 1に記載の OFDMダイバーシティ受信装置におい て、前記第 1の重み付け係数を算出する手段は、前記相対比と各ブランチの第 1の 重み付け係数とを対応付けたテーブルを参照することにより、各ブランチの CZN比 を第 1の重み付け係数に変換して出力するルックアップテーブル、を含むことを特徴 とする。 [0023] The invention according to claim 2 is the OFDM diversity receiver according to claim 1, wherein the means for calculating the first weighting coefficient includes: the relative ratio and the first weighting coefficient of each branch. It includes a lookup table that converts the CZN ratio of each branch into a first weighting coefficient and outputs it by referring to the associated table.
[0024] 請求項 3記載の発明は、請求項 1または請求項 2に記載の OFDMダイバーシティ 受信装置において、さらに、前記 FFT演算後の各ブランチの信号に含まれるパイロッ ト信号について周波数領域の伝送路伝達関数を算出する手段と、前記周波数領域 の伝送路伝達関数を IFFT変換し、時間領域の伝送路応答を算出する手段と、を備 え、前記 CZN演算手段は、前記周波数領域の伝送路伝達関数からノイズを含む信 号の信号パワーを算出し、前記時間領域の伝送路応答力 ノイズパワーを算出し、 前記信号パワーと前記ノイズパワーとから CZN比を算出することを特徴とする。  [0024] The invention according to claim 3 is the OFDM diversity receiver according to claim 1 or 2, further comprising: a frequency domain transmission path for a pilot signal included in the signal of each branch after the FFT operation. Means for calculating a transfer function, and means for IFFT transforming the frequency domain transmission path transfer function to calculate a time domain transmission path response, wherein the CZN calculating means is configured to transmit the frequency domain transmission path. A signal power of a signal including noise is calculated from a function, a transmission line response power in the time domain is calculated, and a CZN ratio is calculated from the signal power and the noise power.
[0025] 請求項 4記載の発明は、請求項 3に記載の OFDMダイバーシティ受信装置におい て、前記 CZN演算手段は、前記時間領域の伝送路応答の中で信号強度が所定の 閾値以下の信号をノイズに対応した信号であると判定し、前記所定の閾値以下の信 号のパワーを前記ノイズパワーとして算出することを特徴とする。  [0025] The invention according to claim 4 is the OFDM diversity receiver according to claim 3, wherein the CZN calculation means outputs a signal whose signal strength is equal to or less than a predetermined threshold in the time domain transmission path response. It is determined that the signal corresponds to noise, and the power of a signal equal to or lower than the predetermined threshold is calculated as the noise power.
[0026] 請求項 5記載の発明は、 OFDM方式の伝送信号をダイバーシティ受信する複数の アンテナと、前記複数のアンテナにより受信された各ブランチの信号をそれぞれ FFT 演算する手段と、前記 FFT演算後の各ブランチの信号に含まれるパイロット信号を用 いて、各ブランチの周波数領域の伝送路伝達関数を算出する手段と、各ブランチの 周波数領域の伝送路伝達関数を IFFT変換し、各ブランチの時間領域の伝送路応 答を算出する手段と、各ブランチの周波数領域の伝送路伝達関数力 ノイズを含む 信号の信号パワーを算出し、各ブランチの時間領域の伝送路応答力もノイズパワー を算出し、前記信号パワーと前記ノイズパワーとから各ブランチの C/N比を算出す る CZN演算手段と、各ブランチにつ 、て算出された CZN比に基づ 、て各ブランチ の第 1の重み付け係数を算出する手段と、各ブランチの伝送路応答を算出する手段 と、前記 FFT演算後の各ブランチの信号に各第 1の重み付け係数を乗算し、各ブラ ンチの第 1の重み付け信号を算出する手段と、各ブランチの伝送路応答に対して各 第 1の重み付け係数を乗算し、各ブランチの重み付け伝送路応答を算出する手段と 、各重み付け伝送路応答と各第 1の重み付け信号を用いて MRC合成を行う合成手 段と、を備えることを特徴とする。 [0026] The invention according to claim 5 is a plurality of antennas for diversity reception of OFDM transmission signals, means for FFT calculation of signals of each branch received by the plurality of antennas, and after the FFT calculation Using the pilot signal included in the signal of each branch, IFFT transform is performed on the frequency domain transmission path transfer function of each branch and the frequency domain transmission path transfer function of each branch. A means for calculating the transmission line response and the signal power of the signal including the transmission line transfer function force noise in the frequency domain of each branch. CZN calculating means for calculating the C / N ratio of each branch from the signal power and the noise power, and the first of each branch based on the CZN ratio calculated for each branch. Means for calculating the weighting coefficient of each branch, means for calculating the transmission line response of each branch, and multiplying the signal of each branch after the FFT operation by each first weighting coefficient, thereby obtaining the first weighting signal of each branch Means for calculating the weighted transmission line response of each branch by multiplying the transmission line response of each branch by each first weighting coefficient, and each weighted transmission line response and each first weighted signal. And a synthesis means for performing MRC synthesis using.
[0027] 請求項 6記載の発明は、請求項 5に記載の OFDMダイバーシティ受信装置におい て、前記 CZN演算手段は、前記時間領域の伝送路応答の中で信号強度が所定の 閾値以下の信号をノイズに対応した信号であると判定し、前記所定の閾値以下の信 号のパワーを前記ノイズパワーとして算出することを特徴とする。  [0027] The invention according to claim 6 is the OFDM diversity receiver according to claim 5, wherein the CZN calculation means outputs a signal having a signal strength of a predetermined threshold value or less in the time domain transmission line response. It is determined that the signal corresponds to noise, and the power of a signal equal to or lower than the predetermined threshold is calculated as the noise power.
[0028] 請求項 7記載の発明は、請求項 5または請求項 6に記載の OFDMダイバーシティ 受信装置において、前記第 1の重み付け係数を算出する手段は、各ブランチについ て算出された CZN比の相対比に基づ 、て各ブランチの第 1の重み付け係数を算出 することを特徴とする。  [0028] The invention according to claim 7 is the OFDM diversity receiver according to claim 5 or claim 6, wherein the means for calculating the first weighting factor is a relative CZN ratio calculated for each branch. Based on the ratio, the first weighting coefficient of each branch is calculated.
[0029] 請求項 8記載の発明は、請求項 7に記載の OFDMダイバーシティ受信装置におい て、前記第 1の重み付け係数を算出する手段は、前記相対比と各ブランチの第 1の 重み付け係数とを対応付けたテーブルを参照することにより、各ブランチの CZN比 を第 1の重み付け係数に変換して出力するルックアップテーブル、を含むことを特徴 とする。  [0029] The invention according to claim 8 is the OFDM diversity receiver according to claim 7, wherein the means for calculating the first weighting factor includes the relative ratio and the first weighting factor of each branch. It includes a lookup table that converts the CZN ratio of each branch into a first weighting coefficient and outputs it by referring to the associated table.
[0030] 請求項 9記載の発明は、請求項 1ないし請求項 8のいずれかに記載の OFDMダイ バーシティ受信装置において、さらに、前記 CZN演算手段において算出された各 ブランチの CZN比を複数のシンボルに亘つて平均化し、平均 CZN比を出力するス ムージング手段、を備え、前記第 1の重み付け係数を算出する手段は、各ブランチの CZN比として前記平均 CZN比を用いて第 1の重み付け係数を算出することを特徴 とする。  [0030] The invention according to claim 9 is the OFDM diversity receiver according to any one of claims 1 to 8, further comprising: a plurality of CZN ratios of each branch calculated by the CZN calculating means are set to a plurality of CZN ratios; Smoothing means that averages over the symbols and outputs an average CZN ratio, and the means for calculating the first weighting coefficient includes the first weighting coefficient using the average CZN ratio as the CZN ratio of each branch. Is calculated.
[0031] 請求項 10記載の発明は、請求項 1ないし請求項 9のいずれかに記載の OFDMダ ィバーシティ受信装置において、前記合成手段は、各重み付け伝送路応答の共役 複素数値を、全てのブランチの重み付け伝送路応答の二乗和で除算することにより 各ブランチの第 2の重み付け係数を算出する手段と、各第 1の重み付け信号に各第 2の重み付け係数を乗算することにより、各ブランチの第 2の重み付け信号を算出す る手段と、各ブランチの第 2の重み付け信号を加算することにより、合成受信信号を 算出する手段と、を含むことを特徴とする。 [0031] The invention according to claim 10 is the OFDM da- ta according to any one of claims 1 to 9. In the diversity receiver, the combining means calculates a second weighting coefficient for each branch by dividing the conjugate complex value of each weighted transmission line response by the sum of squares of the weighted transmission line responses of all branches. Means for multiplying each first weighting signal by each second weighting factor to calculate a second weighting signal for each branch and adding the second weighting signal for each branch Means for calculating a received signal.
[0032] 本発明は、各ブランチの相対 CZN比により各ブランチの重み付け係数を決定し、 受信信号と伝送路応答に重み付けを行った上で、 MRC合成を行うので、 CZN比の 良!、ブランチの信号に大きな重み付けを割り当てて、あるいは CZN比の悪 、ブラン チの信号に小さい重み付けを割り当てて合成信号を出力することが可能である。これ により、合成信号の品質が向上する。また、相対 CZN比に基づいて重み付け係数を 決定するので、絶対 CZN比の信頼性が低い場合であっても、品質の高い合成信号 を得ることが可能である。  [0032] In the present invention, the weighting coefficient of each branch is determined based on the relative CZN ratio of each branch, the received signal and the transmission path response are weighted, and then MRC synthesis is performed. It is possible to output a composite signal by assigning a large weight to the signal of the above, or assigning a small weight to the signal of the branch when the CZN ratio is bad. This improves the quality of the composite signal. In addition, since the weighting coefficient is determined based on the relative CZN ratio, it is possible to obtain a high-quality composite signal even when the absolute CZN ratio is not reliable.
[0033] また、本発明は、各ブランチの信号に含まれるパイロット信号力 周波数領域の伝 送路伝達関数と時間領域の伝送路応答とを算出する。そして、周波数領域の伝送路 伝達関数力も信号パワーを、時間領域の伝送路応答力もノイズパワーを計算し、これ らの値から求めた C/N比に基づいて MRC合成を行う。これにより、ゼロ埋めされた キャリア信号を受信できない場合であっても、 CZN比の計算精度を向上させること が可能である。  [0033] Further, according to the present invention, the pilot signal force included in the signal of each branch calculates the transmission path transfer function in the frequency domain and the transmission path response in the time domain. Then, the frequency domain transmission function force and signal power are calculated, and the time domain transmission response force is noise power, and MRC synthesis is performed based on the C / N ratio obtained from these values. This makes it possible to improve the calculation accuracy of the CZN ratio even when a carrier signal with zero padding cannot be received.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 l]OFDMダイバーシティ受信装置のブロック図である。 [0034] FIG. 1 is a block diagram of an OFDM diversity receiver.
[図 2]ノイズがない仮想的な周波数領域の伝送路伝達関数を示す図である。  FIG. 2 is a diagram illustrating a transmission path transfer function in a virtual frequency domain without noise.
[図 3]ノイズが含まれる周波数領域の伝送路伝達関数を示す図である。  FIG. 3 is a diagram showing a transmission path transfer function in a frequency domain including noise.
[図 4]ノイズがない仮想的な時間領域の伝送路応答を示す図である。  FIG. 4 is a diagram showing a virtual time-domain transmission line response without noise.
[図 5]ノイズが含まれる時間領域の伝送路応答を示す図である。  FIG. 5 is a diagram showing a time-domain transmission line response including noise.
[図 6]OFDMシンボル信号のスペクトルを示す図である。  FIG. 6 shows a spectrum of an OFDM symbol signal.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下、図面を参照しつつ本発明の第 1の実施の形態について説明する。図 1は、本 発明の実施の形態に係る OFDMダイバーシティ受信装置 DRのブロック図である。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. Figure 1 shows the book It is a block diagram of OFDM diversity receiver DR according to an embodiment of the invention.
[0036] 本実施の形態のダイバーシティ受信装置 DRは、ブランチ数 2の受信装置である。 The diversity receiver DR according to the present embodiment is a receiver with two branches.
つまり、 2本のアンテナ 11 , 11を備え、各アンテナ 11 ,11から受信した 2系統のブラ  That is, two antennas 11 and 11 are provided, and two systems of braces received from the antennas 11 and 11 are used.
1 2 1 2  1 2 1 2
ンチ信号をそれぞれ受信装置 DR ,DRで処理することにより、合成信号を出力する  Output the composite signal by processing the signal at the receiving devices DR and DR.
1 2  1 2
[0037] 受信装置 DR ,DRの構成および処理内容につ!、て説明する。なお、受信装置 DR [0037] The configuration and processing contents of the receiving apparatuses DR and DR will be described. The receiver DR
1 2  1 2
,DRの構成は同様であるので、以下においては、各ブランチの構成および処理内 , DR has the same configuration, so in the following, the configuration and processing of each branch
1 2 1 2
容について共通の説明を行う。  A common explanation will be given.
[0038] アンテナ 11 ,11力 受信した信号は、それぞれ、フロントエンド処理部 12 ,12で [0038] Antennas 11 and 11 The received signals are received by the front end processing units 12 and 12, respectively.
1 2 1 2 処理される。フロントエンド処理部 12 , 12では、受信信号は、周波数変換やフィルタ  1 2 1 2 Processed. In the front-end processing units 12 and 12, the received signal is subjected to frequency conversion and filtering.
1 2  1 2
処理が施された後、 AD変換される。フロントエンド処理部 12 ,12力も出力された受  After processing, it is AD converted. Front end processing unit 12 and 12 force are also received.
1 2  1 2
信デジタル信号は、 FFT演算部 13 ,13に入力される。 FFT演算部 13 ,13では、時  The received digital signal is input to FFT calculation units 13 and 13. In FFT calculators 13 and 13, hour
1 2 1 2 間領域の OFDMシンボル信号は、周波数領域の OFDMシンボル信号に変換され る。ここで、出力された周波数領域の信号を X (i,k)で表す。ただし、 pはブランチ番号  The OFDM symbol signal in the 1 2 1 2 domain is converted to an OFDM symbol signal in the frequency domain. Here, the output frequency domain signal is represented by X (i, k). Where p is the branch number
P  P
(lor 2の整数)であり、 iはシンボル番号、 kはサブキャリア番号である。なお、図中、信 号 Xや伝送路応答 Hについては、ブランチ番号のみを付記し、 i、 kなどの表記は省 略している。 FFT演算後の信号 X (i,k)は、乗算回路 21 ,21に対して出力される。ま p 1 2  (an integer of lor 2), i is a symbol number, and k is a subcarrier number. In the figure, for signal X and transmission path response H, only the branch number is added, and notations such as i and k are omitted. The signal X (i, k) after the FFT operation is output to the multiplication circuits 21 and 21. P1 2
た、 FFT演算後の信号 X (i,k)のうち、 SP (Scattered Pilot)信号が、除算回路 14,14 p 1 2 に対して出力される。 SP信号は、 OFDM信号に埋め込まれたパイロット信号である。 パイロット信号は、その埋め込まれるサブキャリア位置、振幅、位相が既知の PRBS ( Pseudo Random Binary Series) fg である。  Of the signals X (i, k) after the FFT calculation, the SP (Scattered Pilot) signal is output to the divider circuits 14 and 14 p 1 2. The SP signal is a pilot signal embedded in the OFDM signal. The pilot signal is PRBS (Pseudo Random Binary Series) fg whose subcarrier position, amplitude, and phase are embedded.
[0039] 除算部 14 , 14は、 FFT演算部 13 ,13力も SP信号を入力するとともにメモリに格 [0039] The division units 14 and 14 also input the SP signal to the FFT calculation units 13 and 13 and store them in the memory.
1 2 1 2  1 2 1 2
納されているパイロットパターンを読み込み、伝送路応答を算出する。ノ ィロットバタ ーンは、既知の複素振幅を持つパイロット信号の位置と振幅とが記録されたデータで ある。そして、既知の複素振幅を持つパイロット信号を用いて、受信パイロット信号で ある SP信号をこの複素振幅で除算することにより、伝送路応答を算出する。  Read the stored pilot pattern and calculate the transmission line response. The pilot pattern is data in which the position and amplitude of a pilot signal having a known complex amplitude are recorded. Then, using a pilot signal having a known complex amplitude, the SP response, which is a received pilot signal, is divided by this complex amplitude to calculate a transmission line response.
[0040] 除算部 14 , 14は、算出した伝送路応答を IFFT演算部 15 ,15、伝送路推定部 16 [0040] Division units 14 and 14 use the calculated transmission line responses as IFFT operation units 15 and 15 and transmission line estimation unit 16 respectively.
1 2 1 2 1 2 1 2
,16および CZN演算部 17 ,17に対して出力する。 [0041] IFFT演算部 15 ,15では、除算部 14 ,14力 入力した伝送路応答が IFFT変換 , 16 and CZN operation units 17, 17 are output. [0041] In the IFFT calculation units 15 and 15, the division unit 14 and 14 input the transmission line response is converted to IFFT
1 2 1 2  1 2 1 2
され、時間領域の信号に変換される。つまり、 IFFT演算部 15 ,15は、周波数領域  And converted into a time domain signal. In other words, IFFT calculation units 15 and 15 are
1 2  1 2
の伝送路伝達関数を時間領域の伝送路応答に変換する。図 2は、ノイズが混入され て!、な 、仮想的な受信 OFDMシンボル信号の周波数領域の伝送路伝達関数を示 す図である。し力し、受信 OFDMシンボルには、一般にはノイズが混入されている。 図 3は、ノイズが混入された信号の周波数領域の伝送路伝達関数を示す図である。 そして、図 4は、ノイズが混入されていない仮想的な受信 OFDMシンボル信号の時 間領域の伝送路応答を示す図である。つまり、図 2で示した伝送路応答を IFFT変換 したものである。そして、図 5は、ノイズが混入された受信 OFDMシンボル信号の時 間領域における伝送路応答を示す図である。つまり、図 3で示した伝送路応答を IFF T変換したものである。  Is converted into a time domain transmission line response. Figure 2 shows noise! FIG. 4 is a diagram illustrating a frequency-domain transmission path transfer function of a virtual received OFDM symbol signal. However, noise is generally mixed in the received OFDM symbol. FIG. 3 is a diagram showing a transfer function in the frequency domain of a signal mixed with noise. FIG. 4 is a diagram showing a time-domain transmission path response of a virtual received OFDM symbol signal in which noise is not mixed. In other words, the transmission line response shown in Fig. 2 is IFFT transformed. FIG. 5 is a diagram showing a transmission path response in the time domain of the received OFDM symbol signal mixed with noise. In other words, the transmission path response shown in Fig. 3 is an IFFT transform.
[0042] 伝送路推定部 16 , 16は、除算部 14 , 14から入力した伝送路応答を、シンボル方  [0042] The transmission path estimators 16 and 16 convert the transmission path responses input from the dividers 14 and 14 into symbol directions.
1 2 1 2  1 2 1 2
向およびキャリア方向に補間することにより、各受信データ信号の伝送路応答 H (i,k)  Channel response H (i, k) of each received data signal by interpolation in the direction of carrier and carrier
P  P
を算出する。つまり、除算部 14 ,14において算出された伝送路応答は、 SP信号に  Is calculated. That is, the transmission line response calculated in the division units 14 and 14 is converted into the SP signal.
1 2  1 2
対するものであるが、 SP信号の埋め込まれるサブキャリア位置はパイロットパターン により既知であるので、この SP信号の伝送路応答を補間処理することによって、他の データ信号に対する伝送路応答を推定して算出するのである。求められた伝送路応 答 H (i,k)は、乗算回路 22 ,22に対して出力される。  On the other hand, since the subcarrier position where the SP signal is embedded is known from the pilot pattern, the transmission line response of this SP signal is interpolated to estimate the transmission line response to other data signals. To do. The obtained transmission path response H (i, k) is output to the multiplier circuits 22 and 22.
p 1 2  p 1 2
[0043] CZN演算部 17 ,17は、除算部 14 , 14から伝送路応答を入力するとともに、 IFF  [0043] The CZN calculation units 17 and 17 receive the transmission line responses from the division units 14 and 14, and the IFF
1 2 1 2  1 2 1 2
T演算部 15 ,15から時間領域に変換された伝送路応答を入力する。そして、 C/N  The transmission line response converted into the time domain is input from the T calculation units 15 and 15. And C / N
1 2  1 2
演算部 17 ,17は、以下に示す処理を行うことにより、 SP信号の CZN比を算出する  The calculation units 17 and 17 calculate the CZN ratio of the SP signal by performing the following processing.
1 2  1 2
[0044] 図 2に示したように、ノイズが混入しない場合、周波数領域の伝送路伝達関数は正 弦波あるいは多数の正弦波の和で表される。そして、図 3に示したように、ノイズが混 入した周波数領域の伝送路伝達関数には、ノイズが乗って波形が崩れる。したがつ て、このような波形力 ノイズと正弦波のパワーを分離して計算することは困難である As shown in FIG. 2, when noise is not mixed, the transmission path transfer function in the frequency domain is represented by a sine wave or the sum of a number of sine waves. As shown in Fig. 3, the transmission path transfer function in the frequency domain where noise is mixed has noise and the waveform collapses. Therefore, it is difficult to calculate separately such waveform force noise and sine wave power.
[0045] 一方、図 4で示したように時間領域の伝送路応答は、特定の時間にピークが発生す る。したがって、図 5で示したようにノイズが混入された場合にも、実信号である部分と ノイズ部分とを分離することが可能である。本実施の形態においては、この特性を利 用するのである。 On the other hand, as shown in FIG. 4, the time domain transmission line response has a peak at a specific time. The Therefore, even when noise is mixed as shown in FIG. 5, it is possible to separate the real signal portion from the noise portion. This characteristic is used in the present embodiment.
[0046] 具体的には、まず、 CZN演算部 17 ,17は、 IFFT演算後の周波数応答の絶対値  [0046] Specifically, first, the CZN calculation units 17 and 17 calculate the absolute value of the frequency response after the IFFT calculation.
1 2  1 2
の自乗を計算し、その最大値を求める。そして、その最大値から閾値を決定する。た とえば、最大値に対する 50%の強度を閾値として設定する。そして、その閾値よりも 小さい信号はすべてノイズであると判定し、このノイズの信号のパワーを算出するの である。なお、ここでは、最大値の 50%を閾値としている力 このパーセンテージは、 経験、テストなどを通じて適宜最適なものに変更すればよい。  Calculate the square of and find its maximum value. Then, a threshold value is determined from the maximum value. For example, 50% of the maximum value is set as the threshold. All signals smaller than the threshold are determined to be noise, and the power of the noise signal is calculated. It should be noted that here, the force with 50% of the maximum value as the threshold, this percentage may be changed to an optimal one through experience and testing.
[0047] 一方、図 5に見られるように、閾値以下のデータの信号数に比較して、閾値以上の データの信号数は少ない。したがって、閾値以下の信号のパワーを計算することでノ ィズパワーを計算することができるが、実信号のデータ数が少ないので、実信号の信 号パワーを計算したとしても、その計算結果の信頼性は低い。特に、 CZN比が低い 場合や、レイリーフエーデイングがある場合には、計算精度の信頼性を欠く。  On the other hand, as seen in FIG. 5, the number of data signals above the threshold is smaller than the number of data signals below the threshold. Therefore, the noise power can be calculated by calculating the power of the signal below the threshold value. Is low. In particular, when the CZN ratio is low or there is ray-leaf aging, the calculation accuracy is not reliable.
[0048] そこで、本実施の形態においては、 IFFT演算前の信号、つまり、図 3で示した周波 数領域の伝送路伝達関数のデータ力 実信号とノイズの信号パワーを計算し、その 計算結果から IFFT演算後のデータ力も算出したノイズパワーを差し引くことで、信頼 性の高い実信号の信号パワーを算出するのである。  Therefore, in the present embodiment, the signal power before the IFFT operation, that is, the data power of the transmission line transfer function in the frequency domain shown in FIG. 3 is calculated, and the signal power of the noise is calculated. The signal power of the real signal with high reliability is calculated by subtracting the calculated noise power from the data power after IFFT calculation.
[0049] 数 3式は、 CZN比を算出する計算式である。数 3式中、 W は、実信号とノイズの信 sp  [0049] Formula 3 is a calculation formula for calculating the CZN ratio. In Equation 3, W is the real signal and noise signal sp
号パワーである。つまり、 IFFT演算前の周波数領域の周波数伝達関数のデータを 用いて算出された信号パワーである。これに対して、 Wは、ノイズの信号パワーであ る。つまり、 IFFT演算後の時間領域の伝送路応答のデータを用いて算出された信 号パワーである。したがって、数 3式において、分母は、ノイズパワーであり、分子は、 実信号の信号パワーとなり、 CZN比が算出されるのである。このような計算が可能と なるのは、 IFFT演算の前後にお 、て信号のパワーは変化しな ヽと 、う性質があるか らである。  No. power. In other words, it is the signal power calculated using the frequency transfer function data in the frequency domain before the IFFT calculation. On the other hand, W is the signal power of noise. In other words, it is the signal power calculated using the time domain transmission line response data after the IFFT calculation. Therefore, in Equation 3, the denominator is the noise power, the numerator is the signal power of the actual signal, and the CZN ratio is calculated. This calculation is possible because the signal power does not change before and after the IFFT operation.
[0050] [数 3] [0051] このような計算により、シンボルごとの CZN比が計算されると、 CZN演算部 171 ,1[0050] [Equation 3] [0051] When the CZN ratio for each symbol is calculated by such calculation, the CZN calculation units 171, 1
7は、計算された CZN比をスムージング処理部 18 ,18に出力する。 1セグメント方7 outputs the calculated CZN ratio to the smoothing processing units 18 and 18. 1 segment
2 1 2 2 1 2
式の OFDM信号は、 13セグメント方式の OFDM信号に比べて信号の数が 1Z13と 少ないので、数 3式において求められた CZN比は、諸外乱により不安定になる場合 もある。そこで、スムージング処理部 18 ,18において、数十シンボル分の  Since the number of signals of the OFDM signal in the equation is as small as 1Z13 compared to the 13-segment OFDM signal, the CZN ratio obtained in Equation 3 may become unstable due to various disturbances. Therefore, in the smoothing processing units 18 and 18, several tens of symbols worth are obtained.
1 2 CZN比を 蓄積し、この CZN比の平均値を算出することで、 CZN比の信頼度をより高めるよう にしているのである。つまり、重み計算用の CZN比は、カレントシンボルだけでなぐ その以前の数十シンボルの CZN比が平均された平均 CZN比である。  1 2 By accumulating the CZN ratio and calculating the average value of this CZN ratio, the reliability of the CZN ratio is further increased. In other words, the CZN ratio for weight calculation is an average CZN ratio obtained by averaging the CZN ratios of several tens of symbols before the current symbol alone.
[0052] スムージング処理部 18 1 ,18において、平均 [0052] In the smoothing processing units 18 1 and 18, the average
2 CZN比が算出されると、この平均 CZ 2 Once the CZN ratio is calculated, this average CZ
N比が第 1重み計算部 19に出力される。 The N ratio is output to the first weight calculator 19.
[0053] 第 1重み計算部 19は、 CZNテーブル 191を備えている。 CZNテーブル 191は、 ルックアップテーブルであり、表 1に示すように、受信装置 DRに対応するブランチの The first weight calculation unit 19 includes a CZN table 191. The CZN table 191 is a lookup table, and as shown in Table 1, the branch corresponding to the receiving device DR
1  1
CZN比(CN )と受信装置 DRに対応するブランチの CZN比(CN )との相対比と、  The relative ratio between the CZN ratio (CN) and the CZN ratio (CN) of the branch corresponding to the receiver DR,
1 2 2  1 2 2
第 1重み付け係数(σ , σ )とを対応付けたテーブルである。なお、第  This table correlates the first weighting coefficients (σ 1, σ 2). The first
1 2 1重み付け係 数 σ は受信装置 DRに対応するブランチの重み付け係数であり、第 1重み付け係数 1 2 1 Weighting coefficient σ is a weighting coefficient of the branch corresponding to the receiving device DR, and the first weighting coefficient
1 1 1 1
σ は、受信装置 DRに対応するブランチの重み付け係数である。  σ is a weighting coefficient of a branch corresponding to the receiving device DR.
2 2  twenty two
[0054] [表 1] [0054] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
[0055] 第 1重み計算部 19は、各ブランチの CZN比を入力すると、その CZN比力 相対 CZN比を算出する。ここでは、相対 CZN比として、 CNを CNで除算した値を採用 [0055] When the CZN ratio of each branch is input, the first weight calculator 19 calculates the CZN specific force relative CZN ratio. Here, the value obtained by dividing CN by CN is used as the relative CZN ratio.
1 2  1 2
している。第 1重み計算部 19は、相対 CZN比を算出すると、その相対 CZN比に対 応する各ブランチの重み付け係数を出力する。この実施例では、相対 CZN比(CN 1 is doing. When calculating the relative CZN ratio, the first weight calculation unit 19 outputs the weighting coefficient of each branch corresponding to the relative CZN ratio. In this example, the relative CZN ratio (CN 1
ZCN )を 10の範囲に分けて、各範囲に第 1重み付け係数 σ として wlO〜wl9を対ZCN) is divided into 10 ranges, and each range is paired with wlO to wl9 as the first weighting factor σ.
2 1 twenty one
応させ、第 1重み付け係数 σ として w20〜w29を対応させている。このように、相対  Therefore, w20 to w29 are made to correspond as the first weighting coefficient σ. Thus, relative
2  2
CZN比 第 1重み付け係数をルックアップテーブル方式とすることにより、煩雑な計 算を省略し、回路規模を小さくするようにしている。  CZN ratio The first weighting factor is a look-up table method, which eliminates complicated calculations and reduces the circuit scale.
[0056] 第 1重み計算部 19において、各ブランチの第 1重み付け係数 σ , σ が算出される [0056] The first weight calculation unit 19 calculates the first weighting coefficients σ 1 and σ of each branch.
1 2  1 2
と、この係数 σ , σ が乗算回路 21 ,21および乗算回路 22 ,22に対して出力される  And the coefficients σ and σ are output to the multiplier circuits 21 and 21 and the multiplier circuits 22 and 22, respectively.
1 2 1 2 1 2  1 2 1 2 1 2
[0057] 次に、それぞれ乗算回路 21 ,21において、信号 X (i,k),X G,k)と第 1重み付け係数 [0057] Next, in multiplication circuits 21 and 21, respectively, signals X (i, k), X G, k) and first weighting coefficients
1 2 1 2  1 2 1 2
σ , σ が乗算される。そして、その演算結果である第 1重み付け信号 σ Χ , σ Xを σ and σ are multiplied. Then, the first weighted signal σ,, σ X that is the calculation result is
1 2 1 1 2 2 それぞれ乗算回路 24 ,24に出力する。 1 2 1 1 2 2 Output to multiplication circuits 24 and 24, respectively.
1 2  1 2
[0058] また、乗算回路 22 ,22において、伝送路応答 Η ,Ηと第 1重み付け係数 σ , σ が  In addition, in the multiplication circuits 22 and 22, the transmission line responses 応 答 and Η and the first weighting coefficients σ and σ are
1 2 1 2 1 2 乗算される。そして、その演算結果として重み付け伝送路応答 σ 1 Η1 , σ 2 Η 2は、それ ぞれ全てのブランチの第 2重み計算部 23 ,23〖こ出力される。つまり、乗算回路 22  1 2 1 2 1 2 Multiplied. As a result of the calculation, the weighted transmission line responses σ 1 Η1 and σ 2 Η2 are output as the second weight calculators 23 and 23 for all branches, respectively. In other words, multiplication circuit 22
1 2 1 力 出力された σ Ηは、各ブランチの第 2重み計算部 23 ,23に対して出力され、乗  1 2 1 force The output σ Η is output to the second weight calculators 23 and 23 of each branch and multiplied by
1 1 1 2  1 1 1 2
算回路 22力 出力された σ Ηは、各ブランチの第 2重み計算部 23 ,23に対して 出力されるのである。 Arithmetic circuit 22 force The output σ に 対 し て is applied to the second weight calculators 23 and 23 of each branch. It is output.
[0059] そして、各第 2重み計算部 23 ,23は、各ブランチの乗算回路 22 ,22力 出力され  [0059] Then, each of the second weight calculation units 23 and 23 outputs the multiplication circuits 22 and 22 of each branch.
1 2 1 2  1 2 1 2
た演算結果 σ H , σ Hを入力し、これら 2個の値を元に第 2重み付け係数 W ,Wを  The calculation results σ H and σ H are input, and the second weighting factors W and W are calculated based on these two values.
1 1 2 2 1 2 算出する。つまり、第 2重み計算部 23は、乗算回路 22 ,22から出力された演算結  1 1 2 2 1 2 Calculate. In other words, the second weight calculator 23 calculates the operation result output from the multiplier circuits 22 and 22.
1 1 2  1 1 2
果 σ H , σ Hを入力して第 2重み付け係数 Wを算出し、第 2重み計算部 23は、乗 As a result, σ H and σ H are input to calculate the second weighting coefficient W, and the second weight calculation unit 23
1 1 2 2 1 2 算回路 22 ,22から出力された演算結果 σ Η ,σ Ηを入力して第 2重み付け係数 W 1 1 2 2 1 2 Input the calculation results σ Η and σ 出力 output from the arithmetic circuits 22 and 22, and enter the second weighting coefficient W
1 2 1 1 2 2  1 2 1 1 2 2
を算出するのである。  Is calculated.
2  2
[0060] 数 4式は、第 2重み計算部 23 ,23で求められた第 2重み付け係数 W ,Wの計算式  [0060] Equation 4 is an equation for calculating the second weighting factors W 1, W obtained by the second weight calculators 23, 23.
1 2 1 2 を示す図である。なお、数 4式においΡΣ.Σ. 2 2_て、 H *(i,k)は、 H (i,k)の複素共役である。  It is a figure which shows 1 2 1 2. In Equation 4, H * (i, k) is a complex conjugate of H (i, k).
P P  P P
[0061] [数 4]  [0061] [Equation 4]
Η ΰ ρ Η  Η ρ ρ Η
(i,k) =  (i, k) =
[0062] 第 2重み計算部 23 ,23力も第 2重み付け係数 W ,Wが出力されると、乗算回路 24 [0062] When the second weighting coefficients W 1 and W are also output to the second weight calculators 23 and 23, the multiplication circuit 24
1 2 1 2  1 2 1 2
,24は、この第 2重み付け係数 W ,Wと乗算回路 21 ,21からの出力値 σ Χ,σ X を乗算し、乗算結果 W σ X ,W σ Xを出力する。  , 24 multiplies the second weighting coefficients W 1, W by the output values σ Χ, σ X from the multiplication circuits 21, 21 and outputs multiplication results W σ X, W σ X.
1 1 1 2 2 2  1 1 1 2 2 2
[0063] そして、加算回路 25は、各乗算回路 24 ,24の出力値 W  [0063] Then, the adder circuit 25 outputs the output value W of each multiplier circuit 24, 24.
1 2 ]  1 2]
数 5式で示す合成信号 Y(i,k)を出力する。  The combined signal Y (i, k) shown in Equation 5 is output.
[0064] [数 5] [0064] [Equation 5]
2 2
丫(は)= ∑ Wm(i,k) c5-mXm(i,k) は (ha) = ∑ W m (i, k) c5-mX m (i, k)
m=1
Figure imgf000015_0001
m = 1
Figure imgf000015_0001
[0065] 出力された合成信号 Y(i,k)は、デマッピング部 26にお ヽてデマッピング処理により 整数信号に戻された後、 FEC(forward error coding)部に対して出力される。 FEC部 にお 、ては、ビダビ復号化やリードソロモン復号化が施される。 The output synthesized signal Y (i, k) is returned to an integer signal by the demapping process in the demapping unit 26 and then output to the FEC (forward error coding) unit. FEC Department In this case, Viterbi decoding and Reed-Solomon decoding are performed.
[0066] このように、本実施の形態によれば、受信 OFDM信号のシンボルごとの CZN比を 算出し、ブランチ間の相対 CZN比に基づいて第 1重み係数 σ , σ を求め、この第  [0066] Thus, according to the present embodiment, the CZN ratio for each symbol of the received OFDM signal is calculated, and the first weighting factors σ and σ are obtained based on the relative CZN ratio between the branches.
1 2 1 重み係数 σ , σ を受信信号 Xと伝送路応答 Ηの双方に乗算させた後、第 2重み係数  1 2 1 After multiplying both the received signal X and the channel response Η by the weighting factors σ and σ, the second weighting factor
1 2  1 2
W を算出する。  Calculate W.
1 ,W つまり、ダイバーシティ合成において、ブランチごとの相対  1, W In other words, in diversity combining,
2 C/N 比に基づいて重み付けが行われるので、 CZN比の良いブランチの信号に対して大 きなウェイト値 Wが割り当てられる。これにより、従来のように、伝送路応答 Hの振幅は 大き!/、が、 CZN比の悪 、ブランチによって信号品質が低下すると!/、う問題を解決で きるのである。また、 C/N比の値が小さくても、小さいウェイト値 Wを割り当てて合成 することにより、合成した信号の BERが必ずシングル受信の場合よりも改善されるよう にしている。そして、相対 CZN比に基づいて重み付け係数を決定するので、絶対 C ZN比の精度が劣る場合であっても、重み付け係数の信頼度を向上させることが可 能である。  2 Since weighting is performed based on the C / N ratio, a large weight value W is assigned to a signal in a branch having a good CZN ratio. As a result, the amplitude of the transmission line response H is large! /, But if the signal quality deteriorates due to the bad CZN ratio and branch, the problem can be solved. Even if the value of the C / N ratio is small, the BER of the combined signal is always improved compared to the case of single reception by assigning and combining a small weight value W. Since the weighting coefficient is determined based on the relative CZN ratio, it is possible to improve the reliability of the weighting coefficient even when the accuracy of the absolute CZN ratio is inferior.
[0067] また、本実施の形態においては、周波数領域の伝送路伝達関数から実信号とノィ ズのパワーを算出し、時間領域の伝送路応答力 ノイズのパワーを計算し、これらの 値力も各ブランチの CZN比を算出する。したがって、ゼロ埋めされたサブキャリアを 受信しない 1セグメント方式の受信装置にお!/、ても、精度の高 、CZN比の計算が可 能である。  [0067] Also, in the present embodiment, the power of the real signal and noise is calculated from the transmission path transfer function in the frequency domain, the transmission line response power noise in the time domain is calculated, and these value powers are also calculated. Calculate the CZN ratio of the branch. Therefore, even a 1-segment receiver that does not receive zero-filled subcarriers! / Can calculate the CZN ratio with high accuracy.
[0068] なお、本実施の形態にぉ 、て、受信装置 DRを構成する各機能部はハードウェア 回路で構成されて 、るが、これらの一部または全部がソフトウェア処理で実現されて いてもよい。  Note that, according to the present embodiment, each functional unit constituting the receiving device DR is configured by a hardware circuit, but some or all of these may be realized by software processing. Good.
[0069] また、上記の実施の形態においては、ブランチ数が 2の場合を説明した力 本発明 は、ブランチ数が 3以上の場合にも適用可能である。たとえば、ブランチ数力 の場合 、 4つの受信装置でそれぞれ CZN比として CN、 CN、 CN、 CNを算出する。そし  [0069] Further, in the above-described embodiment, the power for explaining the case where the number of branches is two. The present invention is also applicable to the case where the number of branches is three or more. For example, in the case of the number of branches, CN, CN, CN, and CN are calculated as CZN ratios for each of the four receivers. And
1 2 3 4  1 2 3 4
て、 CNと CNの平均を CNとし、 CNと CNの平均を CNとし、まず、 CNと CNとの The average of CN and CN is CN, and the average of CN and CN is CN.
1 2 5 3 4 6 5 6 間で、上述した実施の形態と同様の方法で第 1重み係数 σ , σ を算出する。つまり、 Between 1 2 5 3 4 6 5 6, the first weighting coefficients σ 1 and σ are calculated by the same method as in the above-described embodiment. That means
5 6  5 6
相対 CZN比(CN ZCN )を用いて第 1重み係数 σ , σ を算出する。そして、次に、  The first weighting factors σ and σ are calculated using the relative CZN ratio (CN ZCN). And then
5 6 5 6  5 6 5 6
CNと CNとの相対 CZN比に基づいて第 1重み係数 σ をさらに 2つのブランチに割 り振り、 CNと CNとの相対 CZN比に基づいて第 1重み係数 σ をさらに 2つのブランThe first weighting factor σ is further divided into two branches based on the relative CZN ratio between CN and CN. Based on the relative CZN ratio between CN and CN, the first weighting factor σ
3 4 6 チに割り振るなどの方法をとればよい。 3 4 6 H
[0070] また、上記の実施の形態において、伝送路応答を算出するためのノ ィロット信号と して SP信号を利用した力 その他にも CP (Continual Pilot)信号を利用してもよい。 [0070] Further, in the above-described embodiment, a CP (Continual Pilot) signal may be used in addition to a force using an SP signal as a no-lot signal for calculating a transmission line response.
[0071] この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 この発明の範囲力 外れることなく想定され得るものと解される。 [0071] Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. Innumerable variations not illustrated The power of the scope of the present invention It is understood that the power can be assumed without departing.

Claims

請求の範囲 The scope of the claims
[1] OFDM方式の伝送信号をダイバーシティ受信する複数のアンテナと、  [1] Multiple antennas for diversity reception of OFDM transmission signals;
前記複数のアンテナにより受信された各ブランチの信号をそれぞれ FFT演算する 手段と、  Means for performing FFT calculation on each branch signal received by the plurality of antennas;
前記 FFT演算後の各ブランチの信号について CZN比を算出する CZN演算手段 と、  CZN calculating means for calculating a CZN ratio for each branch signal after the FFT calculation;
各ブランチにつ 、て算出された CZN比の相対比に基づ 、て各ブランチの第 1の 重み付け係数を算出する手段と、  Means for calculating a first weighting factor for each branch based on the relative ratio of the CZN ratio calculated for each branch;
各ブランチの伝送路応答を算出する手段と、  Means for calculating the transmission line response of each branch;
前記 FFT演算後の各ブランチの信号に各第 1の重み付け係数を乗算し、各ブラン チの第 1の重み付け信号を算出する手段と、  Means for multiplying the signal of each branch after the FFT operation by each first weighting coefficient to calculate a first weighting signal for each branch;
各ブランチの伝送路応答に対して各第 1の重み付け係数を乗算し、各ブランチの 重み付け伝送路応答を算出する手段と、  Means for multiplying the transmission line response of each branch by each first weighting factor to calculate a weighted transmission line response of each branch;
各重み付け伝送路応答と各第 1の重み付け信号を用いて MRC合成を行う合成手 段と、  A combining means for performing MRC combining using each weighted transmission line response and each first weighted signal;
を備えることを特徴とする OFDMダイバーシティ受信装置。  An OFDM diversity receiver characterized by comprising:
[2] 請求項 1に記載の OFDMダイバーシティ受信装置にお 、て、 [2] In the OFDM diversity receiver according to claim 1,
前記第 1の重み付け係数を算出する手段は、  The means for calculating the first weighting factor is:
前記相対比と各ブランチの第 1の重み付け係数とを対応付けたテーブルを参照す ることにより、各ブランチの CZN比を第 1の重み付け係数に変換して出力するルック アップテープノレ、  By referring to a table in which the relative ratio and the first weighting factor of each branch are associated with each other, a look-up tape output that converts the CZN ratio of each branch into a first weighting factor and outputs the converted data.
を含むことを特徴とする OFDMダイバーシティ受信装置。  An OFDM diversity receiver comprising:
[3] 請求項 1または請求項 2に記載の OFDMダイバーシティ受信装置において、さらに、 前記 FFT演算後の各ブランチの信号に含まれるパイロット信号について周波数領 域の伝送路伝達関数を算出する手段と、 [3] In the OFDM diversity receiver according to claim 1 or 2, further, means for calculating a transmission transfer function in a frequency domain for a pilot signal included in the signal of each branch after the FFT operation;
前記周波数領域の伝送路伝達関数を IFFT変換し、時間領域の伝送路応答を算 出する手段と、  Means for IFFT transforming the frequency domain transmission line transfer function and calculating a time domain transmission line response;
を備え、 前記 CZN演算手段は、前記周波数領域の伝送路伝達関数からノイズを含む信号 の信号パワーを算出し、前記時間領域の伝送路応答力もノイズパワーを算出し、前 記信号パワーと前記ノイズパワーとから C/N比を算出することを特徴とする OFDM ダイバーシティ受信装置。 With The CZN calculation means calculates a signal power of a signal including noise from the transmission path transfer function in the frequency domain, calculates a noise power for the transmission path response power in the time domain, and calculates from the signal power and the noise power. An OFDM diversity receiver characterized by calculating a C / N ratio.
[4] 請求項 3に記載の OFDMダイバーシティ受信装置にお 、て、 [4] In the OFDM diversity receiver according to claim 3,
前記 CZN演算手段は、前記時間領域の伝送路応答の中で信号強度が所定の閾 値以下の信号をノイズに対応した信号であると判定し、前記所定の閾値以下の信号 のパワーを前記ノイズパワーとして算出することを特徴とする OFDMダイバーシティ 受信装置。  The CZN calculating means determines that a signal whose signal strength is equal to or smaller than a predetermined threshold value in the transmission response in the time domain is a signal corresponding to noise, and determines the power of the signal equal to or smaller than the predetermined threshold value as the noise. An OFDM diversity receiver characterized by being calculated as power.
[5] OFDM方式の伝送信号をダイバーシティ受信する複数のアンテナと、  [5] Multiple antennas for diversity reception of OFDM transmission signals;
前記複数のアンテナにより受信された各ブランチの信号をそれぞれ FFT演算する 手段と、  Means for performing FFT calculation on each branch signal received by the plurality of antennas;
前記 FFT演算後の各ブランチの信号に含まれるパイロット信号を用いて、各ブラン チの周波数領域の伝送路伝達関数を算出する手段と、  Means for calculating a transmission path transfer function in the frequency domain of each branch using a pilot signal included in the signal of each branch after the FFT operation;
各ブランチの周波数領域の伝送路伝達関数を IFFT変換し、各ブランチの時間領 域の伝送路応答を算出する手段と、  Means for IFFT transforming the frequency domain transmission function of each branch and calculating the time domain transmission response of each branch;
各ブランチの周波数領域の伝送路伝達関数力 ノイズを含む信号の信号パワーを 算出し、各ブランチの時間領域の伝送路応答力 ノイズパワーを算出し、前記信号 ノ ヮ一と前記ノイズパワーとから各ブランチの CZN比を算出する CZN演算手段と、 各ブランチにつ 、て算出された CZN比に基づ 、て各ブランチの第 1の重み付け 係数を算出する手段と、  The transmission power of the transmission line in the frequency domain of each branch The signal power of the signal including noise is calculated, the transmission power of the transmission line in the time domain of each branch is calculated, and the noise power is calculated from each of the signal noise and the noise power. CZN calculating means for calculating the CZN ratio of the branch, means for calculating the first weighting coefficient of each branch based on the CZN ratio calculated for each branch,
各ブランチの伝送路応答を算出する手段と、  Means for calculating the transmission line response of each branch;
前記 FFT演算後の各ブランチの信号に各第 1の重み付け係数を乗算し、各ブラン チの第 1の重み付け信号を算出する手段と、  Means for multiplying the signal of each branch after the FFT operation by each first weighting coefficient to calculate a first weighting signal for each branch;
各ブランチの伝送路応答に対して各第 1の重み付け係数を乗算し、各ブランチの 重み付け伝送路応答を算出する手段と、  Means for multiplying the transmission line response of each branch by each first weighting factor to calculate a weighted transmission line response of each branch;
各重み付け伝送路応答と各第 1の重み付け信号を用いて MRC合成を行う合成手 段と、 を備えることを特徴とする OFDMダイバーシティ受信装置。 A combining means for performing MRC combining using each weighted transmission line response and each first weighted signal; An OFDM diversity receiver characterized by comprising:
[6] 請求項 5に記載の OFDMダイバーシティ受信装置にお 、て、 [6] In the OFDM diversity receiver according to claim 5,
前記 CZN演算手段は、前記時間領域の伝送路応答の中で信号強度が所定の閾 値以下の信号をノイズに対応した信号であると判定し、前記所定の閾値以下の信号 のパワーを前記ノイズパワーとして算出することを特徴とする OFDMダイバーシティ 受信装置。  The CZN calculating means determines that a signal whose signal strength is equal to or smaller than a predetermined threshold value in the transmission response in the time domain is a signal corresponding to noise, and determines the power of the signal equal to or smaller than the predetermined threshold value as the noise. An OFDM diversity receiver characterized by being calculated as power.
[7] 請求項 5または請求項 6に記載の OFDMダイバーシティ受信装置において、  [7] In the OFDM diversity receiver according to claim 5 or 6,
前記第 1の重み付け係数を算出する手段は、各ブランチについて算出された CZ N比の相対比に基づいて各ブランチの第 1の重み付け係数を算出することを特徴と する OFDMダイバーシティ受信装置。  The OFDM diversity receiver characterized in that the means for calculating the first weighting factor calculates the first weighting factor of each branch based on the relative ratio of the CZN ratio calculated for each branch.
[8] 請求項 7に記載の OFDMダイバーシティ受信装置にお 、て、 [8] In the OFDM diversity receiver according to claim 7,
前記第 1の重み付け係数を算出する手段は、  The means for calculating the first weighting factor is:
前記相対比と各ブランチの第 1の重み付け係数とを対応付けたテーブルを参照す ることにより、各ブランチの CZN比を第 1の重み付け係数に変換して出力するルック アップテープノレ、  By referring to a table in which the relative ratio and the first weighting factor of each branch are associated with each other, a look-up tape output that converts the CZN ratio of each branch into a first weighting factor and outputs the converted data.
を含むことを特徴とする OFDMダイバーシティ受信装置。  An OFDM diversity receiver comprising:
[9] 請求項 1な!、し請求項 8の 、ずれかに記載の OFDMダイバーシティ受信装置にお いて、さらに、 [9] In the OFDM diversity receiver according to any one of claims 1 to 8 and claim 8,
前記 CZN演算手段において算出された各ブランチの CZN比を複数のシンボル に亘つて平均化し、平均 CZN比を出力するスムージング手段、  Smoothing means for averaging the CZN ratio of each branch calculated in the CZN calculating means over a plurality of symbols and outputting the average CZN ratio;
を備え、  With
前記第 1の重み付け係数を算出する手段は、各ブランチの CZN比として前記平均 CZN比を用いて第 1の重み付け係数を算出することを特徴とする OFDMダイバー シティ受信装置。  The OFDM diversity receiver according to claim 1, wherein the means for calculating the first weighting factor calculates the first weighting factor using the average CZN ratio as the CZN ratio of each branch.
[10] 請求項 1ないし請求項 9のいずれかに記載の OFDMダイバーシティ受信装置にお いて、  [10] In the OFDM diversity receiver according to any one of claims 1 to 9,
前記合成手段は、  The synthesis means includes
各重み付け伝送路応答の共役複素数値を、全てのブランチの重み付け伝送路応 答の二乗和で除算することにより各ブランチの第 2の重み付け係数を算出する手段と 各第 1の重み付け信号に各第 2の重み付け係数を乗算することにより、各ブランチ の第 2の重み付け信号を算出する手段と、 The conjugate complex value of each weighted channel response is applied to the weighted channel response for all branches. The means for calculating the second weighting factor for each branch by dividing by the sum of squares of the answers and the second weighting signal for each branch by multiplying each first weighting signal by each second weighting factor Means for calculating;
各ブランチの第 2の重み付け信号を加算することにより、合成受信信号を算出する 手段と、  Means for calculating a combined received signal by adding the second weighted signal of each branch;
を含むことを特徴とする OFDMダイバーシティ受信装置。 An OFDM diversity receiver comprising:
PCT/JP2006/301753 2005-03-09 2006-02-02 Ofdm diversity receiving device WO2006095513A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020077022766A KR101283512B1 (en) 2005-03-09 2006-02-02 Ofdm diversity receiving device
CN2006800073218A CN101138178B (en) 2005-03-09 2006-02-02 OFDM diversity receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005065721A JP4364820B2 (en) 2005-03-09 2005-03-09 OFDM diversity receiver
JP2005-065721 2005-03-09

Publications (1)

Publication Number Publication Date
WO2006095513A1 true WO2006095513A1 (en) 2006-09-14

Family

ID=36953117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301753 WO2006095513A1 (en) 2005-03-09 2006-02-02 Ofdm diversity receiving device

Country Status (4)

Country Link
JP (1) JP4364820B2 (en)
KR (1) KR101283512B1 (en)
CN (1) CN101138178B (en)
WO (1) WO2006095513A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041542A1 (en) * 2007-09-28 2009-04-02 Kyocera Corporation Radio communication device, and reception quality estimating method
US8908785B2 (en) 2012-09-18 2014-12-09 Renesas Electronics Corporation Receiving apparatus and communication apparatus, and communication system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4698624B2 (en) * 2007-02-14 2011-06-08 シャープ株式会社 Receiver
EP2200201B8 (en) 2007-08-31 2017-08-09 Fujitsu Ten Limited Diversity receiving device, diversity receiving method, and digital television receiving apparatus
JP2009088984A (en) 2007-09-28 2009-04-23 Kyocera Corp Reception device, radio communication terminal, radio base station and reception method
JP2010213163A (en) * 2009-03-12 2010-09-24 Alps Electric Co Ltd Diversity receiving apparatus
KR101411086B1 (en) * 2010-12-24 2014-06-27 미쓰비시덴키 가부시키가이샤 Reception device and method
JP5878798B2 (en) * 2012-03-13 2016-03-08 日本放送協会 Diversity receiver
CN103378897B (en) 2012-04-23 2017-12-22 中兴通讯股份有限公司 Realize the method and device of CMMB diversity reception

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135120A (en) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd Diversity receiving system and method
JP2004312333A (en) * 2003-04-07 2004-11-04 Nippon Hoso Kyokai <Nhk> Diversity receiver
JP2005175878A (en) * 2003-12-11 2005-06-30 Hitachi Kokusai Electric Inc Ofdm modulation signal receiver
JP3724501B1 (en) * 2004-11-30 2005-12-07 三菱電機株式会社 Demodulator, diversity receiver and demodulation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493150B1 (en) * 2000-04-10 2005-06-02 삼성전자주식회사 Method and apparatus of the optimum weight estimator of the closed loop transmit diversity for mobile communications
GB2364210A (en) 2000-06-30 2002-01-16 Nokia Oy Ab Diversity receiver and method of receiving a multi carrier signal
JP4071468B2 (en) * 2001-09-28 2008-04-02 株式会社東芝 OFDM receiver
CN1497867A (en) * 2002-10-11 2004-05-19 松下电器产业株式会社 Diversity receiver and diversity receiving method
EP1557962A4 (en) 2002-10-28 2011-06-15 Mitsubishi Electric Corp Diversity reception device and diversity reception method
JP4298320B2 (en) 2002-11-08 2009-07-15 富士通株式会社 Receiver for OFDM transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135120A (en) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd Diversity receiving system and method
JP2004312333A (en) * 2003-04-07 2004-11-04 Nippon Hoso Kyokai <Nhk> Diversity receiver
JP2005175878A (en) * 2003-12-11 2005-06-30 Hitachi Kokusai Electric Inc Ofdm modulation signal receiver
JP3724501B1 (en) * 2004-11-30 2005-12-07 三菱電機株式会社 Demodulator, diversity receiver and demodulation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAEHARA F. ET AL.: "OFDM Denso ni okeru SIR Omomizuke Jushin Diversity", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS B, vol. J85-B, no. 12, 1 December 2002 (2002-12-01), pages 2399 - 2403, XP003000789 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041542A1 (en) * 2007-09-28 2009-04-02 Kyocera Corporation Radio communication device, and reception quality estimating method
US8908785B2 (en) 2012-09-18 2014-12-09 Renesas Electronics Corporation Receiving apparatus and communication apparatus, and communication system
US9094273B2 (en) 2012-09-18 2015-07-28 Renesas Electronics Corporation Receiving apparatus and communication apparatus, and communication system

Also Published As

Publication number Publication date
KR20070117645A (en) 2007-12-12
JP2006253915A (en) 2006-09-21
KR101283512B1 (en) 2013-07-15
CN101138178A (en) 2008-03-05
JP4364820B2 (en) 2009-11-18
CN101138178B (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US9544039B2 (en) Method and apparatus for implementing signal quality metrics and antenna diversity switching control
WO2006095513A1 (en) Ofdm diversity receiving device
JP3724501B1 (en) Demodulator, diversity receiver and demodulation method
JP4287536B2 (en) OFDM transmitter / receiver and OFDM transmitter / receiver method
JP4068451B2 (en) Diversity receiver
US7242720B2 (en) OFDM signal communication system, OFDM signal transmitting device and OFDM signal receiving device
JP3737264B2 (en) Diversity receiver
JP2006186421A (en) Ofdm diversity receiver
JP5918667B2 (en) Reception device, communication device, and communication system
US20110038446A1 (en) Method and Device for Processing Received Data of a Radio Interface
US8107518B2 (en) Stream weight estimation and compensation in SIMO/MIMO OFDM receivers
JP2000183844A (en) Receiver and receiving method
US9118533B2 (en) Antenna diversity combining for differentially modulated orthogonal frequency division multiplexed (OFDM) signals
EP2283587A1 (en) Methods and systems for hybrid mimo schemes in ofdm/a systems
JP4515202B2 (en) OFDM diversity receiver
JP3768448B2 (en) OFDM signal transmission apparatus, OFDM signal receiving apparatus, and OFDM signal receiving method
JP2008141224A (en) Diversity reception method and reception apparatus in wired communication
KR101232132B1 (en) Apparatus and method for receiving signal of acquiring antenna diversity in a ofdm system
JP2019169761A (en) Diversity receiver
JPH10107714A (en) Receiver
JP2008085841A (en) Receiver, and receiving method
JP2007067568A (en) Receiver and method of synthesizing determination values of the receiver with diversity function
JP2009071636A (en) Receiver and receiving method
WO2009079849A1 (en) Method and device for receiving diversity combining in ofdm system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680007321.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077022766

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06712896

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712896

Country of ref document: EP