WO2006094442A1 - Procede de transmission sans fil a l’aide de structure de trame efficace et a haute performance dans un systeme tdd a large bande - Google Patents
Procede de transmission sans fil a l’aide de structure de trame efficace et a haute performance dans un systeme tdd a large bande Download PDFInfo
- Publication number
- WO2006094442A1 WO2006094442A1 PCT/CN2005/002353 CN2005002353W WO2006094442A1 WO 2006094442 A1 WO2006094442 A1 WO 2006094442A1 CN 2005002353 W CN2005002353 W CN 2005002353W WO 2006094442 A1 WO2006094442 A1 WO 2006094442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time slots
- time slot
- basic time
- length
- frame structure
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2618—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using hybrid code-time division multiple access [CDMA-TDMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70703—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation using multiple or variable rates
Definitions
- Wideband TDD system using high-efficiency and high-performance frame structure for wireless transmission
- the present invention relates to a broadband time division duplex (TDD) mobile communication system technology, and more particularly to a time division synchronous code division multiple access (TD-SCDMA) mobile communication system that operates at a wider frequency band, using a high efficiency and high The performance of the frame structure to achieve wireless transmission methods.
- TDD time division duplex
- TD-SCDMA time division synchronous code division multiple access
- the third generation time division duplex mode mobile communication system standard specifies two broadband carrier systems.
- One is a high chip rate (HCR) UTRATDD (Global Terrestrial Radio Access Time Division Duplex) system with a rate of 3.84 Mcps; the other is a low chip rate (LCR) TD-SCDMA system with a rate of 1.28 Mcps.
- HCR high chip rate
- LCR low chip rate
- the TD-SCDMA system has been widely recognized due to its use of smart antenna technology and high spectrum utilization. It will be widely used in the next year or two, while the UTRATDD system is basically in the world. status.
- a "multi-carrier time division duplex mobile communication system” is employed in which a base station is designed to operate in multiple carriers, and multiple carriers serve one sector or cell. Since the time division duplex mobile communication system uses multiple carrier frequencies in one cell or sector, it has the outstanding advantages of flexible spectrum use and the same uplink and downlink wave propagation characteristics, and is particularly suitable for supporting asymmetric services, which is bound to become the next three generations (Beyond). 3G) The preferred duplex mode for mobile communication systems.
- time division duplex technology to public mobile communication systems is an innovation of the third generation of mobile communication international standards. It is also an innovative standard, so not only for high chip rate UTRA TDD systems, but also for wireless transmission technology. There are serious flaws in the design, that is, for the low chip rate TD-SCDMA system, although a lot of new technologies are used, which have obvious advantages, there are also many unsatisfactory aspects in the design of the wireless transmission technology. Their obvious disadvantages are that - for high-chip rate UTRA TDD systems, the radio frame structure divides the frame length of a 10ms into 15 time slots, and the guard interval between time slots is very small, due to the time slot.
- CDMA FDD code division multiple access frequency division duplex
- the current Chinese standard specifies multi-carrier operation for CDMATDD (LCR) mobile communication systems, such as carrier 1, carrier 2, carrier 3, which are used by the base station when allocating channels.
- LCR CDMATDD
- the frame structure is shown in Figure 1.
- the frame structure consists of 7 main time slots TS0 to TS6 and 3 special time slots: downlink pilot time slot DwPTS, uplink and downlink protection time slot G and uplink pilot time slot UpPTS (Figure Only the downlink pilot time slot DwPTS) is shown in Fig. 1, and the base station configures the uplink and downlink time slots for the main time slots TS1 to TS6. Due to the low chip rate, the radio resources on each carrier are limited.
- the terminal When transmitting services over 2 Mbps, multiple carriers must be combined and used, resulting in complex terminal equipment and high cost.
- Mobile communication system in cellular structure In the middle, the terminal may move to a position close to 3-6 base stations. At this time, in each cell served by each carrier shown in FIG. 1, the terminal may be on the DwPTS of each carrier. Different codes are received, and the number may be the same as the number of base stations, such as 3-6 different codes, which makes the terminal difficult to handle when handing over.
- the scrambling code length is the same as the code length when the spreading code is 16, and the scrambling code length is too short, which causes a very large
- the peak signal power and the very poor in-band amplitude-frequency characteristics result in an increase in the cost of the radio frequency component; the problem of multi-carrier operation per cell and cellular networking is not fully considered; the transmission problem when the data transmission rate exceeds 2 Mbps is not fully considered.
- the current TDD system in the third generation mobile communication standard needs further development and improvement to meet the needs of the next three generations (after 3G) and longer-term mobile communication services.
- Time division duplexing is a major duplex mode and is used in third generation mobile communication systems.
- the present invention provides a development direction of the system in the latter three generations, that is, when each carrier frequency width is relatively wide, when a single carrier or a multi-carrier is implemented in one cell or sector, a high efficiency and high performance are used.
- a technical solution for achieving the object of the present invention is: a broadband TDD system using an efficient high performance frame knot A method for performing wireless transmission, which divides a subframe into a plurality of basic time slots and a plurality of special time slots, and uses one of the basic time slots to transmit cell broadcast or paging information, and the remaining basic time slots transmit service information, and its characteristics
- the basic time slot of the transmission service information may be partially combined into a plurality of extended time slots for service transmission.
- the technical solution for achieving the object of the present invention is: a method for wireless transmission of a broadband TDD system using an efficient high-performance frame structure, including:
- N Subdividing a fixed-length subframe into N+1 basic time slots and three special time slots, wherein a basic time slot is used to downlink cell broadcast or paging information, and N basic time slots are used for uplink transmission and downlink transmission services.
- Information when it is required to improve the transmission rate capability of a single slot, combine some of the basic time slots of the N basic time slots into an extended time slot, and use the extended time slot to transmit a high speed service matching the extended time slot length, N Is a positive integer.
- the basic time slot or the extended time slot includes an intermediate code part, where the intermediate code part is used for transmitting link evaluation and synchronization hold information, and each service data area located on both sides of the intermediate code is used for transmitting service data. , and an interval for protection between basic time slots and extended time slots.
- the interval in the basic time slot has the same length as the interval in the extended time slot.
- the length of each of the N+1 basic time slots may be the same or different, and even the lengths of some basic time slots may be the same, and the lengths of some basic time slots are different.
- the three special time slots include a downlink pilot time slot DwPTS, an uplink and a downlink guard time slot G, and an uplink pilot time slot UpPTS.
- the method of the present invention determining N, determining the basic time slot length, combining the basic time slots into extended time slots, and adopting different modulation modes and error correction coding modes in different basic time slots and extended time slots.
- Spreading factor to provide wireless transmission of services with different transmission rates and different transmission quality requirements.
- the method of the present invention under the condition of fixed N, corresponding to a certain modulation mode, adjusting the spreading factor and the multiple of the basic time slots constituting the extended time slot, and simultaneously satisfying the system bandwidths of 5 MHz, 10 MHz, and 20 MHz, respectively.
- the system requires data transmission capability at various rates within 100 Mbps.
- the N 10
- the length of the extended time slot is 2 to 9 times the length of the basic time slot.
- the invention provides a high efficiency and high performance frame of a wideband CDMA TDD mobile communication system.
- a 5ms subframe is divided into N + 1 basic slots and 3 special slots.
- a basic time slot TS0 is a downlink time slot arranged for cell broadcasting or paging, followed by three special time slots, and then N N basic time slots TS1 to TSN for transmitting service information, these N Basic time slots can also be collectively referred to as service time slots.
- N is a positive integer. In theory, N can be arbitrarily selected, but it is limited in specific selection, for example, generally does not exceed 20.
- the lengths of the N+1 basic time slots may be the same or different, and may even be combined into expansion time slots of different lengths for transmitting high-speed data.
- the N service slots can be arranged as uplink time slots or as downlink time slots.
- Each basic time slot or extended time slot is composed of four parts: a middle code for link evaluation and synchronization holding, a service data area on both sides of the intermediate code, and a guard interval between the basic time slot and the extended time slot.
- the guard interval in the basic time slot may be the same as the guard interval in the extended time slot, but the length of the intermediate code and the service data area in the basic time slot will be different from the length of the intermediate code and the service data area in the extended time slot.
- the frame structure of the present invention When the frame structure of the present invention is used for wireless transmission, only the basic time slot width needs to be changed, the basic time slots are combined into different times of extended time slots, and different modulation modes and spreading coefficients are used to provide different data rates. Business.
- the present invention uses a high-efficiency and high-performance frame structure for wireless transmission in a wideband CDMA TDD mobile communication system.
- This frame structure is similar to the frame structure of a TD-SCDMA system, thereby making full use of the current third generation mobile communication TDD. (LCR)
- LCR The underlying technology of the system.
- the beneficial effects include the following aspects - multiple bandwidths can be used, such as 5 MHz, 10 MHz, and 20 MHz per carrier bandwidth; it can meet the needs of using various new technologies, for example,
- multi-antenna transmission and reception (MIMO) technology can also be used; variable spreading factors such as spreading coefficients can be supported.
- 1 to 64 or to 128 can support variable time slot width to meet the needs of different uplink and downlink traffic ratios, such as downlink ratio of 1: 10 or 10: 1; support long scrambling code, the scrambling code length is at least spread spectrum 2 to 4 times the coefficient; support adaptive multiple modulation methods, such as QPSK, 16QAM, 64QAM, etc.; Support multi-carrier operation.
- the solution of the present invention is a major improvement and improvement of the existing TD-SCDMA system.
- the technical structure of the present invention improves the transmission rate of the system in the future. It can also support its requirements, that is, it can meet the needs of high-speed data transmission after three generations, and overcomes the shortcomings of the existing frame structure without adding additional cost and complexity.
- 1 is a schematic diagram of channel allocation of a multi-carrier base station in a current 3GPP standard TDD system
- FIG. 2 is a schematic diagram showing a frame structure of a wireless transmission design of a broadband TD-SCDMA mobile communication system according to the present invention
- 3 is a schematic diagram showing a frame structure of a TDD mobile communication system when the bandwidth of each carrier is 5 MHz, 10 MHz, and 20 MHz;
- FIG. 4 is a schematic diagram showing the structure design of the extended time slot in FIG.
- the invention designs a high efficiency and high performance frame structure for a broadband time division duplex mobile communication system, and uses the frame structure for wireless transmission, which can meet the needs of high speed data transmission after three generations.
- a Supper frame has a length of 720ms and contains 72 radio frames. Each radio frame has a length of 10 ms and consists of 2 subframes. Each subframe has a length of 5 ms. Each 5ms subframe is divided into N+1 basic time slots and 3 special time slots.
- One of the basic time slots TS0 is a downlink time slot arranged for cell broadcasting or paging, followed by three special time slots: The pilot time slot (DwPTS), the uplink and downlink protection time slot G and the uplink pilot time slot (UpPTS), and then the N basic time slots TS1 to TSN for transmitting service information may also be collectively referred to as service time slots.
- the length of the N+ basic time slots may be the same or different, and even some of them may be different.
- the N basic time slots may be used separately or in combination; the N basic time slots may be arranged as uplink time slots, or Arranged as a downlink time slot.
- the expansion time slots are formed by combining the basic time slots TS1 and TS2.
- Each basic time slot or extended time slot is composed of 4 parts: the intermediate code part, for transmission The link evaluation and synchronization hold information, the service data area on both sides of the intermediate code, for transmitting service data, and the protection gap area g between the basic time slot and the extended time slot.
- the length of the intermediate code and the service data area will change, except that the guard gap area g at the last side of the extended time slot can be the same length as the guard interval area g in the basic time slot.
- Figure 3 shows the frame structure at a bandwidth of 5/10/20 MHz.
- One of the development directions of the third generation mobile communication system is to increase the transmission rate per carrier. To this end, the bandwidth and spectral efficiency of each carrier must be increased.
- each basic time slot has the same length, which is 425 ⁇ 8 .
- the intermediate code of the basic time slot occupies 66.67 ⁇ 8
- each data area occupies 175 ⁇ ⁇
- the guard gap area occupies 8.33 ⁇ ⁇ .
- the structure shown in FIG. 3 can be used to construct a double expansion time slot to support the single-slot higher transmission rate capability, such as an expansion time slot formed by combining the basic time slots TS1 and TS2, and has a length of 2 ⁇ 425 ⁇ 8 .
- This 2x time slot occupies 850 ⁇ ⁇
- the intermediate code occupies 133.34 ⁇ ⁇
- each data area occupies 354.165 s
- the guard gap accounts for 8.33 s
- 133.34+354.165+354.165+8.33 850 ⁇ 8.
- Specific data can be seen in the 2-timeslot structure shown in FIG.
- the basic time slot can be configured as follows:
- the intermediate code is 256bit, and when the spreading factor is 16, the data area per code channel is 84 symbols, or the maximum transmission capacity under QPSK modulation ( Service data plus signaling, without error correction coding) is 33.6 kbps, which can transmit one
- the channel coding rate is 12.2 kbps voice.
- each basic time slot can transmit 1,344 symbols, or the maximum transmission capacity under QPSK modulation (service data plus signaling, without error correction coding) is 537.6 kbps; maximum transmission under 16QAM modulation Capability (service data plus signaling, without error correction coding) is 1.0752 Mbps; maximum transmission capacity under 64QAM modulation (service data plus signaling, without error correction coding) is 2.1504 Mbps
- the configuration is as shown in FIG. 4.
- the spreading coefficient is 16
- the data area per code channel is 170 symbols, and each basic time slot is used.
- Can transmit 2,720 symbols, or the maximum transmission capacity under QPSK modulation (service data plus signaling, without error correction coding) is 1.008 Mbps; maximum transmission capacity under 16QAM modulation (service data plus signaling, not counted
- the error correction coding is 2.176 Mbps; the maximum transmission capability under 64QAM modulation (service data plus signaling, without error correction coding) is 4.352 Mbps.
- each basic time slot can transmit 16,448.
- the maximum transmission capacity (service data plus signaling, without error correction coding) under QPSK modulation is 6.5792 Mbps; the maximum transmission capacity under 16QAM modulation (service data plus signaling, without error correction coding) ) is 13.1584 Mbps; the maximum transmission capacity under 64QAM modulation (service data plus signaling, without error correction coding) is 26.3168 Mbps.
- the basic time slot can be configured as follows:
- the intermediate code is 512bit, and when the spreading factor is 32, the data area per code channel is 84 symbols, or the maximum transmission capacity under QPSK modulation (service data plus Signaling, without error correction coding) is 33.6 kbps, and can transmit a voice with a coding rate of 12.2 kbps.
- each basic time slot can transmit 2,688 symbols, or the maximum transmission capacity under QPSK modulation (service data plus signaling, without error correction coding) is 1.0752 Mbps; maximum transmission capacity under 16QAM modulation (service data plus Signaling, without error correction coding) is 2.1504 Mbps ; the maximum transmission capacity under 64QAM modulation (service data plus signaling, without error correction coding) is 4.3004 Mbps.
- the 2 times time slot can be configured as follows:
- the intermediate code is 1024 bits, and when the spreading factor is 32, the data area per code channel is 170 symbols, each basic The time slot can transmit 5,440 symbols, or the maximum transmission capacity under QPSK modulation (service Data plus signaling, without error correction coding) is 2.176 Mbps; maximum transmission capacity under 16QAM modulation (service data plus signaling, without error correction coding) is 4.352 Mbps; maximum transmission capacity under 64QAM modulation (service Data plus signaling, without error correction coding) is 8.704 Mbps.
- QPSK modulation service Data plus signaling, without error correction coding
- maximum transmission capacity under 16QAM modulation service data plus signaling, without error correction coding
- maximum transmission capacity under 64QAM modulation service Data plus signaling, without error correction coding
- the 9-times extended time slot can be configured as follows:
- the intermediate code is 512 bits, and when the spreading factor is 32, the data area per code channel is 1,028 symbols (symbol ), 32,896 symbols can be transmitted per basic time slot, or the maximum transmission capacity under QPSK modulation (service data plus signaling, without error correction coding) is 13.1584 Mbps; maximum under 16QAM modulation
- the transmission capacity (service data plus signaling, without error correction coding) is 26.3168 Mbps; the maximum transmission capacity under 64QAM modulation (service data plus signaling, without error correction coding) is 52.6336 Mbps.
- the basic time slot can be configured as follows:
- the intermediate code is 1024bit, and when the spreading factor is 64, the data area per code channel is 84 symbols, or the maximum transmission capacity under QPSK modulation (service data plus Signaling, without error correction coding) is 33.6 kbps, and can transmit a voice with a coding rate of 12.2 kbps.
- 5,376 symbols can be transmitted per basic time slot, or the maximum transmission capacity under QPSK modulation (service data plus signaling, without error correction coding) is 2.1504 Mbps; maximum transmission capacity under 16QAM modulation (service data plus Therefore, the error correction coding is 4.3008 Mbps, and the maximum transmission capacity (service data plus signaling, without error correction coding) under 64QAM modulation is 8.600 Mbps.
- the double expansion time slot can be configured as follows: the intermediate code is 2048 bits, and when the spreading factor is 64, the data area per code channel is 170 symbols.
- Each basic time slot can transmit 10,880' symbols, or the maximum transmission capacity under QPSK modulation (service data plus signaling, without error correction coding) is 4.352 Mbps; maximum transmission capacity under 16QAM modulation ( Service data plus signaling, without error correction coding) is 8.704 Mbps; maximum transmission capacity under 64QAM modulation (service data plus signaling, without error correction coding) is 17.408 Mbps c
- the 9-times extended time slot can be configured as follows:
- the intermediate code is 1024 bits, and when the spreading factor is 64, the data area per code channel is 1028 symbols. 65,792 symbols can be transmitted per basic time slot, or the maximum transmission capacity under QPSK modulation (service data plus signaling, without error correction coding) is 26.3168 Mbps; under 16QAM modulation
- the maximum transmission capacity (service data plus signaling, without error correction coding) is 52.6336 Mbps; the maximum transmission capacity under 64QAM modulation (service data plus signaling, without error correction coding) is 105.2672 Mbps.
- each channel of the TDD system (one time slot)
- the transmission capacity of one of the code channels is listed in the following table.
- the method of the present invention is a major improvement and improvement of the TD-SCDMA system, and greatly increases the data transmission rate of the system without increasing the complexity of the existing system, and satisfies the requirements of mobile multimedia after three generations.
- the method of the present invention can also be used in other wireless systems, such as wireless subscriber loops and wireless local area networks (WLANs), etc., after simple modifications.
- WLANs wireless local area networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Time-Division Multiplex Systems (AREA)
Description
宽带 TDD系统使用高效高性能帧结构进行无线传输的方法 技术领域
本发明涉及宽带时分双工 (TDD)移动通信系统技术,更确切地说是涉及时 分同步码分多址 (TD-SCDMA)移动通信系统在更宽频带下工作时,使用一种高 效率和高性能的帧结构实现无线传输的方法。
背景技术
目前第三代时分双工方式的移动通信系统标准(参见 3GPP相关标准文 件),规定了两种宽带载波的系统。一种是高码片速率 (HCR)的 UTRATDD (全 球陆地无线接入时分双工)系统, 速率为 3.84Mcps; 另一种是低码片速率 (LCR) 的 TD-SCDMA系统, 速率为 1.28Mcps。 TD-SCDMA系统, 由于使 用了智能天线技术, 具有频谱利用率高等优点, 已经得到普遍承认, 并将在 未来一两年内获得广泛应用, 而 UTRATDD系统, 则在全世界已经基本处于 产品停止开发的状态。
为了满足高密度应用环境的需要,采用"多载波时分双工移动通信系统", 在该系统中, 将基站设计为多载波工作, 多个载波服务于一个扇区或小区。 时分双工移动通信系统由于在一个小区或扇区内使用多个载波频率, 因而具 有频谱使用灵活、 上下行电波传播特性相同等突出优点, 特别适合支持不对 称业务, 必然会成为后三代 (Beyond 3G) 移动通信系统首选的双工方式。
将时分双工技术应用于公众移动通信系统是第三代移动通信国际标准的 一个创新, 也正因为是一种创新性的标准, 故不仅对于高码片速率的 UTRA TDD系统, 在无线传输技术设计上存在严重缺陷, 就是对于低码片速率的 TD-SCDMA系统, 虽然使用了大量新技术, 具有明显的优点, 在其无线传输 技术设计上也有不少不尽人意之处。 它们的明显缺点在于- 对于高码片速率的 UTRA TDD系统来说, 其无线帧结构是将一 10ms的 帧长均匀分为 15个时隙, 时隙之间的保护间隔非常小, 由于时隙均勾分配, 因而无法支持较大半径的小区, 难以实现同步 CDMA; 由于使用与码分多址 频分双工 (CDMA FDD) 相同的小区搜索技术, 没有考虑系统在上、 下行 是采用相同载波频率的问题, 故在蜂窝结构的移动通信系统中无法实现小区
搜索, 也就是说, 这种小区搜索技术只能在单小区中使用; UTRATDD系统 的帧结构限制了在系统中使用智能天线等新技术, 导致频谱利用率比较低; 上述问题还带来了系统成本高的缺点。
对于低码片速率 TD-SCDMA系统的无线传输来说, 目前中国标准对 CDMATDD (LCR)移动通信系统规定为多载波工作, 如载波 1、载波 2、载 波 3, 基站在分配信道时所采用的帧结构如图 1所示, 其帧结构由 7个主时 隙 TS0至 TS6和 3个特殊时隙: 下行导引时隙 DwPTS、 上下行保护时隙 G 和上行导引时隙 UpPTS构成(图 1中只画出下行导引时隙 DwPTS), 由基站 对主时隙 TS1至 TS6进行上、 下行时隙配置。 由于码片速率较低, 每个载波 上的无线资源有限, 在传输超过 2Mbps以上速率的业务时, 必须将多个载波 组合起来使用, 导致终端设备复杂, 成本高; 在蜂窝结构的移动通信系统中, 终端可能会移动至距离 3— 6个基站都接近的位置处, 此时, 在图 1所示的由 每个载波所服务的每个小区中,终端在每个载波的 DwPTS上都可能接收到不 同码, 其数量可能与基站数量相同, 如 3— 6个不同码, 造成终端在越区切换 时难以处理。
上述低码片速率 TD-SCDMA系统与高码片速率的 UTRA TDD系统的共 同缺点是: 扰码长度和扩频码为 16时的码长度相同, 由于扰码长度太短, 会 造成非常大的峰值信号功率与非常差的带内幅频特性, 从而导致射频部件的 成本增加; 没有充分考虑每小区多载波工作和蜂窝组网的有关问题; 没有充 分考虑数据传输速率超过 2Mbps时的传输问题。
综上所述, 目前第三代移动通信标准中的 TDD系统,其相关技术还需要 进一步发展与完善, 才能满足后三代(3G后)及更长期的移动通信业务的需 要。
发明内容
时分双工是一种主要的双工方式,并在第三代移动通信系统中获得应用。 本发明给出此系统在后三代的一种发展方向, 即在每个载波频率宽度比较宽 时, 一个小区或者扇区内实现单载波或者多载波工作时, 使用一种高效率和 高性能的帧结构进行无线传输的方法。
实现本发明目的的技术方案是:一种宽带 TDD系统使用高效高性能帧结
构进行无线传输的方法, 其将一个子帧划分为若干个基本时隙和若干个特殊 时隙, 利用其中一个基本时隙传输小区广播或寻呼信息, 其余基本时隙传输 业务信息,其特征在于:所述传输业务信息的基本时隙可以部分合并为若干个 扩充时隙来进行业务传输。
进一步地,实现本发明目的的技术方案是:一种宽带 TDD系统使用高效高 性能帧结构进行无线传输的方法, 包括:
将一个固定时长的子帧划分为 N+1个基本时隙和 3个特殊时隙, 其中利 用一个基本时隙下行传输小区广播或寻呼信息, 用 N个基本时隙上行传输与 下行传输业务信息; 在需要提高单时隙的传输速率能力时, 将 N个基本时隙 中的若干基本时隙合并为扩充时隙, 用该扩充时隙传输与扩充时隙长度相匹 配的高速业务, N为正整数。
所述基本时隙或扩充时隙, 包括一个中间码部分, 该中间码部分用于传 输链路估值和同步保持的信息, 位于该中间码两边的各一个业务数据区, 用 于传输业务数据, 和一个间隔区, 用于基本时隙、 扩充时隙间的保护。
所述基本时隙中的间隔区与所述扩充时隙中的间隔区具有相同的长度。 所述 N+1 个基本时隙中的每个基本时隙的长度可以相同也可以不相同, 甚至可以让部分基本时隙的长度相同, 另外一些基本时隙的长度不相同。
所述的 3个特殊时隙, 包括下行导引时隙 DwPTS、 上、 下行保护时隙 G 和上行导引时隙 UpPTS。
进一步地, 本发明方法: 确定 N, 以决定所述基本时隙长度、 合并基本 时隙成扩充时隙, 和在不同基本时隙、 扩充时隙内采用不同的调制方式、 纠 错编码方式与扩频系数, 以提供不同传输速率及不同传输质量要求的业务的 无线传输。
进一步地, 本发明方法: 在固定 N的条件下, 对应某一调制方式, 调整 扩频系数和组成扩充时隙的基本时隙的倍数, 能同时满足系统带宽分别为 5MHz、 10MHz、 20MHz时, 系统对 100Mbps内各种速率数据传输能力的要 求。
所述的 N=10, 所述扩充时隙的长度为 2至 9倍基本时隙的长度。
本发明给出宽带 CDMA TDD移动通信系统的一种高效率及高性能的帧
结构。 将一个 5ms子帧分成 N+ l个基本时隙和 3个特殊时隙。 其中, 一个 基本时隙 TS0是为小区广播或者寻呼安排的下行时隙,其后为 3个特殊时隙, 然后为 N个供传输业务信息的 N个基本时隙 TS1至 TSN, 这 N个基本时隙 也可以统称为业务时隙。 N为正整数, 从理论上说 N可任意取值, 但在具体 选取时, 还是受限的, 例如一般不超过 20。 这 N+ 1个基本时隙的长度可以 相同, 也可以不相同, 甚至可以合并成各种长度不同的扩充时隙使用, 用于 传输高速数据。 这 N个业务时隙可以安排为上行时隙, 也可以安排为下行时 隙。 每个基本时隙或扩充时隙由 4部分构成: 供链路估值和同步保持的中间 码、 中间码两边的业务数据区、 以及基本时隙与扩充时隙之间的保护间隔。 基本时隙中的保护间隔与扩充时隙中的保护间隔的长度可以相同, 但基本时 隙中的中间码及业务数据区的长度将不同于扩充时隙中的中间码及业务数据 区的长度。
使用本发明的帧结构作无线传输时, 只需要改变基本时隙宽度、 利用基 本时隙合并成不同倍的扩充时隙, 和采用不同的调制方式、 扩频系数, 就可 在提供不同数据速率的业务。
本发明在宽带 CDMA TDD移动通信系统中, 使用一种高效率及高性能 的帧结构进行无线传输, 此帧结构和 TD-SCDMA系统的帧结构类似, 因而 充分利用了目前第三代移动通信 TDD (LCR) 系统的基础技术。 使用本发明 的帧结构, 所带来的有益效果包括以下几个方面- 可以使用多种带宽, 如每载波带宽可以为 5MHz、 10MHz及 20MHz; 可 满足使用各种新技术时的需要, 例如除了使用在 TD-SCDMA系统中已经使 用的智能天线、 同步 CDMA、 联合检测、 接力切换等新技术外, 还可以使用 多天线收发 (MIMO) 技术等; 可支持可变扩频系数, 如扩频系数为 1至 64 或至 128; 可支持可变时隙宽度, 满足不同上下行业务比例的需要, 如上下 行比例为 1 : 10或者 10: 1; 支持长扰码, 扰码长度至少为扩频系数的 2至 4 倍; 支持自适应多种调制方式, 如 QPSK、 16QAM、 64QAM等; 支持多载 波工作等。
总之, 使用此帧结构进行无线传输, 不仅可以高效率的提供各种速率的 话音业务, 还可以大大提高数据, 特别是包交换数据的传输速率和效率, 以
满足三代后移动多媒体的需求。
本发明方案是对现有 TD-SCDMA系统的一种重大改进与完善, 本发明 技术方案与目前标准的 TD-SCDMA系统的技术方案相比较, 本发明的帧结 构在今后系统传输速率提高时, 也可支持其要求, 即能满足三代后高速数据 传输的需要, 既克服了现有帧结构的缺点, 又不增加额外的成本和复杂度。 附图说明
图 1是目前 3GPP标准 TDD系统多载波基站信道分配示意图;
图 2是本发明为宽带 TD-SCDMA移动通信系统的无线传输设计的帧结 构示意图;
图 3是本发明在每载波带宽为 5MHz、 10MHz及 20MHz时, TDD移动 通信系统的帧结构示意图;
图 4是对图 3中扩充时隙的结构设计示意图。
具体实施方式
本发明为宽带时分双工移动通信系统设计了一种高效率与高性能的帧结 构, 使用这种帧结构进行无线传输, 可以满足三代后高速数据传输的需要。
参见图 2,是本发明为宽带 TDD系统设计的帧结构。一个 Supper帧的长 度为 720ms, 含 72个无线帧, 每个无线帧的长度为 10 ms, 由 2个子帧组成, 每个子帧的长度是 5ms。 每一个 5ms子帧, 分为 N+ 1个基本时隙和 3个特 殊时隙, 其中一个基本时隙 TS0是为小区广播或者寻呼安排的下行时隙, 其 后为 3个特殊时隙: 下行导引时隙(DwPTS)、 上下行保护时隙 G和上行导 引时隙 (UpPTS), 然后是 N个基本时隙 TS1至 TSN, 供传输业务信息的, 也可总称为业务时隙。
N+ 1 个基本时隙的长度可以相同, 也可以不相同,甚至有些相同有些不 相同; N个基本时隙可以单独使用也可以合并使用; N个基本时隙可以安排 为上行时隙, 也可以安排为下行时隙。
当传输高速数据时, 可以将多个(2个及 2个以上)基本时隙合并使用, 组成各种长度不同的扩充时隙。如图 2中由基本时隙 TS1与 TS2合并成的扩 充时隙。
每个基本时隙或者扩充时隙都由 4个部分构成: 中间码部分, 供传输用
于链路估值和同步保持的信息, 中间码两边的业务数据区, 供传输业务数据, 以及基本时隙、 扩充时隙之间的保护间隙区 g。 当存在扩充时隙时, 除扩充 时隙最后边的保护间隙区 g可以和基本时隙中的保护间隔区 g长度相同外, 中间码和业务数据区的长度都将随之改变。
使用此帧结构, 在提供不同数据速率的业务时, 只需要改变时隙长度、 调制方式、 扩频系数等参数。 这样, 上述改变或者调整都可以用软件定义的 方式来完成, 使系统有很高的灵活性。 当系统升级, 如由带宽 5MHz增加为 10MHz或者 20MHz时, 在满足硬件平台有足够处理能力的条件下, 只需要 升级软件就可完成系统升级, 为适应后三代发展提供了方便。
下面, 结合图 3、 图 4所示的实例详细说明本发明方案的具体应用。 图 3所示是带宽为 5/10/20MHZ时的帧结构。第三代移动通信系统的发展 方向之一就是提高每载波的传输速率, 为此, 必须增加每载波的带宽和频谱 效率。
本发明设计了图 3、 图 4所示的帧结构: 每个 5ms子帧由 11个基本时隙 TS0至 TS10和 3个特殊时隙构成, N=10。 为描述简单起见, 设每个基本时 隙的长度相同, 均为 425μ8。 基本时隙的中间码占 66.67μ8, 每个数据区各占 175μδ, 保护间隙区占 8.33μδ。
可以利用图 3所示结构构成 2倍扩充时隙, 以支持单时隙较高传输速率 的能力, 如由基本时隙 TS1和 TS2合并成的扩充时隙, 长度为 2Χ 425μ8。此 2倍时隙占用 850μδ, 其中, 中间码占 133.34μδ, 每个数据区占 354.165 s, 保护间隙占 8.33 s, 133.34+354.165+354.165+8.33=850μ8。具体数据可参见图 4中所示的 2倍时隙结构。
还可以用图 4所示结构构成 9倍扩充时隙, 以支持单时隙更高传输速率 的能力, 如用于传输包交换数据。 该 9倍扩充时隙占用 9 Χ425=3,825μ3, 其 中, 中间码占 66.67 s , 每个数据区占 l,875 s, 保护间隙占 8.33 s, 66.67+1875+1875+8.33=3,825 s。
当带宽为 5MHz时, 基本时隙可以这样配置: 中间码为 256bit, 在扩频 系数为 16时, 每码道数据区为 84个符号(symbol), 或者说在 QPSK调制下 的最大传输能力 (业务数据加信令, 未计纠错编码) 为 33.6kbps,可以传输一
路编码速率为 12.2kbps的话音。
而每基本时隙可传输 1,344个符号 (symbol), 或者说在 QPSK调制下的 最大传输能力 (业务数据加信令, 未计纠错编码) 为 537.6kbps; 在 16QAM 调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 1.0752Mbps; 在 64QAM调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 2.1504Mbps
当将两个基本时隙合并为一个 2倍扩充时隙, 其配置如图 4中所示, 在 扩频系数为 16时, 每码道数据区为 170个符号 (symbol), 每基本时隙可传 输 2,720个符号, 或者说在 QPSK调制下的最大传输能力 (业务数据加信令, 未计纠错编码)为 1.088Mbps; 在 16QAM调制下的最大传输能力(业务数据 加信令,未计纠错编码)为 2.176Mbps;在 64QAM调制下的最大传输能力(业 务数据加信令, 未计纠错编码) 为 4.352Mbps。
当将 9个基本时隙合并为一个 9倍扩充时隙, 其配置如图 4中所示, 在 扩频系数为 16时, 每码道数据区为 1,028个符号, 每基本时隙可传输 16,448 个符号, 或者说在 QPSK调制下的最大传输能力 (业务数据加信令, 未计纠 错编码) 为 6.5792Mbps; 在 16QAM调制下的最大传输能力 (业务数据加信 令, 未计纠错编码)为 13.1584Mbps; 在 64QAM调制下的最大传输能力(业 务数据加信令, 未计纠错编码) 为 26.3168Mbps。
当带宽为 10MHz时, 基本时隙可以这样配置: 中间码为 512bit, 在扩频 系数为 32时, 每码道数据区为 84个符号, 或者说在 QPSK调制下的最大传 输能力 (业务数据加信令, 未计纠错编码) 为 33.6kbps,可以传输一路编码速 率为 12.2kbps的话音。 而每基本时隙可传输 2,688个符号, 或者说在 QPSK 调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 1.0752Mbps; 在 16QAM调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 2.1504Mbps; 在 64QAM调制下的最大传输能力 (业务数据加信令, 未计纠 错编码) 为 4.3004Mbps。
当将两个基本时隙合并为一个 2倍扩充时隙,该 2倍时隙可以这样配置: 中间码为 1024bit, 在扩频系数为 32时, 每码道数据区为 170个符号, 每基 本时隙可传输 5,440个符号, 或者说在 QPSK调制下的最大传输能力 (业务
数据加信令, 未计纠错编码)为 2.176Mbps; 在 16QAM调制下的最大传输能 力(业务数据加信令, 未计纠错编码)为 4.352Mbps; 在 64QAM调制下的最 大传输能力 (业务数据加信令, 未计纠错编码) 为 8.704Mbps。
当将 9个基本时隙合并为一个 9倍扩充时隙, 该 9倍扩充时隙可以这样 配置: 中间码为 512bit, 在扩频系数为 32时, 每码道数据区为 1,028个符号 (symbol), 每基本时隙可传输 32,896个符号 (symbol), 或者说在 QPSK调 制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 13.1584Mbps; 在 16QAM调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 26.3168Mbps; 在 64QAM调制下的最大传输能力 (业务数据加信令, 未计纠 错编码) 为 52.6336Mbps。
当带宽为 20MHz时, 基本时隙可以这样配置: 中间码为 1024bit, 在扩 频系数为 64时, 每码道数据区为 84个符号, 或者说在 QPSK调制下的最大 传输能力 (业务数据加信令, 未计纠错编码) 为 33.6kbps,可以传输一路编码 速率为 12.2kbps的话音。 每基本时隙可传输 5,376个符号, 或者说在 QPSK 调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 2.1504Mbps; 在 16QAM调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 4.3008Mbps,- 在 64QAM调制下的最大传输能力 (业务数据加信令, 未计纠 错编码) 为 8.6016Mbps。
当将两个基本时隙合并为一个 2倍扩充时隙时, 该 2倍扩充时隙可以这 样配置: 中间码为 2048bit, 在扩频系数为 64时, 每码道数据区为 170个符 号, 每基本时隙可传输 10,880'个符号 (symbol), 或者说在 QPSK调制下的 最大传输能力 (业务数据加信令, 未计纠错编码)为 4.352Mbps; 在 16QAM 调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 8.704Mbps; 在 64QAM调制下的最大传输能力 (业务数据加信令, 未计纠错编码) 为 17.408Mbps c
当将 9个基本时隙合并为一个 9倍扩充时隙时, 该 9倍扩充时隙可以这 样配置: 中间码为 1024bit, 在扩频系数为 64时, 每码道数据区为 1028个符 号, 每基本时隙可传输 65,792个符号, 或者说在 QPSK调制下的最大传输能 力(业务数据加信令, 未计纠错编码)为 26.3168Mbps; 在 16QAM调制下的
最大传输能力(业务数据加信令,未计纠错编码)为 52.6336Mbps;在 64QAM 调制下的最大传输能力(业务数据加信令,未计纠错编码)为 105.2672Mbps。
通过上述举例可以看出, 当使用本发明的帧结构, 并配合使用不同的基 本时隙与扩充时隙长度、 不同的调制方式及不同的扩频系数时, 将 TDD系 统每信道(一个时隙中一个码道) 的传输能力列在下表中, 表中基本时隙的 长度按 N=10确定: 业务速 调制方式 时隙长度 备注 带宽 = 5MHz, 码片速率 =3.84Mcps
话音 QPSK 16 基本时隙 12.2kbps (R= l/3 纠错 编码)
可视电 QPSK 4 基本时隙 64kbps ( R= l/3 纠错编 话 码)
144kbps QPSK 1 基本时隙 R= l/3纠错编码
384kbps 16QAM 1 基本时隙 R= 1/3纠错编码
2Mbps 16QAM 1 2倍基本时隙 R= l/2纠错编码
10Mbps 16QAM 1 9倍基本时隙 无纠错编码
带宽 = 10MHz; 码片速率 =7.68Mcps
话音 QPSK 32 基本时隙 12.2kbps (R= l/3 纠错 编码)
可视电 QPSK 8 基本时隙 64kbps ( R= l/3 纠错编 话 码)
144kbps QPSK 4 基本时隙 R= l/3纠错编码
384kbps QPSK 1 基本时隙 R二 1/3纠错编码
2Mbps 16QAM 1 2倍基本时隙 R二 1/2纠错编码
10Mbps 16QAM 1 9倍基本时隙 R= l/2纠错编码
20Mbps 16QAM 1 9倍基本时隙 无纠错编码
带宽二 20MHz; 码片速率 = 15.36Mcps
话音 QPSK 64 基本时隙 12.2kbps (R= l/3 纠错 编码)
可视电 QPSK 16 基本时隙 64kbps ( R= l/3 纠错编 话 码)
144kbps QPSK 8 基本时隙 R= l/3纠错编码
384kbps QPSK 2 基本时隙 R= l/3纠错编码
2Mbps 16QAM 1 基本时隙 R= 1/3纠错编码
10Mbps 16QAM 1 2倍基本时隙 R= 1/2纠错编码
100Mbps 64QAM 1 9倍基本时隙 无纠错编码
从上述表格所列参数可以看出, 当确定 N, 决定所述基本时隙长度、 合 并基本时隙成扩充时隙, 和在不同时隙内采用不同的调制方式、 纠错编码方 式与扩频系数, 可以提供不同传输速率及不同传输质量要求的业务的无线传 输; 在固定 N-10 的条件下, 通过采用调整调制方式, 调整扩频系数和组成 扩充时隙 (基本时隙的倍数) 的方法, 能同时满足系统带宽分别为 5MHz、 10MHz、 20MHz时,系统对一个时隙中一个码道传输至 100Mbps时各种传输 速率能力的要求。
显然, 本发明方法是对 TD-SCDMA系统的重大改进和提高, 在不增加 现有系统复杂性的前提下, 大大提高了系统的数据传输速率, 满足了三代后 移动多媒体的需求。
本发明的方法也可以在简单修改后, 使用到其它无线系统, 例如无线用 户环路及无线本地网 (WLAN)等等系统中。
Claims
1. 一种宽带 TDD系统使用高效高性能帧结构进行无线传输的方法, 其 将一个子帧划分为若干个基本时隙和若干个特殊时隙, 利用其中一个基本时 隙传输小区广播或寻呼信息,其余基本时隙传输业务信息,其特征在于:所述传 输业务信息的基本时隙可以部分合并为若干个扩充时隙来进行业务传输。
2. 根据权利要求 1所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于: 所述基本时隙或扩充时隙, 包括一个中间码部分, 该中间码部 分用于传输链路估值和同步保持的信息,,位于该中间码两边的各一个业务数 据区, 用于传输业务数据, 和一个间隔区, 用于基本时隙、 扩充时隙间的保 护。
3. 根据权利要求 2所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于: 所述基本时隙中的间隔区与所述扩充时隙中的间隔区具有相同 的长度。
4. 根据权利要求 1所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于: 所述若干个基本时隙中的每个基本时隙的长度是相同的。
5. 根据权利要求 1所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于: 所述若干个基本时隙中的每个基本时隙的长度是不相同的。
6. 根据权利要求 1所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于: 所述若干个特殊时隙, 包括下行导引时隙 DwFTS、 上、 下行保 护时隙 G和上行导引时隙 UpPTS。
7. 根据权利要求 1所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于进一步包括: 确定所述基本时隙的个数, 以决定所述基本时隙长 度、 合并基本时隙成扩充时隙, 和在不同基本时隙、 扩充时隙内采用不同的 调制方式、 纠错编码方式与扩频系数, 以提供不同传输速率及不同传输质量 要求的业务的无线传输。
8. 根据权利要求 7所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于: 在固定所述基本时隙个数的条件下, 对应某一调制方式, 调整 扩频系数和组成扩充时隙的基本时隙的倍数, 能同时满足系统带宽分别为
5MHz、 10MHz、 20MHz时,系统对 100Mbps内各种速率数据传输能力的要求。
9. 根据权利要求 1所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于: 所述基本时隙的个数为 11, 所述扩充时隙的长度为 2至 9倍基本 时隙的长度。
10. 根据权利要求 9所述的使用高效高性能帧结构进行无线传输的方法, 其特征在于:所述基本时隙的长度为 425 S,其中,中间码部分的长度为 66.67 s, 中间码两边各一个数据区的长度为 175 s, 间隔区的长度为 8.33 μ8 ; 所述 2倍基本时隙的扩充时隙的长度为 850 S, 其中, 中间码部分的长度为 133.34 S, 中间码两边各一个数据区的长度为 354.165 μ3 , 间隔区的长度 为 8.33μ3; 所述 9倍基本时隙的扩充时隙的长度为 3825 s , 其中, 中间码部 分的长度为 66.67 S , 中间码两边各一个数据区的长度为 1875 μ 3 , 间隔区 的长度为 8.33μ3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/886,193 US8018879B2 (en) | 2005-03-11 | 2005-12-29 | Wireless transmission method of using efficient high performance frame structure in wideband TDD system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510053780.7 | 2005-03-11 | ||
CN2005100537807A CN1832378B (zh) | 2005-03-11 | 2005-03-11 | 宽带tdd系统使用高效高性能帧结构进行无线传输的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006094442A1 true WO2006094442A1 (fr) | 2006-09-14 |
Family
ID=36952942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2005/002353 WO2006094442A1 (fr) | 2005-03-11 | 2005-12-29 | Procede de transmission sans fil a l’aide de structure de trame efficace et a haute performance dans un systeme tdd a large bande |
Country Status (3)
Country | Link |
---|---|
US (1) | US8018879B2 (zh) |
CN (1) | CN1832378B (zh) |
WO (1) | WO2006094442A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101150564B (zh) * | 2006-09-19 | 2011-11-02 | 华为技术有限公司 | 划分帧结构的方法及其实现的系统和一种域调度的方法 |
CN101162982B (zh) * | 2006-10-12 | 2010-05-12 | 中兴通讯股份有限公司 | 时分双工通信系统及其帧结构选择方法 |
CN101262274B (zh) * | 2007-03-05 | 2011-06-29 | 电信科学技术研究院 | 一种基站及其配置时分双工系统帧结构的方法 |
EP2198550B1 (en) | 2007-09-14 | 2012-07-25 | Telefonaktiebolaget LM Ericsson (publ) | Improved use of subframes in a cellular communications system |
CN101400157B (zh) | 2007-09-29 | 2010-12-01 | 中国移动通信集团公司 | 一种通信方法和装置 |
CN101409929B (zh) * | 2007-10-11 | 2011-04-27 | 中国移动通信集团公司 | 一种通信方法和装置 |
CN101426282B (zh) * | 2007-10-29 | 2010-11-24 | 中国移动通信集团公司 | 一种下行承载数据的方法及装置 |
CN101431366B (zh) * | 2007-11-09 | 2013-03-27 | 电信科学技术研究院 | 时分双工系统数据传输方法 |
CN101453253B (zh) * | 2007-11-29 | 2013-02-27 | 中兴通讯股份有限公司 | Td-scdma移动终端射频控制装置及其方法 |
CN101541080B (zh) * | 2008-03-20 | 2012-01-11 | 中兴通讯股份有限公司 | 一种时分双工系统中寻呼信号发送方法 |
US9491689B2 (en) * | 2008-06-03 | 2016-11-08 | Nokia Corporation | Cell search for flexible spectrum use |
EP2286612A4 (en) * | 2008-06-04 | 2016-12-28 | Nokia Technologies Oy | DELETION OF INTERFERENCES ON COMMON CHANNELS IN NON-COORDINATED NETWORK DEPLOYMENTS FOR FLEXIBLE SPECTRUM USE |
KR101470654B1 (ko) | 2009-01-05 | 2014-12-09 | 엘지전자 주식회사 | Tdd에 기반한 무선통신 시스템에서 데이터 중계 방법 |
CN101998678A (zh) * | 2009-08-18 | 2011-03-30 | 联芯科技有限公司 | 无线监控系统及其通信方法 |
WO2011145344A1 (ja) * | 2010-05-18 | 2011-11-24 | 三洋電機株式会社 | 基地局装置 |
CN102791005A (zh) * | 2011-05-19 | 2012-11-21 | 福建联拓科技有限公司 | 一种tdma系统中数据传输方法及设备 |
CN105744635B (zh) * | 2014-12-12 | 2019-01-18 | 北京永安信通科技股份有限公司 | 基于后向阀门的数据包传输调度方法和装置 |
JP6759695B2 (ja) * | 2016-05-11 | 2020-09-23 | ソニー株式会社 | 端末装置、基地局装置、通信方法、及びプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1229547A (zh) * | 1996-09-06 | 1999-09-22 | 诺基亚电信公司 | 数据传输方法和无线系统 |
KR20020052561A (ko) * | 2000-12-26 | 2002-07-04 | 구자홍 | 시분할 듀플렉스 모드에서의 위치 측정 방법 |
CN1538652A (zh) * | 2003-04-15 | 2004-10-20 | �����ƶ�ͨ���豸����˾ | 多时隙cdma无线通信系统中提高传输速率的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5732076A (en) * | 1995-10-26 | 1998-03-24 | Omnipoint Corporation | Coexisting communication systems |
US6459700B1 (en) * | 1997-06-23 | 2002-10-01 | Compaq Computer Corporation | Multiple segment network device configured for a stacked arrangement |
US6643469B1 (en) * | 1997-11-18 | 2003-11-04 | International Business Machines Corp. | Method for improved wireless optical communication and frames for use in a wireless optical communication system |
KR100367849B1 (ko) | 2000-07-07 | 2003-01-10 | 주식회사 디피아이 | 고내식성 아크릴 양이온 전착도료 조성물 |
CN1203718C (zh) * | 2000-12-04 | 2005-05-25 | 三菱电机株式会社 | 无线通信方法及装置 |
CN100531458C (zh) * | 2002-05-13 | 2009-08-19 | 三星电子株式会社 | 执行无线接入技术间测量的方法 |
US7633927B2 (en) * | 2003-01-31 | 2009-12-15 | Nokia Corporation | System and method for extending neighboring cell search window |
US7643424B2 (en) * | 2003-03-22 | 2010-01-05 | At&T Intellectual Property L, L.P. | Ethernet architecture with data packet encapsulation |
-
2005
- 2005-03-11 CN CN2005100537807A patent/CN1832378B/zh not_active Expired - Fee Related
- 2005-12-29 US US11/886,193 patent/US8018879B2/en not_active Expired - Fee Related
- 2005-12-29 WO PCT/CN2005/002353 patent/WO2006094442A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1229547A (zh) * | 1996-09-06 | 1999-09-22 | 诺基亚电信公司 | 数据传输方法和无线系统 |
KR20020052561A (ko) * | 2000-12-26 | 2002-07-04 | 구자홍 | 시분할 듀플렉스 모드에서의 위치 측정 방법 |
CN1538652A (zh) * | 2003-04-15 | 2004-10-20 | �����ƶ�ͨ���豸����˾ | 多时隙cdma无线通信系统中提高传输速率的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20080240002A1 (en) | 2008-10-02 |
CN1832378A (zh) | 2006-09-13 |
CN1832378B (zh) | 2011-05-11 |
US8018879B2 (en) | 2011-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006094442A1 (fr) | Procede de transmission sans fil a l’aide de structure de trame efficace et a haute performance dans un systeme tdd a large bande | |
CN101197655B (zh) | 时分双工结合频分双工的通信方法和通信设备 | |
US7190683B2 (en) | Two-dimensional channel bonding in a hybrid CDMA/FDMA fixed wireless access system to provide finely variable rate channels | |
RU2513705C2 (ru) | Способ и устройство для беспроводной связи с несколькими несущими | |
US6650630B1 (en) | Resource management and traffic control in time-division-duplex communication systems | |
US7391751B2 (en) | Cellular communication method based on enhanced hybrid duplexing technology | |
AU728098B2 (en) | Time division multiple access radio systems | |
EP1889415B1 (en) | A method of selecting suitable frequency bands for data transmission between a network node and a user equipment within a mobile communications network | |
WO2008030943A2 (en) | Partially overlapping frequency bands in a hybrid frequency reuse plan | |
KR20130041390A (ko) | 통신 시스템에서 tdd 동작을 위한 방법, 기지국, 및 이동국 | |
US9294145B2 (en) | Methods and arrangements for very large bandwidth operations | |
CN112134669A (zh) | 用于传送正交频分复用(ofdm)帧格式的系统和方法 | |
JP2003037869A (ja) | 無線通信装置、特にumtsまたは他の第3世代タイプのものおよび無線通信の方法 | |
JP5388269B2 (ja) | 移動通信システムにおける通信装置 | |
CN101562473B (zh) | 基于频域融合的建立连接的方法以及收发装置 | |
WO2004093361A1 (fr) | Procede permettant d'accelerer la transmission dans un systeme de communications sans fil amrc multi-fentes | |
JPWO2008126604A1 (ja) | ユーザ装置、基地局装置、移動通信システム及び通信制御方法 | |
Prakash et al. | WiMAX technology and its applications | |
Takaharu | LTE and LTE-advanced: Radio technology aspects for mobile communications | |
CN101237675B (zh) | 用于时分双工系统的基站向终端发送反馈信号的方法 | |
Vieira et al. | GSM evolution importance in re-farming 900 MHz band | |
CN101365152B (zh) | Td-scdma和wimax融合的基站/终端的发送/接收方法和装置 | |
Kammerlander | Benefits and implementation of TD-SCDMA | |
WO2002069533A2 (en) | Two-dimensional channel bonding in a hybrid cdma/fdma fixed wireless access system to provide finely variable rate channels | |
US12069583B2 (en) | Systems and methods for high power uplink transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05824215 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 5824215 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11886193 Country of ref document: US |