WO2006090933A1 - Hepatitis c virus particles and method of proliferating the same - Google Patents

Hepatitis c virus particles and method of proliferating the same Download PDF

Info

Publication number
WO2006090933A1
WO2006090933A1 PCT/JP2006/304223 JP2006304223W WO2006090933A1 WO 2006090933 A1 WO2006090933 A1 WO 2006090933A1 JP 2006304223 W JP2006304223 W JP 2006304223W WO 2006090933 A1 WO2006090933 A1 WO 2006090933A1
Authority
WO
WIPO (PCT)
Prior art keywords
hcv
sol
gel
cells
temperature
Prior art date
Application number
PCT/JP2006/304223
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Miyamura
Kyoko Murakami
Tetsuro Suzuki
Hiroshi Yoshioka
Yuichi Mori
Shin-Ya Ohtsubo
Original Assignee
Japan As Represented By Director-General Of National Institute Of Infectious Diseases
Mebiol Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By Director-General Of National Institute Of Infectious Diseases, Mebiol Inc. filed Critical Japan As Represented By Director-General Of National Institute Of Infectious Diseases
Priority to JP2007504860A priority Critical patent/JP4799545B2/en
Publication of WO2006090933A1 publication Critical patent/WO2006090933A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24251Methods of production or purification of viral material

Definitions

  • the present invention relates to a proliferated hepatitis C virus (hereinafter referred to as “: HCV”) particle and a method for propagating the same.
  • HCV proliferated hepatitis C virus
  • HCV is a virus that describes human liver parenchymal cells as the host, and the HCV gene was cloned in 1898. Using various gene expression systems, the characteristics of each viral antigen were clarified. As a result, a very effective diagnostic system was developed, which enables accurate diagnosis of hepatitis C, and post-transfusion hepatitis. The outbreak was almost suppressed.
  • liver parenchymal cells it is known that cells are three-dimensionally cultured to form the original cell polarity and to express differentiation functions. It has been reported that when human hepatocytes are three-dimensionally cultured with an artificial liver device such as a bioreactor, production of liver proteins such as albumin and drug metabolism functions are enhanced (Patent Document 1).
  • Patent Document 1 International Publication WO 0 1 Z 1 4 5 1 7 Disclosure of Invention
  • An object of the present invention is to provide a proliferating H C V that eliminates the above-mentioned drawbacks of the prior art, and a proliferating method thereof.
  • Another object of the present invention is to provide a proliferating H C V that can efficiently perform gene replication of H C V, formation of H C V particles, and release of H C V particles from cells, and a method of proliferating the same.
  • the inventor has obtained a gel state using a hydrogel-forming polymer that becomes a fluid sol state at a temperature lower than the sol-gel transition temperature and reversibly becomes a hydrogel state at a temperature higher than the sol-gel transition temperature. It has been found that culturing cells containing HCV particles using this system is extremely effective for achieving the above object.
  • HCV particles of the present invention are based on the above findings. More specifically, HCV (hepatitis C virus) —RNA and HCV—core are formed in the same fraction formed by centrifugation under a concentration gradient. It is characterized by the presence of protein.
  • a hydrogel-forming polymer in which the aqueous solution becomes a fluid sol state at a temperature lower than the sol-gel transition temperature and reversibly becomes a hydrogel state at a temperature higher than the sol-gel transition temperature.
  • the cells are cultured in such a state that HCV particles are released from the cells, and the mixture is solated at a temperature lower than the sol-gel transition temperature to recover or detect the HCV particles released from the cells.
  • a method for growing HCV particles is provided.
  • a TGP Thermoreversible gelation polymer used as a simple and versatile matrix for tissue culture is used in a simple and easy manner. HCV can be cultured efficiently.
  • TGP gel is a matrix using a temperature-sensitive polymer material. Contrary to agar gel and gelatin gel, TGP gel is an aqueous solution at a low temperature (15 X or less) and a gel at a high temperature (25 ° C or more). It becomes. Since it is easy to set the hardness of the gel within a range where cells and tissues can grow freely, three-dimensional culture of cells and the like is possible.
  • TGP gel melts easily by lowering the temperature, so it can be recovered with minimal damage to cells.
  • the TGP gel can arbitrarily select a culture scale from a small scale of about 0.1 mL to 10 O mL or more. It does not require special equipment such as a bioreactor. Therefore, it can be used for a variety of purposes, from screening high-throughput antiviral agents to large-scale preparation of virus particles.
  • a culture system for example, a multiwell plate (for example, 6 wells, 1 2 holes, 2 4 wells, 9 6 wells 1 plate; usually made of plastic) used for clinical examinations, etc. Can be used. Brief Description of Drawings
  • Fig. 1 is a phase contrast micrograph of HCV-expressing cells (R C YM 1) three-dimensionally cultured with TGP (A, B and C).
  • Figure 2 is an electron micrograph of an HCV-expressing cell (R C YM 1) three-dimensionally cultured with TGP (D).
  • Figure 3 is an electron micrograph of an HCV-expressing cell (R C YM 1) three-dimensionally cultured with TGP (E).
  • FIG. 4 is a graph showing the presence of HC V—RNA in the culture supernatant.
  • FIG. 5 is a graph showing the presence of HCV core protein in the culture supernatant.
  • FIG. 6 is an electron micrograph of HCV particles released out of cultured cells (A 1.0 .4 g / m 1; B 1.18 g / m l).
  • Figure 7 shows a TEM photograph (A anti-El, E2 antibody) and a negative control (primary antibody) showing a particle-like structure of 50–60 nm with gold colloid-labeled anti-HCV antibody bound thereto.
  • 2 is a TEM photograph (B normal mouse serum) showing the state when an attempt was made to bind a gold colloid-labeled anti-HCV antibody to a mouse serum.
  • FIG. 8 is a graph (A, B, C) showing the results of a sucrose density gradient analysis of the culture supernatant of R C YM 1 cells.
  • FIG. 9 is a photograph showing an example of an embodiment in which Huh-7 and RC YM 1 cells form spheres in TGP (A, a 1).
  • Fig. 9B is an enlarged photograph of part (al) of Fig. 9A.
  • FIG. 10 is a photograph showing an example of an embodiment in which Huh-7 and RC YM 1 cells form spheroids 3 in TGP (B, b 1).
  • 0 B is an enlarged photograph of the part (b 1) of FIG.
  • Fig. 11 is a photograph showing an example of an embodiment in which Huh-7 and R C YM 1 cells form a sphaed in TGP (C, D, E, F,
  • FIG. 12 HCV Yunha in R C YM 1 cells in TGP culture. It is a diagram showing the expression of the protein and the secretion of the virus molecule (A, B, C,
  • Fig. 13 shows the expression of HCV proteins and the secretion of virus molecules in R C YM 1 cells in TGP culture (E, F, G,
  • Figure 14 is an electron micrograph of an ultrathin section of R C YM l cells grown in TGP (A, B, C).
  • Fig. 15 is an immunoelectron microscopic photoblind of ultrathin sections of R C YM 1 cells cultured in TGP (A, B, C)
  • Figure 16 shows HC secreted from T C P cultured R C Y M 1 cells
  • FIG. 17 shows infectivity of V particles and neutralization of the infectivity (A, B).
  • FIG. 17 shows inhibition of HC V particle production by IFN and RBV (A, B).
  • the proliferating HCV particles of the present invention are characterized by the coexistence of HCV (hepatitis C virus), single RNA and HC V-core protein in the same fraction formed by centrifugation under a concentration gradient.
  • HCV hepatitis C virus
  • RNA and HC V-core protein are both present in “the same fraction formed by centrifugation under a concentration gradient” as described in Examples 1 to 3 described later. It can be easily confirmed under the experimental conditions.
  • the presence of HCV particles can be confirmed by the following method.
  • the presence of the HCV particles of the present invention can be reliably verified by an antigen-antibody reaction with an anti-HCV antibody labeled with a gold colloid.
  • an antigen-antibody reaction with an anti-HCV antibody labeled with a gold colloid Such a reaction with the anti-HCV antibody can be performed, for example, under the conditions of “Example 4” described later.
  • the aqueous solution becomes a fluid sol state when the temperature is lower than the sol-gel transition temperature, and reversibly becomes a gel-like gel state when the temperature is higher than the sol-gel transition temperature. It is the feature to use. More specifically, in the present invention, an aqueous solution of the gel-forming material in a fluid sol state at a temperature lower than the sol-gel transition temperature is mixed with cells containing the grown HCV particles. Culturing the cells in a gelled state at a temperature higher than the sol-gel transition temperature and releasing HCV particles from the cells; and solating the mixture at a temperature lower than the sol-gel transition temperature; Collect HCV particles released from the cells.
  • the “HCV-containing cell” to be used in the present invention is not particularly limited as long as it can include HCV in the cell during the cell culture and proliferation.
  • the HCV-containing cells for example, the following cells can be used (for details of such cells that can include HCV, see, for example, the literature Pietschmann, T. et al., Journal of Virology). 7 6; 40 0 8-2 1 (2 0 0 2). Aizaki, H. et al., Virology 3 1 4; 1 6-2 5 (2 0 0 3)).
  • Hu h 7 cells for example, commercially available from the Human Science Research Resource Bank
  • Hu h 7 cells can be preferably used as the H C V-containing cells.
  • HCV can be propagated as follows. (Introduction of HCV gene into HCV-containing cells) HCV can be transferred to HCV-containing cells (eg Hu h 7 cells) by conventional methods. Introduce genes (For information on such HCV gene introduction methods, see, for example, the literature Pietschmann, T. et al., Journal of Virology 7 6: 4 0 0 8-2 1 (2 0 0 2)) .
  • HCV-containing cells eg, Huh cells
  • Huh cells Huh cells
  • a normal medium Dulbecco medium
  • a suitable container for example, a test tube with a capacity of 10 cc
  • an aqueous solution of a sol-like gel mouth-forming polymer for example, Meiviol Co., Ltd. (Hiratsuka, Kanagawa)
  • a sol-like gel mouth-forming polymer for example, Meiviol Co., Ltd. (Hiratsuka, Kanagawa)
  • the lower layer is a gel and the upper layer is a supernatant (if it is a large container, the cooled medium is directly poured into this container, and the gel + supernatant is collected. May be recovered).
  • HCV-RNA and core protein are present in the specific density fraction (ie, it is determined that HCV particles are present).
  • the hydrogel-forming polymer used in the present invention exhibits a thermoreversible sol-gel transition in which the aqueous solution becomes a sol state at a temperature lower than the sol-gel transition temperature and becomes a gel state at a temperature higher than the sol-gel transition temperature.
  • “Hydrogel-forming high molecule” constituting the hydrogel in the present invention has a cross-linking structure or a network structure, and based on the structure, a dispersion liquid such as water is held in the inside.
  • “Hide mouth gel” refers to a gel containing at least a cross-linked or network structure containing a polymer and water that is not supported or held in the structure (dispersed liquid).
  • the “dispersed liquid” retained in the cross-linked or network structure is not particularly limited as long as it is a liquid containing water as a main component. More specifically, the dispersion liquid may be water itself, and may be either an aqueous solution and / or a water-containing liquid.
  • the water-containing liquid preferably contains 80 parts or more, more preferably 90 parts or more of water with respect to 100 parts of the whole water-containing liquid.
  • the dispersion liquid may contain an organic solvent (for example, a hydrophilic solvent such as ethanol having compatibility with water) or a contrast agent at a predetermined content.
  • an organic solvent for example, a hydrophilic solvent such as ethanol having compatibility with water
  • a contrast agent at a predetermined content.
  • the definition and measurement of “sol state”, “gel state” and “sol-gel transition temperature are described in the literature (H. Yoshioka et al., Journal of macromolecular Science, A 3 1 (1), 1 1 3 (1 9 9 4 )) Based on the definitions and methods described in)), that is, the dynamic modulus of the sample at an observation frequency of 1 Hz is measured by gradually changing the temperature from the low temperature side to the high temperature side (1/1 minute), The temperature at which the storage elastic modulus (G ′, elastic term) of the sample exceeds the loss elastic modulus (G ⁇ , viscosity term) is defined as the sol-gel transition temperature. Yes, it is defined that the state of G and G ′ is a gel. In measuring the sol-gel transition temperature, the following measurement conditions can be suitably used.
  • Measuring instrument (trade name): Stress-controlled rheometer AR 500, sample solution (or dispersion) concentration of TA Instrument Co. (however, "Hide mouth gel-forming polymer with sol-gel transition temperature") Concentration): 10 (weight)% Sample solution volume: approx. 0.8 g Measurement cell shape ⁇ Dimensions: Acrylic parallel disk (diameter 4.0 cm), gap ⁇ ⁇ ⁇ ⁇ ⁇ Measurement frequency : 1 H z Applicable stress: Linear area In the region.
  • the sol-gel transition temperature is preferably higher than 0 ° C and not higher than 37 t, and more preferably from 5 ° C. It is preferably not higher than 3 5 ⁇ (particularly not less than 10 and not more than 3 3).
  • Such a hydrogel-forming polymer having a suitable sol-gel transition temperature can be easily selected from the specific compounds described below according to the above-described screening method (sol-gel transition temperature measurement method). Can do.
  • the above-mentioned sol-gel transition temperature (in a) is the same as the culturing temperature (in b) and injection. It is preferable to set the temperature between the cooling temperature (c ° C) for solification in the operation such as recovery. That is, it is preferable that a relation of b> a> c exists between the above three temperatures a :, b, and c ° C. More specifically, (b — a) is preferably 1 to 36 ° C, more preferably 2 to 30, and (a — c) is preferably 1 to 35 ° C, and more preferably 2 to 3 0 is preferred.
  • the hydrogel based on the aqueous solution of the hydrogel-forming polymer has the following characteristics: It is preferable to exhibit solid behavior for higher frequencies, while exhibiting liquid behavior for lower frequencies. More specifically, the followability to the operation of the hydrogel can be suitably measured by the following method.
  • an aqueous solution of the hydrogel-forming polymer (1 mL as a hydrogel) is dissolved in a sol state (1 mL).
  • a sol state (1 mL).
  • a temperature sufficiently higher than the sol-gel transition temperature of the aqueous solution of the gel-forming polymer of the mouth opening for example, about 10 higher than the sol-gel transition temperature.
  • the test tube is held for 12 hours in a water bath at a temperature of 1 hour to gel the hydrogel.
  • T time (T) until the interface of the solution Z air (meniscus) is deformed by its own weight is measured.
  • T the time (T) until the interface of the solution Z air (meniscus) is deformed by its own weight is measured.
  • the hydrogel behaves as a liquid for operation at a frequency lower than 1 / T (sec—), and for operation at a frequency higher than 1 (sec— 1 ), the hydrogel as a solid. It will behave.
  • T is 1 minute to 24 hours, preferably 0.5 minutes to 10 hours.
  • the gel-like properties of a hide-mouth gel based on an aqueous solution of an eight-mouth gel-forming polymer can also be suitably measured by measuring the steady flow viscosity.
  • the steady flow viscosity can be measured, for example, by a creep experiment. In the creep experiment, a constant shear stress is applied to the sample and the temporal change in shear strain is observed. In general, in the cleaving behavior of a viscoelastic body, the shear rate changes with time, but after that the shear rate becomes constant. The ratio of shear stress to shear rate at this time is defined as steady flow viscosity 77. This steady flow viscosity is sometimes called Newtonian viscosity. However, the steady flow viscosity must be determined in a linear region that is almost independent of shear stress.
  • a stress-controlled viscoelasticity measuring device (AR 500, TA Instruments, Inc.) is used as the measuring device, and an acrylic disc (diameter 4 cm) is used as the measuring device.
  • Measurement time creep behavior (delay curve) of at least 5 minutes as the sample thickness 6 0 0 ⁇ 01 06304223 Observe. The sampling time is once per second for the first 100 seconds and then once every 10 seconds.
  • shift angle loaded with 1 0 seconds shear stress 2 X 1 0 - set to the minimum value detected 3 rad or more. Use at least 20 measurements after 5 minutes for analysis.
  • a hydrogel based on an aqueous solution of a hydrogel-forming polymer preferably has a force of s' 5 X 10 3 to 1 X 1 0 7 Pa ⁇ sec at 37 ° C. , more 8 X 1 0 3 ⁇ 8 X 1 0 6 P a - sec, in particular 1 X 1 0 4 P a ⁇ sec or more, 7 X 1 0 6 P a ⁇ sec arbitrary preferred that less.
  • is less than 5 ⁇ 10 3 Pa ⁇ sec
  • the fluidity is relatively high even in short-time observation, and it is easy to move from within the cell culture system.
  • the gel tends to show little fluidity even for long-term observation, and the aqueous solution of the hydrogel-forming polymer follows the deformation of the cell culture system. Insufficient sex.
  • exceeds 1 X 10 7 Pa-sec the possibility of the gel becoming brittle increases, and after a slight pure elastic deformation, the tendency to brittle fracture, which breaks all at once, is likely to occur.
  • the gel property of the hydrogel based on the aqueous solution of the hydrogel-forming polymer can be suitably measured also by the dynamic elastic modulus.
  • ⁇ (t) ⁇ with phase difference ⁇ 5.
  • a. / A.
  • a hide-mouth gel based on an aqueous solution of a hide-mouth gel-forming polymer exhibits the following properties (for details of such elasticity measurement, for example, Reference: Ryohei Oda, edited by Modern Industrial Chemistry 19, pages 3 59, Asakura Shoten, 1 9 85).
  • s (ta [eta] [delta]) It is preferred that s is less than 1 (more preferably not more than 08, particularly preferably not more than 0.5).
  • the ratio ⁇ (tan ⁇ ) s / (ta ⁇ 6) L ⁇ between ⁇ 13 ⁇ tan ⁇ ) s and (tan S) L is less than 1 (more preferably 0.8 or less, particularly preferably Is less than 0.5).
  • an aqueous solution of a high HP gel-forming polymer is injected into a cell culture system at a low temperature, and therefore preferably has an appropriate viscosity at a low temperature.
  • Viscosity can be measured by normal static viscosity measurement.
  • the aqueous solution of the hydrogel-forming polymer preferably has a viscosity at 10 ° C. of from 0.05 to 10 0 Pa ⁇ sec, more preferably from 0.001 to : L OP a 'sec, in particular, 0.1 l Pa to sec or more and 1 Pa to sec or less is preferable.
  • thermoreversible sol-gel transition as described above (that is, having a gel gel transition temperature)
  • it can be used in an aqueous solution of a gel-forming gel-forming polymer in the present invention.
  • the polymer is not particularly limited.
  • a specific example of a polymer in which the aqueous solution has a sol-gel transition temperature and reversibly shows a sol state at a temperature lower than the transition temperature is, for example, a block copolymer of polypropylene oxide and polyethylene oxide.
  • Polyalkylene oxide block copolymers typified by polymers, etc .; etherified celluloses such as methylcellulose and hydroxypropylcellulose; chitosan derivatives (KR Holme et al., Macromolecules, 2 4, 3 8 2 8 (1 9 9 1)) etc. are known.
  • pullulonic F-1 2 7 (trade name, BASF Wyandotte Chemica, with polypropylene oxide bonded to both ends of polypropylene oxide) Made by Is Co.) Gel has been developed. It is known that this high-concentration aqueous solution of Pluronic F- 1 2 7 becomes a high-mouth gel at about 20 or more, and an aqueous solution at a lower temperature. However, in the case of this material, it becomes a gel state only at a high concentration of about 20% by mass or more, and even if it is kept at a high concentration of about 20% by mass or more and higher than the gelation temperature, water is further added. If added, the gel will dissolve.
  • Pull-mouth nick F- 1 2 7 has a relatively low molecular weight and not only exhibits a very high osmotic pressure in a high gel state of about 20% by mass or more, but also easily penetrates the cell membrane. May adversely affect the culture of
  • the sol-gel transition temperature is usually high and is about 45 or more (N. Sarkar, J. Appl. Polyin. Scie). nce, 24, 1 0 7 3, 1 9 7 9).
  • the temperature during cell culture is usually around 37, the etherified cell mouth is in a sol state, and the etherified cellulose is used as an aqueous solution of a hydrogel-forming polymer. It is practically difficult to use.
  • the problems of conventional polymers that have a sol-gel transition point in the aqueous solution and reversibly show a sol state at a temperature lower than the transition temperature are as follows: 1) Once the gel is heated at a temperature higher than the sol-gel transition temperature. 2) The sol-gel transition temperature is higher than the cell culture temperature (near 37 ° C), and the body temperature is in the sol state. ) In order to make it gel, the polymer concentration in the aqueous solution needs to be very high, etc.
  • a hydrogel-forming polymer for example, a plurality of blocks having a cloud point
  • a hydrophilic block and the aqueous solution has a sol-gel transition temperature
  • the above problem can be solved when an aqueous solution of a hydrogel-forming polymer is formed using a polymer that exhibits a sol state reversibly at a temperature lower than the sol-gel transition temperature. .
  • a hydrogel-forming polymer using a hydrophobic bond that can be suitably used as an aqueous solution of a hydrogel-forming polymer is formed by combining a plurality of blocks having a cloud point and a hydrophilic block.
  • the hydrophilic block is preferably present because the hide-mouthed gel becomes water-soluble at a temperature lower than the sol-gel transition temperature, and the plurality of blocks having cloud points have a sol-gel transition. It is preferable to exist in order to change to a gel state at a temperature higher than the temperature.
  • a block having a cloud point dissolves in water at a temperature lower than the cloud point, and becomes insoluble in water at a temperature higher than the cloud point, so that the block forms a gel at a temperature higher than the cloud point. It serves as a cross-linking point that includes a hydrophobic bond. That is, the cloud point derived from the hydrophobic bond corresponds to the sol-gel transition temperature of the above hydrogel.
  • the cloud point and the sol-gel transition temperature do not necessarily coincide with each other. This is because the cloud point of the “block having a cloud point” described above is generally affected by the bond between the block and the hydrophilic block.
  • the octagel used in the present invention utilizes the property that not only the hydrophobic bond becomes stronger as the temperature increases, but the change is reversible with respect to temperature. Multiple cross-linking points are formed in one molecule
  • the polymer having a high-mouth gel property has a plurality of “blocks having cloud points”.
  • the hydrophilic block in the above-mentioned gel-forming polymer is As described above, the high-mouth gel-forming polymer has a function of changing to water solubility at a temperature lower than the sol-gel transition temperature, and the hydrophobic binding force increases too much at a temperature higher than the transition temperature. It has the function of forming a water-containing gel state while preventing the above-mentioned gel from agglomerating and precipitating.
  • the hide mouth gel used in the present invention is one that is decomposed and absorbed in cell culture. That is, in the present invention, the hydrogel-forming polymer is preferably decomposed in the cell culture by a hydrolysis reaction or an enzymatic reaction to be absorbed and excreted as a low molecular weight body that is harmless to the cell culture. .
  • the hydrogel-forming polymer when the hydrogel-forming polymer is formed by combining a plurality of blocks having a cloud point and a hydrophilic block, at least one of the block having a cloud point and the hydrophilic block, It is preferable that both of them are decomposed and absorbed in the cell culture.
  • the block having a cloud point is preferably a polymer block in which the temperature coefficient of water solubility is negative, more specifically, polypropylene oxide, propylene oxide and other alkylene oxides.
  • a block having a cloud point In order for a block having a cloud point to be decomposed and absorbed in cell culture, it is effective to make the block having a cloud point a polypeptide composed of a hydrophobic amino acid and a hydrophilic amino acid.
  • poly milk Polyester-type biodegradable polymers such as acid polyglycolic acid can also be used as blocks having cloud points that are decomposed and absorbed in cell culture.
  • the polymer (block having a cloud point) has a cloud point higher than 4 t but not higher than 40 t, and the polymer used in the present invention (a plurality of blocks having a cloud point and a hydrophilic block are combined).
  • the sol-gel transition temperature of the compound is preferably from 0 ° C. to 3 7 or less.
  • the cloud point can be measured by, for example, cooling an aqueous solution of about 1% by mass of the above polymer (cloud point-containing block) to obtain a transparent uniform solution, and then gradually increasing the temperature (heating rate) About 1 ⁇ Z min), and the point at which the solution becomes cloudy for the first time is taken as the cloud point.
  • poly N-substituted acrylamide derivatives and poly N monosubstituted methacrylamide derivatives that can be used in the present invention are listed below.
  • the polymer may be a homopolymer or a copolymer of a monomer constituting the polymer and another monomer.
  • a hydrophilic monomer or a hydrophobic monomer can be used as another monomer constituting such a copolymer.
  • copolymerization with hydrophilic monomers raises the cloud point of the product, and copolymerization with hydrophobic monomers lowers the cloud point of the product. Therefore, by selecting these monomers to be copolymerized, the desired cloud point (for example, from 4 ° C) A polymer having a high cloud point of 40 ° C. or less can be obtained.
  • hydrophilic monomer examples include N-vinylpyrrolidone, vinylpyridine, acrylamide, methacrylamide, N-methylacrylamide, hydroxetyl methacrylate, hydroxetyl acrylate. , Hydroxymethyl methacrylate, Hydroxymethyl acrylate, Acrylic acid with acidic group, Metaacrylic acid and their salts, Vinyl sulfonic acid, Styrene sulfonic acid, etc., and Basic group N, N—dimethylaminoethyl methacrylate, N, N—jetylaminoethyl methacrylate ⁇ , N, N—dimethylaminopropyl acrylamide, and salts thereof, but are not limited thereto. It is not something.
  • examples of the hydrophobic monomer include acrylate derivatives such as ethyl acrylate, methyl methacrylate, glycidyl methacrylate, and methacrylate derivatives, and N—n-butyl methacrylate.
  • examples thereof include, but are not limited to, N-substituted alkylmethacrylamide derivatives such as acrylamide, vinyl chloride, acrylonitrile, styrene, and vinyl acetate.
  • hydrophilic blocks to be combined with the above-mentioned block having a cloud point are methyl cellulose, dextran, polyethylene oxide, polyvinyl alcohol, and poly N-vinyl vinylidone.
  • Polyvinyl pyridine polyacrylamide, polyacrylamide, poly N—methyl acrylamide, polyhydroxymethyl acrylate, polyacrylic acid, polymethacrylic acid, polyvinyl sulfonic acid, polystyrene sulfonic acid and salts thereof;
  • Poly N N—dimethylaminoethyl methacrylate, poly N, N—dimethylaminoethyl methacrylate, poly N, N-dimethylaminopropyl amide, and salts thereof.
  • hydrophilic blocks are desirably degraded, metabolized and excreted in cell cultures.
  • Proteins such as albumin and gelatin, and hydrophilic substances such as polysaccharides such as hyaluronic acid, heparin, chitin, and chitosan.
  • Cell culture polymers are preferably used.
  • a polymerizable functional group for example, an acryloyl group
  • a polymerizable functional group for example, an acryloyl group
  • the combined product of a block having a cloud point and the hydrophilic block is obtained by block copolymerization of a monomer that gives a block having a cloud point and a monomer that gives a hydrophilic block. Is also possible.
  • the bond between the block having a cloud point and the hydrophilic block is preliminarily introduced with a reactive functional group (for example, a hydroxyl group, an amino group, a forceloxyl group, an isocyanate group, etc.), and the two are chemically reacted It can also be done by combining them. At this time, usually a plurality of reactive functional groups are introduced into the hydrophilic block.
  • a reactive functional group for example, a hydroxyl group, an amino group, a forceloxyl group, an isocyanate group, etc.
  • the bond between the polypropylene oxide having a cloud point and the hydrophilic block is, for example, a monomer that forms propylene oxide and “another hydrophilic block” by anionic polymerization or cationic polymerization (for example, By repeating sequential polymerization of ethylene oxide), a block copolymer in which polypropylene oxide and a “hydrophilic block” (for example, polyethylene oxide) are bonded can be obtained.
  • a polymerizable group for example, an acryloyl group
  • a monomer constituting a hydrophilic block is used as a copolymer. It can also be obtained by polymerization.
  • a functional S capable of binding reaction with a functional group at the end of polypropylene oxide (for example, a hydroxyl group) is introduced into a hydrophilic block, and both are reacted with each other.
  • a polymer can be obtained.
  • the present invention can also be achieved by linking materials such as pull mouth nick F-1 27 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) in which polyethylene glycol is bonded to both ends of polypropylene glycol. It is possible to obtain a hydrogel-forming polymer used in the above.
  • the polymer of the present invention in an embodiment including a block having a cloud point is water-soluble together with a hydrophilic block at a temperature lower than the cloud point, the above-mentioned “block having a cloud point” present in the molecule. It completely dissolves in water and shows a sol state. However, when the temperature of the aqueous solution of this polymer is raised to a temperature higher than the above cloud point, the “blocks with cloud point” existing in the molecule become hydrophobic and associate with each other by hydrophobic interaction. .
  • the polymer of the present invention since the hydrophilic block is still water-soluble at this time (when heated to a temperature higher than the cloud point), the polymer of the present invention has a hydrophobic association between the blocks having the cloud point in water. Generates a hydrogel with a three-dimensional network structure as a cross-linking point. When the temperature of the hydrogel is cooled again to a temperature lower than the cloud point of the “block with cloud point” existing in the molecule, the block having the cloud point becomes water-soluble, and the crosslinking point due to hydrophobic association is released. Then, the hide-mouth gel structure disappears, and the polymer of the present invention becomes a complete aqueous solution again.
  • sol-gel transition of the polymer of the present invention in a preferred embodiment is based on reversible changes in hydrophilicity and hydrophobicity of the block having a cloud point present in the molecule. Therefore, it has complete reversibility in response to temperature changes. (Gel solubility)
  • the polymer having a gel formation temperature is substantially insoluble in water at a temperature (d) higher than the sol-gel transition temperature. It is reversibly soluble in water at a temperature lower than the sol-gel transition temperature (et :).
  • the high temperature (d :) described above is preferably a temperature that is 1 ° C or higher than the sol-gel transition temperature, and more preferably a temperature that is 2 ° C or higher (especially 5 ° C or higher).
  • substantially water-insoluble means that the amount of the polymer dissolved in 100 mL of water at the above temperature (d) is 5. O g or less (or 0.5 g In the following, it is particularly preferably 0.lg or less.
  • the above-mentioned low temperature (in e) is preferably 1 or more lower (in absolute value) than the sol-gel transition temperature, more preferably 2 or more (in particular 5 or more) lower.
  • water-soluble means that the amount of the polymer dissolved in 100 mL of water at the above temperature (e ° C) is 0.5 g or more (more preferably 1.0 g or more). It is preferable that Furthermore, “reversibly water-soluble” means that the aqueous solution of the above-mentioned hydrogel-forming polymer is gelated (at a temperature higher than the sol-gel transition temperature) once at a temperature lower than the sol-gel transition temperature.
  • the polymer preferably has a viscosity of 10 to 3,000 centoise (more preferably 50 to 1,000 centipoise) when its 10% aqueous solution is 5 ° C. Such viscosity is preferably measured under the following measurement conditions, for example.
  • the aqueous solution of the hydrogel-forming polymer is gelled at a temperature higher than the sol-gel transition temperature, and then immersed in a large amount of water. The gel does not substantially dissolve.
  • the characteristics of the aqueous solution of the hydrogel-forming polymer can be confirmed, for example, as follows.
  • 0.15 g of the hydrogel-forming polymer in the present invention is dissolved in 1.35 g of distilled water at a temperature lower than the sol-gel transition temperature (for example, under ice cooling), and 1 O wt%
  • An aqueous solution was prepared, the aqueous solution was poured into a plastic petri dish having a diameter of 35 mm, and heated at 37 to form a gel having a thickness of about 1.5 mm in the petri dish. Then, the total weight (f grams) of the petri dish containing the gel is measured. Next, the entire petri dish containing the gel was allowed to stand in water in 25 O ml at 37 t for 10 hours, and then the weight (g gram) of the whole petri dish containing the gel was measured.
  • the weight reduction rate of the gel that is, (f 1 g) / f is preferably 5.0% or less, and more preferably 1 It is preferably 0% or less (particularly 0.1% or less).
  • the aqueous solution of the hydrogel-forming polymer is gelled at a temperature higher than the sol-gel transition temperature, and then in a large amount (about 0.1 to 100 times that of the gel by volume) in water. Even when immersed, the gel does not dissolve over a long period of time.
  • Such properties of the polymer used in the present invention can be achieved, for example, by the presence of two or more (multiple) blocks having cloud points in the polymer.
  • the concentration in water ie, ⁇ (polymer) / (polymer + water) ⁇ XI 0 0 (), gelation occurs at a concentration of 20% or less (and 15% or less, especially 10% or less). It is preferable to use a possible high-mouth gel-forming polymer.
  • the molecular weight of the hydrogel-forming polymer used in the present invention is preferably 30,000 or more and 3,000,000 or less, more preferably 10,000 or more and 1,000,000 or less, more preferably 500,000 or more. 5 million or less.
  • the fact that the HCV particles secreted into the culture medium of 3D culture are infectious, for example, against Huh-7.5.1 cells that highly allow HCV replication.
  • This can be confirmed by the behavior of the HCV particles. Infection is neutralized by anti-E2 antibodies or by patient sera that interfere with the binding of E2 protein to human cells.
  • the usefulness of the TGP-3D culture system for the evaluation of antiviral drugs can also be demonstrated. It can be confirmed that the 3D culture system induced by Huh-7 can produce infectious HCV particles. This system can be a valuable tool for further studying HCV morphogenesis in the natural host cell environment.
  • Polypropylene Oxide Polyethylene Oxide Copolymer (Propylene Oxide / Edylene Oxide Average Degree of Polymerization approx. 60/1800, manufactured by Asahi Denka Kogyo Co., Ltd .: Pull-mouth Nick F— 1 2 7) 10 g was dissolved in 30 ml dry chloroform, 0.13 g hexamethylene diisocyanate was added in the presence of phosphorus pentoxide, and the mixture was reacted for 6 hours under reflux at the boiling point.
  • the F-1 27 high polymer obtained as described above (in the present invention, a hydrogel-forming polymer, TGP-1) was dissolved in distilled water at a concentration of 8% by mass under ice cooling. When this aqueous solution was gently warmed, the viscosity gradually increased from 21 and solidified at about 27 ° C to form a hydrated gel. When this gel was cooled, it returned to an aqueous solution at 21 ° C. This change was observed reversibly and repeatedly. On the other hand, the F-1 27 low polymer dissolved in distilled water at a concentration of 8 mass% below freezing did not gel at all even when heated to 60 ° C or higher.
  • Polyethylene oxide tricarboxylate 10 g obtained above and polypropylene oxide diamino compound (average degree of polymerization of propylene oxide about 65, manufactured by Jefferson Chemical Co., USA, product name: Jeffermine D—400 0, cloud point: about 9) 10 g is dissolved in carbon tetrachloride 100 m 1, and 1.2 g of dicyclohexylcarbodiimide is added, followed by boiling at reflux for 6 hours. Reacted. The reaction liquid is cooled and solids are removed by filtration. Then, the solvent (carbon tetrachloride) is distilled off under reduced pressure, and the residue is vacuum-dried to combine a plurality of polypropylene oxides with polyethylene oxide.
  • the hydrogel-forming polymer (TGP-2) was obtained. This was dissolved in distilled water at a concentration of 5% by mass under ice cooling, and its sol-gel transition temperature was measured to be about 16 ° C.
  • the TGP-3 thus obtained was dissolved in distilled water at a concentration of 5% by mass under ice-cooling, and the sol-gel transition temperature was measured to be about 21 ° C.
  • O g of the gel gel forming polymer (TGP-3) is put into an EOG (ethylene oxide gas) sterilization bag (trade name: Hybrid sterilization bag, manufactured by Hogi Medical Co., Ltd.).
  • EOG ethylene oxide gas
  • the bag was filled with EOG with an EOG sterilizer (Easy Pack, manufactured by Inoue Seieido) and left at room temperature for a whole day and night. After leaving at 40 for half a day, EOO G was removed from the bag and aerated.
  • the knives were sterilized by placing them in a vacuum dryer (40 ° C) and leaving them for half a day with occasional aeration.
  • This sterilization operation does not change the sol-gel transition temperature of the polymer. And were confirmed separately.
  • the resulting precipitate was recovered by filtration, and the precipitate was vacuum-dried for 24 hours at about 40 ° C, and then dissolved again in 6 L of distilled water, and a hollow fiber type with a molecular weight cut off of 100,000 was obtained. 2 at 1 0 using an ultrafiltration membrane (HIP 10 00-4 3 manufactured by Amicon)
  • a gel-forming polymer (TGP-4) 1 g was dissolved in 9 g of distilled water under ice-cooling.
  • the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 2
  • the gel-forming polymer (TGP-3) was dissolved in distilled water at a concentration of 10% by mass, and ⁇ at 37 ° C was measured. 1 0 5 Pa ⁇ sec.
  • agar was dissolved in distilled water at a concentration of 2% by mass at 90 ° C and then at 10 for 1 hour. After gelling, when measuring 7) in 37, is that? ? Exceeded the instrument's measurement limit (1 X 10 7 Pa-sec).
  • N-Isopropyl acrylamide 7 1.0 g and n-butyl methacrylate 4.4 g were dissolved in ethanol 11 1 17 g.
  • Polyethylene glycol dimethylate PDE 600, manufactured by Nippon Oil & Fats Co., Ltd.
  • PDE 600 Polyethylene glycol dimethylate
  • APS ammonium persulfate
  • the concentrated solution was diluted by adding 4 L of cooled distilled water, and the above ultrafiltration concentration operation was performed again.
  • the above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less.
  • What was not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) was recovered and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, a high-mouth gel-forming high molecule (TGP-5) ) 7 2 g was obtained.
  • the hydrogel-forming polymer (TGP-5) lg was dissolved in 9 g of distilled water under ice-cooling.
  • the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 20 ° C.
  • N-isopropyl acrylamide 4 2. 0 g and n-butyl methyl Evening rate 4.0 g was dissolved in ethanol 59 2 g. To this was added an aqueous solution of polyethylene glycol dimethacrylate (PDE 600, 0, manufactured by Nippon Oil & Fats Co., Ltd.) 11.5 g dissolved in water 6 1 .5 g. Warmed to ° C. N, N, N ', N'-tetramethylethylenediamine (TEMED) 0.4 mL and 10% ammonium persulfate (APS) aqueous solution 4 mL The mixture was stirred for 30 minutes. Further, 4 mL of TEMEDO.
  • PDE 600 polyethylene glycol dimethacrylate
  • TEMED polyethylene glycol dimethacrylate
  • APS ammonium persulfate
  • reaction solution was cooled to 5 or less, diluted with 5 L of cold distilled water from 5 and concentrated to 2 L at 5 ° C using an ultrafiltration membrane with a molecular weight cut off of 100,000.
  • the concentrated solution was diluted by adding 4 L of cooled distilled water, and the above ultrafiltration concentration operation was performed again.
  • the above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less.
  • What was not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) was recovered and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, a hydrogel-forming high molecule (TGP-6) 4 0 g was obtained.
  • the hydrogel-forming polymer (T G P-6) 1 g was dissolved in 9 g of distilled water under ice cooling.
  • the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 7 ° C.
  • the concentrated solution was diluted by adding 4 L of cooled distilled water, and the above ultrafiltration concentration operation was performed again.
  • the above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less.
  • What was not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) was recovered and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, a hydrogel-forming high molecule (TGP-7) 2 2 g was obtained.
  • the gel-forming polymer (T G P-7) 1 g was dissolved in 9 g of distilled water under ice-cooling.
  • the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 37 ° C.
  • N-isopropyl acrylamide 44.0 g and n-butyl methacrylate ⁇ ⁇ 1.68 g were dissolved in ethanol 59 2 g.
  • Polyethylene glycol dimethylate (PDE 600, manufactured by Nippon Oil & Fats Co., Ltd.) 11.5 g of water dissolved in 65. 1 g of water was added to this, and nitrogen gas flowed at 70 ° C Warmed to.
  • TE ME DO Polyethylene glycol dimethylate
  • the concentrated solution was diluted by adding 4 L of cooled distilled water, and the above ultrafiltration concentration operation was performed again.
  • the above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less.
  • Those that were not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) were collected and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, the eight-mouthed gel-forming high molecule (TGP— 8) 2 2 g was obtained.
  • the hydrogel-forming polymer (TG P-8) 1 g was dissolved in 9 g of distilled water under ice-cooling.
  • the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 26.
  • the cells obtained above were cultured for 3 weeks in ASF 104 medium ( ⁇ 0 ⁇ 0 ⁇ 0) containing dienetin 0.5 mgzml, D-glucose 4 g / L, and fetal bovine serum 2%.
  • the drug-resistant cell line (RC YM 1) selected.
  • HC V genomic RNA is retained in RC YM 1 cells
  • Real-time reverse transcription bets (RT> - by PCR, HCV proteins were subcultured in a flask that was confirmed respectively by Western blot method this cells to 5 X 1 0 6 pieces of being produced. .
  • TGP TGP prepared in Production Example 3 broth in lg (above) 4t added 1 0 mL: The cells cultured in flasks to those cooling was added, 8 0 0 / / ⁇ to 6 well plates ⁇ 6 1 1 Poured every minute and warmed to 37 ° C to gel the TGP. The gel inoculated with these cells was overlaid with 3 ml of a culture solution warmed to 37 ° C and cultured at 37 for 10 days. During the culture, the culture medium that had been overlaid every 4 days was collected and replaced with a new culture medium.
  • the gel was cooled to 4 to be solated, added with the culture medium and diluted, and the two-dimensionally cultured RCYM 1 cells were collected by centrifugation, and the supernatant was 80 00 g, 50 min. Cell debris etc. were removed by centrifugation. The supernatant was centrifuged at 25, 00 rpm for 4 hr. Pellet ⁇ ⁇ ⁇ ⁇ Buffer (10 m M Tris-H C 1 p H 7.4
  • the results are shown in Fig. 4.
  • the black circle ( ⁇ ) in Figure 4 is the TGP culture supernatant
  • the white circle ( ⁇ ) in the figure is the HCV-RNA amount of the monolayer culture supernatant.
  • the vertical axis is the amount of HCV—RNA (10 4 copies / fraction), and the horizontal axis is the specific gravity (g / ml) of each fraction.
  • HCV-RNA was detected from the TGP culture supernatant of RC YM 1 cells with a specific gravity of 1.18 g / ml as a peak. This density was close to the value reported for the density of HCV particles in studies using HCV-infected patient sera, confirming the presence of HCV-like particles in the culture supernatant.
  • the cell culture medium was added to the TGP and cooled to 4.
  • the cells cultured in the flask were added, and 800 LZ wells were dispensed into the 6 well plate.
  • This gel was overlaid with 3 ml of culture solution and cultured at 37 ° C for 10 days. During the culture, the culture solution was layered every 4 days. Was recovered and replaced with a new culture medium.
  • the culture medium used was the same as in Example 1.
  • the gel was cooled 4: 4 (this was cooled to a sol, diluted with a culture medium, and RC YM 1 cells were collected by centrifuging by centrifugation.
  • the culture supernatant was 800 g.
  • the supernatant was centrifuged for 4 hr at 25, 00 rpm, and the pellet was lysed with 1 ml of TNE buffer, and then 10 —
  • the specific gravity of each fraction was measured, diluted three-fold with TNE buffer, and centrifuged at 50, 0 00 rpm for 2 hr.
  • Redissolved in ML TNE buffer Using this solution as a sample, the amount of HCV-core protein in each fraction was quantified by ELISA.
  • Fig. 5 The black circle ( ⁇ ) in Fig. 5 is the TGP culture supernatant, and the white circle ( ⁇ ) in the diagram is the HC V-core protein content of the monolayer culture supernatant. Vertical axis is H C V—core protein content
  • the horizontal axis is the specific gravity (g / ml) of each fraction.
  • HCV-core protein was detected in the T C P culture supernatant of R C Y M 1 cells with a specific gravity of 1.18 g / ml as a peak. This density is close to the value reported for the density of H C V particles in studies using sera from H C V infected patients. Further, according to Example 1, the presence of HCV-RNA was confirmed at the same density, and it was confirmed that HCV-like particles were present in the culture supernatant.
  • Huh 7 cells (RC YM 1 cells) expressing the entire protein of hepatitis C virus and carrying the dystrophic HCV genome that replicates autonomously were prepared. Passage up to 5 x 10 6 cells in a flask Nourished. The culture solution was added to TGP and cooled to 4t, and then the cells cultured in the flask were added. SOO ⁇ LZ well was dispensed into the 6-well plate, and TGP was gelled because it was heated to 37t. To this gel, 3 ml of the culture solution warmed to 37 was added, followed by culturing at 37 for 10 days.
  • the gel was cooled to 4 to form a sol, diluted with a culture solution, and R C YM 1 cells cultured three-dimensionally by centrifugation were collected. From the culture supernatant, cell debris and the like were removed by centrifugation at 800 g and 5 O min. The supernatant was centrifuged at 25, O O O r pm for 4 hr. The pellet was dissolved in 1 ml of TNE buffer and fractionated by centrifugation at 10–60% sucrose density gradient.
  • Fig. 6 shows the electron microscope (T EM) photographs of the 1.18 g / ml fraction (A) and 1.04 g Zml fraction (B) obtained above. As shown in FIG. 6, HCV particles were confirmed in the 1.18 g / m 1 fraction.
  • Huh 7 cells (RC YM 1 cells) that maintain the stoic HCV genome. Up to 5 ⁇ 10 6 cells were subcultured in a flask. Add culture medium to TGP and cool to 4 ° C, add cells cultured in flask, dispense 80 L L-well to 6 well plate, heat to 37 ° C, and gel TGP did. To this gel, 3 ml of the culture solution warmed to 37 was added, followed by culturing at 37 ° C for 10 days.
  • the gel was cooled to 4 to form a sol, diluted with a culture solution, and R C YM 1 cells cultured three-dimensionally by centrifugation were collected. From the culture supernatant, cell debris and the like were removed by centrifugation at 800 g and 50 min. The supernatant was centrifuged at 25,00 rpm for 4 hr. The pellet was dissolved in 1 ml of TNE buffer and fractionated by centrifugation at 10 to 60% sucrose density gradient. HCV—RNA and HC V—core protein peak specific gravity 1.1 1 ml fraction of 1 S g Zml was diluted 3 times with TNE buffer to 50, 0 00 rpm, 2 h. r Centrifuged.
  • This precipitate was redissolved in 20 L of TNE buffer. This solution was reacted with an anti-HCV envelope mouse antibody as a primary antibody and an anti-mouse antibody labeled with a gold colloid of 1 ⁇ nm as a secondary antibody, washed, and then observed with a transmission Nyoko microscope. It was. The results are shown in Fig. 7A (Ant i — E l, E 2 A b). As shown in FIG. 7A, it was observed that the gold colloid was bound to the particle-like structure of 50-60 nm by an antigen-antibody reaction.
  • Virol. 76: 4008-4021 is a genomic-length dicist ron iRNA that supports full-length HCV-RNA replication expressed by cells.
  • HCV-RNA levels RCYM 1 cells was about 5 X 1 0 6 copies Z g total RNA was determined by real-time RT- PCR.
  • HCV protein expression and subcellular localization was confirmed by Western blotting and immunofluorescence analysis.
  • RCYM 1 cells were first loaded onto the RFB column by flowing a cell suspension, and the cells were then attached to carriers and beads. The cells grew within the 3D matrix and the culture was circulated through the column in the radial direction.
  • HCV particles are separated from RCYM 1 cells. To determine whether they were delivered, culture fluids were collected after 5-10 days of culture and fractionated by continuous 10–60% (wt / vol) sucrose density gradient centrifugation. HCV RNA and core protein were found primarily at 1.15—1.20 g / ml, maximal at 1.18 g Zml fraction (FIGS. 8A and B).
  • FIG. 8 is a graph showing the results of sucrose density gradient analysis of the culture supernatant of R C YM 1 cells. As described in “Materials and Methods”, from RF Y cultured RC YM 1 (black circle), monolayer cultured RC YM 1 (white square) and RFB cultured 5 — 15 cells (white triangle) The collected culture media was separated.
  • FIG. 8 A H C V—R NA in individual fractions was measured by real time R T—P C R. The average of duplicate measurements was plotted against the corresponding fractional density.
  • Figure 8B HCV core protein in individual fractions was determined by ELISA. The average of duplicate measurements was plotted against density.
  • FIG. 8 C The culture medium of R C M 1 cells cultured in R F B was treated with 0.2% NP 40 (white circles) and then centrifuged with a sucrose gradient. Each fraction was tested for H C V—R N A by real-time R T—P C R.
  • HCV virions are thought to have a nucleoside psid and an outer envelope composed of a lipid membrane and a viral envelope * glycoprotein.
  • the culture fluid was treated with NP40 to solubilize lipids and then subjected to sucrose density gradient centrifugation.
  • HCV (Fig. 8 C) concentrated at 1. 2 2 g / ml (rather than 1 8 g Zml) has a higher density due to the de-envelopement of HCV particles. Indicates the shift. 1. 1 8 g / ml fraction
  • FIGS. 9 to 11 are photographs showing examples of embodiments in which Hu h-7 and R CYM 1 cells form spheroids in TGP. Scanning electron micrographs of RC YM 1 cells cultured in TPG for 8 days (Fig. 9 A and Fig. 9 B (a 1)) and transmission electron micrographs (Fig. 10 A (B) and diagram 1 OB (b1)).
  • Black arrow Villiform process
  • White arrow Bile tubule-like structure.
  • Fig. 1 1 A to 1 IF C-H: Hu in TGP culture (Fig. 1 1 A to C (C-E)) and monolayer culture (Fig. 1 1 D to 1 IF (F-H)) Intracellular localization of connexin32 in h-7 cells.
  • the nuclei were colored by post-staining with propidium iodide.
  • HCV replicon replication in Huh-7 cells depends on host cell growth.
  • the growth of RC YM 1 cells in the TGP culture system was significantly (significanUy) slower than that of the cells in the monolayer culture (Fig. 12 A). Therefore, the expression of HCV protein (Fig. 12 B) and the viral RNA copy number in RC YM 1 spheroids were more apprently compared to those observed in monolayer cells. It was low.
  • the results from sucrose density gradient analysis of the culture supernatant are: 1.
  • HCV RNA and core protein co-precipitation (co_ sedimentation) at a density of 1.15—1.20 g / m 1, and 18 g / A peak at m 1 was shown ( Figures 12 C (C) and 12 D (D)). This distribution was consistent with the pattern obtained in RFB culture ( Figures 8A and B). It should be noted that due to the slower growth of cells, fewer cells were used in 3D cultures in these experiments compared to monolayer cultures.
  • Figures 12 to 13 are diagrams showing expression of HCV protein and secretion of viral molecules in RC YM 1 cells in TGP culture.
  • Fig. 1 2 A Cell growth curves of T C P culture (black circle) and monolayer (white circle) of R C YM 1 cells. Cells were harvested on days 0, 3, 6, and 9 after inoculation and the number of cells determined.
  • Fig. 12B Western plot of HCV core and NS5A protein in RCYM1 cells and controls Huh-7 cells.
  • Fig. 12 C and 12 D Sucrose density gradient analysis of the culture supernatant of R C YM 1 cells.
  • HC V core protein (C) and viral RNA (D) in individual fractions were determined by ELISA and real-time RT-PCR, respectively. Representative data from three independent experiments are shown.
  • Fig. 1 3 A to 1 3 D Electron micrographs of HC V particles in the supernatant of R C YM 1 cells cultured in TGP.
  • FIG. 14 is an electron micrograph of an ultrathin section of RCYM1 cells grown in TGP. HC V particles in T C P cultured R C YM 1 cells. Globular virus-like particles (arrows) with a diameter of 50–6 Onm were observed in ER membranes ( Figures 14 A and B) and in cytoplasmic vesicles.
  • virus-like particles are often amorphic Accompanied by a false material.
  • Shimizu et al. Reported that virus-like particles similar in morphology and size were observed in human B cells infected with HCV (Shifflizu, YK, SM Feinstone, M. et al.
  • Hepatitis C virus detect ion of a cell ular virus particles by electron microscopy. Hepatology 2 3: 2 0 5— 2 0 9). Similar particle-like structures were not observed in R C YM 1 cells in monolayer cultures or in subgenomic levicons 5 — 15 cells in T GP cultures.
  • Fig. 15 is an immunoelectron micrograph of an ultrathin section of RC YM 1 cells cultured in TGP.
  • Fig. 15 A Double immunostaining with anti-E1 and anti-core monoclonal antibodies. Core protein monospecific gold particles (10 nm diameter) and E1 protein monospecific gold particles (5 nm diameter) formed rosettes on the surface of the ER membrane.
  • FIG. 16 is a diagram showing infectivity of HCV particles secreted from RC YM l cells cultured in TGP and neutralization of the infectivity.
  • Fig. 16 A Huh 7.5.1 cells infected with HCV pups (upper panel: infection (+)) or without infection (lower panel: infection (—)) were cultured for 4 days. Subsequently, immunostaining was performed with an anti-NS 5 A antibody. Nuclei were colored by post-staining with D A P I.
  • Fig. 16 B Huh 7.5.1 cells post-treated with anti-E2 antibody (AP33), NOB antibody, or anti-FLAG antibody were infected with HCV particles and incubated for 4 days. It was HCV—RNA in the cells was determined by real time RT—PCR. Average values for triplicate samples are shown with standard deviations.
  • Huh—7.5.1 cells were observed to be NS 5 A positive.
  • NS 5 A-positive cells were detected when Huh-7.5.1 cells were inoculated using cell supernatant samples obtained from 5-15 cells cultured in TGP. Was not.
  • high titers of anti-E 2 and NO B antibodies (1/3 5 0 0-1/4 0 0 0) Sera with patients (Ishii, K., D. Rosa, Y. Watanabe, T. Katayama, H. Harada, C. Wyat t, K. Kiyo sawa, H. Aizaki, Y. Matsuura, M. Houghton, S.
  • HCV particles were pre-incubated with an anti-FLAG antibody ( Figure 16B).
  • Virus in infected cells R NA No decrease was observed after treatment with anti-FLAG antibody.
  • Figure 17 shows the inhibition of HCV particle production by IFN and RBV.
  • RC YM 1 cells cultured in TGP were treated with 100 IU / m 1 of IFN_a, or 10 ⁇ ⁇ of RBV, and then HCV RNA in the cells (Figure 17A), and HCV-RNA in the medium ( Figure 17 B) was determined.
  • Media from individual samples was fractionated by sucrose gradient centrifugation and analyzed for HCV particle positive (1.18 g / ml) and negative (1.04 g / m1) fractions . Average values and standard deviations for a set of samples are shown
  • Black bar Untreated control
  • Shade bar IFN- ⁇
  • White bar R ⁇ V.
  • the level of HCV—RNA detected in the 1.0 4 g / ml fraction of the culture supernatant of the untreated group was about one-quarter of that in the 1.18 g / ml fraction.
  • Increased with the addition of IFN—Q! Or RBV ( Figure 17 A).
  • the mechanism underlying this increase is unknown, but a similar phenomenon was observed when highly cytotoxic drugs were evaluated using TGP—RCYM1 cultures.
  • TGP—RCYM1 cultures TGP—RCYM1 cultures.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide proliferated HCV with which the replication of HCV gene and the formation and release of HCV particles can be efficiently conducted and a method of proliferating the same. A method of proliferating HCV particles by using a hydrogel-forming polymer the aqueous solution of which is in the state of a fluid sol at a temperature lower than the sol-gel transmission temperature but reversibly converted into a hydrogel at a temperature higher than the sol-gel transmission temperature. At a temperature higher than the sol-gel transmission temperature, a mixture of cells having HCV enclosed therein with an aqueous solution of the hydrogel-forming polymer as described above is gelled and then the cells are cultured in this state.

Description

C型肝炎ウィルス粒子およびその増殖法  Hepatitis C virus particles and their propagation
技術分野 Technical field
本発明は、 増殖された C型肝炎ウィルス (以下 「: H C V」 と言う ) 粒子およびその増殖法に関する。  The present invention relates to a proliferated hepatitis C virus (hereinafter referred to as “: HCV”) particle and a method for propagating the same.
明 背景技術  Background art
H C Vは、 ヒ ト肝実質細胞を宿主と書するウィルスであり、 1 9 8 9年に H C V遺伝子がクローン化された。 種々の遺伝子発現系を利 用して、 各ウィルス抗原の性状が明らかにされた結果、 非常に有効 な診断系が開発され、 C型肝炎の正確な診断が可能になるとともに 、 輸血後肝炎の発生がほぼ制圧された。  HCV is a virus that describes human liver parenchymal cells as the host, and the HCV gene was cloned in 1898. Using various gene expression systems, the characteristics of each viral antigen were clarified. As a result, a very effective diagnostic system was developed, which enables accurate diagnosis of hepatitis C, and post-transfusion hepatitis. The outbreak was almost suppressed.
他方、 H C Vを効率よく複製増殖させる培養細胞系は未だ確立さ れていない。 近年, H C V遺伝子の自立複製 (レブリ コン) 細胞が 作製されたが、 ウィルス粒子形成には成功していない。 レブリコン 細胞を利用することによって、 遺伝子複製機構の研究に大きな進展 が見られたものの、 H C Vの感染、 侵入、 粒子形成機構などについ ては依然として不明な点が多い。 このため、 治療薬、 ワクチンの開 発研究も充分には進んでいない。 動物実験系としては、 チンパンジ —を用いた H C V感染モデルが確立されているものの、 非常に高価 であること、 個体差があるため再現性に欠く こと、 動物愛護の点か らも利用制限が大きいこと、 などの問題点がある。  On the other hand, a cultured cell line that efficiently replicates and propagates HCV has not yet been established. In recent years, self-replicating levicon cells of the HCV gene have been produced, but virus particle formation has not been successful. Although significant progress has been made in the study of gene replication mechanisms using levicon cells, there are still many unclear points regarding the mechanism of HCV infection, invasion, and particle formation. For this reason, the development of therapeutic drugs and vaccines has not progressed sufficiently. As an animal experiment system, an HCV infection model using chimpanzee has been established, but it is very expensive, lacks reproducibility due to individual differences, and is also very limited in terms of animal welfare. There are problems such as.
ヒ ト肝細胞の培養系には、 胎児肝細胞、 手術切除肝組織等を用い た初代培養細胞、 あるいは、 原発性肝細胞癌由来の株化細胞が用い られている。 しかしながら、 前者は入手が容易でない、 増殖性が乏 しい、 などの問題があり、 後者は、 脱分化が進み本来の肝細胞機能 が低下していることが欠点である。 肝実質細胞等の上皮性細胞では 、 細胞を三次元化培養することで、 本来の細胞極性が形成され、 分 化機能を発現するようになることが知られている。 ヒ ト肝細胞もバ ィオリアクター等の人工肝装置で三次元培養した場合、 アルブミ ン 等の肝臓蛋白の産生や薬物代謝機能が亢進することが報告されてい る (特許文献 1 ) 。 In the culture system of human hepatocytes, fetal hepatocytes, primary cultured cells using surgically excised liver tissue, or established cell lines derived from primary hepatocellular carcinoma are used. However, the former is not easy to obtain, poor proliferative The latter is disadvantageous in that dedifferentiation has progressed and the original hepatocyte function has been reduced. In epithelial cells such as liver parenchymal cells, it is known that cells are three-dimensionally cultured to form the original cell polarity and to express differentiation functions. It has been reported that when human hepatocytes are three-dimensionally cultured with an artificial liver device such as a bioreactor, production of liver proteins such as albumin and drug metabolism functions are enhanced (Patent Document 1).
(特許文献 1 ) 国際公開 WO 0 1 Z 1 4 5 1 7号公報 発明の開示  (Patent Document 1) International Publication WO 0 1 Z 1 4 5 1 7 Disclosure of Invention
本発明の目的は、 上記した従来技術の欠点を解消した増殖 H C V 、 およびその増殖方法を提供することにある。  An object of the present invention is to provide a proliferating H C V that eliminates the above-mentioned drawbacks of the prior art, and a proliferating method thereof.
本発明の他の目的は、 H C Vの遺伝子複製、 H C V粒子形成およ び H C V粒子の細胞からの放出を効率よく行うことができる増殖 H C V、 およびその増殖方法を提供することである。  Another object of the present invention is to provide a proliferating H C V that can efficiently perform gene replication of H C V, formation of H C V particles, and release of H C V particles from cells, and a method of proliferating the same.
本発明者は鋭意研究の結果、 ゾルーゲル転移温度より低温では流 動性のゾル状態となり、 ゾルーゲル転移温度より高温では可逆的に ハイ ドロゲル状態となるハイ ドロゲル形成性高分子を用いてゲル状 態とした系を利用して、 H C V粒子を包含する細胞を培養すること が、 上記目的の達成のために極めて効果的なことを見出した。  As a result of earnest research, the inventor has obtained a gel state using a hydrogel-forming polymer that becomes a fluid sol state at a temperature lower than the sol-gel transition temperature and reversibly becomes a hydrogel state at a temperature higher than the sol-gel transition temperature. It has been found that culturing cells containing HCV particles using this system is extremely effective for achieving the above object.
本発明の培養 HC V粒子は上記知見に基づく ものであり、 より詳 しく は、 濃度勾配下で遠心処理により形成された同一フラクショ ン に、 H C V (C型肝炎ウィルス) — R NAおよび H C V—コア蛋白 が共に存在することを特徴とするものである。  The cultured HCV particles of the present invention are based on the above findings. More specifically, HCV (hepatitis C virus) —RNA and HCV—core are formed in the same fraction formed by centrifugation under a concentration gradient. It is characterized by the presence of protein.
本発明によれば、 更に、 その水溶液が、 ゾルーゲル転移温度より 低温では流動性のゾル状態となり、 ゾルーゲル転移温度より高温で は可逆的にハイ ドロゲル状態となるハイ ドロゲル形成性高分子を用 い ; ゾルーゲル転移温度より低温で、 流動性のゾル状態とした前記 ゲル形成性材料の水溶液と、 増殖された H C V粒子を包含する細胞 とを混合し ; ゾルーゲル転移温度より高温において、 前記混合物を ゲル化させた状態で、 前記細胞を培養し (前記細胞から H C V粒子 を放出させ) ゾルーゲル転移温度より低温において該混合物をゾル 化させて、 前記細胞から放出された H C V粒子を回収または検出す ることを特徴とする H C V粒子の増殖方法が提供される。 Further, according to the present invention, a hydrogel-forming polymer is used in which the aqueous solution becomes a fluid sol state at a temperature lower than the sol-gel transition temperature and reversibly becomes a hydrogel state at a temperature higher than the sol-gel transition temperature. Mixing an aqueous solution of the gel-forming material in a fluid sol state at a temperature lower than the sol-gel transition temperature and cells containing the grown HCV particles; and at a temperature higher than the sol-gel transition temperature, the mixture is gelled The cells are cultured in such a state that HCV particles are released from the cells, and the mixture is solated at a temperature lower than the sol-gel transition temperature to recover or detect the HCV particles released from the cells. A method for growing HCV particles is provided.
更に本発明によれば、 上記の増殖法で生産された H C V粒子を用 いた抗ウィルス剤の評価法が提供される。  Furthermore, according to the present invention, there is provided a method for evaluating an antiviral agent using HCV particles produced by the above proliferation method.
上述したように本発明によれば、 簡便で汎用性の高い組織培養用 マ トリ ックスである T G P (Thermoreversible gelation polymer ; 本発明に用いるハイ ド口ゲル形成性高分子) を利用して、 簡便且 つ効率的に H C Vを培養することができる。  As described above, according to the present invention, a TGP (Thermoreversible gelation polymer) used as a simple and versatile matrix for tissue culture is used in a simple and easy manner. HCV can be cultured efficiently.
T G Pゲルは、 温度感受性のポリマー素材を使用したマ トリ ック スで、 寒天ゲルやゼラチンゲルとは逆に低温 ( 1 5 X 以下) で水溶 液、 高温 ( 2 5 °C以上) でゲル状となる。 ゲルの硬さを細胞、 組織 が自由に生育できる範囲に設定することが容易であるため、 細胞等 の立体的な培養が可能である。  TGP gel is a matrix using a temperature-sensitive polymer material. Contrary to agar gel and gelatin gel, TGP gel is an aqueous solution at a low temperature (15 X or less) and a gel at a high temperature (25 ° C or more). It becomes. Since it is easy to set the hardness of the gel within a range where cells and tissues can grow freely, three-dimensional culture of cells and the like is possible.
また、 T G Pゲルは、 温度を下げることにより、 容易に融解する ため、 細胞等へのダメージを最小限にとどめた形で回収することが できる。 更に T G Pゲルは、 人工肝臓装置とは異なり、 0. l mL 程度の小スケールから 1 0 O mL以上まで培養スケールを任意に選 択することができ、 また培養に用いる器具は、 通常の細胞培養用の ものであり、 バイオリアクターなどの特殊な装置を必要としない。 このため、 ハイスループッ トの抗ウィルス剤スク リーニングからゥ ィルス粒子の大量調製まで、 多様な用途に利用することが可能であ る。 本発明においては、 培養系として、 例えば、 臨床検査等に用いる マルチウエルプレー 卜 (例えば 6穴一、 1 2穴—、 2 4穴一、 9 6 穴一プレー 卜 ; 通常はブラ チック製) を使用することができる。 図面の簡単な説明 In addition, TGP gel melts easily by lowering the temperature, so it can be recovered with minimal damage to cells. Furthermore, unlike an artificial liver device, the TGP gel can arbitrarily select a culture scale from a small scale of about 0.1 mL to 10 O mL or more. It does not require special equipment such as a bioreactor. Therefore, it can be used for a variety of purposes, from screening high-throughput antiviral agents to large-scale preparation of virus particles. In the present invention, as a culture system, for example, a multiwell plate (for example, 6 wells, 1 2 holes, 2 4 wells, 9 6 wells 1 plate; usually made of plastic) used for clinical examinations, etc. Can be used. Brief Description of Drawings
図 1は、 T G Pで三次元培養した H C V発現細胞 (R C YM 1 ) の位相差顕微鏡写真である (A、 Bおよび C) 。  Fig. 1 is a phase contrast micrograph of HCV-expressing cells (R C YM 1) three-dimensionally cultured with TGP (A, B and C).
図 2は、 T G Pで三次元培養した H C V発現細胞 (R C YM 1 ) の電子顕微鏡写真である (D) 。  Figure 2 is an electron micrograph of an HCV-expressing cell (R C YM 1) three-dimensionally cultured with TGP (D).
図 3は、 T G Pで三次元培養した H C V発現細胞 (R C YM 1 ) の電子顕微鏡写真である (E) 。  Figure 3 is an electron micrograph of an HCV-expressing cell (R C YM 1) three-dimensionally cultured with TGP (E).
図 4は、 培養上清における H C V— R NAの存在を示すグラフで ある。  FIG. 4 is a graph showing the presence of HC V—RNA in the culture supernatant.
図 5は、 培養上清における H C Vコア蛋白質の存在を示すグラフ である。  FIG. 5 is a graph showing the presence of HCV core protein in the culture supernatant.
図 6は、 培養細胞外へ放出された H C V粒子の電子顕微鏡写真で ある (A 1. 0 4. g / m 1 ; B 1. 1 8 g /m l ) 。  FIG. 6 is an electron micrograph of HCV particles released out of cultured cells (A 1.0 .4 g / m 1; B 1.18 g / m l).
図 7は、 金コロイ ド標識抗 H C V抗体が結合している 5 0 — 6 0 nmの粒子様構造物を示す T EM写真 (A 抗 E l、 E 2抗体) 、 および陰性コン トロール (一次抗体にマウス血清を使用したもの) に対して、 金コロイ ド標識抗 H C V抗体の結合を試みた場合の状態 を示す T E M写真 (B 正常マウス血清) である。  Figure 7 shows a TEM photograph (A anti-El, E2 antibody) and a negative control (primary antibody) showing a particle-like structure of 50–60 nm with gold colloid-labeled anti-HCV antibody bound thereto. 2 is a TEM photograph (B normal mouse serum) showing the state when an attempt was made to bind a gold colloid-labeled anti-HCV antibody to a mouse serum.
図 8は、 R C YM 1細胞の培養上澄みのショ糖密度勾配分析の結 果を示すグラフ (A、 B、 C ) である。  FIG. 8 is a graph (A, B, C) showing the results of a sucrose density gradient analysis of the culture supernatant of R C YM 1 cells.
図 9は、 H u h— 7 と R C YM 1細胞が、 T G P中でスフエロィ ドを形成している態様の例を示す写真である (A、 a 1 ) 。 図 9 B は、 図 9 Aの部分 ( a l ) の拡大写真である。 図 1 0は、 H u h— 7 と R C YM 1細胞が、 T G P中でスフェ Π3 ィ ドを形成している態様の例を示す写真である ( B、 b 1 ) 。 図 1FIG. 9 is a photograph showing an example of an embodiment in which Huh-7 and RC YM 1 cells form spheres in TGP (A, a 1). Fig. 9B is an enlarged photograph of part (al) of Fig. 9A. FIG. 10 is a photograph showing an example of an embodiment in which Huh-7 and RC YM 1 cells form spheroids 3 in TGP (B, b 1). Figure 1
0 Bは、 図 1 0 Aの部分 ( b 1 ) の拡大写真である。 0 B is an enlarged photograph of the part (b 1) of FIG.
図 1 1 は 、 H u h - 7 と R C YM 1細胞が、 T G P中でスフェ□ ィ ドを形成している態様の例を示す写真である (C、 D、 E、 F、 Fig. 11 is a photograph showing an example of an embodiment in which Huh-7 and R C YM 1 cells form a sphaed in TGP (C, D, E, F,
G、 H) 。 G, H).
図 1 2は 、 T G P培養における R C YM 1細胞中の H C V夕ンハ。 ク質の発現と 、 ゥィルス分子の分泌を示す図である (A、 B、 C、 Figure 12, HCV Yunha in R C YM 1 cells in TGP culture. It is a diagram showing the expression of the protein and the secretion of the virus molecule (A, B, C,
D ) 。 D).
図 1 3は 、 T G P培養における R C YM 1細胞中の H C V夕ンパ ク質の発現と 、 ゥィルス分子の分泌を示す図である (E、 F、 G、 Fig. 13 shows the expression of HCV proteins and the secretion of virus molecules in R C YM 1 cells in TGP culture (E, F, G,
H) 。 H).
図 1 4は 、 T G P中で増殖された R C YM l細胞の超薄切片の電 子顕微鏡写直である ( A、 B、 C )  Figure 14 is an electron micrograph of an ultrathin section of R C YM l cells grown in TGP (A, B, C).
図 1 5は 、 T G P培養された R C YM 1細胞の超薄切片の免疫電 子顕微鏡写盲である (A、 B、 C )  Fig. 15 is an immunoelectron microscopic photoblind of ultrathin sections of R C YM 1 cells cultured in TGP (A, B, C)
図 1 6は 、 T G P培養された R C Y M 1細胞から分泌された H C Figure 16 shows HC secreted from T C P cultured R C Y M 1 cells
V粒子の感染性、 および該感染性の中和を示す図である (A、 B) 図 1 7は 、 I F Nおよび R B Vによる H C V粒子産生の阻害を示 す図である (A、 B ) 。 発明を実施するための最良の形態 FIG. 17 shows infectivity of V particles and neutralization of the infectivity (A, B). FIG. 17 shows inhibition of HC V particle production by IFN and RBV (A, B). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 必要に応じて図面を参照しつつ本発明を更に具体的に説明 する。 以下の記載において量比を表す 「部」 および 「%」 は、 特に 断らない限り質量基準とする。  Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “part” and “%” representing the quantity ratio are based on mass unless otherwise specified.
(増殖された H C V粒子) 本発明の増殖 H C V粒子は、 濃度勾配下で遠心処理により形成さ れた同一フラクショ ンに、 H C V (C型肝炎ウィルス) 一 R NAお よび HC V—コア蛋白が共(こ存在することが特徴である。 本発明に おいて 「濃度勾配下で遠心処理により形成された同一フラクショ ン 」 に 「H C V— R NAおよび H C V—コア蛋白が共に存在する」 こ とは、 後述する実施例 1〜 3の実験条件下において、 容易に確認す ることができる。 (Proliferated HCV particles) The proliferating HCV particles of the present invention are characterized by the coexistence of HCV (hepatitis C virus), single RNA and HC V-core protein in the same fraction formed by centrifugation under a concentration gradient. In the present invention, “HCV—RNA and HCV—core protein are both present” in “the same fraction formed by centrifugation under a concentration gradient” as described in Examples 1 to 3 described later. It can be easily confirmed under the experimental conditions.
(H C V粒子の確認方法)  (H C V particle confirmation method)
本発明においては、 例えば、 以下の方法で、 H C V粒子の存在を 確認することができる。  In the present invention, for example, the presence of HCV particles can be confirmed by the following method.
( 1 ) 後述するように、 H C V包含細胞の培養系における培養上清 に、 P C Rにより、 新たに H C V遺伝子が形成されたことを確認す る。 ( 2 ) これにより、 該上清の下に、 「H C V」 が存在すること が推定される。 ( 3 ) 更に、 後述する実施例に示すように、 同じ密 度フラクショ ンに、 H C V— R NAと、 H C V—コアとの双方が存 在することを確認する。 ( 4 ) 加えて、 この密度フラクショ ンの T EM (透過型電子顕微鏡) 観察により、 H C V粒子の存在を確認す ることもできる。  (1) As described later, confirm that a new HCV gene has been formed by PCR in the culture supernatant of the HCV-containing cell culture system. (2) From this, it is presumed that “HCV” exists under the supernatant. (3) Furthermore, as shown in the examples described later, it is confirmed that both HC V—RNA and HC V—core exist in the same density fraction. (4) In addition, the presence of HCV particles can be confirmed by TEM (transmission electron microscope) observation of this density fraction.
(金コロイ ド標識抗体による確認)  (Confirmation with gold colloid-labeled antibody)
本発明の H C V粒子は、 金コロイ ドで標識した抗 H C V抗体との 抗原抗体反応により、 該粒子の存在を確実に検証することができる 。 このような抗 H C V抗体との反応は、 例えば、 後述する 「実施例 4」 の条件下で行う ことができる。  The presence of the HCV particles of the present invention can be reliably verified by an antigen-antibody reaction with an anti-HCV antibody labeled with a gold colloid. Such a reaction with the anti-HCV antibody can be performed, for example, under the conditions of “Example 4” described later.
(H C V増殖方法)  (HCV proliferation method)
本発明の H C V増殖方法は、 その水溶液が、 ゾルーゲル転移温度 より低温では流動性のゾル状態となり、 ゾルーゲル転移温度より高 温では可逆的にハイ ド口ゲル状態となるハイ ド口ゲル形成性高分子 を用いることが特徴である。 より具体的には、 本発明においては、 該ゾルーゲル転移温度より低温で、 流動性のゾル状態とした前記ゲ ル形成性材料の水溶液と、 ¾殖された H C V粒子を包含する細胞と を混合し ; ゾルーゲル転移温度より高温において、 前記混合物をゲ ル化させた状態で、 前記細胞を培養し前記細胞から H C V粒子を放 出させ ; ゾルーゲル転移温度より低温において該混合物をゾル化さ せて、 前記細胞から放出された HCV粒子を回収する。 In the HCV growth method of the present invention, the aqueous solution becomes a fluid sol state when the temperature is lower than the sol-gel transition temperature, and reversibly becomes a gel-like gel state when the temperature is higher than the sol-gel transition temperature. It is the feature to use. More specifically, in the present invention, an aqueous solution of the gel-forming material in a fluid sol state at a temperature lower than the sol-gel transition temperature is mixed with cells containing the grown HCV particles. Culturing the cells in a gelled state at a temperature higher than the sol-gel transition temperature and releasing HCV particles from the cells; and solating the mixture at a temperature lower than the sol-gel transition temperature; Collect HCV particles released from the cells.
(H C V包含細胞)  (HCV containing cells)
本発明に用いるべき 「HCV包含細胞」 は、 該細胞培養 · 増殖時 に、 該細胞内で HC Vを包含することが可能である限り、 特に制限 されない。 この H C V包含細胞としては、 例えば、 以下のものが使 用可能である (このような HCVを包含することが可能な細胞の詳 細については、 例えば、 文献 Pietschmann, T.ら, Journal of Viro logy 7 6 ; 40 0 8 - 2 1 ( 2 0 0 2 ) . Aizaki, H.ら, Virolo gy 3 1 4 ; 1 6 - 2 5 ( 2 0 0 3 ) を参照することができる) 。  The “HCV-containing cell” to be used in the present invention is not particularly limited as long as it can include HCV in the cell during the cell culture and proliferation. As the HCV-containing cells, for example, the following cells can be used (for details of such cells that can include HCV, see, for example, the literature Pietschmann, T. et al., Journal of Virology). 7 6; 40 0 8-2 1 (2 0 0 2). Aizaki, H. et al., Virology 3 1 4; 1 6-2 5 (2 0 0 3)).
(H C V包含細胞の具体例)  (Specific examples of HCV-containing cells)
H u h 7 (Pietschmann, T.ら, Journal of Virology 7 6 ; 4 0 0 8 - 2 1 ( 2 0 0 2 ) . Aizaki, H.ら Virology 3 1 4 ; 1 6 - 2 5 ( 2 0 0 3 ) )  H uh 7 (Pietschmann, T. et al., Journal of Virology 7 6; 4 0 0 8-2 1 (2 0 0 2). Aizaki, H. et al. Virology 3 1 4; 1 6-2 5 (2 0 0 3 ))
(好適な H C V包含細胞)  (Suitable HCV containing cells)
H C V遺伝子の複製効率の点からは、 H C V包含細胞としては、 Hu h 7細胞 (例えば、 ヒューマンサイエンス研究資源バンクより 商業的に入手可能) を好適に使用することができる。  From the viewpoint of H C V gene replication efficiency, Hu h 7 cells (for example, commercially available from the Human Science Research Resource Bank) can be preferably used as the H C V-containing cells.
(H C V増殖方法の一態様)  (One aspect of HCV proliferation method)
本発明においては、 例えば、 以下のようにして、 HC Vを増殖す ることができる。 (H C V包含細胞への H C V遺伝子の導入) 常法により、 HC V包含細胞 (例えば、 Hu h 7細胞) に HCV 遺伝子を導入する (このような H C V遺伝子の導入方法についは、 例えば文献 Pietschmann, T. ら, Journal of Virology 7 6 : 4 0 0 8 - 2 1 ( 2 0 0 2 ) を 照することができる) 。 In the present invention, for example, HCV can be propagated as follows. (Introduction of HCV gene into HCV-containing cells) HCV can be transferred to HCV-containing cells (eg Hu h 7 cells) by conventional methods. Introduce genes (For information on such HCV gene introduction methods, see, for example, the literature Pietschmann, T. et al., Journal of Virology 7 6: 4 0 0 8-2 1 (2 0 0 2)) .
(H C V包含細胞の培養)  (Culture of H C V-containing cells)
( 1 ) H C V包含細胞 (例えば、 H u h細胞) を、 通常の培地 (ダ ルべッコ培地) を用いて、 フラスコ培養する。  (1) HCV-containing cells (eg, Huh cells) are cultured in a flask using a normal medium (Dulbecco medium).
( 2 ) ト リ プシン処理 ( 2〜 3分) により、 増殖細胞をフラスコ壁 から剥がして、 ダルベッコ培地に再懸濁する。  (2) Remove the proliferating cells from the flask wall by trypsinization (2 to 3 minutes) and resuspend them in Dulbecco's medium.
( 3 ) 血球カウンターを用いて細胞をカウン 卜して、 濃度 (すなわ ち、 一定体積中の細胞の個数) を調整する。  (3) Count the cells using a blood cell counter and adjust the concentration (ie, the number of cells in a certain volume).
( 4 ) 適当な容器 (例えば、 容積 1 0 c cの試験管) 内で、 氷上で 、 ゾル状のハイ ド口ゲル形成性高分子の水溶液 (例えば、 メ ビオー ル株式会社 (神奈川県平塚巿) から市販されている 「メ ビオール · ジエル」 ) と、 上記懸濁液とを混合して、 ピペッティ ングで均一に 懸濁する。  (4) In a suitable container (for example, a test tube with a capacity of 10 cc), on ice, an aqueous solution of a sol-like gel mouth-forming polymer (for example, Meiviol Co., Ltd. (Hiratsuka, Kanagawa)) Mix the above suspension with “Meviol Giel”, commercially available from the company, and suspend evenly by pipetting.
( 5 ) 上記懸濁液を、 6ゥエル—プレー トに分注して、 3 7 T:で培 養する ( 5分程度で、 細胞を含む懸濁液がゲル状に固まる) 。  (5) Dispense the suspension into 6 well plates and cultivate it at 37 T: (The suspension containing the cells solidifies into a gel in about 5 minutes).
( 6 ) 3 7でに暖めておいたダルベッコ培地を、 ゲル上に重層する  (6) Overlay the Dulbecco medium warmed in 3-7 on the gel.
( 7 ) 炭酸ガス一インキュベータ一で、 7〜 1 0 日間インキュベー 卜する。 (7) Incubate for 7 to 10 days in a carbon dioxide incubator.
( 8 ) 途中、 4 日毎に、 「 3 7でのダルべッコ培地」 を交換する ( デカンテーシヨ ンによる) 。  (8) During the course, replace “Dulbecco medium at 37” every 4 days (by decantation).
(H C Vの回収)  (H C V recovery)
( 1 ) 上記した培養後においては、 下層にゲル、 上層に上清となつ ている (大きい容器であれば、 この容器に、 直接に冷却した培地を 注入して、 ゲル +上清をまとめて回収しても良い) 。 この系におい 4223 ては、 容器が試験管であり小さいので、 下記のように、 上清と、 ゲ ルとを別々に回収している。 (1) After the above culture, the lower layer is a gel and the upper layer is a supernatant (if it is a large container, the cooled medium is directly poured into this container, and the gel + supernatant is collected. May be recovered). This smell Since the container is a small test tube, the supernatant and gel are collected separately as shown below.
( 2 ) 先ず、 上清を回収する。 残ったゲルを冷蔵庫にいれてゾル化 させ、 予め冷却しておいた培地に加えて懸濁する。 この懸濁液を、 上記の上清と合わせる。  (2) First, collect the supernatant. The remaining gel is put into a sol by refrigeration and suspended in a pre-cooled medium. This suspension is combined with the above supernatant.
( 3 ) 遠心で、 細胞 上清を分離する。  (3) Separate the cell supernatant by centrifugation.
( 4 ) 上清を、 ペレツティ ングにより濃縮する (すなわち、 遠心に より固形分を落とす ; ただし、 必要に応じて、 ペレツティ ングより マイルドな 「限外濾過」 によることも可能である) 。  (4) Concentrate the supernatant by pelleting (ie, centrifuge to remove solids; however, it may be milder than pelleting, if necessary).
( 5 ) 上清由来のペレツ 卜を懸濁して、 濃度勾配下で遠心する。 (5) Suspend the pellet from the supernatant and centrifuge under a concentration gradient.
( 6 ) 後述する実施例に示すように、 特定密度のフラクショ ンに、 H C V— RNAも、 コア蛋白も存在する (すなわち、 H C V粒子が あると判断する) 。 (6) As shown in the examples described later, HCV-RNA and core protein are present in the specific density fraction (ie, it is determined that HCV particles are present).
( 7 ) 同じ試料を、 必要に応じて、 後述する実施例に示すように、 H C V粒子を T E M観察により確認する。  (7) If necessary, confirm the H C V particles by TEM observation as shown in the examples described later.
(各材料の詳細)  (Details of each material)
以下、 本発明において使用すべき各材料について詳述する。  Hereinafter, each material to be used in the present invention will be described in detail.
(八ィ ド口ゲル形成性高分子)  (Eight-mouthed gel-forming polymer)
本発明に使用するハイ ドロゲル形成性高分子は、 その水溶液が、 ゾルーゲル転移温度より低い温度でゾル状態、 該ゾルーゲル転移温 度より高温でゲル状態となる熱可逆的なゾルーゲル転移を示す。 本発明においてハイ ドロゲルを構成する 「八ィ ドロゲル形成性高 分子」 とは、 架橋 (crosslinking) 構造ないし網目構造を有し、 該 構造に基づき、 その内部に水等の分散液体を保持することによりハ イ ド口ゲルを形成可能な性質を有する高分子をいう。 又、 「ハイ ド 口ゲル」 とは高分子を含む架橋ないし網目構造と該構造中に支持な いし保持された (分散液体たる) 水を少なく とも含むゲルをいう。 3 架橋ないし網目構造中に保持された 「分散液体」 は水を主要成分 として含む液体である限り、 特に制限されない。 より具体的に言え ば、 分散液体は水自身であってもよく、 また水溶液および/又は含 水液体のいずれであってもよい。 この含水液体は、 該含水液体の全 体 1 0 0部に対して、 水を 8 0部以上、 更には 9 0部以上含むこと が好ましい。 The hydrogel-forming polymer used in the present invention exhibits a thermoreversible sol-gel transition in which the aqueous solution becomes a sol state at a temperature lower than the sol-gel transition temperature and becomes a gel state at a temperature higher than the sol-gel transition temperature. “Hydrogel-forming high molecule” constituting the hydrogel in the present invention has a cross-linking structure or a network structure, and based on the structure, a dispersion liquid such as water is held in the inside. A polymer that has the property of forming a high-mouth gel. “Hide mouth gel” refers to a gel containing at least a cross-linked or network structure containing a polymer and water that is not supported or held in the structure (dispersed liquid). 3 The “dispersed liquid” retained in the cross-linked or network structure is not particularly limited as long as it is a liquid containing water as a main component. More specifically, the dispersion liquid may be water itself, and may be either an aqueous solution and / or a water-containing liquid. The water-containing liquid preferably contains 80 parts or more, more preferably 90 parts or more of water with respect to 100 parts of the whole water-containing liquid.
本発明の目的に反しない限り、 上記分散液体は、 所定の含量で有 機溶媒 (例えば、 水と相溶性を有するエタノール等の親水性溶媒) あるいは造影剤を含んでいてもよい。  Unless it is contrary to the object of the present invention, the dispersion liquid may contain an organic solvent (for example, a hydrophilic solvent such as ethanol having compatibility with water) or a contrast agent at a predetermined content.
(ゾルーゲル転移温度)  (Sol-gel transition temperature)
本発明において 「ゾル状態」 、 「ゲル状態」 および 「ゾルーゲル 転移温度の定義および測定は、 文献 (H. Yoshiokaら、 Journal of macromolecular Science, A 3 1 ( 1 ) , 1 1 3 ( 1 9 9 4 ) ) に記載された定義および方法に基づく。 即ち、 観測周波数 1 H z に おける試料の動的弾性率を低温側から高温側へ徐々に温度を変化 ( 1 / 1分) させて測定し、 該試料の貯蔵弾性率 (G '、 弾性項) が損失弾性率 (G〃 、 粘性項) を上回る点の温度をゾル—ゲル転移 温度とする。 一般に、 G〃 〉 G 'の状態がゾルであり、 G〃 ぐ G ' の状態がゲルであると定義される。 このゾルーゲル転移温度の測定 に際しては、 下記の測定条件が好適に使用可能である。  In the present invention, the definition and measurement of “sol state”, “gel state” and “sol-gel transition temperature are described in the literature (H. Yoshioka et al., Journal of macromolecular Science, A 3 1 (1), 1 1 3 (1 9 9 4 )) Based on the definitions and methods described in)), that is, the dynamic modulus of the sample at an observation frequency of 1 Hz is measured by gradually changing the temperature from the low temperature side to the high temperature side (1/1 minute), The temperature at which the storage elastic modulus (G ′, elastic term) of the sample exceeds the loss elastic modulus (G〃, viscosity term) is defined as the sol-gel transition temperature. Yes, it is defined that the state of G and G ′ is a gel.In measuring the sol-gel transition temperature, the following measurement conditions can be suitably used.
ぐ動的 , 損失弾性率の測定条件 > Measurement conditions for dynamic and loss modulus>
測定機器 (商品名) : ス トレス制御式レオメーター AR 5 0 0 、 T Aインスツルメン ト社製 試料溶液 (ないし分散液) の濃度 ( ただし 「ゾルーゲル転移温度を有するハイ ド口ゲル形成性高分子」 の濃度として) : 1 0 (重量) % 試料溶液の量 : 約 0. 8 g 測 定用セルの形状 · 寸法 : アク リル製平行円盤 (直径 4. 0 c m) 、 ギャップ β Ο Ο ^ιη 測定周波数 : 1 H z 適用ス トレス : 線形領 域内。 Measuring instrument (trade name): Stress-controlled rheometer AR 500, sample solution (or dispersion) concentration of TA Instrument Co. (however, "Hide mouth gel-forming polymer with sol-gel transition temperature") Concentration): 10 (weight)% Sample solution volume: approx. 0.8 g Measurement cell shape · Dimensions: Acrylic parallel disk (diameter 4.0 cm), gap β Ο Ο ^ ιη Measurement frequency : 1 H z Applicable stress: Linear area In the region.
本発明においては、 細胞ないし培養された H C V粒子の熱的損傷 を防ぐ点からは、 上記ゾルーゲル転移温度は 0 °Cより高く、 3 7 t 以下であることが好ましく、 更には、 5 °Cより高く 3 5 ^以下 (特 に 1 0で以上 3 3 以下である) ことが好ましい。  In the present invention, from the viewpoint of preventing thermal damage of cells or cultured HCV particles, the sol-gel transition temperature is preferably higher than 0 ° C and not higher than 37 t, and more preferably from 5 ° C. It is preferably not higher than 3 5 ^ (particularly not less than 10 and not more than 3 3).
このような好適なゾルーゲル転移温度を有するハイ ドロゲル形成 性高分子は、 後述するような具体的な化合物の中から、 上記したス ク リーニング方法 (ゾルーゲル転移温度測定法) に従って容易に選 択することができる。 本発明においてハイ ド口ゲル形成性高分子の 水溶液をゲル化させ、 H C V包含細胞を培養する操作においては、 上記したゾルーゲル転移温度 ( aで) を、 培養時の温度 ( bで) と 、 注入、 回収等の操作においてゾル化させための冷却時の温度 ( c °C ) との間に設定することが好ましい。 すなわち、 上記した 3種の 温度 a :、 bで、 および c °Cの間には、 b > a > c の関係があるこ とが好ましい。 より具体的には、 ( b — a ) は 1 〜 3 6 °C、 更には 2 〜 3 0 であることが好ましく、 また ( a — c ) は 1 〜 3 5 °C、 更には 2 〜 3 0でであることが好ましい。  Such a hydrogel-forming polymer having a suitable sol-gel transition temperature can be easily selected from the specific compounds described below according to the above-described screening method (sol-gel transition temperature measurement method). Can do. In the present invention, in the operation of gelling an aqueous solution of a gel gel-forming polymer and culturing HCV-containing cells, the above-mentioned sol-gel transition temperature (in a) is the same as the culturing temperature (in b) and injection. It is preferable to set the temperature between the cooling temperature (c ° C) for solification in the operation such as recovery. That is, it is preferable that a relation of b> a> c exists between the above three temperatures a :, b, and c ° C. More specifically, (b — a) is preferably 1 to 36 ° C, more preferably 2 to 30, and (a — c) is preferably 1 to 35 ° C, and more preferably 2 to 3 0 is preferred.
(ハイ ドロゲル形成性高分子の水溶液の動作に対する追従性) 本発明においてハイ ドロゲル形成性高分子の水溶液に基づくハイ ド口ゲルは、 その細胞等に対する形態変化への追従性のバラシスの 点から、 より高い周波数に対しては固体的な挙動を示し、 他方、 よ り低い周波数に対しては液体的な挙動を示すことが好ましい。 より 具体的には、 該ハイ ドロゲルの動作に対する追従性は以下の方法で 好適に測定することが可能である。  (Followability of the aqueous solution of the hydrogel-forming polymer in the aqueous solution) In the present invention, the hydrogel based on the aqueous solution of the hydrogel-forming polymer has the following characteristics: It is preferable to exhibit solid behavior for higher frequencies, while exhibiting liquid behavior for lower frequencies. More specifically, the followability to the operation of the hydrogel can be suitably measured by the following method.
(動作に対する追従性の測定方法)  (Measuring method for tracking performance)
ハイ ドロゲル形成性の高分子を含む本発明においてハイ ドロゲル 形成性高分子の水溶液 (ハイ ド口ゲルとして 1 m L ) をゾル状態 ( ゾルーゲル転移温度より低い温度) で内径 1 c mの試験管に入れ、 該ハイ ド口ゲル形成性高分子の水溶液のゾルーゲル転移温度より も 充分高い温度 (たとえば該ゾルーゲル転移温度より も約 1 0で高い 温度) と した水浴中で上記試験管を 1 2時間保持し、 該ハイ ドロゲ ルをゲル化させる。 In the present invention including a hydrogel-forming polymer, an aqueous solution of the hydrogel-forming polymer (1 mL as a hydrogel) is dissolved in a sol state (1 mL). Put it in a test tube with an inner diameter of 1 cm at a temperature lower than the sol-gel transition temperature), and a temperature sufficiently higher than the sol-gel transition temperature of the aqueous solution of the gel-forming polymer of the mouth opening (for example, about 10 higher than the sol-gel transition temperature). The test tube is held for 12 hours in a water bath at a temperature of 1 hour to gel the hydrogel.
次いで、 該試験管の上下を逆にした場合に溶液 Z空気の界面 (メ ニスカス) が溶液の自重で変形するまでの時間 (T) を測定する。 ここで 1 /T ( s e c— ) より低い周波数の動作に対して該ハイ ドロゲルは液体として振舞い、 1 ( s e c— 1 ) より高い周波 数の動作に対しては、 該ハイ ド口ゲルは固体として振舞う ことにな る。 本発明においてハイ ドロゲルの場合には Tは 1分〜 2 4時間、 好ましくは.5分〜 1 0時間である。 Next, when the test tube is turned upside down, the time (T) until the interface of the solution Z air (meniscus) is deformed by its own weight is measured. Here, the hydrogel behaves as a liquid for operation at a frequency lower than 1 / T (sec—), and for operation at a frequency higher than 1 (sec— 1 ), the hydrogel as a solid. It will behave. In the present invention, in the case of a hydrogel, T is 1 minute to 24 hours, preferably 0.5 minutes to 10 hours.
(定常流動粘度)  (Steady flow viscosity)
本発明において八イ ド口ゲル形成性高分子の水溶液に基づくハイ ド口ゲルのゲル的性質は、 定常流動粘度の測定によっても好適に測 定可能である。 定常流動粘度 (ィ一夕) は、 例えばク リープ実験 によって測定することができる。 ク リープ実験では一定のずり応力 を試料に与え、 ずり歪の時間変化を観測する。 一般に粘弾性体のク リーブ挙動では、 初期にずり速度が時間とともに変化するが、 その 後ずり速度が一定となる。 この時のずり応力とずり速度の比を定常 流動粘度 77 と定義する。 この定常流動粘度は、 ニュートン粘度と呼 ばれることもある。 ただし、 ここで定常流動粘度は、 ずり応力にほ とんど依存しない線形領域内で決定されなければならない。  In the present invention, the gel-like properties of a hide-mouth gel based on an aqueous solution of an eight-mouth gel-forming polymer can also be suitably measured by measuring the steady flow viscosity. The steady flow viscosity can be measured, for example, by a creep experiment. In the creep experiment, a constant shear stress is applied to the sample and the temporal change in shear strain is observed. In general, in the cleaving behavior of a viscoelastic body, the shear rate changes with time, but after that the shear rate becomes constant. The ratio of shear stress to shear rate at this time is defined as steady flow viscosity 77. This steady flow viscosity is sometimes called Newtonian viscosity. However, the steady flow viscosity must be determined in a linear region that is almost independent of shear stress.
具体的な測定方法は、 測定装置としてス ト レス制御式粘弾性測定 装置 (AR 5 0 0、 T Aイ ンスツルメン ト社製) を、 測定デバイス にアク リル製円盤 (直径 4 c m) を使用し、 試料厚み 6 0 0 ^ 01と して少なく とも 5分間以上の測定時間ク リープ挙動 (遅延曲線) を 06304223 観測する。 サンプリ ング時間は、 最初の 1 0 0秒間は 1秒に 1回、 その後は 1 0秒に 1回とする。 適用するずり応力 (ス ト レス) の決 定にあたっては、 1 0秒間ずり応力を負荷して偏移角度が 2 X 1 0 - 3 r a d以上検出される最低値に設定する。 解析には 5分以降の 少なく とも 2 0以上の測定値を採用する。 本発明においてハイ ドロ ゲル形成性高分子の水溶液に基づくハイ ドロゲルは、 3 7 °Cにおい て、 力 s' 5 X 1 03 ~ 1 X 1 07 P a · s e cであることが好まし く、 更には 8 X 1 0 3 〜 8 X 1 0 6 P a - s e c , 特に 1 X 1 04 P a · s e c以上、 7 X 1 06 P a · s e c以下であることが好ま しい。 Specifically, a stress-controlled viscoelasticity measuring device (AR 500, TA Instruments, Inc.) is used as the measuring device, and an acrylic disc (diameter 4 cm) is used as the measuring device. Measurement time creep behavior (delay curve) of at least 5 minutes as the sample thickness 6 0 0 ^ 01 06304223 Observe. The sampling time is once per second for the first 100 seconds and then once every 10 seconds. When the decision of the application to shear stress (less scan g), shift angle loaded with 1 0 seconds shear stress 2 X 1 0 - set to the minimum value detected 3 rad or more. Use at least 20 measurements after 5 minutes for analysis. In the present invention, a hydrogel based on an aqueous solution of a hydrogel-forming polymer preferably has a force of s' 5 X 10 3 to 1 X 1 0 7 Pa · sec at 37 ° C. , more 8 X 1 0 3 ~ 8 X 1 0 6 P a - sec, in particular 1 X 1 0 4 P a · sec or more, 7 X 1 0 6 P a · sec arbitrary preferred that less.
上記 τίが 5 X 1 0 3 P a · s e c未満では短時間の観測でも流動 性が比較的高くなり、 細胞の培養系内から移動し易くなる。 他方、 が 1 X 1 07 P a · s e c を超えると、 長時間の観測でもゲルが 流動性をほとんど示さなくなる傾向が強まり、 細胞の培養系の変形 に対するハイ ドロゲル形成性高分子の水溶液の追従性が不充分とな る。 また、 が 1 X 1 0 7 P a - s e c を超えるとゲルが脆さを呈 する可能性が強まり、 わずかの純弾性変形の後、 一挙にもろく破壊 する脆性破壊が生起しやすい傾向が強まる。 If the above τί is less than 5 × 10 3 Pa · sec, the fluidity is relatively high even in short-time observation, and it is easy to move from within the cell culture system. On the other hand, when exceeds 1 X 1 0 7 Pa · sec, the gel tends to show little fluidity even for long-term observation, and the aqueous solution of the hydrogel-forming polymer follows the deformation of the cell culture system. Insufficient sex. In addition, if exceeds 1 X 10 7 Pa-sec, the possibility of the gel becoming brittle increases, and after a slight pure elastic deformation, the tendency to brittle fracture, which breaks all at once, is likely to occur.
(動的弾性率)  (Dynamic elastic modulus)
本発明においてハイ ドロゲル形成性高分子の水溶液に基づくハイ ドロゲルのゲル的性質は、 動的弾性率によっても好適に測定可能で ある。 該ゲルに振幅?·。 、 振動数を ω/ 2 πとする歪みァ ( t ) = ァ 。 c o s c t ( t は時間) を与えた際に、 一定応力をひ 。 、 位相 差を <5 とする σ ( t ) = σ。 c o s ( ω t + δ ) が得られたとする 。 | G | = a。 /ア。 とすると、 動的弾性率 G ' (ω) = I G I c o s 0 と、 損失弾性率 G" ( ω ) = I G I s i n <5 との比 (G" Z G ' ) が、 ゲル的性質を表す指標となる。 JP2006/304223 本発明において八ィ ドロゲル形成性高分子の水溶液に基づくハイ ドロゲルは、 ω/ 2 = 1 Η ζの歪み (速い動作に対応する) に対 しては固体として挙動し、 且つ、 6 / 2 兀 = 1 0— 4 ^12 の歪み ( 遅い動作に対応する) に対しては流体として挙動する。 より具体的 には、 本発明においてハイ ド口ゲル形成性高分子の水溶液に基づく ハイ ド口ゲルは、 以下の性質を示すことが好ましい (このような弾 性率測定の詳細については、 例えば、 文献 : 小田良平ら編集、 近代 工業化学 1 9、 第 3 5 9頁、 朝倉書店、 1 9 8 5を参照することが できる) 。 In the present invention, the gel property of the hydrogel based on the aqueous solution of the hydrogel-forming polymer can be suitably measured also by the dynamic elastic modulus. Amplitude in the gel? ·. , The distortion with the frequency ω / 2 π (t) =. When cosct (t is time) is given, constant stress is applied. , Σ (t) = σ with phase difference <5. Suppose that cos (ω t + δ) is obtained. | G | = a. / A. Then, the ratio of dynamic elastic modulus G '(ω) = IGI cos 0 and loss elastic modulus G "(ω) = IGI sin <5 (G"ZG') is an indicator of gel-like properties . JP2006 / 304223 In the present invention, a hydrogel based on an aqueous solution of an octagel-forming polymer behaves as a solid with respect to a strain of ω / 2 = 1 Η ζ (corresponding to a fast movement), and 6 / 2 兀 = 1 0—4 Behaves as a fluid to 4 ^ 12 distortion (corresponding to slow motion). More specifically, in the present invention, it is preferable that a hide-mouth gel based on an aqueous solution of a hide-mouth gel-forming polymer exhibits the following properties (for details of such elasticity measurement, for example, Reference: Ryohei Oda, edited by Modern Industrial Chemistry 19, pages 3 59, Asakura Shoten, 1 9 85).
ω/ 2 π = 1 Η ζ (ゲルが固体として挙動する振動数) の際に、 When ω / 2 π = 1 Η ζ (frequency at which the gel behaves as a solid)
( G " / G ' ) s = ( t a η δ ) sが 1未満であることが好まし い (より好ましくは 0 8以下、 特に好ましくは 0. 5以下) 。 (G "/ G ') s = (ta [eta] [delta]) It is preferred that s is less than 1 (more preferably not more than 08, particularly preferably not more than 0.5).
ω / 2 7t = 1 0一 4 H z (ゲルが液体として挙動する振動数) の 際に、 ( G " Z G ' ) L = ( t a n δ ) Lが 1以上であることが 好ましい (より好まし <は 1. 5以上、 特に好ましくは 2以上) 。 (G "ZG ') L = (tan δ) L is preferably 1 or more when ω / 2 7t = 1 0 to 1 4 Hz (frequency at which the gel behaves as a liquid) <Is 1.5 or more, particularly preferably 2 or more).
±13 κ t a n δ ) s と 、 ( t a n S ) Lとの比 { ( t a n δ ) s / ( t a η 6 ) L } が 1未満であることが好ましい (より 好ましくは 0. 8以下 、 特に好ましくは 0. 5以下) 。  Preferably, the ratio {(tan δ) s / (ta η 6) L} between ± 13 κ tan δ) s and (tan S) L is less than 1 (more preferably 0.8 or less, particularly preferably Is less than 0.5).
<測定条件 >  <Measurement conditions>
ハイ ド口ゲル形成性高分子の水溶液中のハイ ドロゲル形成性高分 子の濃度 : 約 8質量% t曰度 : 3 7で 測定機器 : ス トレス制御式 レオメ一夕 (機種名 : A R 5 0 0、 T Aインスツルメンッ社製) 測定用セルの形状 · 寸法 : ステンレス製平行円盤 (直径 4. 0 c m ) 、 ギャップ 6 0 0 m 適用ス トレス : 線形領域内。  Concentration of hydrogel-forming polymer in aqueous solution of hydrogel-forming polymer: approx. 8% by mass t: Degree of measurement: 3 7 Measuring instrument: Stress control type Rheomechi (Model name: AR 5 0 0, manufactured by TA Instruments Inc.) Shape of measurement cell · Dimensions: Stainless steel parallel disk (diameter 4.0 cm), gap 60 m Applicable stress: Within linear range.
(低温での流動性)  (Fluidity at low temperature)
本発明においてハイ H Pゲル形成性高分子の水溶液は低温で細胞 培養系へ注入するため 、 低温で適度な粘性を有することが好ましい 。 粘性の測定は通常の静的粘性率の測定によって求めることが可能 である。 In the present invention, an aqueous solution of a high HP gel-forming polymer is injected into a cell culture system at a low temperature, and therefore preferably has an appropriate viscosity at a low temperature. . Viscosity can be measured by normal static viscosity measurement.
本発明においてハイ ドロゲル形成性高分子の水溶液は 1 0 °cにお ける粘性率が、 0. 0 0 5〜 1 0 0 P a · s e cであることが好ま しく、 更には 0. 0 1〜 : l O P a ' s e c、 特に 0. l P a . s e c以上、 1 P a · s e c以下であることが好ましい。  In the present invention, the aqueous solution of the hydrogel-forming polymer preferably has a viscosity at 10 ° C. of from 0.05 to 10 0 Pa · sec, more preferably from 0.001 to : L OP a 'sec, in particular, 0.1 l Pa to sec or more and 1 Pa to sec or less is preferable.
<測定条件 > <Measurement conditions>
ハイ ドロゲル形成性高分子の水溶液中のハイ ドロゲル形成性高分 子の濃度 : 約 8質量% 温度 : 1 0 °C 測定機器 : ス トレス制御式 レオメータ (機種名 : A R 5 0 0、 T Aイ ンスツルメンッ社製) 測定用セルの形状 · 寸法 : ステンレス製平行円盤 (直径 4. 0 c m) 、 ギャップ 6 0 0 ΠΙ 適用ス トレス : 線形領域内。  Concentration of hydrogel-forming polymer in aqueous solution of hydrogel-forming polymer: Approx. 8% by mass Temperature: 10 ° C Measuring instrument: Stress-controlled rheometer (Model name: AR 500, TA insturmen Measurement cell shape · Dimensions: Stainless steel parallel disk (diameter 4.0 cm), gap 6 0 0 ΠΙ Applicable stress: Within the linear region.
(ハイ ド口ゲル形成性高分子)  (Hide mouth gel-forming polymer)
上述したような熱可逆的なゾル—ゲル転移を示す (すなわち、 ゾ ルーゲル転移温度を有する) 限り、 本発明においてハイ ド口ゲル形 成性高分子の水溶液に使用可能なハイ ド口ゲル形成性の高分子は特 に制限されない。  As long as it exhibits a thermoreversible sol-gel transition as described above (that is, having a gel gel transition temperature), it can be used in an aqueous solution of a gel-forming gel-forming polymer in the present invention. The polymer is not particularly limited.
その水溶液がゾルーゲル転移温度を有し、 該転移温度より低い温 度で可逆的にゾル状態を示す高分子の具体例としては、 例えば、 ポ リプロピレンォキサイ ドとポリエチレンォキサイ ドとのブロック共 重合体等に代表されるポリアルキレンォキサイ ドブロック共重合体 ; メチルセルロース、 ヒ ドロキシプロピルセルロース等のエーテル 化セルロース ; キトサン誘導体 (K. R. Holmeら、 Macromolecules , 2 4 , 3 8 2 8 ( 1 9 9 1 ) ) 等が知られている。  A specific example of a polymer in which the aqueous solution has a sol-gel transition temperature and reversibly shows a sol state at a temperature lower than the transition temperature is, for example, a block copolymer of polypropylene oxide and polyethylene oxide. Polyalkylene oxide block copolymers typified by polymers, etc .; etherified celluloses such as methylcellulose and hydroxypropylcellulose; chitosan derivatives (KR Holme et al., Macromolecules, 2 4, 3 8 2 8 (1 9 9 1)) etc. are known.
ポリアルキレンオキサイ ドブロック共重合体として、 ポリプロピ レンォキサイ ドの両端にボリエチレンォキサイ ドが結合したプル口 ニック (Pluronic) F - 1 2 7 (商品名、 BASF Wyandotte Chemica Is Co. 製) ゲルが開発されている。 このプルロニック F— 1 2 7 の高濃度水溶液は、 約 2 0で以上でハイ ド口ゲルとなり、 これより 低い温度で水溶液となることが知られている。 しかしながら、 この 材料の場合は約 2 0質量%以上の高濃度でしかゲル状態にはならず 、 また約 2 0質量%以上の高濃度でゲル化温度より高温に保持して も、 更に水を加えるとゲルが溶解してしまう。 また、 プル口ニック F— 1 2 7は分子量が比較的小さく、 約 2 0質量%以上の高度のゲ ル状態で非常に高い浸透圧を示すのみならず細胞膜を容易に透過す るので、 細胞の培養に悪影響を及ぼす可能性がある。 As a polyalkylene oxide block copolymer, pullulonic F-1 2 7 (trade name, BASF Wyandotte Chemica, with polypropylene oxide bonded to both ends of polypropylene oxide) Made by Is Co.) Gel has been developed. It is known that this high-concentration aqueous solution of Pluronic F- 1 2 7 becomes a high-mouth gel at about 20 or more, and an aqueous solution at a lower temperature. However, in the case of this material, it becomes a gel state only at a high concentration of about 20% by mass or more, and even if it is kept at a high concentration of about 20% by mass or more and higher than the gelation temperature, water is further added. If added, the gel will dissolve. Pull-mouth nick F- 1 2 7 has a relatively low molecular weight and not only exhibits a very high osmotic pressure in a high gel state of about 20% by mass or more, but also easily penetrates the cell membrane. May adversely affect the culture of
一方、 メチルセルロース、 ヒ ドロキシプロピルセルロース等に代 表されるエーテル化セルロースの場合は、 通常は、 ゾル—ゲル転移 温度が高く約 4 5 以上である (N. Sarkar, J. Appl. Polyin. Scie nce, 2 4, 1 0 7 3, 1 9 7 9 ) 。 これに対して、 細胞の培養時 の温度は通常 3 7 近辺の温度であるため、 上記エーテル化セル口 ースはゾル状態であり、 該エーテル化セルロースをハイ ドロゲル形 成性高分子の水溶液として用いることは事実上困難である。  On the other hand, in the case of etherified cellulose represented by methyl cellulose, hydroxypropyl cellulose, etc., the sol-gel transition temperature is usually high and is about 45 or more (N. Sarkar, J. Appl. Polyin. Scie). nce, 24, 1 0 7 3, 1 9 7 9). In contrast, since the temperature during cell culture is usually around 37, the etherified cell mouth is in a sol state, and the etherified cellulose is used as an aqueous solution of a hydrogel-forming polymer. It is practically difficult to use.
上記したように、 その水溶液中がゾルーゲル転移点を有し、 且つ 該転移温度より低い温度で可逆的にゾル状態を示す従来の高分子の 問題点は、 1 ) ゾルーゲル転移温度より高温で一旦ゲル化しても、 更に水を添加するとゲルが溶解してしまう こと、 2 ) ゾルーゲル転 移温度が細胞の培養時の温度 ( 3 7 °C近辺) より も高く、 体温では ゾル状態であること、 3 ) ゲル化させるためには、 水溶液の高分子 濃度を非常に高くする必要があること、 等である。  As described above, the problems of conventional polymers that have a sol-gel transition point in the aqueous solution and reversibly show a sol state at a temperature lower than the transition temperature are as follows: 1) Once the gel is heated at a temperature higher than the sol-gel transition temperature. 2) The sol-gel transition temperature is higher than the cell culture temperature (near 37 ° C), and the body temperature is in the sol state. ) In order to make it gel, the polymer concentration in the aqueous solution needs to be very high, etc.
これに対して、 本発明者らの検討によれば、 好ましくは 0でより 高く 3 7で以下であるゾルーゲル転移温度を有するハイ ドロゲル形 成性の高分子 (例えば、 曇点を有する複数のブロックと親水性のブ ロックが結合してなり、 その水溶液がゾルーゲル転移温度を有し、 且つ、 ゾルーゲル転移温度より低い温度で可逆的にゾル状態を示す 高分子) を用いてハイ ドロゲル形成性高分子の水溶液を構成した場 合に、 上記問題は解決される'ことが判明している。 On the other hand, according to the study by the present inventors, a hydrogel-forming polymer (for example, a plurality of blocks having a cloud point), preferably having a sol-gel transition temperature higher than 0 and lower than 37. And a hydrophilic block, and the aqueous solution has a sol-gel transition temperature, In addition, it is known that the above problem can be solved when an aqueous solution of a hydrogel-forming polymer is formed using a polymer that exhibits a sol state reversibly at a temperature lower than the sol-gel transition temperature. .
(好適なハイ ドロゲル形成性高分子)  (Suitable hydrogel-forming polymer)
本発明においてハイ ドロゲル形成性高分子の水溶液として好適に 使用可能な疎水結合を利用したハイ ド口ゲル形成性高分子は、 曇点 を有する複数のブロックと親水性のブロックが結合してなることが 好ましい。 該親水性のブロックは、 ゾルーゲル転移温度より低い温 度で該ハイ ド口ゲルが水溶性になるために存在することが好ましく 、 また曇点を有する複数のブロックは、 ハイ ド口ゲルがゾルーゲル 転移温度より高温でゲル状態に変化するために存在することが好ま しい。 換言すれば、 曇点を有するブロックは該曇点より低い温度で は水に溶解し、 該曇点より高温では水に不溶性に変化するために、 曇点より高温で、 該ブロックはゲルを形成するための疎水結合を含 む架橋点としての役割を果たす。 すなわち、 疎水性結合に由来する 曇点が、 上記ハイ ドロゲルのゾルーゲル転移温度に対応する。  In the present invention, a hydrogel-forming polymer using a hydrophobic bond that can be suitably used as an aqueous solution of a hydrogel-forming polymer is formed by combining a plurality of blocks having a cloud point and a hydrophilic block. Is preferred. The hydrophilic block is preferably present because the hide-mouthed gel becomes water-soluble at a temperature lower than the sol-gel transition temperature, and the plurality of blocks having cloud points have a sol-gel transition. It is preferable to exist in order to change to a gel state at a temperature higher than the temperature. In other words, a block having a cloud point dissolves in water at a temperature lower than the cloud point, and becomes insoluble in water at a temperature higher than the cloud point, so that the block forms a gel at a temperature higher than the cloud point. It serves as a cross-linking point that includes a hydrophobic bond. That is, the cloud point derived from the hydrophobic bond corresponds to the sol-gel transition temperature of the above hydrogel.
ただし、 該曇点とゾルーゲル転移温度とは必ずしも一致しなくて もよい。 これは、 上記した 「曇点を有するブロック」 の曇点は、 一 般に、 該ブロックと親水性ブロックとの結合によって影響を受ける ためである。  However, the cloud point and the sol-gel transition temperature do not necessarily coincide with each other. This is because the cloud point of the “block having a cloud point” described above is generally affected by the bond between the block and the hydrophilic block.
本発明に用いる八ィ ドロゲルは、 疎水性結合が温度の上昇と共に 強くなるのみならず、 その変化が温度に対して可逆的であるという 性質を利用したものである。 1分子内に複数個の架橋点が形成され The octagel used in the present invention utilizes the property that not only the hydrophobic bond becomes stronger as the temperature increases, but the change is reversible with respect to temperature. Multiple cross-linking points are formed in one molecule
、 安定性に優れたゲルが形成される点からは、 ハイ ド口ゲル形成性 の高分子が 「曇点を有するブロック」 を複数個有することが好まし い。 From the viewpoint of forming a gel having excellent stability, it is preferable that the polymer having a high-mouth gel property has a plurality of “blocks having cloud points”.
一方、 上記ハイ ド口ゲル形成性高分子中の親水性ブロックは、 前 述したように、 該ハイ ド口ゲル形成性高分子がゾルーゲル転移温度 より も低い温度で水溶性に変化させる機能を有し、 上記転移温度よ り高温で疎水性結合力が増大'しすぎて上記ハイ ド口ゲルが凝集沈澱 してしまう ことを防止しつつ、 含水ゲルの状態を形成させる機能を 有する。 On the other hand, the hydrophilic block in the above-mentioned gel-forming polymer is As described above, the high-mouth gel-forming polymer has a function of changing to water solubility at a temperature lower than the sol-gel transition temperature, and the hydrophobic binding force increases too much at a temperature higher than the transition temperature. It has the function of forming a water-containing gel state while preventing the above-mentioned gel from agglomerating and precipitating.
更に本発明に用いるハイ ド口ゲルは、 細胞の培養内で分解、 吸収 されるものであることが望ましい。 すなわち、 本発明においてハイ ドロゲル形成性高分子が細胞の培養内で加水分解反応や酵素反応に より分解されて、 細胞の培養に無害な低分子量体となって吸収、 排 泄されることが好ましい。  Furthermore, it is desirable that the hide mouth gel used in the present invention is one that is decomposed and absorbed in cell culture. That is, in the present invention, the hydrogel-forming polymer is preferably decomposed in the cell culture by a hydrolysis reaction or an enzymatic reaction to be absorbed and excreted as a low molecular weight body that is harmless to the cell culture. .
本発明においてハイ ドロゲル形成性高分子が曇点を有する複数の ブロックと親水性のブロックが結合してなるものである場合には、 曇点を有するブロックと親水性のブロックの少なく ともいずれか、 好ましくは両方が細胞の培養内で分解、 吸収されるものであること が好ましい。  In the present invention, when the hydrogel-forming polymer is formed by combining a plurality of blocks having a cloud point and a hydrophilic block, at least one of the block having a cloud point and the hydrophilic block, It is preferable that both of them are decomposed and absorbed in the cell culture.
(曇点を有する複数のブロック)  (Multiple blocks with cloud points)
曇点を有するブロックとしては、 水に対する溶解度一温度係数が 負を示す高分子のブロックであることが好ましく、 より具体的には 、 ポリプロピレンオキサイ ド、 プロピレンオキサイ ドと他のアルキ レンオキサイ ドとの共重合体、 ポリ N —置換アク リルアミ ド誘導体 、 ポリ N _置換メタアク リルアミ ド誘導体、 N —置換アク リルアミ ド誘導体と N —置換メタアク リルアミ ド誘導体との共重合体、 ポリ ビニルメチルエーテル、 ポリ ビニルアルコール部分酢化物を含む群 より選ばれる高分子が好ましく使用可能である。  The block having a cloud point is preferably a polymer block in which the temperature coefficient of water solubility is negative, more specifically, polypropylene oxide, propylene oxide and other alkylene oxides. Copolymer, Poly N—Substituted acrylamide derivative, Poly N _Substituted methacrylamide derivative, Copolymer of N—Substituted acrylamide derivative and N—Substituted methacrylamide derivative, Polyvinyl methyl ether, Poly A polymer selected from the group comprising vinyl alcohol partial acetylates can be preferably used.
曇点を有するブロックを細胞の培養内で分解、 吸収されるものと するには、 曇点を有するブロックを疎水性アミ ノ酸と親水性アミ ノ 酸から成るポリペプチドとすることが有効である。 あるいはポリ乳 酸ゃポリ グリ コール酸などのポリエステル型生分解性ポリマーを細 胞の培養内で分解、 吸収される曇点を有するブロックと して利用す ることもできる。 In order for a block having a cloud point to be decomposed and absorbed in cell culture, it is effective to make the block having a cloud point a polypeptide composed of a hydrophobic amino acid and a hydrophilic amino acid. . Or poly milk Polyester-type biodegradable polymers such as acid polyglycolic acid can also be used as blocks having cloud points that are decomposed and absorbed in cell culture.
上記の高分子 (曇点を有するブロック) の曇点が 4 t より高く 4 0で以下であることが、 本発明に用いる高分子 (曇点を有する複数 のブロックと親水性のブロックが結合した化合物) のゾルーゲル転 移温度を 0 °Cより高く 3 7 以下とする点から好ましい。  The polymer (block having a cloud point) has a cloud point higher than 4 t but not higher than 40 t, and the polymer used in the present invention (a plurality of blocks having a cloud point and a hydrophilic block are combined). The sol-gel transition temperature of the compound is preferably from 0 ° C. to 3 7 or less.
ここで曇点の測定は、 例えば、 上記の高分子 (曇点を有するプロ ック) の約 1質量%の水溶液を冷却して透明な均一溶液とした後、 除々に昇温 (昇温速度約 l ^ Z m i n ) して、 該溶液がはじめて白 濁する点を曇点とすることによって行う ことが可能である。  Here, the cloud point can be measured by, for example, cooling an aqueous solution of about 1% by mass of the above polymer (cloud point-containing block) to obtain a transparent uniform solution, and then gradually increasing the temperature (heating rate) About 1 ^ Z min), and the point at which the solution becomes cloudy for the first time is taken as the cloud point.
本発明に使用可能なポリ N —置換アク リルアミ ド誘導体、 ポリ N 一置換メタアク リルアミ ド誘導体の具体的な例を以下に列挙する。 ポリ _ N—ァクロイルビペリジン ; ポリ一 N— n —プロピルメタ アク リルアミ ド ; ポリ 一 N—イソプロピルアク リルアミ ド ; ポリ 一 N , N —ジェチルアク リルアミ ド ; ポリ 一 N —イソプロピルメ夕ァ ク リルアミ ド ; ポリ _ N —シクロプロピルアク リルアミ ド ; ポリ ー N—ァク リ ロイルピロリジン ; ポリ 一 N, N —ェチルメチルァク リ ルアミ ド ; ポリ _ N —シクロプロピルメタアク リルアミ ド ; ポリ 一 N —ェチルアク リルアミ ド。  Specific examples of poly N-substituted acrylamide derivatives and poly N monosubstituted methacrylamide derivatives that can be used in the present invention are listed below. Poly_N-acryloylbiperidine; Poly-N-n—Propylmethacrylamide; Poly-N-isopropylacrylamide; Poly-N, N—Jetylacrylamide; Poly-N—isopropyl Poly-N-cyclopropyl acrylamide; Poly-N-acryloylpyrrolidine; Poly-N, N-ethylmethyl acrylamide; Poly-N-cyclopropylmethacrylamide; Poly-N-ethyl acrylamide Lilamide.
上記の高分子は単独重合体 (ホモポリマー) であっても、 上記重 合体を構成する単量体と他の単量体との共重合体であってもよい。 このような共重合体を構成する他の単量体としては、 親水性単量体 、 疎水性単量休のいずれも用いることができる。 一般的には、 親水 性単量体と共重合すると生成物の曇点は上昇し、 疎水性単量体と共 重合すると生成物の曇点は下降する。 従って、 これらの共重合すベ き単量体を選択することによつても、 所望の曇点 (例えば 4 °Cより 高く 4 0 °C以下の曇点) を有する高分子を得ることができる。 The polymer may be a homopolymer or a copolymer of a monomer constituting the polymer and another monomer. As another monomer constituting such a copolymer, either a hydrophilic monomer or a hydrophobic monomer can be used. In general, copolymerization with hydrophilic monomers raises the cloud point of the product, and copolymerization with hydrophobic monomers lowers the cloud point of the product. Therefore, by selecting these monomers to be copolymerized, the desired cloud point (for example, from 4 ° C) A polymer having a high cloud point of 40 ° C. or less can be obtained.
(親水性単量体)  (Hydrophilic monomer)
上記親水性単量体としては、 N —ビニルピロ リ ドン、 ビニルピリ ジン、 アク リルアミ ド、 メタアク リルアミ ド、 N —メチルアク リル アミ ド、 ヒ ドロキシェチルメタァク リ レー ト、 ヒ ドロキシェチルァ ク リ レー ト、 ヒ ドロキシメチルメ夕ァク リ レー ト、 ヒ ドロキシメチ ルァク リ レー ト、 酸性基を有するアク リル酸、 メタアク リル酸およ びそれらの塩、 ビニルスルホン酸、 スチレンスルホン酸等、 並びに 塩基性基を有する N, N —ジメチルアミノエチルメタク リ レー ト、 N , N —ジェチルアミノエチルメタク リー 卜、 N, N —ジメチルァ ミノプロピルアク リルアミ ドおよびそれらの塩等が挙げられるが、 これらに限定されるものではない。  Examples of the hydrophilic monomer include N-vinylpyrrolidone, vinylpyridine, acrylamide, methacrylamide, N-methylacrylamide, hydroxetyl methacrylate, hydroxetyl acrylate. , Hydroxymethyl methacrylate, Hydroxymethyl acrylate, Acrylic acid with acidic group, Metaacrylic acid and their salts, Vinyl sulfonic acid, Styrene sulfonic acid, etc., and Basic group N, N—dimethylaminoethyl methacrylate, N, N—jetylaminoethyl methacrylate 卜, N, N—dimethylaminopropyl acrylamide, and salts thereof, but are not limited thereto. It is not something.
(疎水性単量体)  (Hydrophobic monomer)
一方、 上記疎水性単量体としては、 ェチルァク リ レー ト、 メチル メタク リ レー ト、 グリ シジルメ夕ク リ レー ト等のァク リ レー ト誘導 体およびメタク リ レート誘導体、 N— n —プチルメ夕アク リルアミ ド等の N—置換アルキルメタアク リルアミ ド誘導体、 塩化ビニル、 アク リ ロニト リル、 スチレン、 酢酸ビニル等が挙げられるが、 これ らに限定されるものではない。  On the other hand, examples of the hydrophobic monomer include acrylate derivatives such as ethyl acrylate, methyl methacrylate, glycidyl methacrylate, and methacrylate derivatives, and N—n-butyl methacrylate. Examples thereof include, but are not limited to, N-substituted alkylmethacrylamide derivatives such as acrylamide, vinyl chloride, acrylonitrile, styrene, and vinyl acetate.
(親水性のブロック)  (Hydrophilic block)
一方、 上記した曇点'を有するブロックと結合すべき親水性のプロ ックとしては、 具体的には、 メチルセルロース、 デキス トラン、 ポ リエチレンオキサイ ド、 ポリ ビニルアルコール、 ポリ N—ビニルビ 口リ ドン、 ポリ ビニルピリ ジン、 ポリアク リルアミ ド、 ポリメタァ ク リルアミ ド、 ポリ N —メチルアク リルアミ ド、 ポリ ヒ ドロキシメ チルァク リ レー 卜、 ポリアク リル酸、 ポリメタク リル酸、 ポリ ビニ ルスルホン酸、 ポリスチレンスルホン酸およびそれらの塩 ; ポリ N , N —ジメチルアミノエチルメ夕ク リ レ一 卜、 ポリ N , N —ジェチ ルアミノエチルメタク リ レー 卜、 ポリ N , N—ジメチルァミ ノプロ ピルァク リルアミ ドおよび れらの塩等が挙げられる。 On the other hand, specific examples of hydrophilic blocks to be combined with the above-mentioned block having a cloud point are methyl cellulose, dextran, polyethylene oxide, polyvinyl alcohol, and poly N-vinyl vinylidone. , Polyvinyl pyridine, polyacrylamide, polyacrylamide, poly N—methyl acrylamide, polyhydroxymethyl acrylate, polyacrylic acid, polymethacrylic acid, polyvinyl sulfonic acid, polystyrene sulfonic acid and salts thereof; Poly N , N—dimethylaminoethyl methacrylate, poly N, N—dimethylaminoethyl methacrylate, poly N, N-dimethylaminopropyl amide, and salts thereof.
また親水性のブロックは細胞の培養内で分解、 代謝、 排泄される ことが望ましく、 アルブミン、 ゼラチンなどのたんばく質、 ヒアル ロン酸、 へパリ ン、 キチン、 キ トサンなどの多糖類などの親水性細 胞の培養高分子が好ましく用いられる。  In addition, hydrophilic blocks are desirably degraded, metabolized and excreted in cell cultures. Proteins such as albumin and gelatin, and hydrophilic substances such as polysaccharides such as hyaluronic acid, heparin, chitin, and chitosan. Cell culture polymers are preferably used.
曇点を有するブロックと上記の親水性のブロックとを結合する方 法は特に制限されないが、 例えば、 上記いずれかのブロック中に重 合性官能基 (例えばァク リ ロイル基) を導入し、 他方のブロックを 与える単量体を共重合させることによって行う ことができる。 また 、 曇点を有するブロックと上記の親水性のブロックとの結合物は、 曇点を有するブロックを与える単量体と、 親水性のブロックを与え る単量体とのブロック共重合によって得ることも可能である。 また 、 曇点を有するブロックと親水性のブロックとの結合は、 予め両者 に反応活性な官能基 (例えば水酸基、 アミ ノ基、 力ルポキシル基、 イソシァネー ト基等) を導入し、 両者を化学反応により結合させる ことによって行う こともできる。 この際、 親水性のブロック中には 通常、 反応活性な官能基を複数導入する。 また、 曇点を有するポリ プロピレンオキサイ ドと親水性のブロックとの結合は、 例えば、 ァ 二オン重合またはカチオン重合で、 プロピレンオキサイ ドと 「他の 親水性ブロック」 を構成するモノマー (例えばエチレンオキサイ ド ) とを繰り返し逐次重合させることで、 ポリ プロピレンオキサイ ド と 「親水性ブロック」 (例えばポリエチレンオキサイ ド) が結合し たブロック共重合体を得ることができる。 このようなブロック共重 合体は、 ポリプロピレンオキサイ ドの末端に重合性基 (例えばァク リ ロイル基) を導入後、 親水性のブロックを構成するモノマーを共 重合させることによつても得ることができる。 更には、 親水性のブ ロック中に、 ポリプロピレンオキサイ ド末端の官能基 (例えば水酸 基) と結合反応し得る官能 Sを導入し、 両者を反応させることによ つても、 本発明に用いる高分子を得ることができる。 また、 ポリプ ロピレングリコールの両端にポリエチレングリ コールが結合した、 プル口ニック F— 1 2 7 (商品名、 旭電化工業 (株) 製) 等の材 料を連結させることによつても、 本発明に用いるハイ ドロゲル形成 性の高分子を得ることができる。 There is no particular limitation on the method for bonding the block having a cloud point to the hydrophilic block. For example, a polymerizable functional group (for example, an acryloyl group) is introduced into any of the blocks, This can be done by copolymerizing a monomer that gives the other block. Further, the combined product of a block having a cloud point and the hydrophilic block is obtained by block copolymerization of a monomer that gives a block having a cloud point and a monomer that gives a hydrophilic block. Is also possible. In addition, the bond between the block having a cloud point and the hydrophilic block is preliminarily introduced with a reactive functional group (for example, a hydroxyl group, an amino group, a forceloxyl group, an isocyanate group, etc.), and the two are chemically reacted It can also be done by combining them. At this time, usually a plurality of reactive functional groups are introduced into the hydrophilic block. In addition, the bond between the polypropylene oxide having a cloud point and the hydrophilic block is, for example, a monomer that forms propylene oxide and “another hydrophilic block” by anionic polymerization or cationic polymerization (for example, By repeating sequential polymerization of ethylene oxide), a block copolymer in which polypropylene oxide and a “hydrophilic block” (for example, polyethylene oxide) are bonded can be obtained. In such a block copolymer, a polymerizable group (for example, an acryloyl group) is introduced at the end of polypropylene oxide, and then a monomer constituting a hydrophilic block is used as a copolymer. It can also be obtained by polymerization. Furthermore, a functional S capable of binding reaction with a functional group at the end of polypropylene oxide (for example, a hydroxyl group) is introduced into a hydrophilic block, and both are reacted with each other. A polymer can be obtained. Further, the present invention can also be achieved by linking materials such as pull mouth nick F-1 27 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) in which polyethylene glycol is bonded to both ends of polypropylene glycol. It is possible to obtain a hydrogel-forming polymer used in the above.
この曇点を有するブロックを含む態様における本発明の高分子は 、 曇点より低い温度においては、 分子内に存在する上記 「曇点を有 するブロック」 が親水性のブロックとともに水溶性であるので、 完 全に水に溶解し、 ゾル状態を示す。 しかし、 この高分子の水溶液の 温度を上記曇点より高温に加温すると、 分子内に存在する 「曇点を 有するブロック」 が疎水性となり、 疎水的相互作用によって、 別個 の分子間で会合する。  The polymer of the present invention in an embodiment including a block having a cloud point is water-soluble together with a hydrophilic block at a temperature lower than the cloud point, the above-mentioned “block having a cloud point” present in the molecule. It completely dissolves in water and shows a sol state. However, when the temperature of the aqueous solution of this polymer is raised to a temperature higher than the above cloud point, the “blocks with cloud point” existing in the molecule become hydrophobic and associate with each other by hydrophobic interaction. .
一方、 親水性のブロックは、 この時 (曇点より高温に加温された 際) でも水溶性であるので、 本発明の高分子は水中において、 曇点 を有するブロック間の疎水性会合部を架橋点とした三次元網目構造 を持つハイ ドロゲルを生成する。 このハイ ドロゲルの温度を再び、 分子内に存在する 「曇点を有するブロック」 の曇点より低い温度に 冷却すると、 該曇点を有するブロックが水溶性となり、 疎水性会合 による架橋点が解放され、 ハイ ド口ゲル構造が消失して、 本発明の 高分子は、 再び完全な水溶液となる。 このように、 好適な態様にお ける本発明の高分子のゾルーゲル転移は、 分子内に存在する曇点を 有するブロックの該曇点における可逆的な親水性、 疎水性の変化に 基づく ものであるので、 温度変化に対応して、 完全な可逆性を有す る。 (ゲルの溶解性) On the other hand, since the hydrophilic block is still water-soluble at this time (when heated to a temperature higher than the cloud point), the polymer of the present invention has a hydrophobic association between the blocks having the cloud point in water. Generates a hydrogel with a three-dimensional network structure as a cross-linking point. When the temperature of the hydrogel is cooled again to a temperature lower than the cloud point of the “block with cloud point” existing in the molecule, the block having the cloud point becomes water-soluble, and the crosslinking point due to hydrophobic association is released. Then, the hide-mouth gel structure disappears, and the polymer of the present invention becomes a complete aqueous solution again. Thus, the sol-gel transition of the polymer of the present invention in a preferred embodiment is based on reversible changes in hydrophilicity and hydrophobicity of the block having a cloud point present in the molecule. Therefore, it has complete reversibility in response to temperature changes. (Gel solubility)
上述したように水溶液中でゾルーゲル転移温度を有する高分子を 少なく とも含む本発明においてハイ ド口ゲル形成性の高分子は、 該 ゾルーゲル転移温度より高温 ( dで) で実質的に水不溶性を示し、 ゾルーゲル転移温度より低い温度 ( e t:) で可逆的に水可溶性を示 す。  As described above, in the present invention containing at least a polymer having a sol-gel transition temperature in an aqueous solution, the polymer having a gel formation temperature is substantially insoluble in water at a temperature (d) higher than the sol-gel transition temperature. It is reversibly soluble in water at a temperature lower than the sol-gel transition temperature (et :).
上記した高い温度 ( d :) は、 ゾルーゲル転移温度より 1 °C以上 高い温度であることが好ましく、 2 °C以上 (特に 5 °C以上) 高い温 度であることが更に好ましい。 また、 上記 「実質的に水不溶性」 と は、 上記温度 ( dで) において、 水 1 0 0 m Lに溶解する上記高分 子の量が、 5. O g以下 (更には 0. 5 g以下、 特に 0. l g以下 ) であることが好ましい。  The high temperature (d :) described above is preferably a temperature that is 1 ° C or higher than the sol-gel transition temperature, and more preferably a temperature that is 2 ° C or higher (especially 5 ° C or higher). The above “substantially water-insoluble” means that the amount of the polymer dissolved in 100 mL of water at the above temperature (d) is 5. O g or less (or 0.5 g In the following, it is particularly preferably 0.lg or less.
一方、 上記した低い温度 ( eで) は 、 ゾル一ゲル転移温度より ( 絶対値で) 1 以上低い温度である とが好ましく 、 2 以上 (特 に 5で以上) 低い温度であることが更に好ましい。 また、 上記 「水 可溶性」 とは、 上記温度 ( e °C) に いて、 水 1 0 0 mLに溶解す る上記高分子の量が、 0. 5 g以上 (更には 1. 0 g以上) である ことが好ましい。 更に 「可逆的に水可溶性を示す」 とは、 上記ハイ ドロゲル形成性の高分子の水溶液が、 一旦 (ゾルーゲル転移温度よ り高温において) ゲル化された後においても、 ゾルーゲル転移温度 より低い温度においては、 上記した水可溶性を示すことをいう。 上記高分子は、 その 1 0 %水溶液が 5 °Cで、 1 0〜 3, 0 0 0セ ンチボイズ (更には 5 0〜 1 , 0 0 0センチボイズ) の粘度を示す ことが好ましい。 このような粘度は、 例えば以下のような測定条件 下で測定することが好ましい。  On the other hand, the above-mentioned low temperature (in e) is preferably 1 or more lower (in absolute value) than the sol-gel transition temperature, more preferably 2 or more (in particular 5 or more) lower. . In addition, the above-mentioned “water-soluble” means that the amount of the polymer dissolved in 100 mL of water at the above temperature (e ° C) is 0.5 g or more (more preferably 1.0 g or more). It is preferable that Furthermore, “reversibly water-soluble” means that the aqueous solution of the above-mentioned hydrogel-forming polymer is gelated (at a temperature higher than the sol-gel transition temperature) once at a temperature lower than the sol-gel transition temperature. Means to exhibit water solubility as described above. The polymer preferably has a viscosity of 10 to 3,000 centoise (more preferably 50 to 1,000 centipoise) when its 10% aqueous solution is 5 ° C. Such viscosity is preferably measured under the following measurement conditions, for example.
粘度計 : ス トレス制御式レオメータ (機種名 : AR 5 0 0、 T Aイ ンスツルメンッ社製) ローター直径 : 6 0 mm ローター形状 : 平行平板 本発明 においてハイ ドロゲル形成性高分子の水溶液は、 上記ゾル一ゲル転 移温度より高温でゲル化させた後、 多量の水中に浸漬しても、 該ゲ ルは実質的に溶解しない。 上記ハイ ドロゲル形成性高分子の水溶液 の上記特性は、 例えば、 以下のようにして確認することが可能であ る。 Viscometer: Stress-controlled rheometer (Model name: AR500, manufactured by TA Instruments) Rotor diameter: 60 mm Rotor shape: parallel plate In the present invention, the aqueous solution of the hydrogel-forming polymer is gelled at a temperature higher than the sol-gel transition temperature, and then immersed in a large amount of water. The gel does not substantially dissolve. The characteristics of the aqueous solution of the hydrogel-forming polymer can be confirmed, for example, as follows.
すなわち、 本発明においてハイ ドロゲル形成性の高分子 0. 1 5 gを、 上記ゾルーゲル転移温度より低い温度 (例えば氷冷下) で、 蒸留水 1. 3 5 gに溶解して 1 O w t %の水溶液を作製し、 該水溶 液を径が 3 5 m mのプラスチックシャーレ中に注入し、 3 7でに加 温することによって、 厚さ約 1. 5 mmのゲルを該シャーレ中に形 成させた後、 該ゲルを含むシャーレ全体の重量 ( f グラム) を測定 する。 次いで、 該ゲルを含むシャーレ全体を 2 5 O m l 中の水中に 3 7 t で 1 0時間静置した後、 該ゲルを含むシャーレ全体の重量 ( gグラム) を測定して、 ゲル表面からの該ゲルの溶解の有無を評価 する。 この際、 本発明においてハイ ド口ゲル形成性の高分子におい ては、 上記ゲルの重量減少率、 すなわち ( f 一 g ) / f が、 5. 0 %以下であることが好ましく、 更には 1. 0 %以下 (特に 0. 1 % 以下) であることが好ましい。  That is, 0.15 g of the hydrogel-forming polymer in the present invention is dissolved in 1.35 g of distilled water at a temperature lower than the sol-gel transition temperature (for example, under ice cooling), and 1 O wt% An aqueous solution was prepared, the aqueous solution was poured into a plastic petri dish having a diameter of 35 mm, and heated at 37 to form a gel having a thickness of about 1.5 mm in the petri dish. Then, the total weight (f grams) of the petri dish containing the gel is measured. Next, the entire petri dish containing the gel was allowed to stand in water in 25 O ml at 37 t for 10 hours, and then the weight (g gram) of the whole petri dish containing the gel was measured. The presence or absence of dissolution of the gel is evaluated. At this time, in the present invention, in the polymer having a gel with a mouth opening, the weight reduction rate of the gel, that is, (f 1 g) / f is preferably 5.0% or less, and more preferably 1 It is preferably 0% or less (particularly 0.1% or less).
本発明において八ィ ドロゲル形成性高分子の水溶液は、 上記ゾル 一ゲル転移温度より高温でゲル化させた後、 多量 (体積比で、 ゲル の 0. 1〜 1 0 0倍程度) の水中に浸漬しても、 長期間に亘つて該 ゲルは溶解することがない。 このような本発明に用いる高分子の性 質は、 例えば、 該高分子内に曇点を有するブロックが 2個以上 (複 数個) 存在することによって達成される。  In the present invention, the aqueous solution of the hydrogel-forming polymer is gelled at a temperature higher than the sol-gel transition temperature, and then in a large amount (about 0.1 to 100 times that of the gel by volume) in water. Even when immersed, the gel does not dissolve over a long period of time. Such properties of the polymer used in the present invention can be achieved, for example, by the presence of two or more (multiple) blocks having cloud points in the polymer.
これに対して、 ポリプロピレンォキサイ ドの両端にポリエチレン ォキサイ ドが結合してなる前述のプル口ニック F— 1 2 7 を用いて 同様のゲルを作成した場合には、 数時間の静置で該ゲルは完全に水 に溶解することを、 本発明者らは見出している。 On the other hand, using the above-mentioned pull neck nick F-1 2 7 in which polyethylene oxide is bonded to both ends of polypropylene oxide. The inventors have found that when a similar gel is prepared, the gel is completely dissolved in water after standing for several hours.
非ゲル化時の細胞毒性をできる限り低いレベルに抑える点からは From the point of suppressing the non-gelling cytotoxicity to the lowest possible level
、 水に対する濃度、 すなわち { (高分子) / (高分子 +水) } X I 0 0 ( ) で、 2 0 %以下 (更には 1 5 %以下、 特に 1 0 %以下) の濃度でゲル化が可能なハイ ド口ゲル形成性の高分子を用いること が好ましい。 , The concentration in water, ie, {(polymer) / (polymer + water)} XI 0 0 (), gelation occurs at a concentration of 20% or less (and 15% or less, especially 10% or less). It is preferable to use a possible high-mouth gel-forming polymer.
本発明に用いられるハイ ドロゲル形成性高分子の分子量は 3万以 上 3 , 0 0 0万以下が好ましく、 より好ましくは 1 0万以上 1, 0 0 0万以下、 更に好ましくは 5 0万以上 5 0 0万以下である。  The molecular weight of the hydrogel-forming polymer used in the present invention is preferably 30,000 or more and 3,000,000 or less, more preferably 10,000 or more and 1,000,000 or less, more preferably 500,000 or more. 5 million or less.
(H C V粒子感染性の確認)  (Confirmation of H C V particle infectivity)
本発明においては、 後述するように、 3 D培養の培養液に分泌さ れた H C V粒子が感染性であることは、 例えば、 H C V複製を高度 に許容する H u h— 7. 5. 1細胞に対する該 H C V粒子の挙動に より、 確認することができる。 抗 E 2抗体によって、 または E 2夕 ンパク質のヒ 卜細胞との結合を妨げる患者血清によって、 感染は中 和される。 後述するように、 抗ウィルス薬の評価のための T G P— 3 D培養システムの有用性を示すこともできる。 H u h— 7により 誘導された 3 D培養システムが、 感染性の HC V粒子の産生を え ることを確認できる。 このシステムは、 天然の宿主細胞環境におい て、 更に H C V形態形成を研究するための価値あるツールとなり得 る。  In the present invention, as described later, the fact that the HCV particles secreted into the culture medium of 3D culture are infectious, for example, against Huh-7.5.1 cells that highly allow HCV replication. This can be confirmed by the behavior of the HCV particles. Infection is neutralized by anti-E2 antibodies or by patient sera that interfere with the binding of E2 protein to human cells. As will be described later, the usefulness of the TGP-3D culture system for the evaluation of antiviral drugs can also be demonstrated. It can be confirmed that the 3D culture system induced by Huh-7 can produce infectious HCV particles. This system can be a valuable tool for further studying HCV morphogenesis in the natural host cell environment.
本発明を、 以下の実施例および図面に基づいて具体的に説明する 。 もっとも本発明の技術的範囲は下記実施例に限定されるものでは ない。 実施例 4223 製造例 1 The present invention will be specifically described based on the following examples and drawings. However, the technical scope of the present invention is not limited to the following examples. Example 4223 Production Example 1
ポリプロピレンォキサイ ドーポリエチレンォキサイ ド共重合体 ( プロピレンォキサイ ド /エヂレンォキサイ ド平均重合度約 6 0 / 1 8 0、 旭電化工業 (株) 製 : プル口ニック F— 1 2 7 ) 1 0 gを乾 燥クロ口ホルム 3 0 m 1 に溶解し、 五酸化リ ン共存下、 へキサメチ レンジイソシァネー ト 0 . 1 3 gを加え、 沸点還流下に 6時間反応 させた。 溶媒を減圧留去後、 残さを蒸留水に溶解し、 分画分子量 3 万の限外濾過膜 (アミコン P M— 3 0 ) を用いて限外濾過を行い、 高分子量重合体と低分子量重合体を分画した。 得られた水溶液を凍 結して、 F— 1 2 7高重合体および F— 1 2 7低重合体を得た。  Polypropylene Oxide Polyethylene Oxide Copolymer (Propylene Oxide / Edylene Oxide Average Degree of Polymerization approx. 60/1800, manufactured by Asahi Denka Kogyo Co., Ltd .: Pull-mouth Nick F— 1 2 7) 10 g Was dissolved in 30 ml dry chloroform, 0.13 g hexamethylene diisocyanate was added in the presence of phosphorus pentoxide, and the mixture was reacted for 6 hours under reflux at the boiling point. After distilling off the solvent under reduced pressure, the residue was dissolved in distilled water and ultrafiltered using an ultrafiltration membrane (Amicon PM-30) with a molecular weight cut off of 30,000 to obtain a high molecular weight polymer and a low molecular weight polymer. Was fractionated. The obtained aqueous solution was frozen to obtain F-1 27 high polymer and F-1 27 low polymer.
上記により得た F— 1 2 7高重合体 (本発明においてハイ ドロゲ ル形成性高分子、 T G P— 1 ) を、 氷冷下、 8質量%の濃度で蒸留 水に溶解した。 この水溶液をゆるやかに加温していく と、 2 1でか ら徐々に粘度が上昇し、 約 2 7 °Cで固化して、 ハイ ド口ゲルとなつ た。 このハイ ド口ゲルを冷却すると、 2 1 °Cで水溶液に戻った。 こ の変化は、 可逆的に繰り返し観測された。 一方、 上記 F— 1 2 7低 重合体を、 氷点下 8質量%の濃度で蒸留水に溶解したものは、 6 0 °C以上に加熱しても全くゲル化しなかった。  The F-1 27 high polymer obtained as described above (in the present invention, a hydrogel-forming polymer, TGP-1) was dissolved in distilled water at a concentration of 8% by mass under ice cooling. When this aqueous solution was gently warmed, the viscosity gradually increased from 21 and solidified at about 27 ° C to form a hydrated gel. When this gel was cooled, it returned to an aqueous solution at 21 ° C. This change was observed reversibly and repeatedly. On the other hand, the F-1 27 low polymer dissolved in distilled water at a concentration of 8 mass% below freezing did not gel at all even when heated to 60 ° C or higher.
製造例 2  Production example 2
卜リ メチロールプロパン 1 モルに対し、 エチレンォキサイ ド 1 6 0モルをカチオン重合により付加して、 平均分子量約 7 0 0 0 のポ リエチレンォキサイ ド 卜 リオールを得た。  160 mol of ethylene oxide was added by cationic polymerization to 1 mol of polymethylolpropane to obtain polyethylene oxide-riol having an average molecular weight of about 700.000.
上記により得たポリエチレンォキサイ ド 卜リオール 1 0 0 gを蒸 留水 1 0 0 0 m l に溶解した後、 室温で過マンガン酸カ リ ウム 1 2 gを徐々に加えて、 そのまま約 1 時間、 酸化反応させた。 固形物を 濾過により除いた後、 生成物をクロ口ホルムで抽出し、 溶媒 (クロ 口ホルム) を減圧留去してポリエチレンオキサイ ド ト リカルボキシ ル体 9 0 gを得た。 After dissolving 100 g of polyethylene oxide 卜 riol obtained in the above in 100 ml of distilled water, 12 g of calcium permanganate was gradually added at room temperature, and this was continued for about 1 hour. Oxidized. After removing the solid matter by filtration, the product is extracted with black mouth form, and the solvent (black mouth form) is distilled off under reduced pressure to remove polyethylene oxide tricarboxyl. 90 g of rutile body was obtained.
上記により得たポリエチレンォキサイ ド ト リカルボキシル体 1 0 g と、 ポリプロピレンオキサイ ドジァミノ体 (プロピレンォキサイ ド平均重合度約 6 5、 米国ジェファーソンケミカル社製、 商品名 : ジェファーミ ン D— 4 0 0 0、 曇点 : 約 9で) 1 0 g とを四塩化炭 素 1 0 0 0 m 1 に溶解し、 ジシクロへキシルカルポジイミ ド 1 . 2 gを加えた後、 沸点還流下に 6時間反応させた。 反応液を冷却し、 固形物を濾過により除いた後、 溶媒 (四塩化炭素) を減圧留去し、 残さを真空乾燥して、 複数のポリプロピレンオキサイ ドとポリェチ レンォキサイ ドとが結合した本発明においてハイ ドロゲル形成性高 分子 (T G P— 2 ) を得た。 これを氷冷下、 5質量%の濃度で蒸留 水に溶解し、 そのゾルーゲル転移温度を測定したところ、 約 1 6 °C であった。  Polyethylene oxide tricarboxylate 10 g obtained above and polypropylene oxide diamino compound (average degree of polymerization of propylene oxide about 65, manufactured by Jefferson Chemical Co., USA, product name: Jeffermine D—400 0, cloud point: about 9) 10 g is dissolved in carbon tetrachloride 100 m 1, and 1.2 g of dicyclohexylcarbodiimide is added, followed by boiling at reflux for 6 hours. Reacted. The reaction liquid is cooled and solids are removed by filtration. Then, the solvent (carbon tetrachloride) is distilled off under reduced pressure, and the residue is vacuum-dried to combine a plurality of polypropylene oxides with polyethylene oxide. The hydrogel-forming polymer (TGP-2) was obtained. This was dissolved in distilled water at a concentration of 5% by mass under ice cooling, and its sol-gel transition temperature was measured to be about 16 ° C.
製造例 3  Production Example 3
N—イソプロピルアク リルアミ ド (イース トマンコダック社製) 9 6 g 、 N —ァク リ ロキシスクシンイ ミ ド (国産化学 (株) 製) 1 7 g、 および n —プチルメタク リ レー 卜 (関東化学 (株) 製) 7 g をクロ口ホルム 4 0 0 0 m 1 に溶解し、 窒素置換後、 N , N ' ーァ ゾビスイソプチロニト リル 1 . 5 gを加え、 6 0でで 6時間重合さ せた。 反応液を濃縮した後、 ジェチルエーテルに再沈 (再沈殿) し た。 濾過により固形物を回収した後、 真空乾燥して、 7 8 gのポリ ( N —イソプロピルアク リルアミ ド一コ一 N —ァク リ ロキシスクシ ンイ ミ ドーコー n —ブチルメタク リ レー ト) を得た。  N—Isopropylacrylamide (Eastman Kodak) 9 6 g, N—acryloxy succinimide (manufactured by Kokusan Chemical Co., Ltd.) 17 g, and n—Petyl methacrylate (Kanto Chemical Co., Ltd.) 7 g is dissolved in black mouth form 400 ml, and after substitution with nitrogen, 1.5 g of N, N'-azobisisoptylonitrile is added and polymerized at 60 for 6 hours. It was. After the reaction solution was concentrated, it was reprecipitated (reprecipitated) in jetyl ether. The solid was collected by filtration and dried in vacuo to give 78 g of poly (N-isopropylacrylamide, N-acryloxy succinimide, n-butyl methacrylate).
上記により得たポリ ( N—イソプロピルアク リルアミ ドーコ— N ーァク リ ロキシスクシンイミ ドーコ一 n —ブチルメタク リ レー ト) に、 過剰のイソプロピルアミ ンを加えてポリ ( N —イソプロピルァ ク リルアミ ドーコ一 n —ブチルメタク リ レー ト) を得た。 このポリ ( N _イソプロピルアク リルアミ ドーコ ー n—ブチルメタク リ レー ト) の水溶液の曇点は 1 9でであった。 To the poly (N-isopropylacrylamidoco-N-acryloxysuccinimine doco-n-butyl methacrylate) obtained above, an excess isopropylamine is added to add poly (N-isopropylacrylamidoco-colate n —Butyl methacrylate) was obtained. This poly The cloud point of the aqueous solution of (N_isopropylacrylamidoco-n-butyl methacrylate) was 19.
前記のポリ ( N—イソプロピルアク リルアミ ドーコ ー N—ァク リ ロキシスクシンイミ ド一コ 一 n—ブチルメタク リ レー ト) 1 0 g、 および両末端アミノ化ポリエチレンオキサイ ド (分子量 6, 0 0 0 、 川研ファイ ンケミカル (株) 製) 5 gをクロ口ホルム 1 0 0 0 m Poly (N-isopropylacrylamido-N-acryloxy succinimide) n-butyl methacrylate 10 g, and both ends aminated polyethylene oxide (molecular weight 6, 0 0 0, manufactured by Kawaken Fine Chemical Co., Ltd.) 5 g
1 に溶解し、 5 0 °Cで 3時間反応させた。 室温まで冷却した後、 ィ ソプロピルァミ ン 1 gを加え、 1時間放置した後、 反応液を濃縮し 、 残渣をジェチルエーテル中に沈澱させた。 濾過によ り固形物を回 収した後、 真空乾燥して、 複数のポリ (N—イソプロピルアク リル アミ ドーコ ー n—ブチルメタク リ レート) とポリエチレンォキサイ ドとが結合した本発明においてハイ ド口ゲル形成性高分子 (T G P 一 3 ) を得た。 It was dissolved in 1 and reacted at 50 ° C for 3 hours. After cooling to room temperature, 1 g of isopropylamine was added and allowed to stand for 1 hour, and then the reaction solution was concentrated, and the residue was precipitated in jetyl ether. In the present invention in which a solid substance is collected by filtration and then vacuum-dried to combine a plurality of poly (N-isopropylacrylamido alcohol n-butyl methacrylate) and polyethylene oxide. A gel-forming polymer (TGP-13) was obtained.
このようにして得た T G P— 3を氷冷下、 5質量%の濃度で蒸留 水に溶解し、 そのゾルーゲル転移温度を測定したところ、 約 2 1 °C であった。  The TGP-3 thus obtained was dissolved in distilled water at a concentration of 5% by mass under ice-cooling, and the sol-gel transition temperature was measured to be about 21 ° C.
製造例 4  Production Example 4
(滅菌方法)  (Sterilization method)
上記した本発明においてハイ ド口ゲル形成性高分子 (T G P— 3 ) の 2. O gを、 E O G (エチレンオキサイ ドガス) 滅菌バッグ ( ホギメディカル社製、 商品名 : ハイブリ ッ ド滅菌バッグ) に入れ、 E O G滅菌装置 (イージーパック、 井内盛栄堂製) で E O Gをバッ グに充填し、 室温にて一昼夜放置した。 更に 4 0でで半日放置した 後、 E〇 Gをバッグから抜き、 エアレーシヨ ンを行った。 ノ ッグを 真空乾燥器 ( 4 0 °C) に入れ、 時々エアレーシヨ ンしながら半日放 置することにより滅菌した。  In the above-described present invention, 2. O g of the gel gel forming polymer (TGP-3) is put into an EOG (ethylene oxide gas) sterilization bag (trade name: Hybrid sterilization bag, manufactured by Hogi Medical Co., Ltd.). The bag was filled with EOG with an EOG sterilizer (Easy Pack, manufactured by Inoue Seieido) and left at room temperature for a whole day and night. After leaving at 40 for half a day, EOO G was removed from the bag and aerated. The knives were sterilized by placing them in a vacuum dryer (40 ° C) and leaving them for half a day with occasional aeration.
この滅菌操作により高分子のゾルーゲル転移温度が変化しないこ とを、 別途確認した。 This sterilization operation does not change the sol-gel transition temperature of the polymer. And were confirmed separately.
製造例 5  Production Example 5
N—イソプロピルアク リルアミ ド 3 7 gと、 η—ブチルメタク リ レ一 卜 3 gと、 ポリエチレンオキサイ ドモノアク リ レー ト (分子量 N-isopropyl acrylamide 3 7 g, η-butyl methacrylate 3 g, polyethylene oxide monoacrylate (molecular weight
4 , 0 0 0、 日本油脂 (株) 製 : P ME— 4 0 0 0 ) 2 8 gとを、 ベンゼン 3 4 0 m 1 に溶解した後、 2 , 2 ' —ァゾビスイソプチ口 二 ト リル 0. 8 gを加え、 6 0 °Cで 6時間反応させた。 得られた反 応生成物にクロ口ホルム 6 0 0 m 1 を加えて溶解し、 該溶液をエー テル 2 0 L (リ ッ トル) に滴下して沈澱させた。 得られた沈殿を濾 過により回収し、 該沈澱を約 4 0 °Cで 2 4時間真空乾燥した後、 蒸 留水 6 Lに再び溶解し、 分画分子量 1 0万のホロ一ファイバ一型限 外濾過膜 (アミコン社製 H I P 1 0 0 - 4 3 ) を用いて 1 0でで 24, 0 0 0, manufactured by Nippon Oil & Fats Co., Ltd .: P ME— 4 0 0 0) 2 8 g was dissolved in benzene 3 4 0 m 1, and then 2, 2 ′ -azobisiso-peptide ditolyl 0. 8 g was added and reacted at 60 ° C. for 6 hours. To the resulting reaction product, 60 ml of black mouth form was added and dissolved, and the solution was added dropwise to 20 L (liter) to cause precipitation. The resulting precipitate was recovered by filtration, and the precipitate was vacuum-dried for 24 hours at about 40 ° C, and then dissolved again in 6 L of distilled water, and a hollow fiber type with a molecular weight cut off of 100,000 was obtained. 2 at 1 0 using an ultrafiltration membrane (HIP 10 00-4 3 manufactured by Amicon)
1 まで濃縮した。 該濃縮液に蒸留水 4 1 を加えて希釈し、 上記希釈 操作を再度行った。 上記の希釈、 限外濾過濃縮操作を更に 5回繰り 返し、 分子量 1 0万以下のものを除去した。 この限外濾過により濾 過されなかったもの (限外濾過膜内に残留したもの) を回収して凍 結乾燥し、 分子量 1 0万以上の本発明においてハイ ド口ゲル形成性 高分子 (T G P— 4 ) 6 0 gを得た。 Concentrated to 1. Distilled water 4 1 was added to the concentrate for dilution, and the above dilution operation was performed again. The above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 10 million or less. What was not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) was recovered and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, a high-mouth gel-forming polymer (TGP — 4) 6 0 g was obtained.
上記により得た本発明においてハイ ド口ゲル形成性高分子 (T G P— 4) l gを、 9 gの蒸留水に氷冷下で溶解した。 この水溶液の ゾルーゲル転移温度を測定したところ、 該ゾルーゲル転移温度は 2 In the present invention obtained as described above, a gel-forming polymer (TGP-4) 1 g was dissolved in 9 g of distilled water under ice-cooling. When the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 2
5 °Cであった。 5 ° C.
製造例 6  Production Example 6
製造例 3の本発明においてハイ ド口ゲル形成性高分子 (T G P— 3 ) を 1 0質量%の濃度で蒸留水に溶解し、 3 7 °Cにおける ηを測 定したところ、 5. 8 X 1 0 5 P a · s e cであった。 一方、 寒 天を 2質量%の濃度で蒸留水に 9 0 °Cで溶解して、 1 0でで 1時間 ゲル化させた後、 3 7でにおける 7) を測定したところ、 その??は機 器の測定限界 ( 1 X 1 0 7 P a - s e c ) を越えていた。 In the present invention of Production Example 3, the gel-forming polymer (TGP-3) was dissolved in distilled water at a concentration of 10% by mass, and η at 37 ° C was measured. 1 0 5 Pa · sec. On the other hand, agar was dissolved in distilled water at a concentration of 2% by mass at 90 ° C and then at 10 for 1 hour. After gelling, when measuring 7) in 37, is that? ? Exceeded the instrument's measurement limit (1 X 10 7 Pa-sec).
製造例 7  Production Example 7
N—イソプロピルアク リルアミ ド 7 1. 0 gおよび n—プチルメ タク リ レート 4. 4 gをエタノール 1 1 1 7 gに溶解した。 これに ポリエチレングリコールジメ夕ク リ レー ト (P D E 6 0 0 0、 日本 油脂 (株) 製) 2 2. 6 gを水 7 7 3 gに溶解した水溶液を加え、 窒素気流下 7 0でに加温した。 窒素気流下 7 0 °Cを保ちながら、 N , N, N ' , N ' ーテトラメチルエチレンジァミ ン (T EME D) 0. 8 mLと 1 0 %過硫酸アンモニゥム (A P S ) 水溶液 8 mLを 加え 3 0分間攪拌反応させた。 更に T E M E D O . 8 mLと 1 0 % A P S水溶液 8 mLを 3 0分間隔で 4回加えて重合反応を完結させ た。 反応液を 1 0で以下に冷却後、 l O tの冷却蒸留水 5 Lを加え て希釈し、 分画分子量 1 0万の限外ろ過膜を用いて 1 0 °Cで 2 Lま で濃縮した。  N-Isopropyl acrylamide 7 1.0 g and n-butyl methacrylate 4.4 g were dissolved in ethanol 11 1 17 g. Polyethylene glycol dimethylate (PDE 600, manufactured by Nippon Oil & Fats Co., Ltd.) was added to this solution, and an aqueous solution prepared by dissolving 2. 6 g in 77. Warm up. N, N, N ', N'-tetramethylethylenediamine (TEME D) 0.8 mL and 10% ammonium persulfate (APS) aqueous solution 8 mL while maintaining 70 ° C under nitrogen flow And stirred for 30 minutes. Further, 8 mL of T E M E D O. And 8 mL of 10% APS aqueous solution were added four times at intervals of 30 minutes to complete the polymerization reaction. After cooling the reaction solution to below 10 ° C, dilute by adding 5 L of cold distilled water of l O t, and concentrate to 2 L at 10 ° C using an ultrafiltration membrane with a molecular weight cut off of 100,000. did.
該濃縮液に冷却蒸留水 4 Lを加えて希釈し、 上記限外ろ過濃縮操 作を再度行った。 上記の希釈、 限外ろ過濃縮操作を更に 5回繰り返 し、 分子量 1 0万以下のものを除去した。 この限外ろ過によりろ過 されなかったもの (限外ろ過膜内に残留したもの) を回収して凍結 乾燥し、 分子量 1 0万以上の本発明においてハイ ド口ゲル形成性高 分子 (T G P— 5 ) 7 2 gを得た。  The concentrated solution was diluted by adding 4 L of cooled distilled water, and the above ultrafiltration concentration operation was performed again. The above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less. What was not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) was recovered and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, a high-mouth gel-forming high molecule (TGP-5) ) 7 2 g was obtained.
上記により得た本発明においてハイ ドロゲル形成性高分子 (T G P - 5 ) l gを、 9 gの蒸留水に氷冷下で溶解した。 この水溶液の ゾルーゲル転移温度を測定したところ、 該ゾル—ゲル転移温度は 2 0 °Cであった。  In the present invention obtained as described above, the hydrogel-forming polymer (TGP-5) lg was dissolved in 9 g of distilled water under ice-cooling. When the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 20 ° C.
製造例 8  Production Example 8
N—イソプロピルアク リルアミ ド 4 2. 0 gおよび n—プチルメ 夕ク リ レー ト 4. 0 gをエタノール 5 9 2 gに溶解した。 これにポ リエチレングリコールジメタク リ レー 卜 ( P D E 6 0 0 0、 日本油 脂 (株) 製) 1 1 . 5 gを水' 6 5. 1 gに溶解した水溶液を加え、 窒素気流下 7 0 °Cに加温した。 窒素気流下 7 0でを保ちながら、 N , N, N ' , N ' ーテ卜ラメチルエチレンジァミ ン (T E M E D) 0. 4 mLと 1 0 %過硫酸アンモニゥム (A P S ) 水溶液 4 mLを 加え 3 0分間攪拌反応させた。 更に T E M E D O . 4 mLと 1 0 % A P S水溶液 4 mLを 3 0分間隔で 4回加えて重合反応を完結させ た。 反応液を 5 以下に冷却後、 5での冷却蒸留水 5 Lを加えて希 釈し、 分画分子量 1 0万の限外ろ過膜を用いて 5 °Cで 2 Lまで濃縮 した。 N-isopropyl acrylamide 4 2. 0 g and n-butyl methyl Evening rate 4.0 g was dissolved in ethanol 59 2 g. To this was added an aqueous solution of polyethylene glycol dimethacrylate (PDE 600, 0, manufactured by Nippon Oil & Fats Co., Ltd.) 11.5 g dissolved in water 6 1 .5 g. Warmed to ° C. N, N, N ', N'-tetramethylethylenediamine (TEMED) 0.4 mL and 10% ammonium persulfate (APS) aqueous solution 4 mL The mixture was stirred for 30 minutes. Further, 4 mL of TEMEDO. And 4 mL of 10% APS aqueous solution were added 4 times at intervals of 30 minutes to complete the polymerization reaction. The reaction solution was cooled to 5 or less, diluted with 5 L of cold distilled water from 5 and concentrated to 2 L at 5 ° C using an ultrafiltration membrane with a molecular weight cut off of 100,000.
該濃縮液に冷却蒸留水 4 Lを加えて希釈し、 上記限外ろ過濃縮操 作を再度行った。 上記の希釈、 限外ろ過濃縮操作を更に 5回繰り返 し、 分子量 1 0万以下のものを除去した。 この限外ろ過によりろ過 されなかったもの (限外ろ過膜内に残留したもの) を回収して凍結 乾燥し、 分子量 1 0万以上の本発明においてハイ ドロゲル形成性高 分子 (T G P— 6 ) 4 0 gを得た。  The concentrated solution was diluted by adding 4 L of cooled distilled water, and the above ultrafiltration concentration operation was performed again. The above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less. What was not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) was recovered and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, a hydrogel-forming high molecule (TGP-6) 4 0 g was obtained.
上記により得た本発明においてハイ ドロゲル形成性高分子 (T G P— 6 ) l gを、 9 gの蒸留水に氷冷下で溶解した。 この水溶液の ゾルーゲル転移温度を測定したところ、 該ゾルーゲル転移温度は 7 °Cであった。  In the present invention obtained as described above, the hydrogel-forming polymer (T G P-6) 1 g was dissolved in 9 g of distilled water under ice cooling. When the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 7 ° C.
製造例 9  Production Example 9
N—イソプロピルアク リルアミ ド 4 5. 5 gおよび n—プチルメ タク リ レー ト 0. 5 6 gをエタノール 5 9 2 gに溶解した。 これに ポリエチレングリコールジメ夕ク リ レー ト ( P D E 6 0 0 0、 日本 油脂 (株) 製) 1 1. 5 gを水 6 5. 1 gに溶解した水溶液を加え 、 窒素気流下 7 0 °Cに加温した。 窒素気流下 7 0でを保ちながら、 N, N , N ' , N ' ーテトラメチルエチレンジァミン (T E ME D ) 0. 4 mLと 1 0 %過硫酸アンモニゥム (A P S ) 水溶液 4 mL を加え 3 0分間攪拌反応させた。 更に T E ME D O . 4 mLと 1 0 %A P S水溶液 4 mLを 3 0分間隔で 4回加えて重合反応を完結さ せた。 反応液を 1 0 °C以下に冷却後、 1 0 °Cの冷却蒸留水 5 Lを加 えて希釈し、 分画分子量 1 0万の限外ろ過膜を用いて 1 0でで 2 L まで濃縮した。 45.5 g of N-isopropyl acrylamide and 0.56 g of n-butyl methacrylate were dissolved in 59 2 g of ethanol. Polyethylene glycol dimethylate (PDE 600, manufactured by Nippon Oil & Fats Co., Ltd.) 11.5 g of water dissolved in 65. Warmed to. While keeping at 70 under nitrogen flow, N, N, N ′, N′-tetramethylethylenediamine (TE MED) 0.4 mL and 10% ammonium persulfate (APS) aqueous solution 4 mL were added, and the mixture was stirred for 30 minutes. Further, 4 mL of TE ME DO. And 4 mL of 10% APS aqueous solution were added 4 times at 30 minute intervals to complete the polymerization reaction. After cooling the reaction solution to 10 ° C or less, dilute it by adding 5 L of 10 ° C cold distilled water, and concentrate to 2 L at 10 using an ultrafiltration membrane with a molecular weight cut off of 100,000. did.
該濃縮液に冷却蒸留水 4 Lを加えて希釈し、 上記限外ろ過濃縮操 作を再度行った。 上記の希釈、 限外ろ過濃縮操作を更に 5回繰り返 し、 分子量 1 0万以下のものを除去した。 この限外ろ過によりろ過 されなかったもの (限外ろ過膜内に残留したもの) を回収して凍結 乾燥し、 分子量 1 0万以上の本発明においてハイ ドロゲル形成性高 分子 (T G P— 7 ) 2 2 gを得た。  The concentrated solution was diluted by adding 4 L of cooled distilled water, and the above ultrafiltration concentration operation was performed again. The above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less. What was not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) was recovered and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, a hydrogel-forming high molecule (TGP-7) 2 2 g was obtained.
上記により得た本発明においてハイ ド口ゲル形成性高分子 (T G P— 7 ) l gを、 9 gの蒸留水に氷冷下で溶解した。 この水溶液の ゾルーゲル転移温度を測定したところ、 該ゾルーゲル転移温度は 3 7 °Cであった。  In the present invention obtained above, the gel-forming polymer (T G P-7) 1 g was dissolved in 9 g of distilled water under ice-cooling. When the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 37 ° C.
製造例 1 0  Production example 1 0
N—イソプロピルアク リルアミ ド 4 4. 0 gおよび n—プチルメ タク リ レー 卜 1. 6 8 gをエタノール 5 9 2 gに溶解した。 これに ポリエチレングリコールジメ夕ク リ レー ト (P D E 6 0 0 0、 日本 油脂 (株) 製) 1 1. 5 gを水 6 5. 1 gに溶解した水溶液を加え 、 窒素気流下 7 0 °Cに加温した。 窒素気流下 7 0 °Cを保ちながら、 N, N, N ' , N ' —テトラメチルエチレンジァミ ン (T E ME D ) 0. 4 mLと 1 0 %過硫酸アンモニゥム (A P S ) 水溶液 4 mL を加え 3 0分間攪拌反応させた。 更に T E ME D O . 4 mLと 1 0 % A P S水溶液 4 mLを 3 0分間隔で 4回加えて重合反応を完結さ せた。 反応液を 1 0で以下に冷却後、 1 0 °Cの冷却蒸留水 5 Lを加 えて希釈し、 分画分子量 1 0万の限外ろ過膜を用いて 1 0 °Cで 2 L まで濃縮した。 N-isopropyl acrylamide 44.0 g and n-butyl methacrylate チ ル 1.68 g were dissolved in ethanol 59 2 g. Polyethylene glycol dimethylate (PDE 600, manufactured by Nippon Oil & Fats Co., Ltd.) 11.5 g of water dissolved in 65. 1 g of water was added to this, and nitrogen gas flowed at 70 ° C Warmed to. N, N, N ', N' — Tetramethylethylenediamine (TE ME D) 0.4 mL and 10% ammonium persulfate (APS) aqueous solution 4 mL while maintaining 70 ° C under nitrogen flow And stirred for 30 minutes. Furthermore, TE ME DO. 4 mL and 10% APS aqueous solution 4 mL were added 4 times at 30 minute intervals to complete the polymerization reaction. Let After cooling the reaction solution to below 10 ° C, dilute it by adding 5 L of chilled distilled water at 10 ° C and concentrate to 2 L at 10 ° C using an ultrafiltration membrane with a molecular weight cut off of 10 million. did.
該濃縮液に冷却蒸留水 4 Lを加えて希釈し、 上記限外ろ過濃縮操 作を再度行った。 上記の希釈、 限外ろ過濃縮操作を更に 5回繰り返 し、 分子量 1 0万以下のものを除去した。 この限外ろ過によりろ過 されなかったもの (限外ろ過膜内に残留したもの) を回収して凍結 乾燥し、 分子量 1 0万以上の本発明において八イ ド口ゲル形成性高 分子 (TGP— 8) 2 2 gを得た。  The concentrated solution was diluted by adding 4 L of cooled distilled water, and the above ultrafiltration concentration operation was performed again. The above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less. Those that were not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) were collected and freeze-dried, and in the present invention having a molecular weight of 100,000 or more, the eight-mouthed gel-forming high molecule (TGP— 8) 2 2 g was obtained.
上記により得た本発明においてハイ ドロゲル形成性高分子 (TG P— 8) l gを、 9 gの蒸留水に氷冷下で溶解した。 この水溶液の ゾルーゲル転移温度を測定したところ、 該ゾルーゲル転移温度は 2 6でであった。  In the present invention obtained above, the hydrogel-forming polymer (TG P-8) 1 g was dissolved in 9 g of distilled water under ice-cooling. When the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 26.
実施例 1 Example 1
(TG P培養細胞培養上清中の HC V— RNAの検出)  (Detection of HC V-RNA in TGP cultured cell culture supernatant)
ダイシス トロニック H C V遺伝子クローン (C型肝炎ウィルス ( HCV) 5 ' 非翻訳領域遺伝子一ネオマイシン耐性遺伝子一脳心筋 炎ウィルス 5 ' 非翻訳領域遺伝子一 HCV全蛋白質遺伝子一 HCV 5 ' 非翻訳領域遺伝子からなる) を銬型として RNAを合成し、 el ^ 0 0^ 011法にて^1 u h 7細胞へ遺伝子導入した (このような HC V遺伝子の導入方法の詳細に関しては、 例えば文献 Pietschman n, T.ら, Journal of Virology 7 6 : 40 0 8 - 2 1 ( 2 0 0 2 ) . を参照することができる) 。  Daisystronic HCV gene clone (consisting of hepatitis C virus (HCV) 5 'untranslated region gene 1 neomycin resistance gene 1 encephalomyocarditis virus 5' untranslated region gene 1 HCV total protein gene 1 HCV 5 'untranslated region gene) RNA was synthesized using the 銬 type and introduced into ^ 1 uh 7 cells by the el ^ 0 0 ^ 011 method. (For details on such HC V gene transfer methods, see, for example, the literature Pietschman n, T. , Journal of Virology 7 6: 40 0 8-2 1 (2 0 0 2).).
ジエネティ シン 0. 5mgzm l、 D - glucose 4 g/L、 ゥシ胎児血清 2 %を含む A S F 1 04培地 (ΑΠΝ0Μ0Τ0) で、 上記 で得た細胞を 3週間培養し、 薬剤耐性細胞株 (R C YM 1 ) を選択 した。 R C YM 1細胞中に HC Vゲノム RNAが保持されているこ とをリアルタイム逆転写 (R T〉 — P C R法で、 H C V蛋白質が産 生されていることをウエスタンブロッ ト法でそれぞれ確認した。 こ の細胞を 5 X 1 06 個までフラスコ内で継代培養した。 The cells obtained above were cultured for 3 weeks in ASF 104 medium (ΑΠΝ0Μ0Τ0) containing dienetin 0.5 mgzml, D-glucose 4 g / L, and fetal bovine serum 2%. The drug-resistant cell line (RC YM 1) selected. HC V genomic RNA is retained in RC YM 1 cells Real-time reverse transcription bets (RT> - by PCR, HCV proteins were subcultured in a flask that was confirmed respectively by Western blot method this cells to 5 X 1 0 6 pieces of being produced. .
T G P (製造例 3で作製した T G P) l gに培養液 (前述) 1 0 mLを加え 4t:に冷却したものにフラスコ内で培養した細胞を加え 、 6 w e l l プレー トに 8 0 0 //\¥ 6 1 1 毎分注し、 3 7 °Cに温め T G Pをゲル化した。 この細胞を播種したゲルに 3 7 °Cに 温めた培養液 3 m l を上層し、 3 7 にて 1 0 日間培養した。 培養 中は 4 日毎に上層していた培養液を回収し、 新しい培養液に交換し た。 TGP (TGP prepared in Production Example 3) broth in lg (above) 4t added 1 0 mL: The cells cultured in flasks to those cooling was added, 8 0 0 / / \ to 6 well plates ¥ 6 1 1 Poured every minute and warmed to 37 ° C to gel the TGP. The gel inoculated with these cells was overlaid with 3 ml of a culture solution warmed to 37 ° C and cultured at 37 for 10 days. During the culture, the culture medium that had been overlaid every 4 days was collected and replaced with a new culture medium.
培養終了後、 ゲルを 4 に冷却してゾル化し培養液を添加して希 釈し、 遠心操作により二次元培養された R C Y M 1細胞を回収した 上清は 8 0 0 0 g 、 5 0 m i nの遠心操作により細胞破砕物 等を除いた。 この上清を 2 5 , 0 0 0 r p mで 4 h r遠心した。 ぺ レツ 卜を Τ Ν Ε緩衝液 ( 1 0 m M T r i s - H C 1 p H 7. 4 After completion of the culture, the gel was cooled to 4 to be solated, added with the culture medium and diluted, and the two-dimensionally cultured RCYM 1 cells were collected by centrifugation, and the supernatant was 80 00 g, 50 min. Cell debris etc. were removed by centrifugation. The supernatant was centrifuged at 25, 00 rpm for 4 hr. Pellet 卜 Τ Ε Ε Buffer (10 m M Tris-H C 1 p H 7.4
、 1 0 0 mM N a C 1 、 1 m M E D T A) 1 m 1 で溶解し、 1, 100 mM NaC 1, 1 mM EDTA) dissolved in 1 ml 1
0 - 6 0 %ショ糖密度勾配 心で分画した。 各画分の比重を測定後0-60% sucrose density gradient. After measuring the specific gravity of each fraction
、 Τ Ν E緩衝液により二倍に希釈し 5 0 , 0 0 0 r p m、 2 h r遠, Ν Ν Diluted twice with E buffer 5 0, 0 0 0 r pm, 2 h r far
'し、レ、 沈殿物を 1 0 0 Lの T N E緩衝液に再度溶解した。 この溶 液より R N Aを抽出し 、 各画分中の H C V - R N A量をリアルタイ 厶 R Τ一 P C R法によ Ό定量した。 コン トロールとして、 同数の RThen, the precipitate was redissolved in 100 L of TNE buffer. RNA was extracted from this solution, and the amount of HCV-RNA in each fraction was quantified by real-time R-1 PCR method. As control, the same number of R
C Υ Μ 1細胞を 1 0 日間単層培養した培養上清を同様の手法にて解 祈した。 C Υ Μ 1 cell monolayer cultured for 10 days was used for the same method.
解析に用いたリアルタイム R T— P C Rのプライマ一及びプロ一 ブの塩基配列を以下に示す。  The base sequences of the primer and probe of real-time RT-PCR used in the analysis are shown below.
5 ' - GAGT GT C GT G C AG C C T C C A- 3 ' 5 ' 一 C AC T C G C AAG C AC C C TAT C A- 3 ' 5 ' 一 ( 6 - carboxyf luorescine) C C C G C A A G A C T G C T A G C C G A G T A G T G T T G G ( t e t rach 1 o ro - 6 - carbo x yf uoresc ine ) - 3 ' R T - P C R反応'は TaaMan EZ RT-PCR Kit ( P E Appl i ed Biosystems) を使用した。 反応液は全量を 5 0 1 とし、 温度 等については以下の反応条件で行った。 5 '-GAGT GT C GT GC AG CCTCC A- 3' 5 'One C AC TCGC AAG C AC CC TAT C A- 3' 5 'One (6- carboxyf luorescine) CCCGCAAGACTGCTAGCCGAG TAGTGTTGG (tet rach 1 o ro-6-carbo x yf uoresc ine)-3 'RT-PCR reaction' was performed using TaaMan EZ RT-PCR Kit (PE Applied Biosystems). The total amount of the reaction solution was 50 1, and the temperature and the like were the following reaction conditions.
6 0 1 m i n > 5 0 6 0 m i n , 9 5 5 m i nの反 応の後、 9 4 1 5 s e c 、 5 5 : 1 0 s e c 6 9 1 m i nのサイクルを 5 0サイクル行つた。 ス夕ンダ一ド R NAはイン ビ 卜口にて合成した H C V— R N Aを希釈しスタンダー ドとして使 用した。  After the reaction of 6 0 1 m i n> 5 0 60 0 m i n, 9 5 5 m i n, the cycle of 9 4 1 5 sec 5, 5 5: 1 0 sec 6 9 1 min was repeated 50 cycles. The standard RN A was diluted with HC V—RN A synthesized at the in-house outlet and used as a standard.
その結果を図 4に示す。 図 4中の黒丸 (秦) は T G P培養上清、 図中の白丸 (〇) は単層培養上清の H C V— R N A量である。 縦軸 は H C V— R NA量 ( 1 0 4 copies/fraction) 、 横軸は各画分 の比重 ( g /m l ) である。 図に示すよ に R C YM 1細胞の T G P培養上清からは比重 1 . 1 8 g /m l をピークとして H C V— R N Aが検出された。 この密度は H C V感染患者血清を用いた研究で H C V粒子の密度として報告されている値に近く、 培養上清中には H C V様粒子が存在することが確認された。 The results are shown in Fig. 4. The black circle (秦) in Figure 4 is the TGP culture supernatant, and the white circle (◯) in the figure is the HCV-RNA amount of the monolayer culture supernatant. The vertical axis is the amount of HCV—RNA (10 4 copies / fraction), and the horizontal axis is the specific gravity (g / ml) of each fraction. As shown in the figure, HCV-RNA was detected from the TGP culture supernatant of RC YM 1 cells with a specific gravity of 1.18 g / ml as a peak. This density was close to the value reported for the density of HCV particles in studies using HCV-infected patient sera, confirming the presence of HCV-like particles in the culture supernatant.
実施例 2 Example 2
(T G P培養細胞培養上清中の H C V—コア蛋白質の検出)  (Detection of HCV-core protein in TGP culture cell culture supernatant)
C型肝炎ウィルス全蛋白を発現し、 かつ自律的に複製するダイシ ス ト口ニック H C Vゲノムを保持する H u h 7細胞 (R C YM 1細 胞) を 5 X 1 0 6 個までフラスコ内で継代培養した。 T G Pに培養 液を加え 4 に冷却したものに、 フラスコ内で培養した細胞を加え 、 6 ゥエル プレー トに 8 0 0 L Zゥエルを分注し、 3 7 にあ たため T G Pをゲル化した。 このゲルに培養液 3 m 1 を上層し、 3 7 °Cにて 1 0 日間培養した。 培養中は 4 日毎に上層していた培養液 を回収し、 新しい培養液に交換した。 培養液は実施例 1 と同様の物 を使用した。 Hepatitis C virus expressing the entire protein, and autonomously replicating dicing be sampled port nick holding the HCV genome H uh 7 cells passaged in flasks with (RC YM 1 cells) to 5 X 1 0 6 pieces Cultured. The cell culture medium was added to the TGP and cooled to 4. The cells cultured in the flask were added, and 800 LZ wells were dispensed into the 6 well plate. This gel was overlaid with 3 ml of culture solution and cultured at 37 ° C for 10 days. During the culture, the culture solution was layered every 4 days. Was recovered and replaced with a new culture medium. The culture medium used was the same as in Example 1.
培養終了後、 ゲルを 4 : (こ冷却してゾル化し培養液を添加して希 釈し、 遠心操作により≡次元培養された R C YM 1細胞を回収した 。 培養上清は 8 0 0 0 g、 5 0 m i nの遠心操作により細胞破砕物 等を除いた。 その上清を 2 5, 0 0 0 r p mで 4 h r遠心した。 ぺ レツ トを T N E緩衝液 1 m 1 で溶解し、 1 0 — 6 0 %ショ糖密度勾 配遠心で分画した。 各画分の比重を測定後、 T N E緩衝液により三 倍に希釈し 5 0 , 0 0 0 r p m 2 h r遠心し、 沈殿物を 1 0 0 M Lの T N E緩衝液に再度溶解した。 この溶液をサンプルとして各画 分の H C V—コア蛋白量を E L I S A法により定量した。  After completion of the culture, the gel was cooled 4: 4 (this was cooled to a sol, diluted with a culture medium, and RC YM 1 cells were collected by centrifuging by centrifugation. The culture supernatant was 800 g. The supernatant was centrifuged for 4 hr at 25, 00 rpm, and the pellet was lysed with 1 ml of TNE buffer, and then 10 — After fractionation by 60% sucrose density gradient, the specific gravity of each fraction was measured, diluted three-fold with TNE buffer, and centrifuged at 50, 0 00 rpm for 2 hr. Redissolved in ML TNE buffer Using this solution as a sample, the amount of HCV-core protein in each fraction was quantified by ELISA.
コン トロールとして、 同数の R C YM 1細胞を 1 0 日間単層培養 した培養上清を同様の手法にて解析した。 その結果を図 5に示す。 図 5中の黒丸 (參) は T G P培養上清、 図中の白丸 (〇) は単層 培養上清の HC V—コア蛋白量である。 縦軸は H C V—コア蛋白量 As a control, culture supernatants obtained by monolayer culture of the same number of R C YM 1 cells for 10 days were analyzed by the same method. The results are shown in Fig. 5. The black circle (參) in Fig. 5 is the TGP culture supernatant, and the white circle (◯) in the diagram is the HC V-core protein content of the monolayer culture supernatant. Vertical axis is H C V—core protein content
(fmol/fraction) を、 横軸は各画分の比重 ( g /m l ) である。 図に示すように R C Y M 1細胞の T G P培養上清からは比重 1. 1 8 g /m l をピークとして H C V—コア蛋白が検出された。 この密 度は H C V感染患者血清を用いた研究で H C V粒子の密度として報 告されている値に近いものである。 また実施例 1 により同密度には H C V— R NAの存在も確認されており、 培養上清中には H C V様 粒子が存在することが確認された。 (fmol / fraction), the horizontal axis is the specific gravity (g / ml) of each fraction. As shown in the figure, HCV-core protein was detected in the T C P culture supernatant of R C Y M 1 cells with a specific gravity of 1.18 g / ml as a peak. This density is close to the value reported for the density of H C V particles in studies using sera from H C V infected patients. Further, according to Example 1, the presence of HCV-RNA was confirmed at the same density, and it was confirmed that HCV-like particles were present in the culture supernatant.
実施例 3 Example 3
(丁 0 ?培養細胞培養上清中の^^ ¥粒子の検出)  (Ding 0? ^^ \ particle detection in cultured cell culture supernatant)
C型肝炎ウィルス全蛋白を発現し、 かつ自律的に複製するダイ シ ス ト口ニック H C Vゲノムを保持する H u h 7細胞 (R C YM 1細 胞) を作製した。 この細胞を 5 X 1 06 個までフラスコ内で継代培 養した。 T G Pに培養液を加え 4tに冷却したものに、 フラスコ内 で培養した細胞を加え、 6 ゥエル プレー トに S O O ^ LZゥェ ルを分注し、 3 7 t:にあたため T G Pをゲル化した。 このゲルに 3 7 に温めた培養液 3 m l を加えたのち、 3 7でにて 1 0 日間培養 した。 Huh 7 cells (RC YM 1 cells) expressing the entire protein of hepatitis C virus and carrying the dystrophic HCV genome that replicates autonomously were prepared. Passage up to 5 x 10 6 cells in a flask Nourished. The culture solution was added to TGP and cooled to 4t, and then the cells cultured in the flask were added. SOO ^ LZ well was dispensed into the 6-well plate, and TGP was gelled because it was heated to 37t. To this gel, 3 ml of the culture solution warmed to 37 was added, followed by culturing at 37 for 10 days.
培養終了後、 ゲルを 4 に冷却してゾル化し培養液を添加して希 釈し、 遠心操作により三次元培養された R C YM 1細胞を回収した 。 培養上清は 8 0 0 0 g、 5 O m i nの遠心操作により細胞破砕物 等を除いた。 その上清を 2 5, O O O r p mで 4 h r遠心した。 ぺ レツ トを T N E緩衝液 1 m 1 で溶解し、 1 0 — 6 0 %ショ糖密度勾 配遠心で分画した。 比重 1. 0 4 g Zm l の画分及びH C V— R N A及び H C V—コア蛋白のピークであった 1. 1 8 g /m 1 の画分 l m l を T N E緩衝液により三倍に希釈し 5 0, O O O r p m, 2 h r遠心した。 この沈殿物を 2 0 の TN E緩衝液に再度溶解し た。 4 %酢酸ウランにて染色後、 透過型電子顕微鏡にて観察を行つ た。 その結果を図 6に示す。 1. 1 8 gZm l の分画には直径 5 0 — 6 0 n mで膜構造及び複雑な内部構造をもったウィルス粒子様構 造が観察できたのに対し、 1. 0 4 g Z m 1 の分画にはこのような 構造物は観察されなかった。 この粒子様構造物は HC V感染血清を 用いた研究で粒子として報告されているものと大きさ · 密度ともに 一致しており、 H C V粒子であることが確認された。  After completion of the culture, the gel was cooled to 4 to form a sol, diluted with a culture solution, and R C YM 1 cells cultured three-dimensionally by centrifugation were collected. From the culture supernatant, cell debris and the like were removed by centrifugation at 800 g and 5 O min. The supernatant was centrifuged at 25, O O O r pm for 4 hr. The pellet was dissolved in 1 ml of TNE buffer and fractionated by centrifugation at 10–60% sucrose density gradient. Specific gravity 1.0 4 Fraction of 4 g Zm l and peak of HCV RNA and HCV core protein 1.1 Fraction l ml of 18 g / m 1 was diluted 3 times with TNE buffer 50 It was centrifuged at OOO rpm for 2 hr. This precipitate was redissolved in 20 TNE buffer. After staining with 4% uranium acetate, observation was performed with a transmission electron microscope. The result is shown in Fig. 6. 1. In the fraction of 18 gZm l, a virus particle-like structure with a membrane structure and a complex internal structure was observed at a diameter of 50 to 60 nm, whereas 1.0 4 g Zm 1 No such structure was observed in this fraction. This particle-like structure was identical in size and density to those reported as particles in studies using HC V-infected sera, and was confirmed to be HC V particles.
上記で得た 1. 1 8 g/m l 画分 (A) 及び 1. 0 4 g Zm l 画 分 (B) の電子顕微鏡 (T EM) 写真を図 6に示す。 図 6に示した ように、 1. 1 8 g /m 1 画分に H C V粒子が確認された。  Fig. 6 shows the electron microscope (T EM) photographs of the 1.18 g / ml fraction (A) and 1.04 g Zml fraction (B) obtained above. As shown in FIG. 6, HCV particles were confirmed in the 1.18 g / m 1 fraction.
実施例 4 Example 4
(T G P培養細胞培養上清中の H C V粒子の免疫染色)  (Immunostaining of HCV particles in TGP cultured cell culture supernatant)
C型肝炎ウィルス全蛋白を発現し、 かつ自律的に複製するダイ シ ス ト口ニック H C Vゲノムを維持する H u h 7細胞 (R C YM 1細 胞) を作製した。 この細胞を 5 X 1 06 個までフラスコ内で継代培 養した。 T G Pに培養液を加え 4 °Cに冷却したものに、 フラスコ内 で培養した細胞を加え、 6 ゥエル プレー トに 8 0 0 Lノウェ ルを分注し、 3 7 °Cにあたため T G Pをゲル化した。 このゲルに 3 7 に温めた培養液 3 m 1 を加えたのち、 3 7 °Cにて 1 0 日間培養 した。 Daisy that expresses all hepatitis C virus proteins and replicates autonomously We prepared Huh 7 cells (RC YM 1 cells) that maintain the stoic HCV genome. Up to 5 × 10 6 cells were subcultured in a flask. Add culture medium to TGP and cool to 4 ° C, add cells cultured in flask, dispense 80 L L-well to 6 well plate, heat to 37 ° C, and gel TGP did. To this gel, 3 ml of the culture solution warmed to 37 was added, followed by culturing at 37 ° C for 10 days.
培養終了後、 ゲルを 4 に冷却してゾル化し培養液を添加して希 釈し、 遠心操作により三次元培養された R C YM 1細胞を回収した 。 培養上清は 8 0 0 0 g、 5 0 m i nの遠心操作により細胞破砕物 等を除いた。 その上清を 2 5, 0 0 0 r p mで 4 h r遠心した。 ぺ レッ トを TN E緩衝液 l m l で溶解し、 1 0 — 6 0 %ショ糖密度勾 配遠心で分画した。 H C V— R NA及び HC V—コア蛋白のピーク であった比重 1. 1 S g Zm l の画分 l m l を TN E緩衝液により 三倍に希釈し 5 0, 0 0 0 r pm、 2 h. r遠心した。 この沈殿物を 2 0 Lの T N E緩衝液に再度溶解した。 この溶液に対して、 一次 抗体として抗 H C Vエンベロープマウス抗体を、 二次抗体として 1 ◦ n mの金コロイ ドで標識した抗マウス抗体をそれぞれ反応させ、 洗浄後、 透過型寧子顕微鏡にて観察を行った。 その結果を図 7 A ( A n t i — E l , E 2 A b ) に示す。 図 7 Aに示したように、 5 0 - 6 O nmの粒子様構造物に対して抗原抗体反応により金コロイ ドが結合しているのが観察された。  After completion of the culture, the gel was cooled to 4 to form a sol, diluted with a culture solution, and R C YM 1 cells cultured three-dimensionally by centrifugation were collected. From the culture supernatant, cell debris and the like were removed by centrifugation at 800 g and 50 min. The supernatant was centrifuged at 25,00 rpm for 4 hr. The pellet was dissolved in 1 ml of TNE buffer and fractionated by centrifugation at 10 to 60% sucrose density gradient. HCV—RNA and HC V—core protein peak specific gravity 1.1 1 ml fraction of 1 S g Zml was diluted 3 times with TNE buffer to 50, 0 00 rpm, 2 h. r Centrifuged. This precipitate was redissolved in 20 L of TNE buffer. This solution was reacted with an anti-HCV envelope mouse antibody as a primary antibody and an anti-mouse antibody labeled with a gold colloid of 1 ◦ nm as a secondary antibody, washed, and then observed with a transmission Nyoko microscope. It was. The results are shown in Fig. 7A (Ant i — E l, E 2 A b). As shown in FIG. 7A, it was observed that the gold colloid was bound to the particle-like structure of 50-60 nm by an antigen-antibody reaction.
他方、 陰性コン トロールとして一次抗体にマウス血清を用いて同 様の処理を行った場合には、 図 7 B (Normalinouse serum) に示し たような金コロイ ドの結合した粒子像は観察できなかった。 これら の結果より、 この粒子様構造物表面には H C V構造蛋白である E 1 , E 2が存在し、 H C V粒子であることを再確認した。 実施例 5 On the other hand, when the same treatment was performed using mouse serum as the primary antibody as a negative control, a particle image with gold colloid bound as shown in Fig. 7 B (Normalinouse serum) could not be observed. . From these results, it was reconfirmed that E 1 and E 2 which are HCV structural proteins exist on the surface of the particle-like structure and that they are HCV particles. Example 5
(ラジアルフロー型バイオリアクター (R F B) ) 培養で培養され たゲノム長の dicistronicHCV— RNAを担持する R C YM 1か らの H C V粒子の分泌)  (Radial flow bioreactor (R F B)) Secretion of HCV particles from R C YM 1 carrying genomic length dicistronicHCV—RNA cultured in culture)
F L C 4細胞において選択可能なゲノム長の HCV— RNAの複 製可能なキャパシティ を最初に評価した。 しかしながら、 G 4 1 8 耐性のコロニーは観察されず、 F L C 4細胞がこれらの HC V— R N Aの複製をサポー ト しないことが示された。 したがって、 以降の 実験は安定した Hu h— 7細胞系 (R C YM 1 ) で行われた。 そし て、 C o n lクローン 1 3 8 9 n e oZ c o r e— 3 7 NK 5. 1 (遺伝子型 (genotype) 1 b ) (P i e t schmann, T. , V. Lohmann, The selectable capacity of HCV-RNA of selectable genome length in FLC4 cells was first evaluated. However, no G 4 18 resistant colonies were observed, indicating that FLC 4 cells did not support these HC V—RNA replication. Therefore, subsequent experiments were performed on a stable Hu h-7 cell line (R C YM 1). C o n l clone 1 3 8 9 n e oZ c o r e — 3 7 NK 5.1 (genotype 1 b) (P i e t schmann, T., V. Lohmann,
A. Kaul, . Krieger, G. Rinck, G. Rut ter, D. Strand, and R.A. Kaul,. Krieger, G. Rinck, G. Rut ter, D. Strand, and R.
Bartenschl ager. 2002. Persistent and transient replication of full- length hepatitis C virus genomes in cell culture. J.Bartenschl ager. 2002. Persistent and transient replication of full- length hepatitis C virus genomes in cell culture.
Virol. 76:4008-4021) に由来するゲノム長の d i c i s t ron i R N Aで 、 細胞の 卜ランスフエクシヨ ンによって発現された全長 (full— le ngth) の HCV— RNA複製をサポー トした。 RCYM 1細胞中の HCV— RNAレベルは、 リアルタイム RT— P C Rによって決定 した約 5 X 1 06 コ ピー Z g トータル RNAであった。 HCV タンパク質の発現と細胞レベル下の局在化は、 ウエスタン ' ブロッ ティ ングおよび免疫蛍光分析によって確認された。 3 D R F B培 養を展開するために、 細胞サスペンジョ ンを流すことによって、 R C Y M 1細胞は先ず R F Bカラムにロー ドされた、 細胞は次いでキ ャ リヤー , ビーズに付着された。 細胞は 3 Dマ ト リ ックスの範囲内 で増殖し、 そして、 培養液はカラムを通してラジアル方向に循環さ れた。 Virol. 76: 4008-4021) is a genomic-length dicist ron iRNA that supports full-length HCV-RNA replication expressed by cells. HCV-RNA levels RCYM 1 cells was about 5 X 1 0 6 copies Z g total RNA was determined by real-time RT- PCR. HCV protein expression and subcellular localization was confirmed by Western blotting and immunofluorescence analysis. 3 To develop DRFB culture, RCYM 1 cells were first loaded onto the RFB column by flowing a cell suspension, and the cells were then attached to carriers and beads. The cells grew within the 3D matrix and the culture was circulated through the column in the radial direction.
R F B培養システムにおいて R C Y M 1細胞から H C V粒子が分 泌されたかどうか調べるために、 培養の 5〜 1 0 日後に培養流体が 集められ、 連続的 1 0 — 6 0 % (wt/vol) ショ糖密度勾配遠心分 離によって分別された。 H C V _ R N Aおよびコア · タンパク質は 、 主に 1 . 1 5 — 1 . 2 0 g /m l に認められ、 1 . 1 8 g Zm l フラクショ ンで最大となった (図 8 Aおよび B ) 。 In the RFB culture system, HCV particles are separated from RCYM 1 cells. To determine whether they were delivered, culture fluids were collected after 5-10 days of culture and fractionated by continuous 10–60% (wt / vol) sucrose density gradient centrifugation. HCV RNA and core protein were found primarily at 1.15—1.20 g / ml, maximal at 1.18 g Zml fraction (FIGS. 8A and B).
図 8は、 R C YM 1細胞の培養上澄みのショ糖密度勾配分析の結 果を示すグラフである。 「材料および方法」 において述たように、 R F B培養された R C YM 1 (黒円) 、 単層培養された R C YM 1 (白四角) および R F B培養された 5 — 1 5細胞 (白三角) から収 集された培養メディ ァが分別された。  FIG. 8 is a graph showing the results of sucrose density gradient analysis of the culture supernatant of R C YM 1 cells. As described in “Materials and Methods”, from RF Y cultured RC YM 1 (black circle), monolayer cultured RC YM 1 (white square) and RFB cultured 5 — 15 cells (white triangle) The collected culture media was separated.
図 8 A : 個々のフラクショ ン中の H C V— R NAが、 リアルタイ ム R T— P C Rによって測定された。 二重測定の平均値は、 対応す る分数の密度に対してプロッ 卜された。  Figure 8 A: H C V—R NA in individual fractions was measured by real time R T—P C R. The average of duplicate measurements was plotted against the corresponding fractional density.
図 8 B : 個々のフラクショ ンの中の H C Vコア · タンパク質は E L I S Aによって決定された。 二重測定の平均値は、 密度に対して プロッ 卜された。  Figure 8B: HCV core protein in individual fractions was determined by ELISA. The average of duplicate measurements was plotted against density.
図 8 C : R F B培養された R C M 1細胞の培養培養液は、 0. 2 %の N P 4 0で処理され (白円) 、 次いでショ糖勾配で遠心分離さ れた。 各々の分数は、 リアルタイム R T— P C Rによって H C V— R N Aについて検査された。  FIG. 8 C: The culture medium of R C M 1 cells cultured in R F B was treated with 0.2% NP 40 (white circles) and then centrifuged with a sucrose gradient. Each fraction was tested for H C V—R N A by real-time R T—P C R.
5 — 1 5細胞を使用した同じ実験 (サブゲノム · H C Vレブリ コ ンが複製された) では、 R C YM 1細胞で観察された H C V— R N Aに対応する同様のピークは、 検出されなかった。 R F B培養シス テムにおける 5 — 1 5細胞および R C YM 1細胞の両方において、 H C V— R N Aの実質的な量が 1 . 0 3〜 1 . O T g Zm l フラク シヨ ンに検出された (図 8 A) 。 Pietschmannらによる以前の報告 (Pie tschmann, T. , V. Lohmann, A. Kaul, N. Krieger, G. Rinck , G. Rutter, D. Strand, and R. Bartenschlager. 2 0 0 2. Per sistent and transient replication of fulト length hepatitis C virus genomes in cell cul ture. J. Virol. 7 6 : 4 0 0 8 - 4 0 2 1 ) と一致して、 サブゲノム ♦ レブリコンで細胞から放出され たこれらの R N Aは、 ウィルス小片と一致しなかった。 等価な数の R C YM 1細胞が単層培養システムで培養されたとき、 培養上澄み 中に H C V— R NAおよびコア · タンパク質の限られた量が検出さ れたのみであった (図 8 Aおよび B) 。 In the same experiment with 5 — 15 cells (subgenomic HCV replicon replicated), no similar peak corresponding to HCV RNA observed in RC YM 1 cells was detected. A substantial amount of HCV RNA was detected in the OT g Zm l fraction in both 5 — 15 cells and RC YM 1 cells in the RFB culture system (Figure 8A). ) Previous report by Pietschmann et al. (Pie tschmann, T., V. Lohmann, A. Kaul, N. Krieger, G. Rinck , G. Rutter, D. Strand, and R. Bartenschlager. 2 0 0 2. Per sistent and transient replication of ful length hepatitis C virus genomes in cell cul ture. J. Virol. 7 6: 4 0 0 8-4 Consistent with 0 2 1), these RNAs released from cells with subgenomic ♦ levicons did not match the virus fragments. When an equivalent number of RC YM 1 cells were cultured in a monolayer culture system, only limited amounts of HCV—RNA and core protein were detected in the culture supernatant (FIG. 8A and B).
成熟した H C Vウィルス粒子 (virion) は、 ヌク レオ力プシドと 、 脂質膜とウィルスエンベロープ * グリ コプロテイ ンとから構成さ れる外側エンベロープとを有すると考えられている。 培養流体は、 脂質を可溶化するために N P 4 0で処理されて、 次いでショ糖密度 勾配遠心分離に供された。 1. 1 8 g Zm l より、 むしろ 1. 2 2 g /m l の密度) に集約された H C V (図 8 C) は、 H C V粒子の 密度が脱エンベロープ化 (de— envelopement) によって、 より高い 密度にシフ トしたことを示す。 1. 1 8の g /m l のフラクショ ン Mature HCV virions are thought to have a nucleoside psid and an outer envelope composed of a lipid membrane and a viral envelope * glycoprotein. The culture fluid was treated with NP40 to solubilize lipids and then subjected to sucrose density gradient centrifugation. HCV (Fig. 8 C) concentrated at 1. 2 2 g / ml (rather than 1 8 g Zml) has a higher density due to the de-envelopement of HCV particles. Indicates the shift. 1. 1 8 g / ml fraction
(濃縮の後、 ネガティ ブ染色法に供された) の透過型電子顕微鏡 ( T EM) は、 3 0 - 6 0 nmの直径および 5 0 n mの主粒径を有す る粒子構造を示した。 同様の粒子類似の構造は、 R C YM 1 —単層 培養の同じ密度フラクショ ンにおいて、 または R C YM l — R F B 培養の 1. 0 7 g /m 1 フラクショ ンにおいては観察されなかった 。 これらの結果は、 R F B系では、 H C V粒子の産生および分泌が 、 選択可能な bicistronicな H C Vゲノムで可能だったことを示す 実施例 6 Transmission electron microscope (TEM) (concentrated and then subjected to negative staining) showed a particle structure with a diameter of 30-60 nm and a main particle size of 50 nm . Similar particle-like structures were not observed in the same density fraction of R C YM 1 —monolayer culture or in the 1.0 7 g / m 1 fraction of R C YM 1 —R F B culture. These results show that in the R F B system, the production and secretion of HC V particles was possible with a selectable bicistronic HC V genome Example 6
熱可逆性ゲル化ポリマー (T G P) を使用する R C YM 1細胞のス フエロイ ド培養からの H C V粒子の産生および分泌 実施例 1、 2と同様にして TG Pに播種された R CYM 1細胞は 、 3 日の培養の後にスフエロイ ドを形成し、 約 l mmの直径を有す る多数のスフエロイ ドが培養の 7— 1 0日後に観察された。 8日間 の培養の後、 スフエロイ ドは固定されて、 走査型電子顕微鏡 (図 9 Aおよび図 9 B ( a 1 ) ) 、 および T E Mによる超薄切片よつて調 ベられた (図 1 0 A ( B ) および図 1 0 B ( b 1 ) ) 。 Production and secretion of HCV particles from spheroid culture of RC YM 1 cells using thermoreversible gelling polymer (TGP) R CYM 1 cells seeded in TPG in the same manner as in Examples 1 and 2 formed spheroids after 3 days of culture, and many spheroids having a diameter of about 1 mm were cultured. — Observed after 10 days. After 8 days of culture, the spheroids were fixed and examined by scanning electron microscopy (Figures 9A and 9B (a 1)) and ultrathin sections by TEM (Figure 10A ( B) and Fig. 10 B (b 1)).
図 9〜 1 1は、 Hu h— 7と R CYM 1細胞が、 TG P中でスフ ェロイ ドを形成している態様の例を示す写真である。 TG P中で 8 日間培養された RC YM 1細胞の走査型電子顕微鏡写真 (図 9 Aお よび図 9 B ( a 1 ) ) 、 および透過型電子顕微鏡写真 (図 1 0 A ( B ) および図 1 O B ( b 1 ) ) を示す。  FIGS. 9 to 11 are photographs showing examples of embodiments in which Hu h-7 and R CYM 1 cells form spheroids in TGP. Scanning electron micrographs of RC YM 1 cells cultured in TPG for 8 days (Fig. 9 A and Fig. 9 B (a 1)) and transmission electron micrographs (Fig. 10 A (B) and diagram 1 OB (b1)).
黒矢印 : 絨毛様突起、 白矢印 : 胆汁小管様構造。  Black arrow: Villiform process, White arrow: Bile tubule-like structure.
図 1 1 A〜 1 I F ( C - H) : TG P培養 (図 1 1 A〜C ( C - E ) ) および単層培養 (図 1 1 D〜 1 I F (F— H) ) された Hu h - 7細胞における connexin3 2の細胞内局在性。  Fig. 1 1 A to 1 IF (C-H): Hu in TGP culture (Fig. 1 1 A to C (C-E)) and monolayer culture (Fig. 1 1 D to 1 IF (F-H)) Intracellular localization of connexin32 in h-7 cells.
図 1 1 A C) および 1 1 D (F) : connexin 3 2の免疫染色 図 1 1 B (D) および 1 1 E (G) : 位相差顕微鏡  Fig. 1 1 A C) and 1 1 D (F): immunostaining of connexin 3 2 Fig. 1 1 B (D) and 1 1 E (G): phase contrast microscope
図 1 1 C ( E ) : 1 1 A ( C ) および 1 I B (D ) のオーバ一レ ィ  Figure 1 1 C (E): 1 1 A (C) and 1 I B (D) Overlay
核は、 ヨウ化プロビジゥムで後染色で着色された。  The nuclei were colored by post-staining with propidium iodide.
よく発達した絨毛様突起 (分極化する上皮の特徴) は、 細胞表面 で観察された (図 9 Aおよび 9 B ( a l ) ) 。 細胞間のスペース中 で、 胆汁小管様の構造も観察され、 それらは夕イ トな接合 (juncti on) を介して接続されるように見えた (図 1 0 A ( B ) および 1 0 B (b l ) ) 。 この細胞形態は、 R F B培養において観察されたも のに類似しており (Garoff, H. , R. Hewson, and D. J. Opstel ten . 1 9 9 8. Virus maturation by budding. Microbiol. Mol. Bio 1. Rev. 6 2 : 1 1 7 1 - 1 1 9 0. Grakoui, A. , D. W. McCourt , C. Wychowski, S. M. Feinstone, and C. M. Rice. 1 9 9 3. C haracter izat ion of the hepatitis C vi rus - encoded serine prot e inase : determination of prote inase-dependen t polyprote in c 1 eavage sites. J. Virol. 6 7 : 2 8 3 2 - 2 8 4 3 ) 、 成熟した 肝臓組織の特徴と良く相関していた。 免疫染色により細胞間のギヤ ップ結合の形成において重要な役割を果たす connexin 3 2の観察 により、 T G P培養における細胞接着の表面で connexin 3 2が局 所化され (図 1 1 A〜 1 1 C (C一 E ) ) 、 他方、 単層培養組織に おいては、 それが細胞質の中に主に分配されることが判明した (図 1 1 D〜 ; L 1 F ( F - H) ) 。 これは、 H u h— 7細胞が 3 D培養 系において細胞極性を得たことを示す。 Well-developed villus-like processes (polarizing epithelial features) were observed on the cell surface (Figures 9A and 9B (al)). Bile tubule-like structures were also observed in the intercellular spaces, and they appeared to be connected via junction junctions (Figs. 10A (B) and 10B ( bl))). This cell morphology is similar to that observed in RFB culture (Garoff, H., R. Hewson, and DJ Opstel ten. 1 9 9 8. Virus maturation by budding. Microbiol. Mol. Bio. 1. Rev. 6 2 : 1 1 7 1-1 1 9 0. Grakoui, A., DW McCourt, C. Wychowski, SM Feinstone, and CM Rice. 1 9 9 3. C haracter izat ion of the hepatitis C vi J. Virol. 6 7: 2 8 3 2-2 8 4 3), which correlates well with the characteristics of the mature liver tissue. rus-encoded serine prote e inase: determination of prote inase-dependen t polyprote in c 1 eavage sites. It was. The observation of connexin 3 2 that plays an important role in the formation of gap junctions between cells by immunostaining localizes connexin 3 2 on the surface of cell adhesion in TGP culture (Fig. 1 1 A to 1 1 C (C1E)), on the other hand, in monolayer cultures, it was found that it was mainly distributed in the cytoplasm (Fig. 11D-; L1F (F-H)). This indicates that Huh-7 cells gained cell polarity in the 3D culture system.
H u h— 7細胞中の H C Vレブリコンの複製が、 ホス ト細胞成長 に依存することが知られている。 ここでは、 T G P培養系における R C YM 1細胞の成長が、 単層培養組織 (図 1 2 A) の中の細胞の それより、 有意に (significanUy) 遅いことが見出された。 した がって、 H C Vタンパク質 (図 1 2 B) の発現と、 R C YM 1スフ ェロイ ドにおけるウィルス R NAコピー数は、 単層細胞で観察され るそれらと比較して、 見かけ上 (apprently) より低かった。 培養 上澄みのショ糖密度勾配分析からの結果は、 1. 1 5— 1. 2 0 g /m 1 の密度における H C V— R NAおよびコア · タンパク質の共 沈殿 (co_ sedimentation) 、 および 1 8 g / m 1 におけるピーク を示した (図 1 2 C ( C ) および 1 2 D (D) ) 。 この分布は、 R F B培養において得られたパターンと一致した (図 8 Aおよび B) 。 細胞のより遅い成長のため、 単層培養と比較して、 これらの実験 では、 より少ない細胞数が 3 D培養において使用された点に留意す る必要がある。 図 1 2〜 1 3は、 T G P培養における R C YM 1細胞中の H C V タンパク質の発現と、 ウィルス分子の分泌を示す図である。 It is known that HCV replicon replication in Huh-7 cells depends on host cell growth. Here, it was found that the growth of RC YM 1 cells in the TGP culture system was significantly (significanUy) slower than that of the cells in the monolayer culture (Fig. 12 A). Therefore, the expression of HCV protein (Fig. 12 B) and the viral RNA copy number in RC YM 1 spheroids were more apprently compared to those observed in monolayer cells. It was low. The results from sucrose density gradient analysis of the culture supernatant are: 1. HCV—RNA and core protein co-precipitation (co_ sedimentation) at a density of 1.15—1.20 g / m 1, and 18 g / A peak at m 1 was shown (Figures 12 C (C) and 12 D (D)). This distribution was consistent with the pattern obtained in RFB culture (Figures 8A and B). It should be noted that due to the slower growth of cells, fewer cells were used in 3D cultures in these experiments compared to monolayer cultures. Figures 12 to 13 are diagrams showing expression of HCV protein and secretion of viral molecules in RC YM 1 cells in TGP culture.
図 1 2 A : R C YM 1細胞の T G P培養 (黒円) と単層 (白円) の細胞増殖カーブである。 細胞は、 接種後の 0 日、 3 日、 6 日およ び 9 日に採取され、 細胞数が決定された。  Fig. 1 2 A: Cell growth curves of T C P culture (black circle) and monolayer (white circle) of R C YM 1 cells. Cells were harvested on days 0, 3, 6, and 9 after inoculation and the number of cells determined.
図 1 2 B : R C YM 1細胞およびコン トロール H u h— 7細胞に おける H C Vコアと N S 5 Aタンパク質のウエスタンプロッティ ン グである。  Fig. 12B: Western plot of HCV core and NS5A protein in RCYM1 cells and controls Huh-7 cells.
図 1 2 Cおよび 1 2 D : R C YM 1細胞の培養上澄みのショ糖密 度勾配分析である。 個々のフラクショ ン中の H C Vコア · タンパク 質 (C) およびウィルス R NA (D ) は、 それぞれ、 E L I S Aと リアルタイム R T— P C Rによって決定された。 3つの独立した実 験からの代表的なデータが示されている。 黒円 : T G P培養の H C V— RNA、 白円 : 単層培養の H C V— R NA ; 黒三角 : T G P培 養の H C Vコア · タンパク質、 白三角 : 単層培養のコア · タンパク 質。  Fig. 12 C and 12 D: Sucrose density gradient analysis of the culture supernatant of R C YM 1 cells. HC V core protein (C) and viral RNA (D) in individual fractions were determined by ELISA and real-time RT-PCR, respectively. Representative data from three independent experiments are shown. Black circle: HCV—RNA in TG culture, white circle: HCV—RNA in monolayer culture; black triangle: HCV core protein in TG culture, white triangle: core protein in monolayer culture.
図 1 3 A〜 1 3 D ( E - H) : T G P培養された R C YM 1細胞 の上澄み中の H C V粒子の電子顕微鏡写真。  Fig. 1 3 A to 1 3 D (E-H): Electron micrographs of HC V particles in the supernatant of R C YM 1 cells cultured in TGP.
図 1 3 A (E) : 1. 1 8 gZm l密度フラクショ ンにおける H C V粒子のネガティ ブ染色  Fig. 1 3 A (E): 1. 1 8 Negative negative staining of HC V particles in 8 gZm l density fraction
図 1 3 D (H) に示されるように、 球状構造は 1. 0 5 g_ m 1 密度フラクショ ン中に無かった。  As shown in Fig. 1 3 D (H), the spherical structure was absent in the 1.0 5 g_m 1 density fraction.
図 1 3 B (F) : H C V粒子の超薄切片。 沈殿 H C V粒子サンプ ルは、 1. 1 8 g/m l フラクショ ンから調製された。  Fig. 1 3 B (F): Ultrathin section of H C V particles. Precipitated HC V particle samples were prepared from 1. 18 g / ml fraction.
図 1 3 C (G) : 1. 1 8 g/m l密度フラクショ ンにおける抗 E 2抗体による H C V粒子の免疫金ラベリ ング。 金粒子 ; 5 n m、 Bars, 5 0 n m。 ネガティ ブ染色法の後の 1. 1 8の g Zm l のフラクショ ンの T E M分析は、 5 0 - 6 0 n mの直径およびスパイク様の突起 (proj ections) を有する粒子構造を示した (図 1 3 A (E) ) 。 超薄切 片の観察は、 約 5 n mの幅を有する脂質バイ レイヤー様の膜構造を 示した (図 1 3 B ( F) ) 。 抗 E 2抗体を使用した免疫電子顕微鏡 観察は、 粒子表面における H C Vエンベロープ · タンパク質を明ら かにした (図 1 3 C (G) ) 。 上澄みの 1. 0 3— 1. 0 5 g /m 1 フラクショ ンにおいて H C V— R NAの相当な量が検出された ( 図 1 2 A ) 力^ これらのフラクショ ンにおいて、 ウィルス様の粒子 構造は観察されなかった (図 1 3 D (H) ) 。 これらの結果は、 上 記で示した R F B系からの結果に一致した。 このように、 ウィルス 粒子構造における 3 D細胞培養系の有効性は、 ヒ ト肝臓由来の細胞 を用いる T G P培養系および R F B系において示された。 Fig. 1 3 C (G): 1. Immunogold labeling of HCV particles with anti-E 2 antibody in a fraction of 18 g / ml density. Gold particles: 5 nm, Bars, 50 nm. TEM analysis of fractions of 1. 18 g Zm l after negative staining showed a particle structure with diameters of 50-60 nm and spike-like projections (Fig. 1). 3 A (E)). Observation of ultrathin slices showed a lipid bilayer-like membrane structure with a width of about 5 nm (Fig. 13 B (F)). Immunoelectron microscopy using an anti-E2 antibody revealed HCV envelope protein on the particle surface (Fig. 13 C (G)). A significant amount of HCV—RNA was detected in the supernatant at 1. 0 3— 1. 0 5 g / m 1 fraction (Figure 1 2 A) force ^ In these fractions, the virus-like particle structure was Not observed (Figure 1 3D (H)). These results were consistent with the results from the RFB system shown above. Thus, the effectiveness of the 3D cell culture system in the virus particle structure was shown in the TGP culture system and the RFB system using cells derived from human liver.
実施例 7 Example 7
R C YM 1細胞の T G P培養されたスフエロイ ドにおける H C V粒 子の超構造 (ultrastructural) 局在化  Ultrastructural localization of HC V particles in TG cultured spheroids of R C YM 1 cells
次いで、 E M分析超薄切片によって、 超構造レベルにおける R C YM 1 — T G P培養において生じた H C V粒子の細胞内局在化を決 定した。 短い表面上の突起 (直径 5 0— 6 0 nm) を有する、 膜様 の構造を有する球状粒子は、 E Rの幅広の嚢 (図 1 4 B) における と同様に、 主に E R膜 (図 1 4 A) で観察された。  Subsequently, EM analysis ultrathin sections determined the subcellular localization of H C V particles generated in R C YM 1 —TGP cultures at the ultrastructural level. Spherical particles with a membrane-like structure with protrusions on the short surface (diameter 50–60 nm) are predominantly ER membranes (Fig. 1) as in the wide ER capsule (Fig. 14 B). 4) observed in A).
図 1 4は、 T G P中で増殖された R C YM 1細胞の超薄切片の電 子顕微鏡写真である。 T G P培養された R C YM 1細胞中の H C V 粒子。 5 0 — 6 O n mの直径を有する球状ウィルス様の粒子 (矢印 ) は、 E R膜 (図 1 4 Aおよび B) 、 および細胞質の小嚢において 観察された。  FIG. 14 is an electron micrograph of an ultrathin section of RCYM1 cells grown in TGP. HC V particles in T C P cultured R C YM 1 cells. Globular virus-like particles (arrows) with a diameter of 50–6 Onm were observed in ER membranes (Figures 14 A and B) and in cytoplasmic vesicles.
小嚢において、 これらのウィルス様の粒子は、 しばしばァモルフ ァス材料を伴った。 以前、 清水らは、 H C Vに感染したヒ ト B細胞 において、 形態およびサイズにおいて類似するウィルス様の粒子が 観察されたことを報告した (Shifflizu, Y. K. , S. M. Feinstone, M.In follicles, these virus-like particles are often amorphic Accompanied by a false material. Previously, Shimizu et al. Reported that virus-like particles similar in morphology and size were observed in human B cells infected with HCV (Shifflizu, YK, SM Feinstone, M. et al.
Ko ara, R. H. Pur細胞, and H. Yoshikura. 1996. Hepatitis C virus: detect ion of in a細胞 ular virus particles by electro n microscopy. Hepatology 2 3 : 2 0 5— 2 0 9 ) 。 同様の粒子 類似の構造は、 単層培養における R C YM 1細胞において、 または T G P培養におけるサブゲノム · レブリコン 5 — 1 5細胞において は観察されなかった。 Ko ara, R. H. Pur cells, and H. Yoshikura. 1996. Hepatitis C virus: detect ion of a cell ular virus particles by electron microscopy. Hepatology 2 3: 2 0 5— 2 0 9). Similar particle-like structures were not observed in R C YM 1 cells in monolayer cultures or in subgenomic levicons 5 — 15 cells in T GP cultures.
この実験において従来の T E Mを使用して観察されたウィルス様 の粒子が H C V粒子であつたか否か決定するために、 抗コア抗体お よび抗 E 1抗体を用いて免疫電子顕微鏡分析が行われた。 ダブルラ ベリ ング実験は、 E R膜と協働するウィルス様の粒子が、 両方の H C Vタンパク質に対して免疫反応性を示し、 そして、 E 1タンパク 質がコア · タンパク質を囲んでいることを示した (図 1 5 A) 。 本 発明者らの知見によれば、 H C V粒子形成において、 ウィルスェン ベロープ · タンパク質がコア · タンパク質を囲んでいることを明ら かに示す最初の報告である。 陰性コン トロールとして、 サブゲノム R NAを含有する 5— 1 5細胞から調製された薄片はこれらの抗体 で染色され、 且つ、 それらは免疫染色におけるバックグラウンドの 無視し得るレベルを示した。  To determine whether the virus-like particles observed using conventional TEM in this experiment were HCV particles, immunoelectron microscopic analysis was performed using anti-core and anti-E1 antibodies. . Double-labeling experiments showed that virus-like particles working with the ER membrane were immunoreactive with both HCV proteins and that the E1 protein surrounded the core protein ( Fig. 15 A). According to the findings of the present inventors, this is the first report that clearly shows that the viral envelope protein surrounds the core protein in HCV particle formation. As negative controls, slices prepared from 5-15 cells containing subgenomic RNA were stained with these antibodies, and they showed negligible levels of background in immunostaining.
顕微鏡写真の低解像度およびコン トラス トのため、 免疫金電子顕 微鏡を用いて細胞内微細構造を視覚化し、 抗原性タンパク質局在化 を行う ことは、 一般に難しい。 この困難を克服するために、 この実 験においては、 銀増感された免疫金ラベリ ング法が適用された (図 1 5 Bおよび 1 5 C) 。 この方法を使用することにより、 約 2 O n mの抗原反応性の免疫金粒子が観察された。 図 1 5は、 T G P培養された R C YM 1細胞の超薄切片の免疫電 子顕微鏡写真である。 Due to the low resolution and contrast of photomicrographs, it is generally difficult to visualize intracellular microstructure using immunogold electron microscopy and perform antigenic protein localization. To overcome this difficulty, silver-sensitized immunogold labeling was applied in this experiment (Figures 15B and 15C). Using this method, approximately 2 O nm of antigen-reactive immunogold particles were observed. Fig. 15 is an immunoelectron micrograph of an ultrathin section of RC YM 1 cells cultured in TGP.
図 1 5 A ( A) : 抗 E 1 と抗コア · モノクローナル抗体でダブル 免疫染色された。 コア · タンパク質一特異的な金粒子 ( 1 0 n mの 直径) と、 E 1 タンパク質一特異的な金粒子 ( 5 n mの直径) は、 E R膜の表面でロゼッ トを形成した。  Fig. 15 A (A): Double immunostaining with anti-E1 and anti-core monoclonal antibodies. Core protein monospecific gold particles (10 nm diameter) and E1 protein monospecific gold particles (5 nm diameter) formed rosettes on the surface of the ER membrane.
図 1 5 B ( B ) および 1 5 C ( C ) ) : 抗コア (B) と抗 E 1 ( C ) 抗体による銀増感された免疫金。 1. 4 n m直径の金粒子とコ ンジュゲー トされた第二の抗体が適用され、 次いで銀増感試薬によ つて粒子が拡大された。 矢印は、 ウィルス様の粒子が抗コアおよび 抗 E 1抗体と反応することを示す。  Fig. 15 B (B) and 15 C (C)): Silver-sensitized immune gold with anti-core (B) and anti-E 1 (C) antibodies. 1. A second antibody conjugated with 4 nm diameter gold particles was applied, and then the particles were enlarged with a silver sensitizer. Arrows indicate that virus-like particles react with anti-core and anti-E1 antibodies.
コアおよび E 1タンパク質の特異的免疫ラベリ ングは、 E R内、 E R膜上で主に検出された。 細胞質の小嚢中、 および E R膜上に観 察されたウィルス様の粒子上で、 強い免疫陽性反応が検出された。 第 1抗体として正常マウス血清が使用されたとき、 このような免疫 ラベリ ングは観察されなかった。 これらの結果は、 従来の T E Mの 超構造観察を確認し、 且つ H C V粒子の形成が、 E R膜における推 定のコア粒子のバデイ ング (budding) によって達成されることを 示唆する。  Specific immunolabeling of core and E1 proteins was detected mainly within the ER and on the ER membrane. Strong immunopositive reactions were detected in cytoplasmic vesicles and on virus-like particles observed on ER membranes. Such immunolabeling was not observed when normal mouse serum was used as the first antibody. These results confirm conventional T EM superstructure observations and suggest that the formation of H C V particles is achieved by estimated core particle budding in the ER film.
実施例 8 Example 8
H C V粒子の伝染力の E 2グリコプロテインへの依存性  Dependence of HCV particle infectivity on E2 glycoprotein
T G P系で培養された R C Y M 1細胞から放出される H C V粒子 が伝染性であるか否か決定するために、 ナイーブな H u h— 7. 5 . 1細胞 (H C V—陰性の H u h— 7. 5 ( 7 ) に由来する細胞で ある) 、 R C YM 1スフエロイ ドの培養上澄みを接種され、 接種 の 4 日後に、 N S 5 Aタンパク質について、 免疫蛍光染色法によつ て分析された (図 1 6 A) 。 図 1 6は、 T G P培養された R C YM l細胞から分泌された H C V粒子の感染性、 および該感染性の中和を示す図である。 To determine whether HCV particles released from RCYM 1 cells cultured in the TGP system are infectious, naive Huh—7.5.1 cells (HCV—negative Huh—7.5) (7) cells were inoculated with the culture supernatant of RC YM 1 spheroids, and 4 days after inoculation, NS 5 A protein was analyzed by immunofluorescence staining (Figure 16). A) FIG. 16 is a diagram showing infectivity of HCV particles secreted from RC YM l cells cultured in TGP and neutralization of the infectivity.
図 1 6 A (A) : H C V 子 (上パネル : infection ( + ) ) で 感染された、 または感染無し (下パネル : infection (—) ) の H u h 7. 5. 1細胞が 4 日間培養され、 次いで、 抗 N S 5 A抗体で 免疫染色された。 核は、 D A P Iで後染色で着色された。  Fig. 16 A (A): Huh 7.5.1 cells infected with HCV pups (upper panel: infection (+)) or without infection (lower panel: infection (—)) were cultured for 4 days. Subsequently, immunostaining was performed with an anti-NS 5 A antibody. Nuclei were colored by post-staining with D A P I.
図 1 6 B ( B ) : 抗 E 2抗体 (A P 3 3 ) 、 NO B抗体、 または 抗 F L A G抗体後処理された H u h 7. 5. 1細胞は、 HC V粒子 で感染され、 4 日間インキュベー トされた。 細胞中の H C V— R N Aは、 リアルタイム R T— P C Rによって決定された。 三つ組のサ ンプルにおける平均値が、 標準偏差とともに示されている。  Fig. 16 B (B): Huh 7.5.1 cells post-treated with anti-E2 antibody (AP33), NOB antibody, or anti-FLAG antibody were infected with HCV particles and incubated for 4 days. It was HCV—RNA in the cells was determined by real time RT—PCR. Average values for triplicate samples are shown with standard deviations.
約 1 %の H u h— 7. 5. 1細胞が、 N S 5 A陽性であることが 観察された。 これに対して、 T G Pで培養された 5— 1 5細胞から 得られた細胞上澄みサンプルを用いて、 H u h— 7. 5. 1細胞を 接種した際には、 N S 5 A—陽性細胞は検出されなかった。 ウィル スエンベロープ · タンパク質が H C V粒子による感染を媒介するか 否かを更に決定するために、 抗 E 2抗体、 NO B抗体の高い力価 ( 1 / 3 5 0 0 - 1 / 4 0 0 0 ) を有する患者血清 (Ishii, K. , D. Rosa, Y. Watanabe, T. Katayama, H. Harada, C. Wyat t, K. Kiyo sawa, H. Aizaki, Y. Matsuura, M. Houghton, S. Abr ignan i, and T. Miyamura. 1998. High titers of antibodies inhibiting the binding of envelope to human 細胞 s correlate with natural r esolut ion of chronic hepatitis C. Hepatology 2 8 : 1 1 1 7 - 1 1 2 0 ) 、 または抗 F L A G抗体 (図 1 6 B ) で、 H C V粒子 がプレ · イ ンキュベー トされた。 細胞内 H C V— R NAレベルは、 抗 E 2抗体、 NO B 3、 および N O B 4の存在下で、 それぞれ 4 3 % , 2 8 %および 2 6 %と減少した。 感染細胞中のウィルス R NA の減少は、 抗 F L A G抗体による処理の後で、 観察されなかった。 上記を総合すると、 これらの結果は、 T G Pで培養された R C YM 1細胞によって生じた H C V粒子は伝染性であり、 ウィルスェンべ ロープタンパク質が、 H u h _ 7. 5. 1細胞の感染で重要な役割 を果たすことを強く示唆する。 Approximately 1% of Huh—7.5.1 cells were observed to be NS 5 A positive. In contrast, NS 5 A-positive cells were detected when Huh-7.5.1 cells were inoculated using cell supernatant samples obtained from 5-15 cells cultured in TGP. Was not. To further determine whether the virus envelope protein mediates infection by HCV particles, high titers of anti-E 2 and NO B antibodies (1/3 5 0 0-1/4 0 0 0) Sera with patients (Ishii, K., D. Rosa, Y. Watanabe, T. Katayama, H. Harada, C. Wyat t, K. Kiyo sawa, H. Aizaki, Y. Matsuura, M. Houghton, S. Abr ignan i, and T. Miyamura. 1998.High titers of antibodies inhibiting the binding of envelope to human cells s correlate with natural resolution of chronic hepatitis C. Hepatology 2 8: 1 1 1 7-1 1 2 0), Alternatively, HCV particles were pre-incubated with an anti-FLAG antibody (Figure 16B). Intracellular HCV—RNA levels decreased to 43%, 28%, and 26% in the presence of anti-E2 antibody, NOB3, and NOB4, respectively. Virus in infected cells R NA No decrease was observed after treatment with anti-FLAG antibody. Taken together, these results indicate that HCV particles produced by RC YM 1 cells cultured in TGP are infectious, and viral envelope proteins are important in infection of Huh _ 7.5.1 cells It strongly suggests that it will play a role.
実施例 9 Example 9
H C V産生のための T G P培養系の潜在的使用法と抗ウィルス剤の 評価  Potential use of TGP culture system for HCV production and evaluation of antiviral agents
Lindenbachらは、 H C V遺伝子型 2 aクローンの完全な複製をサ ポー トする細胞培養系が、 抗ウィルス薬の評価に有用であると最近 報告した (Lindenbach, B. D. , M. J. Evans, A. J. Syder, B. Wol k, T. L. Tel 1 inghuisen, C. C. Liu, T. Maruyama, R. 0. Hynes, D. R. Burton, J. A. McKeat ing, and C. M. Rice. 2 0 0 5. Com plete replication of hepatitis C virus in 細胞 culture. Sc ie nce 3 0 9 : 6 2 3 - 6 2 6 ) 。 しかしながら、 現在まで、 この完 全な H C V培養系を、 最もしばしば C型肝炎患者に検出され、 且つ 治療することが最も難しいものであるところの、 遺伝子型 1 まで拡 張されていない。  Lindenbach et al. Recently reported that cell culture systems that support complete replication of HCV genotype 2a clones are useful for the evaluation of antiviral drugs (Lindenbach, BD, MJ Evans, AJ Syder, B. Wol k, TL Tel 1 inghuisen, CC Liu, T. Maruyama, R. 0. Hynes, DR Burton, JA McKeat ing, and CM Rice. 2 0 0 5. Com plete replication of hepatitis C virus in cell culture. nce 3 0 9: 6 2 3-6 2 6). To date, however, this complete HCV culture system has not been extended to genotype 1, which is most often detected and most difficult to treat in patients with hepatitis C.
ここでは、 抗 H C V薬を評価するための、 R C YM 1細胞の T G P培養の潜在的有用性を示す (図 1 7 ) 。  Here, we show the potential utility of T C P culture of R C YM 1 cells to evaluate anti-HCV drugs (Figure 17).
図 1 7は、 I F Nおよび R B Vによる H C V粒子産生の阻害を示 す図である。 T G P培養された R C YM 1細胞は、 1 0 0 I U/m 1 の I F N _ a、 または 1 0 Ο μ ιηの R B Vで処理され、 次いで細 胞中の H C V— RNA (図 1 7 A) 、 および培地 (図 1 7 B) 中の H C V— R N Aが決定された。 個々のサンプルからの培地は、 ショ 糖勾配遠心分離によって分別され、 H C V粒子陽性 ( 1. 1 8 g / m l ) および陰性 ( 1. 0 4 g / m 1 ) フラクショ ンが分析された 。 つ組のサンプルにおける平均値および標準偏差が示されているFigure 17 shows the inhibition of HCV particle production by IFN and RBV. RC YM 1 cells cultured in TGP were treated with 100 IU / m 1 of IFN_a, or 10 Ομ ιη of RBV, and then HCV RNA in the cells (Figure 17A), and HCV-RNA in the medium (Figure 17 B) was determined. Media from individual samples was fractionated by sucrose gradient centrifugation and analyzed for HCV particle positive (1.18 g / ml) and negative (1.04 g / m1) fractions . Average values and standard deviations for a set of samples are shown
。 黒バー : 処理無しコン トロール、 シェー ドバー : I F N— α、 白 バ— : R Β V . . Black bar: Untreated control, Shade bar: IFN-α, White bar: RΒV.
T G P培養された R C YM 1細胞スフエロイ ドにおける細胞内 Η C V— R NAレベルは、 1 0 0 I UZm l の I F N— αで培養の 3 日後で、 9 0 %までに低減された (図 1 7 Β ) 。 同様に、 1. 1 8 g/m 1 上澄みフラクショ ンの H C V— R NAコピー数を使って計 算された細胞外 H C V粒子濃度は、 I F N— ひ治療によって、 8 9 %になった (図 1 7 A) 。 更に、 H C V粒子の産生は、 I O O M の R B Vによる治療によって、 細胞内 H C V— R NAとして、 同じ 程度 ( 8 5 %) に阻害された (図 1 7 A) 。 非処理群の培養上澄み の 1. 0 4 g /m l フラクショ ンにおいて検出された H C V— R N Aのレベルは 1. 1 8 g /m l フラクショ ン中のそれの約 1 4分の 1であり、 このレベルは、 I F N— Q!または R B Vの添加で増加し た (図 1 7 A) 。 この増加の基礎をなすメカニズムは知られていな いが、 T G P— R C Y M 1培養を用いて高度に細胞毒性の薬剤が評 価された際に、 同様の現象が観察された。 したがって、 I F N お よび R B Vの緩和な細胞毒効果に起因する細胞死の結果として、 H C V— R NAと協働するいくつかの細胞タンパク質が、 培養上澄み に放出される可能性がある。  Intracellular CV—RNA levels in RC YM 1 cell spheroids cultured in TGP were reduced to 90% after 3 days of culture with 100 I UZml IFN—α (Figure 17). )). Similarly, the extracellular HCV particle concentration calculated using the HCV—RNA copy number in the 1. 18 g / m 1 supernatant fraction was 89% with IFN— treatment (Figure 1). 7 A). Furthermore, the production of H C V particles was inhibited to the same extent (85%) as intracellular H C V—R NA by treatment with I O O M R B V (FIG. 17A). The level of HCV—RNA detected in the 1.0 4 g / ml fraction of the culture supernatant of the untreated group was about one-quarter of that in the 1.18 g / ml fraction. Increased with the addition of IFN—Q! Or RBV (Figure 17 A). The mechanism underlying this increase is unknown, but a similar phenomenon was observed when highly cytotoxic drugs were evaluated using TGP—RCYM1 cultures. Thus, as a result of cell death due to the mild cytotoxic effects of IFN and RBV, several cellular proteins that cooperate with HCV—RNA may be released into the culture supernatant.
上記を総括すれば、 これらの結果は、 T G P培養に基づく H C V 産生モデルが、 H C V粒子産生および抗 H C V薬の阻害作用を評価 するために有用であることを証明する。  In summary, these results demonstrate that a HCV production model based on TGP culture is useful for evaluating HCV particle production and the inhibitory effects of anti-HCV drugs.

Claims

請 求 の 範 囲 The scope of the claims
1. 濃度勾配下で遠心処理により形成された同一フラクショ ンに 、 H C V (C型肝炎ウィルス) 一 R NAおよび H C V—コア蛋白が 共に存在することを特徴とする培養された H C V粒子。 1. Cultured HCV particles characterized by the presence of both HCV (hepatitis C virus), RNA and HCV-core protein in the same fraction formed by centrifugation under a concentration gradient.
2. 金コロイ ドで標識した抗 H C V抗体との結合が可能であるこ とを特徴とする培養された H C V粒子。  2. Cultured HCV particles characterized by being capable of binding to anti-HCV antibody labeled with gold colloid.
3. その水溶液が、 ゾルーゲル転移温度より低温では流動性のゾ ル状態となり、 ゾルーゲル転移温度より高温では可逆的にハイ ド口 ゲル状態となるハイ ドロゲル形成性高分子を用い、  3. A hydrogel-forming polymer is used in which the aqueous solution is in a fluid sol state at a temperature lower than the sol-gel transition temperature and reversibly becomes a hydrogel state at a temperature higher than the sol-gel transition temperature.
ゾルーゲル転移温度より低温で、 流動性のゾル状態とした前記ゲ ル形成性材料の水溶液と、 増殖された H C V粒子を包含する細胞と を混合し、  An aqueous solution of the gel-forming material in a fluid sol state at a temperature lower than the sol-gel transition temperature and a cell containing the grown H C V particles are mixed,
ゾルーゲル転移温度より高温において、 前記混合物をゲル化させ た状態で、 前記細胞を培養し、  In a state where the mixture is gelled at a temperature higher than the sol-gel transition temperature, the cells are cultured,
ゾルーゲル転移温度より低温において該混合物をゾル化させて、 前記細胞から放出された H C V粒子を回収することを特徴とする H C V粒子の増殖方法。  A method for growing H C V particles, comprising: solating the mixture at a temperature lower than a sol-gel transition temperature to recover H C V particles released from the cells.
4. 前記放出 H C V粒子の回収に加えて前記細胞も回収する請求 項 3に記載の H C V粒子の増殖方法。  4. The method for growing HCV particles according to claim 3, wherein the cells are collected in addition to the collection of the released HCV particles.
5. 前記ゾルーゲル転移温度が、 0 °C以上 3 7 T 以下の範囲にあ る請求項 3または 4に記載の H C V粒子の増殖方法。  5. The method for growing HCV particles according to claim 3 or 4, wherein the sol-gel transition temperature is in the range of 0 ° C to 37 T.
6. 前記ハイ ド口ゲル形成高分子の水溶液が、 ゲル状態では実質 的に水不溶性である請求項 3〜 5のいずれかに記載の H C V粒子の 増殖方法。  6. The method for growing HCV particles according to any one of claims 3 to 5, wherein the aqueous solution of the high-mouth gel forming polymer is substantially insoluble in a gel state.
7. その水溶液が、 ゾル—ゲル転移温度より低温では流動性のゾ ル状態となり、 ゾルーゲル転移温度より高温では可逆的にハイ ドロ ゲル状態となるハイ ドロゲル形成性高分子を用い、 ゾルーゲル転移温度より低温で、 流動性のゾル状態とした前記ゲ ル形成性材料の水溶液と、 墻殖された H C V粒子を包含する細胞と を混合し、 7. When the aqueous solution is at a temperature lower than the sol-gel transition temperature, it is in a fluid state, and at a temperature higher than the sol-gel transition temperature, it is reversibly hydrodehydrated Using a hydrogel-forming polymer that is in a gel state, mixing the aqueous solution of the gel-forming material in a fluid sol state at a temperature lower than the sol-gel transition temperature and cells containing the HCV particles that have been propagated And
ゾルーゲル転移温度より高温において、 前記混合物をゲル化させ た状態で、 評価すべき薬剤の存在下で前記細胞を培養し、  Culturing the cells in the presence of the drug to be evaluated in a gelled state of the mixture at a temperature higher than the sol-gel transition temperature;
ゾルーゲル転移温度より低温において該混合物をゾル化させて、 前記細胞から放出された H C V粒子を回収または検出することを特 徴とする薬剤の評価方法。  A method for evaluating a drug, characterized in that the mixture is made into a sol at a temperature lower than the sol-gel transition temperature, and the HCV particles released from the cells are collected or detected.
PCT/JP2006/304223 2005-02-28 2006-02-28 Hepatitis c virus particles and method of proliferating the same WO2006090933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504860A JP4799545B2 (en) 2005-02-28 2006-02-28 Hepatitis C virus particles and methods of propagation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005054835 2005-02-28
JP2005-054835 2005-02-28

Publications (1)

Publication Number Publication Date
WO2006090933A1 true WO2006090933A1 (en) 2006-08-31

Family

ID=36927549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304223 WO2006090933A1 (en) 2005-02-28 2006-02-28 Hepatitis c virus particles and method of proliferating the same

Country Status (2)

Country Link
JP (1) JP4799545B2 (en)
WO (1) WO2006090933A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038641A1 (en) * 2006-09-26 2008-04-03 Kyoto University Method of proliferating hepatitis virus, hollow fiber for culturing hepatitis virus-infected cells and utilization of the same
JP2008161080A (en) * 2006-12-27 2008-07-17 Japan Health Science Foundation Assay method for detecting hepatitis c virus inhibitor
JP2017526378A (en) * 2014-09-19 2017-09-14 セフォ カンパニー リミテッド Three-dimensional cell culture system and cell culture method using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AIZAKI H. ET AL.: "Production and release of infectious hepatitis C virus from human liver cell cultures in the three-dimensional radial-flow bioreactor", VIROLOGY, vol. 314, no. 1, 2003, pages 16 - 25, XP004457922 *
KAITO M. ET AL.: "Hepatitis C virus particle detected by immunoelectron microscopic study", J.GEN.VIROL., vol. 75, no. 7, 1994, pages 1755 - 1760, XP000891747 *
PIETSCHMANN T. ET AL.: "Persistent and transient replication of full-length hepatitis C virus genomes in cell culture", J.VIROL., vol. 76, no. 8, 2002, pages 4008 - 4021, XP002377301 *
YOSHIOKA H. ET AL.: "Kagyakusei 3jigen Baiyo Tantai "Mebiol Gel". (Thermoreversible 3-D Cell Culture Matrix "Mebiol Gel")", THE CELL, vol. 35, no. 12, 2003, pages 481 - 484, XP003002087 *
YOSHIOKA H. ET AL.: "Shoonji Gel-ka Gata Netsu Kagyaku Hydrogel no Sosho Hifukuzai eno Oyo. (Wound Dressing of Newly Developed Thermogelling Thermoreversible Hydrogel)", THE JAPANESE JOURNAL OF ARTIFICIAL ORGANS, vol. 27, no. 2, 1998, pages 503 - 506, XP003002086 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038641A1 (en) * 2006-09-26 2008-04-03 Kyoto University Method of proliferating hepatitis virus, hollow fiber for culturing hepatitis virus-infected cells and utilization of the same
JP5327793B2 (en) * 2006-09-26 2013-10-30 国立大学法人京都大学 Hepatitis virus propagation method and use thereof
JP2008161080A (en) * 2006-12-27 2008-07-17 Japan Health Science Foundation Assay method for detecting hepatitis c virus inhibitor
JP2017526378A (en) * 2014-09-19 2017-09-14 セフォ カンパニー リミテッド Three-dimensional cell culture system and cell culture method using the same

Also Published As

Publication number Publication date
JPWO2006090933A1 (en) 2008-07-24
JP4799545B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP6882449B2 (en) Lipid vesicles with fixed interior
WO2016208777A1 (en) Cell culture container
EP1416044A1 (en) Support for cell / tissue culture and culture method
JP2014097068A (en) Substrate for routine growth of cultured cells in three dimensions
JP2012509960A (en) 3D cell culture article and method thereof
JP2021503958A (en) Bioactive 3D encapsulation culture system for cell expansion
US8075882B2 (en) Adoptive immune cells for tumor vaccines
Li et al. A review on thermoresponsive cell culture systems based on poly (N-isopropylacrylamide) and derivatives
JP4799545B2 (en) Hepatitis C virus particles and methods of propagation
Murtas et al. Alginate beads as immobilization matrix for hepatocytes perfused in a bioreactor: a physico-chemical characterization
Cho et al. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel
KR20200033206A (en) Microfluidic device of simulating neurovascular unit and highly efficient system for simulating blood brain barrier comprising the same
JP3414444B2 (en) Immobilization device, method for immobilizing and culturing biological tissue using the same
CN106267413B (en) AIDS plasma purification device
WO2006103685A2 (en) A method for cultivating cells derived from corneal limbal tissue and cells deived from corneal limbal tissue
WO2019035436A1 (en) Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell
Meng et al. Poly (ethylene oxide)/Gelatin-Based Biphasic Photocrosslinkable Hydrogels of Tunable Morphology for Hepatic Progenitor Cell Encapsulation
JP6800436B2 (en) Manufacturing method of cell structure, cell structure, cell incubator
EP1595944A1 (en) Hydrogel for cell separation and method of separating cells
JP7115749B2 (en) Method for producing cancer stem cells
JP6373241B2 (en) How to store cells
CN106267409B (en) AIDS biological therapy reactor
JP2017104089A (en) Manufacturing method of cell structure
CA3235582A1 (en) Hydrogel particles as feeder cells and as synthetic antigen presenting cells
Easterbrook et al. The ultrastructure of the reovirus inclusion: A freeze etching study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504860

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715266

Country of ref document: EP

Kind code of ref document: A1