WO2006093202A1 - Phloroacylphenone glycoside, process for production of the same, antiallergic agent and antioxidant - Google Patents

Phloroacylphenone glycoside, process for production of the same, antiallergic agent and antioxidant Download PDF

Info

Publication number
WO2006093202A1
WO2006093202A1 PCT/JP2006/303901 JP2006303901W WO2006093202A1 WO 2006093202 A1 WO2006093202 A1 WO 2006093202A1 JP 2006303901 W JP2006303901 W JP 2006303901W WO 2006093202 A1 WO2006093202 A1 WO 2006093202A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycoside
extract
present
fluorosilphenone
fluorosilanone
Prior art date
Application number
PCT/JP2006/303901
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhisa Yasui
Syuichi Segawa
Toshio Kurihara
Original Assignee
Sapporo Breweries Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Breweries Limited filed Critical Sapporo Breweries Limited
Publication of WO2006093202A1 publication Critical patent/WO2006093202A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/602Glycosides, e.g. rutin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers

Definitions

  • Fluorosylphenone glycoside process for producing the same, antiallergic agent and antioxidant
  • the present invention relates to a novel fluorosilanphenone glycoside, a method for producing the same, an antiallergic agent and an antioxidant.
  • Hops are the main raw material that gives the refreshing bitterness and aroma of beer.
  • many secondary metabolites are secreted in the Lubrin glandular hair contained in the cones, and it has become clear that these secondary metabolites greatly contribute to the bitterness and aroma of beer.
  • these secondary metabolites have been shown to have pharmacological effects. For example, it has been shown that humulone, one of the bitter substances of beer, is effective against osteoporosis (see Non-Patent Document 1).
  • xanthohumol and 8-prenylnaringenin which are hop prenylflavonoids, have been shown to have anticancer activity (see, for example, Non-Patent Documents 2 and 3).
  • Patent Document 1 Japanese Patent No. 3477628
  • Non-patent literature l Biosci. Biotech. Biochem., 61 (1), 158, 1997
  • Non-Patent Document 2 Foodand Chemical Toxicology 37, 271-285, 1999
  • Non-Patent Document 3 European Journal of Cell Biology 80, 580-585, 2001 Disclosure of the Invention
  • the mechanism of allergic reaction in humans is generally as follows.
  • foreign substances bacteria, pollen, mites, etc .: antigens, allergens
  • biological components antibodies, lymphocytes, etc.
  • Such a mechanism for protecting the body is generally called an immune function.
  • iS Because its immune function is sensitive to foreign substances, it may be harmful to the body and cause various diseases. This form of damaging hypersensitivity to the body due to immune function is called allergy. Allergies are categorized as immediate allergies (or i-m allergies) and delayed allergies (or type IV allergies)! RU
  • IgE immunoglobulin E
  • mast cells and basophils are cells having granules containing histamine and serotonin and some pharmacologically active amines.
  • the former is present around blood vessels and connective tissue, and the latter is present in blood.
  • a receptor that binds IgE antibody exists on the cell membrane of these cells. This receptor has the property of binding strongly to IgE antibodies. For this reason, most of the produced IgE antibody is retained in a state bound to the receptor.
  • many active substances such as histamine and serotonin described above are released along with degranulation. As a result, various allergic symptoms occur.
  • symptoms such as redness or blistering rash (urticaria) accompanied by itching on the skin, inflammation of the nose and eyes, and nasal discharge and tear secretion increase, or trachea Symptoms (such as bronchial asthma) that can cause dyspnea and dyspnea are classified as this immediate allergic disease.
  • urticaria urticaria
  • trachea Symptoms (such as bronchial asthma) that can cause dyspnea and dyspnea are classified as this immediate allergic disease.
  • an object of the present invention is to provide a novel substance that is sufficiently excellent in antiallergic action and that is mild to the human body and skin, with sufficiently suppressed side effects.
  • the present inventors first used a food ingredient such as beer as a food ingredient, and extracted components from plant tissues such as ruhop are mast cells and basophils such as histamine and serotone. We thought that if the release of granules containing pharmacologically active amines could be suppressed, it would lead to the prevention and treatment of immediate allergic symptoms such as hay fever.
  • the present inventors succeeded in isolating and purifying a specific novel compound through an extraction process using hops as raw materials in various screening processes of plant tissues. And when the utility of the compound was confirmed by an assay, it was found that it was a substance that could achieve the above object, and the present invention was completed.
  • the present invention provides a fluorosilanone non-glycoside represented by the following general formula (1).
  • R 1 represents an isopropyl group, an isobutyl group or a sec-butyl group.
  • the fluoracylphenone glycoside of the present invention is derived from a plant tissue, and is obtained by separating the cold extract strength of a plant tissue.
  • cold water means water below room temperature.
  • the cold water extract may be passed through a column of a high-speed liquid chromatograph.
  • the adsorbed component obtained by adsorbing to the synthetic adsorbent from the cold water extract of the plant tissue is eluted in methanol or a mixed solvent of ethanol and water, and the mixed solvent is passed through the above-mentioned high performance liquid chromatograph column. Liquid is preferable. In this way, the fluorosilphenone glycoside of the present invention can be more reliably separated.
  • a hop tissue may be mentioned as a plant tissue. Use hops as raw material Therefore, the fluorosilphenone glycoside of the present invention can be obtained more efficiently and reliably.
  • the hop tissue used for extraction may be hop stems, spikelets and Z or leaves. Further, a residue obtained by extracting a vent hop or carbonic acid gas (supercritical extraction) obtained at the time of processing the concentrated hop pellet can also be used.
  • the inventors of the present invention conducted an in vitro study using a human basophil cell line (KU812) to inhibit the antihistamine action of the above-mentioned fluorosilan phenone glycoside by 50%. It was confirmed that the concentration (IC50) was 290 g / mL. This suggests that the fluorosylphenone glycoside of the present invention has an antiallergic action. Moreover, this fluoroacylphenone glycoside is expected to exhibit an antioxidant action and an inhibitory action on tyrosinase activity from its structure. From the above, it is useful to contain this fluorosilphenone glycoside in foods, drinks, cosmetics or pharmaceuticals.
  • FIG. 1 is an HPLC chromatogram of polyphenol containing the fluorosilanone non-glycoside of the present invention.
  • FIG. 2 is a 1 H-NMR ⁇ vector of the fluorosilanone glycoside of the present invention.
  • FIG. 3 is a 1 H-NMR ⁇ vector of the fluorosilanone glycoside of the present invention.
  • FIG. 4 is a 13 C-NMR spectrum of the fluorosilanone glycoside of the present invention.
  • FIG. 5 is a 1 H—H—COZY spectrum of the fluorosilanone glycoside of the present invention.
  • FIG. 6 is a mass spectrum of the fluorosilanone glycoside of the present invention.
  • FIG. 7 is a mass spectrum of sugars and known sugars obtained from the floracylphenone glycosides of the present invention.
  • FIG. 8 is a UV absorption spectrum of the fluorosilanone glycoside of the present invention.
  • FIG. 9 is a 1 H-NMR ⁇ vector of the fluorosilanone glycoside of the present invention.
  • FIG. 10 is a 13 C-NMR spectrum of the fluorosilanone glycoside of the present invention.
  • FIG. 11 is a 1 H— 1 H—COZY spectrum of the fluorosilanone glycoside of the present invention.
  • FIG. 12 is a 1 H-NMR vector of a fluorosilanone glycoside of the present invention.
  • FIG. 13 is a 1 H—H—COZY spectrum of the fluorosilanone glycoside of the present invention.
  • FIG. 14 is a mass spectrum of a fluorosilanone glycoside of the present invention.
  • FIG. 15 is a mass spectrum of the fluorosilanone non-glycoside of the present invention.
  • the fluorosilphenone glycoside of the present invention is a novel compound represented by the above general formula (1) and has a glycoside structure.
  • R 1 represents an isopropyl group, an isobutyl group or a se c butyl group. That is, the novel fluorosylphenone glycoside of the present invention comprises three types of compounds represented by the following formula (2), (3) or (4) (each represented by fluoroisobutyrophenone 2-0- ⁇ - D-Gnolecopyranoside, 1-Methylolebutyrophenone 2 -—- ⁇ -D Darcopyranoside, 2-Iso-valerophenone 2 -—- ⁇ -D Darcopyranoside).
  • the florosylphenone glycoside of the present invention is derived from a plant and obtained by separation from a cold water extract of a plant tissue.
  • a hop cocoon flower containing a large amount of glandular tissue such as a rubulin gland which is preferable to a tissue such as a hop stem, cocoon flower and leaf containing a relatively large amount of the above-mentioned fluorosilenone glycoside. It is more preferable that it is the structure of this part.
  • soot hops obtained at the time of processing into concentrated hop pellets and straw after hop extract extraction by carbon dioxide extraction are also useful.
  • hops are brewing hops. preferable.
  • a cold water extract of plant tissue can be obtained by a conventional method. For example, when a hop tissue is used as the plant tissue, pellets that have the tissue strength and distilled water are placed in a container and allowed to stand for a predetermined time with proper stirring. The liquid thus obtained after standing can be used as it is as a cold water extract of plant tissue. Alternatively, for example, a supernatant obtained after further centrifuging the liquid obtained after standing (hereinafter referred to as “centrifugal supernatant”) can be used as a cold water extract of plant tissue. It is. Furthermore, the liquid obtained after standing or the supernatant obtained by removing water from the centrifugal supernatant can also be used as a cold water extract.
  • the temperature of water when obtaining the cold water extract of the plant tissue may be a temperature that is not more than room temperature and does not freeze the water. Specifically, the temperature is preferably 0 to 50 ° C, more preferably 5 to 50 ° C, and further preferably 5 to 30 ° C. If the temperature of the water is lower than this temperature range, the extraction efficiency tends to decrease because the water freezes. When the temperature of the water is higher than this temperature range, components other than the fluorosilphenone glycosides are eluted, and therefore the treatment for separating the fluorosilphenone glycosides tends to be complicated.
  • the method for separating fluorosilanone glycosides of this embodiment is a step of contacting a cold extract of plant tissue with hexane to obtain a first extract on the water side (hereinafter referred to as “first step”).
  • second step Contacting the first extract with ethyl acetate to obtain a second extract on the water side (hereinafter referred to as “second step”), contacting the second extract with butanol, A step of obtaining a third extract in the butanol (hereinafter referred to as “third step”), a step of passing the third extract through a column packed with a synthetic adsorbent and adsorbing it onto the synthetic adsorbent (hereinafter referred to as “the third adsorbent”).
  • fourth step a step of eluting the components adsorbed on the synthetic adsorbent into a mixed solvent of water and methanol (hereinafter referred to as “fifth step”), and a mixture containing the eluted adsorbed components.
  • a column packed with a predetermined adsorbent It was passed through to the column of high performance liquid Kuromatodara off to obtain, comprising the step of isolating the desired fluorosilicone ⁇ Sylph enone glycoside (hereinafter referred to as "sixth step”.).
  • a cold water extract of plant tissue such as hops is contacted with hexane.
  • components of plant tissues other than the fluorosilphenone glycoside of the present invention can be extracted into hexane and selectively removed from the cold water extract. Therefore, it is possible to obtain a first extract in which the content ratio of the fluorosilphenone glycoside is further increased from the initial level.
  • a method for contacting the cold extract of plant tissue with hexane for example, the above-mentioned centrifugal supernatant and hexane are placed in a separatory funnel, and then the separatory funnel is shaken to remove the cold water extract.
  • a method of contacting with xanthan can be mentioned.
  • the separating funnel is allowed to stand after contacting the cold water extract with hexane, the liquid in the separating funnel is separated into water and hexane.
  • the fluorosilphenone glycoside of the present invention is contained in water. Become.
  • the water collected from the separatory funnel is used as the first extract as it is as the first extract. Use it.
  • the first extract obtained in the first step is contacted with ethyl acetate.
  • plant tissue components other than the fluorosilacinone glycoside of the present invention can be extracted into ethyl acetate and further selectively removed from the first extract. Therefore, it is possible to obtain a second extract in which the content ratio of phenacylphenone glycoside is further increased than that of the first extract.
  • the method of contacting the first extract with ethyl acetate include, for example, putting the first extract and ethyl acetate into a separating funnel, shaking the separating funnel, and then removing the first extract with acetic acid. And a method of contacting with ethyl.
  • the separatory funnel When the separatory funnel is allowed to stand after contacting the first extract with ethyl acetate, the liquid in the separatory funnel is separated into water and ethyl acetate.
  • the fluorosilenone glycoside of the present invention is in water. Will be included.
  • the water collected from the separatory funnel is used as the second extract as it is as the second extract. Use it.
  • the second extract obtained in the second step is contacted with butanol.
  • the fluorosylphenone glycoside of the present invention is selectively incorporated into butanol.
  • An extracted third extract can be obtained.
  • the separatory port is shaken to remove the second extract from butanol. The method of making it contact with is mentioned.
  • the separatory funnel is allowed to stand after the second extract is brought into contact with butanol, the liquid in the separatory funnel is separated into water and butanol, but the fluorosilphenone glycoside of the present invention is butanol. Will be included.
  • This third step is preferably repeated about 2 to 4 times, in order to obtain more fluorosilanone glycosides.
  • the butanol collected from the separatory funnel is a third extract obtained by removing a portion of butanol that may be used as the third extract as it is in the fourth step by evaporation or the like and concentrating it. You may use as a thing.
  • the third extract containing the fluorosylphenone glycoside obtained in the third step is passed through the column packed with the synthetic adsorbent.
  • the component containing the fluorosilphenone glycoside in the third extract is selectively adsorbed on the synthetic adsorbent as an adsorbing component.
  • the synthetic adsorbent include Amberlite XAD-4, XAD-7, and XAD-16 (manufactured by Organone, trade name).
  • other adsorbents such as activated carbon and polypyrrole pyrrolidone (PVPP; polyphenol adsorbent) can be used as the synthetic adsorbent.
  • PVPP polypyrrole pyrrolidone
  • XAD-4 is preferably used.
  • the synthetic adsorbent adsorbed by the adsorbing component is brought into contact with a mixed solvent of water and methanol (methanol aqueous solution) to elute the adsorbing component containing the fluorosilphenone glycoside in the mixed solvent.
  • a mixed solvent of water and methanol methanol aqueous solution
  • the mixing ratio of methanol in the mixed solvent is not particularly limited, but is 40 to 60% by mass with respect to the total amount of the mixed solvent from the viewpoint of containing the fluorosilphenone glycoside at a high concentration in the mixed solvent. And preferred.
  • the synthetic adsorbent with the adsorbed component adsorbed is washed with water or a mixed solvent having a smaller proportion of methanol than the mixed solvent used when eluting the adsorbed component. preferable.
  • the adsorbed components other than the fluorosilenone glycosides can be synthesized. It can be selectively removed to some extent from the dressing.
  • the column of the high-performance liquid chromatograph (hereinafter referred to as “HPLC”) having a column filled with the above-mentioned mixed solvent containing the adsorbed component eluted in the fifth step and a predetermined adsorbent. Then, separation and purification are performed to isolate the desired fluorosilanphenone glycoside.
  • the isolated fluorosilanone non-glycoside may be appropriately collected according to the retention time.
  • a porous carrier such as silica gel whose surface is coated with hydrocarbon is preferably used.
  • the hydrocarbon preferably has 8 to 18 carbon atoms.
  • the mixed solvent containing the adsorbed component eluted in the fifth step may pass through any one of these columns, or may pass through two or more columns sequentially.
  • Examples of the eluent include a mixed solution of water and an organic solvent, such as a mixed solution of water and methanol, and a mixed solution of water and acetonitrile.
  • the mixing ratio of each component in the mixed liquid as the eluent is not particularly limited. However, in order to efficiently collect the fluorosilphenone glycoside of the present invention with high purity, water is obtained based on a linear gradient elution method in which the mixing ratio between the two liquids is changed at a constant rate. It is preferable to change the blending ratio of the organic solvent.
  • each component separated by HPLC is monitored by an analytical method such as an ultraviolet absorption spectrum analysis method. However, it is preferable to take out the fraction.
  • the fluorosilan funon glycoside of the present invention is used for various allergic diseases such as the above-mentioned immediate allergic diseases and chronic allergic inflammations (for example, allergic rhinitis, hay fever, atopic skin). Expected to be used for prevention of symptoms such as inflammation) or relief of symptoms. That is, this novel fluorosilanone glycoside exhibits a function as an antiallergic agent.
  • the fluorosilenone glycoside of the present invention has an antiallergic action, in particular, histamine release suppression. Indicates production. For this reason, this fluorosilanone non-glycoside can be used particularly for the purpose of preventing or alleviating symptoms of allergic rhinitis, atopic dermatitis and hay fever.
  • this fluorosilenone glycoside is added to a pharmaceutical product, it is particularly useful to add it to a preventive or therapeutic agent for allergic rhinitis, atopic dermatitis and hay fever.
  • the fluorosylphenone glycoside is used for the purpose of preventing allergic rhinitis, atopic dermatitis and hay fever, and alleviating symptoms, and for specific health foods and drinks, special nutrition foods and drinks, nutritional supplements. It can be added to food additives such as food and drink, health food and drink, functional food and drink, and sick food and drink.
  • the structure of the florosylphenone glycoside of the present invention is suggested to exhibit an antioxidant action and a tyrosinase activity inhibitory action. Therefore, when it is added to cosmetics, it can be expected to be added to skin care products, foundations, makeup products, and the like.
  • the first step, the second step, and the third step are provided in this order before the fourth step.
  • the fluorosilenone glycoside can be isolated even if all of the first to fifth steps are omitted.
  • the cold water extract of the plant tissue is directly passed through the HPLC column including the column filled with the predetermined adsorbent. do it.
  • the cold water extract of the plant tissue may be directly passed through the column filled with the synthetic adsorbent.
  • the first step and the second step are provided in this order before the third step.
  • either or both of the first step and the second step may be omitted, or these steps may be provided in reverse.
  • a cold water extract of plant tissue is added to an organic solvent other than hexane and ethyl acetate before the third step. May be contacted.
  • butanol used in the third step, other alcohol having 4 to 5 carbon atoms may be used.
  • butanol is preferred in order to contain a fluorosilphenone glycoside with higher selectivity.
  • Hop pellets (Czech zazat seeds, type 90) lkg was placed in 10 L of distilled water and stirred occasionally at 5 ° C to allow the pellets to stand. After centrifugation at 7000 rpm for 15 minutes, the supernatant (centrifuge supernatant) was recovered. The supernatant was further concentrated to obtain 170 g of concentrate (cold water extract). The concentrate was transferred to a separatory funnel, and hexane was added to the separatory funnel, followed by shaking and standing to remove 2.4 g of the hexane phase from the separatory funnel (first step).
  • the column was washed by passing a% methanol aqueous solution (20% MeOHZH 2 O). Then wash
  • the aqueous solution containing the fluorosilenone glycoside is provided in the HPLC.
  • the solution was passed through the column, and each component contained in the aqueous solution was separated (step 6).
  • Two types of columns (first column and second column) were used.
  • D-ODS-5 manufactured by Sakai YMC Co., Ltd., inner diameter 20 mm x length 250 mm, product name
  • the flow rate was 6 mLZ.
  • the eluent (mobile phase) is a linear gradient that uses a mixture of methanol and water, first maintained at 10% methanol for 10 minutes, then changed from 10% methanol to 60% methanol in 160 minutes. . Thus, each component in the aqueous solution was roughly divided. While monitoring with a UV detector (wavelength 290 nm), 240 mg of a solution mainly containing a fluorosilanone glycoside was collected.
  • Glycoside components in type 90 hop pellets were identified and determined.
  • a cold water extract of type 90 hop pellets was first analyzed by HPLC.
  • Symmetry C18 manufactured by Waters, inner diameter 2. Imm X length 150 mm, trade name
  • the mobile phase consists of 0.05% TFA ZH O in one solution, acetonitrile in 2 solutions, and a 0.05% TFA / HO ratio of 10% to 50%.
  • the linear gradient was changed to 16% in 16 minutes. Detection was performed with a UV detector (290 nm).
  • Figure 1 shows the HPLC analysis results. From Fig.
  • Fig. 6 (a) shows the result of positive scan (mZzl20 to m Zz650, fixed voltage: + 3. OkV, cone voltage: + 25V), and negative scan (m / zl20 to m / z650, fixed voltage: — 3. OkV, cone voltage: (25V)
  • Fig. 6 (b) shows the results of the molecular ion and a small signal of mZzl62 was detected, which revealed that the glycoside is a hexose.
  • LCZMS analysis of components corresponding to peak E and peak F was performed.
  • Fig. 14 shows the results of LCZMS analysis performed under the same conditions as those for obtaining the mass spectrum of Fig. 6 (a).
  • Fig. 15 shows the same conditions as those for obtaining the mass spectrum of Fig. 6 (b).
  • the results of L CZMS analysis performed in the above are shown. 14 and 15, (a) is the mass spectrum of the component corresponding to the peak E and (b) is the component corresponding to the peak F, respectively. From this result, it was found that the components corresponding to peak E and peak F were!, And the deviation was 14 larger than the component corresponding to peak C. This result suggests that the component corresponding to peak E and peak F has the same basic skeleton as the component corresponding to peak C, and is different only in the side chain structure.
  • Human basophil cell line (KU812) was cultured in RPMI1640 medium (Gibco) containing fetal calf serum that had been inactivated for 10 minutes at 56 ° C at 37 ° C in a 5% CO atmosphere. Cultured.
  • the antiallergic action is sufficiently excellent and the side effects are sufficiently suppressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)
  • Saccharide Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

A phloroacyphenone glycoside represented by the general formula (1): wherein R1 represents an isopropyl, isobutyl or sec-butyl group.

Description

明 細 書  Specification
フロロァシルフヱノン配糖体、その製造方法、抗アレルギー剤及び抗酸化 剤  Fluorosylphenone glycoside, process for producing the same, antiallergic agent and antioxidant
技術分野  Technical field
[0001] 本発明は、新規なフロロァシルフエノン配糖体、その製造方法、抗アレルギー剤及 び抗酸化剤に関するものである。  [0001] The present invention relates to a novel fluorosilanphenone glycoside, a method for producing the same, an antiallergic agent and an antioxidant.
背景技術  Background art
[0002] ホップはビールの爽快な苦味と香りを与える主要な原料である。このホップにおい て球果に含まれるルブリン腺毛内で二次代謝産物が多く分泌され、これら二次代謝 産物がビールの苦味や香りに大きく寄与していることが明らかになつてきた。更に近 年では、これらの二次代謝産物が薬理作用を有していることが示されている。例えば 、ビールの苦味物質の素の 1つであるフムロンには骨粗鬆症に対して効果があること が示されている(非特許文献 1参照)。また、ホップのプレニルフラボノイドであるキサ ントフモールや 8—プレニルナリンゲニン等には、抗癌活性があることが示されている (例えば非特許文献 2及び 3参照)。  [0002] Hops are the main raw material that gives the refreshing bitterness and aroma of beer. In this hop, many secondary metabolites are secreted in the Lubrin glandular hair contained in the cones, and it has become clear that these secondary metabolites greatly contribute to the bitterness and aroma of beer. More recently, these secondary metabolites have been shown to have pharmacological effects. For example, it has been shown that humulone, one of the bitter substances of beer, is effective against osteoporosis (see Non-Patent Document 1). In addition, xanthohumol and 8-prenylnaringenin, which are hop prenylflavonoids, have been shown to have anticancer activity (see, for example, Non-Patent Documents 2 and 3).
[0003] また、抗酸化剤として有効な成分が、ホップ苞の水溶性画分をゲル型合成吸着剤 に吸着させることで得られることが報告されて 、る (特許文献 1参照)。  [0003] In addition, it has been reported that an effective component as an antioxidant can be obtained by adsorbing a water-soluble fraction of hop koji onto a gel-type synthetic adsorbent (see Patent Document 1).
特許文献 1:特許第 3477628号公報  Patent Document 1: Japanese Patent No. 3477628
非特許文献 l : Biosci. Biotech. Biochem. , 61 (1) , 158, 1997  Non-patent literature l: Biosci. Biotech. Biochem., 61 (1), 158, 1997
非特許文献 2 : Foodand Chemical Toxicology37, 271 - 285, 1999 非特許文献 3 : EuropeanJournal of Cell Biology 80, 580- 585, 2001 発明の開示  Non-Patent Document 2: Foodand Chemical Toxicology 37, 271-285, 1999 Non-Patent Document 3: European Journal of Cell Biology 80, 580-585, 2001 Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、ヒトにおけるアレルギー反応の機構は、概して以下のとおりである。すなわ ち、体内に侵入した異物 (細菌、花粉、ダニなど:抗原、アレルゲン)を排除するため に、それに対抗する生体成分 (抗体、リンパ球など)が産生されて、体を守るように働 ぐというものである。このように体を守る機構は一般に免疫機能とも呼ばれる。ところ iS その免疫機能が異物に対して過敏に働くため、却って身体に有害となり、種々の 病気の原因となってしまう場合がある。この免疫機能による身体への傷害的な過敏症 状はアレルギーと呼ばれている。アレルギーは、即時型アレルギー(または i〜m型ァ レルギ一)と遅延型アレルギー(または IV型アレルギー)とに分類されて!、る。 [0004] By the way, the mechanism of allergic reaction in humans is generally as follows. In other words, in order to eliminate foreign substances (bacteria, pollen, mites, etc .: antigens, allergens) that have entered the body, biological components (antibodies, lymphocytes, etc.) are produced against them to protect the body. It is a thing. Such a mechanism for protecting the body is generally called an immune function. By the way iS Because its immune function is sensitive to foreign substances, it may be harmful to the body and cause various diseases. This form of damaging hypersensitivity to the body due to immune function is called allergy. Allergies are categorized as immediate allergies (or i-m allergies) and delayed allergies (or type IV allergies)! RU
[0005] アレルギー反応の中で発症頻度がより高いのは即時型であり、その反応機構は主 として以下のように考えられている。まず体内にアレルゲンが侵入すると、免疫グロブ リン E (igE)抗体が産生する。この IgE抗体は肥満細胞及び好塩基球に対して強 、 エフェクター作用を有する。肥満細胞及び好塩基球は、ヒスタミンゃセロトニンといつ た薬理的活性アミンを含む顆粒を有する細胞である。前者は血管周辺や結合組織 に存在し、後者は血液中に存在している。これらの細胞の細胞膜上には IgE抗体を 結合するレセプターが存在して 、る。このレセプターは IgE抗体と強く結合する性質 を有している。そのため、産生した IgE抗体の多くはレセプターに結合した状態で保 持されている。そして、そのような状態にある IgE抗体に対し再び同種のアレルゲンが 結合すると、脱顆粒を伴い前述のヒスタミンゃセロトニンなどの多数の活性物質がそ れらの細胞力 放出される。その結果、種々のアレルギー症状が発生する。  [0005] Among allergic reactions, the onset type has a higher incidence, and the reaction mechanism is mainly considered as follows. When allergens enter the body, immunoglobulin E (igE) antibodies are produced. This IgE antibody has a strong effector effect on mast cells and basophils. Mast cells and basophils are cells having granules containing histamine and serotonin and some pharmacologically active amines. The former is present around blood vessels and connective tissue, and the latter is present in blood. A receptor that binds IgE antibody exists on the cell membrane of these cells. This receptor has the property of binding strongly to IgE antibodies. For this reason, most of the produced IgE antibody is retained in a state bound to the receptor. When the same allergen binds to the IgE antibody in such a state again, many active substances such as histamine and serotonin described above are released along with degranulation. As a result, various allergic symptoms occur.
[0006] 例えば、皮膚にかゆみを伴う発赤やふくれあがった発疹 (蓴麻疹)ができる症状、鼻 や目が炎症を起こしてかゆくなり鼻汁や涙の分泌が盛んになるといった症状、あるい は気管がつまったりして呼吸困難の発作を起こしたりする症状 (気管支喘息)などは、 この即時型のアレルギー疾患として分類されて 、る。  [0006] For example, symptoms such as redness or blistering rash (urticaria) accompanied by itching on the skin, inflammation of the nose and eyes, and nasal discharge and tear secretion increase, or trachea Symptoms (such as bronchial asthma) that can cause dyspnea and dyspnea are classified as this immediate allergic disease.
[0007] 従来使用されている抗アレルギー剤の多くは、作用点が比較的明らかな即時型ァ レルギ一反応によって引き起こされる上述の疾患に対する薬剤である。そのような薬 剤として、例えば平滑筋を弛緩させる鎮痙薬や毛細血管の透過性の亢進を抑制する 交感神経興奮薬、さらには抗ヒスタミン薬などが挙げられる。しかしながら、これらはい ずれも対症治療用の薬剤であり、し力も、そのほとんどが合成医薬品である。そのた め、これらの薬剤は、服用により眠気を催したり、血圧が高くなつたりする等の副作用 の点で問題がある。  [0007] Many of the conventionally used antiallergic agents are drugs against the above-mentioned diseases caused by an immediate allergic reaction whose action point is relatively clear. Examples of such drugs include antispasmodics that relax smooth muscles, sympathomimetic drugs that suppress increased capillary permeability, and antihistamines. However, these are all symptomatic drugs, and most of them are synthetic drugs. Therefore, these drugs have problems in terms of side effects such as drowsiness and high blood pressure when taken.
[0008] そこで本発明は抗アレルギー作用に十分優れ、しかも副作用が十分に抑制された 人体や皮膚に緩和である新規な物質を提供することを目的とする。 課題を解決するための手段 [0008] Accordingly, an object of the present invention is to provide a novel substance that is sufficiently excellent in antiallergic action and that is mild to the human body and skin, with sufficiently suppressed side effects. Means for solving the problem
[0009] 本発明者らは、まず、食品成分としてビール等の原料に用いられて 、るホップなど 植物の組織からの抽出成分が、肥満細胞及び好塩基球力 のヒスタミン及びセロト- ン等の薬理的活性アミンを含む顆粒の放出を抑制できれば、花粉症等の即時型ァレ ルギー症状に対する予防及び治療に繋がると考えた。次に、本発明者らは、植物の 組織を種々スクリーニングする過程において、ホップを原料とする抽出処理を経て特 定の新規な化合物を単離'精製することに成功した。そして、その化合物の効用をァ ッセィ試験で確認したところ、上記目的を達成し得る物質であることを見出し、本発明 を完成するに至った。  [0009] The present inventors first used a food ingredient such as beer as a food ingredient, and extracted components from plant tissues such as ruhop are mast cells and basophils such as histamine and serotone. We thought that if the release of granules containing pharmacologically active amines could be suppressed, it would lead to the prevention and treatment of immediate allergic symptoms such as hay fever. Next, the present inventors succeeded in isolating and purifying a specific novel compound through an extraction process using hops as raw materials in various screening processes of plant tissues. And when the utility of the compound was confirmed by an assay, it was found that it was a substance that could achieve the above object, and the present invention was completed.
[0010] 本発明は、下記一般式(1)で表されるフロロァシルフヱノン配糖体を提供する。  [0010] The present invention provides a fluorosilanone non-glycoside represented by the following general formula (1).
[化 1]  [Chemical 1]
Figure imgf000004_0001
ここで、式(1)中、 R1はイソプロピル基、イソブチル基又は sec—ブチル基を示す。
Figure imgf000004_0001
Here, in the formula (1), R 1 represents an isopropyl group, an isobutyl group or a sec-butyl group.
[0011] 本発明のフロロァシルフ ノン(Phloroacylphenone)配糖体は、植物組織由来のも のであり、植物組織の冷水抽出物力 分離して得られるものである。ここで「冷水」と は室温以下の水を意味する。 [0011] The fluoracylphenone glycoside of the present invention is derived from a plant tissue, and is obtained by separating the cold extract strength of a plant tissue. Here, “cold water” means water below room temperature.
[0012] このフロロァシルフ ノン配糖体を冷水抽出物から分離するには、冷水抽出物を高 速液体クロマトグラフのカラムに通液すればよい。また、植物組織の冷水抽出物から 合成吸着剤に吸着して得られる吸着成分をメタノール若しくはエタノールと水との混 合溶媒中に溶出し、その混合溶媒を上述の高速液体クロマトグラフのカラムに通液 すると好ましい。こうすると、より確実に本発明のフロロァシルフエノン配糖体を分離で きる。 In order to separate the fluorosilphonone glycoside from the cold water extract, the cold water extract may be passed through a column of a high-speed liquid chromatograph. In addition, the adsorbed component obtained by adsorbing to the synthetic adsorbent from the cold water extract of the plant tissue is eluted in methanol or a mixed solvent of ethanol and water, and the mixed solvent is passed through the above-mentioned high performance liquid chromatograph column. Liquid is preferable. In this way, the fluorosilphenone glycoside of the present invention can be more reliably separated.
[0013] 本発明にお 、て、植物組織としてホップの組織が挙げられる。ホップを原料として用 いることにより、更に効率的かつ確実に本発明のフロロァシルフエノン配糖体を得るこ とができる。また、抽出に用いるホップの組織は、ホップの茎、毬花及び Z又は葉で あってもよい。更に、濃縮ホップペレット加工時に得られるスベントホップ又は炭酸ガ ス抽出 (超臨界抽出)した残渣も使用可能である。 [0013] In the present invention, a hop tissue may be mentioned as a plant tissue. Use hops as raw material Therefore, the fluorosilphenone glycoside of the present invention can be obtained more efficiently and reliably. The hop tissue used for extraction may be hop stems, spikelets and Z or leaves. Further, a residue obtained by extracting a vent hop or carbonic acid gas (supercritical extraction) obtained at the time of processing the concentrated hop pellet can also be used.
[0014] 本発明者らは、インビトロでのヒト好塩基球株化細胞 (KU812)を用いたアツセィ試 験により、上記フロロァシルフヱノン配糖体の抗ヒスタミン作用の強さ力 50%抑制濃 度(IC50)の値で 290 g/mLであることを確認した。このことは、本発明のフロロァ シルフエノン配糖体が抗アレルギー作用を有することを示唆している。また、このフロ ロアシルフエノン配糖体は、その構造から抗酸化作用及びチロシナーゼ活性阻害作 用を示すことが期待される。以上のことから、このフロロァシルフエノン配糖体を飲食 品、化粧品又は医薬品に含有させると有用である。  [0014] The inventors of the present invention conducted an in vitro study using a human basophil cell line (KU812) to inhibit the antihistamine action of the above-mentioned fluorosilan phenone glycoside by 50%. It was confirmed that the concentration (IC50) was 290 g / mL. This suggests that the fluorosylphenone glycoside of the present invention has an antiallergic action. Moreover, this fluoroacylphenone glycoside is expected to exhibit an antioxidant action and an inhibitory action on tyrosinase activity from its structure. From the above, it is useful to contain this fluorosilphenone glycoside in foods, drinks, cosmetics or pharmaceuticals.
発明の効果  The invention's effect
[0015] 本発明によれば、抗アレルギー作用に十分優れ、し力も副作用が十分に抑制され た人体や皮膚に緩和である物質を提供することができる。  [0015] According to the present invention, it is possible to provide a substance that is sufficiently excellent in anti-allergic action and relaxed to the human body and skin with sufficient strength and side effects sufficiently suppressed.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明のフロロァシルフヱノン配糖体を含むポリフエノールの HPLCクロマトグラ ムである。  FIG. 1 is an HPLC chromatogram of polyphenol containing the fluorosilanone non-glycoside of the present invention.
[図 2]本発明のフロロァシルフヱノン配糖体の1 H— NMR ^ベクトルである。 FIG. 2 is a 1 H-NMR ^ vector of the fluorosilanone glycoside of the present invention.
[図 3]本発明のフロロァシルフヱノン配糖体の1 H— NMR ^ベクトルである。 FIG. 3 is a 1 H-NMR ^ vector of the fluorosilanone glycoside of the present invention.
[図 4]本発明のフロロァシルフヱノン配糖体の13 C— NMRスペクトルである。 FIG. 4 is a 13 C-NMR spectrum of the fluorosilanone glycoside of the present invention.
[図 5]本発明のフロロァシルフヱノン配糖体の1 H— H— COSYスペクトルである。 FIG. 5 is a 1 H—H—COZY spectrum of the fluorosilanone glycoside of the present invention.
[図 6]本発明のフロロァシルフヱノン配糖体のマススペクトルである。  FIG. 6 is a mass spectrum of the fluorosilanone glycoside of the present invention.
[図 7]本発明のフロロァシルフエノン配糖体力ゝら得られる糖及び既知の糖のマススぺ タトルである。  FIG. 7 is a mass spectrum of sugars and known sugars obtained from the floracylphenone glycosides of the present invention.
[図 8]本発明のフロロァシルフヱノン配糖体の UV吸収スペクトルである。  FIG. 8 is a UV absorption spectrum of the fluorosilanone glycoside of the present invention.
[図 9]本発明のフロロァシルフヱノン配糖体の1 H— NMR ^ベクトルである。 FIG. 9 is a 1 H-NMR ^ vector of the fluorosilanone glycoside of the present invention.
[図 10]本発明のフロロァシルフヱノン配糖体の13 C— NMRスペクトルである。 FIG. 10 is a 13 C-NMR spectrum of the fluorosilanone glycoside of the present invention.
[図 11]本発明のフロロァシルフヱノン配糖体の1 H— 1 H— COSYスペクトルである。 [図 12]本発明のフロロァシルフヱノン配糖体の1 H— NMR ^ベクトルである。 FIG. 11 is a 1 H— 1 H—COZY spectrum of the fluorosilanone glycoside of the present invention. FIG. 12 is a 1 H-NMR vector of a fluorosilanone glycoside of the present invention.
[図 13]本発明のフロロァシルフヱノン配糖体の1 H— H— COSYスペクトルである。 FIG. 13 is a 1 H—H—COZY spectrum of the fluorosilanone glycoside of the present invention.
[図 14]本発明のフロロァシルフヱノン配糖体のマススペクトルである。 FIG. 14 is a mass spectrum of a fluorosilanone glycoside of the present invention.
[図 15]本発明のフロロァシルフヱノン配糖体のマススペクトルである。 FIG. 15 is a mass spectrum of the fluorosilanone non-glycoside of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明のフロロァシルフエノン配糖体は、上記一般式(1)で表される新規な化合物 であり、配糖体の構造を有する。式(1)中、 R1はイソプロピル基、イソブチル基又は se c ブチル基を示す。すなわち本発明の新規なフロロァシルフエノン配糖体は、下記 式(2)、(3)又は (4)で表される 3種の化合物(それぞれ、フロロイソブチロフエノン 2-0- β—D グノレコピラノシド、フロロ一 2—メチノレブチロフエノン一 2— Ο— β - D ダルコピラノシド、フロロイソバレロフエノン一 2— Ο— β—D ダルコピラノシド) である。 The fluorosilphenone glycoside of the present invention is a novel compound represented by the above general formula (1) and has a glycoside structure. In the formula (1), R 1 represents an isopropyl group, an isobutyl group or a se c butyl group. That is, the novel fluorosylphenone glycoside of the present invention comprises three types of compounds represented by the following formula (2), (3) or (4) (each represented by fluoroisobutyrophenone 2-0-β- D-Gnolecopyranoside, 1-Methylolebutyrophenone 2 -—- β-D Darcopyranoside, 2-Iso-valerophenone 2 -—- β-D Darcopyranoside).
[化 2] [Chemical 2]
Figure imgf000007_0001
Figure imgf000007_0001
[0018] 本発明のフロロァシルフヱノン配糖体は、植物由来のものであり、植物組織の冷水 抽出物から分離して得られるものである。 [0018] The florosylphenone glycoside of the present invention is derived from a plant and obtained by separation from a cold water extract of a plant tissue.
[0019] 植物組織としては、上記フロロァシルフエノン配糖体を比較的多く含むホップの茎、 毬花及び葉などの組織が好ましぐルブリン腺等の腺組織が多く含まれるホップの毬 花の部分の組織であるとより好適である。また、濃縮ホップペレットへの加工時に得ら れるスベントホップや炭酸ガス抽出によりホップエキス抽出した後の滓も有用である。  [0019] As a plant tissue, a hop cocoon flower containing a large amount of glandular tissue such as a rubulin gland, which is preferable to a tissue such as a hop stem, cocoon flower and leaf containing a relatively large amount of the above-mentioned fluorosilenone glycoside. It is more preferable that it is the structure of this part. In addition, soot hops obtained at the time of processing into concentrated hop pellets and straw after hop extract extraction by carbon dioxide extraction are also useful.
[0020] ビール醸造の副産物の有効利用の観点から、ホップがビール醸造用ホップであると 好ましい。 [0020] From the viewpoint of effective utilization of beer brewing by-products, hops are brewing hops. preferable.
[0021] 植物組織の冷水抽出物は常法によって得ることが可能である。例えば、植物組織と してホップの組織を用いる場合、その組織力もなるペレットと蒸留水とを容器に入れ、 適宜撹拌しながら所定時間静置する。こうして静置後に得られた液は、そのまま植物 組織の冷水抽出物として利用することも可能である。あるいは、例えば、静置後に得 られた液を、更に遠心した後に生じる上清 (以下、「遠心上清」という。)を採取したも のを植物組織の冷水抽出物して利用することも可能である。さらには、静置後に得ら れた液又は遠心上清力 水分を除去したものを冷水抽出物として利用することもでき る。  [0021] A cold water extract of plant tissue can be obtained by a conventional method. For example, when a hop tissue is used as the plant tissue, pellets that have the tissue strength and distilled water are placed in a container and allowed to stand for a predetermined time with proper stirring. The liquid thus obtained after standing can be used as it is as a cold water extract of plant tissue. Alternatively, for example, a supernatant obtained after further centrifuging the liquid obtained after standing (hereinafter referred to as “centrifugal supernatant”) can be used as a cold water extract of plant tissue. It is. Furthermore, the liquid obtained after standing or the supernatant obtained by removing water from the centrifugal supernatant can also be used as a cold water extract.
[0022] 植物組織の冷水抽出物を得る際の水の温度は、室温以下であって水が凍らない温 度であればよい。具体的には 0〜50°Cであると好適であり、 5〜50°Cであるとより好ま しぐ 5〜30°Cであると更に好ましい。水の温度がこの温度範囲よりも低温だと、水が 凍るために抽出効率が低下する傾向にある。水の温度がこの温度範囲よりも高温だ と、フロロァシルフヱノン配糖体以外の成分が溶出するため、フロロァシルフヱノン配 糖体を分離する処理が煩雑になる傾向にある。  [0022] The temperature of water when obtaining the cold water extract of the plant tissue may be a temperature that is not more than room temperature and does not freeze the water. Specifically, the temperature is preferably 0 to 50 ° C, more preferably 5 to 50 ° C, and further preferably 5 to 30 ° C. If the temperature of the water is lower than this temperature range, the extraction efficiency tends to decrease because the water freezes. When the temperature of the water is higher than this temperature range, components other than the fluorosilphenone glycosides are eluted, and therefore the treatment for separating the fluorosilphenone glycosides tends to be complicated.
[0023] 次に、本発明のフロロァシルフヱノン配糖体の分離方法にっ 、て、好適な実施形態 を説明する。本実施形態のフロロァシルフヱノン配糖体の分離方法は、植物組織の 冷水抽出物をへキサンに接触させて水側に第 1の抽出物を得るステップ (以下、「第 1ステップ」という。)、第 1の抽出物を酢酸ェチルに接触させて水側に第 2の抽出物を 得るステップ (以下、「第 2ステップ」という。)、第 2の抽出物をブタノールに接触させて 、そのブタノール中に第 3の抽出物を得るステップ (以下、「第 3ステップ」)、合成吸着 剤を充填したカラムに第 3の抽出物を通液して合成吸着剤に吸着させるステップ (以 下、「第 4ステップ」という。)、合成吸着剤に吸着した成分を水及びメタノールの混合 溶媒に溶出させるステップ (以下、「第 5ステップ」という。)、並びに、溶出した吸着成 分を含む混合溶媒を、所定の吸着剤を充填したカラムを備える高速液体クロマトダラ フの当該カラムに通液して、所望のフロロァシルフエノン配糖体を単離するステップ( 以下、「第 6ステップ」という。)を備える。  Next, a preferred embodiment of the method for separating a fluorosilanone non-glycoside of the present invention will be described. The method for separating fluorosilanone glycosides of this embodiment is a step of contacting a cold extract of plant tissue with hexane to obtain a first extract on the water side (hereinafter referred to as “first step”). ), Contacting the first extract with ethyl acetate to obtain a second extract on the water side (hereinafter referred to as “second step”), contacting the second extract with butanol, A step of obtaining a third extract in the butanol (hereinafter referred to as “third step”), a step of passing the third extract through a column packed with a synthetic adsorbent and adsorbing it onto the synthetic adsorbent (hereinafter referred to as “the third adsorbent”). , Referred to as “fourth step”), a step of eluting the components adsorbed on the synthetic adsorbent into a mixed solvent of water and methanol (hereinafter referred to as “fifth step”), and a mixture containing the eluted adsorbed components. A column packed with a predetermined adsorbent It was passed through to the column of high performance liquid Kuromatodara off to obtain, comprising the step of isolating the desired fluorosilicone § Sylph enone glycoside (hereinafter referred to as "sixth step".).
[0024] (第 1ステップ) 第 1ステップでは、ホップなどの植物組織の冷水抽出物をへキサンに接触させる。こ れにより、本発明のフロロァシルフエノン配糖体以外の植物組織の成分をへキサン中 に抽出して、選択的に冷水抽出物から除去できる。そのため、フロロァシルフエノン配 糖体の含有割合を当初よりも更に高めた第 1の抽出物を得ることができる。植物組織 の冷水抽出物のへキサンへの接触方法としては、例えば、上述の遠心上清及びへキ サンを分液ロートに入れた後、その分液ロートを振とうして冷水抽出物をへキサンと接 触させる方法が挙げられる。冷水抽出物をへキサンと接触させた後に分液ロートを静 置すると、分液ロート中の液が水とへキサンとに分離する力 本発明のフロロァシルフ エノン配糖体は水中に含まれることになる。 [0024] (First step) In the first step, a cold water extract of plant tissue such as hops is contacted with hexane. Thereby, components of plant tissues other than the fluorosilphenone glycoside of the present invention can be extracted into hexane and selectively removed from the cold water extract. Therefore, it is possible to obtain a first extract in which the content ratio of the fluorosilphenone glycoside is further increased from the initial level. As a method for contacting the cold extract of plant tissue with hexane, for example, the above-mentioned centrifugal supernatant and hexane are placed in a separatory funnel, and then the separatory funnel is shaken to remove the cold water extract. A method of contacting with xanthan can be mentioned. When the separating funnel is allowed to stand after contacting the cold water extract with hexane, the liquid in the separating funnel is separated into water and hexane. The fluorosilphenone glycoside of the present invention is contained in water. Become.
[0025] 上記分液ロートから採取した水は、第 1の抽出物としてそのまま第 2ステップに用い てもよぐ水の一部を蒸発等により除去して濃縮したものを第 1の抽出物として用いて ちょい。  [0025] The water collected from the separatory funnel is used as the first extract as it is as the first extract. Use it.
[0026] (第 2ステップ)  [0026] (Second step)
第 2ステップでは、第 1ステップにおいて得られる第 1の抽出物を酢酸ェチルに接触 させる。これにより、本発明のフロロァシルフヱノン配糖体以外の植物組織の成分を 酢酸ェチル中に抽出して、更に選択的に第 1の抽出物から除去できる。そのため、フ 口ロアシルフエノン配糖体の含有割合を第 1の抽出物よりも更に高めた第 2の抽出物 を得ることができる。第 1の抽出物の酢酸ェチルへの接触方法としては、例えば、第 1 の抽出物及び酢酸ェチルを分液ロートに入れた後、その分液ロートを振とうして第 1 の抽出物を酢酸ェチルと接触させる方法が挙げられる。第 1の抽出物を酢酸ェチル と接触させた後に分液ロートを静置すると、分液ロート中の液が水と酢酸ェチルとに 分離する力 本発明のフロロァシルフエノン配糖体は水中に含まれることになる。  In the second step, the first extract obtained in the first step is contacted with ethyl acetate. As a result, plant tissue components other than the fluorosilacinone glycoside of the present invention can be extracted into ethyl acetate and further selectively removed from the first extract. Therefore, it is possible to obtain a second extract in which the content ratio of phenacylphenone glycoside is further increased than that of the first extract. Examples of the method of contacting the first extract with ethyl acetate include, for example, putting the first extract and ethyl acetate into a separating funnel, shaking the separating funnel, and then removing the first extract with acetic acid. And a method of contacting with ethyl. When the separatory funnel is allowed to stand after contacting the first extract with ethyl acetate, the liquid in the separatory funnel is separated into water and ethyl acetate. The fluorosilenone glycoside of the present invention is in water. Will be included.
[0027] 上記分液ロートから採取した水は、第 2の抽出物としてそのまま第 3ステップに用い てもよぐ水の一部を蒸発等により除去して濃縮したものを第 2の抽出物として用いて ちょい。  [0027] The water collected from the separatory funnel is used as the second extract as it is as the second extract. Use it.
[0028] (第 3ステップ)  [0028] (3rd step)
第 3ステップでは、第 2ステップにお 、て得られる第 2の抽出物をブタノールに接触 させる。これにより、本発明のフロロァシルフヱノン配糖体を選択的にブタノール中に 抽出した第 3の抽出物を得ることができる。第 2の抽出物のブタノールへの接触方法 としては、例えば、第 2の抽出物及びブタノールを分液ロートに入れた後、その分液口 ートを振とうして第 2の抽出物をブタノールと接触させる方法が挙げられる。第 2の抽 出物をブタノールと接触させた後に分液ロートを静置すると、分液ロート中の液が水と ブタノールとに分離するが、本発明のフロロァシルフヱノン配糖体はブタノール中に 含まれることになる。 In the third step, the second extract obtained in the second step is contacted with butanol. As a result, the fluorosylphenone glycoside of the present invention is selectively incorporated into butanol. An extracted third extract can be obtained. As a method of contacting the second extract with butanol, for example, after the second extract and butanol are placed in a separatory funnel, the separatory port is shaken to remove the second extract from butanol. The method of making it contact with is mentioned. When the separatory funnel is allowed to stand after the second extract is brought into contact with butanol, the liquid in the separatory funnel is separated into water and butanol, but the fluorosilphenone glycoside of the present invention is butanol. Will be included.
[0029] この第 3ステップは、より多くのフロロァシルフエノン配糖体を得るために、複数回繰 り返されてもよぐ 2〜4回程度繰り返されると好ましい。  [0029] This third step is preferably repeated about 2 to 4 times, in order to obtain more fluorosilanone glycosides.
[0030] 上記分液ロートから採取したブタノールは、第 3の抽出物としてそのまま第 4ステツ プに用いてもよぐブタノールの一部を蒸発等により除去して濃縮したものを第 3の抽 出物として用いてもよい。  [0030] The butanol collected from the separatory funnel is a third extract obtained by removing a portion of butanol that may be used as the third extract as it is in the fourth step by evaporation or the like and concentrating it. You may use as a thing.
[0031] (第 4ステップ)  [0031] (4th step)
第 4ステップでは、合成吸着剤を充填したカラムに、第 3ステップで得られたフロロァ シルフエノン配糖体を含む第 3の抽出物を通液する。これにより、第 3の抽出物中の フロロァシルフエノン配糖体を含む成分が、吸着成分として選択的に合成吸着剤に 吸着する。合成吸着剤としては、例えば Amberlite XAD— 4、 XAD— 7及び XAD — 16 (オルガノネ土製、商品名)などが挙げられる。また、その他にも、活性炭及びポリ ビュルピロリドン (PVPP;ポリフエノール吸着剤)などの吸着剤を合成吸着剤として用 いることができる。これらの中でも、 XAD— 4が好ましく用いられる。  In the fourth step, the third extract containing the fluorosylphenone glycoside obtained in the third step is passed through the column packed with the synthetic adsorbent. As a result, the component containing the fluorosilphenone glycoside in the third extract is selectively adsorbed on the synthetic adsorbent as an adsorbing component. Examples of the synthetic adsorbent include Amberlite XAD-4, XAD-7, and XAD-16 (manufactured by Organone, trade name). In addition, other adsorbents such as activated carbon and polypyrrole pyrrolidone (PVPP; polyphenol adsorbent) can be used as the synthetic adsorbent. Among these, XAD-4 is preferably used.
[0032] (第 5ステップ)  [0032] (5th step)
第 5ステップでは、吸着成分が吸着した上記合成吸着剤を、水及びメタノールの混 合溶媒 (メタノール水溶液)と接触させて、混合溶媒中にフロロァシルフエノン配糖体 を含む吸着成分を溶出させる。混合溶媒中のメタノールの配合割合は特に限定され な 、が、混合溶媒中に高濃度でフロロァシルフエノン配糖体を含有させる観点から、 混合溶媒の全量に対して 40〜60質量%であると好ましい。なお、この第 5ステップに 先立って、吸着成分が吸着した合成吸着剤を、水により、又は、吸着成分を溶出する 際に用いる混合溶媒よりもメタノールの配合割合が少ない混合溶媒により、洗浄する と好ましい。こうすることで、フロロァシルフエノン配糖体以外の吸着成分を、合成吸 着剤からある程度選択的に除去することができる。 In the fifth step, the synthetic adsorbent adsorbed by the adsorbing component is brought into contact with a mixed solvent of water and methanol (methanol aqueous solution) to elute the adsorbing component containing the fluorosilphenone glycoside in the mixed solvent. . The mixing ratio of methanol in the mixed solvent is not particularly limited, but is 40 to 60% by mass with respect to the total amount of the mixed solvent from the viewpoint of containing the fluorosilphenone glycoside at a high concentration in the mixed solvent. And preferred. Prior to this fifth step, the synthetic adsorbent with the adsorbed component adsorbed is washed with water or a mixed solvent having a smaller proportion of methanol than the mixed solvent used when eluting the adsorbed component. preferable. In this way, the adsorbed components other than the fluorosilenone glycosides can be synthesized. It can be selectively removed to some extent from the dressing.
[0033] (第 6ステップ)  [0033] (6th step)
第 6ステップでは、第 5ステップにお 、て溶出した吸着成分を含む上記混合溶媒を 、所定の吸着剤を充填したカラムを備える高速液体クロマトグラフ(以下、「HPLC」と いう。)の当該カラムに通液して分離'精製を行い、所望のフロロァシルフエノン配糖 体を単離する。単離したフロロァシルフヱノン配糖体は、その保持時間に応じて適宜 分取すればよい。また、本発明のフロロァシルフエノン配糖体を高純度で単離するた めには、逆相カラムを用いることが好ましい。また、所定の吸着剤であるカラムの充填 剤として、シリカゲル等の多孔質担体の表面を炭化水素により被覆されたものが好適 に用いられる。炭化水素の炭素数は 8〜18であると好ましい。第 5ステップにおいて 溶出した吸着成分を含む上記混合溶媒は、これらのカラムのいずれか 1種のみを通 過してもよく、 2種以上のカラムを順次通過してもよい。  In the sixth step, the column of the high-performance liquid chromatograph (hereinafter referred to as “HPLC”) having a column filled with the above-mentioned mixed solvent containing the adsorbed component eluted in the fifth step and a predetermined adsorbent. Then, separation and purification are performed to isolate the desired fluorosilanphenone glycoside. The isolated fluorosilanone non-glycoside may be appropriately collected according to the retention time. In order to isolate the fluorosilphenone glycoside of the present invention with high purity, it is preferable to use a reverse phase column. Moreover, as the packing material for the column which is a predetermined adsorbent, a porous carrier such as silica gel whose surface is coated with hydrocarbon is preferably used. The hydrocarbon preferably has 8 to 18 carbon atoms. The mixed solvent containing the adsorbed component eluted in the fifth step may pass through any one of these columns, or may pass through two or more columns sequentially.
[0034] 溶離液 (移動相)としては、水及びメタノールの混合液、並びに、水及びァセトニトリ ルの混合液などの、水及び有機溶媒の混合液が挙げられる。溶離液である混合液 中の各成分の配合割合は特に制限されない。ただし、本発明のフロロァシルフェノン 配糖体を高 ヽ純度で効率よく採取するためには、 2液間の配合割合を一定の速度で 変化させるリニアグラジェント溶出法に基づ 、て、水及び有機溶媒の配合割合を変 化させることが好ましい。  [0034] Examples of the eluent (mobile phase) include a mixed solution of water and an organic solvent, such as a mixed solution of water and methanol, and a mixed solution of water and acetonitrile. The mixing ratio of each component in the mixed liquid as the eluent is not particularly limited. However, in order to efficiently collect the fluorosilphenone glycoside of the present invention with high purity, water is obtained based on a linear gradient elution method in which the mixing ratio between the two liquids is changed at a constant rate. It is preferable to change the blending ratio of the organic solvent.
[0035] 本発明に係るフロロァシルフヱノン配糖体を上述の吸着成分力 分取する際には、 HPLCにより分離された各成分を紫外吸収スペクトル分析法などの分析法によりモ- タリングしながら分取することが好ましい。  [0035] When fractionating the above-mentioned adsorption component force of the fluorosilanone glycoside according to the present invention, each component separated by HPLC is monitored by an analytical method such as an ultraviolet absorption spectrum analysis method. However, it is preferable to take out the fraction.
[0036] こうして、本発明の新規なフロロァシルフエノン配糖体を単離することが可能となる。  [0036] Thus, it becomes possible to isolate the novel fluorosylphenone glycoside of the present invention.
[0037] 本発明のフロロァシルフヱノン配糖体は、種々のアレルギー性疾患、例えば、上述 した即時型のアレルギー疾患及び慢性アレルギー性炎症 (例えば、アレルギー性鼻 炎、花粉症、アトピー性皮膚炎など)の予防又は症状の緩和への使用が期待できる。 すなわち、この新規なフロロァシルフエノン配糖体は、抗アレルギー剤としての機能を 発揮する。  [0037] The fluorosilan funon glycoside of the present invention is used for various allergic diseases such as the above-mentioned immediate allergic diseases and chronic allergic inflammations (for example, allergic rhinitis, hay fever, atopic skin). Expected to be used for prevention of symptoms such as inflammation) or relief of symptoms. That is, this novel fluorosilanone glycoside exhibits a function as an antiallergic agent.
[0038] 本発明のフロロァシルフエノン配糖体は、抗アレルギー作用、特にヒスタミン遊離抑 制作用を示す。このこと力ら、このフロロァシルフヱノン配糖体は、特にアレルギー性 鼻炎、アトピー性皮膚炎及び花粉症の予防または症状の緩和の目的に用いることが できる。このフロロァシルフエノン配糖体を医薬品に配合する場合、特にアレルギー 性鼻炎、アトピー性皮膚炎及び花粉症の予防剤又は治療剤に配合すると有用であ る。 [0038] The fluorosilenone glycoside of the present invention has an antiallergic action, in particular, histamine release suppression. Indicates production. For this reason, this fluorosilanone non-glycoside can be used particularly for the purpose of preventing or alleviating symptoms of allergic rhinitis, atopic dermatitis and hay fever. When this fluorosilenone glycoside is added to a pharmaceutical product, it is particularly useful to add it to a preventive or therapeutic agent for allergic rhinitis, atopic dermatitis and hay fever.
[0039] さらには、該フロロァシルフエノン配糖体は、アレルギー性鼻炎、アトピー性皮膚炎 及び花粉症の予防や症状の緩和の目的で、特定保健用飲食品、特殊栄養飲食品、 栄養補助飲食品、健康飲食品、機能性飲食品や病者用飲食品などの食品添加物 に配合することができる。  [0039] Furthermore, the fluorosylphenone glycoside is used for the purpose of preventing allergic rhinitis, atopic dermatitis and hay fever, and alleviating symptoms, and for specific health foods and drinks, special nutrition foods and drinks, nutritional supplements. It can be added to food additives such as food and drink, health food and drink, functional food and drink, and sick food and drink.
[0040] また、本発明のフロロァシルフエノン配糖体は、その構造から抗酸化作用、チロシナ ーゼ活性阻害作用を示すことが示唆される。したがって、化粧品に添加する場合、ス キンケア製品、ファンデーションやメイクアップ製品等に添加することも期待できる。  [0040] Further, the structure of the florosylphenone glycoside of the present invention is suggested to exhibit an antioxidant action and a tyrosinase activity inhibitory action. Therefore, when it is added to cosmetics, it can be expected to be added to skin care products, foundations, makeup products, and the like.
[0041] 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に 限定されるものではない。  [0041] The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
[0042] 上記好適な実施形態では、第 4ステップよりも前に第 1ステップ、第 2ステップ及び 第 3ステップ (以下、「第 1〜第 3ステップ」という。)をこの順で設けている。しかし、例 えば別の実施形態において、第 1〜第 5ステップの全てを省略しても、フロロァシルフ エノン配糖体を単離することはできる。この場合、第 6ステップにおいて、第 5ステップ で溶出した吸着成分を含む混合溶媒に代えて植物組織の冷水抽出物を、所定の吸 着剤を充填したカラムを備える HPLCの当該カラムに直接通液すればよい。あるいは 、第 6ステップの前に第 4ステップ及び第 5ステップを設けると、フロロァシルフエノン配 糖体の単離が容易になるので好ましい。この場合、第 4ステップにおいて、合成吸着 剤を充填したカラムに植物組織の冷水抽出物を直接通液すればよい。  In the preferred embodiment, the first step, the second step, and the third step (hereinafter referred to as “first to third steps”) are provided in this order before the fourth step. However, for example, in another embodiment, the fluorosilenone glycoside can be isolated even if all of the first to fifth steps are omitted. In this case, in the 6th step, instead of the mixed solvent containing the adsorbing component eluted in the 5th step, the cold water extract of the plant tissue is directly passed through the HPLC column including the column filled with the predetermined adsorbent. do it. Alternatively, it is preferable to provide the fourth step and the fifth step before the sixth step because it facilitates the isolation of the fluorosilphenone glycoside. In this case, in the fourth step, the cold water extract of the plant tissue may be directly passed through the column filled with the synthetic adsorbent.
[0043] また、上記好適な実施形態では第 3ステップよりも前に第 1ステップ及び第 2ステツ プをこの順で設けている。しかし、例えば別の実施形態において、第 1ステップ及び 第 2ステップのいずれか又は両方を省略してもよぐあるいはこれらのステップが逆に 設けられてもよい。また、上記好適な実施形態又は別の実施形態において、第 3ステ ップよりも前に、へキサン及び酢酸ェチル以外の有機溶媒に植物組織の冷水抽出物 を接触させてもよい。 [0043] In the preferred embodiment, the first step and the second step are provided in this order before the third step. However, for example, in another embodiment, either or both of the first step and the second step may be omitted, or these steps may be provided in reverse. In the above preferred embodiment or another embodiment, a cold water extract of plant tissue is added to an organic solvent other than hexane and ethyl acetate before the third step. May be contacted.
[0044] また、第 3ステップにおいて用いるブタノールに代えて、それ以外の炭素数 4〜5の アル力ノールを用いてもよい。し力し、フロロァシルフエノン配糖体を一層高い選択性 をもって含むには、ブタノールの方が好ましい。  [0044] Further, in place of butanol used in the third step, other alcohol having 4 to 5 carbon atoms may be used. However, butanol is preferred in order to contain a fluorosilphenone glycoside with higher selectivity.
[0045] また、第 5ステップにおいて用いる混合溶媒中のメタノールに代えて、他のアルコー ル (例えばエタノール)を用いてもよい。さらには、第 6ステップにおいて用いる混合溶 媒中のメタノールに代えて、他のアルコール(例えばエタノール)を用いてもよい。 実施例  [0045] Further, instead of methanol in the mixed solvent used in the fifth step, another alcohol (for example, ethanol) may be used. Furthermore, instead of methanol in the mixed solvent used in the sixth step, another alcohol (for example, ethanol) may be used. Example
[0046] 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例 に限定されるものではない。また、特に明記しない限り、「%」は「体積%」を表す。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “%” represents “volume%”.
[0047] (実施例 1)  [Example 1]
[ホップペレットからフロロァシルフエノン配糖体の単離]  [Isolation of fluorosylphenone glycosides from hop pellets]
ホップペレット(チェコ産ザーッ種、タイプ 90) lkgを蒸留水 10Lに入れ、 5°Cにて時 々攪拌し、ペレット状態を消失させながらー晚静置した。 7000rpmで 15分遠心分離 した後、上清 (遠心上清)を回収した。上清をさらに濃縮して 170gの濃縮物 (冷水抽 出物)が得られた。濃縮物を分液ロートに移し、その分液ロートにへキサンを加えた後 、振とう及び静置して、その分液ロートからへキサン相 2. 4gを除去した (第 1ステップ )。さらに、水相が残存するその分液ロートに酢酸ェチルを加えた後、振とう及び静置 して、その分液ロートから酢酸ェチル相 2. 9gを除去した (第 2ステップ)。最後に水相 が残存するその分液ロートに n—ブタノールを添カ卩した後、振とう及び静置して n—ブ タノール相を別の容器に移した (第 3ステップ)。この第 3ステップを 3回繰り返した後、 別の容器に移した n—ブタノールを全て収集して減圧濃縮し、最終的に 12. 2gの抽 出物を得た。この抽出物には、後述の構造決定により、上記式(2)、 (3)及び (4)で 表される新規なフロロァシルフエノン配糖体が含まれて ヽることが確認できた。なお、 分液ロート中に残存した水相は 114. 6gであった。  Hop pellets (Czech zazat seeds, type 90) lkg was placed in 10 L of distilled water and stirred occasionally at 5 ° C to allow the pellets to stand. After centrifugation at 7000 rpm for 15 minutes, the supernatant (centrifuge supernatant) was recovered. The supernatant was further concentrated to obtain 170 g of concentrate (cold water extract). The concentrate was transferred to a separatory funnel, and hexane was added to the separatory funnel, followed by shaking and standing to remove 2.4 g of the hexane phase from the separatory funnel (first step). Further, ethyl acetate was added to the separating funnel in which the aqueous phase remained, and then shaken and allowed to stand to remove 2.9 g of the ethyl acetate phase from the separating funnel (second step). Finally, n-butanol was added to the separating funnel in which the aqueous phase remained, and then the n-butanol phase was transferred to another container by shaking and standing still (third step). After repeating this third step three times, all n-butanol transferred to another container was collected and concentrated under reduced pressure, and finally 12.2 g of extract was obtained. This extract was confirmed to contain a new fluorosilphenone glycoside represented by the above formulas (2), (3) and (4) by structure determination described later. The remaining aqueous phase in the separatory funnel was 114.6 g.
[0048] さらにフロロァシルフエノン配糖体を濃縮して純度を高めるために、まず、合成吸着 剤として Amberlite XAD— 4 (オルガノネ土製、商品名)を充填した内径 40mm X長 さ 450mmのカラムの中に上記抽出物を通液した (第 4ステップ)。次いで、抽出物を 通液した後のカラムに、蒸留水、 10%メタノール水溶液(10%MeOHZH O)、 20 [0048] In order to further concentrate the fluorosilphenone glycoside to increase its purity, first, a column of 40 mm inner diameter and 450 mm length packed with Amberlite XAD-4 (trade name, manufactured by Organone) as a synthetic adsorbent was packed. The extract was passed through (fourth step). Then extract the After passing through the column, distilled water, 10% aqueous methanol (10% MeOHZH 2 O), 20
2  2
%メタノール水溶液(20%MeOHZH O)を通液してカラムを洗浄した。次に、洗浄  The column was washed by passing a% methanol aqueous solution (20% MeOHZH 2 O). Then wash
2  2
後のカラムに 50%メタノール水溶液(50%MeOHZH O)を通液して、抽出物を含  Pass the 50% methanol aqueous solution (50% MeOHZH 2 O) through the latter column to contain the extract.
2  2
むメタノール水溶液 3. 6gを得た(第 5ステップ)。  3.6 g of an aqueous methanol solution was obtained (fifth step).
[0049] 第 5ステップにお 、て得られたメタノール水溶液中の各成分を分取可能な程度に単 離するために、フロロァシルフエノン配糖体が含まれるその水溶液を HPLCに備えら れるカラムに通液し、その水溶液中に含まれる各成分を分離した (第 6ステップ)。カラ ムは 2種類のカラム (第 1カラム、第 2カラム)を用いた。第 1カラムとして、 D-ODS- 5 (ヮイエムシィ社製、内径 20mm X長さ 250mm、商品名)を 40°Cにて使用し、流速 を 6mLZ分とした。溶離液 (移動相)は、メタノール及び水の混合液を用い、まず 10 %メタノールで 10分間維持した後、 10%メタノールから 60%メタノールまで 160分間 でメタノールの割合を変化させるリニアグラジェントとした。これにより水溶液中の各成 分を粗分けした。 UV検出器 (波長 290nm)でモニタリングしながら、フロロァシルフェ ノン配糖体を主に含む溶液を 240mg採取した。  [0049] In the fifth step, in order to isolate each component in the aqueous methanol solution obtained in such a manner that it can be separated, the aqueous solution containing the fluorosilenone glycoside is provided in the HPLC. The solution was passed through the column, and each component contained in the aqueous solution was separated (step 6). Two types of columns (first column and second column) were used. As the first column, D-ODS-5 (manufactured by Sakai YMC Co., Ltd., inner diameter 20 mm x length 250 mm, product name) was used at 40 ° C, and the flow rate was 6 mLZ. The eluent (mobile phase) is a linear gradient that uses a mixture of methanol and water, first maintained at 10% methanol for 10 minutes, then changed from 10% methanol to 60% methanol in 160 minutes. . Thus, each component in the aqueous solution was roughly divided. While monitoring with a UV detector (wavelength 290 nm), 240 mg of a solution mainly containing a fluorosilanone glycoside was collected.
[0050] 次に、採取した 240mgの溶液を第 2カラムに通液して各成分を単離した。第 2カラ ムとして、 SunFire C18 (Waters社製、内径 19mm X長さ 250mm、商品名)を 40 °Cにて使用し、流速を 6mLZ分とした。溶離液 (移動相)は、ァセトニトリル及び水の 混合液を用い、まず 10%ァセトニトリルで 10分間維持した後、 10%ァセトニトリルか ら 60%ァセトニトリルまで 160分間でァセトニトリルの割合を変化させるリニアグラジェ ントとした。 UV検出器(波長 290nm)でモニタリングしながら、総量 140mgのフロロ ァシルフエノン配糖体を分取した。このうち式 (2)で表される化合物は 110mgであつ た。  [0050] Next, 240 mg of the collected solution was passed through the second column to isolate each component. As the second column, SunFire C18 (Waters, inner diameter 19 mm x length 250 mm, product name) was used at 40 ° C, and the flow rate was 6 mLZ. The eluent (mobile phase) is a linear gradient that uses a mixture of acetonitrile and water, first maintained with 10% acetonitrile for 10 minutes, and then changed the ratio of acetonitrile from 10% acetonitrile to 60% acetonitrile for 160 minutes. . While monitoring with a UV detector (wavelength 290 nm), a total amount of 140 mg of fluorosilenone glycoside was collected. Of these, the compound represented by formula (2) was 110 mg.
[0051] [フロロァシルフエノン配糖体の構造決定]  [0051] [Structure determination of fluorosilphenone glycoside]
タイプ 90のホップペレット中の配糖体成分を同定 ·構造決定した。  Glycoside components in type 90 hop pellets were identified and determined.
[0052] タイプ 90のホップペレットの冷水抽出物を、まず、 HPLCで分析した。 HPLCによる 分析は、カラムとして Symmetry C18 (Waters社製、内径 2. Imm X長さ 150mm 、商品名)を 40°Cにて使用し、流速を 0. 2mLZ分とした。移動相は、 0. 05%TFA ZH Oを 1液とし、ァセトニトリルを 2液とし、 0. 05%TFA/H Oの割合を 10%〜50 %まで 16分間で変化させるリニアグラジヱントとした。検出は UV検出器(290nm)で 行った。 HPLCの分析結果を図 1に示す。図 1から、タイプ 90のホップペレットの冷水 抽出物中に配糖体成分として主に、ピーク A〜Fに相当する 6種の成分が存在するこ とが分力つた。これらのピークのうち A、 B及び Dは、上述の第 6ステップと同様の方法 により分取し、更に同定した結果から、それぞれイソケルシトリン、ケルセチンマロ-ル ダルコシド及びケンフエロールマロ-ルダルコシドであることが判明した。 [0052] A cold water extract of type 90 hop pellets was first analyzed by HPLC. In the analysis by HPLC, Symmetry C18 (manufactured by Waters, inner diameter 2. Imm X length 150 mm, trade name) was used as a column at 40 ° C., and the flow rate was 0.2 mLZ. The mobile phase consists of 0.05% TFA ZH O in one solution, acetonitrile in 2 solutions, and a 0.05% TFA / HO ratio of 10% to 50%. The linear gradient was changed to 16% in 16 minutes. Detection was performed with a UV detector (290 nm). Figure 1 shows the HPLC analysis results. From Fig. 1, it was found that six types of components corresponding to peaks A to F mainly exist as glycoside components in the cold water extract of type 90 hop pellets. Of these peaks, A, B, and D were fractionated by the same method as in Step 6 above, and further identified. As a result, isoquercitrin, quercetin malol darcoside and kaempferol malol dalcoside were respectively identified. It turned out to be.
[0053] 次に上述の第 6ステップと同様の方法により分取したピーク Cに相当する成分を、重 メタノールを用いた1 H— NMR、 13C— NMR及び1 H—丄!!ー COSYで分析した。ェ11 — NMRの結果を図 2及び 3に、 13C— NMRの結果を図 4に、 H— H— COSYの結 果を図 5にそれぞれ示す。 [0053] Next, components corresponding to peak C separated by the same method as in Step 6 above were subjected to 1 H-NMR, 13 C-NMR and 1 H- H using deuterated methanol! ! -Analyzed by COZY. 11-NMR results are shown in Figs. 2 and 3, 13 C-NMR results are shown in Fig. 4, and H-H-COZY results are shown in Fig. 5, respectively.
[0054] 次に、 Waters社の LCZMS装置(MS検出器: ZQ検出器)を用いて、ピークじに 相当する成分の分析を行った。 LCのカラムとして Symmetry C18 (Waters社製、 内径 2. ImmX長さ 150mm、商品名)を 40°Cにて使用し、流速を 0. 2mLZ分とし た。移動相は、 0. 1%ギ酸 ZH Oを 1液とし、ァセトニトリルを 2液とし、 0. 1%ギ酸  [0054] Next, a component corresponding to peaking was analyzed using a Waters LCZMS apparatus (MS detector: ZQ detector). Symmetry C18 (manufactured by Waters, ID 2. ImmX length 150 mm, trade name) was used as the LC column at 40 ° C, and the flow rate was 0.2 mLZ. The mobile phase consists of 0.1% formic acid ZH 2 O as one solution, acetonitrile as 2 solutions, and 0.1% formic acid.
2 Z 2 Z
H Oの割合を 10%〜50%まで 16分間で変化させるリニアグラジェントとした。 UV検A linear gradient was used in which the proportion of H 2 O was changed from 10% to 50% in 16 minutes. UV detection
2 2
出器(290nm)でモニタリングをしながら行った。ポジティブスキャン(mZzl20〜m Zz650、キヤビラリ一電圧: + 3. OkV、コーン電圧: + 25V)での結果を図 6の(a)に 、ネガティブスキャン(m/zl20〜m/z650、キヤビラリ一電圧:— 3. OkV、コーン 電圧:— 25V)での結果を図 6の(b)に示す。この結果より、分子イオンが解裂して m Zzl62の少ないシグナルが検出されていることから、配糖体の構成糖がへキソース であることが判明した。  The monitoring was carried out with an ejector (290 nm). Fig. 6 (a) shows the result of positive scan (mZzl20 to m Zz650, fixed voltage: + 3. OkV, cone voltage: + 25V), and negative scan (m / zl20 to m / z650, fixed voltage: — 3. OkV, cone voltage: (25V) The results are shown in Fig. 6 (b). From this result, the molecular ion was cleaved and a small signal of mZzl62 was detected, which revealed that the glycoside is a hexose.
[0055] 次いで、ピーク Cに相当する成分 7. 5mgを 2Nの HC13mLに溶解し、 100°Cで 30 分間還流し加水分解を行った。その後、得られた反応液を、吸着剤として MEGAB OND ELUT C18 (2g、 Varian社製、商品名)を充填したカラムに通液し、最初の 10mLを廃棄した後、次の 10mLを回収した。回収した反応液について NHカラム(  [0055] Next, 7.5 mg of the component corresponding to peak C was dissolved in 13 mL of 2N HC, and refluxed at 100 ° C for 30 minutes for hydrolysis. Thereafter, the obtained reaction solution was passed through a column packed with MEGAB OND ELUT C18 (2 g, manufactured by Varian, trade name) as an adsorbent, the first 10 mL was discarded, and the next 10 mL was recovered. About the collected reaction liquid NH column (
2 資生堂社製、商品名「CAPCELL PAK NH2 UG80」、内径 2. OmmX長さ 25 Omm)を用いた LCZMS分析を行った。分析条件は、カラム温度を 80°C、溶離液は 89%ァセトニトリル Z水を 0. 25mLZ分の流量とし、ネガティブ SIR (mZzl79、キ ャピラリー電圧: 3. 2kV、コーン電圧:一 25V)とした。また参照用としてマンノース 、ガラクトース及びグルコースについても同様の分析を行った。結果のマススペクトル を図 7に示す。(a)がマンノース、 (b)がガラクトース、 (c)がグノレコース、 (d)が回収し た反応液のマススペクトルである。これにより配糖体の構成糖はグルコースであること が明らかとなり、ピーク Cに相当する成分が式 (2)で表される化合物であることが確認 された。 2 LCZMS analysis was performed using a product name “CAPCELL PAK NH2 UG80” (inner diameter 2. Omm × length 25 Omm) manufactured by Shiseido Co., Ltd. The analysis conditions were a column temperature of 80 ° C, an eluent of 89% acetononitrile Z water at a flow rate of 0.25 mLZ, and negative SIR (mZzl79, key (Capillary voltage: 3.2 kV, cone voltage: 25 V). For reference, the same analysis was performed for mannose, galactose and glucose. Figure 7 shows the resulting mass spectrum. (A) is mannose, (b) is galactose, (c) is gnolecose, and (d) is the mass spectrum of the recovered reaction solution. This revealed that the constituent sugar of the glycoside was glucose, and it was confirmed that the component corresponding to peak C was a compound represented by formula (2).
[0056] 次に、図 1における HPLCクロマトグラムのピーク C、ピーク E及びピーク Fに相当す る成分の UV吸収を測定した。結果の UV吸収スペクトルを図 8に示す。それぞれ (a) がピーク C、(b)がピーク E、(c)がピーク Fに相当する成分の UV吸収スペクトルであ る。これにより、 3成分とも UV吸収スペクトルのパターンが同様であることが分かった  [0056] Next, UV absorption of components corresponding to peak C, peak E, and peak F in the HPLC chromatogram in Fig. 1 was measured. The resulting UV absorption spectrum is shown in Fig. 8. (A) is the peak C, (b) is the peak E, and (c) is the UV absorption spectrum of the component corresponding to the peak F, respectively. As a result, the UV absorption spectrum pattern was the same for all three components.
[0057] 次いで、ピーク E及びピーク Fに相当する成分の LCZMS分析を行った。図 14に 図 6の(a)のマススペクトルを得るための条件と同様の条件で行った LCZMS分析の 結果、図 15に図 6の(b)のマススペクトルを得るための条件と同様の条件で行った L CZMS分析の結果をそれぞれ示す。図 14及び 15において、それぞれ (a)がピーク E、(b)がピーク Fに相当する成分のマススペクトルである。この結果より、ピーク E及 びピーク Fに相当する成分は!、ずれも分子イオンがピーク Cに相当する成分よりも 14 大きいことが判明した。この結果から、ピーク E及びピーク Fに相当する成分は、ピー ク Cに相当する成分と基本骨格が同じであり、側鎖の構造のみが異なることが示唆さ れた。 [0057] Next, LCZMS analysis of components corresponding to peak E and peak F was performed. Fig. 14 shows the results of LCZMS analysis performed under the same conditions as those for obtaining the mass spectrum of Fig. 6 (a). Fig. 15 shows the same conditions as those for obtaining the mass spectrum of Fig. 6 (b). The results of L CZMS analysis performed in the above are shown. 14 and 15, (a) is the mass spectrum of the component corresponding to the peak E and (b) is the component corresponding to the peak F, respectively. From this result, it was found that the components corresponding to peak E and peak F were!, And the deviation was 14 larger than the component corresponding to peak C. This result suggests that the component corresponding to peak E and peak F has the same basic skeleton as the component corresponding to peak C, and is different only in the side chain structure.
[0058] 最後に、ピーク E及びピーク Fに相当する成分を、重メタノールを用いた1 H— NMR 、 13C— NMR及び1H— 1H— COSYで分析した。ピーク Fに相当する成分の1 H— N MRの結果を図 9、 13C— NMRの結果を図 10、 ipi— 1!!— COSYの結果を図 11に それぞれ示す。ピーク Eに相当する成分の1 H— NMRの結果を図 12に、 'Η-'Η- COSYの結果を図 13にそれぞれ示す。これらの結果から、ピーク Εに相当する成分 が式 (4)で表される化合物であり、ピーク Fに相当する成分が式 (3)で表される化合 物であることが確認された。 [0058] Finally, components corresponding to peak E and peak F were analyzed by 1 H-NMR, 13 C-NMR and 1 H- 1 H-COZY using deuterated methanol. Fig. 9 shows the results of 1 H-N MR of the component corresponding to peak F, Fig. 10 shows the results of 13 C-NMR, and Fig. 11 shows the results of ipi- 1 !!-COZY. The result of 1 H-NMR of the component corresponding to peak E is shown in FIG. 12, and the result of 'Η-'Η-COZY is shown in FIG. From these results, it was confirmed that the component corresponding to peak Ε was a compound represented by formula (4), and the component corresponding to peak F was a compound represented by formula (3).
[0059] (実施例 2) [フロロァシルフエノン配糖体のヒスタミン遊離抑制作用を確認するインビトロでのアツ セィ試験] [Example 2] [In vitro assay to confirm histamine release inhibitory effect of fluorosylphenone glycosides]
ヒト好塩基球株化細胞 (KU812)を、 10%の 56°Cにて 30分間不活性ィ匕した牛胎 児血清を含む RPMI1640培地(ギブコ)で、 37°C、 5%CO雰囲気下で培養した。  Human basophil cell line (KU812) was cultured in RPMI1640 medium (Gibco) containing fetal calf serum that had been inactivated for 10 minutes at 56 ° C at 37 ° C in a 5% CO atmosphere. Cultured.
2  2
細胞に Tyrode溶液を添カ卩して遠心(1500rpm、 5分、 4°C)し、 Tyrode溶液で 2回 の洗浄を繰り返した後、 Tyrode溶液に懸濁し、 1. 5mL容のチューブに 2 X 106cell sZmLとなるように分注した。細胞懸濁液にそれぞれ表 1に示した量の緩衝液、 10m Mの CaCl、 50 Mの A23187及び Add Tyrode solution to the cells, centrifuge (1500 rpm, 5 minutes, 4 ° C), repeat washing twice with Tyrode solution, suspend in Tyrode solution, and add 2 X to a 5 mL tube. 10 6 cell sZmL was dispensed. Each cell suspension contains the amount of buffer shown in Table 1, 10 mM CaCl, 50 M A23187 and
2 Z又は被検化合物(式(2)で表されるフロロァ シルフエノン配糖体)をカ卩え、 37°Cにて 20分間ヒスタミン遊離反応をさせた後、氷中 に 5分間入れて反応を停止させた。  2 Prepare Z or a test compound (fluorosylphenone glycoside represented by formula (2)), allow histamine release reaction at 37 ° C for 20 minutes, and then put in ice for 5 minutes to react. Stopped.
[0060] [表 1] [0060] [Table 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0061] その後 4°Cにて lOOOrpmで 3分間遠心分離し、上清を回収した。回収された上清 力 有機溶媒で遊離ヒスタミンを抽出し、 o フタルアルデヒドと反応させ発生した蛍 光を、波長 350nmの光で励起した後波長 450nmにお 、て蛍光強度を測定すること によって、遊離ヒスタミンを定量した。また、細胞内総ヒスタミンは、同量の細胞懸濁液 を氷中で 1分間超音波破砕した後、 4°Cにて lOOOOrpmで 3分間遠心分離して得た 上清中のヒスタミン含量を測定することによって得た。ヒスタミンの遊離抑制率は、ヒス タミン遊離抑制率(%) = (各サンプルの上清中のヒスタミン含量 自然遊離量) X 10 0Z (A23187刺激によるヒスタミン遊離量-自然遊離量)の式で求め、その結果に 基づ 、て、式(2)で表されるフロロァシルフエノン配糖体の IC50値(50%抑制濃度) を求めた。その結果、 IC50値は 290 g/mLであった。  [0061] Thereafter, the mixture was centrifuged at 4 ° C for 3 minutes at lOOOOrpm, and the supernatant was collected. Collected supernatant force Extracting free histamine with an organic solvent, and o Exciting the fluorescence generated by reaction with phthalaldehyde by measuring the fluorescence intensity at a wavelength of 450 nm after excitation with light of a wavelength of 350 nm. Histamine was quantified. The total intracellular histamine was measured by measuring the histamine content in the supernatant obtained by sonicating the same amount of cell suspension in ice for 1 minute and then centrifuging at 4 ° C for 3 minutes at lOOOOrpm. Was obtained by The inhibition rate of histamine release is determined by the formula: inhibition rate of histamine release (%) = (histamine content in the supernatant of each sample, natural release amount) X 100 Z (histamine release amount by A23187 stimulation-natural release amount) Based on the results, the IC50 value (50% inhibitory concentration) of the fluorosilenone glycoside represented by the formula (2) was determined. As a result, the IC50 value was 290 g / mL.
産業上の利用可能性  Industrial applicability
[0062] 本発明によれば、抗アレルギー作用に十分優れ、し力も副作用が十分に抑制され た人体や皮膚に緩和である物質を提供することができる。 [0062] According to the present invention, the antiallergic action is sufficiently excellent and the side effects are sufficiently suppressed. Can provide substances that are mild to the human body and skin.

Claims

請求の範囲 [1] 下記一般式(1)で表されるフロロァシルフヱノン配糖体。 [化 1] Claims [1] A fluorosilanone glycoside represented by the following general formula (1). [Chemical 1]
[式(1)中、 R1はイソプロピル基、イソブチル基又は sec—ブチル基を示す。 ] [In the formula (1), R 1 represents an isopropyl group, an isobutyl group or a sec-butyl group. ]
[2] 植物組織の冷水抽出物から分離して得られる、請求項 1記載のフロロァシルフエノ ン配糖体。 [2] The fluorosylphenone glycoside according to claim 1, obtained by separation from a cold water extract of a plant tissue.
[3] 前記植物組織がホップの組織である、請求項 1又は 2記載のフロロァシルフエノン配 糖体。  [3] The fluorosilphenone glycoside according to claim 1 or 2, wherein the plant tissue is a hop tissue.
[4] 前記ホップの組織は茎、毬花又は葉である、請求項 3記載のフロロァシルフェノン 配糖体。  [4] The floracylphenone glycoside according to claim 3, wherein the hop tissue is a stem, a spike or a leaf.
[5] 抗アレルギー作用を示す、請求項 1〜4のいずれか一項に記載のフロロァシルフヱ ノン配糖体。  [5] The fluorosilanone non-glycoside according to any one of claims 1 to 4, which exhibits an antiallergic action.
[6] 抗酸化剤としての作用を示す、請求項 1〜4のいずれか一項に記載のフロロァシル フエノン配糖体。  [6] The fluorosilenone glycoside according to any one of claims 1 to 4, which exhibits an action as an antioxidant.
[7] チロシナーゼ活性阻害作用を示す、請求項 1〜4のいずれか一項に記載のフロロ ァシルフヱノン配糖体。  [7] The fluorosylphenone glycoside according to any one of claims 1 to 4, which exhibits a tyrosinase activity inhibitory action.
[8] 請求項 1〜7の 、ずれか一項に記載のフロロァシルフエノン配糖体を含有する飲食  [8] Food and drink containing the fluorosilphenone glycoside according to any one of claims 1 to 7
P P
PPo PPo
[9] 請求項 1〜7の ヽずれか一項に記載のフロロァシルフエノン配糖体を含有する化粧  [9] A cosmetic comprising the fluorosilphenone glycoside according to any one of claims 1 to 7.
P P
PPo PPo
[10] 請求項 1〜7のいずれか一項に記載のフロロァシルフエノン配糖体を含有する医薬  [10] A medicament comprising the fluorosilenone glycoside according to any one of claims 1 to 7.
PCT/JP2006/303901 2005-03-03 2006-03-01 Phloroacylphenone glycoside, process for production of the same, antiallergic agent and antioxidant WO2006093202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005059349A JP2008069072A (en) 2005-03-03 2005-03-03 Phloroacylphenone glycoside, its manufacturing method, antiallergic agent and antioxidant
JP2005-059349 2005-03-03

Publications (1)

Publication Number Publication Date
WO2006093202A1 true WO2006093202A1 (en) 2006-09-08

Family

ID=36941231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303901 WO2006093202A1 (en) 2005-03-03 2006-03-01 Phloroacylphenone glycoside, process for production of the same, antiallergic agent and antioxidant

Country Status (2)

Country Link
JP (1) JP2008069072A (en)
WO (1) WO2006093202A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026473A1 (en) * 2006-08-31 2008-03-06 Asahi Breweries, Ltd. Method for production of hop preparation, hop preparation, antiinflammatory agent, food/beverage, and oral product
WO2008026507A1 (en) * 2006-09-01 2008-03-06 Sapporo Breweries Limited Skin whitening agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5122147B2 (en) * 2007-01-16 2013-01-16 アサヒグループホールディングス株式会社 2- (2-Methylpropanoyl) phloroglucinol-1,5-di-O-β-D-glucopyranoside having antioxidant activity
JP5122148B2 (en) * 2007-01-16 2013-01-16 アサヒグループホールディングス株式会社 2-Acylphloroglucinol-4,6-di-C-β-D-glucopyranoside having antioxidant activity
JP5288537B2 (en) * 2008-03-03 2013-09-11 国立大学法人広島大学 Novel bioactive composition
EP3456207B1 (en) 2016-05-13 2024-05-22 Suntory Holdings Limited Method for producing a hop processed product

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AZIZ-UR-REHMAN ET AL.: "Lipoxygenase inhibiting constituents from Indigofera heterantha", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 53, no. 3, 1 March 2005 (2005-03-01), pages 263 - 266, XP003001267 *
BOHR G. ET AL.: "Anti-inflammatory Acylphloroglucinol Derivatives from Hops (Humulus lupulus)", JOURNAL OF NATURAL PRODUCTS, vol. 68, no. 10, October 2005 (2005-10-01), pages 1545 - 1548, XP003001270 *
KITANAKA S.: "Allergy o Yokusei suru Shinki Tennen Yakubutsu no Kaihatsu ni Kansuru Kenkyu", CHIRYOTO KENKYU JIGYO KENKYU HOKOKUSHO HEISEI 14 NENDO SEPARATE, vol. 2, 2003, pages 267 - 275, XP003001269 *
KOSASI S. ET AL.: "Multifidol and multifidol glucoside from the latex of Jatropha multifida", PHYTOCHEMISTRY, vol. 28, no. 9, 1989, pages 2439 - 2441, XP003001268 *
TSUKAMOTO S. ET AL.: "Isolation of Cytochrome P450 Inhibitors from Strawberry Products, Fragaria ananassa", JOURNAL OF NATURAL PRODUCTS, vol. 67, no. 11, 2004, pages 1839 - 1841, XP003001266 *
VANCRAENENBROECK R. ET AL.: "Characterisation of flavonols and a glucoside of a phloroiso butyrophenone from hops", PROCEEDINGS OF THE CONGRESS - EUROPEAN BREWERY CONVENTION, 1965, pages 360 - 371, XP003001265 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026473A1 (en) * 2006-08-31 2008-03-06 Asahi Breweries, Ltd. Method for production of hop preparation, hop preparation, antiinflammatory agent, food/beverage, and oral product
WO2008026507A1 (en) * 2006-09-01 2008-03-06 Sapporo Breweries Limited Skin whitening agent

Also Published As

Publication number Publication date
JP2008069072A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4709205B2 (en) Antiallergic composition
ES2364642T3 (en) SELECTIVE SEPARATION OR EXTRACTION OF STEROID GLUCOSIDS BY EXTRACTION OF SUPERCRITICAL FLUID USING CARBON DIOXIDE.
RU2392954C2 (en) Polyphenol-enriched composition extracted from cocoa bean pod
JPH06234648A (en) Novel extract from cucurbitaseed, its production, and its use in drugs and cosmetics
WO2006093202A1 (en) Phloroacylphenone glycoside, process for production of the same, antiallergic agent and antioxidant
KR102132267B1 (en) Composition for Preventing, Improving or Treating Immune Disease Comprising Fraction of Rosa multiflora extract as an Active Ingredients
JP2008533131A (en) Histamine-suppressing composition containing isoorientin
JP2008115133A (en) Atopic disease inhibiting composition
WO2008026507A1 (en) Skin whitening agent
KR101603733B1 (en) Method for extracting maysin and bioactive compounds with high yield from corn silk
WO2009093533A1 (en) IgE ANTIBODY PRODUCTION INHIBITOR
KR101538743B1 (en) Composition for Preventing, Improving or Treating of Th1-mediated Immune Disease or Th2-mediated Immune Disease Comprising Extracts from Saussurea lappa Clarke and Biota orientalis (L.) Endl. as an Active Ingredients
JP6369751B2 (en) Curcumin derivative exhibiting keratin producing action and method for producing the same
JP6436337B2 (en) Quercetin derivative exhibiting elastin producing action and method for producing the same
WO2022254868A1 (en) Novel isoflavone compound
EP1738658A1 (en) Acerola leaf extract-containing blood sugar level increase inhibitor and age formation inhibitor, and food containing them
JP6241672B2 (en) Ellagic acid derivative exhibiting antiviral action and method for producing the same
US10293013B2 (en) Water soluble Psidium guajava leaf extract having standardized phytochemicals
JP2006096694A (en) Prophylactic agent for food allergy
JP2017075117A (en) Barrier function improver
JP5399467B2 (en) Composition exhibiting skin epithelial cell proliferation promoting action
JP6010073B2 (en) Resveratrol derivative producing hydrogen gas and exhibiting keratin production action and method for producing the same
JP2004026760A (en) Apoptosis-inducing agent of cancer cell, method for producing the same, anticancer agent containing the same as active ingredient, food preparation and cosmetic
JP4749696B2 (en) Novel glyceroglycolipid and its utilization
JP6471974B2 (en) Indole derivatives exhibiting NF-κB class II inhibitory action and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715018

Country of ref document: EP

Kind code of ref document: A1